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a b s t r a c t

This analysis addresses the propagation of spiral edge flames found in von Kármán swirling flows induced
in rotating porous-disk burners. In this configuration, a porous disk is spun at a constant angular velocity
in an otherwise quiescent oxidizing atmosphere. Gaseous methane is injected through the disk pores and
burns in a flat diffusion flame adjacent to the disk. Among other flame patterns experimentally found, a
stable, rotating spiral flame is observed for sufficiently large rotation velocities and small fuel flow rates
as a result of partial extinction of the underlying diffusion flame. The tip of the spiral can undergo a
steady rotation for sufficiently large rotational velocities or small fuel flow rates, whereas a meandering
tip in an epicycloidal trajectory is observed for smaller rotational velocities and larger fuel flow rates. A
formulation of this problem is presented in the equidiffusional and thermodiffusive limits within the
framework of one-step chemistry with large activation energies. Edge-flame propagation regimes are
obtained by scaling analyses of the conservation equations and exemplified by numerical simulations
of straight two-dimensional edge flames near a cold porous wall, for which lateral heat losses to the disk
and large strains induce extinction of the trailing diffusion flame but are relatively unimportant in the
front region, consistent with the existence of the cooling tail found in the experiments. The propagation
dynamics of a steadily rotating spiral edge is studied in the large-core limit, for which the characteristic
Markstein length is much smaller than the distance from the center at which the spiral tip is anchored. An
asymptotic description of the edge tangential structure is obtained, spiral edge shapes are calculated, and
an expression is found that relates the spiral rotational velocity to the rest of the parameters. A quasie-
static stability analysis of the edge shows that the edge curvature at extinction in the tip region is respon-
sible for the stable tip anchoring at the core radius. Finally, experimental results are analyzed, and
theoretical predictions are tested.

� 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Swirling flows enhance fuel and oxidizer mixing at the molecu-
lar level, promote combustion and flame propagation [1,2] and
reduce emissions [3]. Examples of combustion enhancement by
increased mixing occur naturally in fire whirls, or in specific
engineering designs such as swirl combustors in gas turbines,
swirl-generating inlet ports and swirl piston bowls in internal
combustion engines. The interaction of flames with swirling air
flows in combustion chambers can enhance local extinction for
sufficiently large strain rates or heat losses. The boundaries
produced by these local extinction phenomena are edge flames,
which propagate through the mixture with characteristics similar
to those of deflagrations [4]. In swirling boundary layers, local

quenching can produce a number of flame patterns and flame
fronts, such as straight edge flames, single spiral edge flames,
multiple spiral edge flames, flame rings and flame holes, that
propagate in the mixture in a nontrivial manner [5–8]. This paper
addresses the dynamics and structure of the spiral edge flames
found in earlier experiments [5–7]. A snapshot of this type of flame
pattern is shown in Fig. 1.

From a broader physical standpoint, spiral patterns are ubiqui-
tous in nature. The Belousov–Zabothinsky reaction [10] and the
catalytic surface oxidation of CO [11] are examples of spiral pattern
formation found in physical chemistry. Cell aggregation [12] and
calcium waves [13] are examples of spiral patterning in cell signal-
ing, and cardiac fibrillation waves take the form of meandering spi-
rals. However similar at first sight, pattern formation in diffusion
flames is a qualitatively and quantitatively different problem than
those cited above, which mainly correspond to reactive–diffusive
systems [10–13]. Spiral diffusion flames display three-dimensional
diffusion and advection effects that make their analytical and
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numerical tractability quite more challenging. Additionally, the
strong non-linearities associated with the reaction term in flames
are typically exponential in the temperature as in the Zeldovich–
Frank–Kamenetskii theory [14], which produces sharp interfaces
and singular behaviors, whereas classical developments in the
reactive–diffusive systems of [10–13] have typically used smooth-
er polynomial non-linearities to account for the propagator source
as in the Kolmogorov–Petrovskii–Piskunov theory [15]. Finally,
unlike earlier analyses performed on the modelling the physico-
chemical processes [10–13], the conservation equations and
chemical reaction rates used in combustion systems stem from
fundamental principles of the kinetic theory of gases, which
confers more rigor on the present investigation. Despite all these
differences, excitability is a common characteristic shared by all
these systems. The concept of excitability of a system regards its
ability to trigger abrupt and substantial responses –by means of
the autocatalytic production of a propagator or trigger variable–
to disturbances from a rest state that cross certain characteristic
thresholds [16]. After such a response the system momentarily
shows a refractory behavior moderated by a controller or refrac-
tory variable, in that the system is immune to further stimulation
and eventually recovers full excitability.

In the context of flame propagation in stratified mixtures,
excitability is related to the reactivity of the mixture and the high
sensitivity to temperature because of the effectively high overall
activation energy involved in typical combustion chemical
reactions. Although the trajectory of a fluid particle occurs
generally in a multidimensional space, its initial and final states
can be placed on a S-curve response of a diffusion flame [19] as
shown in Fig. 2a, which represents the maximum temperature as a
function of the reduced Damköhler number D, which is defined as

D ¼ td

tc
; ð1Þ

where td is the diffusion time through the flame or flame-transit
time, and tc is the local chemical time in the flame.

Spatial regions of sufficiently low temperature, in which the
mixture remains chemically frozen, may be thought of as a rest
state, from which an appreciable excursion may occur when D is
sufficiently large to trigger thermal runaway and ignite the mix-
ture. Flame propagation and diffusion of heat into neighboring re-
gions occur once the mixture has been ignited, causing the
excitation process to spread spatially into zones initially frozen.
For large activation energies and adiabatic systems, the region
downstream from the front is close to a Burke–Schumann or equi-
librium rest state, involving a reaction zone into which each reac-
tant diffuses and reacts producing a diffusion flame, as in Fig. 2b.
This trailing flame extends infinitely far downstream from the
front as in an adiabatic, equidiffusive edge flame or triple flame
[4,20–24].

For a spiral edge flame, the system achieves the rest state again
by means of an extinction tail, as in Fig. 2c. As shown further be-
low, lateral heat losses to the burner surface extinguish the flame
when the flame temperature is sufficiently small for the local D
to be small, such that the local chemical time becomes large and
of the same order as the diffusion time, which produces leakage
of unburnt reactants, an associated flame-temperature drop and
flame extinction. After extinction, the gaseous mixture is at first
refractory to another disturbance, but it finally recovers full ignit-
ability when the reactants are replenished by advection, reproduc-
ing the same edge-flame pulse after one revolution provided that
no mixing hysteresis has taken place. While this discussion de-
scribes how spiral-flame phenomena may be related in general
to spiral waves in excitable media, it will be seen later that
Fig. 2a does not precisely describe the specific experiments of
Fig. 1, in that the indicated ignition event, in fact, is not involved
in the physics of the actual process.

Spiral-like flame patterns of different nature than the ones trea-
ted in this study have been previously reported for fully premixed
combustion systems. Examples of these phenomena are the pel-
ton-like flames found in the combustion of methane and air in ra-
dial microchannels [25], the spiraling instabilities observed on the
surface of expanding spherical premixed flames in hydrogen–air
mixtures [26], and the flames found in the combustion of lean mix-
tures of butane and oxygen in a pipe [27]. These patterns occur in
premixed systems, and their dynamics can be described by two-
dimensional reaction–diffusion conservation equations.

The paper is organized into five additional sections. Section 2 is
dedicated to a general formulation of the problem, in both the lab-
oratory and moving reference frames, and within the framework of
a thermodiffusive, equidiffusional model using a single-step chem-
ical reaction of large activation energy. The effects of lateral heat
losses to the burner wall on a nearly straight edge flame are ad-
dressed in Section 3 by performing scaling analyses of the conser-
vation equations and integrating numerically a two-dimensional
model problem. The results in this section do not address the influ-
ences of curvature but instead identify limits on the magnitudes of
the curvature. Section 4 is dedicated to the study of the tangential

(a)

(b)

(c)

Fig. 2. (a) Schematic representation of the S-curve response of a diffusion flame.
The frozen and Burke–Schumann rest states are denoted by A and B, respectively.
(b) Temperature profile along the stoichiometric line of a vigorously burning edge
flame. (c) Temperature profile along the stoichiometric line of an edge whose
diffusion flame has undergone extinction.

Fig. 1. Spiral edge flame (adapted from [9]).
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structure of the edge and its propagation in the flow field, here
identifying influences of the edge curvature. Finally, a comparison
with experimental data is performed in Section 5 and conclusions
are drawn in Section 6.

2. Formulation

2.1. Hydrodynamic and mixing fields

A set of controlled experiments performed with the porous-disk
burner demonstrated the existence of a map of flame patterns [5].
The experiments used a sintered bronze, water-cooled porous disk
of radius a = 10 cm. Gaseous methane was fed to the disk with uni-
form and constant fuel flow rate _m00 ¼ 0:6—2:0 g/sm2 from a com-
pressed-gas bottle of fuel mass fraction YF,F � 1.0, and injection
temperature TS � 300 K equal to the disk cooling temperature. The
exposed disk porous surface was oriented facing downwards to
avoid buoyant instabilities, in an otherwise quiescent oxidizing
atmosphere of oxidizer mass fraction YO2 ;A � 0:24, and temperature
T1 � 300 K, and it was spun at a constant angular velocity X = 6–
50 rad/s. A schematic diagram of the problem is shown in Fig. 3. Fur-
ther details of the experimental set-up are given in Section 5.

Earlier work [7] proposed a conserved-scalar formulation for this
problem that will be followed partially here and that is based on a
thermodiffusive and equidiffusional model of the underlying one-
dimensional diffusion flame. That is, gas densities are assumed con-
stant (a better approximation for flames near walls than for most
combustion problems), and species diffusion coefficients are as-
sumed equal to the thermal diffusivity (a better approximation for
methane in air than for most fuel-oxidizer systems). The density q,
viscosity m, specific heat cp, thermal diffusivity DT and Prandtl num-
ber Pr = m/DT are taken to be those of the air side at normal conditions.
In the conditions relevant to these experiments, that is at moderately
high bulk Reynolds numbers Rea = Xa2/m � 104, as the burner rotates
the viscous effects are confined to a thin boundary layer of approxi-
mate thickness dM ¼

ffiffiffiffiffiffiffiffiffi
m=X

p
[28], with dM/a� 1. The rotation of the

disk induces an entrainment of the ambient fluid with a characteris-
tic velocity XdM. This fluid is carried by the disk surface through fric-
tion and is ejected centrifugally with a characteristic velocity XdMr,
where r is the ratio of the radial coordinate to dM. This velocity is
much larger than the entrainment velocity at sufficiently large radial
distances from the center, r� 1.

In this flow, the resulting dimensionless hydrodynamic velocity
field, nondimensionalized with XdM in an axial variable z nondi-
mensionalized with dM, is given by

v ¼ �/0ðzÞr
2

er þ VðzÞreh þ /ðzÞez; ð2Þ

where bold-face characters are vectors in the present notation, ei

representing unit vectors in the subscript direction, and /(z) and
V(z) are the self-similar nondimensional stream function and azi-
muth velocity, respectively. These two fundamental functions are
shown in Fig. 4 and are obtained by solving numerically the r and
h components of the momentum conservation equation,
/000 ¼ /00/� /02=2þ 2V2 and V 00 ¼ /V 0 � /0V , subject to non-slip
and injection conditions on the disk surface, /

0
= 0, V = 1 and /

= Rej, and similar conditions far from the disk, /
0
= V = 0 and /

= /1. Fig. 4 shows the velocity profiles obtained from the numerical
integration of the momentum conservation equations, along with
their asymptotic approximations developed by solving the first
two orders of a Rej� 1 expansion of the same equations for z� 1
and z� 1 [29]. In this formulation, /1 = O(1) is a dimensionless
measure of the air entrainment far from the disk and is calculated
as part of the hydrodynamic solution, and

Rej ¼
_m00

q
ffiffiffiffiffiffiffi
mX
p ð3Þ

is the injection Reynolds number or dimensionless fuel injection
rate, defined as the ratio of the injection velocity _m00=q to the char-
acteristic entrainment velocity normal to the disk dMX. The typical
values of Rej encountered in the experiments are found to be
much smaller than unity for most of the data range [7], which in-
volves small injection velocities. The strain rate, vorticity and sta-
tic pressure depend solely on z as a consequence of the radial
uniformity of the entrainment. The static pressure is an irrelevant
variable that can be eliminated in this thermodiffusive framework.
These considerations are not accurate near the disk edge, where

Fig. 3. A schematic diagram of the model problem.

(a)

(b)

(c)

Fig. 4. Numerical (solid line) and asymptotic (dashed line) profiles for the (a) radial
velocity, (b) azimuth component, and (c) vertical component of the flow velocity,
for Rej = 0.05. In this figure, c1 = 0.924 + 2.620Rej, c2 = 0.510 + 0.046Rej,
c3 = �0.500 + 0.510Rej, c4 = 1.202 + 2.425Rej, c5 = �0.616 + 0.412Rej,
c6 = 2.091 + 5.926Rej, c7 = Rej, c8 = �c2 and /1 = /01 + 0.202Rej = �0.884 + 0.202Rej

are numerically calculated constants.
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the self-similarity imposed by (2) is lost and the velocity normal
to the disk and the normal strain rate do not depend solely on
the normal coordinate z, so that the present calculation implicitly
assumes a flow over an infinite disk with uniform air entrainment.

The chemical reaction is considered to be a single-step, second-
order irreversible reaction between methane and the oxygen of the
air, CH4 + 2O2 ? CO2 + 2H2O, with a dimensionless global rate of
reaction

x̂ ¼ DabY F
bY O2 e�Ta=T : ð4Þ

In this formulation, bY F and bY O2 are the fuel and oxidizer mass
fractions normalized with their stoichiometric values YF,st = aYF,F/
(1 + a) and YO2 ;st ¼ YO2 ;A=ð1þ aÞ, where a ¼ YO2 ;A=sYF;F is the mass
of the fuel feed stream that is needed to mix with a unit mass of
air to generate a stochiometric mixture, and s is the mass of oxi-
dizer burnt per unit mass of fuel consumed in stoichiometric pro-
portions. For methane-air systems and undiluted fuel streams,
typical values of a and s are 0.06 and 4 respectively. Similarly, T de-
notes the temperature nondimensionalized with the adiabatic
temperature increment QYF,st/cp, where Q is the heat release per
unit mass of fuel, and Ta represents the corresponding dimension-
less activation temperature of the chemical reaction. The parame-
ter Da is a Damköhler number given by

Da ¼ YO2 ;stA
X

; ð5Þ

which represents the ratio of a pseudo-collision time ðYO2 ;stAÞ�1 to
the flow time X�1, with A the frequency factor of the global step.

The mixture fraction eZ is normalized with that of the disk sur-
face ZS and is defined as

eZ ¼ eZfl

bY F � bY O2

1þ a
þ 1

 !
; 0 6 eZ 6 1; ð6Þ

with eZ ¼ 0 far from the disk and eZ ¼ 1 on the disk surface. HereeZfl ¼ Zst=ZS represents the normalized stochiometric coordinate
location with respect to ZS, with Zst = a/(1 + a) � 0.056 the stoichi-
ometric mixture fraction, which determines the diffusion-flame
location. The mixing and hydrodynamic fields can be easily related
in the present thermodiffusive approximation by making use of (6)
in the species conservation equations to integrate a second-order
homogeneous differential equation for eZðzÞ with appropriate por-
ous-disk boundary conditions, which gives [7]

eZðzÞ ¼ RejPr
B

Z 1

z
exp

Z n

0
Pr/ðzÞdz

� �� �
dn; ð7Þ

where B is an effective mass-transfer number defined as

B ¼ ZsteZfl � Zst

¼ að1þ aþ bY F;S � bY O2 ;SÞ
1þ aþ aðbY O2 ;S � bY F;SÞ

; ð8Þ

and the subindex S refers to the fuel and oxidizer mass fractions on
the disk surface.

The effective mass-transfer number increases monotonically
with Rej. If there is no fuel injected, Rej ¼ 0; eZfl !1; ZS ¼ 0;
YF;S ¼ 0, YO2 ;S ¼ YO2 ;A and B ¼ 0. Similarly, for large injection rates,
Rej !1; eZfl ! Zst; ZS ! 1, YF;S ! YF;F ; YO2 ;S ! 0 and B ! 1. From
(6)–(8), an equivalent definition

B ¼ RejPr
Z 1

0
exp

Z n

0
Pr/ðzÞdz

� �� �
dn; ð9Þ

is found. The result (9) can be simplified for small values of Rej by
expanding the self-similar stream function and azimuth velocity
in powers of Rej and numerically solving each order of the r and h
momentum equations [29]. This procedure gives the expansion
B � B0Rej þ B1Re2

j , with B0 ¼ 2:180 and B1 ¼ 2:349. These results
for eZ and B are plotted in Fig. 5a and b.

The squared gradient of the mixture fraction multiplied by the
thermal diffusivity is commonly referred to as the scalar dissipa-
tion rate v in turbulent combustion [2], and it represents the in-
verse of a characteristic diffusion time. When the diffusion time
is evaluated in the burning diffusion flame, eZ ¼ eZfl, a characteristic
flame-transit time or reactant diffusion time through the flame
td � 1/vfl is obtained, which is usually large compared to the local
chemical time tc � ðAYO2 ;stÞ�1 expðTa=TÞ to ensure complete reac-
tant depletion. Here the same nomenclature is used, and the
expression for the nondimensional scalar dissipation rate

evðzÞ ¼ deZ
dz

 !2

¼ PrRej

B

� �2

exp 2
Z z

0
Pr/ðnÞdn

� �
ð10Þ

is found, where use has been made of (7). The value of ev on the disk
surface is given by evS ¼ ðPrRej=BÞ2. For small mixture fractionseZ ! 0ðz!1Þ, the approximation / � /1 in (7) yields evðeZÞ �
ð/1PreZÞ2. Similarly, for eZ � 1ðz! 0Þ, the approximation / � Rej

gives evðeZÞ � evS 1� 3ðeZ � 1ÞPr Rej=ev1=2
S

h i2=3
. The distribution of ev

is shown in Fig. 5c. In this notation, the flame transit time is given
by td � d2

M= DT Z2
S
evfl

	 

, which decreases with increasing mass flow

rate and angular velocity.
An excess enthalpy H, nondimensionalized with the chemical

heat release QYF,st, can be defined as

H ¼ abY F þ bY O2

1þ a
� 1þ T � T1; ð11Þ

with H = 0 in the oxidizer feed stream, and H = HS on the disk sur-
face, where in the most general case HS varies with time and posi-
tion on the disk surface in a manner that is calculated as part of the
solution. This excess enthalpy is zero everywhere for an equidiffu-
sive counterflow diffusion flame with equal thermal enthalpies of
oxidizer and fuel feed streams [19]. The excess enthalpy in the pres-
ent analysis is, however, non-zero even in the case of equal feed-
stream temperatures, TS = T1, because of heat losses to the disk.

(a) (b)

(c)

Fig. 5. (a) Mixture fraction distribution (7), (b) mass-transfer number (9), and (c)
dimensionless scalar dissipation rate (10). The inset shows the dimensionless scalar
dissipation rate on the disk surface.
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2.2. Laboratory-frame formulation

In these variables and in the laboratory reference frame, the
species and energy conservation equations become

@H
@t
þ v? � r?H ¼ r

2
?H
Pr
þ
evðeZÞ

Pr
@2H

@eZ2
; ð12Þ

@T
@t
þ v? � r?T ¼ r

2
?T
Pr
þ
evðeZÞ

Pr
@2T

@eZ2
þ DabY F

bY O2 e�Ta=T ; ð13Þ

bY F ¼ H þ eZ=eZfl þ T1 � T; ð14ÞbY O2 ¼ 1þ að1� eZ=eZflÞ þ H þ T1 � T; ð15Þ

subject to

H þ b
Zst
þ 1
B

@H

@eZ ¼ 0; T ¼ TS; ð16Þ

at eZ ¼ 1,

H ! 0; T ! T1 ð17Þ

at eZ ¼ 0,

@H
@r
! 0;

@T
@r
! 0; ð18Þ

for r ?1, and

@H
@h

����
h¼0
¼ @H
@h

����
h¼2p

;
@T
@h

����
h¼0
¼ @T
@h

����
h¼2p

; ð19Þ

for 0 6 r <1 and 0 6 eZ 6 1. In this formulation, the time coordinate
t is nondimensionalized with the flow time X�1, and r\ and v\ are
the two-dimensional gradient operator and two-dimensional
hydrodynamic velocity field in r and h. The boundary condition
(16) represents a combination of reactant mass conservation and
thermal contact along the disk surface, with

b ¼ Zst ðT1 � TSÞ �
1
B

@T

@eZ
����eZ¼1

� �
; ð20Þ

a heat-loss coefficient that accounts for feed-stream enthalpy differ-
ences and heat losses to the disk surface, the behavior of which was
analyzed in earlier work for a uniform diffusion flame enveloping
the entire disk [7]. The coefficient b generally decreases with
increasing Rej for subadiabatic disk temperatures [7], with
b! ZstðT1 � TSÞ for Rej� 1.

Eqs. (2), (7), (9), (10) and (12)–(20) give rise to the three-dimen-
sional solution of the temperature and excess-enthalpy distribu-
tions in the physical space and in the laboratory reference frame.
The numerical integration of an equivalent set of conservation
equations in a non-conserved scalar form was performed in earlier
work [8] to capture spiral flames with reasonable success given the
difficulty of such three-dimensional and intensive calculation,
although spiral meandering and solid-rigid rotation around a cen-
tral hole were not obtained, thus contradicting existing experi-
ments (perhaps due to an inaccurate resolution of the vicinity of
the burner axis), and analyses of the front and trailing diffusion-
flame structures and their propagation dynamics were not per-
formed. Nonetheless, that study is valuable in that it confirms that
all the essential physics is contained within the set of equations
outlined above.

2.3. The frozen and Burke–Schumann regimes

The problem outlined in the preceding section can be solved
analytically in the frozen and Burke–Schumann regimes, D� 1
and D� 1 respectively, where D is the reduced Damköhler num-
ber given by (1).

In the frozen limit, the diffusion time is much smaller than the
local chemical time, D� 1, the reaction term is negligible in the
first approximation, and (12) and (13) reduce to d2H=deZ2 ¼
d2T=deZ2 ¼ 0 subject to (16) and (17), which gives

T ¼ T1 � bfr
eZ=eZfl; ð21Þ

H ¼ �bfr
eZ=eZfl; ð22ÞbY F ¼ eZ=eZfl; ð23ÞbY O2 ¼ 1þ a 1� eZ=eZfl

	 

; ð24Þ

where bfr denotes the heat loss coefficient (20) in the frozen regime
based on the frozen temperature profile,

bfr ¼ eZflðT1 � TSÞ: ð25Þ

The value Hfr = �bfr represents the excess enthalpy evaluated at
the stoichiometric coordinate. Because of the boundary condition
at the disk surface, this excess enthalpy is negative if the plate tem-
perature is less than that of the air and positive if it is greater. Fur-
ther increase in D to a critical DI by, for instance, decreasing the
angular velocity or increasing the disk temperature, gives rise to
higher-order corrections to (21)–(24), which are representative of
flame autoignition as depicted in Fig. 2a.

In the Burke–Schumann limit, the local chemical time is much
shorter than the diffusion time through the flame, D� 1, so that
the flow remains in chemical equilibrium on both sides of a thin
reaction sheet of infinitesimal thickness, which is much smaller
than the hydrodynamic length scale, and no reactant leakage oc-
curs in the first approximation. Thus, (12) and (13) reduce to
d2H=deZ2 ¼ 0 and d2T=deZ2 ¼ �Prx̂=ev, with x̂ approximated as a
Dirac delta function. The solution to these equations is

T ¼ T1 þ 1þ a� aþ bfl

� eZ=eZfl; ð26Þ
YF ¼ ð1þ aÞðeZ=eZfl � 1Þ; YO2 ¼ 0; ð27Þ

in the fuel region eZfl 6
eZ 6 1,

T ¼ T1 þ ð1� bflÞeZ=eZfl; ð28Þ
YO2 ¼ ð1þ aÞð1� eZ=eZflÞ; YF ¼ 0; ð29Þ

in the oxidizer region 0 6 eZ 6 eZfl, and

H ¼ �bfl
eZ=eZfl; ð30Þ

with

bfl ¼ bfr þ a=B; ð31Þ

the heat-loss coefficient (20) based on equilibrium conditions. The
value Hfl = �bfl corresponds to the excess enthalpy in the diffusion
flame. The excess enthalpy in the Burke–Schumann limit is always
more negative than that in the frozen limit for subadiabatic disk
temperatures because of the enhanced heat loss to the porous plate
caused by the heat conduction from the hot flame.

Further decrease of D below a critical DE by, for instance,
increasing the angular velocity or decreasing the fuel flow rate,
gives rise to higher-order corrections to (26)–(30) that are repre-
sentative of flame extinction, as depicted in Fig. 2a. An expression
for the critical Damköhler number of extinction was derived in ear-
lier work [7], which is reproduced here for illustrative purposes
and for future use,

DE ¼
4 PreZ2

flðT
2
fl=TaÞ3evflð1þ aÞ2

Dae�Ta=Tfl ; ð32Þ

where Tfl is the non-adiabatic Burke–Schumman temperature

Tfl ¼ T1 þ 1� bfl; ð33Þ

of the diffusion flame, which decreases with decreasing Reynolds
numbers of injection. Additionally, a solvability condition for the
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non-adiabatic Burke–Schumann solution was obtained [7], in that
mass-transfer numbers above a minimum Bmin ¼ a must occur for
the Burke–Schumann flame to stand above the disk surface, since
smaller values of the mass-transfer number B < Bmin would not
be capable of generating stoichiometric mixtures outside the disk.
When use is made of the small-Rej asymptotic expansion for B,
the minimum injection Reynolds number corresponding to Bmin is
found to be Remin

j � 0:027.
At sufficiently large Rej, the influences of the disk surface are

negligible, and the adiabatic flame temperature

T1fl ¼ 1þ T1 � ZstðT1 � TSÞ; ð34Þ

is recovered in (33). In this limit, the excess-enthalpy distribution is
solely produced by feed-stream enthalpy differences,

H ¼ �ZðT1 � TSÞ; ð35Þ

which then holds for both frozen and Burke–Schumann regimes.

2.4. Frenet-frame formulation

The advancing edge region of the flame is a zone of finite thick-
ness df. Nevertheless, an edge location can be defined in a precise
manner, for example, as the locus of the inflection points of the
temperature profile, or, for large activation energies, as a disconti-
nuity in a much larger scale, when the edge reaction zone is very
thin compared with the hydrodynamic length scale of the flow,
df/dM� 1. An orthogonal, right-handed Frenet frame {n,s,b} is de-
fined attached to the moving curvilinear edge as depicted in
Fig. 3. The Frenet trihedron is defined by the unit tangent vector
es to the edge resulting from the intersection of the osculating
and rectifying planes, the unit normal vector en to the edge result-
ing from the intersection of the osculating and binormal planes,
and the unit binormal vector eb to the edge resulting from the
intersection of the binormal and rectifying planes. The normal vec-
tor en is defined as positive when pointing towards the burnt side
of the edge, so that the front curvature Ks is then positive for fronts
concave towards the flame sheet to satisfy by construction the first
Frenet–Serret formula des=ds ¼ Ksen [30]. Additionally, the edge is
assumed to have zero torsion, so that the third Frenet–Serret for-
mula yields deb/ds = 0, with eb = ez. Therefore, the equation of the
osculating plane of the trailing flame is simply given by z ¼ zðeZflÞ
in (7), with the edge-flame propagating along lines of stoichiome-
tric mixture.

The edge may mathematically be described by introducing the
scalar G(x,y, t) = G0, with G < G0 and G > G0 for the burned and un-
burned states, respectively. If the surface is smooth and continu-
ous, the previously defined unit vector normal to the edge is
then given by

en ¼ �rG=jrGj: ð36Þ

Every Lagrangian edge element may be considered to move
with a velocity ULF with respect to the laboratory frame, and since
each such element remains on the edge, the relation

dG
dt
¼ @G
@t
þ ULF � rG ¼ 0 ð37Þ

serves to maintain the value of G equal to G0 on the edge at future
times. Although the previously defined nondimensionalization for
lengths, times and velocities are applied here, the symbols also
could be considered to represent dimensional quantities in (37),
and different, appropriately revised nondimensionalizations will
be introduced later. The relationship (37), which lies at the basis
of level-set methods, is to be used here for edge-tracking purposes.
Clearly, only the component of ULF in the en direction is relevant,
whence the tangential component can be chosen arbitrarily, a free-
dom which has been applied in an earlier study of the time-depen-

dent stability of reactive–diffusive spiral waves to derive a
convenient formulation [31].

Daou and Liñán [24] have shown that the ratio of a characteris-
tic flame thickness d0

L ¼ DT=S0
L;st of a laminar planar premixed flame

to the radius of curvature of the premixed wings �dM, namely

C ¼ d0
L

�dM
; ð38Þ

is of paramount importance for characterizing the structure and
propagation dynamics of a triple flame. An edge flame represents
the limit structure of a very slender triple flame propagating in large
mixture–fraction gradients, C ?1. In this formulation,
S0

L;st ¼ ð4�3ADT YO2 ;ste�Ta=Tf Þ1=2 is the burning rate of a planar laminar
premixed flame in stoichiometric proportions when the reaction
rate is given by (4), Tf is a characteristic nondimensional edge tem-
perature, and � is the inverse of a Zel’dovich number given by

� ¼ T2
f =Ta � 1; ð39Þ

which is usually a small parameter in combustion applications be-
cause of the large overall activation energies involved in typical
combustion processes. The propagation parameter C is related to
a reduced Damköhler number Df of the edge based on the temper-
ature of the edge,

Df ¼
dM

d0
L

 !2

¼ 4 Pr�3Dae�Ta=Tf ¼
S0

L;st

PrdMX

 !2

¼ 1
C2�2

; ð40Þ

which represents the ratio of the diffusion time through the mixing
layer to the flame transit time over the front thickness. The reduced
Damköhler number is also related to the Karlovitz number Ka or
dimensionless strain rate, Df = 1/Ka.

For large activation energies, �� 1, and low tangential curva-
tures, the length scale of variations in the normal direction to
the front is much smaller than along its tangential direction.
Thus, the edge-flame temperature and excess enthalpy have a
weak dependence –of O(�) at most– on the s coordinate in the
first approximation, and solutions of (12) and (13) are sought
for which contours n = constant are level curves of temperature
and excess enthalpy. Additionally, if the edge is not deforming
too rapidly, the time derivative in the Frenet frame can be ne-
glected and translation-invariant solutions can be obtained; this
occurs for a slowly meandering and slowly varying edge flame in
which the time scale of variation in the moving frame is much
larger that 1/X. When the radius of curvature of the premixed
wings �dM is used as the unit length of the normal coordinate
n, the planar premixed flame velocity S0

L;st is used as the unit
velocity scale, and the mixture fraction coordinate is stretched
about the diffusion-flame height as eZH ¼ ðeZ � eZflÞ=�, Eqs. (12)–
(17) become

Un þ C�Ks þ vn;relðeZHÞ
h i @H

@n
¼ C

@2H
@n2 þ CevðeZHÞ @

2H

@eZH
2 ; ð41Þ

Un þ C�Ks þ vn;relðeZHÞ
h i @T

@n
¼ C

@2T
@n2 þ CevðeZHÞ

� @2T

@eZH
2 ;þ

bY F
bY O2

4C�3

� exp �1
�
ðTf � TÞ

T=Tf

� �
; ð42Þ

and

bY F ¼ H þ �eZH=eZfl þ 1þ T1 � T; ð43ÞbY O2 ¼ 1� a�eZH=eZfl þ H þ T1 � T; ð44Þ
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subject to

�ðH þ T1 � TSÞ þ
1
B

@H

@eZH

� @T

@eZH

� �
¼ 0; T ¼ TS; ð45Þ

at eZH ¼ ð1� eZflÞ=�, and

H ! 0; T ! T1; ð46Þ

at eZH ¼ �eZfl=�. In this formulation,

Un ¼ ðv?jeZ¼eZ fl
� ULFÞ � en ð47Þ

is the front propagation velocity or burning-rate eigenvalue (in gen-
eral dependent on the tangential curvature of the edge), and

Ks ¼ �r � en ¼
r2Gþ en � rðen � rGÞ

jrGj ð48Þ

is the edge tangential curvature measured in the hydrodynamic
scale 1/dM. Eqs. (41)–(46) also assume small tangential curvatures,
Ks � U0

n=C�, such that the tangential variations of the temperature
and excess enthalpy are 6O(�); for Ks � U0

n=C� the tangential heat
losses become important. Eqs. (41) and (42) also contain the quan-
tity vn;rel ¼ ðv? � v?jeZ¼eZ fl

Þ � en, which represents the relative flow

advection with respect to the edge.
Upstream from the edge, n ? �1, the temperature and excess-

enthalpy profiles correspond to the frozen profiles, (21) and (22).
Downstream from the edge, n ? +1, the temperature and ex-
cess-enthalpy profiles can correspond either to the equilibrium
profiles, (26), (28) and (30), or to the frozen profiles, (21) and
(22), depending on the value of the mass-transfer number B as de-
tailed further below.

3. Influences of heat losses to the burner surface on the
propagation of edge flames

Order-of-magnitude analyses can be performed in Eqs. (41)–
(46) as follows. The propagation velocity U0

n, the value of Un for
zero tangential curvature (Ks ¼ 0), nondimensionalized with S0

L;st ,
is of O(1) as observed from a convective–diffusive balance in the
preheat region, which has a thickness1 of O(C�). In this region, in
(41) and (42) both streamwise convection and diffusion terms are
of O(1/C), whereas the transverse diffusion and reaction terms are
of O(C�2) and O(e�1/�), respectively, the former following from ev
and changes in eZ being of O(1) and the latter from Tf � T being of
O(1). The nondimensional reaction-layer thickness df in the edge re-
gion, where variations in temperature and composition are of O(�), is
obtained by a balance between the streamwise diffusion and reac-
tion terms in (41) and (42), df � C�2. Thus, the streamwise diffusion
and reaction terms in the edge reaction-layer region are of O(1/C�)
in (41) and (42), whereas the streamwise convection transport is
of O(1/C) and the transversal diffusion term is of O(C�), since varia-
tions of temperature of O(�) occur in transversal distances of O(�),
which are of the same order as the radius of curvature � of the tri-
ple-flame wings. The thickness of the trailing diffusion flame dfl,
where variations in temperature and composition are of order
�D�1=3

fl , is obtained by a balance between the transversal diffusion
and reaction terms, dfl � �D�1=3

fl . Finally, if Dfl � Df, the diffusion-
flame Damköhler number can be related to the propagation param-
eter C by using (40). However, both Damköhler numbers can differ
in large amounts, as detailed below. These estimates are used in
what follows to obtain the characteristic dimensions of triple flames
propagating in strained mixing layers in both adiabatic and non-adi-
abatic modes.

Numerical computations were performed to analyze and isolate
the effects of the cold porous wall on the propagation of a nearly
straight edge flames. For that purpose, Eqs. (41)–(46) were inte-
grated numerically for zero tangential curvature ðKs ¼ 0Þ, and
without streamwise hydrodynamic flow effects, vn,rel = 0 (a better
approximation for smaller values of C), subject to (45) on the disk
surface, to the frozen profiles (21)–(24) far upstream from the edge
and to zero excess enthalpy (46) in the oxidizer stream far from the
surface. The effect of the von Kármán flow that was retained is its
influences on the mixture–fraction field, through the scalar dissi-
pation rate (10), which appears in (41) and (42). The boundary con-
ditions far downstream were calculated from the conservation
equations in each iteration. A schematic diagram of the computa-
tional model is shown in Fig. 6.

Daou and Liñán [24] performed similar calculations for a
straight, two-dimensional steady triple flame in a steady, planar,
two-dimensional counterflow mixing layer. That flow configura-
tion is similar to the adiabatic (large-B) limit of the present model,
differing only in the functional form of the scalar dissipation rate ev,
and the similarity of the results helps to validate the numerical
code utilized here. In the present work, an adiabatic calculation,
similar to the calculation of [24], was made using a Zel’dovich
number 1/� = 8 and a stoichiometric mixture fraction Zst = 1/2, with
a single-step chemical reaction of pure Arrhenius type and zero
feed-stream temperature difference T1 = TS. The numerical calcula-
tions for the non-adiabatic case (small-B limit) used Eqs. (41)–(46)
with the von Kármán scalar dissipation rate (10), the same Zel’do-
vich number as in the adiabatic case, and a CH4-air stoichiometric
mixture fraction Zst = 0.056, with zero feed-stream temperature
difference T1 = TS, and variable activation energy and heat release
as in [32] to avoid unrealistic super-adiabatic flame speeds on the
fuel side that are artifacts of hydrocarbon single-step reactions
with constant activation energy [32].

Both cases were calculated using a centered, second-order fi-
nite-differences method with an explicit predictor–corrector
time-relaxation numerical scheme, and with 42,000 mesh points
for the adiabatic case and 72,000 mesh points for the non-adiabatic
case. Numerical convergence was established by obtaining a con-
stant propagation velocity and time-invariant excess enthalpy
and temperature distributions with a tolerance of 10�8. The meth-
od for anchoring the flame within the computational domain and
for obtaining the burning-rate eigenvalue closely followed earlier
work [33]. First, the computation was performed in the laboratory
frame with a localized ignition of the mixture far downstream from
the anchoring point, and the resulting propagation velocity was
observed. Next, the front was fixed in a moving frame by specifying
the temperature at an arbitrary anchoring point (which in the cal-
culations was set to n = 0 and Z = Zst), and the previously observed
velocity was used as a first approximation in an iterative process.
Finally, the convection velocity in the moving frame was varied un-
til convergence of the steady-flow problem was achieved. The re-
sults will be described after the propagation regimes are identified.

1 Characteristic thicknesses in this discussion are normalized with the mixing-layer
thickness dM.

Fig. 6. The computational model problem used to study the influences of the cold
porous wall on the propagation of straight edge flames. The boundary conditions
indicated refer to equations in the main text.
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3.1. Adiabatic triple-flame regimes

For Rej P O(1) the mass-transfer number is B P Oð1Þ according
to (9), the flame is far from the wall and the heat-loss term involv-
ing B in (45) is negligible. The edge, trailing diffusion flame, and
adiabatic flame temperatures are expected to be nearly equal,
Tf � Tfl � T1fl . In these regimes, the Damköhler numbers of the
edge and trailing diffusion flame are of the same order of magni-
tude, Df � Dfl, and the flame is isenthalpic if the feed-stream tem-
peratures are equal.

Fig. 7a–d shows the asymptotic propagation regimes found by
using the scaling analyses outlined above for particular orderings
of C, in the limit of large B and without streamwise hydrodynamic
flow effects. The ordering of the reaction-zone shape (the shaded
region) is different for the edge and for the trailing diffusion flame,
and those orderings, following from the study of Daou and Liñán
[24], depend on the ordering of C. The transverse extent of the
edge reaction zone is of O(�dM) in all regimes, but the ordering of
its longitudinal extent increases with increasing ordering of C, as
does the ordering of the transverse extent of the reaction zone of
the trailing diffusion flame. Advancing edges occur for small en-
ough curvatures of the triple-flame, but there is a unique ordering
of C, Fig. 7c, for which the edge propagation changes from advanc-
ing to retreating as the curvature increases (the value of C in (38)
increases). At larger ordering of C, Fig. 7d, just prior to the com-
plete diffusion-flame extinction, all edges retreat.

Fig. 7e and f shows an example of a triple flame structure for the
adiabatic case detailed above, and the results are quantitatively
similar to those reported earlier [24] for the same value of the
propagation–parameter C. The premixed front and the trailing dif-
fusion flame burn more intensely as the stratification in the mixing
layer is reduced. Extinction of the trailing diffusion flame is not ob-
served in any of the advancing-edge regimes. The dynamics of tri-
ple flames in these regimes has been studied extensively in the
past [4,20–24,34].

3.2. Non-adiabatic triple-flame regimes

For Rej� 1 the mass-transfer number is B� 1 according to (9),
and the heat-loss term in (45) is non-negligible. In this regime, the
flame is non-insenthalpic even in the case of equal feed-stream
temperatures. The temperature of the edge Tf and the trailing dif-
fusion-flame temperature Tfl given by (33) are not necessarily the
same because of the heat losses to the disk surface. Similarly,
Tfl < T1fl in view of (25), (31), (33) and (34). Small differences be-
tween Tf and Tfl lead to the expression

Df

Dfl
� exp �1

�
Tfl � Tf

Tfl=Tf

� �� �
¼ exp

1
�

Hf þ bfl

1� ðHf þ bflÞ=Tf

 !" #
; ð49Þ

where Hf = �bfl + Tf � Tfl is a characteristic excess enthalpy in the
edge region. In particular, if Tf � Tfl = O(�n) with 0 < n < 1, then the
excess enthalpy of the edge is larger than the excess enthalpy in
the diffusion flame Hf > �bfl by amounts of order �n, and
Df =Dfl ¼ Oðe��j1�nj Þ � 1. Similarly, if Tf � Tfl = O(�nln�) with
0 6 n 6 1, then Hf > �bfl as well and Df =Dfl � e��j1�nj=ð1�nÞ � 1. These
estimates show that, in the limit of large activation energy, small
differences between the edge reaction-zone and trailing diffusion-
flame temperatures can lead to triple flames with large or order-
unity front Damköhler numbers and small diffusion-flame Damköh-
ler numbers, which are representative of propagating edges of dif-
fusion flames that are close to extinction or have already
undergone complete extinction. These edges propagate nearly adia-
batically with an excess enthalpy distribution that, in the first
approximation, is uniform in the n-direction and is given by (35);
however phenomenologically different, such highly diffusive

behavior of the excess enthalpy H is somewhat reminiscent of the
‘‘Fife limit” encountered in earlier treatments of reactive–diffusive
patterns, in which the controller variable is found to diffuse much
more rapidly than the propagator variable [35].

Fig. 7g–j shows the asymptotic propagation regimes found by
varying C in (41) and (42) for negligible tangential curvature and
without effects of the normal hydrodynamic flow to the front.
The nearly adiabatic propagation of the edge is justified by the fact
that, (i) for C� 1/�, the transverse heat diffusion term
Cev@2T=@eZH

2
in the preheat region, which is of O(C�2), is much

smaller than the heat streamwisely convected to ignite the frozen
mixture ahead, U0

n@T=@n ¼ Oð1=CÞ, which is balanced with the
streamwise heat diffusion C@2T/@n2 = O(1/C) there, and (ii) for
C� 1/�, the transverse heat diffusion in the edge reaction-layer
region, Cev@2T=@eZH

2
, is of O(C�) and much smaller than the

streamwise diffusion C@2T/@ n2 = O(1/C�), which is balanced with
the chemical reaction O(1/C�) there. Therefore the front propa-
gates in a transverse adiabatic mode in the first approximation
for a range of C, either advancing or very weakly retreating,
C� 1/�.

For propagation regimes in which Df/Dfl� 1, extinction of the
trailing diffusion flame exists when Dfl [ DE and a balance between
the transverse diffusion and strain rate has been established down-
stream of the edge. This qualitative difference from Fig. 7a–d is illus-
trated in Fig. 7g–j. The diffusion-flame extinction occurs at
dimensional distances from the edge of order U0

nd2
M=DT (with U0

n

dimensional), which is obtained by a balance between transverse
diffusion and streamwise convection, and in the present nondimen-
sional notation corresponds to nE � U0

n=C�
2 in scales �dM. Over dis-

tances of order nE, the frozen profiles (21)–(24) are recovered. The
dimensional time for extinction of the diffusion flame is therefore

tE � d2
M=DT ; ð50Þ

which increases with decreasing X.
These aspects of non-adiabatic triple-flame regimes can be ob-

served in Fig. 7k and l, which shows the results of the numerical
integration of (41)–(46) for small B. The values employed for the
computation in the model illustrated in Fig. 6, namely C = 1.4
and Rej = 0.08, are beyond the static quenching point of the diffu-
sion flame, as verified by a separate calculation of the extinction
of the diffusion flame after dropping the streamwise transport
terms in (41) and (42). The computation, which corresponds to a
condition between that of Fig. 7h and i, clearly exhibits a triple-
flame type of structure for the propagating reaction layer, although
some broadening in the preheat region is expected.

It is worth mentioning that diffusion-flame edges behind which
diffusion flames cannot exist have been characterized previously
within the context of non-equidiffusive non-premixed combustion
[36], for which a non-zero excess enthalpy distribution is enhanced
by non-unity Lewis-number effects. It is well known that, since the
adiabatic temperature is a thermodynamic property that is inde-
pendent of the diffusive properties of the mixture, the Lewis num-
ber affects the diffusion-flame temperature but does not influence
the premixed-flame temperature [1]. Therefore, extinction of the
trailing diffusion flame can be induced by increasing the average
Lewis number of the mixture and thereby reducing the diffusion
of reactants into the reaction zone, which decreases the diffu-
sion-flame temperature while maintaining the same front temper-
ature, in this way producing what have been termed ‘‘edges of
flames that do not exist” [36]. The present situation is different
in that the excess enthalpy is responsible for the extinction of
the diffusion flame, this negative excess coming from the heat
losses to the disk surface, which are larger in the presence of the
diffusion flame than in the preheat and edge reaction-layer regions
of the propagating edge flame.
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4. Edge dynamics

When the kinematic relation (47) is substituted into the edge
Eq. (37), the expression

@G
@t
þ v?jeZ¼eZ fl

� rG ¼ UnjrGj; ð51Þ

for the scalar G is obtained, the three-dimensional version of which
has been termed the ‘‘G-equation” in turbulent-combustion litera-
ture [1,2]. In this section, spatial coordinates and velocities are non-
dimensionalzed with dM and dMX, as in the original hydrodynamic
formulation. A linear Markstein-type correction model for the ef-
fects of curvature on the propagation velocity Un [37] is used in this
study to account for heat losses from the curved edge,

Un ¼ U0
n �

Ma
Pr

Ks: ð52Þ

Here Ma, a Markstein number that in general would depend on
the edge-flame structure, is set equal to unity to be consistent with
the previous simplified formulation, which results in an equivalent
Markstein length L ¼ DT=U0

ndMX, of the same order as the preheat
thickness of the edge. The resulting approximation is expected to
be reasonable for equidiffusional flames in analogy to wrinkled
premixed flames [38], but to be limited to small differences

U0
n � Un

	 

=U0

n. Upon substituting (52) into (51), the G-equation re-
duces to

@G
@t
þ v?jeZ¼eZ fl

� rGþKsjrGj
Pr

¼ U0
njrGj: ð53Þ

Expression (53) represents a Hamilton–Jacobi equation with a
parabolic second-order differential operator in the curvature term.
The first term on the left-hand side of (53) represents the local time
variation of the edge shape, the second term accounts for the

(a)

(c)

(e)

(f)

(k)

(l)

(d)

(b) (g)

(i) (j)

(h)

Fig. 7. Asymptotic propagation regimes for small (a and b, g and h) and large (c and d, i and j) mixture–fraction gradients for adiabatic (left column) and non-adiabatic (right
column) triple flames. Shaded areas represent reaction-zone thicknesses. Thicknesses are nondimensionalized with the hydrodynamic scale dM. The propagation velocity is
nondimensionalized with the planar laminar premixed-flame velocity. The curvature value shown is the maximum curvature in hydrodynamic scales above which the
curvature term in (41) and (42) has an order-unity effect on the planar propagation velocity and tangential heat loss terms should be retained. (e) Reaction-rate contours of
the numerical solution for a freely propagating triple flame with C = 1.4 in a counterflow mixing layer as in [24], and (f) associated temperature, reaction-rate and fuel-mass
fraction profiles along the stoichiometric line. (k) Excess-enthalpy color contours ranging from H = �0.85 (dark-red color) to H = 0 (white color), and reaction-rate contours of
the numerical solution for a triple flame with C = 1.4 and Rej = 0.08 propagating near the disk wall, and (l) associated temperature, reaction-rate, excess-enthalpy and fuel-
mass fraction profiles along the stoichiometric line.
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advection of the edge by the underlying swirling flow, the third
term is a diffusive contribution that results from curvature effects
on the propagation velocity, and the first term on the right-hand
side is a source that accounts for the front self-propagating motion
normal to itself because of the heat transfer from the planar edge
to the frozen mixture upstream.

The scalar field G is a assumed to be of the form
G(r,h, t) = F(r, t) � h, with @F/@h = 0, although it can be shown that
the solution for G is independent of this ansatz [2]. The normal vec-
tor to the front is then

en ¼ � r
@F
@r

� �
er � eh

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
@F
@r

� �2

þ 1

s
; ð54Þ

where use has been made of (36). Thus, the tangential curvature
(48) can be expressed as

Ks ¼ r2 @F
@r

� �3

þ 2
@F
@r
þ r

@2F
@r2

" #,
r2 @F

@r

� �2

þ 1

" #3=2

: ð55Þ

In view of (2), by substituting (54) and (55) into (53), the
equation

r
@F
@tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
@F
@r

� �2

þ 1

s �

/0fl

��� ���r2

2
@F
@r
� rVflffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
@F
@r

� �2

þ 1

s

¼ �
r2 @F

@r

� �3

þ 2
@F
@r
þ r

@2F
@r2

Pr r2 @F
@r

� �2

þ 1

" #3=2 þ U0
n ð56Þ

is obtained for the evolution of F(r, t). In this formulation, /0fl

��� ���=2 and
Vfl represent the self-similar gradients in the radial direction of the
radial and azimuth hydrodynamic velocity components, respec-
tively, evaluated at the flame height eZ ¼ eZfl. Similar equations have
been encountered in earlier studies [17,18,39] of spiral-wave prop-
agation in pure reactive–diffusive systems; the results obtained in
this section thereby represent a generalization by including swirling
flow advection, in a form similar to that suggested earlier [40].

4.1. Steadily rotating spirals

For steadily rotating spirals, the front moves in a solid-rotation
mode in the laboratory frame, describable as

ULF ¼ �xreh; ð57Þ
and the functional form

Fðr; tÞ ¼ f ðrÞ þxt; ð58Þ

can be substituted in (56), where x is the angular velocity of the
spiral (measured in the opposite direction from that of rotation of
the disk) nondimensionalized with the disk angular velocity X. An
additional change of variables, u = r(df/dr) = tanc, where c is the
slope angle between the edge and the radial unit vector, is per-
formed here to facilitate calculations.

The experimental findings to be outlined in Section 5 suggest
that the spirals rotate about a hole of finite radius, denoted dimen-
sionally here by rw, which is observed to be much larger than a rep-
resentative radius of curvature L in the vicinity of the tip. This limit
is referred to as the ‘‘large core” limit in what follows in analogy to
earlier works on spirals in reactive–diffusive systems [17]. As will
be seen later in Fig. 15, the spiral flames spin in solid rotation mo-
tion for sufficiently small Rej and Da, and the radius rw decreases
with decreasing Rej and increasing Da. This is also true to some ex-
tent for slightly meandering spirals, for which the tip meanders

about the disk center in an epicycloidal trajectory of an average ra-
dius that could be treated as rw (see Section 5, Fig. 16). However,
the quasi-steady decomposition (58) is not generally valid for
meandering spirals, since the unsteady effects would be important
in that case. The inner region r � rH ¼ OðLÞ represents the region
where effects of tangential reactant and heat diffusion cause a
non-negligible contribution to the front propagation velocity
through the flame tangential curvature.

Spatial dimensions are renormalized in Eq. (56) for convenience
as ~r ¼ r=‘, with the outer scale ‘ defined as

‘ ¼ 2U0
n

X /0fl

��� ��� ; ð59Þ

which corresponds to the radial length at which the radial velocity
induced by the disk, /0fl

��� ���X‘=2, is equal to the dimensional planar
front propagation velocity U0

n. In this revised scale, the curvature
(55) becomes

eKs ¼
1
~r

u
ð1þu2Þ1=2 þ

du=d~r

ð1þu2Þ3=2 ; ð60Þ

which is related to the propagation velocity by the Markstein for-
mula (52), which becomes Un ¼ U0

nð1� keKÞ in these variables. Sim-
ilarly, the transport Eq. (56) is transformed into

k ~r
du0

d~r
þ ð1þu2Þu

� �
¼ ð1þu2Þ ~rð1þu2Þ1=2 � ~r2ðS �uÞ

h i
; ð61Þ

where k is a dimensionless Markstein diffusivity that represents the
ratio of the characteristic radius of curvature to the outer spatial
scale,

k ¼ L

‘
¼

/0fl

��� ���
2 Pr

dMX

U0
n

 !2

� 1; ð62Þ

which is experimentally observed to be a small parameter, and
where

S ¼ 2ðVfl þxÞ= /0fl

��� ��� ð63Þ

is a swirl number that represents the ratio of the effective swirl in
the Frenet frame to the radial velocity component at any radial
distance.

Fig. 8 shows the variations of the swirl number S with the
injection Reynolds number, calculated from (63) by using solutions
of the von Kármán swirling flow with fuel injection, evaluated at the
distance from the porous disk at which Z = Zst = 0.056, the stoichiom-
etric surface. The non-monotonicity of the dependence of S on Rej

for x > 0, is a reflection of the non-monotonicity of the radial
velocity illustrated in Fig. 4a. For small Rej, near Remin

j , as the injec-
tion velocity is decreased the stoichiometric surface approaches
the surface of the disk, and S becomes infinite because the radial
velocity reaches zero when it is at the disk; on the other hand, for

Fig. 8. The swirl number as a function of the injection Reynolds number for various
values of the nondimensional angular velocity of the spiral.
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large Rej the stoichiometric surface moves farther into the air, where
the radial velocity is smaller, as the injection rate is increased.

An expression for the dimensionless core radius, which repre-
sents the lift-off radius at which the tip is anchored by the radial
convection, in the approximation (52) of a linear dependency of
the propagation velocity on curvature, can be obtained by rear-
ranging (61), which gives

~rH ¼ 1� keKH

s

	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þuH2

p
S �uH

; ð64Þ

where the superindex w represents quantities evaluated at the tip.
Eq. (64) shows that ~rH ¼ Oð1Þ for k� 1, S ¼ Oð1Þ and in the linear
framework (52). The ratio ‘=dM ¼ O D1=2

f

	 

� 1 is a large number

for advancing edges according to Fig. 7 and Eq. (40). This indicates
that the typical core size is much larger than the mixing-layer thick-
ness, as observed in the experiments. The Markstein length must be
smaller than the mixing-layer thickness to have the preheat thick-
nesses smaller than dM, so that L� dM � rH

6 ‘, which is achieved
when C� 1/�. In this limit, the spiral tip is anchored in a region of
large radial and azimuth hydrodynamic velocities, which are of
order ‘X, whereas the normal fluid velocity to the disk is much
smaller there, of order dMX.

4.1.1. The outer region
For ~r � 1 and k� 1, the outer solution of (61) is

u ¼
~r2S �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2ð1þ S2Þ � 1

q
~r2 � 1

; ð65Þ

to leading order in k, which represents the equation of a flame edge
propagating with a velocity that is unaffected by curvature.

Substituting (65) into (64) for k = 0, the core radius

~rH

0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S2

p
ð66Þ

is obtained, which corresponds to the radius at which the magni-
tude of the incoming fluid velocity in the Frenet reference frame
equals the planar propagation velocity, U0

n ¼ kv?jeZ¼eZ fl
� ULFk, so that

the edge arrives at the tip normal to the incoming relative flow. For
~r < ~rH

0 , since kv?jeZ¼eZ fl
� ULFk < U0

n, the normal component of the

relative swirling flow ðv?jeZ¼eZ fl
� ULFÞ � en is smaller than the propa-

gation velocity U0
n, so that the spiral must end at ~rH

0 in the first
approximation k = 0.

For ~r !1, the outer solution asymptotes to

u � S �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S2

p
~r

þ S

~r2 þ O
1
~r3

� �
: ð67Þ

It is worthwhile to mention that other reactive–diffusive pat-
terns [10–13] mentioned in Section 1 display Archimedean spiral
fronts far from the core, r � h, whereas in the present analysis Ber-
noulli spirals are obtained in the far field in the first approximation,
~r � eh=S , which coincide with the streamlines of the two-dimen-
sional flow field relative to the flame. The spiral growth in geomet-
ric progression found in the experiments suggests that this is in
fact the case for the spiral flames, which explains the relatively
few spiral turns observed and the rapid growth due to advection
effects, departing from the linear Archimedean growth of the reac-
tive–diffusive spirals found in earlier works [10–13].

For ~r � ~rH

0 the outer solution (65) asymptotes to

u � � 1
S
þ

ffiffiffi
2
p

S2 ð1þ S2Þ5=4 ~r � ~rH

0

� 1=2 þ O ~r � ~rH

0

� 
: ð68Þ

Fig. 9 shows the edges obtained by making use of (65) for different
values of the swirl number. Large values of S are associated with
highly curved spirals, whereas straight edges occur for small S.

According to Fig. 8, by varying Rej for the same value of S, with
S > 0, there is an infinite set of counter-rotating spirals, as well as
an infinite set of co-rotating spirals at much lower values of Rej (less
than its value for x = 0) that share the same edge geometry (since S

is the same) and correspond to advancing fronts, U0
n > 0. In addition,

at fixed Rej, achievable, for instance, by fixing X and the fuel-
injection rate, there are correspondingly infinite sets of spirals with
different shapes, each with a different U0

n > 0.
The second term in the expansion (68) is not differentiable at

the spiral tip, and the curvature (60) becomes infinite there for
S > 0, which renders the solution (65) non-uniform in the limit
k = 0. For S ¼ 0, a straight edge that is stationary in the incoming
fluid reference frame (U0

n ¼ 0) is obtained, and it co-rotates with
the local azimuth flow in the laboratory frame for all Rej with an
angular velocity XVfl and a core radius rw = ‘ to every order in k.
However, single steady co-rotating edges have been observed
experimentally only in multiple-spiral dynamics, a problem that
is not addressed here. Additionally, the tip calculated by the outer
solution (65) is found to be quasi-statically unstable to spatial per-
turbations, as detailed in Section 4.2.

4.1.2. The inner region
The non-uniformity of the outer solution at the tip leads to the

existence of an inner region,~r � ~rH ¼ OðkÞ, where the curvature term
is non-negligible. According to Eq. (66), so long as S is not large,
S � 1=k, the core radius rw is larger than the Markstein length
L; and k=~rH can be regarded as a small parameter as well, which rep-
resents the large-core limit. In this limit, the inner-region equation

du
dn
¼ ð1þu2Þ3=2 � ~rHð1þu2ÞðS �uÞ; ð69Þ

is obtained to leading order in k=~rH, where

n ¼
~r � ~rH

k
; ð70Þ

is the inner variable. For n ? +1, the solution of (69) is asymptotic
to u ¼ �1=S þW, where W is a O(k) correction with respect to the
outer leading-order value that satisfies the nonlinear equation
dW=dn ¼ S~rHW2=2 subject to W ? 0 as n ? +1, which gives

u � � 1
S

1þ 2
~rHn

� �
; n! þ1: ð71Þ

Fig. 9. Spiral edges obtained by using the outer solution (65). The letters u and b
denote the unburnt and burnt sides of the edge respectively, and the arrow
indicates the swirling direction of the hydrodynamic flow.
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For n ? 0, the inner Eq. (69) reduces to du=dn � ð~rH � 1Þu3 sub-
ject to u ? �1 as n ? 0, which gives

u � �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� ~rHÞn

q
; n! 0: ð72Þ

Upon substituting (72) into (60), the curvature value at the tip is
found to be

eKH

s �
1� ~rH

k
; ð73Þ

which represents the maximum curvature of the edge according to
this small-k expansion. Under these conditions, the propagation
velocity at the spiral tip obeys

UH

n

U0
n

� ~rH; ð74Þ

which represents a small fractional change ðUH

n � U0
nÞ=U0

n.
Eq. (74) can be read in dimensional variables as UH

n ¼ X /0fl

��� ���rH=2,
which represents a balance between the edge propagation velocity
(with curvature correction included) and the radial convection at
rw. For k > 0, with k� 1, the edge in the tip region is calculated
to be normal to the radially advected mixture and advances to-
wards it.

Fig. 10 shows examples of spiral tips obtained by the numerical
integration of (61) subject to u! S at ~r !1. All the spirals with
k – 0 arrive perpendicularly to a radial vector, so that the circular
motion of the spiral is locally irrelevant at the core radius. As the
dimensionless Markstein diffusivity k increases, the tip moves clo-
ser to the center of rotation, and it asymptotically passes through
the center for a particular critical value kCðSÞ that needs to be cal-
culated numerically, and for which the edge goes from burning in
an advancing mode, UH

n > 0, to being locally stationary, UH

n ¼ 0. For
k > kC, there is an inner portion of the edge that propagates in a
retreating mode, UH

n < 0, locally similar to a laboratory–stationary
flame isola in a counterflow burner, while the outer portion still
propagates in an advancing mode, as represented in Fig. 10 by
the k = 1.0 spiral. These last behaviors, however, are unlikely to oc-
cur within the range of validity of the linear relationship (52), and
they are not seen in any of the experiments.

The asymptotic expansions (68) and (71) do not match to sec-
ond order. An intermediate region exists, of thickness O(k3/2), that
extends from the tip to the segment of the edge that is parallel to
the radial unit vector, and the edge is purely azimuthally advected
at that point. The analysis of this region provides corrections to the
core radius, tip curvature and tip propagation velocity, as detailed

in Appendix A. Eqs. (66) and (A.8) yield successive approximations
for the spiral rotational velocity x associated with a given core ra-
dius when the definitions (59), (62) and (63) are used.

4.2. Spiral-flame anchoring and quasi-static stability

The rate of variation ! of the relative normal velocity compo-
nent in the normal direction to the edge with respect to the prop-
agation velocity variation may be defined as

� ¼ 1
U0

n

ðen � rÞðv?jeZ¼eZ fl
� ULFÞ

� �
� en �

@Un

@n

� �

¼ � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p ðS �uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p þ k
deKs

dr

" #
: ð75Þ

In the first equality, a general expression in the notation of the
formulation (41)–(46), the normal derivative of Un is a curvature
effect associated with the change in propagation velocity caused
by the change in curvature of the edge that is produced by its infin-
itesimal displacement. The second equality translates the result
into the notation of the present section.

The quantity � serves as a physical indicator of the stability of
the front with respect to quasi-static infinitesimal perturbations in
the normal direction. If � < 0, when the edge position is perturbed
toward the propagation direction, the edge encounters a larger
normal convective flow velocity component that returns it to its
original position, as depicted in Fig. 11a and d. If � = 0 somewhere,
that portion of the edge is in a neutrally stable state. If � > 0, when
the edge position is perturbed toward the propagation direction,
the edge encounters a smaller normal flow velocity component
that cannot balance the propagation velocity; under these condi-
tions the edge is unstable, as depicted in Fig. 11b and c, and it
therefore is blown off from its original position, either towards or
away from the disk center.

Edge-flame instabilities have been encountered in flame holes
and flame disks in counterflow burners [4,42], which correspond
respectively to cases (b) and (c) in Fig. 11. Stationary flame holes
and flame disks in the laboratory frame are found to heal or expand
when perturbed in uniformly strained mixing layers close to the
burner axis, and curvature variations of the edges with respect to
their radial position produce propagation-velocity variations that
contribute to further increase the value of � and enhance the insta-
bility process. Therefore, these structures can only be observed
experimentally in stationary mode when they propagate to dis-
tances larger than the injector radius, where the radial velocity de-
cays with the radial distance [43], as in Fig. 11a and d. However, in
this analysis the curvature term @Un=@n ¼ �k@ eKs=@n in (75) is
found to benefit the stability of the spiral flames, since the curva-
ture acts as a heat loss in the range of interest. In this range, the tip
region behaves as a flame hole with the opposite curvature sign;
the curvature perturbation of the displaced tip contributes to

Fig. 10. Spiral edges obtained by the numerical integration of (61) for S ¼ 1.

(a) (b)

(c) (d)
Fig. 11. Stability schematics of straight edge flames in the presence of normal
convective velocity gradients @v/@n.
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increase the propagation velocity in Fig. 11b for perturbations to-
wards the burnt side, and to decrease the propagation velocity
for perturbations towards the unburnt side.

Fig. 12a shows the calculated dependence of � on ~r for k = 0. For
~r > 1=S with S > 0, the edge is stable as in Fig. 11a, and for
~rH < ~r < 1=S, the inner portion of the edge and the spiral tip are
unstable as in Fig. 11b. The point ~r ¼ 1=S is neutrally stable since
the normal variations are in the azimuth direction there, and the
convective velocity modulus remains invariant in that direction.
Edges with S ¼ 0, which correspond to stationary fronts in the
incoming fluid frame, are unstable for all ~r. Advancing edges prop-
agating at a constant velocity thus are stable at large radii, become
neutrally stable when the edge becomes tangent to the radial
direction, and are unstable at smaller radii.

Fig. 12b shows the calculated variations of � with ~r for S ¼ 1
and 0 6 k 6 1. Consideration of fixed k and variable S produces
similar dynamics. Nondimensional Markstein diffusivities in the
range 0 < k < kC stabilize the tip region, compensating the decrease
in the radial convection with decreasing radius by increasing the
tip curvature, thus decreasing the tip propagation velocity. How-
ever, sufficiently large values of k or S produce a tip that propa-
gates in a retreating mode, as shown in Fig. 10 for the case
k = 1.0, which leads to an unstable tip as in Fig. 11c. As shown in
the following section, spiral meandering is associated with large
values of S that may enhance such loss of tip stabilization. In this
linear quasi-static analysis, there is no combination of values of S
and k for which � < 0 for all ~r, and there is always a small part of
the edge that is unstable, which is close to the tip in hydrodynamic
scales but far from it in scales of order L.

Since the spirals observed in the experiments are stable, the
above reasoning indicates that, according to this model, the curva-
ture found in experiments must be large enough to produce depar-
tures from the linear Markstein formula (52) for the propagation
velocity, such that the stabilizing term @Un/@n may actually be lar-
ger than �k@ eKs=@n. It seems likely that, in analogy with the effects
of heat loss on laminar burning velocities [44,1], there is a critical

finite value of the curvature at which the edge flame is extin-
guished, as illustrated schematically in Fig. 13. The non-linear ef-
fects beyond the range of the Markstein expansion may then
stabilize the spiral up until the maximum curvature is reached,
at which point the edge flame is extinguished. This condition
would correspond to the tip of the spiral, where its curvature is
maximum, and its location is at the minimum radius for spirals
that rotate steadily.

5. Experiments

Experiments were conducted in the spinning, water-cooled, sin-
tered, bronze porous-disk burner, depicted in Fig. 3 and described
at the beginning of Section 2. The experimental arrangement is
shown in Fig. 14. The burner assembly was mounted on a water-
cooled copper back-plate and a cup-shaped housing chamber
which also serves as the plenum for the injected fuel gas. The fuel
gas and the cooling water are supplied through concentric tubes
located along the axis of this assembly. The concentric supply
tubes are connected to external feed tubes through o-ring seals
so that the entire burner assembly can be rotated around its axis
with a stepper motor.

During an experiment, the burner is placed horizontally, with
the exposed porous surface facing downwards to suppress buoyant
instabilities, and it is then spun at a desired rotational speed with
the cooling water supply turned on. Fuel gas is fed to the burner
from a compressed-gas bottle through a programmable mass-flow
controller at a specified flow rate and ignited by a propane torch.
The entire experimental set up is enclosed in a large plexiglass
box to prevent draft. All the flames observed in this study were
blue and clearly visible to the naked eye. Flame images were cap-
tured using a 45� mirror with a high-speed intensified-array video
camera at 250 frames per second. Video images were digitalized by
use of a frame grabber and then analyzed frame by frame using im-
age-analysis routines. Although several dynamic flame patterns
were observed in the experiments, as indicated in Fig. 15, results
are presented only for the spiral flames. Table 1 summarizes the
findings obtained from six different experimental data sets.

Fig. 15 shows the experimental map in the spiral-flame region
[5,7] obtained by varying the disk rotational speed and the fuel
flow rate, dimensionally in part (a) and nondimensionalized in part
(b), in terms of the Reynolds number of injection (3) and the re-
duced Damköhler number (40). The values for Rej and D were
calculated by using S0

L;st ¼ 40 cm/s as a flame speed reference for
CH4–air mixtures and the following physical properties that
correspond to air at normal conditions: q = 1.19 kg/m3 for the den-
sity, m = 1.57 � 10�5 m2/s for the kinematic viscosity, DT = 2.21 �
10�5 m2/s for the thermal diffusivity, and Pr = 0.71 for the Prandtl
number; the same physical properties are used throughout this
section. A line of maximum rotational speed of the bulk of the spir-
al is seen in Fig. 15 to separate the meandering and solid-rotation
regimes. The rotational speed decays on of both sides of that line.

In particular, in the meandering regime the tip undergoes an
epicycloidal motion that is composed at least of two orbital mo-
tions and therefore two rotational frequencies. Such motion shares
common characteristics with the meandering of reactive–diffusive
spirals found in earlier works [17,18,39]; it is not well understood
but believed to be influenced by system hysteresis. In the present
experiments, tip meandering is associated with large swirl num-
bers, small radial advection and large spiral rotational velocities,
as well as with increasing flame stand-off distances and decreasing
strain rates and heat losses, which eventually produce transition
from spiral flames to straight propagating edges and flame holes,
as indicated in Fig. 15. The analysis of the meandering motion is
beyond the scope of the present study.

(a) (b)
Fig. 12. (a) Quasi-static stability of spiral edges for k = 0. (b) Quasi-static stability of
spiral edges for S ¼ 1.

Fig. 13. Sketch of the edge propagation velocity as a function of the edge tangential
curvature.
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In the solid-rotation regime, the entire spiral structure under-
goes a nearly circular motion of frequency x and is anchored at
a point of minimum radius rw where the radial advection balances
the normal edge propagation, as detailed in Section 4. In this re-
gime, the rotational velocity decreases and the core radius in-
creases approximately linearly with increasing disk velocities for
a fixed fuel flow rate. As observed in Fig. 15, too large disk veloci-
ties or small fuel flow rates produce transition from this regime to
the multiple-spiral regime, in which a number of spirals co-rotate
with the flow. Six tests that best represent the steady-rotation re-
gime were selected for further detailed analysis to compare with
the present theory.

Fig. 16 shows the tip trajectories obtained from these six data
sets, details of which are given in Table 1. Slight meandering ap-
pears in cases 3 and 6, where the disk velocity is minimum within
the range, and the spiral velocity is near its maximum. While not
exactly circular, most tip trajectories are close to that, and none ex-
hibit clear petals for the cases selected.

Planar propagation velocities, calculated using expression (47)
far from the disk center (at a distance about 3/4 of the disk radius,
sufficiently large but away from disk-edge effects), are found to in-
crease with increasing C, which is inversely proportional to the
Damköhler number. These velocities are seen to be comparable
with or somewhat less than the laminar burning velocity of a
methane-air planar stoichiometric flame, S0

L;st � 40 cm/s, and as
may be expected, they are smaller at smaller fuel injection rates.
These values are used in (59) to calculate ‘. The propagation
parameter C is found to decrease with increasing spiral rotational
velocities, since the mixing layer becomes thinner and the diffu-
sion time through its thickness smaller. The values for C obtained
in Table 1 represent edge flames propagating somewhere between

Table 1
Experimental values obtained for different combinations of the disk speed X (rad/s) and the fuel flow rate _m00 (g/sm2). The spiral rotational speed x (rad/s) and the core radius rw

(cm) were obtained by time averaging. The planar propagation velocity U0
n (cm/s) was obtained by time averaging (47) far from the disk center, employing /0fl

��� ��� and Vfl of (2) from
the von Kármán solution. The mixing-layer thickness dM (mm), outer scale ‘(cm), Markstein length L (mm), Markstein diffusivity k (–), swirl number S (–), propagation parameter
C (–), azimuth velocity gradient Vfl (–), radial velocity gradient /0fl

��� ��� (–) and injection Reynolds number Rej (–) were calculated by using the definitions given in the main text.

Case X _m00 x dM rw
U0

n
L ‘ Rej /0fl

��� ��� Vfl C S k k=~rH

1 32.7 1.93 7.5 0.69 1.8 38.8 0.057 10.5 0.071 0.226 0.181 0.65 3.6 0.00054 0.0031
2 31.4 1.93 11.3 0.71 1.5 39.1 0.056 11.2 0.073 0.222 0.176 0.63 4.8 0.00051 0.0038
3 30.2 1.93 13.2 0.72 1.3 40.2 0.055 12.3 0.074 0.217 0.170 0.61 5.6 0.00045 0.0043
4 25.1 1.61 8.2 0.79 1.6 29.4 0.075 9.8 0.068 0.239 0.194 0.56 4.3 0.00076 0.0046
5 23.9 1.61 10.7 0.81 1.4 29.5 0.075 10.6 0.070 0.233 0.183 0.55 5.4 0.00071 0.0053
6 22.6 1.61 11.9 0.83 1.5 29.9 0.074 11.7 0.072 0.226 0.182 0.53 6.3 0.00063 0.0048

Fig. 16. Tip trajectories (solid line) and average core radius (dashed line)
corresponding to the series of experiments (1–6) in Table 1.

(a)

(b)
Fig. 15. (a) Dimensional and (b) nondimensional experimental pattern map focused
on the spiral-flame region. The dashed line in (b) represents the line of maximum
spiral rotational speed. The diamond-shaped points 1–6 correspond, respectively, to
the experimental data sets 1–6 in Table 1.

Fig. 14. Schematic illustration of the experimental apparatus.
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the regimes (h) and (i) in Fig. 7, with a propagation velocity close to
its adiabatic counterpart, supporting the results of Section 3.

Fig. 17 shows the resulting experimental nondimensional
mean core radius ~rH as a function of the swirl number. The the-
oretical results are also plotted in this figure for purposes of

comparison. Farthest from the data is the leading-order result
(66). The second-order result (A.8), which is almost identical to
the exact value (64), is somewhat closer to the data. The theoret-
ical and experimental dependencies on S are noticeably similar,
and the fact that the theoretical values lie above the observation
is consistent with the nonlinearity of the curve in Fig. 13, which
becomes important as the extinction condition at the tip is
approached, since the theoretical calculations do not include
this effect.

Fig. 18 shows a comparison between the analytical front shapes,
obtained by integrating (61) and the experimental results from Ta-
ble 1. A good agreement is found for the overall trend, although the
profiles seem to be somewhat inaccurate in the tip region, as ex-
pected. It is worth mentioning that, although the Markstein diffu-
sivity and its ratio to the dimensionless core radius are found
experimentally to be small, which support the theory proposed
in Section 4, the typical propagation velocities in the neighborhood
of the anchoring point are of order rH /0fl

��� ���X=2, which, after numer-
ical evaluation, represent an order-unity reduction with respect to
the planar propagation velocity U0

n. This further indicates that
keKs ¼ Oð1Þ, and the Markstein linear correction (52) becomes inna-
curate for these large curvatures. The tip curvature eKH

s , the tangen-
tial curvature for extinction of an edge flame, yet needs to be
calculated numerically, although perhaps it could be approximated
by the curvature for extinction of a positively curved two-dimen-
sional premixed front [1].

Fig. 17. Experimental and analytical values of the dimensionless core radius
corresponding to the series of experiments (1–6) in Table 1.

Fig. 18. Comparison between the experimental images, corresponding to the data sets (1–6) from Table 1, and the analytical front shapes (green solid line) calculated by
integrating (61), together with the Frenet-frame (white dashed line) and laboratory-frame (white solid line) streamlines passing through the tip. The mean core radius is
represented by the dot-dashed circle.

J. Urzay et al. / Combustion and Flame 158 (2011) 255–272 269



The streamlines passing through the tip, both in the Frenet,
~r ¼ ~rH exp½ðh� hHÞ=S	, and in the laboratory reference frames,
~r ¼ ~rH exp½ðh� hHÞ=ðS � 2x=X /0fl

��� ���Þ	, are also plotted in Fig. 18.
The Frenet-frame streamline passing through the tip clearly fails
to describe the tail of the spiral, and since all the laboratory-frame
streamlines have larger slopes than the former, the fluid particles
in the stoichiometric coordinate must undergo extinction after
being ignited. It may be considered that all fluid elements are re-
quired to have the same time for extinction, which is determined
by heat losses to the disk as outlined in Section 3. With this idea,
cases 1 and 3 of Table 1 were used to obtain the tail shape, as
shown in Fig. 19. An array of fluid particles at the front at t = 0

was tracked along the laboratory-frame streamlines on the stoichi-
ometric coordinate, and all particles extinguished after a time t = tE,
which increases with the Damköhler number, giving a good
approximation of the tail shape; this calculation is justified as long
as the entrainment remains small compared with the two planar
velocity components, which appears to be a reasonable approxi-
mation along the flame radial positions encountered in this study.
The extinction times are on the order of 50 ms.

6. Conclusions

The propagation dynamics of spiral edge flames in von Kármán
swirling flows was analyzed in this study. A formulation of the
conservation equations was presented in the thermodiffusive
and equidiffusive limits and within the framework of large overall
activation energies. The formulation was written in terms of two
main nondimensional parameters: the injection Reynolds number
Rej and the Damköhler number D; these two numbers contained
nondimensional combinations of the two experimentally con-
trolled variables, the disk rotational velocity and the fuel flow
rate, in addition to the chemical parameters. The resulting equa-
tions represented a non-adiabatic system with an induced non-
zero excess enthalpy distribution, in which heat losses occurred
because of the nearby cold disk surface. The Burke–Schumann
and frozen regimes were summarized, and the diffusion-flame
temperature was found to depend on the injection rate. The
uniform diffusion flame is extinguished when D < DE, with DE a
function of Rej.

A formulation in the Frenet frame, written in terms of the
curvilinear intrinsic coordinates, was introduced to analyze
propagating fronts that connect the burning and frozen regions.
Asymptotic propagation regimes were obtained by scaling analy-
ses of the conservation equations, and a two-dimensional
numerical simulation of the conservation equations of a straight
edge flame near a cold porous wall, embedded in a modelled von
Kármán boundary layer, showed that there exist regimes, with
Damköhler numbers below the static quenching Damköhler
number DE of the diffusion flame, for which a propagating front
burns vigorously near the wall but the trailing diffusion flame is
extinguished because of heat losses to the disk. That this behav-
ior is possible is justified by noticing that the transverse heat
diffusion in the edge reaction-layer and preheat regions is negli-
gible compared to the streamwise balances of reaction–diffusion
and convective–diffusion, respectively, in each region. As a result,
the temperature along the stoichiometric line increases at the
edge and gradually decays through the transition zone until
the balance of strain and reaction is reached in the diffusion-
flame region, the point at which the reaction shuts off and the
trailing flame is extinguished. The characteristic distance for
extinction of the diffusion flame was found to be proportional
to the propagation velocity and to increase with the Damköhler
number of the edge. This defines a characteristic time tE for
extinction of the diffusion flame, which increases with increasing
flow times.

The steady dynamics of the spiral-edge propagation in the von
Kármán hydrodynamic swirling field was analyzed by integrating
the G-equation of the edge transport and using a Markstein-like
expression for the tangential curvature correction of the propaga-
tion velocity. The dimensionless Markstein diffusivity k, defined
in (62) for this flow, becomes a singular perturbation parameter
in the G-equation. The asymptotic structure of the edge was ob-
tained by using asymptotic matching for k� 1 in the large core
limit, in which the radial distance of the tip from the center is
small compared with the Markstein length, and solutions were
found for spiral fronts that depended on this Markstein

(a)

(b)
Fig. 19. Comparison between the experimental images at t = tE and the analytical
tail shapes (white solid line) calculated by the theory of equal times of extinction,
together with the laboratory-frame streamlines (white dashed line) emerging from
the spiral front at t = 0 along the stoichiometric plane. The points denote the fluid
particles located on the front at t = 0. Figure (a) corresponds to case 1 of Table 1,
which gives a tE � 40 ms, and figure (b) corresponds to case 3 of Table 1, which
gives a tE � 68 ms.
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diffusivity and on the magnitude of the swirl number S, which
measures the ratio of the net swirl in the Frenet frame to the
radial advection. Large values of S corresponded to highly curved
spirals. Expressions were derived for the core radius as a function
of S and k, which in turn determines a relationship between the
spiral rotational velocity and the core radius. In the absence of
the decrease in propagation velocity produced by the Markstein
diffusivity, the spirals were shown to become unstable at radii
less than that at which the edge is tangent to the radial advec-
tion, but the increasing curvature stabilizes the edge propagation.
This stabilization persists until the curvature reaches a critical
maximum value at which edge-flame extinction occurs. This
critical curvature for extinction determines the core radius and
thereby the spiral rotational velocity. At the core radius, the edge
is perpendicular to the radial direction, and its propagation veloc-
ity equals the radial gas velocity at the stoichiometric surface for
steadily rotating spirals in solid rotation.

Experiments performed in the porous-disk burner were ana-
lyzed and theoretical predictions were tested. The spiral tip can
undergo either a solid rotation motion for sufficiently large disk
rotational velocities and small fuel flow rates, or epicycloidal mo-
tions for smaller disk rotational velocities and larger fuel flow
rates. In the studied data range, the angular velocity of the spiral
was found to decrease linearly with the disk rotational velocity
for a given fuel flow rate. Meandering spirals are associated with
rapidly rotating flames, large swirl numbers, moderately large
injection Reynolds numbers, large Damköhler numbers, and
decreasing heat losses and strain rates, which promote transition
to the regimes of straight propagating edges and flame holes. Solid
rotation is associated with the opposite behavior, which promotes
transition to the multiple-spiral regime. Core radii were measured
and agreed reasonably with the theoretical model, which predicts a
reduction of the core radius with increasing values of S. Spiral
shapes obtained by the analytical model are in reasonable agree-
ment with the experimental images.

These results show that non-unity Lewis numbers are not nec-
essary for having spiral-shaped edges and cooling tails in these
experiments, contrary to suggestions made in earlier works
[40,45,46].

The analyses performed in this study may be relevant for
characterizing the dynamics of tangentially curved sheets of triple
flames and their transport in fluid flows near non-adiabatic walls.
Although much research has been performed on triple flame
dynamics, there appear to be a large number of unknowns
regarding the linear and non-linear effects of the tangential cur-
vature and strain on the velocity of propagation of triple flames
and their extinction. Finally, the meandering motion of the spiral
flames reported in this study seems to emerge from an instability
at the anchoring point of the tip, which may be worth investigat-
ing for having potential applications on the understanding of
triple-flame anchoring processes in turbulent flows and on flame
flickering. Meandering is the next theoretical problem to be
addressed for spiral edges of diffusion flames in von Kármán
swirling flows.
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Appendix A. The intermediate region

To bridge the region in which the expansions (68) and (71) do
not match, the intermediate asymptotic expansion

u ¼ � 1
S
þ k1=3ð1þ S2Þ2

S3 wþ � � � ; ðA:1Þ

may be defined, with the intermediate variable

r ¼
~r � ~rH

k2=3 : ðA:2Þ

Substituting (A.1) and (A.2) into (61) and retaining terms of
O(k2/3), the equation

dw
dr
� qw2 þ rþ p ¼ 0; ðA:3Þ

is obtained in the distinguished limit ~rH � ~rH

0 ¼ Oðk2=3Þ. In this for-
mulation, p and q are two order-unity constants given by

p ¼
~rH � ~rH

0

k2=3 ; ðA:4Þ

and

q ¼ ð1þ S2Þ3=2

2S2 : ðA:5Þ

Eq. (A.3) is a Ricatti equation, which can be cast into an Airy
equation by changing the independent variable to E = q1/3(r + p)
and defining M such that w = �(1/q2/3M)dM/dE [41]. In these vari-
ables, (A.3) becomes

d2M

dE2 ¼ ME; ðA:6Þ

the solution to which is a linear combination of Airy functions Ai(E)
and Bi(E). Matching of (A.1) with (68) requires M to be bounded for
E > 0, so that M = CAi(E), where C is an integration constant.
Therefore

w ¼ �1
q

d ln AiðrÞ
dr

ðA:7Þ

represents the intermediate solution.
For E ? +1, M � Cexp(�2E3/2/3)/(2E1/4p1/2) and w � (r/q)1/2;

the substitution of this upper limit for w into (A.1) exactly repro-
duces the second term of the expansion (68) of u in the upper
overlapping region. For n large, the intermediate expansion of
(71) reads u � �1=S � ð1þ S2Þ2=S3qr. Since Ai(E) � E � a1 near
the first zero a1 = �2.3381 of Ai on the negative real axis, then
w � �q�2/3[q1/3(r + p) � a1]�1 for E � a1, or equivalently, for
r ? 0. Therefore, asymptotic matching between the intermediate
solution (A.1) and the inner solution (71) in the lower overlapping
region requires that pq1/3 = a1. This matching relation results in the
second-order expansion

~rH

1 ¼ ~rH

0 1þ 21=3a1S
2=3k2=3

	 

; ðA:8Þ

which shows that the tip radius undergoes reductions of order k2/3

with respect to its leading-order value when small curvature effects
of O(k) on the edge propagation are considered.

Upon substituting the relation (A.8) into the Eqs. (73) and (74)
of the inner region, the expansions

eKH

s �
1� ~rH

0

k
� 21=3c1S

2=3~rH

0

k1=3 ; ðA:9Þ
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and

UH

n

U0
n

� ~rH

0 1þ 21=3c1S
2=3k2=3

	 

ðA:10Þ

are obtained.
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