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a b s t r a c t

In this paper, modifications are proposed to a phenomenological plasticity model to
account for the evolution of recrystallization and the resultant softening behavior. The
novel model includes internal state variables representing dislocation density and the
spacing between geometrically necessary subgrain boundaries. In order to capture both
single and multiple peak recrystallization, the model tracks the evolution of recrystallized
volume fractions for multiple cycles of recrystallization, and has a set of state variables for
each volume fraction. A rule of mixtures is used to determine the average stress. The model
is capable of capturing static recrystallization as well as both single and multiple peak
dynamic recrystallization.

Material parameters are fit to data from monotonic compression tests on copper for a
wide range of temperatures and strain rates. The model is then validated by using the same
parameter set to predict multiple-stage response in which samples are compressed, held at
temperature for various lengths of time, and then compressed further. The model predicts
both the static recrystallization that occurs between loading stages as well as the dynamic
recrystallization occurring during the second loading stage.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

During high temperature manufacturing processes, metals undergo microstructural changes that can greatly affect mate-
rial properties and residual stresses. Some of the physical mechanisms that influence the strength of a material are strain
hardening, recovery, recrystallization, and grain growth (Kocks et al., 1975; Doherty et al., 1997). If the deformation condi-
tions such as temperature and strain rate are not controlled properly during forging, welding, rolling, or other processes, the
final part may have inadequate strength or residual stresses that could be detrimental to the life of the part (Chiesa et al.,
2004). In order to be able to optimize manufacturing processes using computational capabilities, it is necessary to have a
physically-based constitutive model that captures the dominant strengthening and softening mechanisms. Such a model
with predictive capabilities can be used in an optimization scheme to reduce the number of design iterations required to
produce a part that meets all strength and microstructural requirements.

Recrystallization is a complex, inhomogeneous process in which nucleation and growth of new strain-free grains replace
the worked microstructure of a strained material (Haessner, 1978; Humphreys and Hatherly, 1995). Recrystallization is due
to the motion of grain and subgrain boundaries. As the boundaries move, they sweep away the dislocation structure, leaving
a strain-free material with a very low dislocation density. The nucleation of a new recrystallized grain is believed to be due to
the growth of an existing deformation-induced subgrain (Holm et al., 2003). At elevated temperatures, a subgrain with a
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lower level of stored energy will preferentially expand at the expense of neighboring subgrains. The driving force for recrys-
tallization is the difference in energy between the deformed and recrystallized state (Doherty, 2005). If the expanding sub-
grain reaches a critical size, it becomes a stable recrystallized grain.

Numerous theories exist in the literature for modeling dynamic recrystallization (Sandstrom and Lagneborg, 1975; Busso,
1998; Manonukul and Dunne, 1999; Fan and Yang, 2011). Other models have been presented for static recrystallization, usu-
ally based on the work of Johnson and Mehl (1939), Avrami (1939), and Kolmogorov (1937). There are very few models that
are capable of modeling both static and dynamic recrystallization (Pietrzyk, 2002; Roucoules et al., 2003; Svyetlichnyy,
2007), and the ones that do exist have recrystallization kinetics or critical recrystallization criteria that depend explicitly
on strain or strain rate, thus not being sufficiently general to be able to model transient loading conditions in which the
strain rate is not constant.

Among the points of contention in recrystallization literature is what criteria should be used for determining the onset of
recrystallization. The two most widely-used methods make use of a critical strain or a critical value of stored energy for ini-
tiating recrystallization. Total strain is not a state variable, and thus should not be used to determine the onset of recrystal-
lization. Bailey and Hirsch (1962) used a model in which recrystallization began when a critical value of dislocation density
was reached. This is equivalent to a critical stored energy if the stored energy is assumed to be a function of dislocation den-
sity only. Others use a critical size for a stable nucleus to determine the onset of recrystallization (Sandstrom and Lagneborg,
1975; Roberts and Ahlblom, 1978). When the subgrain dimension reaches the critical size, recrystallization begins. Wray
(1975) based the onset of recrystallization on a critical stored energy. In the current work, no critical criterion was utilized
to initiate recrystallization. Rather, the kinetics of recrystallization are modeled based on the mobility of grain and subgrain
boundaries under the driving force provided by the stored energy in the dislocation structure. In this manner, it can be used
to model multiple-stage loading conditions in which the temperature and strain rate change over the history of the material.
The internal state variable theory presented here is capable of modeling both static as well as dynamic recrystallization.

The paper is organized as follows: first, ignoring the effects of recrystallization, we will describe the kinematics and ther-
modynamics associated with the model. Then the constitutive model will be described without including the effects of
recrystallization. Next, the form of the model accounting for recrystallization will be motivated physically. Finally, a compar-
ison between model and experimental results, including static and dynamic recrystallization, will be provided.

2. Kinematics

Following the kinematics introduced by Kröner (1960) and further developed by others (Lee and Liu, 1967; Fox, 1968; Lee,
1969), we assume the existence of a purely elastic region that encloses the origin in stress space, and define a multiplicative
decomposition of the deformation gradient into elastic and plastic parts.1 Similar to Bammann et al. (1996), we further
decompose the deformation gradient to explicitly include the effects of thermal expansion:

F ¼ FeFpFh; ð1Þ

where Fe and Fp represent the elastic and plastic portions of the deformation, and Fh represents the portion due to thermal
expansion. Locally, the material can theoretically be unloaded from the current configuration, B, through Fe�1 to a stress-free
intermediate configuration, B, which as noted in Casey and Naghdi (1992), is only uniquely defined up to a rotation due to
invariance requirements.

We assume isotropic thermal expansion, given by

Fh ¼ FhI � ð1þ bðh� hoÞÞI; ð2Þ

where b is the linear coefficient of thermal expansion and ho is the temperature in the reference configuration, B. The veloc-
ity gradient in the current configuration, B, is defined as

L ¼ _FF�1 ¼ _FeFe�1 þ Fe _FpFp�1Fe�1 þ
_Fh

Fh
I ¼ Le þ Lp þ Lh; ð3Þ

where Le ¼ _FeFe�1; Lp ¼ Fe _FpFp�1Fe�1 ¼ FeLpFe�1, and Lh ¼ _Fh
Fh

I. We define Lp ¼ _FpFp�1 as the plastic velocity gradient in the
intermediate configuration, and decompose it into symmetric and skew-symmetric parts,

Dp ¼ sym Lp
� �

and Wp ¼ skew Lp
� �

; ð4Þ

such that2

Lp ¼ Dp þWp: ð5Þ

The elastic strain in the intermediate configuration is written as

1 See Casey and Naghdi (1992) for a kinematical treatment of the case where the yield surface in stress space does not enclose the origin.
2 Note that the rate of deformation tensors D;Dp;De

� �
and spin tensors W ;Wp;We

� �
in the intermediate configuration are not the same as would be obtained

by pulling back their counterparts from the current configuration. For example, it can be shown that FeT DpFe ¼ Dp þ LpT Ee þ EeLp (see Marin et al. (2006)).
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Ee ¼ 1
2
ðFeT Fe � IÞ ¼ 1

2
Ce � I
� �

; ð6Þ

where Ce ¼ FeT Fe. The pullbacks of L and Le to the intermediate configuration are given by

L ¼ Fe�1LFe and Le ¼ Fe�1 _Fe: ð7Þ

3. Thermodynamics

Following the thermodynamics developed in Coleman and Gurtin (1967), internal state variables are introduced in this
section to represent the effects of statistically stored and geometrically necessary dislocations. The Clausius–Duhem inequal-
ity in the intermediate configuration takes the form (see Regueiro et al., 2002; Bammann, 2001; Marin et al., 2006):

��q _�w� �q�g _hþ CeS
� �

� L� 1
h

Q � �rh P 0: ð8Þ

where �q is the material density, �w is the Helmholtz free energy, �g is the entropy, Q is the heat flux, S is the second

Piola–Kirchhoff stress pushed forward to the intermediate configuration S ¼ FpSFpT
� �

;CeS is the Mandel stress (see Mandel

et al., 1974), and �rh is the gradient of temperature with respect to the intermediate configuration. We assume that the free
energy is a function of the elastic strain due to external loads, Ee, the lattice strain due to statistically stored dislocations, �essds,
the lattice curvature due to geometrically necessary dislocations,3 �agnds, and the temperature:

�w ¼ �w Ee; �essds; �agnds; h
� �

: ð9Þ

Using the chain rule and noting that CeS
� �

� L ¼ S � CeLe
� �

þ CeS
� �

� Lp and CeLe ¼ FeT _Fe ¼ _Ee, Eq. (8) can then be rewritten as

��q
@�w

@Ee
þ S

� �
� _Ee � �q

@�w
@h
þ �g

� �
_h� �q

@�w
@�essds

_�essds � �q
@�w

@�agnds

_�agnds þ CeS
� �

� Lp � 1
h

Q � �rh P 0: ð10Þ

Since Eq. (10) must hold for arbitrary elastic strain rates and temperature rates, then by the standard argument (see Coleman
and Noll (1963)), it follows that

S ¼ �q
@�w

@Ee
and �g ¼ � @

�w
@h

: ð11Þ

We then can define stress-like internal variables conjugate to �essds and �agnbs as

�j ¼ �q
@�w
@�essds

and �f ¼ �q
@�w

@�agnds
: ð12Þ

Eq. (10) then reduces to

CeS
� �

� Lp � �j _�essds � �f _�egnds �
1
h

Q � �rh P 0: ð13Þ

4. Constitutive model

First we will provide the constitutive relations for the free energy, the evolution of the state variables, and the flow rule
for plastic deformation, without accounting for recrystallization. The model is a variation of the one proposed in Bammann
et al. (1995), to which various modifications have been made over the years, including the nonlocal crystal plasticity model
of Bammann (2001) and its phenomenological polycrystalline version (Regueiro et al., 2002).

4.1. Helmholtz free energy

The constitutive equations will be presented in the intermediate configuration. Metals in general experience small elastic
strains, so we assume the following form for the free energy:

�q�w ¼ 1
2

Ee � kðhÞI � I þ 2lðhÞI4th
� �

Ee þ 1
2

c�essds
lðhÞ�e2

ssds þ
1
2

c�agnds
lðhÞ�a2

gnds þ �gðhÞ; ð14Þ

where k(h) and l(h) are Lamés constants, l(h) is the shear modulus, c�essds
and c�assds

are material constants, and �gðhÞ is the inter-
nal thermal energy. Eqs. (11) and (12) then become

S ¼ kðhÞtrðEeÞI þ 2lðhÞEe;

�j ¼ c�essds
lðhÞ�essds; and �f ¼ c�assds

lðhÞ�agnds:
ð15Þ

3 This is a scalar version of the tensorial curvature introduced in Bammann (2001) and Regueiro et al. (2002).
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4.2. Plastic velocity gradient

The plastic rate of deformation tensor is related to the equivalent plastic strain rate by

Dp ¼ Dp
�� ��np; Dp

�� �� ¼
ffiffiffi
3
2

r
_�ep; and np ¼ devS

devS
�� �� : ð16Þ

where devS is the deviatoric part of the stress, S.4 From Frost and Ashby (1982), Regueiro et al. (2002), and Marin et al.
(2006), we define the evolution of plastic flow as

_�ep ¼ f ðhÞ sinh

ffiffi
3
2

q
devS
�� ��

�jþ YðhÞ � 1

* +2
4

3
5

0
@

1
A

nðhÞ

; ð17Þ

where f(h), Y(h), and n(h) are scalar functions of temperature. The yield parameter f(h) has an Arrhenius-type temperature

dependence, f ðhÞ ¼ c1e�
c2
h , and n(h) and Y(h) are defined by nðhÞ ¼ c3 þ c4

h and Y(h) = c5l(h).
In Prantil et al. (1993), the plastic spin, Wp, is defined in terms of a structure tensor, which is used to describe texture-

induced anisotropy. Here, we do not account for texture effects, so we assume Wp ¼ 0.

4.3. Statistically stored dislocations

The scalar stress-type variable, �j, can be related to the statistically stored dislocation density by defining the lattice strain
due to statistically stored dislocations as (see Taylor, 1934)

�essds ¼ b
ffiffiffiffiffiffiffiffiffiffi
�qssds

p
; ð18Þ

which leads to

�j ¼ c�essds
blðhÞ

ffiffiffiffiffiffiffiffiffiffi
�qssds

p
; ð19Þ

where b is the magnitude of the Burger’s vector, and �qssds is the density of statistically stored dislocations.
Kocks and Mecking (1979) provided an evolution equation for the statistically stored dislocation density that included

terms representing the generation and annihilation of statistically stored dislocations. The generation rate is assumed to
be proportional to the rate at which they become immobilized, which is inversely proportional to their mean free path. Dy-
namic recovery, a thermally activated process, is assumed to be proportional to the dislocation density. A term can also be
included to account for static recovery, although no such term is included here. Using the type of hybrid theory conceived of
by Estrin and Mecking (1984), we assume the mean free path is influenced by interactions with other dislocations as well as
interactions with subgrain boundaries due to geometrically necessary dislocations, which are discussed in the next section.
Following Kok et al. (2002), we assume the statistically stored dislocation density evolves with plastic strain according to the
following equation:

_�qssds ¼
k1

Ls
þ k2

Lg
� RdðhÞ�qssds


 �
_�ep; ð20Þ

where Ls and Lg are the mean free paths associated with dislocation–dislocation and dislocation-geometrically necessary
boundary interactions, RdðhÞ ¼ c6e�c7=h, and k1, k2, c6 and c7 are material constants. The mean free path, Ls, is related to the
statistically stored dislocation density by

Ls /
1ffiffiffiffiffiffiffiffiffiffi
�qssds

p : ð21Þ

As demonstrated in Kok et al. (2002), the term related to Lg leads to stage IV hardening behavior. Without its inclusion, the
statistically stored dislocation density would approach a steady-state value with continued plastic strain. Instead, as the
spacing between geometrically necessary boundaries continues to decrease, the mean free path continues to shrink, leading
to stage IV hardening. Following Kok et al. (2002), we define �f to be a stress-type variable that is proportional to the shear
modulus and inversely proportional to the average spacing of the geometrically necessary boundaries, Lg:

4 Based on Casey and Naghdi (1992), the following invariance requirements under superposed rigid body motions must be satisfied:

Fpþ ¼ QFp; Feþ ¼ QFeQ T;

where Q and Q are arbitrary independent proper orthogonal tensors. From these two equations, it follows that

Sþ ¼ QSQ T; Eeþ ¼ QEeQ T; Dpþ ¼ QDpQ T; and devSþ ¼ Q devS
� �

Q T:

Thus, the constitutive theory is properly invariant.
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�f ¼ c�essds
blðhÞk2

k1Lg
: ð22Þ

By taking the chain rule of Eq. (19), using Eq. (20), and renaming constants, we get an evolution equation for the hardening
variable, �j:

_�j ¼
�j

lðhÞ
dl
dh

_hþ HðhÞ 1þ
�f
�j

� �
� RdðhÞ�j


 �
_�ep; ð23Þ

where H(h) = c8l(h).

4.4. Geometrically necessary dislocations

As a metal is plastically deformed, geometrically necessary dislocations are generated to ensure compatibility for non-
homogeneous materials. In a polycrystalline material, the grains tend to align themselves with the applied loading. Geomet-
rically necessary dislocations facilitate lattice curvature in individual grains, which allows portions of the grains to rotate
without leading to cracks, voids, or gaps at the interfaces between grains (see Ashby, 1970). These dislocations can be stored
in boundaries, called geometrically necessary boundaries, that separate subgrain regions with misorientation angles existing
between crystal lattices on either sides of the boundaries (see Hughes et al., 1997; Hughes and Hansen, 2000). As the defor-
mation progresses, the average misorientation angle across these boundaries increases, and the spacing between decreases.

Bammann (2001) represents geometrically necessary dislocations with a dislocation curvature tensor, defined as the curl
of the elastic rotation associated with the polar decomposition of the elastic deformation gradient. Here, as in Kok et al.
(2002), we limit ourselves to a scalar misorientation variable, �f, as defined in Eq. (22) to be inversely proportional to the aver-
age spacing of the geometrically necessary boundaries. Based on the work of Hughes et al. (1997) and Hughes and Hansen
(2000), this implies that �f is proportional to the average misorientation angle across the boundaries. As the material is
deformed, the spacing between the geometrically necessary boundaries decreases, and the misorientation angle across
the boundaries increases.

We employ the empirical evolution equation for Lg, the average spacing between geometrically necessary boundaries,
proposed in Kok et al. (2002):

d
d�ep

1
Lg

� �
¼ cLg

1
Lg

� �1�1=r

; ð24Þ

where cLg and r are parameters, and
1
2
6 r 6 1. The evolution equation for the misorientation variable then follows from

Eqs. (22) and (24):

_�f ¼
�f

lðhÞ
dl
dh

_hþ h�flðhÞ
�f

lðhÞ

� �1�1=r

_�ep
�� ��; ð25Þ

where h�f is a constant. The misorientation variable affects the hardening behavior as discussed in the previous section. It also
affects the recrystallization kinetics, as discussed in the next section.

5. Modeling recrystallization

As mentioned in the introduction, recrystallization nuclei are assumed to be energetically favorable subgrains that grow
at the expense of their neighbors. As the material deforms, the average misorientation angle across the geometrically nec-
essary subgrain boundaries increases, which increases the mobility of the boundaries. The migration of the boundaries wipes
away the dislocation structure in their path. The driving force for the motion of the geometrically necessary boundaries is the
stored energy in the dislocation structure.

5.1. Recrystallization kinetics

The evolution of the recrystallization process is tracked through a variable, X, representing the volume fraction of recrys-
tallized material. The volume fraction of recrystallized material has a sigmoidal dependence on time. At the beginning of
recrystallization (X � 0), only a few nuclei exist, so the interfacial area (per volume) between the recrystallized and unrecrys-
tallized regions is small. The interfacial area increases as the existing nuclei grow and new ones are formed, reaches a max-
imum, and then decreases as the growing nuclei impinge on each other and the amount of unrecrystallized material vanishes
(X approaches the value of 1). Speich and Fisher (1966) proposed the empirical relation A / X(1 � X) for the interfacial area
between recrystallized and unrecrystallized regions based on extensive experimental data for nickel. In this work, we as-
sume an empirical relation of the form

A / Xað1� XÞb; ð26Þ

where a and b are constants.
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The evolution rate of the recrystallized volume fraction is given by

_X ¼ AG; ð27Þ

where G is the average velocity of the interface as it sweeps through the unrecrystallized region (Cahn and Hagel, 1960).5 The
interface velocity of a geometrically necessary boundary is given by

G ¼ MP; ð28Þ

where M is the mobility and P is the driving force on the boundary (see Gottstein, 2001; Furu et al., 1995; Huang and Humph-
reys, 1999; Doherty et al., 1997). During recrystallization, we assume the driving force for boundary motion is the stored
energy in the unrecrystallized region. Based on the Eq. (14), the driving force takes the form:

P ¼ 1
2lðhÞ

�j2

c�essds

þ
�f2

c�assds

� �
: ð29Þ

Boundary mobility is known to increase with temperature and misorientation (see Doherty et al., 1997; Huang and Humph-
reys, 2000). We assume the empirical form used by Chen et al. (2002) and Rollett and Holm (1996), but with the misorien-
tation angle replaced by the misorientation variable introduced in Eq. (12):

M ¼ Moe�
Qg
Rh 1� e�Bð�f=lÞm
� �

: ð30Þ

where B, n, and Mo are constants. After making the various substitutions and renaming constants, the recrystallization kinet-
ics described in Eq. (27) become

_X ¼ RrexðhÞQrex �j;�f
� �

Xað1� XÞb; ð31Þ

where RrexðhÞ ¼ 1
l e�

ch
h ; Qrex �j;�f

� �
¼ 1� e�B �f=lð Þm
� �

c�j �j2 þ c�f
�f2

 �
and ch, B, n, c�j and c�f are material constants.

During static recrystallization, one can think of the material as having two-phases: a hard unrecrystallized phase and a
soft recrystallized phase. In the unrecrystallized phase, the dislocation density decreases due to static recovery. The recrys-
tallized phase has been wiped clean of dislocations and subgrain boundaries. Dynamic recrystallization is a more complex
process. Both the recrystallized and unrecrystallized phases continue to harden (and recover) with deformation, and the
material can recrystallize numerous times (Luton and Sellars, 1969; Sandstrom and Lagneborg, 1975; McQueen and Jonas,
1975; Sakai and Jonas, 1984). We introduce the notation Xi to represent the volume fraction of material that has undergone
at least i cycles of recrystallization. The material can be broken down as follows: unrecrystallized material resides in volume
fraction (1 � X1). Material that has recrystallized only once is in volume fraction (X1 � X2), and so on. Each of these regions
will have its own set of internal state variables.

The evolution of the first cycle of recrystallization is given by (see Eq. (31)):

_X1 ¼ RrexðhÞQ rex �j1�X1 ;
�f1�X1

� �
Xa

1ð1� X1Þb: ð32Þ

With continued deformation, the recrystallized region hardens and develops new dislocation structure. The stored energy in
the dislocation structure in the region X1 � X2 provides the driving force for a second cycle of recrystallization. Recalling Eq.
(27), the evolution rate of the recrystallized volume fraction X2 for the second recrystallization cycle is given by

_X2 ¼ A2G2; ð33Þ

where A2 is the interfacial area per volume between the fraction of X1 undergoing a second cycle of recrystallization, X2
X1

, and

the fraction of X1 that has only recrystallized once, X1�X2
X1

. By analogy to Eq. (26), the interfacial area per volume in X1 for the

second recrystallization cycle is proportional to X2
X1

� �a
1� X2

X1

� �b
. Hence, the interfacial area per total volume is proportional to

X1
X2
X1

� �a
1� X2

X1

� �b
. The evolution equation for the recrystallized volume fraction X2 is thus

_X2 ¼ RrexðhÞQ rex �jX1�X2 ;
�fX1�X2

� �
X2

X2

X1

� �a

1� X2

X1

� �b

: ð34Þ

One additional modification is made to the kinetics for the second cycle of recrystallization to correct for the inhomogeneity
in the recrystallizing volume fraction X1 � X2. Consider a real material undergoing multiple cycles of dynamic recrystalliza-

5 In the literature, it is common to assume an Avrami form (see Johnson and Mehl, 1939; Avrami, 1939; Kolmogorov, 1937) for the evolution of the volume
fraction of recrystallized material, i.e.

XðtÞ ¼ 1� e
�a t

t1=2

� �n

;

but this form is based on the assumption of constant velocity, G. This is not a valid assumption for dynamic recrystallization, during which the driving force
for boundary motion increases with further deformation.
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tion. During the second cycle of recrystallization, the material in volume X1 � X2 has regions that recrystallized during the
first cycle much earlier than other regions, and hence have since hardened and developed more dislocation structure. These
regions are prone to starting a new wave of recrystallization earlier than regions that just finished recrystallizing the first
time and are hence relatively free of dislocation structure. This implies that in the model, Eq. (34) would underpredict
the rate of recrystallization, since it uses the homogenized values of the internal state variables in region X1 � X2. Once
the first cycle of recrystallization has completed (i.e. X1 � 1), the region X1 � X2 quickly becomes more homogeneous with
continued deformation since no new dislocation-free zones are being added to the region. A correction to account for this
behavior is applied to the kinetics of the second recrystallization cycle by way of including a scaling function f(X1) that de-
creases to one as X1 approaches a value of one:

_X2 ¼ RrexðhÞQ rex �jX1�X2 ;
�fX1�X2

� �
X1

X2

X1

� �a

1� X2

X1

� �b

f ðX1Þ;

f ðX1Þ ¼ 1þ cð1� X1Þ:
ð35Þ

The same reasoning can be applied for all subsequent cycles of recrystallization, so we write

_Xiþ1 ¼ RrexðhÞQ rex �jXi�Xiþ1
;�fXi�Xiþ1

� �
gðXi;Xiþ1Þ; ð36Þ

where i P 1, and we define gðXi;Xiþ1Þ ¼ Xi
Xiþ1

Xi

� �a
1� Xiþ1

Xi

� �b
ð1þ cð1� XiÞÞ.

5.2. Evolution of the internal state variables

Each recrystallized and unrecrystallized volume fraction has its own set of stress-type state variables. The variables in the
unrecrystallized phase are assumed to evolve unaltered by the recrystallization process:

_�j1�X1 ¼
�j1�X1

lðhÞ
@l
@h

_hþ HðhÞ 1þ
�f1�X1

�j1�X1

� �
� RdðhÞ�j1�X1


 �
_�ep;

_�f1�X1 ¼
�f1�X1

lðhÞ
@l
@h

_hþ h�fd
�1�f1�1=r

1�X1
_�ep:

ð37Þ

The evolution of the variables in the recrystallized phases is derived below.
For the region that has recrystallized once, X1 � X2, the volume fraction will increase by dX1 and decrease by dX2 during

the time increment, dt, as the first and second recrystallization cycles progress.6 At time t + dt, the portion dX1 will have a
value of zero for the isotropic hardening variable since we assume that recrystallization removes the dislocation structure.
The region X1 (t) � X2(t) � dX2 will have hardened and/or recovered during the time increment dt in the same manner as it
would if no recrystallization had been occurring, so the isotropic hardening variable at time t + dt is given by

�jX1ðtÞ�X2ðtÞ�dX2
ðt þ dtÞ � �jX1ðtÞ�X2ðtÞðtÞ þ

�jX1�X2

lðhÞ
@l
@h

_hþ HðhÞ 1þ
�fX1�X2

�jX1�X2

� �
� RdðhÞ�jX1�X2


 �
j _epj

� �
dt: ð38Þ

The isotropic hardening variable in the region X1 � X2 at time t + dt is found using a rule of mixtures:

�jX1ðtþdtÞ�X2ðtþdtÞðt þ dtÞ ¼
�jX1ðtÞ�X2ðtÞ�dX2

ðt þ dtÞðX1ðtÞ � X2ðtÞ � dX2Þ þ 0dX1

X1ðtÞ � X2ðtÞ þ dX1 � dX2
: ð39Þ

Combining Eqs. (38) and (39) and taking the limit as dt ? 0, we get

_�jX1�X2 ¼
�jX1�X2

lðhÞ
@l
@h

_hþ HðhÞ 1þ
�fX1�X2

�jX1�X2

� �
� RdðhÞ�jX1�X2


 �
j _epj � �jX1�X2

_X1

X1 � X2
: ð40Þ

Similar reasoning is used to add an additional softening term to the evolution equation for the misorientation variable in the
recrystallized volume. The evolution equations for the internal state variables in the region Xi � Xi+1 take the form

_�jXi�Xiþ1
¼

�jXi�Xiþ1

lðhÞ
@l
@h

_hþ HðhÞ 1þ
�fX1�X2

�jX1�X2

� �
� RdðhÞ�jX1�X2


 �
j _epj � �jXi�Xiþ1

_Xi

Xi � Xiþ1
; ð41Þ

_�fXi�Xiþ1
¼

�fXi�Xiþ1

lðhÞ
@l
@h

_hþ h�f
�f1�1=r

Xi�Xiþ1
j _epj � �fXi�Xiþ1

_Xi

Xi � Xiþ1
ð42Þ

for i P 1. We assume that each region experiences the same plastic strain rate.

6 During dynamic recrystallization, multiple cycles of recrystallization can occur simultaneously (Luton and Sellars, 1969).
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5.3. Model in iterative form

The evolution equations for the variables in each region and the rates of recrystallization for each cycle can be written in a
more concise form if we recall that Xi is defined as the volume fraction of material that has undergone at least i cycles of
recrystallization and note that X0 = 1 and _X0 ¼ 0:

_Xiþ1 ¼ RrexðhÞQ rexð�jXi�Xiþ1
;�fXi�Xiþ1

ÞgðXi;Xiþ1Þ;

_�jXi�Xiþ1
¼

�jXi�Xiþ1

lðhÞ
@l
@h

_hþ HðhÞ 1þ
�fXi�Xiþ1

�jXi�Xiþ1

� �
� RdðhÞ�jXi�Xiþ1


 �
j _epj � �jXi�Xiþ1

_Xi

Xi � Xiþ1
;

_�fXi�Xiþ1
¼

�fXi�Xiþ1

lðhÞ
@l
@h

_hþ h�flðhÞ
�fXi�Xiþ1

lðhÞ

� �1�1=r

j _epj � �fXi�Xiþ1

_Xi

Xi � Xiþ1

ð43Þ

for i P 0.
For a material that is undergoing multiple (say, n) recrystallization cycles, the average value for the isotropic hardening

variable used in the flow rule is calculated using a rule of mixtures:

�j ¼
Xn�1

i¼0

�jXi�Xiþ1
ðXi � Xiþ1Þ þ �jXn Xn: ð44Þ

To avoid singularities at time t = 0, small initial values were assigned to the isotropic hardening variables, misorientation
variables, and volume fractions: ji = 10�6, fi = 10�6 and Xi = 10�6Xi+1 for i P 1. A recursive algorithm is employed in which
the values of the variables are cycled when X1 gets sufficiently close to one. In the simulations shown in the next section,
five cycles of recrystallization were tracked (i.e. n = 5), and when X1 became greater than 0.999, the variable values were re-
placed as follows:

Xnew
i ¼ Xold

iþ1;

Xnew
n ¼ 10�6Xold

n ;

�jnew
Xi�1�Xi

¼ �jold
Xi�Xiþ1

;

�jnew
Xn
¼ 0;

�fnew
Xi�1�Xi

¼ �fold
Xi�Xiþ1

;

�fnew
Xn
¼ 10�6�fold

Xn
;

ði ¼ 1;2;3;4Þ: ð45Þ

6. Comparison to experiments

To see how the model performed against experimental data, we reduced the model for the case of uniaxial stress at con-
stant temperature, and implemented the one-dimensional version in the parameter-fitting program, Bfit (Lathrop, 1997).
The implementation utilized the recursive algorithm presented in the last section for n = 5. For uniaxial stress, let r represent
the only non-vanishing component of the Cauchy stress tensor and e represent the axial component of the Eulerian strain
tensor. After making approximations for small elastic strains, it can be shown that the model reduces to the following set
of equations, written here in the current configuration:

_r ¼ Eð _e� _epÞ;

_ep ¼ f ðhÞ sinh
r

jþ YðhÞ � 1
� �
 �� �nðhÞ

;

j ¼
Xn�1

i¼0

jXi�Xiþ1
ðXi � Xiþ1Þ þ jXn Xn;

_jXi�Xiþ1
¼ HðhÞ 1þ

fXi�Xiþ1

jXi�Xiþ1

� �
� RdðhÞjXi�Xiþ1


 �
j _epj � jXi�Xiþ1

_Xi

Xi � Xiþ1
;

_fXi�Xiþ1
¼ hflðhÞ

fXi�Xiþ1

lðhÞ

� �1�1=r

j _epj � fXi�Xiþ1

_Xi

Xi � Xiþ1
;

_Xiþ1 ¼ RrexðhÞQ rexðjXi�Xiþ1
; fXi�Xiþ1

ÞgðXi;Xiþ1Þ:

ð46Þ

Using Bfit, the material parameters were optimized to experimental data from Tanner and McDowell (1999) for OFHC
copper. The experiments were conducted over a wide range of temperatures (25–541 �C) and strain rates (0.0004–5200/s),
and exhibited both single and multiple-peak recrystallization behavior. Based on copper data in Ledbetter and Naimon
(1974), the shear modulus was assumed to vary linearly with temperature in the range of interest according to l
(h) = 5.47e4�34.1h MPa. Using this temperature-dependent shear modulus, the other parameters were optimized to the com-
pression data using Bfit. The results of the optimization are presented in Fig. 1. The constitutive function n(h) turned out to be a
constant, and the value of c�f was zero. The values of all non-zero parameters are listed in Table 1.

The model captures the material response quite well over the full range of temperatures and strain rates, including the
single and multiple-peak behavior. For example, at a strain rate of 0.0004/s, three types of behavior are observed: at low
temperatures, no dynamic recrystallization is apparent in the stress response; at intermediate temperatures, single-peak
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Fig. 1. Comparison between model (lines) and experimental data (symbols) from Tanner and McDowell (1999) for OFHC copper over a range of
(a) temperatures and (b) strain rates. The model captures both single and multiple peak behavior.

Table 1
The complete list of non-zero parameters resulting from the optimization based on experimental data from Tanner
and McDowell (1999) for OFHC copper.

Function Parameter Value Units

f(h) c1 2.14E�01 1/s
c2 5.22E+00 K

n c3 1.64E+01 –
Y(h) c5 4.64E�04 –
H(h) c8 1.37E�02 –
Rd(h) c6 8.80E+00 –

c7 2.41E+02 K
h(f) hf 2.17E�05 1/s

r 6.57E�01 –
Rrex(h) ch 1.80E+04 K
Qrex(j,f) B 1.50E+09 –

m 2.88E+00 –
cj 8.70E+11 K/(MPa s)

g(Xi,Xi+1) a 2.25E�01 –
b 1.31E+00 –
c 2.50E+01 –
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recrystallization is observed; and at high temperatures, multiple-peak recrystallization occurs. These trends are evident in
both the model and the experimental results in Fig. 1(a).

Whereas Fig. 1(a) focuses on the temperature dependence, the strain-rate dependence is shown in Fig. 1(b). At 269 �C,
single-peak recrystallization occurs at 0.0004/s, but no recrystallization softening occurs during loading at rates between
0.01/s through 5200/s. At 541 �C, multiple-peak recrystallization occurs at rates 0.0004/s through 1/s. This behavior is seen
in both the model and the experimental response.

The single-peak behavior seen at 0.0004/s at temperatures between 269 and 303 �C is a result of multiple cycles of recrys-
tallization occurring concurrently. The evolution of the state variables is elucidated in Figs. 2–5 for loading at 303�C. The
shape of the stress–strain curve is primarily determined by the evolution of the isotropic hardening variable, shown in
Fig. 2. The value of the isotropic hardening variable is the sum of the contributions from the various volume fractions, accord-
ing to Eq. (46)3. The kinetics of the recrystallization cycles are shown in Fig. 3. Each curve has the typical sigmoidal shape
expected during recrystallization. The isotropic hardening and misorientation variables for each volume fraction are shown
in Figs. 4 and 5, respectively.

Initially, all of the strength is based on the unrecrystallized volume fraction, 1 � X1. In Fig. 2, this contribution is seen to
initially increase as the unrecrystallized volume fraction hardens, but it decreases as the first cycle of recrystallization occurs.

Fig. 2. The contributions to the average isotropic hardening variable from each volume fraction for a strain rate of 0.0004/s at 303 �C.

Fig. 3. The evolution of the recrystallization cycles for a strain rate of 303 �C at 0.0004/s.
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The peak value of the isotropic hardening variable (and thus the peak stress) occur after sufficient recrystallization has oc-
curred to make the contribution of the recrystallized volume fraction, X1 � X2, non-negligible. The contribution of the volume
fraction of material that has recrystallized only once rises as X1 � X2 increases and as the isotropic hardening variable in that
volume fraction increases. It then falls as the second cycle of recrystallization occurs. Similar trends are seen for the contri-
butions to the average isotropic hardening variable from the volume fractions of material that have recrystallized twice and
three times. In Fig. 2, it is seen that at higher strains, up to four volume fractions have finite contributions to the strength of
the material.

The isotropic hardening variable in the unrecrystallized volume fraction, j1�X1 , is seen to increase monotonically with
strain, although its rate decreases as dynamic recovery increases. The misorientation variable, f1�X1

, increases as the subgrain
spacing decreases due to increasing strain. Like in Kok et al. (2002), it is the monotonic increase in the misorientation
variable, f1�X1

, that leads to the stage IV hardening seen in the isotropic hardening variable, j1�X1 , in the unrecrystallized
volume fraction. If the model did not include the misorientation variable, j1�X1 would reach a steady-state value where
hardening and recovery balanced each other. With the misorientation variable, the decreasing subgrain spacing decreases
the mean free path of statistically stored dislocations, thus increasing the hardening rate. As the isotropic hardening and

Fig. 4. The isotropic hardening variable in each volume fraction for a strain rate of 303 �C at 0.0004/s.

Fig. 5. The misorientation variable in each volume fraction for a strain rate of 0.0004/s at 303 �C.
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misorientation variables increase, the driving force for recrystallization and the boundary mobility also increase, leading to
the first cycle of recrystallization.

The isotropic hardening variable in the volume fraction that has recrystallized only once, jX1�X2 , increases initially due to
hardening, then decreases as newly recrystallized material is added to that volume fraction. As the volume fraction X1 � X2

increases, the influence of hardening dominates over the softening due to newly recrystallized material. The misorientation
variable, fX1�X2

, increases as strain reduces the subgrain spacing, but as newly recrystallized material is added to the volume
fraction X1 � X2, the average subgrain spacing in X1 � X2 can actually increase, causing a reduction in fX1�X2

. Subsequent
straining will eventually dominate over the addition of newly recrystallized material, causing a monotonic increase in
fX1�X2

at higher strains. After sufficient hardening, the driving force and boundary mobility are high enough to induce a sec-
ond recrystallization cycle. Similar trends are seen in the state variables for the volume fractions of material that have recrys-
tallized twice, three times, etc.

Whether dynamic recrystallization exhibits single or multiple-peak behavior depends on how much overlap there is be-
tween various cycles of recrystallization (see Luton and Sellars, 1969). This can be seen by comparing the response at 303 �C
in Figs. 2–5 to that seen at 337 �C in Figs. 6–8. At 337 �C, the recrystallization cycles occur over smaller strain intervals and

Fig. 6. The contributions to the average isotropic hardening variable from each volume fraction for a strain rate of 0.0004/s at 337 �C.

Fig. 7. The evolution of the recrystallization cycles for a strain rate of 337 �C at 0.0004/s.
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overlap one another less than at 303 �C. The actual peak and valley behavior is clarified by revisiting Eq. (46)3; a stress peak
or valley will occur when the rate of hardening equals zero, i.e. when

_j ¼
Xn�1

i¼0

d
dt
½jXi�Xiþ1

ðXi � Xiþ1Þ� þ
d
dt
½jXn Xn� ¼ 0; ð47Þ

where the rate of each bracketed quantity represents the rate of change of the contribution to the isotropic hardening var-
iable of a given volume fraction. For example, the rate of change of the contribution of the volume fraction of material that
has recrystallized only once, X1 � X2 will be positive or negative depending on the balance between the rate of hardening and
recovery in the volume fraction, given by _jX1�X2 , and the rate of change in the volume fraction itself, _X1 � _X2:

d
dt
½jX1�X2 ðX1 � X2Þ� ¼ _jX1�X2 ðX1 � X2Þ þ jX1�X2

_X1 � _X2

� �
: ð48Þ

Figs. 9–11 show the evolution of the individual terms in Eq. (47) for the temperatures 269 �C, 303 �C, and 337 �C, respec-
tively. At 269 �C, multiple cycles of recrystallization are overlapping, and each volume fraction contributes to the average
isotropic hardening variable over large strain intervals. Although the rate of hardening is initially positive, it drops to an

Fig. 8. The isotropic hardening variable in each volume fraction for a strain rate of 337 �C at 0.0004/s.

Fig. 9. The rates of change in the contributions to the average isotropic hardening variable from each volume fraction for a strain rate of 269 �C at 0.0004/s.
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almost constant negative value at larger strains. This leads to the single-peak behavior seen at 0.0004/s for 269 �C in Fig. 1(a).
At 303 �C, multiple cycles of recrystallization are overlapping, but each volume fraction impacts the overall response over a
smaller strain interval. The rate of hardening is initially positive, then drops to negative value, and finally appears to settle at
zero for larger strains. The result is once again single-peak behavior. For 337 �C, the initial recrystallization cycle is nearing
completion before much of the second cycle has had a chance to occur. At increasing strains, the subsequent cycles overlap
more and more, leading to multiple-peak recrystallization with diminishing amplitudes for the peaks and valleys.

In Figs. 6–8, and 11, the iteration scheme in Eq. (45) occurs when the first recrystallization cycle reaches 0.999. The plots
show that the error induced in the response due to the iteration is negligible.

Validation of the model was performed using the parameters that were optimized to single-stage compression to predict
multi-stage loading in which specimens are compressed at 0.0004/s at 269 �C to strain levels of 0.3 and 0.5, held for times
ranging from 30 s to 600 s, and then further compressed at 0.0004/s (see Fig. 12). For longer hold times, static recrystalliza-
tion occurs and reduces the material strength, so that the yield stress upon reloading is reduced. When the first loading stage
is stopped at a strain of 0.3, the driving force and mobility are low, leading to a low rate of static recrystallization and thus
only a small decrease in the yield stress, even for a hold time of five minutes (Fig. 12(a)). During the second loading stage, the

Fig. 10. The rates of change in the contributions to the average isotropic hardening variable from each volume fraction for a strain rate of 0.0004/s at 303 �C.

Fig. 11. The rates of change in the contributions to the average isotropic hardening variable from each volume fraction for a strain rate of 0.0004/s at 337 �C.
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material initially hardens, but at higher strains dynamic recrystallization occurs and decreases the yield strength. The model
accurately predicts both the static recrystallization that occurs between loading stages as well as the hardening and subse-
quent dynamic recrystallization occurring during the second loading stage.

In Fig. 12(b), the first loading stage is continues to a strain of 0.5 before deformation is ceased. The higher rate of static
recrystallization that results leads to a more substantial drop in the yield stress, as observed upon reloading for the second
stage. Once again, the model accurately predicts the amount of softening that occurs during the various hold times. It also
predicts subsequent dynamic recrystallization during the second loading stage, although it slightly underpredicts the result-
ing softening evident in the experimental data.

For the two-stage test strained to 0.5, then held for 600 s and reloaded, the evolution of the average isotropic hardening
variable as well as the breakdown by volume fraction is shown in Fig. 13 as a function of time. The recrystallization kinetics
and the isotropic hardening variables in each volume fraction are shown in Figs. 14 and 15, respectively. The curves look
similar to single-stage tests, but with a 600-s period of static recrystallization with an accompanying drop in the contribu-
tion to the average isotropic hardening variable from the unrecrystallized volume fraction. Note that the isotropic hardening
variable jX1�X2 in the volume fraction X1 � X2 decreases during static recrystallization due to newly recrystallized material,

Fig. 12. Validation of the model using the optimized parameters to predict multi-stage loading in which specimens are compressed at 0.0004/s to strain
levels of (a) 0.3 and (b) 0.5 at 269 �C, held for times ranging from 30 s to 600 s, and then further compressed at 0.0004/s to strain levels of (a) 0.7 and
(b) 0.92, respectively. The model predicts both the static recrystallization that occurs between loading stages as well as the dynamic recrystallization
occurring during the second loading stage.
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but the contribution jX1�X2 ðX1 � X2Þ of that volume fraction to the average isotropic hardening variable remains the same
(Fig. 13) due to the corresponding increase in X1 � X2.

Fig. 16 shows the results for two-stage tests that involve a temperature change in addition to a hold time between load-
ings. Specimens are initially loaded at room temperature to a strain of 0.5, then heated to 269 �C, held in the furnace for hold
times between 1.5 and 20 min, and then reloaded at 269 �C. When the specimen hold time is limited to 1.5 min, the initial
experimental response during subsequent loading at 269 �C is softening. For the 20-min hold time, the second stage shows a
much lower yield stress and its initial behavior is hardening. For both cases, dynamic recrystallization is evident at larger
strains. The model predictions exhibit similar behavior, with substantially more static recrystallization evident for the larger
hold time, and initial slopes indicating softening for the short hold time and hardening for the long hold time. The model
does not accurately capture the initial yield stress for the second stage, but accurately matches the stress and dynamic
recrystallization at larger strains. The predicted response for this model is a substantial improvement over the response
of the Johnson–Cook, Mechanical Threshold Stress, and BCJ-SNL models that do not incorporate recrystallization for the same
loading conditions, as shown in Tanner et al. (1999).

Fig. 13. The contributions to the average isotropic hardening variable from each volume fraction for a strain rate of 0.0004/s at 269 �C.

Fig. 14. Evolution of the recrystallization cycles for a strain rate of 0.0004/s at 269 �C.
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7. Conclusions

A novel constitutive model is presented that is capable of predicting both static and dynamic recrystallization. The model
includes internal state variables representing statistically stored dislocations and geometrically necessary dislocations.
Recrystallization cycles evolve based on the stored energy in the dislocation structure. A rule of mixtures is used to deter-
mine the average values of the state variables. The model is able to match both single and multiple peak dynamic recrystal-
lization. Single peak behavior occurs when the cycles of recrystallization overlap one another significantly. At higher
temperatures and slower strain rates, the recrystallization cycles do not overlap as much, leading to multiple distinct peaks
in the stress–strain curves. The theory is also shown to be capable of modeling multiple stages of loading, with multiple cy-
cles of static and dynamic recrystallization occurring. The model was validated by optimizing parameters to single-stage
compression data, then using the same parameter set to predict multiple-stage responses.

To keep the formulation less complex, only scalar state variables were presented. Using a single scalar variable to repre-
sent geometrically necessary boundaries is an over-simplification that could be corrected in the future. While Hughes et al.
(1997) and Hughes and Hansen (2000) have shown that the average spacing of the geometrically necessary boundaries is

Fig. 15. The isotropic hardening variable in each volume fraction for a strain rate of 0.0004/s at 269 �C.

Fig. 16. Model prediction compared to multi-stage experiments in which specimens are compressed at 0.0004/s and 25 �C to a strain of 0.5, then heated to
269 �C, held for times ranging from 1.5 to 20 min, and then further compressed at 0.0004/s to a strain of 0.94.
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inversely proportional to the average misorientation angle across the boundaries during deformation, this does not hold true
during recrystallization. For example, during recrystallization, subgrains grow at the expense of their neighbors, which in-
creases the average spacing, but does not necessarily decrease the average misorientation angle. In future work, the scalar
misorientation variable could be replaced with a tensorial variable like that used in Bammann (2001). Also, texture could
be included in the model through the use of a structure tensor that would lead to an anisotropic plastic response (see
Regueiro et al., 2002).

In a future paper, work will be presented in which the recrystallization parameters are fit to microstructural experimental
data, and accurate final strength predictions are then made for forged material.
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