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We examined the mitigation efficiency of a managed riverine wetland amended with a mixture of suspended
sediment, two nutrients (nitrogen and phosphorus), and three pesticides (atrazine, metolachlor, and
permethrin) during a simulated agricultural runoff event. Hydrologic management of the 500 m-long, 25 m-
wide riverine wetland was done by adding weirs at both ends. The agrichemical mixture was amended to the
wetland at the upstream weir simulating a four-hour, ~1 cm rainfall event from a 16 ha agricultural field.
Water samples (1 L) were collected every 30 min within the first 4 h, then every 4 h until 48 h, and again on
days 5, 7, 14, 21, and 28 post-amendment at distances of 0 m, 10 m, 40 m, 300 m and 500 m from the
amendment point within the wetland for suspended solids, nutrient, and pesticide analyses. Peak sediment,
nutrient, and pesticide concentrations occurred within 3 h of amendment at 0 m, 10 m, 40 m, and 300 m
downstream and showed rapid attenuation of agrichemicals from the water column with 79–98%, 42–98%,
and 63–98% decrease in concentrations of sediments, nutrients, and pesticides, respectively, within 48 h. By
day 28, all amendments were near or below pre-amendment concentrations. Water samples at 500 m
showed no changes in sediment or nutrient concentrations; pesticide concentrations peaked within 48 h but
at ≤11% of upstream peak concentrations and had dissipated by day 28. Managed riverine wetlands≥1 ha
and with hydraulic residence times of days to weeks can efficiently trap agricultural runoff during moderate
(1 cm) late-spring and early-summer rainfall events, mitigating impacts to receiving rivers.

Published by Elsevier B.V.

1. Introduction

Agricultural regions wherein major rivers with broad, low-
gradient floodplains exist often contain numerous natural backwater
aquatic habitats, such as wetlands, conducive to anthropogenic
manipulation (Mitsch et al., 2005; Shields et al., 2005; Shields and
Pearce 2010; Lizotte et al., 2009). Such freshwater wetlands, with
minimal cost, can potentially be hydrologically managed to maximize
their natural filtering capabilities to mitigate storm runoff from
adjacent agricultural fields (Mitsch et al., 2005; Lizotte et al., 2009;
Shields and Pearce, 2010). Costs to stakeholders such as farmers, land
managers, land owners, and regulatory agencies would be less than
the cost of full construction, implementation, and management of a
constructed wetland of comparable size (Shields et al., 2005; Kadlec,
2006). Also, because natural backwater wetlands already provide pre-
existing hydrology, hydrophytes, and hydrosoils, these conditions
would not need any “conditioning period” as for constructed
wetlands (Mitsch and Gosselink, 2007). Despite these advantages,
little information exists regarding the ability of anthropogenically

manipulated natural backwater wetlands in mitigating contaminants
from agricultural runoff under controlled conditions.

Riverine backwater wetlands within river floodplains have impor-
tant economic and ecological functions such as acting as filters and
processors of a variety of agricultural contaminants including sus-
pended sediment, nutrients and pesticides entering from adjacent
agricultural fields (Reddy and DeLaune, 2008). The hydrology of such
wetlands can be controlled to increase the efficacy of their natural
filtering capabilities (Mitsch et al., 2002; Lizotte et al., 2009). Nutrient
mitigation from agricultural sources has been a primary focus for
several decades due to the increase in eutrophication of receiving lakes,
rivers, streams and estuaries worldwide (Wetzel, 1992; Scanlon et al.,
2007) and wetlands have long been known to be highly efficient at
removing nutrients under favorable conditions (Mitsch and Gosselink,
2007). For these reasons, there is an increasing need to expand our
knowledge of nutrient mitigation capabilities to efficiently maximize
available wetland resources via hydraulic modification of riverine
floodplain wetlands, when applicable. The purpose of this study was to
assess the trapping efficiency of a modified riverine backwater wetland
amended with a mixture of suspended sediment, two nutrients
[nitrogen (N) and phosphorus (P)], and three pesticides (atrazine,
metolachlor, and permethrin) during a simulated agricultural runoff
event. Previous study by Lizotte et al. (2009) within the same wetland
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system assessed the trapping of pesticides only. The study was limited
in scope both spatially (only two sites: inflow and furthest downstream
weir) and pollutantmixture complexity. The current study expands the
previouswork of Lizotte et al. (2009) by incorporating a broader spatial
assessment, and more complex, and realistic, pollutant mixture, to
better address questions of agricultural pollutant trapping and
attenuation efficiency of the managed riverine wetland study site.

2. Area description

A reach of the Coldwater River ~20 km downstream from Arkabutla
Lake Dam in Tunica County, Mississippi, was selected because of the
presence of >20 severed riverine backwater meander bends and other
floodplain water bodies (Fig. 1). A severed riverine compoundmeander
bendbackwater (~2.5 km long×40 mwide)was selected for this study.
The study site, inside themainstem flood control levee, is the result of a
0.4 km cutoff constructed in 1941–42. Land-use both inside and outside
the bend are in row-crop cultivation. However, a buffer of natural
riparian vegetation 5–100 m wide occurs on both banks. The study site
receives runoff from ~350 ha of cultivated land, primarily through an
intermittent slough connected to a series of drainage ditches (Shields
and Pearce, 2010). In fall of 2006, the study site was modified with the
construction of two water control weirs (34°40′04.93″ N, 90°13′38.09″
W, and 34°40′15.15″ N, 90°13′35.36″ W), creating a larger, deeper cell
managed as a lake-type aquatic habitat and a smaller, shallower cell,
500 m long, 20 m wide, that supports wetland and terrestrial plants
managed as a riverine wetland (Fig. 1). A mean water depth of 28 cm
was measured in the wetland cell during the study period. The weir
controlling the lake cellwas located such thatmost runoff fromadjacent
fieldswas diverted into thewetland cell. Bothweirswere designedwith
adjustable crest drainage structures (Mitsch and Gosselink, 2007)
protected by “Clemson” beaver exclusion screens at their upstream
intakes. Weirs were protected with riprap to allow for overflow in
either direction. Flora within the managed backwater wetland was
diverse. Mature forest dominated by oak (Quercus spp.) and, to a lesser
extent, sycamore (Platanus occidentalis L.) bald cypress (Taxodium

distichum (L.) Rich), and pawpaw (Asimina triloba (L.) Dunal), lined the
banks of the backwater wetland. A diversity of tall herbaceous annuals,
shrubs, grasses and herbs as well as woody species occurred within the
main channel of the backwater wetland. Within the first 40 m
downstream from the lake weir, Ludwigia peploides (HBK) and
Commelina communis L. were observed. At 100 m downstream, Leersia
oryzoides (L.) Sw. andAgrostis sp. dominated nearly 100% of the channel.
Channel flora at 300 m was comprised of Rumex crispus L., Amaranthus
sp., Leersia sp., and C. communis L. along the edge of the banks. Wetland
vegetation at 500 m was comprised of Ludwigia sp., Mimulus ringens L.,
Leersia spp., Cyperus sp., Carex sp., Amaranthus sp., Xanthium strumarium
L., Polygonum sp. and Taxodium distichum (L.) Rich.

3. Methods

On June 24, 2009, 611 m3 of water was released from the upstream
lake cell portion of the study site into themodifiedwetland cell portion
over about 4 h (Fig. 2), simulating agricultural runoff during an ~1-cm
rainfall event from a 16-ha cultivated field. Simulated agricultural
runoff comprised of local source suspended sediment (adjacent field
soil), nutrients as P (42% P2O5) and N (34% NH4NO3), and pesticides as
atrazine, S-metolachlor and permethrin was amended once simulating
a “first flush” event. Current study target sediment, nutrient and
pesticide concentrations are based upon previously reported results of
concentrations of these constituents naturally occurring in runoff from
agricultural fields within west Mississippi (Willis and McDowell, 1982;
McDowell et al., 1989; Shields and Pearce, 2010). A total of 200 g NaCl
(tracer), 270.8 kg sediment, 3.6 kg P2O5, 6.1 kg NH4NO3, 6600mg a. i.
atrazine+5220 mg a. i. S-metolachlor (Bicep II Magnum®), and
630.4 mg a. i. permethrin (Hi Yield 38®) were injected into the
backwater wetland at the upstream weir for the first 1.3 h. A
hydrograph for the artificial event was designed by scaling an observed
hydrograph from the tributary slough so that the peakflowwas equal to
themaximumdischarge that could be obtained by releasingwater from
the lake cell through the drainage structure into the wetland
(~90 m3 s−1). During the event, the hydrograph was generated by
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40 m 100 m

300 m
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Upstream
Weir
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100 m

Fig. 1. Location and configuration of the Coldwater River managed backwater wetland in Tunica County, Mississippi, with both upstream and downstream weirs and sampling
locations.

374 R.E. Lizotte Jr. et al. / Science of the Total Environment 427–428 (2012) 373–381



removing and replacing flashboards from the drainage structure at set
times. Flow rates were continuously recorded by measuring the depth
of flow over the weir and converting flow depth to discharge using a
rating curve provided by the manufacturer (Agri Drain Corporation,
Adair, Iowa, USA). Flow rates were verified using acoustic (ISCO 2150
Area Velocity Flow Module, Teledyne ISCO, Lincoln, NE, USA) and
electromagnetic devices (Marsh McBirney Model 2000 Flow Meter,
Marsh-McBirney, Inc., Frederick, MD, USA) in the discharge channel.
Outflow from the wetland was monitored throughout the experiment
using a HOBO U20™ logging pressure transducer (Onset Computer
Corporation, Bourne,MA, USA) to record the depth offlowover theweir
structure.

Target suspended sediment concentration (SStarget) for the artificial
runoff event was set equal to the maximum observed June SS
concentration for the slough tributary to the wetland (325 mg/L). The
slough conveys runoff from a series of drainage ditches draining 350 ha
of cultivated land into the wetland. Grab samples were collected from
this slough (when it contained water) during 2007–2009. Field soil was
obtained from the adjacent floodplain, weighed, and amended to the
flow through the drainage structure during the entire 4-h duration of
the artificial event. Turbulence of flow through the structure was
adequate to fully suspend the amended sediment. Themass of soil to be
added during each increment of the event was determined as follows.
First the volume of water to be released during each time increment
(Vwi, L) was computed by multiplying the target flow rate (Qwi, L s−1)
times the length of the time increment (Δti, s):

Vwi ¼ Qwi � Δti:

Then the mass of soil to be added during each increment (Wsi, mg)
was determined by

Wsi ¼
SStarget−SSlake
h i

Vwi

1−w

where SSlake=SS of lake cell waters used to generate artificial runoff
and w=water content of soil, assumed to be =30% based on
Mostovoy and Anantharaj (2008).

Water samples (1 L) were collected every 30 min within the first
4 h; every 4 h until 48 h; and on days 5, 7, 14, 21, and 28 post-
amendment at distances of 10 m, 40 m, 300 m and 500 m from the
injection point within the wetland. Samples collected during the first
48 h were obtained using an automated pumping sampler (ISCO
Model 3700, Teledyne ISCO, Lincoln, NE, USA) modified from Smith
(1993). Sample collection at 100 m was modified due to infrequent
inundation at this site caused by a 0.4–0.6 m increase in elevation
resulting from sediment aggradation near the mouth of a large gully
entering the wetland from the south (Fig. 1). As a result, samples

were obtained when water was present which only occurred during
the artificial runoff event (1–5 h; 8 samples) and again on day 28 (1
sample). Sample containers were one (1) liter polyethylene plastic
bottles fitted with a Teflon-lined screw cap. Samples were placed on
ice, transported to the USDA-ARS National Sedimentation Laboratory,
and stored at 4 °C (typically b24 h) for target constituent analysis.
Samples collected after 24 h were in one liter glass jars fitted with a
Teflon lined screw cap and treated as described previously.

Analyses for suspended solids, N and P were conducted according
to APHA (2005). In brief, suspended sediments and nutrients were
analyzed as follows: total suspended solids (TSS), dried at 180 °C;
total PO4

−–P, persulfate digestion with ascorbic acid colorimetric
method; soluble PO4

−–P, filtered through a 45 μm cellulose nitrate
filter and analyzed using the ascorbic acid colorimetric method;
NH4

+–N, phenate method; NO3
−–N, cadmium reduction colorimetric

method; NO2
−–N, colorimetric method; and total N, (NO3

−–N+NO2
−–

N+total Kjeldahl N) block digestion and flow injection analysis
method. Colorimetric analyses were performed using a ThermoSpec-
tronic Genesys™ 10 ultraviolet (UV) spectrophotometer (Spectronic
Instruments, Inc., Rochester, NY, USA). Method detection limits were:
10 mg L−1, TSS; 0.01 mg L−1, total PO4

−–P, soluble PO4
−–P, NO3

−–N,
and NO2

−–N; and 0.02 mg L−1, NH4
+–N and TN.

Pesticide analyses were conducted according to Smith et al.
(2007). In brief, pesticides were extracted using pesticide-grade
ethyl acetate, dried over anhydrous Na2SO4 and concentrated to near
dryness by rotary evaporation. The extract was then subjected to
silica gel column chromatography cleanup, and concentration to 1 mL
volume under high purity dry nitrogen for GC analysis. Pesticide
recoveries and extraction efficiencies, based on fortified samples,
were ≥90% for targeted pesticides (Smith et al., 2007). Two Agilent
HP model 6890 gas chromatographs (Agilent Technologies, Inc.,
Waldbronn, Germany) equipped with dual Agilent HP 7683 ALS
autoinjectors, dual split-splitless inlets, dual capillary columns, an
Agilent HP Kayak XA Chemstation, and the autoinjector set at 1.0 μL
injection volume fast mode were used for all targeted pesticide
analyses according to Smith et al. (2007). The first of the two Agilent
HP 6890 GCs was equipped with two micro electron capture
detectors (μECDs) and the second 6890 with one μECD, one N–P
detector (NPD), and an Agilent HP 5973 mass selective detector
(MSD). The primary analytical column was an Agilent HP 5MS
capillary column, 30 m×0.25 mm i. d.×0.25 μm film thickness.
Column oven temperatures were: initial at 85 °C for 1 min; ramp at
25 °C to 190 °C; hold at 190 °C for 25 min; ramp at 25 °C to 230 °C and
hold for 30 min. The carrier gas used was ultra-high purity (UHP)
helium at 28 cm/s and inlet temperature at 250 °C. The μECD
temperature was 325 °C with a constant make up gas flow of
40 mL/min UHP nitrogen. Method detection limits were: 0.1 μg L−1,
S-metolachlor, cis-permethrin, and trans-permethrin; 0.01 μg L−1,
atrazine.

In addition, water quality parameters of temperature, pH, and
dissolved oxygen were measured in-situ in the managed riverine
wetland from June 16, 2009 through July 22, 2009 at 10 m, 40 m,
300 m, and 500 m using four Yellow Springs Instruments (YSI) 6290
multi-parameter water quality monitoring systems (Yellow Springs,
OH, USA). Measurements were collected hourly during pretreatment
days −7 to −3 (week −1), treatment days 0–5 (week 1), 7–11
(week 2), 14–19 (week 3), and 21–28 (week 4). On two occasions, in-
situ measurements were not recorded due to equipment failure and
are reported as “no data”.

Weekly means and standard deviations (±SD) were determined
for all four in-situ parameters. Forward stepwise linear regressions
were conducted according to Berenson et al. (1983) to assess multiple
independent variables that could influence observed changes in
concentrations of amended agrichemicals. Independent variables of
distance from inflow (distance), sampling time (time), and wetland
water volume at sampling time (volume) were used to predict each
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Fig. 2. Measured discharge (L s−1) during the simulated rainfall event. Water was
released from the lake cell into the wetland cell of the managed backwater wetland.
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dependent variable of measured parameters of amended agrichem-
icals (TSS, nutrients, and pesticides). Independent variables were
added or removed using F-to-enter of 4.0 and F-to-remove of 3.9.
Standardized dimensionless regression coefficients and coefficients of
determination were calculated and reported for each variable. When
possible, regression coefficients of determination calculated from
single exponential decay formulas for amended agrichemical con-
centrations at each site were generated by running non-linear
regressions. The resulting formulas were used to determine aqueous
dissipation half-lives (T1/2) within the wetland. All statistical analyses
were conducted using SigmaStat® v.2.03 (Chicago, IL, USA) statistical
software (SPSS, 1997). Statistical significance level for all models was
set at 5% (p≤0.05) for all analyses (Glantz, 1997).

The wetland was not a flow through system and all water released
from the lake cell during the artificial runoff event stayed within the
wetland. However, the release produced a defined pulse as water

traveled from the release point to the downstream weir, taking
approximately 5 h to pass the 500 m station. Nutrient and pesticide
uptake lengths (Sw, the average distance a molecule travels before it
is removed from the water column) of the initial pulse were
estimated by following changes in NH4

+–N, soluble PO4
−–P, atrazine,

S-metolachlor, and permethrin relative to a conservative tracer
(chloride, Cl−) in the pulse (Tank et al., 2008). We calculated the
mass of each nutrient or pesticide relative to the mass of Cl− as the
pulse crossed each station. The mass of each pollutant was estimated
by integrating the area under the curve, background corrected
concentration vs. time plot using the trapezoidal method. Uptake
lengths were calculated by dividing background corrected mass of
pollutant by background corrected Cl− mass at each station. The
natural logarithm of the ratios at each station was plotted against
distance, and the absolute value of the inverse of the slope is Sw
(Stream Solute Workshop, 1990).

4. Results

The simulated hydrograph was quite similar to the targeted
model, with peak discharge of 85 L s−1 about 1 h after flow initiation
(Fig. 2). No outflow from the wetland occurred during simulated
event, and although a total of approximately 149 mm of rainfall was
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Fig. 3. Continuous (15 min intervals) wetland water volume (m3) during the managed
backwater wetland study period June 24–July 22, 2009.

Table 1
Mean (±SD) weekly in-situ water quality characteristics for the managed backwater
wetland during the study period June 17–July 22, 2009.

Distance Temperature
(°C)

Conductivity
(μS cm−1)

Dissolved oxygen
(mg L−1)

pH

10 m
Week −1 30.3±3.3 151.3±15.6 3.3±2.2 7.1±0.2
Week 1 30.4±3.2 179.3±20.5 3.8±3.5 6.8±0.2
Week 2 No data No data No data No data
Week 3 28.6±3.3 149.6±39.8 4.8±4.7 7.0±0.5
Week 4 25.2±2.3 111.8±28.7 4.3±2.6 6.7±0.2

40 m
Week −1 30.9±3.6 173.8±19.7 4.0±4.2 7.1±0.3
Week 1 31.2±3.6 178.4±19.4 3.8±3.8 6.9±0.3
Week 2 26.9±4.2 101.6±19.9 4.7±3.8 6.6±0.6
Week 3 29.1±3.5 188.6±46.5 5.2±4.8 7.1±0.5
Week 4 25.5±2.2 111.1±31.1 4.2±2.9 6.8±0.2

300 m
Week −1 27.3±2.1 166.5±9.4 2.3±1.5 7.0±0.1
Week 1 28.1±2.0 156.9±13.2 2.6±1.4 6.9±0.1
Week 2 25.2±1.9 149.8±30.7 2.8±1.8 6.8±0.3
Week 3 26.2±1.6 146.9±21.9 2.5±1.4 6.7±0.2
Week 4 23.5±1.9 102.0±26.7 3.0±1.6 6.5±0.2

500 m
Week −1 No data No data No data No data
Week 1 27.8±1.9 153.0±4.0 6.0±2.8 7.1±0.3
Week 2 26.5±1.7 147.2±24.2 4.0±2.7 7.1±0.4
Week 3 27.2±1.5 126.4±12.6 4.1±3.2 7.0±0.3
Week 4 24.3±1.6 82.8±18.5 3.7±1.7 6.6±0.2
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−–P and soluble PO4

−–P concentrations
(mg L−1) in the managed backwater wetland before, during, and after an artificial
runoff event.
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recorded by the nearest rain gage during the monitoring period
(reported at Sarah, Mississippi), no outflow occurred during the
period following the event until day 22 (Fig. 3). Local thunderstorms
triggered outflows from the wetland to the river on days 22 and
27–28. Over the entire 28-d study period, the average wetland water
volume was 967 m3, while the total inflows to the wetland from the
simulated event and natural runoff were 611 m3 and 5600 m3,
respectively (Fig. 3). In-situ water quality of the managed wetland
was typical of freshwater riverine wetland habitats in the

southeastern US (Table 1). Water temperature was indicative of
climatic conditions in Mississippi during summer, with means
ranging from 23 to 40 °C. Range of conductivity means was from
102 to 189 μS cm−1, mean pH was circumneutral ranging from 6.5 to
7.1, and mean dissolved oxygen ranged from 2.3 to 5.2 mg L−1,
indicative of shallow (b1 m) water depths. Prior to amendment, pre-
treatment concentrations of simulated agricultural runoff constitu-
ents were measured at each site. TSS was b100 mg L−1 at each site;
total PO4

−–P ranged from 1 to 3.4 mg L−1 (Fig. 4); soluble PO4
−–P
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runoff event.
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ranged from b0.02 to 0.16 mg L−1 (Fig. 4); NH4
+–N was

b0.02 mg L−1 at each site (Fig. 5); NO3
−–N ranged from 0.03 to

0.05 mg L−1 (Fig. 5); NO2
−–N was b0.02 mg L−1 at each site; and

total N ranged from 2 to 6.7 mg L−1 (Fig. 5). All target pesticide
concentrations were below detection in water samples collected prior
to amendment at any sites. In addition, target pesticide concentra-
tions observed in the source water from the lake cell used to simulate
the rainfall event were below detection (Fig. 6).

During the runoff event 270.8 kg of soil was added to 611 m3 of
water released from the lake cell, which should have generated an
average TSS of 330 mg L−1, assuming SSlake=7mg L−1 and w=30%.
Mean measured TSS at the release point during the runoff event was
slightly higher, approximately 375 mg L−1. Peak TSS concentrations
occurred within 3 h of amendment at 10 m, 40 m, and 300 m
downstream and showed 91–98% decrease within 48 h; samples at
500 m showed no changes (Fig. 4). Measured TSS concentrations at
100 m were never greater than 160 mg L−1 (Table 2). Forward
stepwise regression analysis revealed that decreases in TSS were
influenced by time but not distance from the point of amendment or
total daily precipitation (Table 3). Due to significant fluctuations in
TSS over time (Fig. 4), TSS aqueous dissipation half-lives could not be
calculated. Wetland concentrations of total PO4

−–P and soluble PO4
−–

P peaked within 2.5 h of amendment at all sites, ranging from
5.54 mg L−1 at 0 m to 2.88 mg L−1 at 500 m for total PO4

−–P and
4.73 mg L−1 at 0 m to 0.29 mg L−1 at 500 m for soluble PO4

−–P
(Table 2, Fig. 4). Aqueous total PO4

−–P decreased by 41–79% within
48 h and 60–85% by 672 h (day 28), whereas soluble PO4

−–P
decreased by 96–98% within 48 h. Soluble PO4

−–P attenuation length

in the initial pulse was 313 m. Forward stepwise regression analysis
revealed that total PO4

−–P decreases were influenced by time but not
distance and soluble PO4

−–P decreases were influenced by time and
wetland water volume but not distance (Table 3). Although total
PO4

−–P aqueous dissipation half-lives could not be calculated for
reasons similar to TSS, soluble PO4

−–P aqueous dissipation half-lives
were determined and ranged from approximately 14 min at 10 m to
1 h 10 min at 300 m (Table 4).

Post-amendment wetland aqueous N concentrations varied
depending upon N species. Peak NH4

+–N concentrations occurred
within 2.5 h up to 300 m and 44 h at 500 m, ranging from
0.56 mg L−1 at 0 m to 0.08 mg L−1 at 500 m (Table 2, Fig. 5) showing
a decrease of 24–97% within 48 h and 92–100% by day 28. NH4

+–N
attenuation length in the initial pulse was 417 m. Forward stepwise
regression showed that NH4

+–N decreases were influenced by time
but not distance or wetland water volume (Table 3). NH4

+–N aqueous
dissipation half-lives ranged from approximately 14 min at 10 m to
1 h 7 min at 100 m (Table 4). In contrast, NO3

−–N and NO2
−–N

concentrations peaked at 21 to 28 days post-amendment ranging
from 0.07 to 1.25 mg NO3

−–N L−1 and 0.01–0.11 mg NO2
−–N L−1

(Table 2, Fig. 5). Forward stepwise regression analysis revealed that
NO3

−–N increases were influenced primarily by time and also by
distance. NO2

−–N increases were influenced primarily by distance and
also by time and wetland water volume (Table 3). Wetland TN
concentrations followed a pattern more similar to NH4

+–N. Peak TN
occurred within 2.5 h ranging from 12.01 mg L−1 at 0 m to
4.00 mg L−1 at 500 m (Table 2, Fig. 5). Decreases of 31–81% within
48 h and 43–90% by day 28 were observed in aqueous TN. Forward
stepwise regression analysis revealed that TN decreases were
influenced primarily by time (Table 3). TN aqueous dissipation half-
lives ranged from approximately 10 min at 10 m to 1 h 42 min at
100 m (Table 4).

Patterns of post-amendment pesticide concentrations were sim-
ilar to those of soluble PO4

−–P and NH4
+–N within the wetland. The

more water soluble herbicides traveled farther downstream from the
point of amendment and dissipated more slowly than the more
hydrophobic insecticide, permethrin. Atrazine and S-metolachlor had
attenuation lengths of 115 m and 149 m, respectively, while less
water soluble S-permethrin had the longest uptake length of 227 m.
Atrazine and S-metolachlor concentrations peaked within the first 2 h
of amendment up to 300 m and 48 h at 500 m. Peak herbicide
concentrations ranged from 145.66 μg L−1 at 100 m to 14.79 μg L−1

at 500 m and 114.9 μg L−1 at 100 m to 9.8 μg L−1 at 500 m for
atrazine and S-metolachlor, respectively (Table 2, Fig. 6). Aqueous
atrazine concentrations decreased by 63–79% within 48 h and
99–100% by day 28 whereas S-metolachlor decreased by 71–91%
within 48 h and approximately 100% at all sites by day 28. Forward
stepwise regression analysis revealed that aqueous atrazine and S-

Table 2
Sediment (mg L−1), nutrient (mg L−1) and pesticide (μg L−1) concentrations in the managed backwater wetland at 100 m, when water was present.

Parameter Time (h)

1 1.5 2 2.5 3 3.5 4 5 672

TSS 159 142 76 103 69 93 68 112 160
Total PO4

−–P 2.77 4.00 3.94 2.86 2.22 2.13 1.46 1.33 1.05
Soluble PO4

−–P 0.71 3.06 3.44 2.02 1.15 0.51 0.43 0.25 0.43
NH4

+–N 0.12 0.40 0.42 0.27 0.16 0.08 0.08 0.06 Ua

NO3
−–N 0.06 0.06 0.05 0.05 0.04 0.04 0.03 0.05 0.07

NO2
−–N 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02

Total nitrogen 4.18 6.75 7.14 5.58 2.98 2.52 2.36 2.81 4.07
Atrazine 53.14 145.66 77.95 54.5 36.62 26.80 20.84 19.69 Ub

S-metolachlor 48.0 114.9 65.2 42.0 26.7 18.9 14.5 13.9 Uc

cis-Permethrin 2.6 7.2 3.1 1.7 1.0 0.8 0.6 0.4 0.1
trans-Permethrin 2.1 4.5 2.5 1.3 0.7 0.6 0.4 0.3 0.1

a Below detection limit of 0.02 mg L−1.
b Below detection limit of 0.01 μg L−1.
c Below detection limit of 0.1 μg L−1.

Table 3
Standardized dimensionless regression coefficients and coefficients of determination
for forward stepwise linear regressions computed using amended agrichemicals (log10
transformed) as dependent variables and values of distance from inflow (Distance),
sampling time (Time), and wetland volume at sampling time (Volume) as independent
variables. Bold font indicates the largest standardized coefficient in each regression and
blank cells indicate variables were dropped from stepwise regression due to a lack of
significance.

Dependent variable n Distance Time Volume R2 p-value

TSS 121 −0.272a 0.074 0.0025
Total PO4

−–P 122 −0.452a 0.204 b0.0001
Soluble PO4

−–P 122 −0.543a 0.234a 0.199 b0.0001
NH4

+–N 122 −0.455a 0.207 b0.0001
NO3

−–N 123 0.258 0.901 −0.572 0.431 b0.0001
NO2

−–N 123 0.297 0.881 −0.670 0.428 b0.0001
Total nitrogen 122 −0.744a 0.256a 0.315 b0.0001
Atrazine 122 −0.354 −0.413 0.288 b0.0001
S-metolachlor 122 −0.281 −0.427 0.256 b0.0001
cis-Permethrin 122 −0.472a 0.222 b0.0001
trans-Permethrin 122 −0.458a 0.210 b0.0001

a Independent variable log10-transformed.
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metolachlor concentration decreases were influenced primarily by
time and also by distance (Table 3). Aqueous dissipation half-lives of
atrazine and S-metolachlor ranged from approximately 70–256 h and
35–186 h, respectively, except at 100 m where aqueous half-lives
were only 45 min. Permethrin cis- and trans-isomers had peak
concentrations within 2 h of amendment up to 300 m and 32–36 h
at 500 m. Peak permethrin isomer concentrations ranged from
7.2 μg L−1 at 100 m to 0.5 μg L−1 at 500 m and 4.5 μg L−1 at 40 m
to 0.5 μg L−1 at 500 m for cis- and trans-permethrin, respectively
(Table 2, Fig. 6). Aqueous cis-permethrin concentrations decreased by
81–98% within 48 h and 80–99% by day 28 whereas trans-permethrin
decreased by 79–98% within 48 h and 89–99% by day 28. Forward
stepwise regression analysis revealed that cis- and trans-permethrin
decreases were influenced by time but not distance or wetland water
volume (Table 3). Aqueous cis- and trans-permethrin dissipation half-
lives ranged widely from approximately 30 min to 12 h 22 min and
36 min to12 h 14 min, respectively (Table 5).

5. Discussion

The current study provides valuable information on the use and
efficacy of natural wetlands modified to enhance their natural
filtering capabilities when inundated with a complex mixture of
sediment, nutrients, and pesticides typically occurring in agricultural
runoff. As a result, such studies as the current one are important in

understanding the viability of using and managing available existing
adjacent riverine floodplain wetlands within agricultural watersheds
that can be modified to efficiently trap and remove agricultural
contaminants as effectively as fully designed constructed wetlands
but at much less cost and without the loss of any additional arable
land. In the current study, attenuation efficiencies of TSS for the
studied modified riverine floodplain wetland ranged from 91 to 98%
within 48 h and were greater than that of another reported study
assessing natural wetlands which ranged from 61% attenuation of TSS
to 77% attenuation (Knox et al., 2008). By way of comparison, the
ability of constructed wetlands to remove TSS can be constrained by
the wetland design. For example, free surface water constructed
wetlands with dense stands of macrophytes are highly efficient at
removing TSS ranging from 82 to 88% (Kröpfelová, 2008; Maynard et
al., 2009) whereas sub-surface flow constructed wetlands with poor
aeration are much less efficient ranging from approximately 28 to
35% (Noorvee et al., 2007; Wallace et al., 2008). Attenuation of TSS is
an important factor since other agricultural contaminants are closely
associated with TSS including nutrients such as total PO4

−–P and
insecticides such as pyrethroids (Hladik and Kuivila, 2008). As a
result, available riverine floodplain wetlands conducive to hydraulic
modifications that increase hydraulic retention times can be a more
cost-effective and efficient conservation practice than standard free
water surface constructed wetlands (Shields et al., 2005; Kadlec,
2006) when used to mitigate agriculturally derived TSS.

Table 4
Aqueous exponential dissipation model results and calculated aqueous half-lives for
nutrients in the managed backwater wetland (–, not calculated).

Distance Soluble PO4
−–P NH4

+–N Total nitrogen

0 m
Dissipation coefficient (b) 1.5841 1.8307 0.9271
Half-life (h) (T1/2) 0.436 0.377 0.744
R2 0.901 0.798 0.701
F-value 127.5 25.7 30.5
p-value b0.0001 b0.0001 b0.0001

10 m
Dissipation coefficient (b) 2.9734 2.9322 4.2877
Half-life (h) (T1/2) 0.232 0.235 0.161
R2 0.882 0.878 0.773
F-value 165.1 75.9 35.7
p-value b0.0001 b0.0001 b0.0001

40 m
Dissipation coefficient (b) 1.1178 1.3224 2.8450
Half-life (h) (T1/2) 0.617 0.522 0.243
R2 0.974 0.930 0.904
F-value 743.3 126.3 89.3
p-value b0.0001 b0.0001 b0.0001

100 ma

Dissipation coefficient (b) 0.6807 0.6146 0.4064
Half-life (h) (T1/2) 1.014 1.123 1.698
R2 0.864 0.927 0.817
F-value 38.2 76.1 22.4
p-value 0.0008 0.0001 0.0052

300 m
Dissipation coefficient (b) 0.5935 1.5167 0.9087
Half-life (h) (T1/2) 1.163 0.455 0.759
R2 0.952 0.916 0.764
F-value 393.1 97.9 30.7
p-value b0.0001 b0.0001 b0.0001

500 m
Dissipation coefficient (b) – – –

Half-life (h) (T1/2) – – –

R2 – – –

F-value – – –

p-value – – –

a When water was present.

Table 5
Aqueous exponential dissipation model results and calculated aqueous half-lives for
pesticides in the managed backwater wetland (–, not calculated).

Distance Atrazine S-
metolachlor

cis-
Permethrin

trans-
Permethrin

0 m
Dissipation coefficient (b) 0.0099 0.0196 0.0558 0.0564
Half-life (h) (T1/2) 69.697 35.204 12.366 12.234
R2 0.713 0.834 0.963 0.974
F-value 12.4 25.2 157.9 222.7
p-value 0.0169 0.0041 b0.0001 b0.0001

10 m
Dissipation coefficient (b) 0.0029 0.0046 0.2740 0.2911
Half-life (h) (T1/2) 237.931 150.000 2.518 2.370
R2 0.860 0.907 0.794 0.847
F-value 61.6 97.4 61.7 88.6
p-value b0.0001 b0.0001 b0.0001 b0.0001

40 m
Dissipation coefficient (b) 0.0027 0.0053 0.8772 0.9110
Half-life (h) (T1/2) 255.556 130.189 0.787 0.757
R2 0.820 0.935 0.980 0.989
F-value 36.5 114.9 997.4 1749.8
p-value 0.0003 b0.0001 b0.0001 b0.0001

100 ma

Dissipation coefficient (b) 0.8876 0.9313 1.4129 1.1352
Half-life (h) (T1/2) 0.777 0.741 0.488 0.608
R2 0.973 0.985 0.985 0.995
F-value 216.1 391.3 399.9 1131.8
p-value b0.0001 b0.0001 b0.0001 b0.0001

300 m
Dissipation coefficient (b) 0.0036 0.0037 0.8843 0.9759
Half-life (h) (T1/2) 191.667 186.486 0.780 0.707
R2 0.821 0.815 0.941 0.968
F-value 46.0 44.2 317.4 614.0
p-value b0.0001 b0.0001 b0.0001 b0.0001

500 m
Dissipation coefficient (b) 0.0077 0.0111 – –

Half-life (h) (T1/2) 89.610 62.162 – –

R2 0.962 0.985 – –

F-value 100.4 269.0 – –

p-value 0.0006 b0.0001 – –

a When water was present.
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The use of a variety of wetland types to remove nutrients has been
extensively studied. Fisher and Acreman (2004) conducted a thorough
review on nutrient mitigation in natural wetlands and Vymazal (2007,
2011) provided an overview of nutrient attenuation among a wide
variety of constructed wetland designs. For P, this study's modified
riverine floodplain wetland was capable of removing total PO4

−–P by
41–79%within 48 h and 60–85% after 28 dayswhile soluble PO4

−–Pwas
rapidly removed from the water column by 96–98% within 48 h. In
comparison, Jordan et al. (2003) observed a restored natural flow-
through wetland to have 59% attenuation of total P from the water
column but no net attenuation of other forms of P with average
hydraulic retention times ranging from 12 to 19 days during the study
period and minimum hydraulic retention times ranging from 0.51 to
2.2 days. Knox et al. (2008) observed a natural reference flow-through
wetland having a short hydraulic retention time of b2 h to have
removed 35–42% of total P and soluble reactive P from the water
column. Maynard et al. (2009), using two small surface flow-through
constructed wetlands with hydraulic residence times ranging from 11
to 31 h, measured 61–63% attenuation of dissolved reactive P and
55–65% attenuation of particulate P. This highlights the importance of
hydraulic retention time in removing P from wetland water column
with total PO4

−–P requiring greater retention times for attenuation than
soluble PO4

−–P.
Nitrogen attenuation from wetland water column is a complex

process due to the many aqueous biogeochemical pathways through
which N can be transferred from the water column (Vymazal, 2007;
Reddy and DeLaune, 2008). Attenuation of dissolved inorganic nitrogen
species such asNH4

+–Nhas been shown to vary greatly depending upon
a variety of conditions found in natural wetlands (Garciá-Garciá et al.,
2009; Hu et al., 2010), restored wetlands (Ardón et al., 2010), and
designed constructed wetlands (Kohler et al., 2004; Noorvee et al.,
2007; Vymazal, 2007; Kantawanichkul et al., 2008). In a study of natural
Mediterranean stream-wetlands receiving agricultural runoff, NH4

+–N
attenuation ranged from 11% attenuation to 213% export of NH4

+–N
from these systems (Garciá-Garciá et al., 2009), while in another study
using a restored wetland in an agricultural watershed, NH4

+–N
attenuation ranged from 64% attenuation to 237% export of NH4

+–N
from the system (Ardón et al., 2010). In comparison, the current study
with a managed natural wetland showed NH4

+–N attenuation that
ranged from 24 to 97% within 48 h and 92–100% by day 28. This
wetland had NH4

+–N and PO4-P attenuation lengths in the initial pulse
that were less than the length of the wetland. This supports the idea
that much of the readily bioavailable N and P are quickly attenuated
from runoff pulses. Our estimates are also likely high in the context of
nutrient attenuation for the entire wetland, as we only accounted for
the fastest moving water during the release, and our estimates do not
take into account areas of slower water exchange such as channel
edges. Nitrate attenuation in natural and restored wetlands has been
well established (Jordan et al., 2003; Fisher and Acreman, 2004; Fink
and Mitsch, 2007; Woltemade and Woodward, 2008; Garciá-Garciá et
al., 2009) although a few studies have observed NO3

−–N addition
(Cooke, 1994; Knox et al., 2008). In the current study, no significant
influx of NO3

−–N was measured during the dosing period, however, an
addition of NO3

−–N and NO2
−–N thatwas time and site specific occurred

on day 21 at only 300 m and 500 m downstream. By day 28,
concentrations at both sites were similar to levels measured previously.
These unusual results in conjunction with forward stepwise regression
analysis (Table 3) imply influx of nitrate and nitrite into the wetland at
or near 300 m and flowing downstream to 500 m. This influx is possibly
due to a localized runoff event from the adjacent agricultural field to the
east of thewetland (Fig. 1) occurring on July 12–14, 2009 after sampling
day 14 and before sampling day 21 when a total of 17.5 mm of
precipitation fell (Fig. 3). Total N attenuation is often an important
metric in wetlands because the parameter incorporates both inorganic
and organic forms of N and is most clearly associated with eutrophi-
cation of aquatic systems. Attenuation of TN in natural wetlands

receiving agricultural runoff range from 38 to 42% in wetlands with
brief hydraulic retention times (0.5–2 h; Knox et al., 2008) and range
from 51 to 88% in wetlands with longer hydrologic intermittency
(Garciá-Garciá et al., 2009). Less effective at TN attenuation are restored
wetlands which have 38–41% attenuation rates despite having
retention times of days to weeks (Jordan et al., 2003; Fink and Mitsch,
2007). The managed wetland assessed in the current study had TN
attenuation (43–98%) comparable with those of natural wetlands
having longer hydraulic retention time. It is noted, however, that TN
attenuation in the current study was influenced by factors other than
retention time including precipitation. In contrast, single-stage con-
structed wetlands provided only 40–50% TN attenuation, regardless of
design type due, in part, to smaller treatment areas (Vymazal, 2007).

The ability of wetlands to effectively trap and remove pesticide
mixtures in agricultural runoff has been the focus of numerous recent
studies (Schulz and Peall, 2001; ; Sherrard et al., 2004; Budd et al., 2009;
Moore et al., 2009; Locke et al., 2011; Maillard et al., 2011). As
understanding of how complex pesticide mixtures from agricultural
runoff may affect non-target aquatic biota increases (Schulz, 2004;
Belden et al., 2007; Moore et al., 2007), questions remain about the
most appropriate methods to trap and process complex pesticide
mixtures from agricultural runoff before entering rivers, lakes or
streams. As a result, research has focused primarily on use of
constructed wetland systems that can be readily incorporated into
agricultural watersheds as best management practices (Schulz and
Peall, 2001; Budd et al., 2009; Moore et al., 2009; Locke et al., 2011) and
has produced anUSDA-NRCS standard (NRCS code 656; NRCS, 2010). In
comparison, natural, pre-existing wetland systems occurring within an
agricultural watershed landscape have shown promise in mitigating
pesticide mixtures in agricultural runoff (Lizotte et al., 2009; current
study) thus providing the same benefits as constructed wetlands
without compromising crop production due to less available acreage. In
the current study, the natural study wetland system with modification
to enhance entrapment of agricultural contaminants proved efficient in
attenuation of an atrazine–S-metolachlor–permethrin (both cis- and
trans-permethrin isomers) mixture. The managed backwater wetland
showed atrazine attenuation ranging from 63 to 85%within 48 h and 99
to 100%byday 28 andwas comparable to attenuation reported by Locke
et al. (2011) in a constructed wetland having attenuation of 70–89%
after 20 days. Atrazine attenuation observed in the current study was
also similar to measured trapping efficiency of the same herbicide
reported in a previous study at the inflow site of the same wetland by
Lizotte et al. (2009) which showed decreases in aqueous atrazine
concentrations of 65% by 48 h and>90% by day 21.With S-metolachlor,
the current study showed attenuation of 71–91%within 48 h and >99%
attenuation by day 28 and was more efficient than the attenuation
reported by Moore et al. (2001) in a constructed wetland having
attenuation of 48–83% after 35 days. Comparisons of S-metolachlor
attenuation in the current study with a previous study conducted in the
same wetland by Lizotte et al. (2009) were also similar with decreases
in aqueous S-metolachlor concentrations of 51% by 48 h and >90% by
day 15 at the inflow site. Insecticide permethrin attenuation efficiencies
in our study ranged from 81–98% to 79–97% within 48 h for cis- and
trans-permethrin isomers, respectively, and 80–99% within 28 days for
cis- and trans-permethrin isomers, respectively. Our results were, again,
comparable with the reported attenuation of >90% of permethrin
insecticidewithin a constructedwetland system (Budd et al., 2009) and
muchmore efficient than the observed 4% attenuation of permethrin in
a natural wetland receiving agricultural runoff (Lopéz-Flores et al.,
2003).

6. Conclusions

Overall results of our study indicate that hydraulic management of a
natural riverine backwater wetland can effectively trap a variety of
contaminants commonly occurring in agricultural runoff during small to
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moderate rainfall events, mitigating potential ecological effects down-
streamwithin themain river channel. Controlled hydrology can be used
to increase the efficiency of natural wetland filtering capabilities. The
hydrologically modified riverine backwater wetland in the present
study can rapidly (within 48 h) trap and attenuate 90–98% of sediments,
40–80% of nutrients, and 80–98% of pesticides within 300 m. Aqueous
half-lives (T1/2) ranged from 20 to 30 min for soluble PO4

−–P, NH4
+–N,

and TN, 0.7–2.4 h for permethrin and 1.5–10.6 d for atrazine and S-
metolachlor. Attenuation efficiencies at the end of the 28 day study
period were ≥85% for TSS, ≥60% for P, ≥43% for N, and ≥80% for
pesticides within the entire 500 m-long managed riverine wetland.
Target agricultural contaminants were trapped from the water column
relatively rapidly (days to weeks) within the wetland system. Modified
and managed riverine backwater wetlands ≥1 ha can efficiently trap
agricultural runoff during moderate (1 cm) late-spring and early-
summer rainfall events, mitigating impacts to receiving rivers.
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