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a b s t r a c t

Two issues in ecological network theory are: (1) how to construct an ecological network model and (2)
how do entire networks (as opposed to individual species) adapt to changing conditions? We present
a novel method for constructing an ecological network model for the food web of southeastern Lake
Michigan (USA) and we identify changes in key system properties that are large relative to their uncer-
tainty as this ecological network adapts from one time point to a second time point in response to multiple
perturbations. To construct our food web for southeastern Lake Michigan, we followed the list of seven rec-
ommendations outlined in Cohen et al. [Cohen, J.E., et al., 1993. Improving food webs. Ecology 74, 252–258]
for improving food webs. We explored two inter-related extensions of hierarchical system theory with
our food web; the first one was that subsystems react to perturbations independently in the short-term
and the second one was that a system’s properties change at a slower rate than its subsystems’ properties.
We used Shannon’s equations to provide quantitative versions of the basic food web properties: number
of prey, number of predators, number of feeding links, and connectance (or density). We then compared
these properties between the two time-periods by developing distributions of each property for each time
period that took uncertainty about the property into account. We compared these distributions, and con-
cluded that non-overlapping distributions indicated changes in these properties that were large relative
to their uncertainty. Two subsystems were identified within our food web system structure (p < 0.001).
One subsystem had more non-overlapping distributions in food web properties between Time 1 and
Time 2 than the other subsystem. The overall system had all overlapping distributions in food web prop-
erties between Time 1 and Time 2. These results supported both extensions of hierarchical systems theory.
Interestingly, the subsystem with more non-overlapping distributions in food web properties was the sub-
system that contained primarily benthic taxa, contrary to expectations that the identified major perturba-
tions (lower phosphorous inputs and invasive species) would more greatly affect the subsystem contain-
ing primarily pelagic taxa. Future food-web research should employ rigorous statistical analysis and incor-
porate uncertainty in food web properties for a better understanding of how ecological networks adapt.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Ecological network theory combines systems theory and net-
work methodology to study ecology. The primary ecological
networks studied are food webs, where the nodes of the network
are taxonomic populations (taxa) and links between nodes indi-

∗ Corresponding author. Tel.: +1 419 530 4587.
E-mail address: ann.krause@utoledo.edu (A.E. Krause).

cate feeding interactions. While much has been learned about food
web dynamics through ecological network research, there remain
many outstanding issues that need to be addressed for improv-
ing future inquiries (Jørgensen, 2007). Two of these issues are (1)
how to construct ecological network models and (2) how do entire
networks (as opposed to individual species) adapt to changing con-
ditions? In this paper, we present a novel method for constructing
an ecological network model for the food web of southeastern Lake
Michigan (USA). We identified large changes in key system proper-
ties relative to their uncertainty as this ecological network adapts

0304-3800/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2009.07.021
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from one time point to a second time point in response to multiple
perturbations.

As the second largest lake by volume of the Laurentian Great
Lakes, Lake Michigan is an ecosystem that has gone through pro-
found changes through time (Madenjian et al., 2002). From the
early 1980s through the late 1990s, two key disturbances emanat-
ing from outside of this system were documented: the invasion
and establishment of two exotic invertebrate populations and
declines in phosphorous loadings. The two exotic invertebrates are
Bythotrephes longimanus (cladoceran zooplankter), which was first
detected in 1986 (Evans, 1988), and Dreissena polymorpha (zebra
mussel), which was detected in 1989 (Lauer and McComish, 2001).
Bythotrephes is a voracious predator on zooplankton, including its
native competitor, Leptodora kindtii, and competes with small fish
(Schulz and Yurista, 1999; Vanderploeg et al., 2002). Although fish
in the Great Lakes find Bythotrephes difficult to digest because of
their long spines (Barnhisel and Harvey, 1995; Parker et al., 2001),
Bythotrephes are present in fish diets (Pothoven and Madenjian,
2008; Pothoven and Vanderploeg, 2004; Bur and Klarer, 1991).
Zebra mussels have a higher filtering rate and broader particle size
range than their competitors, the native fingernail clams, result-
ing in increased water clarity via movement of organic matter from
the pelagic to the benthic regions (Vanderploeg et al., 2002). The
decline in phosphorous loadings resulted from society’s intentional
reduction in phosphorus input to return the lake from a eutrophic
to an oligotrophic state. Throughout the 1950s, 1960s, and 1970s,
phosphorous loading from human activities greatly affected the
phytoplankton community by increasing overall biomass and pro-
moting dominance of eutrophic species (Fahnenstiel and Scavia,
1987; Barbiero et al., 2002; Madenjian et al., 2002; Schelske et
al., 2006). Then, the Water Quality Agreement in 1972 and other
management efforts to reduce human phosphorous loadings were
implemented and largely successful in reducing loadings. Dur-
ing this time period, phytoplankton community composition has
shifted back to an assemblage more characteristic of a mesotrophic
system (Barbiero et al., 2002; Madenjian et al., 2002).

Most studies on Lake Michigan during this time period focus on
the dynamics of individual species or taxonomic-group populations
but have yet to study how the systems at higher levels, such as com-
munities or food webs, reacted during this time where integrative
properties are measured at these higher levels. In this study, we esti-
mated network properties as integrative measures of a food web in
southeastern Lake Michigan. There are on-going issues in food web
ecology and ecological network research regarding the difficulty
of constructing food webs (Cohen et al., 1993; Jørgensen, 2007). It
is difficult to construct a new food web model from existing data
because the data on taxonomic populations were often collected for
other purposes. But it is also difficult to construct a food web from
data specifically collected for the construction because it requires
extensive fieldwork. To construct our food web for southeastern
Lake Michigan, we followed the list of seven recommendations out-
lined in Cohen et al. (1993) for improving food webs: establish pri-
orities for data collection, provide a precise setting for boundaries,
articulate units for defining the nodes of taxonomic populations,
define the information used to determine links and provide weight
on links where possible, publish the food web in matrix or list for-
mat, make the details of the data used to construct the food web
available, and produce a food web based on collaboration.

To construct a food web model that followed Cohen et al.’s rec-
ommendations for multiple time points, we compiled compatible
datasets previously collected by federal and state agencies and uni-
versity researchers, primarily for monitoring programs of various
taxonomic groups. From this, we established two general time peri-
ods for our temporal boundaries: the early 1980s (Time 1) and the
late 1990s (Time 2). The data sets allowed us to articulate nodes
often to the species level for most taxonomic groups, producing

almost 200 nodes for each time period. Food web models that are
this finely articulated often lack the information needed to calcu-
late measures of interaction strength (see Berlow et al., 2004) or
energy flow on links between predators and prey, and our com-
piled data sets were no exception for links between predator and
prey. However, we knew that weighted links are important for con-
structing food webs to allow for differentiation between strong
and weak interactions (Cohen et al., 1993; Bersier et al., 1998;
McCann, 2000). Hence, for weighting the links in our food web,
we developed a new method to substitute for traditional mea-
sures of interaction strength and energy flow. This new method for
weighting links takes into account taxa traits that are fairly stable
– their prey and habitat preferences – and taxa traits that are more
dynamic—their biomass. This method was also flexible in allow-
ing shifts in preferences from one time period to another, including
shifts in preferences not related directly to feeding interactions.

To analyze our food web, we turn to hierarchical system theory,
which proposes that the evolution of complex systems is depen-
dent on their subsystem structure and thus should be examined
at multiple system levels (Simon, 1965). The nearly decompos-
able subsystems outlined in Simon (1965) have nodes (taxa) that
share many or strong interactions among themselves and share few
or weak interactions with nodes in other subsystems. In ecology,
these subsystems are known as compartments (Pimm, 1979). In
this study, we employed a quantitative method for detecting sub-
system structure of our food web for the two time points. We then
measured quantitative versions for common qualitative properties
of food webs at the system level and subsystem level (Bersier et
al., 2002): number of links, number of prey, number of predators,
and density (also known as connectance). The quantitative versions
took into account the resource flow from prey to predators in our
food web. Specifically, we used Shannon’s equations to measure
the distribution of the probabilities in resource flow from prey to
predators, which quantified the basic food web properties listed
above (Shannon, 1948; Bersier et al., 2002; Zorach and Ulanowicz,
2003). Because the datasets used in this study were collected for
other purposes, we also quantified the uncertainty associated these
properties.

From our network property information, we explored two inter-
related extensions of the hierarchical system theory with our food
web (Simon, 1965). The first extension is that subsystems within
a system react to perturbations independently in the short-term.
The second extension is that a system’s properties change at a
slower rate than its subsystems’ properties. These extensions relate
to food-web theory, where it has been shown that the presence of
these subsystems increase stability in simulated food webs (May,
1973). The weak links between subsystems buffer the effects of
perturbations, thus maintaining the stability of the system (Simon,
1965; Pimm, 1979; McCann, 2000; McCann et al., 2005). This sta-
bility comes from weak links not transferring the effects of a
perturbation as much as strong links. Additionally, they also offer
redundancy in the system so that nodes may rely more on their
weak links than their strong links in the short term. For example,
as mentioned above Bythotrephes reduced Leptodora populations.
Leptodora would be a strong resource link for small fish. This reduc-
tion would have led fish to have to rely on weaker resource links
of smaller, less preferred zooplankton until they learned to replace
Leptodora with Bythotrephes in their diets. The aggregate response
of all nodes in the subsystem results in shifts in subsystem proper-
ties. System properties are based on the aggregated response of the
subsystems, resulting in fewer changes in the overall system if not
all subsystems have the same response to the perturbation. In our
study, we therefore expected that the changes in subsystem prop-
erties from Time 1 to Time 2 would be different among subsystems,
and that we would observe fewer changes in system properties from
Time 1 to Time 2 than those observed at the subsystem level.
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Fig. 1. A map of southern Lake Michigan with the latitude and longitude boundaries of study outlined (figure courtesy of NOAA-Great Lakes Environmental Research Laboratory,
Ann Arbor, MI).

2. Methods

We took several steps to construct a food web with weighted
links following the recommendations of Cohen et al. (1993). First,
we had to identify an area of Lake Michigan where data on the food
web were collected consistently in the early-mid 1980s and mid-
late 1990s. These datasets defined what taxonomic groups would
be assigned as nodes in our network. The collection sites of the
data set the boundaries of the spatial area that our food web repre-
sented. The collection times set up the seasons that our food web
represented. Once we had our nodes identified and the spatial and
temporal range defined, we then worked on developing the feed-
ing links between nodes. The feeding links between predator–prey
nodes were weighted using a measure of relative probability of
interaction. This relative probability of interaction was based on
three metrics: selectivity, horizontal space overlap, and vertical
space overlap. Selectivity was identified that a predator taxon is
thought to eat a prey taxon based on the literature. It had three
levels at which it could be set: high, neutral, and low. Horizontal
space overlap was based on three bottom depth zones within the
identified spatial area. The calculation took into account seasonal
preferences and presence. Vertical space overlap was based on four
zones in the spring and six zones in the summer. The calculation
took into account seasonal preferences and diel vertical migration.

These three measures were multiplied together to generate a rela-
tive probability of interaction.

To measure the shifts in network properties of the system, we
employed multiple analyses. We used a clustering algorithm to
identify subsystems in our food web network where links were
weighted by the relative probability of interaction. We then tested
whether nodes retained the same subsystem membership in Time
2 as they had in Time 1. We calculated quantitative versions of
basic food web or network properties at the system and subsystem
level. These quantitative properties were based on the disper-
sion of weights on links (Shannon’s equations), where weights
were now a product of the relative probability of interaction and
a biomass estimate of the prey node population. Because we
had estimates of prey biomass for multiple years within each
time period that were not collected together and were collected
for other purposes, we produced distributions of the quantita-
tive network properties for each time period. These distributions
were based on calculated values of these properties for each
possible combination of prey datasets. These distributions rep-
resented the uncertainty of each network property was for each
time period. We adopted the ad-hoc but reasonable criterion that
non-overlapping distributions in properties between Time 1 and
Time 2 indicated a large change in that property relative to its
uncertainty.
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2.1. Study site and data acquisitions

The food web represented southeastern Lake Michigan in spring
and summer with a range in bottom depths of 15 to 110 m for the
two time periods spanning the years of 1980–1984 (Time 1) and
1995–1999 (Time 2). These temporal and spatial boundaries were
selected primarily based on the availability of datasets that were
comparable and that represented a broad spectrum of taxonomic
groups. During Time 1, phosphorous loadings were relatively high
and Bythotrephes or zebra mussels had yet to be detected in Lake
Michigan waters (Makarewicz et al., 1995; Barbiero et al., 2001;
Fleischer et al., 2001; Madenjian et al., 2002). By Time 2, phospho-
rous loadings were relatively low and both invasive species were
firmly established. By 1999, several new exotic species had been
detected in the lake, though they had yet to reach high levels of
density (Vanderploeg et al., 2002). Thus we assumed these exotic
species had a negligible effect on the food web structure and its key
system properties in Time 2. Based on our above dataset restric-
tions, we focused on data collected between the latitudes of 43◦15′N
and 41◦45′N and east of longitude 87◦00′W (Fig. 1). We set the sea-
sonal time frame of our food web from April 1 to June 14 for spring
and June 15 to September 30 for summer. Most of the datasets only
cover spring and summer, important seasons for taxonomic groups
with short-lived species, such as phytoplankton and zooplankton.
These datasets with short-lived species rarely have autumn or win-
ter data available. The date to separate spring and summer was
selected because the lake starts to stratify in June with conditions
usually still at the mixing stage at the beginning of June and with
the lake usually having set up a thermocline by the end of June. The
bottom depth range of 15–110 m was broken into three horizontal
depth zones based on previous studies that determined these depth
ranges represented different ecological zones: 15–30 m (Zone 1),
31–50 m (Zone 2), and 51–110 m (Zone 3; Nalepa, 1989; Agy, 2001).

The primary information we used from the datasets was taxa
presence during the time periods and their associated relative
biomass. All datasets had information on taxa groups for multi-
ple years within Time 1 and within Time 2. However, not all of
them covered all five years within each time period. The Great
Lakes National Program Office (GLNPO) of the US-EPA provided
phytoplankton data. GLNPO collected phytoplankton data to mon-
itor water quality and has been consistent in its data collection
methods throughout our two time periods (Barbiero and Tuchman,
2001). Although GLNPO collected phytoplankton in only one depth
zone, we assumed that their phytoplankton data was representative
of all three depth zones. We could not find documentation in the
literature that there were large changes in phytoplankton among
the chosen depth zones except for Nitschia spp. (Munawar and
Munawar, 1976; Lowe, 2003). This sampling regime produced more
inter-annual variance whereas more comprehensive temporal and
spatial sampling would have provided more precise estimates of
phytoplankton biomass. This sampling regime will make it more
difficult to detect differences in our network properties.

The zooplankton data for the Time 1 food web were collected
for the Cook Power Plant study conducted by the Univer-
sity of Michigan, Ann Arbor, MI (Evans, 1986). The Time 2
zooplankton data set was provided by NOAA-Great Lakes Envi-
ronmental Research Laboratory (GLERL), Ann Arbor, MI and
was collected for their Episodic Events in Great Lakes Ecosys-
tems (http://www.glerl.noaa.gov/eegle/data/data.html; Agy, 2001).
These two datasets were considered to be comparable in their
data collection methods. Collection sites and times gave reason-
able coverage for these populations within our spatial and temporal
boundaries and in relation to their life-histories (see Krause, 2004
for more detail). Two Bythotrephes datasets were collected in a sep-
arate, but compatible, sampling program by GLERL (Pothoven et al.,
2001) that also provided good spatial and temporal coverage.

The benthic invertebrates were provided by GLERL and collected
for a monitoring program using consistent methods (Nalepa, 1989).
The data provided good representation of those populations within
our spatial and temporal boundaries given the life-histories of ben-
thic invertebrates. This monitoring program did not collect Mysis
relicta as they require specialized methods for collection. Consis-
tent datasets for Mysis relicta, opossum shrimp, were unavailable.
However, they are too important as predators and prey within the
food web to not be included (Lehman et al., 1990; Eshenroder
and Burnham-Curtis, 1999) and thus the following datasets were
included in our food web. For Time 1, we used opossum shrimp
estimates from Lehman et al. (1990) and McDonald et al. (1990).
A comprehensive dataset was available for opossum shrimp from
GLERL for Time 2 (Pothoven et al., 2000).

Fish data were available from various state and federal monitor-
ing programs. Forage fish data were from the USGS-Great Lakes
Science Center (Ann Arbor, MI) long-term monitoring program
(Madenjian et al., 2002). Samples were taken in the fall where the
fall populations of fish likely had fewer individuals than those in
spring and summer due to mortality and individual fish likely had
a higher biomass than in the spring and summer. However, all of the
fish species included in our food web only have one cohort per year,
as opposed to most of the other taxa, so these data collected once
per year provided adequate estimates of relative biomass for the
purposes of this food web analysis. Lake whitefish data were avail-
able from the Michigan Department of Natural Resources for lake
whitefish management unit 8. Salmon and trout data were available
from Michigan State University (East Lansing, MI) for salmon man-
agement unit 8. While these management units did not perfectly
overlap with the latitudinal and longitudinal boundaries, we used
them because they were well-developed biomass estimates based
on modeling efforts. Sea lamprey data were available from the sea
lamprey monitoring program headed by the Great Lakes Fishery
Commission (Ann Arbor, MI). For more details on data attributes,
see Krause (2004).

2.2. Constructing the food web

The taxa that formed the nodes of our food-web network were
developed from the available datasets. A total of 164 taxa nodes
were found in the datasets of both time periods, 16 taxa were iden-
tified in Time 1 datasets but not in Time 2 datasets, and 32 taxa
were identified in Time 2 datasets but not in Time 1 for a total of
180 nodes in Time 1 and 196 nodes in Time 2. The food webs of the
two time periods shared 74 phytoplankton nodes, 21 zooplankton
nodes, 47 benthic invertebrate nodes (including opossum shrimp),
and 22 fish nodes. The Time 1 food web had 5 phytoplankton, 5 zoo-
plankton, and 5 benthic invertebrate nodes not found in the Time 2
food web. The Time 2 food web had 22 phytoplankton, 2 zooplank-
ton (including Bythotrephes), and 8 benthic invertebrate (including
zebra mussel) nodes not found in the Time 1 food web.

Generally, taxa nodes were defined at the species level. We
avoided aggregating into higher-level taxonomic groups where pos-
sible because of its potential biases, including reduced detection of
compartments (Martinez, 1991; Cohen et al., 1993; Gaedke, 1995;
Krause et al., 2003). We aggregated beyond the species level in the
food web only where sampling was reported at a higher taxonomic
level with the exception of phytoplankton. Because of the difficulty
in taxonomy at the species-level, potential for misidentification,
and large numbers of species within phytoplankton, the 268 species
of phytoplankton found in the survey data were aggregated based
on their group type (for example, centric diatoms) and on having
similar characteristics in size, shape, colonial attributes, motility,
toxicity, trophic status (nitrogen-fixing ability, heterotrophic, both
hetero and autotrophic), silica, and spatial and temporal presence
(Weithoff, 2003). When supported by the datasets, some species of

http://www.glerl.noaa.gov/eegle/data/data.html
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zooplankton and fish had two nodes associated with them based on
ontogenetic shifts in feeding interactions as differences in feeding
links from one life-stage to the next can be greater than between
species (Gaedke, 1995). In the benthic invertebrate data, we dis-
aggregated a group, the Spheariidae, into three taxonomic groups
because the taxa represented by the group were dissimilar in their
depth distributions and diets.

Once nodes were identified, the next step for constructing
the food web was to identify which nodes linked to each other
in a predator–prey interaction and to apply a weight to the
link. We developed a method for weighting links based on met-
rics that included the selectivity of the predator on the prey,
predator–prey overlap in horizontal depth across time (seasonally),
and predator–prey overlap in vertical depth across time (daily and
seasonally). These metrics are often a result of a taxon’s character-
istics, such as thermal tolerance, depth tolerance, light tolerance,
gape size, nutritional requirements, and defense mechanisms. Com-
bining these three metric dimensions provided us with a relative
probability of interaction (Iij), where every link had the potential to
have the same maximum weight of 1.00. The values used to estab-
lish links and calculate weights were documented in a database
along with the associated references (over 175 references total; see
Supplemental material). This weighting scheme allowed for poten-
tial adjustments within each time period if vertical and horizontal
distributions were documented as changing for a taxon node, which
may be caused by a number of factors, including non-feeding effects
of introduced species.

The selectivity of a predator on a prey indicated the preference
of a predator for a prey and was set to one of three levels: neu-
tral, high, and low selectivity (sensu Vanderploeg, 1994). First, we
linked predators to their possible prey using diet studies for the
taxa found in the literature and other sources of information (see
supplemental materials for more information). Then, these links
were weighted by one of the three selectivity values, which were
not affected by the values assigned to other links, unlike diet per-
centages. We wanted an indicator that had the same potential for
obtaining the highest value. If we change the diet percentage on
one link from a prey to a predator, we have to change at least one
other percentage of another link from a prey to that predator so
that the total adds up to 100. The default level for all predator–prey
links was a value of 0.50, which indicated neutral selectivity or neu-
tral preference (see Supplemental Materials for diet information
and associated citations). If we found evidence in the literature or
other sources of diet data that suggested a predator had a strong
preference for a prey taxon compared to other prey taxa, then the
selectivity of that interaction was assigned a value of 1.00. While
perfect selectivity may never occur in nature, the value of 1.00 was
selected so there was the potential for a predator–prey pair interac-
tion to have a final weight of 1.00 (the maximum weight) after the
spatial overlap adjustment. Otherwise, the maximum weight would
be dependant on whatever weight was assigned to high selectivity,
as the maximum values for the spatial overlap adjustments were
1.00. If we found evidence that a predator actively selected against a
prey taxon that still had the potential to be consumed by the preda-
tor (e.g., toxic phytoplankton) or that a prey taxon was rarely found
in the diet, then selectivity was given a score of 0.10 to represent a
low selectivity or low preference. A value of 0 was not given because
that would indicate no selectivity and effectively remove the link
between the predator and the prey.

For spatial overlap, we collected information on ranges in taxa
presence in vertical and horizontal space from the literature. Three
horizontal depth zones were identified based on bottom depths
given general biomass distributions observed across taxonomic
groups: 1—8–30 m bottom depth, 2—31–50 m bottom depth, and
3—>50 m bottom depth. Because some taxa’s horizontal distribu-
tion can shift from spring to summer, particularly for the more

mobile fish taxa, each taxon had a separate horizontal depth distri-
bution for each season. Vertical space was divided into depth zones
for each season based on thermal structures. Spring had four zones:
1—upper water column (surface to 2 m from sediment surface),
2—lower water column (2 m from sediment surface), 3—sediments
surface to 1 cm below, 4—deeper sediments. Summer had six zones:
1—epilimnion, 2—thermocline area, 3—hypolimnion, 4—nephloid
area, 5—sediments surface to 1 cm below, 6—deeper sediments.
Taxa vertical distributions were determined for spring and sum-
mer separately. Vertical depth distributions were also separated
into day and night to account for the diel vertical migrations some
taxa undertake (e.g., opossum shrimp). For all taxa distributions,
we indicated where a taxon’s abundance was greater for a given
spatial zone relative to the other spatial zones in which they were
found. That is, we had the spatial zone of peak abundance for each
taxon during spring and summer, and during day and night of each
season.

For each predator–prey link, the values for horizontal overlap
were calculated in four steps for spring and for summer (see Fig. 2
for example). First, using the scales outlined in the previous para-
graph (1–3 for horizontal zones), the higher value of the minimum
horizontal depth zones for the pair was subtracted from the lower
value of the maximum horizontal depth zones for the pair. One
was added to this value to obtain the number of horizontal depth
zones in which the taxa pair overlapped in distribution. Second, the
maximum range of horizontal depth zones of the predator–prey
pair combined was calculated by subtracting the lower value of
the minimum horizontal depth zones for the taxa pair from the
higher value of the maximum horizontal depth zones for the taxa
pair and then adding one to the result. This calculation produces
the range of depth zones of that predator–prey pair. Third, to adjust
for peak abundances, a percent value was multiplied by this pro-
portion where the adjustment was made for the horizontal overlap
values: 100% for predator–prey with horizontal peaks that were
the same; 75% peaks were not equal but still within the overlap
range; 50% peak for one taxon in the pair was in the overlap range
but the peak for the other taxon was not; and 25% if neither peak
was in the overlap range. While these percentages are arbitrary, we
wanted to reduce the relative probability of interaction to account
for non-equal peak abundances and peak abundances outside of the
range of horizontal overlap. We could not think of an appropriate
non-arbitrary adjustment that would apply to all interactions in the
food web. Fourth, the overlap distribution for a predator–prey pair
was divided by the distribution range as a pair to obtain the percent
overlap within their collective ranges (to normalize their overlap)
and multiplied by the peak abundance adjustment. We then took a
weighted mean of the spring horizontal value and the summer hor-
izontal value, adjusting for the number of days in spring and sum-
mer. If the taxon was only present for a proportion of the time period
(e.g., phytoplankton taxa that only bloom in the summer), then the
number of days was adjusted accordingly. The maximum horizon-
tal overlap score was 1.00, which indicated that the interacting taxa
pair had 100% spatial overlap and 100% temporal overlap in the hor-
izontal range for spring and summer given the spatial boundaries.

We repeated this procedure to calculate vertical overlap only
using the vertical zone data rather than the horizontal zone data
(1–4 for spring vertical zones, and 1–6 for summer vertical zones).
In addition to accounting for spring and summer, we had to account
for diel vertical migration. Thus, we had vertical overlap values for
spring day, spring night, summer day, and summer night. The mean
of these values was calculated, where the values were weighted by
the number of days in the same way that the horizontal values for
spring and summer were weighted and they were weighted by the
number of hours in day and night for spring and for summer (for
more detail, see Krause, 2004). Again, the maximum spatial overlap
score was 1.00 for the final vertical overlap scores, which indicated
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Fig. 2. An example of how to calculate a spatial overlap value for a predator–prey pair for 1 season. Little Fish is a prey taxon to the predator taxon Big Fish. Each taxon has
its own horizontal depth distribution and preferences for the spring. The steps in the calculation are outlined. This procedure was followed to calculate horizontal overlap
values for spring and summer and vertical overlap values for night and day in spring and summer.

that the interacting taxa pair had 100% spatial overlap and 100%
temporal overlap for spring and summer and for day and night given
the spatial boundaries.

The three scores of selectivity, horizontal depth overlap, and ver-
tical depth overlap were then multiplied together for each predator
j–prey i pair for a final link weight (Ii,j). This weight represented
a relative probability of interaction. If a predator node had high
selectivity for a prey and maximum spatial and temporal overlap
with a prey node, their relative probability of interaction was 1.00,
the highest value attainable. We set the lower limit for a relative
probability of interaction at 0.01, where any interaction lower than
0.01 was removed as it was deemed an unlikely interaction. Of the
removed interactions, 95% involved a phytoplankton taxon node
as a prey and 95% of those interactions involved a benthic inver-
tebrate taxon node as a predator. Based on our diet citations (see
supplemental materials), there was a very small likelihood for many
benthic invertebrate groups to be preying on phytoplankton freshly
deposited on the sediment surface. That most of the removed inter-
actions involved benthic predator–phytoplankton prey seemed to
support our decision for removing the more unlikely interactions.
For predator–prey links present for both Time 1 and Time 2, this
weight was kept the same across time except for those links asso-
ciated with five nodes of benthic invertebrate taxa. There was
evidence in the benthic invertebrate dataset that horizontal peak
abundance shifted between Time 1 and Time 2. Their links reflected
this change between the two time periods. The Time 1 and Time 2
food web can be found in Supplemental Materials.

2.3. Quantifying subsystems

To detect subsystems, we analyzed the food webs for both time
periods using the odds ratio method employed by KliqueFinder
(Frank, 1995, 1996). This method seeks subsystems within a net-
work structure by iteratively reassigning taxa to subsystems to
maximize the odds that links occur within subsystems versus links
between subsystems (Table 1). The method sums up all of weights
(Iij) associated with the links between taxon i and taxon j present
in the food web (�i�jIij). This sum is separated into two values
based on two categories: one category containing links that occur
within subsystems (cell D in Table 1) because taxon i and taxon j
are in the same subsystem and are linked together and one cat-
egory containing links that occur between subsystems (cell B in
Table 1) because taxon i and taxon j are in different subsystems and
are linked together. The potential number of links (P) that can occur
between all taxa pairs in a network [n × (n − 1) where n = total num-
ber of taxa] are assigned the maximum weight (Imax, in this study
maximum weight = 1.00). The difference between the total weight
that could potentially occur in the system [n × (n − 1) × Imax] and
the sum of the weights that actually occur or are present in the sys-
tem (�i�jIij) provides the weight associated with links that have
the potential to be in a system but are absent (not present, no link
occurring between a taxa pair). This difference is divided among
the two categories the same as the sum of the weights: one cate-
gory containing links that are absent within subsystems (cell C in
Table 1) because taxon i and taxon j are in the same subsystem and

Table 1
The calculation of the odds ratio based on link occurrences between taxa pairs.

Link occurring

No Yes

Subsystem membership
Different A B n(n − 1)Imax − [�gng(ng − 1)]Imax

Same C D [�gng(ng − 1)]Imax

n(n − 1)Imax − �i�jIij �i�jIij n(n − 1)Imax

For the symbols: Iij represents the weight of a link between taxon i and taxon j, Imax represents the maximum weight out of all Iij , n represents the number of taxa in the food
web, and ng represents the number of taxa in subsystem g.
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are not linked together and one category containing links that occur
between subsystems (cell A in Table 1) because taxon i and taxon
j are in different subsystems and are not linked together. The algo-
rithm starts with an initial assignment of taxa to subsystems based
on selecting an initial triad. After the initial subsystem assignment,
the algorithm calculates the odds that a link occurs within a subsys-
tem versus between subsystems. This odds ratio takes into account
on the weights assigned to present and absent links where the odds
ratio is calculated as [(AxD)/(BxC)]. The algorithm then reassigns
taxa to subsystems iteratively until a local maximum of the odds
ratio is found (Frank, 1995). From this algorithm, we obtain an odds
ratio associated with the assignments of taxa to subsystems. Two
advantages of this method are that a taxon can only be assigned to
one subsystem, not multiple subsystems, and the number of sub-
systems are not defined a priori to the analysis. This method has
previously been shown to successfully identify subsystems in food
webs (Krause et al., 2003) and has been shown to be effective in
Monte Carlo simulations (Frank, 1995).

We tested for significant subsystems by conducting a Monte
Carlo simulation (Frank, 1995, 1996). Links and their weights were
randomly assigned to taxa pairs to generate 500 random food webs.
The constraints for the generated food webs were that the sum of
weights for each row was equal to the row marginal of the origi-
nal food web (row represented predators and columns represented
prey; Frank, 1995; Krause et al., 2003). The odds ratio was calculated
after applying the clustering algorithm to each random food web
to generate a distribution of odds ratios for a probability estimate
that the odds ratio found for Time 1 and Time 2 was different from
a random distribution (˛ = 0.05).

Similarity in subsystem assignment between Time 1 and Time
2 was tested to determine if subsystem assignment changed across
time. This analysis tested our expectation of a stable subsystem
assignment across time because our weights were based on stable
characteristics of taxa. The primary change from Time 1 and Time 2
was the difference in whether taxa were present in one time period
but not in the other time period (e.g., zebra mussels were present
in Time 2 but not Time 1). We did not expect that to have a sig-
nificant influence on a taxon’s subsystem assignment. To test our
expectations, we summed the number of taxa pairs where both
taxa were members of the same subsystem in Time 1 and Time 2
(E), summed the number of taxa pairs where taxa were members of
different subsystem in Time 1 and Time 2 (H), summed the number
of taxa pairs that where the taxa pair were members of the same
subsystem in Time 1 and members of different subsystems in Time
2 (G), and summed the number of taxa pairs where taxa were mem-
bers of different subsystems in Time 1 and members of the same
subsystem in Time 2 (F). We calculated the odds ratio as follows:
[(E × H)/(G × F)]. This is the increase in the odds that two taxa will
be in the same subsystem in Time 2 given that they were in the
same subsystem in Time 1.

2.4. Shannon’s equations for quantitative food web properties

The most basic of structural properties for food webs are the
number of feeding links between prey and predators, number of
prey taxa, and number of predator taxa. Most commonly these
properties are measured qualitatively, that is, without taking into
account weights on links to differentiate between strong and weak
links. However, qualitative food web properties have a tendency for
inaccurately reproducing the structure of food webs (Bersier et al.,
2002; Krause et al., 2003).

Quantitative measures are those derived from the weights
assigned to links in the food web. Shannon’s equations (1949)
provided us with quantitative measures of these basic food web
properties. Specifically, Shannon’s equations characterize the disor-
der or uncertainty in the probability of the transfer of information,

such as resources, across pathways from sources (prey) that send
the information to the sinks (predators) that receive the informa-
tion (Shannon and Weaver, 1949). As the disorder or uncertainty
increases, the more resource flow becomes evenly distributed
across links. The greatest level of disorder or uncertainty occurs
when there are equal weights across links leading to an equal prob-
ability for resources to flow across any link in the food web. The
more uneven weights and their resulting probabilities become, the
more certainty we have about what links resources will be flowing
across. With Shannon’s equations, we measured temporal changes
in basic food web properties for Lake Michigan by quantifying how
the distribution of resource flow from prey to predators changed
from Time 1 to Time 2.

Our primary focus was on how the distribution of resource flows
across links changed across time at our two system levels not in how
the size of the system changed. Therefore, we normalized the quan-
titative basic food web properties relative to their maximum values.
These maximum values depended on whether the property was
measured for Time 1 or for Time 2 and measured for the system or
subsystem level. The maximum Shannon value that can be reached
through equal probabilities is equal to the log of a basic food web
property’s corresponding qualitative value (Ulanowicz and Wolff,
1991; Zorach and Ulanowicz, 2003). The normalized value allowed
us to see how quantitative versions of properties changed relative
to their qualitative counterpart. If the normalized value declined
over time, then we knew that the decline in the quantitative prop-
erty was the result of a less even distribution in resource flows
not a result of a decline in the qualitative property. For example,
a decline in normalized links from Time 1 to Time 2 would indicate
that resource flows were concentrating onto fewer of the available
links in Time 2 than in Time 1.

To approximate resource flow in our food web, we multiplied the
relative probability of interaction weight associated with a feeding
link between a prey and predator pair (see section on constructing a
food web for calculation) and the mean biomass estimate of the prey
taxon in that predator–prey pair. Mean biomass was estimated for
each taxon for each year available within Time 1 and Time 2 where
all taxa had more than one estimate within each time period (see
Supplemental Material for biomass estimates and Krause, 2004 for
more detail). Biomass estimates were all converted to a common
unit of mg of dry weight/m2 and were based on the spatial area
defined in the food web. These estimates were not assumed to be
absolute values of biomass but rather were assumed to be reason-
able relative indices to aid in quantifying basic network properties
because the collection methods were consistent across time peri-
ods. The biomass estimate for prey i for a given year within Time
1 was multiplied by the relative probability of interaction (Ii,j) for
Time 1 for each predator (j)–prey (i) pair to give us a new weight,
wi,j , for each link in the food web. The calculation of this weight is
comparable to energy food webs where the consumption rate of a
predator is multiplied by the amount of carbon in the population
of its prey. The primary difference between these two measures is
that, in an energy food web, the amount of carbon transferred is
assumed to be an absolute value and carbon is a proxy for energy,
whereas our weights (wi,j) simply represent an index of general
resource flow.

Shannon’s first equation quantifies the number of links in a net-
work. First, we calculated the probability of resource flowing from
prey i to predator j [p(i,j)] from our weight of resource flow wi,j:

p(i, j) = wi,j∑
i,jwi,j

(1)

Next we calculated the Shannon’s first equation H(x,y), which is
the measure of the evenness of the probabilities of resource flow
between prey i and predator j across all prey (x) and predator (y)
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pairs with links:

H(x, y) = −
∑

i,j

p(i, j) log p(i, j) (2)

If we transform the H(x,y) by taking its exponential function, it
provides us with a quantitative measure of links (Lq) in a food web
(Zorach and Ulanowicz, 2003). Here, the maximum of eH(x,y) is equal
to its qualitative counterpart, the number of links (L) in a food web.
The maximum occurs when there is an equal probability of resource
flow across all links; that is, the weights on the links are all even
or equal. Uneven weights result in uneven probabilities, where the
more uneven they are, the smaller the value for quantitative links.
Low normalized values indicate most of the resources are flowing
across only a few of all of the available links (a few strong and many
weak links).

Shannon’s modification of Eq. (2) (Shannon, 1948) helps us to
quantify the distribution of resource flow from prey and the distri-
bution of resource flow to predators. In the equation for prey, the
log of the probability of resource flow between prey i and predator
j is replaced by log of the sum of probabilities p(i,j) associated with
prey i. This is equivalent to taking the probability of the amount of
resource flow from prey i:

H(x) = −
∑

i,j

p(i, j) log
∑

j

p(i, j) (3)

H(x) is the measure of the evenness in the probabilities associ-
ated with resources flowing from prey. The probabilities associated
with predators, H(y), is similarly measured by replacing the
summed probabilities across prey i by the summed probabilities
across predator j. H(y) calculated the evenness in the probabilities of
resources flowing to predators. Quantitative measure of prey nodes
(Xq) was calculated as eH(x) and quantitative measure of predator
nodes (Yq) was calculated as eH(y). The maximum value of eH(x) is
always equal to the qualitative counterpart of the property, number
of prey nodes (X) in a food web. To reach the maximum, there would
have to be an equal amount of resource flow from every prey node
in the food web. Similarly, the maximum value of eH(y) is its qual-
itative counterpart of the property, the number of predator nodes
(Y), which is reached when there is an equal amount of resource
flow going to every predator node. The smaller the quantitative
measures, the more uneven the resource flow from prey nodes and
the more uneven the resource flow to predator nodes. Low normal-
ized values or prey nodes indicate that a few of the prey nodes are
dominating the resource flows given all of the prey nodes that send
or provide resources. A similar interpretation can be made for low
normalized values of predator nodes, where a few predators dom-
inate resource flows given all of the predator nodes that to receive
resources.

Density, also known as connectance, is an important food web
property because it is prominent in the diversity versus stability
debate (May, 1973; Bersier et al., 2002). The qualitative version
of density is calculated as L/(X × Y), the proportion of realized
links to potential links in the network. Quantitative versions of
links, prey, and predators can be substituted for their qualita-
tive counterparts to calculate quantitative measure of density for
the network [Dq = Lq/(Xq × Yq)]. Algebraically, this calculation is
equivalent to eH(x,y) − [H(x) + H(y)]. The maximum value for Dq is 1,
the same as the qualitative version, because the links that are
realized in a network cannot exceed the potential links for a net-
work. Thus, there is no need for normalization. Higher Dq can
be interpreted as high evenness of resource flow across links
relative to the evenness of resource flow from sources and even-
ness of resource flow to sinks. The less even resource flow across
links with respect to resource flow from sources and resource
flow to sinks indicates that resource flow is more constrained

in what sink resources flows to when it is known what source
resources flowed from. In other terms, the smaller the propor-
tion, the less uncertainty there is in resource flow from sources
to sinks. It is directly related to the measure of the mutual infor-
mation, a concept from information theory (Cover and Thomas,
1991), where quantitative density is the inverse of mutual infor-
mation.

To determine large changes in food web structure through time,
we calculated the uncertainty in these normalized network proper-
ties (NXq, NYq, NLq) and Dq for the higher system level for resource
flows within the overall food web and for the lower system level for
resource flows within the subsystems and resource flows between
subsystems. Because not all collections had data for all five years
and were sampled independently in the field, we calculated the
normalized network properties for every possible combination of
the biomass data sets for that time period as our measure of the
uncertainty we had for each property. The biomass data sets were
divided by collection and year (see Supplemental Materials). For
example, the benthic invertebrate biomass estimates were based on
the same samples taken during the same collecting trips for years
1980 and 1981 in Time 1, providing two data sets. Some collections
were species specific, such as Bythotrephes. Samples of Bythotrephes
were collected in years 1995, 1996, 1997, 1998, and 1999 for Time
2, providing five data sets. For Time 1, there were a total of 2000
combinations of data sets for a total of 2000 estimates for each nor-
malized property. Time 2 had 24,000 combinations for a total of
24,000 estimates for each normalized property, primarily because
of the addition of the Bythotrephes data set and the addition of three
more years for phytoplankton data in Time 2 compared to Time 1.
To determine if the differences in properties between time periods
were large relative to their uncertainty, we compared the minimum
and maximum values in their distributions between Time 1 and
Time 2. If there was no overlap in the distributions, then the nor-
malized property was considered to have exhibited a large change
between Time 1 and Time 2. That is, none of our estimated Time
1 values of a normalized property were found in the Time 2 distri-
bution of values for that property. We developed distributions of
the network properties for both the higher and lower system levels
in Time 1 and Time 2 giving us 5 distributions per network prop-
erty (4) per time period (2) for a total of 40 distributions and 20
comparisons in all.

We had two primary assumptions with this analysis of uncer-
tainty. Our first assumption was that we considered the observed
inter-annual variation in biomass estimates was a plausible mea-
sure of uncertainty regarding the true value of the normalized
property for each time period. As noted before, the relative
probability of interaction was based on fairly stable taxonomic
characteristics, thus we did not incorporate uncertainty related
to that measure. However, biomass is a population characteristic,
which can carry much inter-annual variability (see Madenjian et
al., 2002). We did not consider intra-annual variability because
the datasets were collected at different time and space intervals
and using different gear, so intra-annual variability would not be
comparable among the datasets. That is, intra-annual variability
would be highly influenced by how the data were collected. Our
second assumption for uncertainty was that each dataset varies
independently of all other datasets whereas the biomass estimates
within a dataset are not independent of the other biomass estimates
within that dataset. This assumption likely yields an overestimate
of the actual uncertainty because there are likely dependencies
among datasets across time with those taxa whose populations
covary. For example, zooplankton populations may decrease when
there is an increase in the number of larval fish or there may be
declines in the populations of phytoplankton, zooplankton, and
fish larvae from a delayed spring and cooler summer. Because
this method would combine datasets from different years inde-
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Table 2
Time 1 node subsystem assignment, taxa identification number, and scientific name.

Subsystem 1 Subsystem 1 (continued)

ID # Name ID # Name

Phytoplankton—Centric Bacillariophyceae Phytoplankton—Chlorophyceae
83 Aulacoseria subarctica 43 Planktonema lauterbornii
84 Stephanodiscus spp. 44 Crucigenia sp. and Gloeocystis sp.
85 Cyclostephanos spp. and Cyclotella spp. 45 Dictyosphaerium spp. and Chlamydocapsa sp.
86 Rhizosolenia spp. 46 Scenedesmus spp.
87 Stephanodiscus hantzschii f. tenuis 47 Stichococcus sp.
88 Melosira islandica 48 Elakatothrix spp. and Kirchneriella sp.
89 Stephanodiscus alpinus 49 Nephrocytium sp. and Oocystis sp.
90 Actinocyclus sp. and Cyclotella sp. 50 Monoraphidium spp.
91 Stephanodiscus spp. 51 Ankistrodesmus spp.
92 Stephanodiscus niagarae 52 Monoraphidium spp.
93 Stephanodiscus hantzschii 53 Crucigenia spp.
94 Cyclotella comensis 54 Oocystis spp.
95 Cyclotella spp. 55 Oocystis spp.
96 Cyclotella pseudostelligera 173 Sphaerellocystis spp.
175 Cyclotella spp. Phytoplankton—Chrysophyceae
Phytoplankton—Pennate Bacillariophyceae 56 Protozoa
24 Achnanthes spp. 57 Chromulina sp. and Ochromonas spp.
23 Fragilaria spp. 58 Dinobryon spp.
25 Nitzschia spp. 59 Haptophyceae
26 Fragilaria spp. and Synedra sp. 60 Bitrichia sp. and Rhizochrysis sp.
27 Amphora sp. and Navicula spp. 61 Kephyrion spp. and Pseudokephyrion spp.
28 Nitzschia spp. 62 Dinobryon spp.
29 Diatoma spp. 63 Mallomonas spp.
30 Fragilaria spp. 64 Kephyrion spp.
31 Nitzschia spp. 65 Dinobryon spp.
32 Nitzschia spp. 66 Paraphysomonas sp.
33 Tabellaria fenestrata Phytoplankton—Cryptophyceae
34 Asterionella sp. and Tabellaria sp. 67 Chroomonas and Rhodomonas spp.
35 Nitzschia spp. 68 Cryptomonas spp.
36 Fragilaria sp. and Synedra sp. 69 Rhodomonas spp.
37 Cymatopleura solea 70 Cryptomonas spp.
38 Synedra spp. 71 Cryptomonas spp.
39 Nitzschia spp. 72 Cryptomonas spp.
41 Synedra spp. Phytoplankton—Cyanophyceae
42 Fragilaria pinnata 73 Agmenellum sp., Anacystis spp., Aphanothece

spp., Aphanocapsa spp. & Gomphosphaeria spp.
170 Meridion circulare 74 Anacystis sp. and Synechoccus sp.
171 Gomphonema olivaceum 75 Microcystis spp.
172 Cymbella microcephala 76 Anabaena spp.
Phytoplankton—Dinophyceae 77 Oscillatoria spp.
79 Amphidinium sp. 78 Oscillatoria limnetica
80 Gymnodinium sp. and Peridinium sp. Phytoplankton—Euglenophyceae
81 Peridinium sp. 174 Euglena sp.
82 Ceratium hirundinella Fish
Crustacean Zooplankton 142 Petromyzon marinus
1 Bosmina longirostris 143 Alosa pseudoharengus larvae
2 Daphnia galeata mendotae 144 Alosa pseudoharengus adult
3 Daphnia retrocurva 145 Notropis hudsonius
4 Diaphanosoma spp. 146 Osmerus mordax larvae
5 Eubosima coregoni 147 Osmerus mordax adult
6 Leptodora kindti 148 Coregonus clupeaformis
7 Polyphemus pediculus 149 Coregonus hoyi larvae
8 Cyclops spp. 150 Coregonus hoyi adult
9 Diacyclops thomasi 151 Oncorhynchus kisutch
10 Mesocyclops edax 152 Oncorhynchus mykiss
11 Tropocyclops prasinus mexicanus 153 Oncorhynchus tshawytscha
12 Epischura lacustris 154 Salmo trutta
13 Eurytemora affinis 155 Salvelinus namaycush juvenile
14 Leptodiaptomus ashlandi 156 Salvelinus namaycush adult
15 Leptodiaptomus minutus 158 Lota lota
16 Leptodiaptomus sicilis 159 Pungitius pungitius
17 Diaptomus spp. copepodites 160 Cottus cognatus
18 Limnocalanus macrurus copepodites 161 Myoxocephalus thompsonii
19 Limnocalanus macrurus adults 162 Etheostoma nigrum
20 Skistodiaptomus oregonensis 163 Perca flavescens
21 Nauplii Isopods
165 Alona spp. 176 Caecidotea racovitzai
166 Chydorus spaericus Snails
167 Holopedium gibberum 97 Valvata sincera
168 Acanthocyclops vernalis Amphipod
169 Ceriodaphia spp. 101 Diporeia hoyi
Opposum shrimp Dipteran Larvae
22 Mysis relicta 107 Chironomus anthracinus
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Table 2 (Continued )

Subsystem 2 Subsystem 2 (continued)

ID # Name ID # Name

Phytoplankton—Pennate Bacillariophyceae Oligochaetes
40 Nitzschia lauenburgiana 127 Aulodrilus americanus
Fish 128 Aulodrilus pluriseta
157 Percopsis omiscomaycus 129 Ilyodrilus templentoni
Snails 130 Varichaetadrilus angustipenis
179 Amnicola limnosa 131 Limnodrilus claparedianus
180 Pseudosuccinea columnella 132 Limnodrilus hoffmeisteri
Fingernail clam 133 Limnodrilus profundicola
99 Pisidium henslowanum 134 Limnodrilus udekemianus
100 Pisidium spp. 135 Quistrodrilus multisetosus
Leech 136 Spirosperma nikolskyi
164 Helobdella stagnalis 137 Tasserkidrilus superiorensis
Dipteran Larvae 138 Potamothrix moldaviensis
102 Procladius sp. 139 Potamothrix vejdovskyi
103 Potthastia cf. longimanus 140 Tasserkidrilus americanus
104 Monodiamesa tuberculata 141 Tubifex tubifex
105 Heterotrissocladius changi 119 Enchytraeidae spp.
106 Heterotrissocladius oliveri 120 Stylodrilus heringianus
108 Chironomus fluviatilis 121 Arcteonais lomondi
109 Chironomus sp. 122 Chaetogaster sp.
110 Cryptochironomus sp. 123 Piguetiella michiganensis
111 Cladopelma sp. 124 Stylaria lacustris
112 Paracladopelma winnelli 125 Uncinais uncinata
113 Paracladopelma undine 126 Vejdovskyella intermedia
114 Polypedilum scalaenum 178 Limnodrilus spiralis
115 Polypedilum tuberculum
116 Robackia cf. demeijerei
117 Micropsectra sp.
118 Tanytarsus sp.
177 Cryptochironomus cf. fulvus
191 Cryptochironomus cf. digitatus
192 Demicryptochironomus sp.
193 Paracladopelma camptolabis
194 Polypedilum nereis

pendently, the combinations likely resulted in a distribution of
normalized properties that was greater (that is, more variable) than
what might have been observed had the datasets been amenable
for calculating normalized properties for each of the five years
within each time period. With an overestimate of uncertainty,
we are confident that the detected differences in a property are
probably valid. Conversely, we may be overestimating the vari-
ance, thus, there may be changes in properties we were unable to
detect.

3. Results

The Time 1 and Time 2 food webs had significant subsystem
structures where the odds ratios for links within versus between
subsystems were 23.63 and 31.12, respectively (p < 0.001). Two sub-
systems were detected in both Time 1 and Time 2 food webs, where
many of the phytoplankton taxa, zooplankton taxa, and fish taxa
were assigned to subsystem 1 and benthic invertebrate taxa were
assigned to subsystem 2 (Tables 2 and 3). The odds were high
(odds = 20.69) that two taxa in the same subsystem in Time 1 were
also in the same subsystem in Time 2. This high odds ratio implies
that subsystem assignments were similar across the two time peri-
ods. Subsystem 1 had 12 taxa nodes detected in Time 1 but not
detected in Time 2. It also had 25 taxa nodes not detected in Time 1
but detected in Time 2, including the invasive taxa of Bythotrephes
and zebra mussels. Subsystem 2 had four taxa nodes detected in
Time 1 but not detected in Time 2. As well, it had seven new taxa
nodes not detected in Time 1 but detected in Time 2. Five taxa
were assigned to subsystem 1 in Time 1 but then were assigned to
subsystem 2 in Time 2 (Myoxocephalus thompsonii, Notropis hudso-
nius, and Pungitius pungitius—fish, Chironomus anthracinus—benthic
invertebrate, and a centric diatom group—phytoplankton). No taxa

assigned to subsystem 2 in Time 1 were assigned to subsystem 1 in
Time 2.

We found that the subsystem level had seven normalized
network properties with large changes relative to its respective
uncertainty from Time 1 to Time 2 (non-overlapping distributions)
whereas the overall food web had none (that is, the higher system
level; Table 4). At the lower system level, the subsystem with pelagic
taxa (subsystem 1) had an increase in its normalized prey (NXq)
from Time 1 to Time 2 based on resource flow within its subsys-
tem. There was also an increase in the normalized links (NLq) from
subsystem 1 to subsystem 2 from Time 1 to Time 2. The subsystem
with benthic taxa (subsystem 2) had more large changes relative
to uncertainty in food web properties over time than subsystem 1.
Normalized prey (NXq) and normalized links (NLq) declined from
Time 1 to Time 2 based on resource flow within subsystem 2. In
addition, there was an increase in density (Dq) for resource flows
within subsystem 2 from Time 1 to Time 2. For resource flow across
links from subsystem 2 as prey to subsystem 1 as predators, nor-
malized prey (NXq) and normalized links (NLq) declined from Time
1 to Time 2 based on outgoing resource flow from subsystem 2 to
subsystem 1. A table with the minimum value, 5% value, 95% value,
and maximum value of each food web property can be found in the
supplemental material.

4. Discussion

Our food web fit within the hierarchical system theory, where
we successfully identified subsystems within our food web system
structure (Simon, 1965; Krause et al., 2003). As with the Chesapeake
Bay food web based on interaction strength (Krause et al., 2003), the
subsystem 1 represented a pelagic biotic habitat and subsystem 2
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Table 3
Time 2 node subsystem assignment, taxa identification number, and scientific name.

Subsystem 1 Subsystem 1 (continued)

ID # Name ID # Name

Phytoplankton—Centric Bacillariophyceae Crustacean Zooplankton
83 Aulacoseria subarctica 1 Bosmina longirostris
84 Stephanodiscus spp. 2 Daphnia galeata mendotae
85 Cyclostephanos spp. and Cyclotella spp. 3 Daphnia retrocurva
86 Rhizosolenia spp. 4 Diaphanosoma spp.
87 Stephanodiscus hantzschii f. tenuis 5 Eubosima coregoni
88 Melosira islandica 6 Leptodora kindti
89 Stephanodiscus alpinus 7 Polyphemus pediculus
90 Actinocyclus sp. and Cyclotella sp. 8 Cyclops spp.
91 Stephanodiscus spp. 9 Diacyclops thomasi
93 Stephanodiscus hantzschii 10 Mesocyclops edax
94 Cyclotella comensis 11 Tropocyclops prasinus mexicanus
95 Cyclotella spp. 12 Epischura lacustris
96 Cyclotella pseudostelligera 13 Eurytemora affinis
185 Melosira spp. 14 Leptodiaptomus ashlandi
186 Stephanodiscus spp. 15 Leptodiaptomus minutus
187 Thalassiosira weisflogii 16 Leptodiaptomus sicilis
188 Rhizosolenia spp. 17 Diaptomus spp. copepodites
Phytoplankton—Pennate Bacillariophyceae 18 Limnocalanus macrurus copepodites
24 Achnanthes spp. 19 Limnocalanus macrurus adults
23 Fragilaria spp. 20 Skistodiaptomus oregonensis
25 Nitzschia spp. 21 Nauplii
26 Fragilaria spp. and Synedra sp. 165 Bythotrephes cederstroemii
27 Amphora sp. and Navicula spp. 166 Daphnia pulicaria
28 Nitzschia spp. Phytoplankton—Chlorophyceae
29 Diatoma spp. 43 Planktonema lauterbornii
30 Fragilaria spp. 44 Crucigenia sp. and Gloeocystis sp.
31 Nitzschia spp. 45 Dictyosphaerium spp. and Chlamydocapsa sp.
32 Nitzschia spp. 46 Scenedesmus spp.
33 Tabellaria fenestrata 47 Stichococcus sp.
34 Asterionella sp. and Tabellaria sp. 48 Elakatothrix spp. and Kirchneriella sp.
35 Nitzschia spp. 49 Nephrocytium sp. and Oocystis sp.
36 Fragilaria sp. and Synedra sp. 50 Monoraphidium spp.
37 Cymatopleura solea 51 Ankistrodesmus spp.
38 Synedra spp. 52 Monoraphidium spp.
39 Nitzschia spp. 53 Crucigenia spp.,
41 Synedra spp. 54 Oocystis spp.
42 Fragilaria pinnata 55 Oocystis spp.
167 Cocconeis placentula var. euglypta 171 Eudorina elegans
168 Surirella augusta 172 Microspora sp. and Ulothrix sp.
169 Amphipleura pelliucdia 173 Franceia sp., Monoraphidium spp., Tetraedron spp.

Treubaria sp. and Golenkinia spp.
170 Synedra delicatissima 174 Carteria and Chlamydomonas spp.
Phytoplankton—Cyanophyceae 175 Closteriopsis longissima
73 Agmenellum sp., Anacystis spp., Aphanothece spp.,

Aphanocapsa spp. and Gomphosphaeria spp.
Phytoplankton—Chrysophyceae

74 Anacystis sp. and Synechoccus sp. 56 Protozoa
75 Microcystis spp. 57 Chromulina sp. and Ochromonas spp.
76 Anabaena spp. 58 Dinobryon spp.
77 Oscillatoria spp. 59 Haptophyceae
78 Oscillatoria limnetica 60 Bitrichia sp. and Rhizochrysis sp.
182 Chroococcus spp. 61 Kephyrion spp. and Pseudokephyrion spp.
Phytoplankton—Dinophyceae 62 Dinobryon spp.
79 Amphidinium sp. 63 Mallomonas spp.
80 Gymnodinium sp. and Peridinium sp. 64 Kephyrion spp.
81 Peridinium sp. 65 Dinobryon spp.
82 Ceratium hirundinella 66 Paraphysomonas sp.
183 Glenodinium sp. 176 Stichogloea sp.
184 Gymnodinium helveticum var. achroum 177 Hyalobryon sp.
Opposum shrimp 178 Chrysosphaerella sp. and Spiniferomonas sp.
22 Mysis relicta 179 Bicoeca spp.
Snails 180 Chrysococcus sp.
97 Valvata sincera 181 Chrysolykos spp.
Amphipod Phytoplankton—Cryptophyceae

101 Diporeia hoyi 67 Chroomonas and Rhodomonas spp.
Fingernail clam 68 Cryptomonas spp.
98 Sphaerium spp. 69 Rhodomonas spp.
Zebra Mussel 70 Cryptomonas spp.
189 Dreissena polymorpha 71 Cryptomonas spp.

72 Cryptomonas spp.
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Table 3 (Continued )

Subsystem 1 Subsystem 1 (continued)

ID # Name ID # Name

Fish Fish (continued)
142 Petromyzon marinus 152 Oncorhynchus mykiss
143 Alosa pseudoharengus larvae 153 Oncorhynchus tshawytscha
144 Alosa pseudoharengus adult 154 Salmo trutta
146 Osmerus mordax larvae 155 Salvelinus namaycush juvenile
147 Osmerus mordax adult 156 Salvelinus namaycush adult
148 Coregonus clupeaformis 158 Lota lota
149 Coregonus hoyi larvae 160 Cottus cognatus
150 Coregonus hoyi adult 162 Etheostoma nigrum
151 Oncorhynchus kisutch 163 Perca flavescens

Subsystem 2 Subsystem 2 (continued)

ID # Name ID # Name

Phytoplankton—Centric Bacillariophyceae 117 Micropsectra sp.
92 Stephanodiscus niagarae 118 Tanytarsus sp.
Phytoplankton—Pennate Bacillariophyceae 191 Cryptochironomus cf. digitatus
40 Nitzschia lauenburgiana 192 Demicryptochironomus sp.
Fish 193 Paracladopelma camptolabis
145 Notropis hudsonius 194 Polypedilum nereis
157 Percopsis omiscomaycus Oligochaetes
159 Pungitius pungitius 127 Aulodrilus americanus
161 Myoxocephalus thompsonii 128 Aulodrilus pluriseta
Amphipod 129 Ilyodrilus templentoni
190 Gammarus sp. 130 Varichaetadrilus angustipenis
Fingernail clam 131 Limnodrilus claparedianus
99 Pisidium henslowanum 132 Limnodrilus hoffmeisteri
100 Pisidium spp. 133 Limnodrilus profundicola
Leech 134 Limnodrilus udekemianus
164 Helobdella stagnalis 135 Quistrodrilus multisetosus
Dipteran Larvae 136 Spirosperma nikolskyi
102 Procladius sp. 137 Tasserkidrilus superiorensis
103 Potthastia cf. longimanus 138 Potamothrix moldaviensis
104 Monodiamesa tuberculata 139 Potamothrix vejdovskyi
105 Heterotrissocladius changi 140 Tasserkidrilus americanus
106 Heterotrissocladius oliveri 141 Tubifex tubifex
107 Chironomus anthracinus 119 Enchytraeidae spp.
108 Chironomus fluviatilis 120 Stylodrilus heringianus
109 Chironomus sp. 121 Arcteonais lomondi
110 Cryptochironomus sp. 122 Chaetogaster sp.
111 Cladopelma sp. 123 Piguetiella michiganensis
112 Paracladopelma winnelli 124 Stylaria lacustris
113 Paracladopelma undine 125 Uncinais uncinata
114 Polypedilum scalaenum 126 Vejdovskyella intermedia
115 Polypedilum tuberculum 195 Isochaetides freyi
116 Robackia cf. demeijerei 196 Orthocladius sp.

represented a benthic biotic habitat given taxa node assignment
(Tables 2 and 3; Krause et al., 2003). These subsystems are con-
sidered biotic habitats rather than physical habitats because a few
taxa nodes that physically reside in one habitat were assigned to
the other habitat based on their feeding interactions. For example,
Diporeia spp., a benthic invertebrate, was assigned to subsystem 1
because it is an important prey item for some of the fish taxa in sub-
system 1 and it consumes high quantities of freshly settled diatoms
(Nalepa et al., 2000b). While the terms niche or guild may seem
appropriate, niche refers to an individual taxon and not a group
of taxa within a subsystem and guild refers to functionally similar
taxa, such as fish that eat other fish in the pelagic region.

Our results supported the extension of hierarchical systems the-
ory because the two subsystems adapted differently across time
indicating that they were reacting independently in the short-term
(Fig. 3). Internally, subsystem 1 exhibited a shift in the flow of
resources so that they were more evenly flowing from prey nodes
(within NXq) from Time 1 to Time 2, that is, less dominance in
resource flows among prey. In contrast, subsystem 2 exhibited
resource flow shifts from prey nodes (within NXq) that were more
uneven in distribution over the same time period, indicating more

dominance in resource flow by a few prey. In addition, subsys-
tem 2 had two more significant property shifts in resource flow
within its subsystem. Its resource flow across links within its sub-
system (Within NLq) declined indicating that resource flow was
concentrated on few links in Time 2 than in Time 1 (more uneven
distribution across links). Essentially, subsystem 2 had resource
flow concentrated on fewer links and fewer prey nodes over time.
Also, subsystem 2 experienced an increase in its specialization
in resource flows from prey to predators within its subsystem
from Time 1 to Time 2 as indicated by its increase in density
(Dq; Cover and Thomas, 1991). Overall, subsystem 2 appeared to
experience more changes in network properties than subsystem 1
plus it had an opposite reaction in one of those properties, nor-
malized quantitative prey nodes, in comparison to the reaction of
subsystem 1.

When we look at how the two subsystems relate to each other,
more changes emanated from shifts in resource flows from prey in
subsystem 2. Subsystem 2 saw a decrease in evenness not only in
resources flowing across links to subsystem 1 (Outgoing NLq) but
also in the evenness of resources from prey (Outgoing NXq). Just like
its internal changes, subsystem 2 had fewer links and fewer prey
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Table 4
Normalized network properties compared between Time 1 and Time 2 for the higher and lower system levels. For the lower system, the properties are measured for links
that occur within subsystems and links that are outgoing from subsystems.

System Level Time Mean Normalized Links (NLq) Mean Normalized Prey (NXq) Mean Normalized Predators (NYq) Mean Density (Dq)

Higher 1 0.11 0.14 0.51 0.25
2 0.16 0.21 0.58 0.21

Lower
Subsystem 1 (Pelagic)

Within 1 0.12 0.17a 0.62 0.29
2 0.21 0.28 0.71 0.26

Outgoing 1 0.03a 0.05 0.19 0.64
2 0.12 0.15 0.47 0.47

Subsystem 2 (Benthic)
Within 1 0.11a 0.14a 0.38 0.77

2 0.06 0.08 0.32 0.84a

Outgoing 1 0.17a 0.19a 0.54 0.53
2 0.06 0.08 0.31 0.54

a Non-overlapping distributions between the network property in Time 1 and the property in Time 2.

nodes controlling resource flow over time related to its outgoing
links to subsystem 1. Its shifts in prey biomass also contributed to
a decline in the evenness of resources flow to predators (Outgoing
NYq) in subsystem 1. Conversely, resources subsystem 1 provided
to subsystem 2 through predator–prey interactions increased in its

evenness of resource flow across links (Outgoing NLq) from Time 1
to Time 2.

Biologically, we were surprised that subsystem 2, the benthic
biotic habitat, demonstrated more changes over time than subsys-
tem 1, the pelagic biotic habitat, given our two primary external

Fig. 3. Conceptual diagram of the changes in food web properties for the higher system level (overall food web) and lower system level (subsystems). Circles represent the
food web property of density (Dq). Rectangles represent the food web properties of normalized prey (NXq) or normalized predators (NYq). Arrows represent the food web
property of normalized links (NLq). Solid lines represent Time 1 and dashed lines represent Time 2. If dashed lines are outside of the solid, which indicates a large increase
in the food web property from Time 1 to Time 2 relative to its uncertainty (non-overlap in property distributions between Time 1 and Time 2). If the dashed line is inside the
solid line, that indicates a large decrease in the food web property from Time 1 to Time 2 relative to its uncertainty.
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perturbations, nutrient loading and introduced species, are thought
to impact pelagic taxa more. The reduction of phosphorous loading
would impact phytoplankton, which were primarily located in sub-
system 1. The two invading species were assigned to subsystem 1 as
well. With both of these external perturbations directly impacting
subsystem 1, we expected this subsystem to experience more
changes in its food web properties. The reduction in phosphorous
loadings is thought to have changed phytoplankton communities
from population dominance of eutrophic species to mesotrophic,
including the increase the diatom populations in the summer
as a result of less silica depletion in the spring (Fahnenstiel and
Scavia, 1987; Barbiero et al., 2002; Madenjian et al., 2002; Schelske
et al., 2006). Bythotrephes have been implicated in the decline
in zooplankton species richness (Barbiero and Tuchman, 2004).
Zebra mussels have the potential to affect phytoplankton through
consumption at high filtering rates (Vanderploeg et al., 2002). All
of these factors could have lead to changes in the distribution of
resource flow across links and to predators. They likely all con-
tributed to the increase observed in the normalized prey (NXq) for
resource flows within subsystem 1 and going to subsystem 2. Partic-
ularly, zebra mussels have been implicated in the decline of Diporeia
spp., a major prey item for a few of the fish species found in sub-
system 1 (Nalepa et al., 2000b; Vanderploeg et al., 2002). Diporeia
spp. biomass was very high in the early 1980s, thus, they may have
been dominating resource flow as a prey item in Time 1 and their
decline then helped to increase resource flow evenness from prey
in subsystem 1 to predators in subsystems 1 and 2. However, phy-
toplankton and zooplankton nodes represented most of the prey
nodes so Diporeia spp. are not likely to be the sole explanation for
these large temporal changes in network properties relative to their
uncertainty.

While these two perturbations were not directly associated with
subsystem 2, there are two important ways in which they may have
had a large enough influence to move network properties of this
subsystem. The network properties of subsystem 2 all indicate a
simpler system in time 2 than in time 1 with a dominance in prey
and links and less specialization (as indicated by higher density).
Oligochaete and sphaeriid taxa found in subsystem 2 were multiple
prey nodes with declining biomass implicated by nutrient reduc-
tions (Nalepa et al., 2000a). Zebra mussels changed the physical
space on the sediment surface that may have benefited multiple
prey nodes taxa: amphipods, turbellarians, chironomids, and gas-
tropods (Vanderploeg et al., 2002). This benefit may have resulted
in increases in biomass for some of these prey nodes. The decline
of some taxa biomasses with smaller relative probabilities of inter-
action with their predators and increase in other taxa biomasses
with higher relative probabilities of interaction with their predators
may have led to greater disparity in biomass distributions creat-
ing a more uneven distribution of resource flows across links and
from prey. This shift in resource flow would account for the decline
we observed in the food web properties associated with subsys-
tem 2. The reassignment of three fish taxa nodes from subsystem
1 in Time 1 to subsystem 2 in Time 2 may have also contributed
to the shift in resource flow distribution. The shift in subsystems
for these three fish taxa was most likely a result of the new taxa
that were added to subsystem 1 in Time 2 (primarily introduced
taxa and phytoplankton). After the algorithm placed many of these
new taxa into subsystem 1, it then moved these three fish taxa
from subsystem 1 to subsystem 2 to increase the odds that inter-
actions were occurring within subsystems rather than between
subsystems. While we could try to relate patterns in network prop-
erties of subsystems based on how a subset of their components
(taxa nodes) reacted to the perturbations, the reality is these net-
work properties are influenced by multiple processes occurring
within the subsystem that are not well-understood. In addition, we
would need to look at the patterns in relation to the uncertainty,

which could become quite complex in this analysis with almost 200
nodes.

The higher-level system, that is, the overall food web, had no
large changes in network properties relative to their uncertainty
(no non-overlapping distributions). This pattern supported the sec-
ond extension of hierarchical system theory, where we expected to
detect fewer changes in higher-level properties of the system prop-
erties from Time 1 to Time 2 than those observed at the subsystem
level. We are not aware of other studies in ecology that have exam-
ined system adaptation at both of the system and subsystem levels
in relation to hierarchical system theory.

Taking into account the uncertainty in the biomass within our
time periods allowed us to perform a rigorous analysis of how our
system changed through time. The largest difference in network
properties between Time 1 and Time 2 were found in the normal-
ized quantitative predators (NYq) for both subsystems (Table 1),
yet the distributions for these properties overlapped between the
two time periods indicating that the shifts were not large relative
to their uncertainty. This result along with the smaller differences
between Time 1 and Time 2 properties that had non-overlapping
distributions demonstrate how it can be misleading to interpret
changes over time without taking into account the uncertainty
of the properties. Properties derived from Shannon’s equations,
such as Ulanowicz’s capacity and ascendancy (1997), are some-
times compared across systems or across time for the same system
without taking account the uncertainty in these measures (e.g.,
Monaco and Ulanowicz, 1997; Pérez-España and Arreguín-Sánchez,
1999). This study highlights the importance of taking into account
biomass variability for taxa nodes when weights on links incorpo-
rate a biomass estimate and when making comparisons of network
properties across time or across systems. In addition, the subsys-
tem analysis was also statistically rigorous by testing the clustering
parameter (odds ratio) against a distribution of odds ratios from
random food webs.

We presented in detail a novel method for constructing a food
web given the datasets available, primarily from long-term mon-
itoring programs. In addition, we applied the recommendations
outlined in Cohen et al. (1993) to generate a well-constructed food
web. When choosing which data to include in our food web, we
laid out explicit setting guidelines including the temporal bound-
aries of season and year and spatial boundaries of latitude and
longitude and bottom depth boundaries that collections must have
been made in to be included in the analysis. We chose datasets
within taxonomic groups that we thought were the most com-
parable within our boundaries. A taxon node was defined to the
species level except in cases where aggregation or disaggregation
was warranted. The links between predators and prey were based
on inferences from prior publications and expert opinions. Full doc-
umentation for constructing the food web has been provided in
the supplemental materials, including references of where values
were obtained. The last recommendation from Cohen et al. (1993) is
for creating food webs through collaboration, which our food web
meets as demonstrated by our author list and acknowledgements
section. We have demonstrated that a well-constructed food web
model developed from empirical data can test system and ecolog-
ical theories in real-world ecological systems (e.g., Dunne et al.,
2002).

Even with choosing the most data rich time periods and spatial
area for comparability, there were still components within the food
web that were not included for lack of data. The most glaring omis-
sions in our food web are the taxonomic groups of picoplankton,
benthic plankton, rotifers, microbial groups including bacteria, and
most larval fish, the lack of representation of fall and winter seasons,
and the lack of nearshore information. These areas of the food web
were not monitored at a level that would allow us to follow all of the
recommendations of Cohen et al. (1993) or to conduct the uncer-
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tainty analysis for changes in key network properties. Although our
food web does not completely capture the entire food web, it is
one of the few large, well-constructed food webs published, where
there are also weights on links. As such, we would expect this food
web to be used by other researchers in future studies on systems
and ecological network theory. However, we recognize that our
results are confined to the system as described in this study based
on the boundaries, nodes, and links that were included within the
system.

Our study only touches on how ecological networks adapt by
supporting two extensions of hierarchical systems theory. To fully
explore implications of this theory and its extensions on the adapta-
tions of ecological networks, we suggest more research employing
rigorous analyses on the trajectories of quantitative network prop-
erties. The quantitative network properties should be derived from
ecological networks that are well constructed and these properties
should include measure of their uncertainty.
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