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EXECUTIVE SUMMARY 
 
The pipeline infrastructure is a critical element in the energy delivery system across the United 
States.  Its failure can affect both public health and safety directly and indirectly through impacts 
on the energy supply.  The pipeline infrastructure is aging, while at the same time Research & 
Development (R&D) funding from the pipeline industry to develop technologies to assure its 
integrity is experiencing budgetary constraints. Total R&D funding is being further reduced 
through the elimination of programs resulting from restructuring within the government and 
energy industry. 
 
The Pipeline & Hazardous Materials Safety Administration (PHMSA), Pipeline Safety R&D 
Program mission is to ensure the safe, reliable & environmentally sound operation of the nation’s 
pipeline transportation system. With passage of the Pipeline Safety Improvement Act (PSIA) in 
2002, industry is now required to invest significantly more capital to inspect and maintain their 
systems. The PSIA requires enhanced maintenance programs and continuing integrity inspection 
of all pipelines located within “high consequence areas” where a pipeline failure could threaten 
public safety, property and the environment. According to the Interstate Natural Gas Association 
of America (INGAA) the cost to industry to implement the PSIA in the first ten years will 
exceed $2 billion.  
 
The focus of the PHMSA Pipeline Safety R&D 
Program is to sponsor research and development 
projects intended on providing near-term solutions 
that will improve the safety, reduce environmental 
impact, and enhance the reliability of the nation’s 
pipeline transportation system. Conducting in-
field technology demonstration test to facilitate 
technology transfer from government funded 
R&D programs strengthens communication and 
coordination with industry stakeholders  
 
The PHMSA Pipeline Safety R&D Program role in technology development and innovation has 
increased with the passage of the Pipeline Safety Improvement Act of 20021.  The 
implementation of the Integrity Management Program for natural gas and hazardous liquids has 
focused efforts on proactively finding and fixing safety-related problems.  
 
For several years the PHMSA Pipeline Safety R&D  Program along with the DOE/NETL, Gas 
Delivery Reliability Program have funded the development of advanced in-line inspection (ILI) 
technologies to detect mechanical damage, corrosion and other threats to pipeline integrity. 
Several projects have matured to a stage where demonstrations of their detection capability are 
now warranted. During the week of January 9th, 2006, the PHMSA Pipeline Safety R&D 
Program and the DOE/NETL, Gas Delivery Reliability Program co-sponsored a demonstration 
of six innovative technologies.   
 

                                                 
1http://www.eia.doe.gov/oil_gas/natural_gas/analysis_publications/ngmajorleg/pubsafety.html 

The keys to enhanced pipeline 
safety are understanding the 
risks, focusing on the problems, 
imagining solutions, and applying 
our ingenuity— 

 
Ted Willke.    
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The demonstrations were conducted at Battelle West Jefferson’s Pipeline Simulation Facility 
(PSF) near Columbus, Ohio. The pipes used in the demonstration were prepared by Battelle at 
the PSF and each was pre-calibrated to establish baseline defect measurements.  Each technology 
performed a series of pipeline inspection runs to determine their capability to detect and size 
mechanical damage, corrosion, stress corrosion cracking or plastic pipe defects. Overall, each 
technology performed well in their assessment category.   
 
BACKGROUND 
 
Information regarding inspection technology advances needs to be disseminated and understood 
by many stakeholders in the pipeline industry.  While research reports, review meetings and 
conference presentations are commonly used to disseminate information, live demonstrations can 
provide additional information on the current state and future potential of each development.  
Demonstrations are challenging to technology developers because newly developed technologies 
must be sufficiently reliable to obtain results in a fixed time frame.  There is not the opportunity 
to return to the laboratory to confirm results or change parameters.  While the pressure to 
demonstrate the best capability of their technology advances is enormous, the developers 
understand these events are needed to bolster support for continued development.   The results of 
demonstrations can be difficult to directly compare since each implementation can be at a 
different stage of development.  No direct comparisons were made in this report.  At this 
demonstration, representatives from the pipeline industry, industry trade associations, and 
pipeline service providers were able to witness the performance of six new technologies and 
interact with technology developers to clarify the current and potential capability of these new 
developments.  The participation of these groups was an essential element of the demonstration. 
 
This is the second benchmark of emerging pipeline inspection technologies performed by 
Battelle for DOT PHMSA Pipeline Safety R&D Program and DOE NETL.  Information on the 
pipe defect sets, pipe preparation, demonstration facility layout, and demonstration procedures 
from the first test can be can be found in the final report, Benchmarking Emerging Pipeline 
Inspection Technologies2, prepared by Battelle.  The results from the first benchmarking can be 
found in the Pipeline Inspection Technologies - Demonstration Report3, prepared by NETL. 
 
Purpose 
 
This report provides a brief summary assessment of the demonstration benchmark results. The 
purpose of this assessment is to help identify promising inspection technologies best suited for 
further development as part of an integrated teaming effort between robotic platform and sensor 
developers. This report is not intended to provide a detailed analysis of each technology’s 
performance or to rate their performance relative to one another. 
 

                                                 
2 http://primis.rspa.dot.gov/matrix/FilGet.rdm?fil=718  
3 http://www.netl.doe.gov/technologies/oil-
gas/publications/td/Battelle%20Inspection%20Demo%20Final%20Report_111804.pdf 



4 

The Technologies 
 
Six innovative sensor technologies were demonstrated at Battelle’s Pipeline Simulation Facility 
(PSF) the week of January 9, 2006. The different technologies demonstrated their ability to 
detect pipeline corrosion, mechanical defects, stress corrosion cracking, or plastic pipe defects.  
Additional information on each technology may be found in both Appendix B and Appendix C.  
The technologies were: 
 
ORNL Shear Horizontal Electromagnetic Acoustic Transducer (EMAT) – Oak Ridge National 
Laboratory (ORNL) has developed an EMAT system that uses shear horizontal waves to detect 
flaws on natural gas pipelines. A wavelet-based analysis of ultrasonic sensor signals is used for 
detecting physical flaws (e.g., SCC, circumferential and axial flaws, and corrosion) in the walls 
of gas pipelines. Using an in-line non-contact EMAT transmitter-receiver pair, flaws can be 
detected on the walls of the pipe that the current magnetic flux leakage (MFL) technology has 
problems detecting. One EMAT is used as a transmitter, exciting an ultrasonic impulse into the 
pipe wall while the second EMAT located a few inches away from the first is used as a receiving 
transducer.  ORNL’s technology is depicted in Figure 1. 
 

 
Figure 1. ORNL Shear Horizontal EMAT 
 
GTI Remote Field Eddy Current (RFEC) – The Gas Technology Institute (GTI) has developed a 
RFEC inspection technique to inspect pipelines with multiple diameters, valve and bore 
restrictions, and tight or miter bends. This electromagnetic technique uses a simple exciter coil 
that can be less than on third of the pipe diameter and is driven by a low-frequency sinusoidal 
current to generate an oscillating electromagnetic field that small sensor coils can detect. The 
oscillating field propagates along two paths; a direct axial path and an indirect or remote path. 
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The direct field attenuates rapidly because the pipe acts as a waveguide that will only allow 
frequencies in the gigahertz range and above to propagate. It becomes negligible after 2 to 3 pipe 
diameters. Thus after 2 to 3 pipe diameters, the only signal left is that from the remote field, 
which propagates out through the pipe wall, along its exterior and then re-enters the pipe 2 to 3 
pipe diameters from the exciter coil. This is exactly what is needed for defect detection since the 
electromagnetic waves must now pass directly through metal loss defect regions and other flaws. 
Changes from nominal values of the amplitude and phase of the remote field detect defects in the 
pipe wall and measure their severity.  GTI’s technology is depicted in Figure 2.  
 

 
Figure 2. GTI Remote Field Eddy Current 
 
SwRI Remote Field Eddy Current (RFEC) – Through funding support from PHMSA/OPS, 
Southwest Research Institute® has developed a remote-field eddy current (RFEC) technology to 
be used in unpiggable lines. The SwRI RFEC tool is capable of detecting corrosion on the inside 
or outside pipe surface. Since a large percentage of pipelines cannot be inspected using “smart 
pig” techniques because of diameter restrictions, pipe bends, and valves, a concept for a 
collapsible excitation coil was developed but found unnecessary for the pipe sizes and materials 
of interest in this demonstration. A breadboard system that meets the size, power, and 
communication requirements for integration into the Carnegie Mellon Explorer II robot was 
developed and used in the demonstration tests. This system is shown in Figure 3. The 
demonstration system incorporates eight detectors, and data from all eight channels are acquired 
and processed simultaneously as the system is scanned along the pipe at speeds up to 4 inch/sec. 
All of the instrumentation, except for a DC power supply and a laptop computer (used for 
storage of the processed data), is located on the tool. The RFEC system can expand to inspect 6- 
or 8-inch-diameter pipe and can retract to 4 inches to pass through obstructions. 
 

Sensor 
Coils 

MUX 
Board 

Mock Explorer 
Module 

Drive 
Coil

Support 
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Laptop Computer with CAN Bus Interface

Encoder Wheel

Electronics Sensors Excitation Coil

DC Power Supply

 
Figure 3. SwRI Remote Field Eddy Current 
 
PNNL Ultrasonic Strain Measurement – Pacific Northwest National Laboratory (PNNL) has 
developed an ultrasonic sensor system capable of detecting pipeline stress and strain caused by 
mechanical damage i.e., dents and gouges. PNNL has established the relationship between 
residual strain and the change in ultrasonic response (shear wave birefringence) under a uniaxial 
load. Initial measurements on samples in both axial and biaxial states have shown excellent 
correlation between shear birefringence measurements. The demonstration focused on refining 
the methodology, particularly under circumstances when the damage is more complex than a 
simple uniaxial deformation.  PNNL’s technology is depicted in Figure 4. 
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Figure 4. PNNL Ultrasonic Strain Measurement 
 
Rotating Permanent Magnet – Battelle is developing a rotating permanent magnet inspection 
system where pairs of permanent magnets are rotated around the central axis.  This alternative to 
the more common concentric coil method can be used to induce high current densities in the 
pipe.  Along the pipe away from the magnets in either direction, the currents flow in the 
circumferential direction.  Anomalies and wall thickness variations are detected with an array of 
sensors that measure local changes in the magnetic field produced by the current flowing in the 
pipe.  The inspection methodology can be configured to pass tight restrictions and narrow 
openings such as plug valves.  The separation between the magnets and the pipe wall is on the 
order of an inch (2.5cm).  The strength of circumferential current produces signals on the order 
of a few gauss, which can be detected by hall effect sensors  positioned between 8 and 40 inches 
(10 and 100 cm) away from the rotating magnets.  This evolving inspection methodology was 
first demonstrated in summer of 2004.  Battelle’s technology is depicted in Figure 5. 
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Figure 5. Battelle Rotating Permanent Magnet 
 
Capacitive Sensor for Polyethylene Pipe Inspection – The National Energy Technology 
Laboratory (NETL) has developed a capacitive probe to resolve defects in plastic natural gas 
pipelines. This new technology uses a non-destructive and non-hazardous projected electric field 
to map voids and other anomalies. The probe can function autonomously and is intended for use 
in conjunction with existing “pigs” or on its own platform.  NETL’s technology is depicted in 
Figure 6. 
 

 
Figure 6. NETL Capacitive Sensor 
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Demonstration Configuration 
 
The emerging inspection technologies were tested within a 40 by 100 foot high-bay area at 
Battelle’s PSF. Pipes selected for these tests had various types of natural and machined defects. 
A black tarp and bubble wrap covered the pipes to hide defect locations. Figure 7 shows the 
configuration of the pipes during the demonstration. These pipes included: 

 
Figure 7. High-bay Looking North 
 
Detection of Metal Loss 

• One 8-inch diameter ERW seam welded pipe measuring 30-feet in length (0.188 inch wall 
thickness).  The pipe sample contained two rows of simulated corrosion defects spaced 180° 
apart. 

• One 8-inch diameter ERW seam welded pipe measuring 35-feet in length (0.188 inch wall 
thickness).  The pipe sample contained two rows of simulated corrosion defects spaced 180° 
apart.  This sample also included a 5-foot section of natural corrosion from a pipe pulled 
from service. 

• One 8-inch diameter ERW seam welded pipe measuring 40-feet in length (0.188 inch wall 
thickness).  The pipe sample contained two rows of simulated corrosion defects spaced 180° 
apart. 
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Detection of Mechanical Damage 

• One 24-inch diameter pipe measuring approximately 28-feet in length (0.292 inch wall 
thickness) comprised of two separate pipes welded together with mechanical damage defects.  
Three rows of mechanical damage defects were located on this pipe sample spaced 120° 
apart but only one row with track hoe defects were used in the benchmarking. 

• One 24-inch diameter pipe measuring approximately 40 feet in length (0.292 inch wall 
thickness) with plain (or smooth) dent defects along one row.  

 
Detection of Stress Corrosion Cracking (SCC) 

• One 26-inch diameter pipe measuring approximately 26 feet in length (0.281 inch wall 
thickness) with natural stress corrosion cracking.  A separate 26-inch diameter SCC pipe 
sample was provided for calibration. 

 
Detection of Plastic Pipe Defects 

• One 6-inch diameter polyethylene pipe measuring 13 feet in length (0.5 inch wall thickness) 
with cylindrical drill holes and saw cut defects along one row on the exterior of the pipe. 

 
Additional information on the pipe defect sets, pipe preparation, demonstration facility layout, 
and demonstration procedures can be found in the final benchmarking report, Pipe and Anomaly 
Configuration for the Phase II Benchmarking of Emerging Pipeline Inspection Technologies 
prepared by Battelle and included in Appendix D. 
 
DEMONSTRATION RESULTS 
 
This section provides an assessment of the test data relative to the benchmark data developed at 
the Battelle Pipeline Simulation Facility (PSF). The benchmark data is provided as Appendix A 
of this document and test results for the individual technologies, as prepared and submitted by 
the technology developers, can be found in Appendix B. 
 
Metal Loss Corrosion Assessment 
 
The three corrosion assessment technologies were demonstrated in an 8-inch diameter pipe4.  
This diameter was chosen to match a specific crawler implementation, Explorer, being separately 
developed under NETL DOE and Northeast Gas Association (NGA) funding5.  The untethered 
platform is designed to traverse pipelines ranging from 6 to 8 inches inside diameter.  The 
inspection technology developers were asked to include as many of the configuration and 
interface requirements of this platform as practical.   
 
Three 8-inch diameter pipes were inspected by each technology for corrosion. The first pipe 
(Pipe Sample 1) was a seam-welded pipe measuring approximately 35 feet in length. This 
sample consisted of three pipe sections welded together (two circumferential welds) and 

                                                 
4 In the first demonstration these technologies were demonstrated in 12-inch diameter pipe.   
5 http://www.netl.doe.gov/technologies/oil-gas/publications/td/41155_Final.PDF 
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contained simulated corrosion defects set along two test lines 180° apart. The simulated 
corrosion was created using electrochemical etching techniques, an example of which is shown 
in Figure 8.  A 5 foot section of Pipe Sample 1 also contained natural corrosion from a pipe 
recently pulled from service.  
 

 
 

Figure 8. Example Simulated Corrosion Defect using Electrochemical Etching Techniques 
 
The donated natural corrosion pipe sample had a field girth weld with corrosion on both sides of 
the weld.  The weld drop through was too large for the inspection tool specifications and as such 
the pipe was trimmed to include roughly 2 feet of corrosion on one end, 3 feet of full thickness 
pipe at the other end, and no field welds.  The pipe was then sandblasted and welded between 
two new pipes to comprise Pipe Sample 1.  When the pipe was being fully characterized, an 
additional weld was found in the middle of the corrosion area (see Figure 9).  This weld was very 
fine and did not have a significant crown. The natural corrosion defects were intended to be a 
“stretch goal” of these emerging inspection technologies.  While the natural corrosion sample 
represents a real world problem, this additional weld adds a complex scenario that is most likely 
new to the technology developers.  As such, these search areas are reported but are not included 
in the results evaluation. 
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Figure 9. Fine, Field Weld in Natural Corrosion Pipe Segment 
 
The second pipe (Pipe Sample 2) was a seam-welded pipe measuring approximately 30 feet in 
length.  This sample consisted of two pipe sections welded together (one circumferential weld) 
and contained simulated corrosion defects set along two test lines 180° apart.  The third pipe 
(Pipe Sample 3) was a seam-welded pipe measuring approximately 40 feet in length.  This 
sample consisted of two pipe sections welded together (one circumferential weld) and contained 
simulated corrosion defects along two test lines 180° apart.   
 
All three technologies detected one false positive signal; however, none of the technologies had a 
false positive in the same location.  None of the technologies failed to identify a defect and were 
fairly accurate in predicting the locations.  These results are summarized in Table 1.  In addition, 
the corrosion sizing results were plotted in a manner commonly used by pipeline inspection 
vendors to demonstrate commercial in-line inspection technology capabilities.  For these graphs, 
benchmark data is plotted against the values reported by the technology developers.  Care must 
be taken in interpreting these graphs since: 

• Error in the benchmark measurements is not zero 

• Only the maximum depth is compared while the corrosion pit depth varied throughout the 
defect; many corrosion areas had more than one area of local thinning. 

• Length and width were measured at the surface; however other measures can also be used 
that still accurately describe the anomaly. 

Overall these graphs show the results predicted by each technology correlated well with the 
benchmark data.   
 

Field Weld 
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Table 1. Detection Rates for the Corrosion Technologies 
 
Technology Detection 

Rate 
False Positive Rate False 

Negative 
Rate 

Mean 
Difference 
in Location 
of Defect 

Standard 
Deviation 
of Defect 
Location 

SwRI – RFEC 100%  
(32 of 32) 

3.3% (1 of 30) – Defect P2-8 
called as a repeatable signal, 
but does not have typical flaw 
signal characteristics; 0.17” 

deep, 1.38” long and 1.06” wide 

0%  
(0 of 32) 

0.33 1.71 

GTI – RFEC 100%  
(32 of 32) 

3.3% (1 of 30) – Defect P1-2 
called as an unknown feature 
resembling metal loss; 0.008” 
deep, <1” long, and >4” wide 

0%  
(0 of 32) 

0.08 1.18 

Battelle – 
Rotating 
Permanent 
Magnet 

100%  
(32 of 32) 

3.3% (1 of 30) – Defect P1-17 
called as a small single pit 0.02” 
deep, 0.7” long, and 0.75” wide 

0%  
(0 of 32) 

-0.31 2.05 

 
SwRI Results 
 
SwRI began testing the morning of Monday, January 9, 2006, and completed testing by mid-day 
Thursday, January 12, 2006. The SwRI RFEC tool acquired, processed, and displayed data in 
real time as it was continuously pulled through each pipe sample. Each scan took approximately 
5 minutes to complete with selected higher speed runs taking approximately one to two minutes 
to complete. A circumferential region of 60 degrees was inspected in each scan, and two scans 
were made along each defect line to ensure complete coverage of all defects. 
 
The SwRI RFEC technology detection rate was 100%, detecting all defect sites on Pipe Sample 
1, Pipe Sample 2, and Pipe Sample 3.  On average, SwRI located anomalies slightly past the 
actual start of the defect location with a standard deviation of 1.71 inches.  The SwRI RFEC 
technology detected one false positive signal on Test Line 1 of Pipe Sample 2.  The false positive 
signal was identified as a repeatable signal without typical flaw signal characteristics with a 
depth of nearly 90% of the wall thickness and approximately 1 5/8 -inch in length.  SwRI’s 
sizing accuracy is depicted in Figures 10 through 12 in which the predicted and measured 
anomaly depths, lengths, and widths are presented.   
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Figure 10. Measured Depth vs. Predicted Depth for the SwRI RFEC 

Figure 11. Measured Length vs. Predicted Length for the SwRI RFEC 
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Figure 12. Measured Width vs. Predicted Width for the SwRI RFEC 
 
GTI Results 
 
GTI began testing on the morning of Monday January 9, 2006 and completed testing by the 
evening of Thursday January 12, 2006. The GTI RFEC sensor technology collected data by 
indexing through each defect region in 0.25 inch steps.  The GTI RFEC technology was able to 
scan both test lines in each pipe sample at the same time but because of the small incremental 
data collection each pipe sample required a full day to collect data.  GTI did attempt a continuous 
scan with the results of this scan provided in Appendix C. 
 
The GTI RFEC technology detection rate was 100%, detecting all defect sites on Pipe Sample 1, 
Pipe Sample 2, and Pipe Sample 3.  On average, GTI located anomalies slightly past the actual 
start of the defect location with a standard deviation of 1.18 inches.  The GTI RFEC technology 
detected one false positive signal on Test Line 1 of Pipe Sample 1 but identified the anomaly as a 
small unknown feature with a depth of only 4% of the wall thickness and approximately 1-inch 
in length.  GTI’s sizing accuracy is depicted in Figures 13 through 15 in which the predicted and 
measured anomaly depths, lengths, and widths are presented.   
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Figure 13. Measured Depth vs. Predicted Depth for the GTI RFEC 

Figure 14. Measured Length vs. Predicted Length for the GTI RFEC 
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Figure 15. Measured Width vs. Predicted Width for the GTI RFEC 
 
Battelle Results 
 
Battelle began testing the afternoon of Tuesday January 10, 2006 and completed testing by the 
afternoon of Friday January 13, 2006.  Battelle’s testing was periodically interrupted due to 
concerns from the other corrosion inspection technology developers that the permanent magnet 
was causing interference with their systems.  The Battelle Rotating Permanent Magnet 
technology was able to continuously acquire data through each pipe sample taking approximately 
10 to 15 minutes to scan one test line.  During the demonstration Battelle processed signals and 
displayed inspection results in real-time. 
 
The Battelle Rotating Permanent Magnet technology detection rate was 100%, detecting all 
defect sites on Pipe Sample 1, Pipe Sample 2, and Pipe Sample 3.  On average, Battelle located 
anomalies shy of the actual start of the defect location with a standard deviation of 2.05 inches.  
The Battelle Rotating Permanent Magnet technology detected one false positive signal on Test 
Line 2 of Pipe Sample 1 but identified the anomaly as a small single pit with a depth of only 11% 
of the wall thickness and approximately 3/4-inch in length.  Battelle’s sizing accuracy is depicted 
in Figures 16 through 18 in which the predicted and measured anomaly depths, lengths, and 
widths are presented.   
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Figure 16. Measured Depth vs. Predicted Depth for the Battelle Rotating Permanent Magnet 
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Figure 17. Measured Length vs. Predicted Length for the Battelle Rotating Permanent Magnet 
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Figure 18. Measured Width vs. Predicted Width for the Battelle Rotating Permanent Magnet 
 
The benchmark data and test results for the three technologies that tested for metal loss on Pipe 
Samples 1, 2, and 3 are shown in Table 2 through Table 7.
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Table 2. Benchmark Data vs. Results for Corrosion Pipe Sample 1; Test Line 1 
 

Simulated Corrosion Pipe Sample 1 Test Line 1 
Defect Number P1-1 P1-2 P1-3 P1-4 P1-5 P1-6 P1-7 P1-8 P1-9 P1-10 P1-11 P1-12 
Search Region (from 
End B) 328" to 340" 304" to 316" 280" to 292" 256" to 268" 232" to 244" 208" to 220" 184" to 196" 160" to 172" 120" to 144" 100" to 112" 76" to 88" 52" to 64" 

Start and End of Defect (inches)5 

Benchmark Data Blank Blank 287.75 
290.875 

259.625 
263.625 

232.75 
235.75 Blank 190.625 

192.75 Blank 120" 
140.25" Blank Blank 56.75 

60.875 

SwRI –RFEC   282.6 
285.8 

254.5 
258.7 

227.7 
231.0  188.8 

189.7 
160.0 
172.0 

a=120.0 
122.3 

b=128.5 
129.3 

  56.9 
60.2 

GTI – RFEC  ~311.25 
~314.25 

~281.75 
~285.5 

~260.5 
~264.75 

~232 
~236.5  ~191.25 

~193.75  ~120 
~134.25   ~56.75 

~60.5 
Battelle – Rotating 
Permanent Magnet   288 

292.8 
260.1 
264.9 

233.2 
237  188.8 

192.2  120 
132   58.1 

62.3 
Defect Length (inches) 

Benchmark Data Blank Blank 3.125 4 3 Blank 2.125 Blank 20.25 Blank Blank 4.125 

SwRI –RFEC   3.16 4.20 3.30  0.95 12 a=2.25 
b=0.77   3.32 

GTI – RFEC  < 1 2.875 3.375 3.75  1.625  14.25   2.875 
Battelle – Rotating 
Permanent Magnet   3.8 3.8 2.8  2.4  12   3.2 

Defect Width (inches) 
Benchmark Data Blank Blank 2 2 1 Blank 2 Blank Full Circ. Blank Blank 2 

SwRI –RFEC   1.25 1.95 1.09  1.92 Full Circ. a=1.82 
b=Full Circ.   1.63 

GTI – RFEC  > 4 1.5 ~3 > 3  1.5  >4   1.84 
Battelle – Rotating 
Permanent Magnet   1.0 1.5 1.0  1.5  32   1.75 

Maximum Defect Depth (inches) 
Benchmark Data Blank Blank 0.096 0.063 0.081 Blank 0.147 Blank 0.146 Blank Blank 0.122 

SwRI –RFEC   0.10 0.06 0.08  0.09 0.18 a=0.066 
b=0.83   0.13 

GTI – RFEC  0.008 0.090 
0.064 

0.100 
0.075 0.07  0.135 

0.133  ~0.141   0.154 
0.142 

Battelle – Rotating 
Permanent Magnet   0.075 0.055 0.050  0.165  Various up to 

0.150   0.115 

Comments 

SwRI –RFEC     defect signal outside 
stated region   

appears to be large 
region of general wall 
thinning that extends 
out of the designated 
region.  Signal patterns 
not characteristic of 
calibration defects. 

two defects in region, 
designated a and b.    

GTI – RFEC  
unknown feature 
resembling metal loss, 
4% 

2 axially aligned pits, 
48% and 34% 

2 axially aligned pits, 
53% and 40% 

2 pits, deepest 37%. 
Additional features 
observed attributed to 
through hole of defect 
18 sitting over drive coil 

 2 pits offset diagonally, 
72% and 71%  deepest pit was a single 

small slit ~75%   2 axially aligned pits, 
82% and 75.5% 

Battelle – Rotating 
Permanent Magnet 

  
corrosion patch, 
multiple pits of different 
depths 

corrosion patch, 
multiple pits of different 
depths 

corrosion patch, 
multiple pits of different 
depths 

 
corrosion patch, 
multiple pits of different 
depths 

a slow change in signal 
in all sensor throughout 
the region indicates a 
material property 
change 

large area of general 
corrosion of variable 
depth that spans the 
entire sensor width.  
The corrosion is close 
to the weld, altering 
both signals.  A large 
wide corrosion area  at 
128" 

  
corrosion patch, 
multiple pits of different 
depths 
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Table 3. Benchmark Data vs. Results for Corrosion Pipe Sample 1; Test Line 2 
Simulated Corrosion Pipe Sample 1 Test Line 2 

Defect Number P1-13 P1-14 P1-15 P1-16 P1-17 P1-18 P1-19 P1-20 P1-21 P1-22 P1-23 
Search Region (from 
End B) 330" to 342" 306" to 318" 282" to 294" 258" to 270" 234" to 246" 210" to 222" 186" to 198" 160" to 172" 120" to 144" 98" to 110" 74" to 86" 

Start and End of Defect (inches) 

Benchmark Data 335.75 
339.625 

308.875 
312 Blank Blank Blank 213.625 

217.875 Blank Blank 120 
140.75 

108 
110 

79.75 
83.75 

SwRI –RFEC 335.8 
339.9 

309.5 
312.8    214.0 

218.1  160.0 
172.0 

128.9 
129.7 

108.1 
110.1 

79.9 
81.4 

GTI – RFEC ~336.375 
~340.25 

~309 
~312.75    214.75 

218.875   ~120 
~134.25 

~108.5 
~111 

~79.75 
~83.5 

Battelle – Rotating 
Permanent Magnet 

334.2 
338.4 

306.9 
310.8   241.1 

241.8 
212.5 
216.8   126.0 

138.0 
103.1 
106.3 

74.8 
79.1 

Defect Length (inches) 
Benchmark Data 3.875 3.125 Blank Blank Blank 4.25 Blank Blank 20.75 2 4 
SwRI –RFEC 4.04 3.31    4.13  12 0.79 1.99 1.48 
GTI – RFEC 3 2.875    3.25   14.25 1.625 2.875 
Battelle – Rotating 
Permanent Magnet 3.2 2.9   0.7 3.3   12 2.2 3.3 

Defect Width (inches) 
Benchmark Data 1.75 1 Blank Blank Blank 2 Blank Blank Full Circ. 2 2 
SwRI –RFEC 1.47 1.37    1.69  Full Circ. Full Circ. 1.82 1.72 
GTI – RFEC 1.75 1.5    2   > 4 1.5 2.25 
Battelle – Rotating 
Permanent Magnet 1.0 1.25   0.75 2.0   > 5 1.75 1.0 

Maximum Defect Depth (inches) 
Benchmark Data 0.095 0.115 Blank Blank Blank 0.145 Blank Blank 0.127 0.12 0.097 
SwRI –RFEC 0.08 0.11    0.14  0.18 0.06 0.08 0.09 

GTI – RFEC 0.122 
0.070 

0.113 
0.132    0.188 

0.111   0.113 
0.122 0.088 0.096 

Battelle – Rotating 
Permanent Magnet 0.075 0.115   0.020 0.155   Various up to 

0.150 0.110 0.075 

Comments 

SwRI –RFEC        

appears to be large 
region of general wall 
thinning that extends 
out of the designated 
region.  Signal patterns 
not characteristic of 
calibration defects. 

   

GTI – RFEC 2 axially aligned pits, 
65% and 37% 

2 axially aligned pits, 
70% and 60%    2 pits, through hole 

and 59%   general corrosion, 
deepest 60% and 65% diagonal feature, 47% 51% 

Battelle – Rotating 
Permanent Magnet 

corrosion patch, 
multiple pits of different 
depths 

corrosion patch, 
multiple pits of different 
depths 

  small single pit 
corrosion patch, 
multiple pits of different 
depths 

 

a slow change in signal 
in all sensor 
throughout the region 
indicates a material 
property change 

area of general 
corrosion of variable 
depth that spans most 
sensors. A large wide 
corrosion area  at 128" 

corrosion patch, 
multiple pits of different 
depths 

corrosion patch, 
multiple pits of 
different depths 
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Table 4. Benchmark Data vs. Results for Corrosion Pipe Sample 2; Test Line 1 
 

Simulated Corrosion Pipe Sample 2 Test Line 1 
Defect Number P2-1 P2-2 P2-3 P2-4 P2-5 P2-6 P2-7 P2-8 P2-9 P2-10 P2-11 
Search Region (from End B) 294" to 306" 270" to 282" 246" to 258" 222" to 234" 198" to 210" 174" to 186" 150" to 162" 126" to 138" 102" to 114" 78" to 90" 54" to 66" 

Start and End of Defect (inches) 

Benchmark Data Blank Blank Blank 227.25 
229.375 Blank 180.25 

183.375 
153.125 
156.375 Blank 108.125 

112.25 
80.125 

84.5 Blank 

SwRI – RFEC    227.6 
229.8  180.2 

183.5 
153.4 
156.7 

129.8 
131.1 

108.2 
112.3 

80.0 
84.3  

GTI – RFEC    227.25 
229.5  179.75 

183 
152.75 
155.75  107.75 

111.75 
80.25 

84  

Battelle – Rotating Permanent Magnet    228.9 
232.0  181.1 

184.9 
153.8 
157.6  108.6 

112.0 
80.0 
83.6  

Defect Length (inches) 
Benchmark Data Blank Blank Blank 2.125 Blank 3.125 3.25 Blank 4.125 4.375 Blank 
SwRI –RFEC    2.21  3.23 3.31 1.38 4.05 4.31  
GTI – RFEC    2.25  3.25 3  4 3.75  
Battelle – Rotating Permanent Magnet    2.1  2.8 2.8  2.4 2.6  

Defect Width (inches) 
Benchmark Data Blank Blank Blank 2 Blank 1 1 Blank 2 2 Blank 
SwRI –RFEC    1.57  0.99 1.18 1.06 2.14 1.88  
GTI – RFEC    2  1 2  1.5 2.5  
Battelle – Rotating Permanent Magnet    1.0  1.0 1.0  1.5 1.5  

Maximum Defect Depth (inches) 
Benchmark Data Blank Blank Blank 0.079 Blank 0.114 0.085 Blank 0.158 0.147 Blank 
SwRI –RFEC    0.07  0.11 0.04 0.17 0.16 0.13  
GTI – RFEC    0.037  0.073 0.026  0.142 0.188  
Battelle – Rotating Permanent Magnet    0.075  0.075 0.065  0.165 0.170  

Comments 

SwRI –RFEC        

Repeatable 
signal, but 
does not have 
typical flaw 
signal 
characteristics. 

   

GTI – RFEC            

Battelle – Rotating Permanent Magnet    

Corrosion 
patch, with 
multiple pits of 
different depths 

 

Corrosion 
patch, with 
multiple pits of 
different depths 

Corrosion 
patch, with 
multiple pits of 
different depths 

 

Corrosion 
patch, with 
large multiple 
pits of different 
depths 

Corrosion 
patch, with 
large multiple 
pits of different 
depths 
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Table 5. Benchmark Data vs. Results for Corrosion Pipe Sample 2; Test Line 2 
 

Simulated Corrosion Pipe Sample 2 Test Line 2 
Defect Number P2-12 P2-13 P2-14 P2-15 P2-16 P2-17 P2-18 P2-19 P2-20    
Search Region (from End B) 246" to 258" 222" to 234" 198" to 210" 174" to 186" 150" to 162" 126" to 138" 102" to 114" 78" to 90" 54" to 66"    

Start and End of Defect (inches) 

Benchmark Data 248.125 
250.25 Blank 202.625 

205.75 Blank Blank 130 
134.125 Blank Blank 57.75 

60.875    

SwRI –RFEC 248.1 
249.8  202.3 

205.4   129.1 
133.2   56.3 

59.7    

GTI – RFEC 249 
251  201 

204   129.5 
133.5   57.5 

60.5    

Battelle – Rotating Permanent Magnet 250.0 
253.0  204.9 

209.0   132.8 
137.4   59.4 

63.2    

Defect Length (inches) 
Benchmark Data 2.125 Blank 3.125 Blank Blank 4.125 Blank Blank 3.125    
SwRI –RFEC 1.72  3.10   4.14   3.37    
GTI – RFEC 2  3   4   3    
Battelle – Rotating Permanent Magnet 2.0  3.1   3.6   2.8    

Defect Width (inches) 
Benchmark Data 2 Blank 1 Blank Blank 2 Blank Blank 1    
SwRI –RFEC 1.21  1.21   1.69   1.25    
GTI – RFEC 1.5  1.5   2   1.5    
Battelle – Rotating Permanent Magnet 1.5  0.75   1.5   1.0    

Maximum Defect Depth (inches) 
Benchmark Data 0.14 Blank 0.105 Blank Blank 0.112 Blank Blank 0.188    
SwRI –RFEC 0.11  0.08   0.11   0.16    
GTI – RFEC 0.148  0.081   0.159   0.176    
Battelle – Rotating Permanent Magnet 0.115  0.075   0.105   0.180    

Comments 
SwRI –RFEC             
GTI – RFEC             
Battelle – Rotating Permanent Magnet 

Corrosion 
patch, with 
multiple pits of 
different 
depths 

 

Corrosion 
patch, with 
multiple pits of 
different 
depths 

  

Corrosion 
patch, with 
multiple pits of 
different 
depths 

  

Corrosion 
patch, with 
multiple pits of 
different 
depths, One 
pit may be 
through hole 
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Table 6. Benchmark Data vs. Results for Corrosion Pipe Sample 3; Test Line 1 
 

Simulated Corrosion Pipe Sample 3 Test Line 1 
Defect Number P3-1 P3-2 P3-3 P3-4 P3-5 P3-6 P3-7 P3-8 P3-9 P3-10 P3-11  

Search Region (from End B) 384" to 396" 360" to 372" 330" to 342" 300" to 312" 270" to 282" 222" to 234" 186" to 198" 162" to 174" 138" to 
150" 102" to 114" 66" to 78"  

Start and End of Defect (inches) 

Benchmark Data Blank Blank 335 
337.25 

305.625 
306.375 

275 
277.25 Blank 189.875 

194 Blank 143.665 
144.335 

106.375 
109.625 Blank  

SwRI –RFEC   336.3 
338.5 

306.8 
307.6 

276.0 
278.3  190.5 

194.8  144.1 
144.8 

106.7 
109.9   

GTI – RFEC   335 
337 

306.5 
307.75 

275.75 
277.75  190 

193.5  143.5 
144.75 

106 
109   

Battelle – Rotating Permanent Magnet   338.0 
341.0 

307.8 
309.3 

276.4 
279.5  187.8 

193.0  144.2 
145.5 

108.8 
112.4   

Defect Length (inches) 
Benchmark Data Blank Blank 2.25 0.75 2.25 Blank 4.125 Blank 0.67 3.25 Blank  
SwRI –RFEC   2.19 0.78 2.29  4.22  0.73 3.19   
GTI – RFEC   2 1.25 2  3.5  1.25 3   
Battelle – Rotating Permanent Magnet   2.0 1.5 2.1  4.2  1.3 2.6   

Defect Width (inches) 
Benchmark Data Blank Blank 2 0.75 2 Blank 2 Blank 0.67 1 Blank  
SwRI –RFEC   1.8 0.88 1.93  1.64  0.63 1.29   
GTI – RFEC   1.5 1 2  2  1 2   
Battelle – Rotating Permanent Magnet   1.75 0.75 1.5  1.5  0.5 1.5   

Maximum Defect Depth (inches) 
Benchmark Data Blank Blank 0.133 0.148 0.103 Blank 0.115 Blank 0.120 0.156 Blank  
SwRI –RFEC   0.09 0.11 0.09  0.10  0.09 0.15   

GTI – RFEC   0.164 0.158 0.142 
0.119  0.173  0.148 

0.112 
0.182 
0.176   

Battelle – Rotating Permanent Magnet   0.165 0.150 0.105  0.105  0.080 0.160   
Comments 

SwRI –RFEC             

GTI – RFEC     Three pits     Three pits 
Two pits 
axially 
aligned 

 

Battelle – Rotating Permanent Magnet   

Corrosion 
patch, with 
multiple pits of 
different 
depths 

Single Pit 

Corrosion 
patch, with 
multiple pits of 
different 
depths 

 

Corrosion 
patch, with 
multiple pits of 
different 
depths 

 Single Pit 

Corrosion 
patch, with 
multiple pits of 
different 
depths 
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Table 7. Benchmark Data vs. Results for Corrosion Pipe Sample 3; Test Line 2 
 

Simulated Corrosion Pipe Sample 3 Test Line 2 
Defect Number P3-12 P3-13 P3-14 P3-15 P3-16 P3-17 P3-18 P3-19 P3-20 P3-21 P3-22 P3-23 

Search Region (from End B) 390" to 402" 356" to 368" 330" to 342" 306" to 318" 282" to 294" 248" to 260" 210" to 222" 180" to 192" 156" to 
168" 126" to 138" 102" to 114" 66" to 78" 

Start and End of Defect (inches) 

Benchmark Data 392.25 
396.375 Blank 335.875 

336.625 Blank Blank 250.625 
253.75 

214.5 
217.625 

185.765 
186.485 Blank 130 

134.125 Blank 69.5 
73.625 

SwRI –RFEC 392.5 
396.6  336.9 

337.7   251.6 
254.8 

215.2 
218.4 

186.4 
187.2  130.5 

134.5  69.5 
73.8 

GTI – RFEC 393 
396  335.75 

336.75   251.25 
254 

214.5 
217.25 

185.75 
186.75  130.25 

133.75  70.25 
74 

Battelle – Rotating Permanent Magnet 392.4 
397.0  337.1 

338.0   250.5 
254.4 

214.1 
218.1 

184.9 
186.2  128.3 

132.7  65.9 
70.6 

Defect Length (inches) 
Benchmark Data 4.125 Blank 0.75 Blank Blank 3.125 3.125 0.72 Blank 4.125 Blank 4.125 
SwRI –RFEC 4.18  0.72   3.21 3.18 0.81  3.97  4.3 
GTI – RFEC 3  1   2.75 2.75 1  3.5  3.75 
Battelle – Rotating Permanent Magnet 3.6  0.9   2.9 3.0 1.3  3.4  3.7 

Defect Width (inches) 
Benchmark Data 2 Blank 0.75 Blank Blank 1 1 0.72 Blank 2 Blank 2 
SwRI –RFEC 1.69  0.51   0.79 1.10 0.73  1.48  1.85 
GTI – RFEC 2.5  1   1.5 1.5 1  2  2 
Battelle – Rotating Permanent Magnet 1.25  0.5   1.0 1.0 0.75  1.25  1.5 

Maximum Defect Depth (inches) 
Benchmark Data 0.094 Blank 0.154 Blank Blank 0.07 0.091 0.139 Blank 0.103 Blank 0.088 
SwRI –RFEC 0.08  0.13   0.06 0.09 0.11  0.10  0.09 

GTI – RFEC 0.135 
0.102  0.149 

0.145   0.089 
0.066 

0.128 
0.094 

0.142 
0.124  0.121 

0.114  0.124 
0.009 

Battelle – Rotating Permanent Magnet 0.065  0.105   0.085 0.080 0.105  0.085  0.055 
Comments 

SwRI –RFEC             

GTI – RFEC Two pits 
axially aligned   

There was an 
increase in 
amplitude in 
this region. We 
concluded that 
the increase in 
the field was 
caused by the 
drive coil being 
located at P3-
14. An actual 
defect may be 
"buried" in the 
field but it is 
not obvious. 

 Two pits 
axially aligned 

Two pits 
axially aligned   Two pits Reflection 

from defect 10 Two features 

Battelle – Rotating Permanent Magnet 

Corrosion 
patch, with 
multiple pits of 
different 
depths 

 Single Pit   

Corrosion 
patch, with 
multiple pits of 
different 
depths 

Corrosion 
patch, with 

multiple pits of 
different 
depths 

Single Pit  

Corrosion 
patch, with 
multiple pits of 
different 
depths 

 

Corrosion 
patch, with 
multiple pits of 
different 
depths 
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Mechanical Damage Assessment 
 
Only one technology, the PNNL Ultrasonic Strain Measurement technology, was tested for 
assessment of mechanical damage. Two 24-inch diameter pipes were inspected by PNNL for 
mechanical damage. The first pipe (Pipe Sample 1) consisted of two pipes welded together with 
mechanical damage defects along three rows separated by 120° and measured approximately 28-
feet in length. The test line on Pipe Sample 1 consisted of mechanical damage created using a 
50-ton track hoe. An example mechanical damage defect from Pipe Sample 1 is shown in Figure 
19.  The second pipe (Pipe Sample 2) measured approximately 40 feet in length with plain (or 
smooth) dent defects along one test line.  An example mechanical damage defect from Pipe 
Sample 2 is shown in Figure 20.   
 

 
Figure 19. Example Mechanical Damage Defect from Pipe Sample 1 
 

 
Figure 20. Example Mechanical Damage Defect from Pipe Sample 2 
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The benchmark data and test results for PNNL’s PNNL Ultrasonic Strain Measurement 
technology are shown in Table 8 and Table 9. 
 
Table 8. Benchmark vs. Test Results for Mechanical Damage Pipe Sample 1 
 

PIPE SAMPLE 1 
Dent Severity 

0 = No damage 
1 = Least Severe 

2 = Moderately Severe 
3 = Severe 

4 = Most Severe 

Defect 
Number 

Search 
Region 

(from End A) 

Benchmark PNNL 

Comments 

D1 64.5” 2 4 dent start at 63.5" end at 66.5", length 3" 
D2 68.5” 2 2 dent start at 67" end at 70", length 3" 
D3 77.5” 2 1 dent start at 77.3" end at 78.1", length 0.9" 

D4 105” 2 2.5 long dent along the axis dent start at 99.9" end at 110.4", 
length 10.5" 

D5 114” 1 2.5 long dent along the axis dent start at 113.8" end at 119.9", 
length 6.1" 

D6 162” Not Part of 
Benchmark  

detected, damage looks as significant as a 3 or 4, length 
approximately 6 inches long or two dents approximately 2 
inches long separated by 1 inch 

 195.5”   

damage detected; damage looks as significant as a 3, (1 
defect approximately 7 inches long or 2 defects, one 4 inches 
long and a second 2 inches long separated by approximately 
1 inch) 

D7 230” 2 3 dent start at 228.1" end at 234.7", length 6.7" 
D8 240” 1 2 dent start at 236.4" end at 242.1 length 5.7" 
D9 246” 1 0.5 dent start at 245.7" end at 246.2", length 0.5" 

D10 267.5” 4 4 similar to calibration defects dent start at 264" end at 270.1", 
length 6.1" 

D11 274” 2 4 similar to calibration defects dent start at 271" end at 276.1 
length 5.1" 

D12 280.5” 3 4 similar to calibration defects  dent start at 277.3" end at 
282.6", length 5.3" 

D13 305.5” 4 NR out of scan range 
D14 310” 4 NR out of scan range 
D15 313” 3 NR out of scan range 
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Table 9. Benchmark vs. Test Results for Mechanical Damage Pipe Sample 2 
 

PIPE SAMPLE 2 
Dent Severity 

0 = No damage 
1 = Least Severe 

2 = Moderately Severe 
3 = Most Severe 

Defect 
Number 

Search 
Region 

(from End A) 

Benchmark PNNL 

Comments 

R03 109.25" 1 1 small degree of damage, start of dent 107" end 110" length 3" 

R04 144” 3 2 moderate damage, start of dent 140.25" end 147.5", length 
7.25" 

R05 183” 2 3 significant damage, start of dent 178.75" end 187.25, length 
8.5 

R06 217” 1 1 small degree of localized damage, start of dent 215.5" end 
220, length 4.5" 

R07 253” 2 2 moderate damage, start of dent 250.5" end 258.5, length 8" 

R08 289.5” 3 3 significant damage, start of dent 286.75 end 295.25, length 
8.5" 

R09 325” 2 2 moderate damage, start of dent 323" end 331", length 8" 
R10 360.5” 3 3 significant damage, start of dent 359" end 367", length 8" 
R11 397” 0 0 no dent 

 
The term “dent severity” is used in this report to describe relative severity of dents within a 
specific pipe sample.  The absolute severity of each dent is not known.  Determining the severity 
of mechanical damage is difficult since there are no standards such as those used for corrosion 
anomalies.  The criteria used to establish the benchmark severity ratings could differ from 
PNNL’s severity criteria and as such may have led to the discrepancies.   
 
PNNL began testing the afternoon of Monday January 10, 2006 and completed testing by the 
afternoon of Friday January 13, 2006.  The PNNL Ultrasonic Strain Measurement technology 
only assesses the relative severity of mechanical damage defects.  Location of dents is more 
practically performed by caliper tools and as such was not part of the evaluation criteria for this 
technology.  Additionally, because PNNL was only required to identify dent severity at a specific 
location the scan speed was also not assessed.  
 
PNNL’s technology performed well on the mechanical damage sample with plain dents (Pipe 
Sample 2). There was discrepancy between the PNNL data and the benchmark at defect sites 
R04 and R05 on Pipe Sample 2; however the remaining defect locations correlated well.   
 
There were a number of differences between the benchmark data and the PNNL data for Pipe 
Sample 1.  PNNL noted that the multiple dents and the non-circular nature of the pipe from the 
three rows of dent defects on Pipe Sample 1 created a significant amount of background 
deformation and thus stress and strain within the pipe sample.  Due to these factors, the PNNL 
Ultrasonic Strain Measurement technology was not optimized for the degree of background 
deformation and is possibly the reason for the discrepancies between the benchmark data and 
PNNL’s results.  PNNL indicated that additional tests would be desirable to help classify the 
dent severity for Pipe Sample 1.   
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Stress Corrosion Cracking 
 
Only one technology, the ORNL Shear Horizontal EMAT, was tested for detection of stress 
corrosion cracking. ORNL began testing the afternoon of Tuesday January 10, 2006 and 
completed testing by mid-day Thursday January 12, 2006.  The ORNL Shear Horizontal EMAT 
technology acquired data as their inspection tool was continuously pulled through the pipe 
sample at the rate of about an inch per second.  ORNL took multiple scans through each line to 
assess the consistency of the signal. Results were not displayed in real time; rather ORNL post 
processes the captured data to develop final results.  ORNL claims post processing is minimal 
and could easily be performed during data acquisition with current generation computing power.   
 
As shown in Table 10 the technology ran three lines on a 26-inch diameter pipe with natural 
stress corrosion cracking. The EMAT technology detected one false positive signal on each test 
line. The configuration of the SCC defects could have contributed to the false positive readings.  
Because the EMAT configuration scans a minimum of 9-inches of the pipe’s circumference, 
some of the false positives could be the result of other cracks located in close proximity to the 
SCC defects under evaluation.  
 
Only one defect site (SCC2) provided no discernable signal; however magnetic particle analysis 
showed that these cracks are small and difficult to detect.  Additionally, the location of the crack 
colony listed as SCC3 is off by a couple of inches.  This is possibly due to defect (18), not 
considered as part of the test and located approximately 3-inches away in the circumferential 
direction, which may have been detected over the smaller SCC colony in SCC3.  The most 
significant cracks (SCC8, SCC9, and SCC10) in the test sample were detected by the ORNL 
Shear Horizontal EMAT technology.  An example SCC defect is shown in Figure 21.  The 
benchmark data and test results for ORNL’s Shear Horizontal EMAT technology are shown in 
Table 10. 

 
 
Figure 21. Example SCC Defect 
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Table 10. Benchmark vs. ORNL Test Results; SCC Testing 
 

Benchmark ORNL 
Defect 

Number 

Search 
Region 

(from End 
B) 

Start of 
Crack 

Region (from 
End B) 

End of Crack 
Region (from 

End B) 
Type of SCC 

Start of Crack 
Region (from 

End B) 

End of Crack 
Region (from 

End B) 
Type of SCC 

Test Line 1 

SCC1 242" to 
254" Blank      

SCC2 
(5 & 4) 

226" to 
242"  225.25 238.25 Isolated    

SCC3 
(8) 

210" to 
222"  209.25 212.25 Colony 214 216 Isolated 

SCC4  175" to 
187"  Blank      

SCC5 140" to 
152" Blank   145 148 Colony; another 

isolated at 142 
Test Line 2 

SCC6 246" to 
258" Blank      

SCC7 234" to 
246" Blank   236 237 Isolated 

SCC8 
(6) 

210" to 
222" 210.75 213.5 Colony 210 211 Isolated 

SCC9 
(7) 

188" to 
200" 189.25 193.5 Colony 194 196 Colony 

SCC10 
(9) 

140" to 
152" 141.5 145.5 Colony 144 149 

Colony; looks like 
gap in the middle; 

may be 2 sets 
separated by 1-inch. 

Test Line 3 

SCC11 
(16) 

225" to 
245" 224.25 241.25 Colony 237 239 

Isolated; After 
scanning, we 

documented large 
dirt patches along 
line 3 We believe 

EMATs lifted off the 
surface due to dirt 

inside pipe.  
Reliability of data in 

this area is low 

SCC12 210" to 
222" Blank      

SCC13 188" to 
200" Blank      

SCC14 140" to 
152" Blank   139 141 Isolated 

 
Polyethylene Pipe Defects 
 
Only one technology, the NETL Capacitive Sensor for Polyethylene Pipe Inspection, was tested 
for detection of plastic pipe defects. This technology inspects for small volumetric anomalies 
with an NETL specified detection threshold of approximately 0.015 cubic inches.  The 
measurement technology is localized and therefore anomalies in close proximity and pipe end 
effects do not influence its detection capabilities.   
 
A measure of defect significance was established based on the calibration defect which was 3/8-
inch in diameter and 50% deep (0.028 cubic inches).  The volume of the calibration defect was 
set at a significance of one.  The significance of all other defects was based on the volume of the 
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calibration defect.  An example defect is shown in Figure 22.  This defect was calculated to have 
a volume of 0.04 cubic inches which equals a significance of 1.43.  As shown in Table 11, the 
technology ran one test line on a 6-inch diameter polyethylene pipe sample.   
 

 
 

Figure 22. Example Plastic Pipe Defect 
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Table 11. Benchmark vs. NETL Test Results; Plastic Pipe Testing 
 

Benchmark NETL 
Defect 

Number 
Search 
Region 

Defect Location 
from Side A (to 

center) 

Significance of 
Defect (volume 

ratio from 
calibration defect) 

Defect 
Volume  

Defect 
Diameter 

Defect 
Location from 

Side A (to 
center) 

Significance of 
Defect (volume 

ratio from 
calibration defect) 

Defect 
Volume Comments 

 inches inches ratio in3 inches inches ratio in3  

D1 21" to 27" 25” 1.57 0.044 0.375” 25.06” 1.38 0.039 

For significance: defect 
calibration hole @ 18” = 1 Vol 
@ 18” = 0.028, Vol @ 25.06 = 
0.039 

D2 28" to 34" Blank None  
D3 35" to 41" Blank None  
D4 42" to 48" 46” 0.79 0.022 0.25” 45.62” 0.99 0.028 Volume = 0.028 

D5 49" to 55" 53” 0.89 0.025 1/8” wide 1” 
long saw cut 52.55” 1.31 0.037 Volume = 0.037 

D6 56" to 62" Blank None  
D7 62" to 70" 67” 1.57 0.044 0.375” 66.36” 1.15 0.033 Volume = 0.033 
D8 70" to 76" Blank None  
D9 77" to 83" Blank None  

D10 84" to 90" 88” 0.61 0.017 0.25” 87.15” 0.43 0.012 Volume = 0.012 
D11 91" to 97" Blank None  

D12 98" to 104" 102” 1.43 0.04 1/8” wide 1” 
long saw cut 101.03” 1.61 0.045 Volume = 0.045 

D13 105" to 111" 109” 1.43 0.04 0.75” 107.84” 0.71 0.02 Volume = 0.020 
D14 112" to 118" 116” 0.54 0.015 0.375” 114.75” 0.57 0.16 Volume = 0.016 

D15 119" to 125" 123” and 123.5” 0.61 (each) 0.017 
(each) 0.25” (each) 121.89” 0.74 0.74 Volume = 0.021 

D16 126" to 132" Blank None? 

Indications that a consistent 
amount of material may have 
been removed along entire 
length 

D17 132" to 138" Blank None? 

Indications that a consistent 
amount of material may have 
been removed along entire 
length 

D18 138" to 144" 140” 1.25 0.035 0.75” 138.3” 1.13 0.032 Volume = 0.032 
D19 144" to 150" 148” 1.11 0.031 0.75” 146.76” 0.71 0.020 Volume = 0.020 

            Not part of the benchmarking demonstration 
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While this was the second demonstration for all other technology developers, this demonstration 
was the first for the NETL Capacitive Sensor technology and should be taken into consideration 
when evaluating the results.  During the demonstration, the NETL Capacitive Sensor technology 
collected data at a frequency of 1-hertz but has the capability to collect data up to a frequency of 
45-hertz. 
 
NETL’s accuracy in assessing defect severity is depicted in Figure 23. The NETL Capacitive 
Sensor technology detection was excellent detecting all defect sites to within 1% of the actual 
centerline location and did not report any false positive signals. The percentage difference in 
defect significance was approximately 25%.   
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Figure 23. Measured Severity vs. Predicted Severity for the NETL Capacitive Sensor 
 
SUMMARY 
 
Four pipeline anomaly conditions were evaluated by six different sensor technology developers.  
Three technologies assessed corrosion anomalies while individual technologies assessed 
mechanical damage, SCC, and plastic pipe material loss. 
 
The corrosion detection techniques demonstrated significant promise for inspection of 
unpiggable pipelines. Accurate detection and sizing of natural corrosion appears to be reachable 
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but additional development may be required to refine sizing algorithms especially when pipe 
material properties are unknown and calibration defects are not available.  Additional data 
processing for some of the technologies and collection of larger natural corrosion defect libraries 
to conduct repeatable testing needs to be established. Future collection of data towards target 
corrosion on pipe samples pulled from service will improve system capabilities.  In addition, the 
speed at which data is collected could be improved for all of the technologies.  The usability of 
these technologies will rely on their ability to collect data for long pipeline segments in a 
relatively short amount of time as well as their ability to meet the design and power requirements 
of the Explorer robotic platform. 
 
PNNL’s mechanical damage detection technique also achieved reasonably good results 
especially in the pipe sample containing only plain dents.  Considering the uniqueness of Pipe 
Sample 1 (multiple dents in close proximity), more accurately assessing the dent severity for this 
type of pipe sample would be a future goal for PNNL’s technology.  In-service pipelines with the 
amount of denting evident on Pipe Sample 1 is highly unlikely and does not represent a realistic 
pipeline operating scenario.  Track hoe defects; however, would be typical of third party damage 
evident on operating pipelines.   
 
The ORNL EMAT system also performed well detecting natural stress corrosion cracks that 
formed while the pipeline was in-service.  The ORNL EMAT technology did detect some false 
positives on each test line but was also able to detect the most significant SCC locations.  Given 
the nature of SCC, it is difficult to accurately size crack depths.  Some of the cracks used in the 
benchmarking program may have been too small to clearly detect.  Collection of additional SCC 
defect libraries and crack sizing would be a valuable addition to this benchmarking program. 
 
The NETL Capacitive Sensor was quite accurate in identifying defect locations.  Sizing of 
plastic pipe defects is reachable but will require additional research to develop defect sizing 
algorithms.   While this was a successful demonstration of the inspection sensor technology, 
inspection variables need to be considered in future evaluations. 
 
Following the submittal of their test data, the technology developers were sent the benchmark 
data. They were given an opportunity to comment on their results and to provide their 
perspective on their technology’s performance relative to the benchmark data. Appendix C 
contains the developer’s comments. Overall, the technologies performed well and the results are 
encouraging.  As the development of these technologies progresses and future testing takes 
place, it is envisioned that improvements in the technology and data analysis techniques will 
continue to improve the false positive rate and enhance the precision and accuracy of the defect 
signals. 
 
PATH FORWARD 
 
As noted, PHMSA Pipeline Safety R&D Program goals are to understand the gaps between 
existing technologies and those needed to resolve the key pipeline issues. One recognized path 
forward is to integrate successfully demonstrated sensor technologies into a robotic 
platform/sensor system that can be deployed remotely as part of an integrated package. This 
effort is driven in large part by new PSIA regulations which require inspection of gas 
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transmission pipelines and distribution mains in high-consequence areas. A large percentage of 
these pipes cannot be inspected using typical “smart-pig” techniques because of diameter 
restrictions, pipe bends and valves. In addition, pressure differentials and flow can be too low to 
push a pig through some pipes.  To help solve these problems, the PHMSA Pipeline Safety R&D 
Program has established an aggressive schedule to develop a prototype remote system which 
includes continued co-funding with industry partners.  It is anticipated that upon completion of 
the prototype systems, they will be able to traverse all pipes (including unpiggable lines) of 
various diameters while providing continuous, real-time detection of pipe anomalies or defects. 
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APPENDIX A – BENCHMARK DATA 



 

 

 



 

A-1 

Calibration Metal Loss 
Location

Depth of Metal Loss
Measured Length & 

Width of Defect
Measured Max. 
Depth of Defect

Comments

inches from End B to 
center of defect inches

361" (59" from End A) See profile

Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

Total Length of Metal Loss Region Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

Total Length of Metal Loss Region Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

BLANK 7

Defect 8

Defect 7

N

Y

Y

BLANK 10

Defect 9

BLANK 9

P1-13 330" to 342" 335.75"

BLANK 6

BLANK 5

BLANK 1

Defect 11

Defect 4

Defect 5

BLANK 3

Defect 10

P1-NC2

BLANK 11 (natural corrosion pipe segment)

Defect 3

Defect 2

BLANK 2

Y P1-NC1

BLANK 4 (natural corrosion pipe segment)

Y

Y

N

Y

N

---

WELD 120"

339.625" 3.875" 1.75" 0.095"

P1-14 306" to 318" 308.875" 312" 3.125" 1" 0.115"

Y

N

N

N

N

Y

Y

--- ---

WELD 180"

P1-1 328" to 340" --- ---

---

290.875" 3.125"

---

3"

2.125"

20.25"

--- ---

WELD 120"

P1-22

WELD 180"

---

--- --- ---

--- --- N BLANK 8

---

4.125"

---P1-11 76" to 88" --- ---

2"P1-12 52" to 64"

---

P1-10 100" to 112" --- ---

P1-15 282" to 294" --- ---

P1-16 258" to 270" --- ---

--- --- N

---

P1-17 234" to 246" --- ---

4.25" 2" 0.145" YP1-18 210" to 222" 213.625" 217.875"

--- --- --- NP1-19 186" to 198" --- ---

--- --- --- NP1-20 160" to 172" --- ---

20.75" Full Circumference 0.127" YP1-21 120" to 144" 120" 140.75"

98" to 110" 108" 110" 2" 2" 0.12" Y

0.122"

0.063"

2" 0.096"

1"

--- ---

56.75" 60.875" Defect 6

P1-2 304" to 316" --- --- --- --- ---

P1-5

P1-3 280" to 292" 287.75"

P1-4 256" to 268" 259.625"

2" 0.147"

263.625" 4" 2"

0.081"

Detection of Metal Loss - Page 1

Sensor Design:

Name:
Date:
Company:

TEST LINE 1

TEST DATA

8" Diameter, 0.188" Wall Thickness Pipe Sample; Schedule 10; Length = 34' 11.75"
Pipe Sample:
Defect Set:

PIPE SAMPLE 1

Calibration P1-1:

Metal Loss Length & Width

inches

2 x 2

CALIBRATION DATA

PIPE SAMPLE 1: 

Pipe Sample

0.146"

---

P1-9 120" to 144" 120" 140.25"

--- ------ ---

Full Circumference

---

P1-8

P1-6 208" to 220" ---

P1-7 184" to 196" 190.625" 192.75"

160" to 172"

232" to 244" 232.75" 235.75"

P1-23

TEST LINE 2

74" to 86" 79.75" 83.75" 4" 2" 0.097"
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Calibration Metal Loss 
Location

Depth of Metal Loss
Measured Length & 

Width of Defect
Measured Max. 
Depth of Defect

Comments

inches from End B to 
center of defect inches

301.5" (58.5" from End A) See profile
275" (85" from End A) See profile

Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

Total Length of Metal Loss Region Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

Total Length of Metal Loss Region Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

WELD 120"

Y

Defect 11; through hole

BLANK 11

BLANK 10

Defect 10

BLANK 9

BLANK 8

Defect 9

BLANK 7

Defect 8

BLANK 1

Y

N

N

N

TEST LINE 2

--- --- ---

60.875"

BLANK 3

BLANK 2

Defect 4

BLANK 5

Defect 3

Defect 2

Defect 1

Y

N

P2-9 102" to 114" 108.125"

P2-7

Detection of Metal Loss - Page 2
Name:
Date:
Company:

Benchmarking of Inspection Technologies

250.25"

WELD 120"

BLANK 4

2.125" 2" 0.14"P2-12 246" to 258" 248.125"

P2-13 222" to 234" --- --- N--- --- ---

3.125" 1" 0.105" YP2-14 198" to 210" 202.625" 205.75"

--- --- --- NP2-15 174" to 186" --- ---

--- --- --- NP2-16 150" to 162" --- ---

4.125" 2" 0.112" YP2-17 126" to 138" 130" 134.125"

P2-18 102" to 114" --- ---

P2-19 78" to 90" --- --- --- --- ---

TEST LINE 1

Sensor Design:

--- --- ---

3.125" 1" 0.188"P2-20 54" to 66" 57.75"

0.158"112.25" 4.125" 2"

--- --- ---

150" to 162" 153.125" 156.375"

P2-8 126" to 138" --- ---

PIPE SAMPLE 2:
Calibration P2-1: 3 x 1
Calibration P2-2: 2 x 2

CALIBRATION DATA

Pipe Sample Metal Loss Length & Width

inches

3.25" 1" 0.085"

0.114"3.125"

Y

Y

P2-5 198" to 210" ---

TEST DATA

Pipe Sample: PIPE SAMPLE 2
Defect Set:

---

P2-6 174" to 186" 180.25" 183.375"

--- ---

1"

--- N

P2-4 222" to 234" 227.25" 229.375" 2.125" 2" 0.079" Y

P2-3 246" to 258" --- --- --- --- --- N

P2-2 270" to 282" --- --- --- --- --- N

P2-11 54" to 66" --- ---

P2-1 294" to 306" --- ---

P2-10 78" to 90" 80.125" 84.5" Defect 54.375" 2" 0.147" Y

8" Diameter, 0.188" Wall Thickness Pipe Sample; Schedule 10; Length = 30' 0.375"

BLANK 6--- --- --- N

 



 

A-3 

Calibration Metal Loss 
Location

Depth of Metal Loss
Measured Length & 

Width of Defect
Measured Max. 
Depth of Defect

Comments

inches from End B to 
center of defect inches

421" (59" from End A) See profile

Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

Total Length of Metal Loss Region Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

Total Length of Metal Loss Region Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

Defect 8

WELD 240"

WELD 240"

N

Y

BLANK 10

Defect 13

BLANK 9

BLANK 6

Defect 12; machined defect

Defect 11

Defect 10

BLANK 8

BLANK 7

BLANK 1

Y

N

Y

N

Defect 6; machined defect

BLANK 4

Defect 5

BLANK 3

Defect 14

Defect 4

Defect 3; machined defect

Defect 2

BLANK 2

4.125" 2" 0.094"

0.75" 0.75"

P3-12 390" to 402" 392.25" 396.375"

0.154" N Defect 9; machined defectP3-14 330" to 342" 335.875" 336.625"

P3-15 306" to 318" --- --- --- --- --- N

--- --- --- NP3-16 282" to 294" --- ---

3.125" 1" 0.07" YP3-17 248" to 260" 250.625" 253.75"

3.125" 1" 0.091" YP3-18 210" to 222" 214.5" 217.625"

0.72" 0.72" 0.139" NP3-19 180" to 192" 185.765" 186.485"

--- --- --- NP3-20 156" to 168" --- ---

4.125" 2" 0.103" YP3-21 126" to 138" 130" 134.125"

--- --- ---

4.125" 2" 0.088"

--- ---

P3-22 102" to 114" --- ---

P3-23 66" to 78" 69.5" 73.625"

---384" to 396" --- ---

P3-11 66" to 78"

TEST LINE 2

--- --- --- N BLANK 5--- ---

--- --- --- NP3-2 360" to 372" --- ---

2.25" 2" 0.133" YP3-3 330" to 342" 335" 337.25"

0.75" 0.75" 0.148" NP3-4 300" to 312" 305.625" 306.375"

2.25" 2" 0.103" YP3-5 270" to 282" 275" 277.25"

--- --- --- NP3-6 222" to 234" --- ---

4.125" 2" 0.115" YP3-7 186" to 198" 189.875" 194"

--- --- --- NP3-8 162" to 174" --- ---

P3-9 138" to 150" 143.665" 144.335" 0.67" 0.67" 0.120" N

Defect Set: 8" Diameter, 0.188" Wall Thickness Pipe Sample; Schedule 10; Length = 40' 0.25"

TEST DATA

Pipe Sample: PIPE SAMPLE 3

Benchmarking of Inspection Technologies

Company:

Sensor Design:

P3-13 356" to 368" --- --- --- --- ---

Detection of Metal Loss - Page 3
Name:
Date:

1" 0.156"

inches
PIPE SAMPLE 3:

TEST LINE 1

Defect 7

Calibration P3-1: 2 x 2

P3-1

CALIBRATION DATA

Pipe Sample Metal Loss Length & Width

P3-10 102" to 114" 106.375" 109.625" 3.25"
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Pipe Sample: 993
Calibration 

Crack 
Location

Length Depth
Measured 

Length
Measured 

Depth

inches from 
end B inches

% wall 
thickness

186.4 2.5
58.7 5
86.4 5
82.4 2.5
44.4 3

Defect 
Number

Search Region 
(Distance from 

End B)

Start of Crack 
Region from 

Side B

End of 
Crack 
Region 

from Side B

inches inches inches
Isolated Crack
Colony of Cracks

Isolated Crack
Colony of Cracks

Isolated Crack
Colony of Cracks

Isolated Cracks
Colony of Cracks

Isolated Crack
Colony of Cracks

TEST LINE 1

SCC2
(5 & 4)

226" to 242" 225.25 238.25
None

SCC1
(Blank 3)

242" to 254" --- ---
None

None
Blank 1

SCC3
(8)

210" to 222" 209.25 212.25
None

SCC5 
(Blank 1)

140" to 152" --- ---

multiple cracks; max = ~1/2"
multiple cracks; max = ~1/2"

2
3

Blank Area:

Comments

26" Diameter Pipe with Stress Corrosion Cracks; Length = 26 feet
Pipe Sample:

Comments

1 multiple cracks; max = ~3/4"

Defect Set:
893

Benchmarking of Inspection Technologies
Detection of SCC - Page 1

Sensor Design:

Name:

Date:
Company:

CALIBRATION DATA

TEST DATA

multiple cracks; max = ~1/4"
multiple cracks; max = ~3 1/4"

SCC4
(Blank 2)

175" to 187" --- ---
None

Type of SCC

4
5

Blank 2

Multiple 1/4" cracks; cracked area 2 3/4" by 2 1/2"

Two isolated cracks; cracked area 4" by 1 1/2" with ~2" long 
crack; cracked area 5 1/4" by 1 1/4" with ~3" long crack

Blank 3
 



 

A-9 

 

Defect 
Number

Search Region 
(Distance from 

End B)

Start of Crack 
Region from 

Side B

End of 
Crack 
Region 

from Side B

inches inches inches
Isolated Crack
Colony of Cracks

Isolated Crack
Colony of Cracks

Isolated Crack
Colony of Cracks

Isolated Crack
Colony of Cracks

Isolated Crack
Colony of Cracks

Sensor Design:

Type of SCC Comments

TEST DATA

Pipe Sample: 893

TEST LINE 2

None

141.5 145.5
None

None

Blank

Benchmarking of Inspection Technologies
Detection of SCC - Page 2

Name:

Defect Set: 26" Diameter Pipe with Stress Corrosion Cracks; Length = 26 feet

Date:
Company:

SCC6
(Blank 5)

246" to 258" --- ---

188" to 200" 189.25 193.5

SCC8
(6)

210" to 222" 210.75 213.5
None

SCC7
(Blank 4)

234" to 246" ---

Blank

---
None

Multiple cracks; max ~1/4" long; cracked area 3 1/2" by 3 1/2"

Multiple cracks; max ~1/4" long; cracked area 4 1/4" by 3 3/4"

Multiple cracks; max ~1/2" long; cracked area 3" by 2 1/2"

SCC10
(9)

140" to 152"

SCC9
(7)
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Defect 
Number

Search Region 
(Distance from 

End B)

Start of Crack 
Region from 

Side B

End of 
Crack 
Region 

from Side B

inches inches inches
Isolated Crack
Colony of Cracks

Isolated Crack
Colony of Cracks

Isolated Crack
Colony of Cracks

Isolated Crack
Colony of Cracks

TEST LINE 3

None

140" to 152" --- ---

SCC13
(Blank 7)

188" to 200" --- ---

None

Date:
Company:

SCC14
(Blank 6)

Blank

Blank

Blank

SCC12
(Blank 8)

210" to 222" --- ---
None

None
Multiple cracks; max ~3/4" long; cracked area 17" by 1 3/4"SCC11

(16)
225" to 245" 224.25 241.25

Benchmarking of Inspection Technologies
Detection of SCC - Page 3

Name:

Sensor Design:

Type of SCC Comments

TEST DATA

Pipe Sample: 893
Defect Set: 26" Diameter Pipe with Stress Corrosion Cracks; Length = 26 feet
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Calibration Defect 
Location

Volume of Defect Depth of Defect Diameter of Defect

inches from end A cubic inches inches inches
C1: 18 0.028 0.25 0.375

Defect 
Number

Search Region 
(Distance from End 

A)

Location of Defect 
Region from Side A

Significance of Defect 
(based on volume ratio 

from calibration 
defect)

Volume of Defect (in3) 
(provided to 

participant after defect 
signif reported)

Depth of Defect (in) 
(provided to participant 

after defect signif reported)

Diameter of Defect 
(in) (provided to 

participant after defect 
signif reported)

Comments

inches inches

Calibration Defect = 1
Less Severe <1
More Severe >1 cubic inches inches inches

----

0.75

0.75

Comments

0.25

----

0.125

----

0.25

0.125

----

BLANK 0 ---- ----

53" 0.89

D6 56" to 62" BLANK

49" to 55"

D2

D4 42" to 48" 46"

D3 35" to 41" BLANK 0

28" to 34" BLANK 0 ----

D1 21" to 27" 25" 1.57 0.044 0.4

---- ----

0.375

CALIBRATION DATA

Defect

LINE 1

TEST DATA

6" Diameter, 0.5" Wall Thickness Pipe Sample, ~13' in length
Pipe Sample:
Pipe Parameters:

PLASTIC PIPE SAMPLE

Benchmarking of Inspection Technologies
Detection of Plastic Pipe Defects - Page 1

Sensor Design:

Name:
Date:
Company:

---- ----

0.450.022

0.2

0 ---- ----

0.025

0.79

D5

D7 63" to 69" 67" 1.57 0.044 0.4

Saw Cut ~1" long and 1/8" wide

Same as D1

D8 70" to 76" BLANK 0 ---- ----

0.375

----

----D9 77" to 83" BLANK 0 ----

D12 98" to 104" 102" 1.43 0.04 0.35 Saw Cut ~0.9" long and 1/8" wide

D11 91" to 97"

0.04 0.09D13 105" to 111" 109" 1.43 0.75

0.015 0.14D14 112" to 118" 116" 0.54 0.375

0.017 (each) 0.35 (each) Defect consists of two identical holes 1/2" apartD15 119" to 125" 123" and 123.5" 0.61 (each) 0.25 (each)

D16 126" to 132" BLANK 0 ----

D17 132" to 138" BLANK 0

D19 144" to 150" 148" 1.11

D10 84" to 90" 88" 0.61

0.031 0.07

0.017 0.35

---- ----

---- ----

D18 138" to 144" 140" 1.25 0.035 0.08

----
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SOUTHWEST RESEARCH INSTITUTE (SWRI) 
DEMONSTRATION TEST DATA 
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Calibration Metal Loss 
Location

Depth of Metal Loss
Measured Length & 

Width of Defect
Measured Max. 
Depth of Defect

Comments

inches from End B to 
center of defect inches

359 (59 from End A) See profile

298.5 (58.5 from End A) See profile
277 (85 from End A) See profile

(59 from End A) See profile

Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

Total Length of Metal Loss Region Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

Total Length of Metal Loss Region Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

No indication

309.5 N

N

No indication

No indication

No indication

No indication

No indication

Appears to be large region of general wall thinning that extends out of 
the designated region.  Signal patterns are not characteristic of the 

calibration defects.

No indication

N

Defect type signal outside stated region.

Two defects in region, designated a and b.

Appears to be large region of general wall thinning that extends out of 
the designated region.  Signal patterns are not characteristic of the 

calibration defects.

No indication

N

N

N

WELD 120"

312.8

P1-13 330" to 342"
335.8 339.9 4.04 1.47 0.08

3.31P1-14 306" to 318" 1.37 0.11

N

N

N

N

WELD 180"

P1-1 328" to 340"

0.95 1.92

a=2.25, b=0.77 a=1.82, b=Full Circ.

WELD 120"

P1-10 100" to 112"

WELD 180"

Calibration P3-1:

3.32

P1-11 76" to 88"

1.63

2 x 2

3 x 1
2 x 2

P1-15 282" to 294"

P1-16 258" to 270" No indication

P1-17 234" to 246"

4.13 1.69 0.14 NP1-18 210" to 222" 214.0 218.1

P1-19 186" to 198"

0.06 N

P1-20 160" to 172"

160.0 172.0 12.00 Full Circ. 0.18 N

P1-21 120" to 144" 128.9 129.7

P1-22 98" to 110" 108.1 110.1

0.13P1-12 52" to 64" 56.9 60.2

P1-2 304" to 316"

0.06

P1-5

P1-3 280" to 292" 282.6 285.8 3.16 1.25 0.10

1.99 1.82 0.08 N

0.79 Full Circ.

0.09

258.7 4.20 1.95

1.09

189.7

Benchmarking of Inspection Technologies
Detection of Metal Loss - Page 1

Sensor Design:

Name:
Date:
Company:

Gary Burkhardt
27-Jan-06
Southwest Research Institute

RFEC

TEST LINE 1

TEST DATA

Calibration P2-1:

8" Diameter, 0.188" Wall Thickness Pipe Sample; Schedule 10; Length = 34' 11.75"
Pipe Sample:
Defect Set:

PIPE SAMPLE 1

2 x 2

CALIBRATION DATA

PIPE SAMPLE 1: 

PIPE SAMPLE 3:

Pipe Sample

PIPE SAMPLE 2:

Calibration P2-2:

Calibration P1-1:

Metal Loss Length & Width

inches

a=0.066, b=.083

12.00

P1-9 120" to 144" a=120, b=128.5 a=122.3, b=129.3

Full Circ. 0.18160.0 172.0

P1-8

P1-6 208" to 220"

P1-7 184" to 196" 188.8

160" to 172"

232" to 244" 227.7 231.0 0.083.30

P1-4 256" to 268" 254.5

P1-23

TEST LINE 2

74" to 86" 79.9 81.4 1.48 1.72 0.09
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Comments on Tests Performed During Demonstration at Battelle: 
“Phase II Benchmarking Emerging Pipeline Inspection Technologies” 

January 9–13, 2006  
  

APPLICATION OF REMOTE-FIELD EDDY CURRENT (RFEC) TESTING TO 
INSPECTION OF UNPIGGABLE PIPELINES  

OTHER TRANSACTION AGREEMENT DTRS56-02-T-0001  
SwRI

®
 PROJECT 14.06162  

PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMNISTRATION  
U.S. DEPARTMENT OF TRANSPORTATION  

  
SOUTHWEST RESEARCH INSTITUTE

® 
 

  
January 2006  

  

Demonstration tests of the remote-field eddy current (RFEC) method for inspection of 8-inch 
pipe were performed by Southwest Research Institute

®
 (SwRI

®
). The target application of the 

inspection technology is to integrate it with the Explorer II robot under development by Carnegie 
Mellon University. Therefore, the approach taken by SwRI was to perform the demonstration 
using a tool that meets the requirements and specifications for the Explorer II robot. All of the 
instrumentation (except for external power, which will be supplied by the robot), including 
excitation signal generation, amplification, filtering, multiplexing, analog-to-digital conversion, 
and digital signal processing (to provide phase-sensitive signal detection), was located on the 
RFEC tool. Total power required was less than half of the power budget available from the robot. 
Communication of commands and transfer of the processed signal data to an external computer 
were accomplished using a CAN bus—the same bus that will be used on the robot. Although the 
tool incorporated 8 channels (coverage of 60 degrees circumferentially) instead of the 48 
channels intended for the robot tool (to achieve 360 degrees coverage), the circuitry is readily 
scalable to the full number of channels. Data were acquired by all 8 channels simultaneously 
during a single scan. The scans were made at a velocity of 1.5 inches/sec, and it was 
demonstrated that 4 inches/sec (the maximum scan speed of the robot) was possible. The data 
were post-processed for analysis to determine defect characteristics (length, width, and depth) 
using software that is readily adaptable to field inspections  

The development of hardware that meets constraints associated with factors such as scan speed, 
power, and size always results in compromises that are not factors if, for example, laboratory 
instrumentation is used and if scan speeds are very slow. For example, slow scan speeds mean 
that significantly greater noise-reduction filtering can be used because time constants can be very 
long compared to those necessitated by fast scan speeds. Laboratory instrumentation can 
incorporate additional filtering and signal processing that cannot readily be performed by 
circuitry that must meet size and power constraints. Since the SwRI tool met the robot 
constraints, it can be expected that results similar to those achieved in these tests can be expected 
from the final integrated hardware.  
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It should be noted that defect characterization has a strong subjective element. In this 
demonstration, we were working with a brand new system, looking at defect types we had not 
seen before. That meant we had to use our best judgment and understanding of the RFEC method 
to interpret the indications. After the system has been used more extensively, experience will 
allow the operator to know quickly what type of defect is being detected based on the signal 
characteristics. The quantitative interpretation of the signals will then be improved over the 
present level. For example, the natural corrosion region in the demonstration pipes gave a signal 
unlike any of the calibration defects in our lab or supplied by Battelle. Furthermore, the signal 
extended beyond the designated region. As a result, we used our best judgment and reported the 
wall loss indicated by our depth algorithms. Magnetic field effects or the simple nature of RFEC 
response to very large area defects could cause our estimate to be in error. Familiarity with this 
type defect over a period of time would assure us of making a quicker and potentially more 
accurate appraisal of the corrosion.
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GAS TECHNOLOGY INSTITUTE (GTI) 
Demonstration Test Da 

Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

Total Length of Metal Loss Region Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

Total Length of Metal Loss Region Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

WELD 120"

None

None

None

None

None

None

TEST LINE 2

None

None

None

None

None

Detection of Metal Loss - Page 2
Name:
Date:
Company:

Benchmarking of Inspection Technologies

WELD 120"

Sensor Design:

P2-18 102" to 114"

P2-19 78" to 90"

P2-4

2 1.5 0.148

3 1.5 0.081

P2-12 246" to 258" 
249 251

P2-13 222" to 234"

P2-14 198" to 210" 201 204

P2-15 174" to 186"

P2-16 150" to 162"

4 2 0.159P2-17 126" to 138" 129.5 133.5

3 1.5 0.176P2-20 54" to 66" 57.5 60.5

TEST LINE 1

P2-9 102" to 114" 107.75 0.142111.75 4 1.5

P2-7 150" to 162" 152.75 155.75

P2-8 126" to 138"

8" Diameter, 0.188" Wall Thickness Pipe Sample; Schedule 10; Length = 30' 0.375"

1

3 2 0.026

0.0733.25

P2-5 198" to 210"

TEST DATA

Pipe Sample: PIPE SAMPLE 2
Defect Set:

P2-6 174" to 186" 179.75 183

222" to 234" 227.25 229.5 2.25 2 0.037

P2-3 246" to 258"

P2-2 270" to 282" 

P2-11 54" to 66"

P2-1 294" to 306"

2.5 0.188P2-10 78" to 90" 80.25 84 3.75
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Abstract 
During the week of 9 January 2006, GTI staff travelled to the Battelle Lab’s West Jefferson 
facility in Columbus, OH to test a prototype RFEC inspection vehicle in 3 samples of 8” pipe. We 
report briefly on the apparatus and its design, the electronic readout and data acquisition, and 
the analysis of the data. Where appropriate, we have discussed effects which lead to 
uncertainties in the location and size of reported defects. We also discuss uncertainties which 
may affect whether a defect would have been observable by our apparatus.  
 
Introduction 
The remote field eddy current (RFEC) technique is an electromagnetic, through-wall inspection 
technique for detecting defects and wall thinning in pipe walls. A simple exciter coil can be 
driven with a low frequency sinusoidal current to generate an oscillating magnetic field that 
small sensor coils can detect. This low frequency (10’s of Hz) oscillating field will propagate via 
two paths.  It will propagate directly down the pipe a short distance.  It will also propagate out 
through the wall, along the exterior of the pipe, and will re-enter the pipe --- the so-called indirect 
field.  At axial distances of 2-3 pipe diameters from the exciter coil, the indirect field re-entering 
the interior of the pipe is much larger than the direct field coming from the exciter coil. Since it 
passes through the pipe wall, the indirect field contains information regarding the condition of 
the pipe. Changes from nominal value of the amplitude and phase of the indirect field indicate 
defects in the wall. 
 

 
Figure 1: Paths of Energy Flow in the RFEC Technique. The remote field re-entering  
the pipe is the one containing the information regarding the condition of the pipe wall. 
 
We constructed a vehicle (“jig”) for carrying the RFEC apparatus. Near its front end it carried a 
solenoidal exciter coil, approximately 4” in diameter and 5” in length. It was comprised of1300 
windings of 26 gauge wire. The sensor coils are located at distances of approximately 17” 
upstream of the exciter coil. They are ¾” in diameter, 3/8” in width, and contain approximately 
20K windings of 50 gauge wire. Configured on the jig as two sets of 8 sensor coils, each set 
covered an angle of approximately 60º circumferentially at ¼” spacing. 
 
Mechanical Design 
The RFEC vehicle was composed of three parts, front support, rear support, and the center 
body. The front and rear supports had steering mechanisms on the wheels that helped keep the 
device upright and prevented any major rotation of the vehicle. The supports were coupled to 
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the center body, which contained all the equipment necessary to the RFEC technique. A picture 
of the center body is shown in Figure 2.  
 

 
 
Figure 2: Center body of RFEC vehicle.  
 
GTI used two sets of 8 sensor coils to measure two defect lines simultaneously. The coils were 
mounted on shafts that served as pegs to attach the coils to plastic guides as shown in Figure 3. 
The guides were rounded to match the circumference of the pipe and routed on the leading 
edge to avoid jamming the welds. The guides were held against the pipe wall by spring-loaded, 
parallelogram configured arms. An end view of the sensor coil mounts is shown in Figure 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sensor 
Coils 

MUX 
Board 

Mock Explorer 
Module 

Drive 
Coil

Support 

Plastic Coil Guide 

Coil 

Shaft 

Figure 3: Diagram of sensor coils mounted to plastic guides. 

Direction 
Of Travel 
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Figure 4: Sensor coil mounts inside an 8” pipe. 
 
The drive coil has been placed between two support modules, one having been built to imitate a 
module on the Explorer II robot. These support modules were important to keeping the drive coil 
centered in the pipe. 
 
GTI used an automatic winch system to pull the vehicle through the pipe. A tether line was 
attached to the front end of the vehicle. The tether wraps once around an encoder and then is 
wound onto a motor. The system is mounted directly onto the pipe and is controlled by 
LabVIEW to move the vehicle in ¼” steps. 
 
Uncertainties Related to Mechanics 
The jig suffered from some rotation inside the pipe. Each coil could have experienced rotations 
of up to ±10°. There were some encoder losses. After traveling 25’ in the pipe, we were 
measuring about 5” short of the actual location of the sensor coils. We eventually attached a 
fiberglass tape measure to the back end of the vehicle so we could always double check the 
encoder readings. In order to get good wall coverage from the coils, they had to be staggered, 
meaning half were closer to the drive coil than the other half. We have made provisions to 
correct the offset in the data analysis but there will still likely be an effect on the results.  

Mounting 

Spring 

Plastic Coil 
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Electronics and Data Acquisition (DAQ) System 
GTI’s embodiment of a Remote Field Eddy Current inspection system is as follows: Signal 
Recovery 7265 DSP lock-in amplifier, Kepco BOP36-6M excitation coil driver, ADG407 16 
channel multiplexer, Ni GPIB+ Gpib board and Ni PCI-6601 Counter Timer board. The 
preceding hardware is controlled by a Dell Pentium 4 workstation running at 2.99MHz with 1Gb 
of main memory and executing Lab View 7.1 under Windows XP Professional operating system. 
A general schematic of the DAQ system is shown in Figure 7. 
 
Channel addressing and distance gauging is accomplished using a Ni 6601 time/counter PCI 
circuit board.  Distance measurements are made using a relative incremental encoder having a 
resolution of 1/16”.  
 

 
 
 
Figure 5: Schematic of DAQ System. This figure schematically shows a 4-channel system. The 
system we operated at Battelle was a 16-channel version of this schematic. 
 
GTI’s RFEC machine is using a 100 count per revolution quadrature encoder. The encoder is 
interfaced to the system using a National Instrument PCI-6601 counter/timer circuit board. This 
circuit board supports 5 encoders; the encoder interface is done in hardware. The counter chip 
used in the NI circuit board has 32 bit registers giving a counting range of 268,435,453 inch.   
 
Data Collection 
Three LabView programs were used to collect data from the instrumentation on the jig. One 
read the encoder, one controlled the motor, and the other controlled the lock-in amplifier and 
acquired data from the coils. Acquiring the phase angle and magnitude of each coil was 
achieved by using a sequence of binary addressing to the multiplexer board. The program 
cycles through each coil sequentially. Once the data has been acquired for all 16 coil channels, 
the motor program fires the motor until the encoder program realizes it has traveled to the next 
¼” step. Once the motor stops, the coils are again read and the phase and magnitude data is 
recorded to Excel. The process repeats. 
  
The lock-in amplifier has a programmable time constant for the low pass filter at its output. The 
program was written so that the operator could set the number of time constants that the 
program would wait at each coil address. Having a wait of multiple time constants ensured that 
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unsettled data would be flushed out and the readings would be accurate. The drawback to 
waiting for a certain number of time constants is slower acquisition time. It takes a significantly 
longer time to obtain data for 16 coils making overall inspection speed slow. No problems were 
encountered with LabVIEW. 
 
Analysis 

Pipe Sample 3 
Analysis of defect depth on Pipe Sample 3 was primarily done using Russell NDE Systems 
Inc.’s Adept Pro program. This program is the result of decades of research and focuses on the 
Voltage Plane for analysis. The display produced by the program is shown for Defect Line1 in 
Figure 6. 
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Figure 6: Adept Pro display of Defect Line 1 from Pipe Sample 3. 

Weld

Defects
ϕ 
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The display shows a strip chart of the phase angle on the left, followed by a C-Scan of the 
phase. Although the C-Scan provides a good overview of the defects, often as in this case, the 
strip chart is better for seeing the smaller defects. The magnitude information (strip chart and C-
scan) is displayed to the right of the phase information. The top right hand panel shows the 
Voltage Plane. The black spiral is the attenuation spiral: as the wall thickness increases, the 
remote filed eddy current signal strength decreases while the phase also decreases, resulting in 
a spiral polar plot. The blue curve on the plot is the signal from the defect at the horizontal 
marker that runs across the strip charts and C-scans. The two red lines on either side of the 
marker delimit the range of data analyzed. 
 
If the blue line is extended to intersect the wall-thinning spiral, the vector from the origin of the 
polar plot to the intersection point makes an angle φ with the x-axis. Angle φ is used to 
determine the depth of the defect. The length of the blue line is used to find the circumferential 
extent of the defect. As in Figure 6, Figure 7 shows the analysis of Line 2 of Pipe 3. 
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Figure 9: Adept Pro Display of Defect Line 2. 
 
Adept Pro’s function is primarily to determine defect depth. Defect length and width are best 
obtained from axial and circumferential scans across the defect. Remote field eddy current 
signals spread in both the axial and the circumferential directions. To get length and width 

 

Weld

Defects
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requires corrections for the spread. Axial lengths estimated from the data should be reasonable. 
However, the combination of much greater spread in the circumferential direction combined with 
sensor separation means circumferential precision is poor. 
 
Pipe 2 was analyzed with an internally written MATLAB program. The fundamental equations 
are the same as used by Russell‘s Adept Pro software but there are some differences in the 
calibration. This can lead to small differences in the results for this pipe. This approach was 
used because Pipe 2 has two calibration defects with different depths. We expect the new 
calibration to give better results over a wide range of defect depths. 
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  Table 1: C-scan Plots of defects found on Pipe 3 Test Line 1. 

 

 

   P3-10   P3-09 
  

  

    P3-07    P3-05 
  

  

    P3-04    P3-03 
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Table 2: Line 1 Defects 
Defect 

Location 

Max Depth (% 

of wall thick.) 

Defect 

Length 

Defect 

Width 

106” 96% 3” 2” 

143.5” 78% 1.25” 1” 

190” 92% 3.5” 2” 

275.75” 75% 2” 2” 

306.5” 84% 1.25” 1” 

335” 87% 2” 1.5” 

 

C-Scan plots 
The C-scan plots for all found defects are attached as a separate document. The tables 
containing Pipe 1 defects show the strip chart and C-scan for the phase only. The tables 
containing Pipe 2 defects show the C-scan for the phase only. Finally, the tables containing 
Pipe 3 defect information show the strip chart and C-scan for both the phase and magnitude. 
 
Summary Results Table 
The Excel spreadsheet summarizing the results is attached as a separate document. Pipe 2 
data was only analyzed for the deepest pit. Data from Pipes 1 and 3 that showed dual pits are 
recorded in the spreadsheet as two measurements representing the maximum depth of each 
pit. 
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Table 1: C-scan Plots of defects found on Pipe 1 Test Line 1. 

  

               P1-12               P1-09 
  

  

                P1-07                P1-05 
  

  

                P1-04                P1-03 
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                P1-02  
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Table 2: C-scan Plots of defects found on Pipe 1 Test Line 2. 

  

               P1-23             P1-22 
  

  

                P1-21                P1-18 
  

  

                P1-14             P1-13 
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 Table 3: C-scan Plots of defects found on Pipe 2 Test Line 1. 
 

 

   P2-10   P2-09 
  

  

    P2-07    P2-06 
  

 

 

    P2-04  
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Table 4: C-scan Plots of defects found on Pipe 2 Test Line 2. 

 

   P2-20   P2-17 
  

 

 

    P2-14    P2-12 
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 Table 5: C-scan Plots of defects found on Pipe 3 Test Line 1. 

 

 

   P3-10   P3-09 
  

  

    P3-07    P3-05 
  

  

    P3-04    P3-03 
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  Table 6: C-scan Plots of defects found on Pipe 3 Test Line 2. 

  

   P3-23   P3-21 
  

  

    P3-19    P3-18 
  

  

    P3-17    P3-14 
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   P3-12    
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BATTELLE  
DEMONSTRATION TEST DATA 
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Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

 Total Length of Metal Loss 
Region 

Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

 Total Length of Metal Loss 
Region 

Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

184" to 196"

160" to 172"

188.8                                       192.2                                         

TEST LINE 1

TEST DATA

8" Diameter, 0.188" Wall Thickness Pipe Sample; Schedule 10; Length = 34' 11.75"
Pipe Sample:
Defect Set:

PIPE SAMPLE 1

Benchmarking of Inspection Technologies
Detection of Metal Loss - Page 1

Sensor Design:

Name:
Date:
Company:

Bruce Nestleroth
January 26,2006
Battelle

Rotating Permanent Magnet Eddy Current Inspection System

0.110                                

0.050                                

 Various depths up to 
0.150 inches 

TEST LINE 2

1.0                                             0.075                                

Greater than 5 inches

0.165                                

1.5                                             

1.0                                             0.075                                

120" to 144"

P1-1 328" to 340"

1.0                                             

1.75                                           

P1-4 256" to 268"

P1-23 74" to 86"

103.1                                       106.3                                         

P1-3 280" to 292"

Corrosion patch, with multiple pits of different depths

P1-2 304" to 316"

0.055                                

P1-5

0.115                                

 Various depths up to 
0.150 inches 

No Metal Loss Detected

Yes.  Raw Signals

12.0                                                        126.0                                       138.0                                         

No Metal Loss Detected

No Metal Loss Detected

P1-12 52" to 64"

P1-22 98" to 110"

P1-9 120" to 144"

P1-8

P1-6 208" to 220"

P1-7

No Metal Loss Detected

Yes.  Raw Signals

Yes.  Raw Signals

P1-18 210" to 222" 2.0                                             0.155                                Yes.  Raw Signals212.5                                       216.8                                         3.3                                                          

0.75                                           0.020                                Yes.  Raw SignalsP1-17 234" to 246"

Yes.  Raw SignalsP1-16 258" to 270"

No Metal Loss Detected

P1-11 76" to 88" No Metal Loss Detected

1.75                                           58.1                                          62.3                                           3.2                                                          

WELD 180"

1.25                                           0.115                                

Corrosion patch, with multiple pits of different depths

Small single pit

P1-10 100" to 112"

P1-20 160" to 172" No Metal Loss Detected

12.0                                                        32.0                                           

1.5                                             2.4                                                          

2.2                                                          

No Metal Loss Detected

120.0                                       132.0                                         

No Metal Loss Detected

Yes.  Raw Signals

Yes.  Raw Signals

Yes.  Raw Signals

Yes.  Raw Signals

P1-13

Yes.  Raw Signals

Yes.  Raw Signals

Yes.  Raw Signals

Yes.  Raw Signals

WELD 120"

P1-14 306" to 318" 

WELD 180"

232" to 244"

P1-15 282" to 294"

P1-19 186" to 198"

P1-21

WELD 120"

Corrosion patch, with multiple pits of different depths

Yes.  Raw Signals

Yes.  Raw Signals

Yes.  Raw Signals

Yes.  Raw Signals

Corrosion patch, with multiple pits of different depths

A  area of general corrosion of variable depth that spans most sensors. 
A large wide corrosion area at 128".

A slow change in signal in all sensors throughout the region indicates a 
material property change

Yes.  Raw Signals

Yes.  Raw Signals

Corrosion patch, with multiple pits of different depths

Corrosion patch, with multiple pits of different depths

Corrosion patch, with multiple pits of different depths

Corrosion patch, with multiple pits of different depths

A large area of general corrosion of variable depth that spans the entire sensor width.  The
corrosion is close to the weld, altering both signals.  A large wide corrosion area  at 128"
A slow change in signal in all sensors throughout the region indicates a 

material property change

Yes.  Raw Signals

Yes.  Raw Signals

Yes.  Raw Signals334.2                                       338.4                                         3.2                                                          330" to 342" 1.0                                             0.075                                

Corrosion patch, with multiple pits of different depths

Corrosion patch, with multiple pits of different depths

233.2                                       237.0                                         2.8                                                          

260.1                                       264.9                                         3.8                                                          

288.0                                       292.8                                         3.8                                                          

74.8                                          79.1                                           3.3                                                          

241.1                                       241.8                                         0.7                                                          

306.9                                       310.8                                         2.9                                                          

No Metal Loss Detected
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Pipe 1

Raw data output on same scale
420 inches, 2 welds @ 120 and 180 inches

Search Region
Extra data
for noise

assessment

Extra data
for noise

assessment

34
8

35
4

36
0

36
6

37
2

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Cal 1-1

Distance (inches)

S
en

so
r O

ut
pu

t
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32
2

32
8

33
4

34
0

34
6

P1-1

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

29
8

30
4

31
0

31
6

32
2

P1-2

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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P1-3

27
4

28
0

28
6

29
2

29
8

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

P1-4

25
0

25
6

26
2

26
8

27
4

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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P1-5

22
6

23
2

23
8

24
4

25
0

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

P1-6

20
2

20
8

21
4

22
0

22
6

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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P1-7

17
8

18
4

19
0

19
6

20
2

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Weld Signal

P1-8

Distance (inches)

S
en

so
r O

ut
pu

t
15

4

16
0

16
6

17
2

17
8

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Weld Signal
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P1-9 note reporting area larger, 120 to 144 inches

11
4

12
0

12
6

13
2

13
8

14
4

15
0

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

P1-10

94 10
0

10
6

11
2

11
8

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Weld Signal
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P1-11

70 76 82 88 94

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

P1-12

46 52 58 64 70

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 



Battelle – Rotating Magnetic Field Inspection
January 2006 Pipe 1 - Page 8

32
4

33
0

33
6

34
2

34
8

P1-13

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

30
0

30
6

31
2

31
8

32
4

P1-14

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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27
6

28
2

28
8

29
4

30
0

P1-15

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

25
2

25
8

26
4

27
0

27
6

P1-16

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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22
8

23
4

24
0

24
6

25
2

P1-17

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

20
4

21
0

21
6

22
2

22
8

P1-18

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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18
0

18
6

19
2

19
8

20
4

P1-19

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

15
4

16
0

16
6

17
2

17
8

P1-20

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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11
4

12
0

12
6

13
2

13
8

14
4

15
0

P1-21 note reporting area larger, 120 to 144 inches

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Weld Signal

92 98 10
4

11
0

11
6

P1-22

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Weld Signal
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68 74 80 86 92

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

P1-23
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Pipe 2

Raw data output on same scale
360 inches,1 weld @120 inches

Search Region
Extra data
for noise

assessment

Extra data
for noise

assessment

Cal 2-1

29
2

29
8

30
4

31
0

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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Cal 2-2

26
4

27
0

27
6

28
2

28
8

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

P2-1

28
8

29
4

30
0

30
6

31
2

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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P2-2

26
4

27
0

27
6

28
2

28
8

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

P2-3

24
0

24
6

25
2

25
8

26
4

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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P2-4

21
6

22
2

22
8

23
4

24
0

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

P2-5

19
2

19
8

20
4

21
0

21
6

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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P2-6

16
8

17
4

18
0

18
6

19
2

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

P2-7

14
4

15
0

15
6

16
2

16
8

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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P2-8

12
0

12
6

13
2

13
8

14
4

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Weld Signal

P2-Weld

10
8

11
4

12
0

12
6

13
2

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

P2-9 Signal
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P2-9

96 10
2

10
8

11
4

12
0

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

P2-10

72 78 84 90 96

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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P2-11

48 54 60 66 72

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

P2-12

24
0

24
6

25
2

25
8

26
4

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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P2-13

21
6

22
2

22
8

23
4

24
0

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

P2-14

19
2

19
8

20
4

21
0

21
6

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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P2-15

16
8

17
4

18
0

18
6

19
2

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

P2-16

14
4

15
0

15
6

16
2

16
8

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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P2-17

12
0

12
6

13
2

13
8

14
4

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Weld Signal

P2-18

96 10
2

10
8

11
4

12
0

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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P2-19

72 78 84 90 96

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

P2-20

48 54 60 66 72

Distance (inches)

S
en

so
r O

ut
pu

t

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
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Pipe 3

Raw data output on same scale
480 inches, 1 weld @ 240 inches

Search Region
Extra data
for noise

assessment

Extra data
for noise

assessment

Cal 3-1

40
9

41
5

42
1

42
7

43
3

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t
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P3-1

37
8

38
4

39
0

39
6

40
2

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t

P3-2

35
4

36
0

36
6

37
2

37
8

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t
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P3-3

32
4

33
0

33
6

34
2

34
8

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t

P3-4

29
4

30
0

30
6

31
2

31
8

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t
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P3-5

26
4

27
0

27
6

28
2

28
8

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t

P3-Weld

22
8

23
4

24
0

24
6

25
2

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t
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P3-6

21
6

22
2

22
8

23
4

24
0

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t

P3-7

18
0

18
6

19
2

19
8

20
4

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t
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P3-8

15
6

16
2

16
8

17
4

18
0

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t

P3-9

13
2

13
8

14
4

15
0

15
6

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t
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P3-10

96 10
2

10
8

11
4

12
0

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t

P3-11

60 66 72 78 84
CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
0 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t
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P3-12

38
4

39
0

39
6

40
2

40
8

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t

P3-13

35
0

35
6

36
2

36
8

37
4

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t
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P3-14

32
4

33
0

33
6

34
2

34
8

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t

P3-15

30
0

30
6

31
2

31
8

32
4

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t
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P3-16

27
6

28
2

28
8

29
4

30
0

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t

P3-17

24
2

24
8

25
4

26
0

26
6

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t
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P3-Weld

22
8

23
4

24
0

24
6

25
2

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t

P3-18

20
4

21
0

21
6

22
2

22
8

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

CCW 2.5”
CCW 2”
CCW 1.5”
CCW 1”
CCW 0.5”
180 deg
CW 0.5”
CW 1”
CW1.5”
CW 2”
CW 2.5

A
xi

al
 S

en
so

rs
 

R
ad

ia
l S

en
so

rs
 

Distance (inches)

S
en

so
r O

ut
pu

t
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PACIFIC NORTHWEST NATIONAL LABORATORY (PNNL) 
DEMONSTRATION TEST DATA 
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OAKRIDGE NATIONAL LABORATORY (ORNL) 
DEMONSTRATION TEST DATA  



 

B-84 

This page intentionally blank. 



 

B-85 

Pipe Sample: 993
Calibration 

Crack 
Location

Length Depth
Measured 

Length
Measured 

Depth

inches from 
end B inches

% wall 
thickness

186.4 2.5
58.7 5
86.4 5
82.4 2.5
44.4 3

Defect 
Number

Search Region 
(Distance from 

End B)

Start of Crack 
Region from 

Side B

End of 
Crack 
Region 

from Side B

inches inches inches
Isolated Crack
Colony of Cracks

Isolated Crack
Colony of Cracks

Isolated Crack
Colony of Cracks

Isolated Crack
Colony of Cracks

Isolated Crack
Colony of Cracks

TEST LINE 1

None
SCC2 226" to 242" 

None
SCC1 242" to 254"

None
SCC3 210" to 222" 214" 216"

Another isolated at 142"
SCC5 140" to 152" 145" 148"

None

Defect Set:
893

Comments

1 multiple cracks; max = ~3/4"

multiple cracks; max = ~1/2"
multiple cracks; max = ~1/2"

2
3

TEST DATA

Type of SCC

4
5

Blank Area:

Comments

26" Diameter Pipe with Stress Corrosion Cracks; Length = 27 feet
Pipe Sample:

CALIBRATION DATA

Benchmarking of Inspection Technologies
Detection of SCC - Page 1

Sensor Design:

Name:

Date:
Company:

Venugopal K. Varma, Austion Albrught, and Philip Bingham
1/27/2006

Oak Ridge National Laboratory

EMAT shear Horizontal wave design

multiple cracks; max = ~1/4"
multiple cracks; max = ~3 1/4"

SCC4 175" to 187" 
None
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Calibration Note 
 
For calibration of SCC, a 26” pipe was provided with five SCC’s.  These were located using 
liquid fluorescent magnetic particle inspection method.  During the week of the testing we used 
the liquid fluorescent magnetic particle inspection to relocate the defects and had a hard time 
locating them.  SCC 4 and SCC 5 could not be located and SCC3 and SCC 2 were 
indistinguishable from the scratches surrounding them.  We could make out something SCC 2 
&# area, but could not be confirmed.  We cleaned the area using a wire brush and cleaner, but 
could not definitely identify the region having SCC.  Only SCC1 could easily be identifiable, but 
this is more likely a manufacturing defect than an SCC.  Due to lack of credible calibration data 
on 26 “ pipe, we had to base all algorithms on a previous 30” diameter training set. 
 
Venu, Philip, and Austin 
 
1/27/2006 
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NATIONAL ENERGY TECHNOLOGY LABORATORY (NETL) 
DEMONSTRATION TEST DATA 
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Calibration Defect 
Location

Volume of Defect Depth of Defect Diameter of Defect Comments

inches from end A cubic inches inches inches
C1: 18 0.028 0.25 0.375

Defect 
Number

Search Region 
(Distance from End 

A)

Location of Defect 
Region from Side A

Significance of Defect 
(Output/Calibration Output)

Volume of Defect (in3) 
(provided to 

participant after defect 
signif reported)

Depth of Defect (in) 
(provided to participant 

after defect signif reported)
Comments

inches inches cubic inches inches

None

52.55 1.31

D6 56" to 62" None

48" to 56"

D2

D4 42" to 48" 45.62

D3 34" to 42" None

Volume = 0.028

28" to 34" None

D1 18" to 28" 18.14  & 25.06 
18.14" = 1, 
25.06"=1.38

For significance: defect calibration hole @ 18" = 1                
Vol @ 18" = 0.028 , Vol @ 25.06 = 0.039

CALIBRATION DATA

Defect

LINE 1

TEST DATA

6" Diameter, 0.5" Wall Thickness Pipe Sample, ~13' in length
Pipe Sample:
Pipe Parameters:

PLASTIC PIPE SAMPLE

Benchmarking of Inspection Technologies
Detection of Plastic Pipe Defects - Page 1

Sensor Design:

Name:
Date:
Company:

Jim Spenik, Chris Condon, Bill Fincham, Travis Kirby
Submitted 01/23/06
NETL 

Capacitive sensor for Polyethylene Pipe Inspection

0.99

D5

D7 62" to 70" 66.36 1.15

Volume= 0.037

Volume = 0.033

D8 70" to 76" None

D9 76" to 84" None

D12 98" to 104" 101.03 1.61 Volume = 0.045

D11 90" to 98"

Volume = 0.02D13 104" to 112" 107.84 0.71

Volume = 0.016D14 112" to 118" 114.75 0.57

Volume = 0.020D15 118" to 126" 121.89 0.74
We have indications that a consistant amount of material may have 

been removed along the entire lengthD16 126" to 132" None ?

D17 132" to 138" None ?

D19 144" to 150"
146.76 0.71

D10 84" to 90" 87.15 0.43

Volume = 0.020

We have indications that a consistant amount of material may have 
been removed along the entire length

D18 138" to 144" 138.3 1.13 Volume = 0.032

Volume = 0.012
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SOUTHWEST RESEARCH INSTITUTE (SWRI) 
COMMENTS ON PIPELINE INSPECTION TECHNOLOGIES 

DEMONSTRATION REPORT 
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Final Comments on 
“PIPELINE INSPECTION TECHNOLOGIES 

DEMONSTRATION REPORT” 

APPLICATION OF REMOTE-FIELD EDDY CURRENT (RFEC) TESTING TO 
INSPECTION OF UNPIGGABLE PIPELINES 

OTHER TRANSACTION AGREEMENT DTRS56-02-T-0001 
SwRI® PROJECT 14.06162 

PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMNISTRATION 
U.S. DEPARTMENT OF TRANSPORTATION 

SOUTHWEST RESEARCH INSTITUTE® 

February 2006 
 

Southwest Research Institute (SwRI) believes that the results of the demonstration testing indi-
cate that the SwRI RFEC system is very promising as an inspection tool that can accurately 
detect and characterize wall-loss defects in pipelines. The report showed a comparison of pre-
dicted vs. measured defect parameters with error bands of ±10% of wall thickness for defect 
depth and ±0.5 inch for defect length and depth. For the SwRI data, 68% of the predicted depths, 
88% of the predicted lengths, and 88% of the predicted widths were within those error bands. If 
the error band is increased to ±20%, then 91% of the predicted depths would be within the band. 
The depth prediction had a systematic error in that the predicted depths were generally less than 
the measured ones. If corrections are made to the SwRI depth prediction algorithm to reduce the 
systematic error (for example, by using the demonstration test defect responses to correct the 
calibration approach), then even better results can be obtained. 

It is emphasized that the SwRI RFEC tool was designed to meet the specifications and con-
straints of the Explorer II robot under development by Carnegie Mellon University (as discussed 
in the SwRI comments on page B–4 of this report). The demonstration tests were thus conducted 
with sensors, instrumentation, data processing, scan speeds, etc. that are very representative of a 
field inspection system as integrated with Explorer II. SwRI therefore expects that results similar 
to those obtained in this demonstration would be obtained with an actual inspection system and 
that no degradation in performance would be experienced by transitioning to field hardware and 
inspection conditions. 
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Additional Information on the SwRI Remote Field Eddy 
Current Technology and Design as Integrated with the 

Explorer II Robotic Platform 
SwRI Remote-Field Eddy Current – Through funding support from PHMSA/OPS, Southwest 
Research Institute® has developed a remote-field eddy current (RFEC) technology to be used in 
unpiggable lines. The SwRI RFEC tool is capable of detecting corrosion on the inside or outside 
pipe surface. Since a large percentage of pipelines cannot be inspected using “smart pig” tech-
niques because of diameter restrictions, pipe bends, and valves, a concept for a collapsible 
excitation coil was developed but found unnecessary for the pipe sizes and materials of interest 
in this demonstration. A breadboard system that meets the size, power, and communication 
requirements for integration into the Carnegie Mellon Explorer II robot was developed and used 
in the demonstration tests. This system is shown in Figure 1. The demonstration system incor-
porates eight detectors, and data from all eight channels are acquired and processed simultane-
ously as the system is scanned along the pipe at speeds up to 4 inch/sec. All of the instrumenta-
tion, except for a DC power supply and a laptop computer (used for storage of the processed 
data), is located on the tool. Figure 2 shows the system design as integrated with the Explorer II 
robot under development by Carnegie Mellon University. The RFEC system can expand to 
inspect 6- or 8-inch-diameter pipe and can retract to 4 inches to pass through obstructions. 

 

Laptop Computer with CAN Bus Interface

Encoder Wheel

Electronics Sensors Excitation Coil

DC Power Supply

 

Figure 1. SwRI RFEC tool used in demonstration tests 
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Detector 
Module

Explorer Support 
Module

Exciter 
Module

 
Figure 2. SwRI RFEC tool design as integrated with Explorer II robot: 

Top–Expanded for inspection with cover removed from exciter module,  
Bottom–Retracted to pass through restricted areas.
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GAS TECHNOLOGY INSTITUTE (GTI) 
COMMENTS ON PIPELINE INSPECTION TECHNOLOGIES 

DEMONSTRATION REPORT 
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Comments on the Comparison of Benchmarks and GTI Results 
 

Albert Teitsma, Julie Maupin, and Paul Shuttleworth 
 

Gas Technology Institute 
1700 S. Mount Prospect Rd. 

Des Plaines, IL 60018 
 

25 October 2004 
 
Introduction 
During the week of 9 January 2006, GTI staff came to the West Jefferson facility of Battelle 
Labs in Columbus, OH to test a prototype RFEC inspection vehicle in 3 sections of 8 inch pipe. 
We reported on our test results in a previous document.6 In this document we comment on the 
benchmarks reported in “Pipeline Inspection Technologies Demonstration Report” by Stephanie 
A. Flamberg and Robert C. Gertler. 
 
Comparison of Benchmarks and GTI Results 
Table 1 below compares GTI results to the benchmark data. There are two types of error in these 
results, systematic and random. The systematic errors are the average readings in Table 1, while 
scatter gives the random error. A different researcher analyzed the data from each pipe and the 
subjective components of the data analysis do show. All three underestimated the defect lengths, 
in one case by half an inch with a scatter of .4 inches. Particularly for small deep defects, this is 
too large an error, but the table also shows that proper analysis does give an acceptable precision 
(average=-0.139”, scatter=0.133). Precision in the circumferential direction was not as good, but 
as pointed out in a previous report, remaining strength calculation such as B31G or RSTRENG 
do not use circumferential extent in the calculations.  

 
Figure 1. Data with Pipe 3 corrected for calibration error. 

There was a serious depth calibration error for pipe three, which made the scatter for the GTI 
results look worse than it was. Figure 1 shows the improvement with recalibrated data. GTI 
expected that the anticipated error would be about +/- 10% of the full wallthickness, as indicated 
by the lines in Figure1. Table 1 shows that more experienced analysts can achieve that, the 
scatter for Pipe 1 being 10%, while that for Pipe 3 was a mere 7%. 
 
GTI’s sizing of the natural corrosion areas was excellent. 

                                                 
6 “Analysis of Sensor Benchmarking Tests: Remote Field Eddy Current Technique”, Julie Maupin, Albert Teitsma, 
and Paul Shuttleworth. 
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Time to Take the Data 
Since time to take the data has become an issue, GTI has included results from its run with 
Russell NDE Systems, Inc. equipment, which GTI plans to use in its modules, in this report.  

 
Figure 2. A faster run using Russell NDE Systems, Inc. instrumentation. 

 
GTI inspected 23’ of Pipe 3 in 7 minutes using this instrumentation, which GTI brought along 
for demonstration purposes only. The speed was limited by the speed of our tow motor. The 
instrumentation can easily handle the 4” per second specified for Explorer II. The unfiltered data 
in Figure 2 is a little noisier than that obtained from the laboratory lock-in amplifier, but more 
than good enough for the size of the signals obtained during the benchmark tests. GTI 
concentrated on maximizing signal strength and minimizing power consumption. Speed at the 
very low speeds used by Explorer II was never an issue. 
 
For most of the measurements, it took GTI a little over half a day per run in Pipes 1 and 5, and a 
little longer in Pipe 3 using a single lock-in amplifier to measure all sixteen channels. To ensure 
superior data quality the lock-in was allowed to settle nearly a second before reading the data 
from a sensing coil.  
 
C-Scans 
C-scans obtained with the RFEC inspection do not have the resolution of the benchmark scans, 
but the correlation between them are excellent. Figure 3 compares the natural corrosion defect, 
P1-23. Similar results are obtained for the other defects. 
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Figure 3. Excellent correlation between the RFEC results and the natural corrosion benchmark 
data. 
 
Conclusion 
The results clearly demonstrate that the RFEC technique is eminently suited for inspecting 
transmission and distribution piping. The measurements had excellent quality. However GTI’s 
analysis indicates that it takes experienced analysts to translate the measurements into precise 
defect severity estimates. Although most of the results were not obtained at inspection speeds, 
the short run with more realistic field equipment showed that inspection at Explorer II speeds 
will not reduce the quality of the defect severity measurements. 
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BATTELLE 
COMMENTS ON PIPELINE INSPECTION TECHNOLOGIES 
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Comments on Demonstration Results for the 

ROTATING PERMANENT MAGNET  

INSPECTION TOOL 
Prepared by Battelle 

February 17, 2006 

Theory of Operation 

The rotating permanent magnet inspection method employed by Battelle at the Pipeline 
Inspection Technologies Demonstration is an alternative to the common concentric coil methods 
to induce low-frequency eddy currents in ferromagnetic pipe and tubes.  Battelle’s technology 
consists of a pair of permanent magnets that rotate around a central axis in proximity to the inner 
surface of the pipe sample.  The rotating permanent magnet pairs are used to induce high current 
densities in the material undergoing inspection.  Following fundamental laws of electrical 
induction, rotating permanent magnet pairs inside a pipe along its longitudinal axis establishes an 
alternating electrical current in the wall of the pipe. Figure 1, a cutaway drawing showing the 
rotating permanent magnet exciter, illustrates this concept.  The current flows in an elliptical path 
around the magnets. When the magnetizer is vertical, strong currents flow axially along the top 
and bottom of the pipe and circumferentially at the sides.  When the magnetizer is horizontal, 
strong currents flow circumferentially at the sides of the pipe and axially at the top and the 
bottom. Finite element modeling shows that a two-pole magnetizer produces strong current 
densities at distances reasonably far away from the magnetizer.  Although the current is complex 
at the magnet poles (where it is strongest), at distances of a pipe diameter or more away from the 
magnetizer it is uniform and sinusoidal.  With this uniform energy induced in the pipe, simple 
magnetic field sensors can be used to detect the change in current densities in the pipe wall and 
thus pinpoint the location of defects and anomalies. 
 
The development of this technology began in fall 2003 and is sponsored by The U.S. Department 
of Energy’s National Energy Technology Laboratory with cofunding from the Pipeline Research 
Council International.  The first known use of this inspection method to detect corrosion was 
performed in September 2004. 
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Figure 2.  Illustration of the rotating permanent magnet exciter and sensor location 
 

System Configuration as Demonstrated 

Figure 2 shows the prototype used for the 8 inch corrosion inspection benchmark demonstration. 
A pair of NdFeB magnets is mounted on a steel core machined from 1018 steel. The magnets are 
2 inches long, 1 inch wide, and 0.5 inch thick; the magnet strength is 38 MegaGauss-Oersted. 
While the strong holding force secures the magnets on the steel core, copper covers keep the 
magnets precisely aligned. The air gap between the magnet and the pipe wall is 0.5 inch. 
Wheeled support plates keep the magnet centered in the pipe. A variable speed direct current 
motor is used to rotate the magnetizing assembly.  The rotational speed used in this 
demonstration was 300 rpm or 5 Hz.  The power required to rotate the magnets at this speed was 
about 70 watts.  While this is above the available power of 50 watts budgeted by Explorer II, this 
power requirement is significantly better than the 200 watts required in prior designs.  Three 
pairs of axial and a radial Hall Effect sensors were mounted in 4 sensor shoes designed to ride on 
the ID of the pipe.  While sensor to magnet spacing of 8 to 10 inches provides stronger signal 
changes from corrosion anomalies, the distance from the magnet to the sensor was 13 inches to 
meet EXPLORER II specifications.  To continuously monitor rotational speed, a small magnet 
was attached to the shaft and an additional Hall Effect sensor was used to produce a synchronous 
signal. 
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Figure 3.  Rotating permanent Magnet Inspection system as configured for the technology demonstration 
 
A 24 channel real-time data recorder system was implemented and fundamental experiments 
were conducted to provide data to aid in the design of the rotating magnetizer.  A system was 
designed to simultaneously record and process 11 sensor pairs, the sync signal and one open 
channel.  The block diagram of the data recorder system is shown in Figure 3.  The heart of the 
recorder is the National Instruments PXI-4472, an eight-channel dynamic signal acquisition 
module for making high-accuracy frequency-domain measurements. The eight NI PXI-4472 
input channels simultaneously digitize input signals over a bandwidth from 0.5 Hz to 45 kHz. 
Three PXI-4472 modules were synchronized to provide 24 channel input using the PXI chassis 
and a star trigger bus.  The PXI chassis communicates with a desktop computer using a fiber 
optic link.  The desktop computer is used to analyze the signals using a lock-in amplifier 
approach, as described in a previous DOE semiannual report.  LabVIEW software modules for 
lock-in amplifier measurements were used in the development of a custom data acquisition and 
display program. 
 

 
 
Figure 3.  The block diagram of the data acquisition system 
 

Display of results 
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The data acquisition and processing hardware and software processed signals and displayed data 
in real time during the demonstration.  A typical output of the data recording package is shown in 
Figure 4.  In real time display mode, the data scrolls along the monitor as the inspection tool 
traverses the pipe.  The upper and lower graphs show the axial and radial sensors respectively 
using a stacked line plotting routine, a format familiar to pigging vendors and users of pipeline 
inspection technologies.  In this figure, the signal from an axially short, circumferentially wide 
metal loss anomaly can be seen in the middle channels of each sensor type. 
 

 
 
Figure 4.  Screen capture of custom LabVIEW data acquisition and display program 
 
The results submitted by Battelle on January 26, 2006 (contained in appendix B) included signals 
from each reporting area in a uniform format.  An example signal is shown in Figure 5 for pipe 
sample 2, search area 10.  The upper and lower stacked graphs show the signals from the axial 
and radial sensors respectively; the color codes repeat so that sensor pairs can be correlated.  
Since only about 70 degrees of the pipe was instrumented, the center sensor was positioned so 
that it traversed the centerline of the defect.  In some of the graphs in appendix B it is evident 
that the tool rotated slightly as it was pulled through the pipe because some of the corrosion 
signals are greater in other sensors.  The signals provided with the report were plotted on the 
same scale for quick visual comparison.  For detection and assessment, signals were amplified so 
that smaller corrosion areas could be more easily detected and assessed.  Other graphical 
representations, including plotting axial versus radial signals, are proving to be useful in 
assessing corrosion.  A scaled topographical map of the corrosion depth is included at the bottom 
of Figure 5 after it was flipped (the tool was pulled from right to left).  The two humps in the 
stacked graphs correspond to the two pits in the image.  In the reported results, the presence of 
single or multiple pits was indicated in the comment section.  The depth assessment was based 
on the largest signal since the data reporting form specifically requested maximum depth. 
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Figure 5.  Signal from pipe sample 2, search area 10 

Comments on Results 

The results presented in the main section of the demonstration report are representative of the 
current capability of the rotating permanent magnet tool.  This comparatively new inspection 
methodology is in its third year of development.   Specific comments on detection and sizing 
results are provided next. 
 
Detection.  The results of the demonstration showed that all corrosion anomalies were detected 
and one additional anomaly was falsely detected.  The false call anomaly was assessed as small 
and not detected in all pulls.  The spacing between sensors (sensor pitch) of the demonstration 
configuration was 0.5 inches.  For corrosion with shallow depth and a width and length 
nominally the same as the sensor pitch, a detectable signal may only be produced by a sensor 
traveling directly underneath the anomaly.  Two sensors straddling the same anomaly may not 
produce a signal.  Future implementations may need a finer sensor pitch to improve results.  
 
Corrosion sizing.  A corrosion anomaly locally increases the density of the currents that are 
induced by the rotating magnetizer.  The local change in current density is also influenced by the 
length and width.  The algorithm for estimating the depth of the corrosion anomaly includes 
these three measures, in a manner similar to magnetic flux leakage data analysis methods.  Data 
from the calibration anomalies and the first benchmark demonstration were used to establish the 
sizing algorithm.  The unity plot shown in the main report indicates a good correlation between 
measured and predicted values, however there is a general tendency to under-call the depth.  This 
was the first algorithm developed for corrosion anomaly depth assessment.  Additional data and 
algorithm refinement should help improve results. 
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Natural Corrosion Sample.  The natural corrosion sample was difficult to assess because of the 
unexpected weld.  In hindsight, the signals were quite clear.  Figures 6 and 7 show the reported 
raw data with new annotations for lines 1 and 2 respectively. In the results reported on January 
27, 2006 for these lines Battelle discussed: 

• Line 1 - A large area of general corrosion of variable depth that spans the entire sensor 
width.  The corrosion is close to the weld, altering both signals.  A large wide corrosion 
area  at 128" 

• Line 2 - An area of general corrosion of variable depth that spans most sensors.  A large 
wide corrosion area at 128" 

 
The signal 128 inches from the end was the unexpected weld signal.  The general corrosion on 
either side of the weld corresponds to the measured results; however the close welds caused 
interference and sizing was not attempted at this time.  While the natural corrosion pipe was 
complex, it is only one of many unique challenges that must be faced when implementing 
inspection technology and the experience will be valuable in future developments. 

Summary 

The benchmarking results are a representative assessment of the current state of development of 
the rotating permanent magnet inspection system.  The planned improvements of this technology 
should advance the capability of this inspection system.  Battelle is currently working on 
reducing magnetizer size, increasing rotation speed, and increasing the separation distance 
between the magnet and the pipe.  Separations of over an inch appear to be practical, which will 
aid in the implementation of this technology.  The rapid advances of this new inspection 
technology should make this methodology useful for unpigable pipeline applications in the near 
future. 
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Figure 6.  Natural corrosion results line 1 
 

 
 
Figure 7.  Natural corrosion results, line 2 
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Comments on NETL and Pipeline & Hazardous Materials Safety 
Administration pipeline inspection technologies demonstration 

 
Submitted by: Paul D. Panetta  

Pacific Northwest National Laboratory  
Richland, WA 99352 

paul.panetta@pnl.gov 
(509) 372-6107 

 
 
The Pacific Northwest National Laboratory (PNNL) participated in the Pipeline Inspection 
Technologies Demonstration during the week of January 9, 2006.  The main focus of the 
demonstration was to rank the severity of dents based on ultrasonic measurements of the 
mechanical properties and the presence of plastic strain.  This approach is dramatically different 
than the current assessment based solely on dimensional measurements.  The advantage of this 
approach is that the reliability of the pipeline can be determined based on material properties and 
how they change with time and damage, rather than the size and shape of a dent. 
 
Measurements were performed on two 24 inch diameter pipes containing dents and dents with 
gouges.  Pipe 1 contained 3 rows of dents from a track how with a very small separation 
distance, on the order of a few inches in some cases.  The total number of dents exceeded 40 
dents.  The operation of creating these dents and dents with gouges created a significant amount 
of distortion to the pipe and ovalization of the pipe.  In-service pipelines with the amount of 
denting are highly unlikely and this pipe does not represent a realistic pipeline operating 
scenario.  Despite this significant distortion results were promising.  Pipe 2 contained 10 dents 
and 11 reporting locations.  All dents were successfully detected and estimates of the size were 
provided.  The ultrasonic strain measurement correctly ranked 7 out of the 9 reporting locations 
for 100% detectability and 77% accuracy on ranking severity.    
 
The sensor was a non contact electromagnetic acoustic transducer (EMAT) that was scanned 
along the axis of the pipe at several distances from the dents placed at top dead center.  The 
sensor and cart are shown in Figure 1.  Figure 2 shows the amplitude and ultrasonic 
measurements along pipe 2 with the sensor placed 15 degrees from top dead center.  The 
amplitude clears shows a deviation at each reporting location with a dent and no deviation where 
there is no dent.  The ultrasonic shear wave birefringence is independent of thickness which is 
critical for characterizing mechanical properties due to deformation because a simple thickness 
measurement is NOT an accurate assessment of strain.    
 
The inspection speed was as fast as 5 inches per second and the electronics can operate as fast as 
4 or 5 feet per second (~3 MPH).  The measurements were performed in a 24 inch pipe and are 
amenable to pipes as small as 4 inches in diameter.  The technology proved to be very sensitive 
to mechanical damage due to dents and is also ideal for application where pipelines are bent due 
to subsidence or other earth movement.   This technology is ready for incorporation onto robotics 
platforms and for field testing and subsequent commercialization for specific applications. 
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Figure 1.  Photo of the ultrasonic sensor and scanning cart. 
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Figure 2.  Amplitude and ultrasonic birefringence as a function of distance along pipe 2. 
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SCC detection using Shear Horizontal EMAT 
 

Based on the results, we feel that the ORNL SCC detection system using shear horizontal wave 
EMAT detection has performed very well for the test conditions.  In this response, we address 
areas pertaining to: training data issues, lack of data on SCC depth, additional defects along test 
line 1, and false positives.  With these comments concentrating on issues where the results are in 
question, we would like to emphasis that the system performed very well for the test and 
addressing these issues will only improve or better clarify the results. 
 
Training Data:  
The current ORNL set-up for detecting SCCs with the shear horizontal wave EMAT uses 
transmitted signals to assess the presence of a crack.  The signals from ‘no-flaw’ regions are 
compared to the signals from ‘flaw’ regions to identify cracks.  The key issue in performing this 
measurement is the determination of features, derived from the response signals that separate 
flawed regions from those with no flaws.  In the current algorithm, wavelet based features from 
both ‘flaw’ and ‘no-flaw’ regions are used to establish classes (SCC, no-flaw, other anomaly).  
Since this technology requires training data of known defect and no-defect regions, a 26” 
training pipe was provided in addition to the test pipe during our visit to the test facility.  
Unfortunately, we were unable to generate a proper training set from this test pipe due to the 
quality and the discrepancy in the location of the flaws.  Instead, previous data collected from a 
30” pipe for training were used.  Although the mode frequencies were different for the 26" and 
30" pipe due to change in wall thickness and pipe diameter the results were still satisfactory.  
This indicates a robustness of the training sets across pipe diameters and thicknesses.  The 
system performance would have only improved had we used a training set generated out of 
similar pipe geometry. 
 
SCC Depth Data: 
Defect sizes were given in terms of length and area of crack on the pipe with no depth 
information.  Liquid fluorescent magnetic particle inspection for detecting SCCs does not 
contain any information on the depth of the crack, while the EMAT based approach has a direct 
dependence on it.  Hence, some very small cracks detected by magnetic particle method may not 
be detected by EMAT due to their depth being small.  This is a possible reason for SSC2 not 
being detected.  With the knowledge of SCC depth, we could have determined how well the 
system is able to detect the severity of the crack. 
 
Additional Known Defects in Test Line 1: 
In testing, we were instructed to test along three different lines of the test pipe to determine the 
presence of defects over particular spans along each line.  Figure 1 shows the pipe layout for the 
test.  Each test box (blue boxes labeled SCC1 – SCC14) along with every defect previously 
identified on the pipe (pink boxes labeled 4-9, 15-20) are pictured.  The dashed lines represent 
the three scan lines.  As mentioned in the results, the SCC defect we were to locate in SCC3 is 
defect 8 (far left side of box).  However, we positioned this defect to the right by several inches.  
Since the EMATs scans an arc of ~12 inches around the circumference of the pipe, the SCC 
boxes within the figure have been drawn with 12 inch height to show the area covered by the 
sensor.  From the figure, we see that defects 17, 18, and 19 are all on the upper edge of SCC3. 
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Figure 4.  Test setup. 

 
Our defect detection signal is essentially a distance measurement from the no-defect class within 
our feature space.  This distance is pictured in Figure 2 for the SCC3 region.  Red lines show 
boundary of box SCC3 and the approximate locations of defects 8, 17, 18, and 19 are shown in 
pink text.  In our response to the test, we listed the defect in the SCC3 box based on the large 
signal that appears to correspond to defect 18 (a fairly large inclusion).  From the signal, we do 
feel that we are seeing the intended defect 8 as well but did not list it due to its location 
straddling the boundary of the SCC3 region. 
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Figure 5.  Defect response signal for SCC3 area. 

 
False Positives: 
As mentioned in the results, we also identified a false positive on each scan line.  The EMATs 
did indicate flaws in areas where they were none, and this could be the result of not having the 
baseline data or the algorithm needing further refinement.  Lack of good natural SCC data has 
been one of the difficulties we faced while developing this technology. We have created 
synthetic SCCs using electrical discharge machining (EDM), however, EDM machined SCCs do 
not give a signature truly characteristic of a natural SCC.  Figure 3 shows the signals returned for 
the three false positives that have peaks similar to our previous experience with SCC signatures.  
Red lines delineate the regions of interest.  The false positive on line 1 (Figure 3a) shows a series 
of peaks each similar in shape to an SCC response.  The false positive in line 2 (Figure 3b) 
shows a well-isolated peak typical of an SCC response.  The false positive in line 3 (Figure 3c) 
shows an SCC type response on the right side of SCC14 box.  Similar bumps also can be seen 
near 160" mark but were not marked as SCCs due to the low dome shape of the response.  
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(a)      (b) 

 

 
(c) 

 

Figure 6. False positive signals for scan lines 1, 2 and 3 are shown in (a), (b) and (c) respectively 
 

Conclusion: 
As mentioned earlier, we feel the ORNL SCC detection system performed well in this test.  
Lessons learned from the tests are: 1) Training data may not be necessary for each pipe geometry 
being investigated, and 2) Information on SCC depth is needed to fully characterize the system 
performance.  We feel that the system performance will continue to improve as more training 
data from natural SCCs are collected and used to train the algorithm. 
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Introduction: 
 
Representatives from the National Energy Technology Laboratory demonstrated polyethylene 
pipe inspection technology at Battelle’s West Jefferson Pipeline Simulation Facility near 
Columbus, OH.  The technology was demonstrated January 10 – 12, 2006 by James Spenik 
(REM), Chris Condon (REM), Bill Fincham (Parsons) and Travis Kirby (WVU).  
 
Battelle provided a 13-foot length of 6-inch nominal diameter, 0.5-inch wall thickness 
polyethylene pipe.  Holes and saw cuts were placed into the top outer surface of the pipe along 
an axial line.  Twelve defects were placed within nineteen 6-inch long search regions.  Eight of 
the regions did not contain a defect, one region contained two defects. The line of defects was 
covered thus the experimenters did not know their location when data was collected.  However, a 
calibration defect was available whose characteristics and location was known to the 
experimenters.  
 
The probe was able to identify the defect in every search region without false positives.  
 
 
Technique: 
 
Abnormalities in the pipe wall are determined by changes in the dielectric properties of the wall 
material.  An electric field is projected through the pipe wall by the probe head (Fig. 1).  The 
wall material behaves as the dielectric component of a capacitor.  This arrangement formed the 
probe head of the sensor device. Since the dielectric constant of polyethylene is greater than that 
of air (or natural gas) an absence of material within the electric field will manifest itself as a 
decrease in capacitance.  
 

 
 

Figure 1   Projection of Electric Field through Pipe Wall 
 
 
The probe head and associated electronics were mounted on a platform designed for this 
particular test (Fig. 2).  The probe head was mounted 5.5 inches from the back circular disk of 
the 9.25-inch long platform.  A 5.5 inch diameter disk was mounted at each end of the platform.  
In future use, the probe could be incorporated on existing platforms.   
 
The platform was propelled through the pipe using a stationary stepper motor and nylon 
filament.  An optical encoder was used to determine probe position within the pipe.  Data were 
transmitted using RF transmission via Bluetooth technology. Another option would be to store 
the data onboard and retrieved at a later time. Power was supplied using an on-board 9-volt 

Dielectric Material (wall) 

Probe head

Field LinesDefect 



 

 

battery.  The data transmission rate for this particular demonstration was controlled by the 
optical encoder and stepper motor.  Capacitance data were to be transmitted every forty counts of 
the optical encoder (0.09 inch axial movement) but this value may have varied a few counts.  
The stepper motor moved the platform at a rate of approximately 0.09 in/s.   The sampling rate 
was approximately 1 Hz for this configuration due to the constraints previously mentioned.  Thus 
the transit time through the pipe was approximately 15 minutes.  However, the electronics 
package used is capable of transmission rates of between 45 – 90 Hz and modifications to the 
package would allow transmission rates in the MHz range.   
 
 

 
Figure 2  Platform with Probe Electronics 

 
 
Data collection/analysis: 
 
Twenty traverses were performed during the three days of data acquisition.  The first ten were 
preliminary to identify problems.  These difficulties were not related to the function of the pipe 
defect sensor but rather sensor movement.  Initially, the optical encoder did not react to 
movement along the surface of the yellow polyethylene pipe.  This was an unforeseen problem 
since, in an earlier test, the encoder reacted in black polyethylene pipe.  The problem was 
resolved by placing a strip of material visible to the encoder on the interior lower surface of the 
pipe.  Movement of the platform would be halted due to a slightly underpowered stepper motor.  
The edges of the platform disks were lubricated with graphite which minimized the problem.  
The deviation of the probe head from a linear path was minimized using guide line attached to 
the bottom of the pipe and through the bottom of both platform disks.  These problems were 
identified and solved during the first ten traverses. Data from the second set of ten traverses were 
useful and provided data for statistical analysis. 
 
Tests commenced with the rear disk approximately 1.5 inch from the “B” end of the pipe placing 
the sensor head at the 149 inch position of the 156 inch (13 foot) pipe (Fig. 3).  Tests concluded 
with the probe head at the 7 inch position.  Run11 – Run 20 were compiled to determine the 
position of anomalies within the polyethylene pipe.   

Probe Head 



 

 

 
 
 
 
 
 
 

Figure 3  Path of Probe Through Pipe 
 
 
The average number of data points accumulated for each run was 1619 points corresponding to a 
measurement for each 0.0877 inches of travel.  However, this number varied between runs with a 
standard deviation of 46.  These discrepancies can be attributed to either binding of the stepper 
motor or variations in the triggering level of the optical sensor.  The focus of the research was 
creation of the probe; the platform was designed only after conformation of the teams’ 
participation in the demonstration was received.  Data were post processed to determine the 
exact position of each defect within each search region in the following manner:  
 

1. Data were aligned so the minimum capacitance for each run near the calibration hole 
coincided. (Minimum capacitance corresponds to the center of the anomaly) 

 
2. Since the total length of the traverse and the total number of data points were known, the 

ratio of these numbers yielded an initial estimate of step size for each run. 
 
3. The data for each run was separated by search region.  

 
4. The position and value of the minimum capacitance value within the search region for 

each run was determined.  
 

5. The average position of the minimum within the region was determined. 
 

6. Each run was realigned within the region so the minimum was located at the average 
minimum position. 

 
This method was effective; however, cumulative error caused the position of the anomaly within 
a search region to be progressively misinterpreted.  The measured position and actual position of 
the defect in search area D1 was at 25 inch, however, the actual position of the defect in search 
area D19 was 148” and the measured position was 146.8” Again, this is not due to sensor error 
but rather due to positioning error.  All defects were identified with the exception of a binary 
defect (two holes separated by 0.5 inch on centers) located at position D15 which we identified 
as a single entity.  The probe in its current configuration was not designed to separate binary 
anomalies separated by less than an inch. 
 
Although it was not part of the benchmarking demonstration, an attempt was made to provide a 
comparative value of volume of material removed by the defect. Only moderate success was 
achieved in this endeavor.  The reason that definitive volumetric values could not be determined 
was because the defects presented in the pipe could be considered to have three variables: 
diameter, depth and type (round hole or saw cut).  Due to the nature of the electric field produced 

A B 
Traverse Direction



 

 

by the probe, the depth and diameter cannot be combined into the single variable volume.  Since 
the electric field strength diminishes as a function of distance from the probe head, a smaller 
volume closer to the probe head is seen as equivalent to a larger volume further away.  The 
output from the current probe design yields two values: capacitance and change in capacitance 
with respect to axial position.  Therefore there were three unknowns and only two equations and 
thus the volume of material removed was indeterminate.  A future design of the probe allowing 
circumferential measurements will allow the development of an algorithm to define defect 
volume. 
  
Figures 4 through 7 illustrate the typical probe response when a defect was encountered.  Each 
figure compiles the ten runs taken within an eight-inch long region of interest.  The abscissa is 
the variation from minimum capacitance within the region and the ordinate is the linear position. 
Figure 4 shows the calibration defect and the probe response.  Figure 5 shows a typical response 
to a round defect and Figure 6 indicates the response to a saw cut.  Figure 7 indicates the probe 
response in a region with no known defects.  The presence of an anomaly typically produced a 
variation of 4000 aF.  Variations in a region without defined anomalies were typically 500 aF. 
 
Conclusion: 
 
The probe successfully identified the position of all defects within the search regions and had no 
false positive results.  Deviations from the precise position of the defects within the search region 
can be attributed to the means of locomotion and position identification procedures.  The data 
acquisition rate can be markedly increased with a superior locomotion scheme.   Further 
devlopment to this technology will produce a device that can be inserted into in situ natural gas 
pipelines and determine their integrity. 
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Figure 4 Calibration Hole and Probe Response (18” position) 
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Figure 5  Round Hole Defect and Probe Response (25” position) 
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Figure 6  Saw Cut Defect and Probe Response (102” position) 



 

 

 
 

Figure 7  Probe Response with no Defect (102” position) 
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Neither Battelle, nor any person acting on their behalf: 
 

(1) Makes any warranty or representation, expressed or implied, with respect to the 
accuracy, completeness, or usefulness of any information contained in this report or 
that the use of any information, apparatus, method, or process disclosed in this 
report may not infringe privately owned rights. 

 
(2) Assumes any liabilities with the respect to the use of, or for damages resulting from 

the use of any information, apparatus, method or process disclosed in this report. 
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PIPE AND ANOMALY CONFIGURATION FOR 
THE PHASE II BENCHMARKING OF EMERGING 

PIPELINE INSPECTION TECHNOLOGIES 
 
This report provides the supporting documentation to assess data obtained by pipeline inspection 
technology developers participating in an internal inspection benchmarking demonstration held 
at Battelle’s Pipeline Simulation Facility from January 9, 2006 through January 13, 2006.  This 
report is divided into five main sections that document the pipe defect types, sizes, and locations 
inspected during the demonstration program.  Section 1 provides a brief background of the 
internal inspection benchmarking demonstration program and facilities used.  Section 2 provides 
detailed information on the corrosion defect sets used to benchmark some of the technologies.  
Section 3 provides detailed information for the mechanical damage defect sets.  Section 4 
provides detailed information for the Stress Corrosion Cracking (SCC) defect set and Section 5 
provides information on the plastic pipe defects used in the benchmarking demonstration. 

SECTION 1.  BACKGROUND 

INTRODUCTION 
The Department of Transportation Pipeline and Hazardous Materials Safety Administration 
(DOT PHMSA) and the Department of Energy National Energy Technology Laboratory (DOE 
NETL) are improving natural gas delivery safety and reliability by establishing a viable 
technology foundation for the natural gas transportation and delivery network.  This objective is 
being achieved through development of technologies that enhance the integrity, operational 
reliability, safety and security of the nation’s natural gas infrastructure.  DOT PHMSA and DOE 
NETL are collaborating with National Laboratories and the private sector in developing new 
inspection technologies.  The combined research portfolio includes projects that address 
corrosion, stress corrosion cracking, mechanical damage, and plastic pipe defects.  
 
Battelle, in association with DOT PHMSA and DOE NETL, have devised a program that will 
allow each developer to benchmark their sensor technology during a one-week pipeline 
inspection demonstration at Battelle’s Pipeline Simulation Facility (PSF) in Columbus, Ohio.  
Battelle’s PSF has unique facilities and pipe samples with representative defects that are ideal for 
use in the technology demonstration program.  The defect sets include natural and artificial 
defects with a wide range of types and sizes in pipe segments of various wall thickness and 
diameters. 
 
A similar benchmark program was successfully completed in September 2004 with the results 
documented in the DOE NETL report “Pipeline Inspection Technologies – Demonstration 
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Report”1.  This demonstration program serves as Phase II in the ongoing process to establish the 
capabilities of each sensor technology.  The Phase II demonstration program was conducted over 
a one-week time period from January 9, 2006 through January 13, 2006 and attended by the 
participants listed in Table 1-1.   
 
Table 1-1.  Participants in the Internal Inspection Demonstration 
 
Company Technology Tool Diameter Defects Examined 
Battelle Rotating permanent 

magnet eddy current 
8 inch Corrosion 

Gas Technology 
Institute (GTI) 

Small diameter exciter 
remote field eddy 
current 

8 inch Corrosion 

National Energy 
Technology 
Laboratory (NETL) 

Plastic pipe sensor 6 inch Cylindrical pit and 
saw cut defects in 
plastic pipe 

Oak Ridge National 
Laboratory (ORNL) 

Circumferential 
EMAT 

26 inch Stress Corrosion 
Cracking (SCC) 

Pacific Northwest 
National Laboratory 
(PNNL) 

EMAT strain 
measurement tool 

24 inch Mechanical Damage 

Southwest Research 
Institute (SwRI) 

Collapsible coil 
remote field eddy 
current 

8 inch Corrosion 

 
As in the previous demonstration program, each participant was contacted directly to discuss the 
objectives of their sensor development programs and the constraints of current implementation. 
This information was taken into consideration when developing the demonstration program and 
associated documentation.   

PIPELINE SIMULATION FACILITY 
The Pipeline Simulation Facility was designed and built to conduct research and to develop and 
commercialize pipeline technologies. Its primary focus is in-line inspection technologies. The 
facility can be used for a wide range of inspection-related studies, from detailed analyses of 
defects in flat plates under idealized conditions to tests on the same defect geometries in a 
pressurized line operating under flowing conditions. Collectively, the Pipeline Simulation 
Facility offers a hierarchy of capabilities for developing and proving technologies.  

                                                 
1 http://www.netl.doe.gov/technologies/oil-
gas/publications/t%26d/Battelle%20Inspection%20Demo%20Final%20Report_111804.pdf  
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Flow Loop 

The flow loop is the largest and most significant part of the Pipeline Simulation Facility. The 
loop is a simulated operating pipeline in which research, development, and demonstrations can 
be conducted under realistic conditions. For inspection related developments, tests can be made 
using test bed vehicles or in-line inspection tools. The loop is approximately 4,700 feet long and 
24 inches in diameter, and it allows both pressure and flow velocity to be controlled. It contains a 
number of typical pipeline features, such as bends, road crossings, underwater sections, and 
anchors. It can be used to complete the development of pipeline technologies and test the 
technologies without risking the integrity or throughput of an operating pipeline.  
 

 
Figure 1-1.  PSF Flow Loop 

Pull Rig 

The pull rig is used for tests of complete inspection systems under unpressurized conditions. It 
consists of four 300-foot long pipe runs with diameters of 12, 24, 30, and 36 inches. In-line 
inspection tools and test bed vehicles can be pulled through the pipe sections using the rig’s 
winch. Depending on the tool, pull forces up to 56,000 pounds and speeds up to 25 mph can be 
achieved. 
 

 
Figure 1-2.  PSF Pull Rig 
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Sensor Development Sled 

The sensor development sled is a moveable platform on which sensors and partial magnetizing or 
inspection assemblies can be installed and pulled along pipe segments at accurate velocities up to 
10 mph. The sensor development sled can be used to measure the effects of velocity and sensor 
position on defect-to-signal relationships, and it can support virtually any nondestructive 
evaluation sensor technology.  
 

 
 
Figure 1-3.  Sensor Development Sled 

Test Bed Vehicle 

The test bed vehicles are generic in-line inspection platforms upon which inspection hardware 
can be mounted and tested. Two test bed vehicles are available: the magnetic flux leakage (MFL) 
vehicle, which is specialized for MFL technology, and the advanced sensor vehicle, which is 
specialized for high data-rate inspection technologies. 
 

 
 
Figure 1-4.  Test Bed Vehicle 
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Defect Sets 

A number of existing defect sets are available for evaluation at the PSF. These defect sets 
provide a common basis for correlating results from each facility component, thereby helping to 
ensure that the conclusions drawn are valid over a wide range of conditions. Removable 
mechanical damage defect sets are available for use in 24-inch pipe in the pull rig and flow loop. 
Similar defects are available in pipe segments for the sensor development sled.  Natural and 
simulated corrosion samples are available in 8- 12- and 24-inch diameter pipe. A stress-corrosion 
cracking defect set is available for the 30 inch and 26 inch pipe in the pull rig.  Additionally, a 
section of 26 inch pipe that has been re-rounded to 24 inch diameter is also available for pull rig 
testing. A set of weld-solidification cracks, and a matching set of notches made using electron 
discharge machining, are available for the flow loop.  For development of third party damage 
inspection tools, over 200 dents and gouges are available in 24 inch diameter pipe. 

INTERNAL INSPECTION DEMONSTRATION CONFIGURATION  
The following sections provide details on the interface between the PSF test equipment and 
sensor technology being developed.  This is intended as a guide rather than a specification as 
changes were made throughout the demonstration to meet testing needs. 

Pipe Sample Layout 

The configuration that was used to benchmark the emerging technologies consisted of the 
following pipe samples: 

• One 8-inch ERW seam welded pipe sample with simulated corrosion defects measuring 
30-feet in length with a wall thickness of 0.188 inches.  The pipe sample contained two 
rows of defects spaced 180° apart. 

• One 8-inch ERW seam welded pipe sample with simulated corrosion defects measuring 
30-feet in length and included a small section of natural corrosion from a pipe pulled 
from service measuring 5-feet in length.  Both the natural and simulated corrosion pipe 
samples had a wall thickness of 0.188 inches.  The complete pipe sample contained two 
rows of defects spaced 180° apart. 

• One 8-inch ERW seam welded pipe sample with simulated corrosion defects measuring 
40-feet in length with a wall thickness of 0.188 inches.  The pipe sample contained two 
rows of defects spaced 180° apart. 

• One 6-inch Polyethylene Pipe measuring 13 feet in length with a wall thickness of 0.5 
inches.  The pipe sample contained cylindrical drill holes and saw cut defects for analysis 
placed along one row on the exterior of the pipe. 

• One 24-inch pipe sample with plain dent defects measuring approximately 28-feet in 
length with a wall thickness of 0.292 inches.  The pipe sample contained one row of 
defects for analysis.  Two additional rows of defects were located on this pipe sample 
spaced 120° apart but were not included in the benchmarking. 



 

6 Pipeline Inspection Technologies 
Demonstration Report  Appendix D 

• One 24-inch pipe sample with plain dent defects measuring approximately 40-feet in 
length with a wall thickness of 0.292 inches.  The pipe sample contained one row of 
defects for analysis. 

• One 26-inch pipe sample containing natural stress corrosion cracks (SCC) measuring 
approximately 26-feet in length with a wall thickness of 0.281 inches.  The pipe sample 
contained multiple defect locations requiring several rows for data collection.  A separate 
26-inch diameter SCC pipe sample was provided for calibration. 

 
Each pipe configuration had the same defect characteristic philosophy; the detection and sizing 
of the defects ranged from simple to difficult to help define both the current capability and future 
challenges for each of the inspection technologies. 
 
This benchmarking study was designed to assess the current inspection capability of the sensor 
technologies prior to full hardware implementation (for pull rig testing or testing on a robotic 
platform).  Therefore, the pipe samples were placed within the pipeline testing lab, which is a 40 
foot by 100 foot building with overhead doors.  The three 8-inch diameter pipes, one 6-inch 
diameter plastic pipe, two 24-inch diameter pipes, and two 26-inch diameter pipes were placed 
parallel to each other with a separation distance between each pipe of approximately 4 feet.  All 
developers brought their own method for pulling their sensor carriage through the pipe samples 
including a return cable or rope to pull the unit back to the insertion point.  The layout of the pipe 
samples is shown in Figure 1-5 with a photograph of the actual benchmarking set-up shown in 
Figure 1-6.  
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Figure 1-5.  Layout of Building and Pipe Samples 
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Figure 1-6.  Benchmarking Demonstration Setup 
 
In developing the internal inspection benchmarking program, the procedures were tailored to the 
needs of the specific inspection technologies.  A general outline of the demonstration program is 
as follows: 

1. The following items were available to attach to the sensor carriage as requested by the 
sensor developer: 
a. A 100 foot tape measure at the center of the sensor to measure defect position; 

and 
b. A 115 Volt AC power cord.  

2. One light duty winch was available for use to pull the inspection tool through the pipe 
sample; however each sensor developer brought their own winch or similar device to 
expedite the testing process. 

3. The test schedule was staggered over the week long benchmarking to ensure that each 
developer had sufficient time to collect data; this schedule was provided 
approximately 1-month prior to the start of the benchmarking demonstration. 

4. Since there were a limited number of test samples, certain technology developers 
were asked to vacate specific pipe samples to allow other participants an equal 
opportunity to collect data. 
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5. After each technology developer had the opportunity to acquire data, the developers 
were allowed repeat runs to collect additional data, if desired. 

6. The facility was open for use from Monday January 9, 2006 to Friday January 13, 
2006 from 7 am to 6 pm.  After hours access was limited due to safety and security 
policies at Battelle. 

7. The results obtained by each participant were submitted to Battelle for compilation of 
results.    

 
Similar to the first test program, Battelle established a list of specific distances and positions 
along the pipe on which each participant is to report.  These locations may or may not have had 
defects, enabling probability of detection and false call rates to be assessed.   

Sensor Carriage Configuration 

It was expected that each sensor developer provide their own means for transporting their sensors 
through the pipe samples (wheeled carriage or similar design).  Basic requirements included low 
drag of the wheeled carriage, such that the unit could be pulled by hand or a light duty winch and 
bidirectional capabilities so that pulling the unit back to the insertion point would not damage the 
sensor, equipment, or pipe.  It was expected that the carriage would have mechanical connection 
points for the  
 
• Tow cable; and 
• Return cable. 
 
It was also anticipated that the sensor carriage would contact the pipe at three or four locations.  
It was recommended that at least one of the wheels should have an adjustment or spring loading 
to enable adaptation to pipe mismatch at welds measuring 0.25 inches and at changes in pipe 
wall thickness and pipe ovality measuring 0.5 inches. 

Pipe and Defect Configuration 

Pipe samples were welded together to form a complete vessel, though the welds did not have full 
load carrying capability.  The defects were arranged in rows and the sensor developers were 
informed of which row or rows of defects were included in the benchmarking. 
 
Tool rotation is a significant problem in dented pipe since each dent can easily spin the tool.  For 
the 24-inch pipe, a rail was available 180° from the dents to be evaluated to position the control 
carriage and prevent rotation.  The rail was 1.5” by 1.5” aluminum tubular modular material with 
a wheel assembly that could be attached to the sensor carriage unit (see Figure 1-7).  The clock 
position of other dent rows within the pipe sample were provided to the sensor developer prior to 
the benchmarking so that wheels on sensor carriages would not run over defects that were not 
part of the benchmarking demonstration. 
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Figure 1-7.  Aluminum Rail Guide Assembly 

REPORTING   
Prior to the demonstration, Battelle selected specific axial locations on which the developers 
were to report their inspection results.  This information was given to each developer for review 
and comment prior to the start of the demonstration.  Following the demonstration, each 
participant provided their findings to Battelle including any sizing or assessment information.  
Battelle subsequently tabulated the inspection results and provide these to DOT PHSMA, DOE 
NETL, and participating organization.  Each participant was given the opportunity to assess the 
results they provided against the measured values and to comment on their own performance.  
The reported results and the comments provided from the participants are documented in a 
separate report. 
 
The information provided in Sections 2, 3, 4, and 5 of this report consist of: 
• Corrosion Defects:  Section 2 documents the maximum pit depths and surface extent for each 

simulated and natural corrosion defect.   
• Mechanical Damage Defects:  Section 3 provides the depth of each dent at the center and the 

axial length as determined by a 0.020 inch departure from a straight edge placed on top of the 
dent.  Section 3 also provides the dent depth and relative severity based on deformation data 
and previous magnetic flux leakage (MFL) signals.  The reporting of dent severity is 
subjective to the assessment method and assessor. 

• SCC Defects:  Section 4 provides a magnetic particle map showing the location and length of 
the natural SCC defects from the test sample.   

• Plastic Pipe Defects:  Section 5 provides depths, surface extent, and volumes for each 
cylindrical and saw cut defect from the test sample.   
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SUMMARY 
The PSF has unique facilities and pipes with representative defects to assess the capabilities of a 
number of inspection technologies.  The Phase II benchmarking demonstration program will help 
to further define sensor technology progress and future direction for research and development 
efforts. 
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SECTION 2.  CORROSION INSPECTION 
TECHNOLOGY ASSESSMENT 

INTRODUCTION 
The current focus of corrosion inspection projects is to develop technologies that can work in 
unpiggable pipelines.  These lines typically have bore restrictions, low pressure or other 
conditions that make pigging with existing technologies impractical.  These new inspection 
techniques will eventually be mounted on robotic crawlers being developed under separate 
programs.  These crawlers will act as the propulsion units to escort the new sensor technologies 
through the pipeline.  While each technology will have the potential to work in an unpiggable 
pipeline, the current development is focused only on detecting and sizing corrosion defects.  
Therefore, the capability of passing bore restrictions was not evaluated at this time. 
 
Each corrosion inspection technology uses electromagnetic energy to interrogate the pipeline for 
defects.  A common requirement for these technologies is that  

• a full circumference pipe is needed; the technology will not work on coupons cut from 
pipe, 

• the sending and receiving units need to be separated by 2 to 3 pipe diameters, and 
• the defects must be at least four pipe diameters from an open end to avoid end effects that 

may influence results (end effects are not a problem in actual pipelines). 
 
Although Battelle has a large library of pipe samples containing external corrosion, the smallest 
diameter samples are 12-inches in diameter.  Since the current focus of the demonstration 
program is for smaller diameter pipe ranging in size from 6-inches to 8-inches in diameter, 
Battelle procured 8-inch diameter ERW pipe samples and simulated natural corrosion defects 
using electrochemical etching techniques.  Additionally, a small 8-inch diameter pipe sample 
with natural corrosion was obtained from a pipe segment recently removed from service.  A 
portion of this pipe sample was welded between two simulated corrosion pipe samples (Pipe 
Sample 1) for the benchmarking. 
 
The donated natural corrosion pipe sample had a field girth weld with corrosion on both sides of 
the weld.  The weld drop through was too large for the inspection tool specifications and as such 
the pipe was trimmed to include roughly 2 feet of corrosion on one end, 3 feet of full thickness 
pipe at the other end, and no field welds.  The pipe was then sandblasted and welded between 
two new pipes to comprise Pipe Sample 1.  When the pipe was being fully characterized for this 
report, an additional weld was found in the middle of the corrosion area (see Figure 2-1).  This 
weld was very fine and did not have a significant crown. The natural corrosion defects were 
intended to be a “stretch goal” of these emerging inspection technologies.  While the natural 
corrosion sample represents a real world problem, this additional weld adds a complex scenario 
that is most likely new to the technology developers.  This should be considered when assessing 
results. 



 

13 Pipeline Inspection Technologies 
Demonstration Report  Appendix D 

 

 
 
Figure 2-1.  Fine Weld in Natural Corrosion Sample; Test Line 2 in Pipe Sample 1 
 
The report sections below discuss the demonstration plan for the corrosion inspection tools and 
provides an “answer key” (Table 2-1) for the data sheets filled out by the corrosion inspection 
tool developers during the demonstration.  Additional information and photographs are provided 
in Figures 2-2 through 2-42 describing the maximum depths, surface extent, and locations for all 
of the corrosion defects.  This information will be used as the guide to assess the performance of 
the specific sensor technology developers. 

8-INCH CORROSION DEFECT DEMONSTRATION PLAN   
The demonstration plan for the 8-inch corrosion defect test configuration is as follows: 

1. The technologies for benchmarking include: 
1.1. SwRI: Collapsible coil remote field eddy current 
1.2. GTI: Small diameter exciter remote field eddy current 
1.3. Battelle: Moving permanent magnet eddy current 

2. The pipe is 8-inch inside diameter 

3. The demonstration samples are comprised of three pipes: 

3.1. Pipe 1 specifications are as follows: 
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3.1.1.  The length is 35 feet long, Schedule 10, ERW 
3.1.2.  A small portion of the pipe sample contains pipe pulled from service with natural 

corrosion; the pipe properties are unknown. 
3.1.3.  The nominal wall thickness is 0.188 inches 
3.1.4.  The pipe has 11 simulated corrosion defects plus natural corrosion. 
3.1.5.  The defects were placed along 2 rows separated by 180° 
3.1.6.  The angular coverage area for each sensor technology should have been designed 

to cover +/- 2 inches on either side of the centerline (~60° angular coverage)   
3.1.7.  The defects had the following dimensions: 

3.1.7.1. Length (in): >= 1 inch and <= 4 inches 
3.1.7.2. Width (in): >= 1 inch and <= 4 inches 
3.1.7.3. Depth (% wall thickness): >= 30% and <=80% 

3.1.8. The simulated defects were aligned in two rows with the separation between 
defects nominally 3 pipe diameters. 

3.1.9. Each defect consisted of a generally corroded area and anywhere from 1 to 8 
individual pits within the general corrosion area.  

3.1.10. All defects, except the calibration defect, were covered with a heavy material to 
prevent sensor developers from viewing the defects.  One defect near end A of the 
pipe remained uncovered for system check-out and calibration. 

3.2. Pipe 2 specifications are as follows: 
3.2.1.  The length is 30 feet long, Schedule 10, ERW 
3.2.2.  The nominal wall thickness is 0.188 inches 
3.2.3.  The pipe has 11 simulated corrosion defects. 
3.2.4.  The defects were placed along 2 rows separated by 180° 
3.2.5.  The angular coverage area for each sensor technology should have been designed 

to cover +/- 2 inches on either side of the centerline (~60° angular coverage)   
3.2.6.  The defects had the following dimensions: 

3.2.6.1. Length (in): >= 1 inch and <= 4 inches 
3.2.6.2. Width (in): >= 1 inch and <= 4 inches 
3.2.6.3. Depth (% wall thickness): >= 30% and <=100% 

3.2.7. The simulated defects were aligned in two rows with the separation between 
defects nominally 3 pipe diameters. 

3.2.8. Each defect consisted of a generally corroded area and anywhere from 1 to 8 
individual pits within the general corrosion area.  

3.2.9. All defects, except the calibration defects, were covered with a heavy material to 
prevent sensor developers from viewing the defects.  Two defects near End A of 
the pipe remained uncovered for system check-out and calibration. 

3.3. Pipe 3 specifications are as follows: 
3.3.1. The length is 40 feet long, Schedule 10, ERW 
3.3.2.  The nominal wall thickness is 0.188 inches 
3.3.3.  The pipe has 14 simulated corrosion defects. 
3.3.4.  The defects were placed along 2 rows separated by 180° 
3.3.5.  The angular coverage area for each sensor technology should have been designed 

to cover +/- 2 inches on either side of the centerline (~60° angular coverage)   
3.3.6.  The defects had the following dimensions: 

3.3.6.1. Length (in): >= 1 inch and <= 4 inches 
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3.3.6.2. Width (in): >= 1 inch and <= 4 inches 
3.3.6.3. Depth (% wall thickness): >= 30% and <=80% 

3.3.7. The simulated defects were aligned in two rows with the separation between 
defects nominally 3 pipe diameters. 

3.3.8. Each defect consisted of a generally corroded area and anywhere from 1 to 8 
individual pits within the general corrosion area. 

3.3.9. All defects, except the calibration defects, were covered with a heavy material to 
prevent sensor developers from viewing the defects.  One defect near End A of 
the pipe remained uncovered for system check-out and calibration. 
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8-INCH DIAMETER CORROSION DEFECT ASSESSMENT DATA   

 
Table 2-1. 8-inch Corrosion Inspection Technology Data Sheet “Answer Key” 
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Calibration Metal Loss 
Location

Depth of Metal Loss
Measured Length & 

Width of Defect
Measured Max. 
Depth of Defect

Comments

inches from End B to 
center of defect inches

301.5" (58.5" from End A) See profile
275" (85" from End A) See profile

Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

Total Length of Metal Loss Region Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

Total Length of Metal Loss Region Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

WELD 120"

Y

Defect 11; through hole

BLANK 11

BLANK 10

Defect 10

BLANK 9

BLANK 8

Defect 9

BLANK 7

Defect 8

BLANK 1

Y

N

N

N

TEST LINE 2

--- --- ---

60.875"

BLANK 3

BLANK 2

Defect 4

BLANK 5

Defect 3

Defect 2

--- N

Defect 1

Y

Detection of Metal Loss - Page 2
Name:
Date:
Company:

Benchmarking of Inspection Technologies

N

250.25"

WELD 120"

BLANK 4

2.125" 2" 0.14"P2-12 246" to 258" 248.125"

P2-13 222" to 234" --- --- N

3.125" 1" 0.105" Y

--- --- ---

P2-14 198" to 210" 202.625" 205.75"

--- --- --- NP2-15 174" to 186" --- ---

--- --- --- NP2-16 150" to 162" --- ---

4.125" 2" 0.112" YP2-17 126" to 138" 130" 134.125"

P2-18 102" to 114" --- ---

P2-19 78" to 90" --- --- --- --- ---

TEST LINE 1

P2-9 102" to 114" 108.125"

Sensor Design:

--- --- ---

3.125" 1" 0.188"P2-20 54" to 66" 57.75"

0.158"112.25" 4.125" 2"

--- --- ---

P2-7 150" to 162" 153.125" 156.375"

P2-8 126" to 138" --- ---

PIPE SAMPLE 2:
Calibration P2-1: 3 x 1
Calibration P2-2:

CALIBRATION DATA

Pipe Sample Metal Loss Length & Width

inches

3.25" 1" 0.085"

0.114"3.125"

Y

Y

P2-5 198" to 210" ---

TEST DATA

Pipe Sample: PIPE SAMPLE 2
Defect Set:

---

P2-6 174" to 186" 180.25" 183.375"

--- ---

1"

--- N

P2-4 222" to 234" 227.25" 229.375" 2.125" 2" 0.079" Y

P2-3 246" to 258" --- --- --- --- --- N

P2-2 270" to 282" --- --- --- --- --- N

P2-11 54" to 66" --- ---

P2-1 294" to 306" --- ---

P2-10 78" to 90" 80.125" 84.5"

2 x 2

Defect 54.375" 2" 0.147" Y

8" Diameter, 0.188" Wall Thickness Pipe Sample; Schedule 10; Length = 30' 0.375"

BLANK 6--- ---

 
Table 2-1 (cont). 8-inch Corrosion Inspection Technology Data Sheet “Answer Key” 
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Calibration Metal Loss 
Location

Depth of Metal Loss
Measured Length & 

Width of Defect
Measured Max. 
Depth of Defect

Comments

inches from End B to 
center of defect inches

421" (59" from End A) See profile

Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

Total Length of Metal Loss Region Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

Defect 
Number

Search Region 
(Distance from End B)

Start of Metal Loss Region 
from Side B

End of Metal Loss Region 
from Side B

Total Length of Metal Loss Region Width of Metal Loss Region
Maximum Depth of 
Metal Loss Region

Additional Data 
Attached?

Comments

inches inches inches inches inches inches Y/N

Defect 8

WELD 240"

WELD 240"

N

Y

BLANK 10

Defect 13

BLANK 9

BLANK 6

Defect 12; machined defect

Defect 11

Defect 10

BLANK 8

BLANK 7

BLANK 1

Y

N

Y

N

Defect 6; machined defect

BLANK 4

Defect 5

BLANK 3

Defect 14

Defect 4

Defect 3; machined defect

Defect 2

BLANK 2

4.125" 2" 0.094"

0.75" 0.75"

P3-12 390" to 402" 392.25" 396.375"

0.154" N Defect 9; machined defectP3-14 330" to 342" 335.875" 336.625"

P3-15 306" to 318" --- --- --- --- --- N

--- --- --- NP3-16 282" to 294" --- ---

3.125" 1" 0.07" YP3-17 248" to 260" 250.625" 253.75"

3.125" 1" 0.091" YP3-18 210" to 222" 214.5" 217.625"

0.72" 0.72" 0.139" NP3-19 180" to 192" 185.765" 186.485"

--- --- --- NP3-20 156" to 168" --- ---

4.125" 2" 0.103" YP3-21 126" to 138" 130" 134.125"

--- --- ---

4.125" 2" 0.088"

--- ---

P3-22 102" to 114" --- ---

P3-23 66" to 78" 69.5" 73.625"

---384" to 396" --- ---

P3-11 66" to 78"

TEST LINE 2

--- --- --- N BLANK 5--- ---

--- --- --- NP3-2 360" to 372" --- ---

2.25" 2" 0.133" YP3-3 330" to 342" 335" 337.25"

0.75" 0.75" 0.148" NP3-4 300" to 312" 305.625" 306.375"

2.25" 2" 0.103" YP3-5 270" to 282" 275" 277.25"

--- --- --- NP3-6 222" to 234" --- ---

4.125" 2" 0.115" YP3-7 186" to 198" 189.875" 194"

--- --- --- NP3-8 162" to 174" --- ---

P3-9 138" to 150" 143.665" 144.335" 0.67" 0.67" 0.120" N

Defect Set: 8" Diameter, 0.188" Wall Thickness Pipe Sample; Schedule 10; Length = 40' 0.25"

TEST DATA

Pipe Sample: PIPE SAMPLE 3

P3-13 356" to 368" --- --- --- --- ---

Benchmarking of Inspection Technologies

Company:

Sensor Design:

Detection of Metal Loss - Page 3
Name:
Date:

1" 0.156"

inches
PIPE SAMPLE 3:

TEST LINE 1

Defect 7

Calibration P3-1: 2 x 2

P3-1

CALIBRATION DATA

Pipe Sample Metal Loss Length & Width

P3-10 102" to 114" 106.375" 109.625" 3.25"

 
Table 2-1 (cont). 8-inch Corrosion Inspection Technology Data Sheet “Answer Key” 
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8 INCH PIPE SAMPLE 1 DOCUMENTATION  

Figure 2-2. 8-inch Pipe Sample 1 Defect Map 
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Pipe Sample 1 Simulated Corrosion Defect Photos 
 

 
 

 
Figure 2-3. Calibration Defect P1-1 (Defect 1) 
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Figure 2-4. Defect P1-3 (Defect 2) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14
S1

S2

S3

S4

S5

S6

Axial Distance (0.25" increments)

C
irc

um
fe

re
nt

ia
l D

is
ta

nc
e 

(0
.2

5"
 in

cr
em

en
ts

)

0-0.01 0.01-0.02 0.02-0.03 0.03-0.04 0.04-0.05 0.05-0.06 0.06-0.07 0.07-0.08 0.08-0.09 0.09-0.1

00.0460.0470.0480.0530.0530.0380.0350.0380.0480.0590.0550.029

00.0580.0660.0630.0660.0670.0590.0450.0490.0790.0890.0890.044

00.0660.0810.0690.060.0590.0470.0490.0510.0760.0940.0960.053

00.0450.0550.0510.0360.0290.0260.0240.0250.0370.0440.0460.035

0000000000000

00.0460.0470.0480.0530.0530.0380.0350.0380.0480.0590.0550.029

00.0580.0660.0630.0660.0670.0590.0450.0490.0790.0890.0890.044

00.0660.0810.0690.060.0590.0470.0490.0510.0760.0940.0960.053

00.0450.0550.0510.0360.0290.0260.0240.0250.0370.0440.0460.035

0000000000000



 

 23Pipeline Inspection Technologies 
Demonstration Report Appendix D

 

 

 
 

Figure 2-5. Defect P1-4 (Defect 3) 
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Figure 2-6. Defect P1-5 (Defect 4) 
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Figure 2-7. Defect P1-7 (Defect 5) 
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Figure 2-8. Defect P1-9 (P1-NC1)
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Figure 2-8 (cont). Defect P1-9 (P1-NC1)
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Figure 2-9. Defect P1-12 (Defect 6) 
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Figure 2-10. Defect P1-13 (Defect 7) 
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Figure 2-11. Defect P1-14 (Defect 8) 
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Figure 2-12. Defect P1-18 (Defect 9) 
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Figure 2-13. Defect P1-21 (P1-NC2)



 

 34Pipeline Inspection Technologies 
Demonstration Report Appendix D

 
Figure 2-13 (cont). Defect P1-21 (P1-NC2)
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Figure 2-14. Defect P1-22 (Defect 10) 
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Figure 2-15. Defect P1-23 (Defect 11)
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8 INCH PIPE SAMPLE 2 DOCUMENTATION 

Figure 2-16. 8-inch Pipe Sample 2 Defect Map 
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Pipe Sample 2 Simulated Corrosion Defect Photos 
 

 

 
Figure 2-17. Defect P2-4 (Defect 1) 
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Figure 2-18. Defect P2-6 (Defect 2) 
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Figure 2-19. Defect P2-7 (Defect 3) 
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Figure 2-20. Defect P2-9 (Defect 4) 
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Figure 2-21. Defect P2-10 (Defect 5) 
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Figure 2-22. Calibration Defect P2-1 (Defect 6) 
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Figure 2-23. Calibration Defect P2-2 (Defect 7) 
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Figure 2-24. Defect P2-12 (Defect 8) 
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Figure 2-25. Defect P2-14 (Defect 9) 
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Figure 2-26. Defect P2-17 (Defect 10) 
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Figure 2-27. Defect P2-20 (Defect 11)
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8 INCH PIPE SAMPLE 3 DOCUMENTATION 

 

Figure 2-28. 8-inch Pipe Sample 3 Defect Map 
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Pipe Sample 3 Simulated Corrosion Defect Photos 
 

 

 
Figure 2-29. Calibration Defect P3-1 (Defect 1) 
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Figure 2-30. Defect P3-3 (Defect 2) 
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Figure 2-31. Defect P3-4 (Defect 3) 
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Figure 2-32. Defect P3-5 (Defect 4) 
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Figure 2-33. Defect P3-7 (Defect 5) 
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Figure 2-34. Defect P3-9 (Defect 6) 
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Figure 2-35. Defect P3-10 (Defect 7) 
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Figure 2-36. Defect P3-12 (Defect 8) 
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Figure 2-37. Defect P3-14 (Defect 9) 
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Figure 2-38. Defect P3-17 (Defect 10) 
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Figure 2-39. Defect P3-18 (Defect 11) 
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Figure 2-40. Defect P3-19 (Defect 12) 



 

 65Pipeline Inspection Technologies 
Demonstration Report Appendix D

 

 

 
 

Figure 2-41. Defect P3-21 (Defect 13) 
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Figure 2-42. Defect P3-23 (Defect 14)
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SECTION 3. MECHANICAL DAMAGE 
INSPECTION TECHNOLOGY ASSESSMENT 

INTRODUCTION 
The current DOT PHMSA and DOE NETL developments for mechanical damage inspection 
technologies are not restrictive of pipe diameter.  However, prior DOT PHMSA projects 
involved fabricating defect sets in 24 inch diameter pipe.  Therefore when selecting the 
specimens and data for the mechanical damage defect set the use of the existing 24 inch diameter 
pipe samples was the most practical.  An additional advantage of using the existing 24 inch 
defect sets is that they have already been inspected using MFL technology under a DOT contract.  
As such, magnetic flux leakage signals from these defects can be made available upon request. 
 
The technology developer examining mechanical damage anomalies has requested only smooth 
dents without gouges on the external surface.  One pipe sample exists that meets the smooth dent 
requirement; however another defect set with dents fabricated with a track hoe are also included 
in the demonstration to assess the future potential of this technology.  These defects have 
minimal gouging and therefore are the most appropriate for this demonstration.   
 
The following report sections discuss the demonstration plan for the mechanical damage 
inspection tools and provides an “answer key” (Table 3-1) for the data sheets given to the 
developer during the demonstration.  Additional information and photographs are provided in 
Figures 3-1 through 3-40 describing how the dents were manufactured, the dent depths, dent 
lengths, and locations for all of the mechanical damage defects.    

24-INCH MECHANICAL DAMAGE DEMONSTRATION PLAN   
The test plan for the 24-inch mechanical damage defect test configuration is as follows: 
 
1. The technologies to be benchmarked include: 

1.1. PNNL: Strain measurement tool 

2. The pipe is 24-inch outside diameter 

3. A guide rail was installed on the interior of each pipe to minimize rotation 

4. The demonstration samples were comprised of two pipes: 

4.1. Pipe 1 specifications are as follows: 
4.1.1. The length is approximately 28 feet; seam welded pipe 
4.1.2. The nominal wall thickness is 0.290 inches 
4.1.3. The pipe contained 17 mechanical damage defects created by direct impact with a 

57,000 pound track hoe. 
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4.1.4. The defects were placed along 1 row with the guide rail located 180° away from 
the defects (or in a location determined by the sensor developer prior to the 
demonstration). 

4.1.5. The angular coverage area for each sensor technology should have been designed 
to cover +/- 6 inches on either side of the centerline (~60° angular coverage). 

4.1.6. All defects (except the calibration defects) were covered with a heavy material to 
prevent the sensor developer from viewing the defects.  One defect near End A of 
the pipe sample remained uncovered for system check-out and calibration. 

4.2. Pipe 2 specifications are as follows: 
4.2.1. The length is 40 feet of seam welded pipe 
4.2.2. The nominal wall thickness is 0.280 inches 
4.2.3. The pipe contained 10 smooth dents without gouges 
4.2.4. The defects were placed along 1 row with the guide rail located 180° away from 

the defects. 
4.2.5. The angular coverage area for each sensor technology should have been designed 

to cover +/- 6 inches on either side of the centerline (~60° angular coverage). 
4.2.6. All defects (except the calibration defects) were covered with a heavy material to 

prevent the sensor developer from viewing the defects.  Two defects near End A 
of the pipe sample remained uncovered for system check-out and calibration.
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24 INCH MECHANICAL DAMAGE DEFECT ASSESSMENT DATA 
 
Table 3-1. 24 inch Mechanical Damage Inspection Technology Data Sheet “Answer Key” 
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Table 3-1 (cont). 24 inch Mechanical Damage Inspection Technology Data Sheet “Answer 
Key” 
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24 INCH MECHANICAL DAMAGE PIPE SAMPLE 1 
DOCUMENTATION 

Pipe sample 1 was created from two sections of 24-inch diameter pipe with a wall thickness of 
0.29-inches welded together to produce one longer length of pipe measuring approximately 28 
feet in length.  Pipe sample 1 was subsequently fitted with end caps containing nipples to allow 
water to pass into and out of the pipe to facilitate pipe pressurization during defect installation.  
The specifications for the individual pipe segments are provided in Table 1.  For pipe sample 1, 
many magnetic, mechanical and chemical properties had been measured on a previous project; 
selected properties are included in Table 1. 

Table 3-2. Material and Mechanical Properties of Pipe Sample 1. 
 

 Thin Wall Pipe Sample 
Property: PSF 24-06 PSF 24-28 
Diameter, in. 24 24 
Wall Thickness, in. 0.292 0.293 
Yield Stress, ksi 66  55  
Ultimate Stress, ksi 84  73  
Toughness, ft-lb 22  38  
Remnant Magnetism, G 12,100  9,900  
Carbon, % 0.11 0.23 

Defect Installation  

Pipe Sample 1 contained three rows of mechanical damage defects, two rows were created with 
the dent and gouge machine and a third row was created with a 50-ton track hoe.  Only the row 
of mechanical damage defects created by the track hoe was used for the benchmarking 
demonstration.  However, to avoid possible mechanical and magnetic signal interaction, the 
other defect rows were spaced circumferentially by 120° increments and the defects were 
staggered axially by approximately a pipe diameter.   
 
During installation of each dent and gouge defect, the pressure in the pipe was held near 60 
percent of the specified minimum yield stress (SMYS) of the weakest pipe.  During installation 
of the track hoe defects, the pressure in the pipe was held near 15 percent of SMYS (200 psig).  
Prior experience has shown that even this relatively small amount of internal pressure adds 
significant stiffness to the pipe and causes defects to reround to nearly the same extent as defects 
made under fully pressurized conditions.   
 
Installing multiple defects in one pipe section necessitated moving the pipe axially and rotating it 
in the dent-and-gouge machine.  The pressure in the pipe was reduced each time the pipe was 
moved to reduce the likelihood of damage growth or an accident. Therefore, defects installed 
early in the sequence were subjected to a number of pressure cycles of roughly 30 percent of the 
yield stress.  
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For defects made using the track hoe, a trench was excavated so that the pipe samples would fit 
securely within.  The depth of the trench was slightly less than the pipe diameter so that the 
crown if the pipe was an inch or so above grade.  The track hoe was able to straddle the trench so 
that the bucket could impact the crown of the pipe, parallel to the pipe direction, to produce the 
mechanical damage defects.  The track hoe was also moved to the side of the trench so that 
defects could be produced that were transverse to the pipe direction.  The location of mechanical 
damage defects are shown in Figure 3-1. 
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Figure 3-1.  24 inch Mechanical Damage Pipe Sample 1 Defect Map 
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Simulating Dents and Gouges with the Track Hoe 

The mechanical damage defect row used for the benchmarking demonstration was installed using 
a Kobelco Mark SK200 track hoe (see Figure 3-2).  This particular track hoe is capable of 
producing a load of nearly 47,000 pounds.  To the extent practical, the simulation was set-up to 
reflect actual conditions along the pipeline right-of-way.  A trench slightly less than the pipe 
diameter was excavated so that the pipe samples would fit securely within.  The pipe was placed 
within the trench and pressurized to approximately 200 psig.  The track hoe was able to straddle 
the trench so that the bucket could impact the crown of the pipe, parallel to the pipe direction, to 
produce the mechanical damage defects.  The track hoe was also moved to the side of the trench 
so that additional defects could be produced that were transverse to the pipe direction.  

 
Figure 3-2.  Kobelco Mark SK200 Track Hoe. 

 

The track hoe bucket consisted of six teeth measuring approximately 6 inches in width and 
1 inch in depth.  Close-up photos of the track-hoe bucket and teeth are shown in Figure 3-3. 
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Figure 3-3.  Close-Up of Bucket and Teeth from the Kobelco Mark SK200 Track Hoe. 
 
Additionally, the track hoe bucket was positioned in two different configurations during defect 
installation.  The first configuration allowed the teeth of the bucket to directly impact the crown 
of the pipe.  The second configuration allowed two teeth to straddle the crown of the pipe when 
impact was made.  Various track hoe defect parameters for each pipe sample are provided in 
Table 3-3.  For the track hoe defects, dent depth range refers to the maximum depth measured 
after defect installation and possible re-rounding. 
 
Table 3-3. Parameters for pipe sample 1 track hoe mechanical damage defects. 
 

Pipe 24-28, Internal Pressure of 200 psig 

Defect Description Tool 
Number of 

Strikes 
Strike 

Direction 
Bucket Tooth 

Position Dent Depth Range (inches) 
Dent 

Length, in. 
D13, D14, D15 
(p28dTH1) Parallel, direct TH 3 parallel direct 0.62 0.59 0.58 29 

D10, D11, D12, 
(p28dTH2) Parallel, straddle TH 3 parallel straddle 0.51 0.35 0.60 0.29 0.60 0.28 26 

D7, D8, D9 
(p28dTH4) Transverse, direct TH 2 transverse direct 0.32 0.25 0.10 27 

Pipe 24-06,  Internal Pressure of 200 psig 

Defect Description Tool 
Number of 

Strikes 
Strike 

Direction 
Bucket Tooth 

Position Dent Depth Range (inches) 
Dent 

Length,  in. 
Calibration Defect 
(p06dTH1) Parallel, direct TH 3 parallel direst 0.51 0.52 0.50 20 

D1, D2, D3 
(p06dTH2) Parallel, straddle TH 3 parallel straddle 0.30 0.30 0.24 0.41 0.20 0.40 18 

D4, D5  
(p06dTH3) Transverse, direct TH 1 transverse direct 0.20 0.11 8 
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Mechanical Damage Pipe Sample 1 Defect Photos 
 

 
 

 
 
Figure 3-4. Calibration Defect p06dTH1 
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Figure 3-5. Deformation Data for Calibration Defect p06dTH1 
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Figure 3-6. MFL Signal for Calibration Defect p06dTH1 
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Figure 3-7. Defects D1, D2, and D3 (p06dTH2) 
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Figure 3-8. Deformation Data for Defects D1, D2, and D3 (p06dTH2) 
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Figure 3-9. MFL Signal Data for Defects D1, D2, and D3 (p06dTH2) 
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Figure 3-10. Defects D4 and D5 (p06dTH3) 
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Figure 3-11. Deformation Data for Defects D4 and D5 (p06dTH3) 
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Figure 3-12. MFL Signal Data for Defects D4 and D5 (p06dTH3) 
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Figure 3-13. Defect D6 (Dent with Gouge; Not Part of Benchmarking) 
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Figure 3-14. Deformation Data for Defect D6 (Dent with Gouge; Not Part of 
Benchmarking) 
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Figure 3-15. Defects D7, D8, D9 (p28dTH4)
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Figure 3-16. Deformation Data for Defects D7, D8, D9 (p28dTH4) 
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Figure 3-17. MFL Signal Data for Defects D7, D8, D9 (p28dTH4) 
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Figure 3-18. Defects D10, D11, D12 (p28dTH1) 
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Figure 3-19. Deformation Data for Defects D10, D11, D12 (p28dTH1) 
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Figure 3-20. MFL Signal Data for Defects D10, D11, D12 (p28dTH1) 
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Figure 3-21. Defects D13, D14, D15 (p28dTH2) 
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Figure 3-22. Deformation Data for Defects D13, D14, D15 (p28dTH2) 
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Figure 3-23. MFL Signal Data for Defects D13, D14, D15 (p28dTH2) 
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24 INCH MECHANICAL DAMAGE PIPE SAMPLE 2 
DOCUMENTATION 

Plain dents represent the other fundamental part of mechanical damage where the natural 
cylindrical shape of the pipe is distorted.  The dents in mechanical damage Pipe Sample 2 were 
made without gouging, so that the response of inspection systems to dents could be examined 
without compensation for the geometry changes, such as removed metal, and stresses caused by 
the gouge process.   
  
This section describes the methods and equipment used to fabricate the dent-only defects.  The 
description is followed by detailed information of each dent and photographs.  

Data Collection Procedure 

The procedure for the incremental denting and data collection was a follows: 
 

1. Pressurize the 24-inch diameter, 0.280-inch wall pipe to 600 psi, or about 40 percent of 
specified minimum yield stress (SMYS) of the this X60 pipe 

2. Acquire baseline MFL data prior to denting, but with denting apparatus positioned (about 
one percent of maximum dent load was applied to hold reaction frame in place) 

3. Apply hydraulic pressure to indent the pipe in increments of 0.5 percent of the pipe 
diameter (0.120 inches) 

4. Acquire axial MFL data with the indenter in place to keep the dent from rebounding 
5. Repeat steps 3 and 4 until a maximum dent depth of 2 percent is a attained 
6. Allow the dent to rebound  0.5 percent of the pipe diameter, matching the indenting steps 
7. Acquire MFL with the indenter in place to keep the dent from further rebounding 
8. Repeat steps 6 and 7 until the denting load is zero indicating the dent has finished 

rebounding. 
 
The equipment for the experiments is described in two subsections that follow.  The first 
subsection describes a denting apparatus with a hydraulic actuator and reaction frame.  The 
second subsection describes the flanged pipe sample with components that enable a MFL 
inspection pig to be launched, pulled back and forth during the dent forming process, and 
accessed between inspections. 

Denting Apparatus 

The apparatus used to dent the pipe in a controlled manner is illustrated in Figure 3-24.  The 
operation of the equipment is simple.  A hydraulic cylinder is extended between a pipe sample 
and a stiff reaction frame.  The reaction frame was a previously used I-beam with the web 
reinforced to minimize deformation during the application of the denting load.  A 1-inch thick 
plate was welded to the beam for support of the hydraulic cylinder.  The weakest component of 
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the apparatus is the pipe wall that is in contact with the indenter.  As the hydraulic load increases, 
the pipe deforms.   
 
To determine the amount of deformation, two measurements are made by linear cable extension 
transducers, commonly referred to as “string pots.”  The first string pot measures the extension 
of indenting tool.  The second string pot measures the separation between the pipe and the 
reaction frame, which increases during the formation of the dents since the many components 
elastically bend and extend.  The depth of the dent is established by the difference between the  
 

 
Figure 3-24.  Denting apparatus configuration including reaction frame, hydraulic 
actuator displacement transducers, pipe sample and load reaction chains. 
 
two measurements.  The dents were formed by slowly increasing the pressure until depth was 
attained.  The denting process took between 2 and 3 minutes.  Since the pipe was pressured to 
600 psi, the pump was located 150 feet from the actuator for safety concerns. 
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Pressurized Pull Rig 

To evaluate leakage signals from dents as they form and rebound under internal pressure, a 
method was established to acquire flux leakage at multiple pressures repeatedly at multiple 
magnetization levels.  The experimental configuration, shown in Figure 3-25, is essentially a 
pressurized version of a pull rig.  The components include: 
 

• A new pipe sample configured with flanges on either end. This was a 0.281-inch wall 
thickness, 24-inch diameter, 60 ksi yield pipe. 

• A pig launching barrel for insertion of the circumferential magnetizer and data recorder.  
This was a 0.5-inch wall thickness, 24-inch diameter, 60 ksi yield pipe from existing pipe 
inventory. 

• A hinged pressure door for insertion and access to the magnetizer and data recording 
equipment. 

• Two rods for pulling the magnetizer and data recording equipment in either direction. 
• Rod seals to hold pressure as the equipment is pulled.  These seals are commonly used in 

oil well pumping operations. 
• A pressure relief valve to prevent over pressurizing.  This was required to adequately 

address safety concerns. 
 
After each increment of dent depth, the MFL inspection pig was pulled from one end of the pipe 
sample and back to the return position.  During the pulling of the pig, leakage in the rod seals 
would cause a drop in internal pressure in the pipe.  Lubricating the rod with light oil reduced 
wear on the seal, minimizing pressure losses to less than 5 psi or 1 percent on each pull. 
 
Three indenters were used to dent the pipe.  Each indenter was made from a non-ferromagnetic 
300 series stainless steel.  Each shaft was 6 inches long to keep the ferromagnetic hydraulic 
actuator sufficiently away from the pipe to minimize interference with the flux leakage 
inspection equipment.  Figure 3-26 shows a spherical indenter made from 1.5-inch diameter rod, 
photographed during the denting process.  Figure 3-27 shows the two longer indenters.  The 
radius of the rounded indenter matches the spherical indenter radius of 0.75 inches.  The sharp 
indenter is rounded to a radius of 0.125 inches to provide a more concentrated load, but avoid 
piercing.  The length of the long rounded indenter and the long sharp indenter is 4.5 inches.  The 
shape changes were chosen to facilitate comparison of results.  For the spherical and long 
rounded indenter, the radius is the same but the contact shape is changed from a sphere to a 
cylinder.  For the two longer indenters, the length was the same, but the contact shape is changed 
from gradual to abrupt.  
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Figure 3-25.  Pressurized pull rig for acquisition of MFL data during incremental denting 
and rebounding. 
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Figure 3-26.  The spherical indenter, made from a non-ferromagnetic material, 
photographed while holding a 2 percent dent.   

Note the connections for the two linear cable extension transducers. 
 

 
Figure 3-27.  Diagram of two other indenters used in incremental denting and data 
recording experiments.  
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Plain Dent Defects 

A total of 10 defects were made with three indenters at two magnetization levels, as shown in 
Table 3-4. 
 
Table 3-4. Incremental dent defects  
 

Defect # Indenter 
Calibration Dent R01 Spherical 
Calibration Dent R02 Long Cylindrical 

R03 Spherical 
R04 Long Wedge 
R05 Long Cylindrical 
R06 Spherical 
R07 Long Cylindrical 
R08 Long Wedge 
R09 Long Cylindrical 
R10 Long Wedge 

 
Table 3-5 shows the final dimensions of the dents used for evaluation.  Since dents do not have 
distinct start and end points, measurements can be subjective; the length measurements for 
Defect R05 are illustrated in Figure 3-28.  The total length and width were defined by a 0.025-
inch departure from the nominal shape of the pipe.  The reround lengths were defined by a more 
abrupt departure from the nominal shape of the pipe.  The surface length is the length that the 
indenter was in hard contact with the pipe. Because of irregularities of the pipe shape itself, the 
accuracy of the length and width measurements is ±0.5 inch and the accuracy of the depth 
measurement is ±0.010 inch.  The defect map for pipe sample 2 is presented in Figure 3-29. 
 
Table 3-5.   Dimensions of the dents used for the primary comparisons of the high and 
low magnetization signals. 

Dent Dimension (inches) 

# Indenter Signal 
Total 

Length 
Reround 
Length 

Surface 
Length Width Depth 

% W.T. 
Depth 

R01 Spherical High 6.5 3.5 1.5 5.0 0.290 1.21% 

R02 Long Cylindrical High 12.0 8.5 4.5 6.0 0.200 0.83% 

R03 Spherical High 6.5 3.5 1.5 5.0 0.290 1.21% 

R04 Long Wedge High 13.5 9.5 4.5 5.5 0.200 0.83% 

R05 Long Cylindrical High 12.0 8.5 4.5 6.0 0.200 0.83% 

R06 Spherical Low 7.5 4.3 1.5 5.0 0.290 1.21% 

R07 Long Cylindrical Low 12.0 8.5 4.5 6.5 0.180 0.75% 

R08 Long Wedge Low 14.5 10.5 4.5 6.5 0.230 0.96% 

R09 Long Cylindrical Low 12.0 8.5 4.5 6.5 0.180 0.75% 

R10 Long Wedge Low 14.5 10.5 4.5 6.5 0.230 0.96% 
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Figure 3-28.  Dent length measurements for the long cylindrical indenter. 
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Figure 3-29.  24 inch Mechanical Damage Pipe Sample 2 Defect Map
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Mechanical Damage Pipe Sample 2 Defect Photos 
 

 
 

Figure 3-30. Calibration Defect R01 
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Figure 3-31. Calibration Defect R02 



 

 101Pipeline Inspection Technologies 
Demonstration Report Appendix D

 

 
Figure 3-32. Defect R03 
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Figure 3-33. Defect R04 
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Figure 3-34. Defect R05 
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Figure 3-35. Defect R06 
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Figure 3-36. Defect R07 
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Figure 3-37. Defect R08 
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Figure 3-38. Defect R09 
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Figure 3-39. Defect R10 
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Figure 3-40. Blank R11 
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SECTION 4. SCC INSPECTION TECHNOLOGY 
ASSESSMENT 

INTRODUCTION 
The focus of the SCC assessment projects is to develop ultrasonic technologies that can operate 
in natural gas pipelines.  Crack detection technology for liquid pipelines is already commercially 
available.  However, transmitting ultrasonic energy into and out of the pipe without the use of a 
liquid coupling agent is necessary for the practical inspection of natural gas transmission 
pipelines.   
 
Stress corrosion cracks are more commonly found in larger diameter pipelines because typical 
operating pressures produce sufficient stress in the pipe wall to initiate and grow cracks.  From 
an inspection technology viewpoint, the sensors have a relatively large footprint.  A typical 
sensor footprint, without engineering to make them smaller, is on the order of 10 cm (4 inches) 
per quarter.  SCC pipe samples also appear to be more readily available in larger diameter pipes.  
Therefore, for these practical and implementation reasons, the capability of SCC detection 
technology is initially focused on pipe diameters greater than 24 inches. 
 
The PSF has available a large number of SCC defects in 26-inch diameter pipe acquired through 
donations from PRCI member companies.  One of the technology developers has already used 
pipe samples at the PSF and therefore these samples are not included as part of the 
demonstration.  In addition, the external coating on the pipe itself is a significant variable and 
therefore only pipe without coating was made available for the benchmarking demonstration.   
 
The report sections below discuss the demonstration plan for the SCC inspection tool and 
provides an “answer key” (Table 4-1) for the data sheets filled out by the SCC inspection tool 
developer during the demonstration.  Additional information and photographs are provided in 
Figures 4-1 through 4-8 which show the magnetic particle maps and the locations and lengths of 
the natural SCC defects.   

26-INCH STRESS CORROSION CRACK DEMONSTRATION PLAN   
The test plan for the 26-inch stress corrosion crack test configuration is as follows: 

1. The technology(s) to be benchmarked include: 
1.1. ORNL: Strain measurement tool 

2. Total length of the pipe sample will be 26 feet 

3. The pipe will be 26-inch outside diameter 

4. The test sample is comprised of one pipe: 
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4.1. The length is approximately 26 feet of seam welded pipe 
4.2. The nominal wall thickness is 0.281 inches 
4.3. The pipe contained 7 stress corrosion crack colonies for examination 
4.4. The pipe sample had multiple defect locations requiring three rows for data collection. 
4.5. The pipe did not have any external coating 

4.5.1. All defects (except the calibration defects) were covered with a heavy material to 
prevent the sensor developer from viewing the defects.  A separate SCC pipe sample 
measuring 38-feet in length was available for system check-out and calibration.
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26 INCH SCC DEFECT ASSESSMENT INFORMATION 
 

 
Table 4-1. 26 inch SCC Inspection Technology Data Sheet “Answer Key” 
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Table 4-1 (cont). 26 inch SCC Inspection Technology Data Sheet “Answer Key” 
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Table 4-1 (cont). 26 inch SCC Inspection Technology Data Sheet “Answer Key” 
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26 INCH SCC PIPE SAMPLE 893 DOCUMENTATION 
 
 
Pipe Sample No. 893 
Drawing #1 of 2 
 

 
 Ind.# Cracks 

Max Size 
Cracked 

Area 
Old Distances

EOP 
Distance

L.W. 
New Distances 
EOP to start of 

box 
  inches inches inches inches Inches 
 1 multi ¼ 2 x 1 ¾ A  90 18 ¼ A – Not Available 
 2 multi ¼ 2 x 2 A  97 19 A – Not Available 
 3 multi 1 ½ 11 x 7 A  104 14 A – Not Available 

 4 multi ¼ 5 ¼ x 1 ¼ A  208 ¾ 33 B  233 ¼  
 5 multi ¼ 4 x 1 ½ A  216 ¾ 32 B  225 ¼  
 6 multi ½ 3 x 2 ½ B  215 18 B  210 ¾  
 7 multi ¼` 4 ¼ x 3 ¾ B  193 ½ 16 ½ B  189 ¼  
 8 multi ¼ 2 ¾ x 2 ½ B  214 37 B  209 ¼  
 9 multi ¼ 3 ½ x 3 ½ B  145 ¾ 19 ¼ B  141 ½  
 10 multi ¼ 3 ½ x 11 -- 15 B  -- 
 11 multi ¾ 2 x 2 A  101 33 A  -- Not Available 

 A portion of pipe specimen 893 was cut and used for another project.  The cut portion is no longer available for use.  The new 
distances from the edge of the pipe are presented in the table.   
 
Figure 4-1. SCC Pipe 893 Data 
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Pipe Sample No. 893 
Drawing #2 of 2 

 Ind.# Cracks 
Max Size 

Cracked
Area 

Old Distances 
EOP 

Distance
L.W. 

New Distances 
EOP to start of 

box 
  inches inches inches inches Inches 
 11 multi ¾ 2 x 2 A  101 see dwg #1 33 A – Not Available 
 12 ¾ ¾ A  49 ½ 38 A – Not Available 
 13 ¼ ¼ A  105 ½ 30 A – Not Available 
 14 1 1 A  120 45 A – Not Available 

 15 ½ ½ A   139 28 B  307 ½  
 16 multi ¾ 17 x 1 ¾ A  206 8 B  224 ¼  
 17 1 1 A  226 41 B 218 ¼  
 18 ½ ½ B  219 41 B  213 ¾  
 19 1 1 B  213 ½ 27 ½ B  207 ½  
 20 1 1 B  94 40 B  88 

 
 
Figure 4-1 (cont). SCC Pipe 893 Data
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Figure 4-2. Diagram of SCC Pipe 893 
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Table 4-2. SCC Pipe 893 Data 
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Pipe 1093 SCC Defect Photos 
 

 
 

 
 
 Figure 4-3. Defect SCC 2 (4 & 5) 
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Figure 4-4. SCC 3 (8) 
 

 
 
Figure 4-5. Defect SCC 8 (6) 
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Figure 4-6. Defect SCC 9 (7) 
 

 
 
Figure 4-7. Defect SCC 10 (9) 
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Figure 4-8. Defect SCC 11 (16) 
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 SECTION 5. PLASTIC PIPE INSPECTION 
TECHNOLOGY ASSESSMENT 

INTRODUCTION 
One new sensor technology was added in this Phase II Benchmarking Demonstration.  This 
technology inspects plastic pipe for small volumetric anomalies with a detection threshold of 
approximately 0.015 cubic inches.  The measurement technology is localized and therefore 
anomalies in close proximity and pipe end effects do not influence its detection capabilities.  
 
Battelle procured a medium density polyethylene pipe sample (yellow in color) for the 
benchmarking demonstration.  The pipe sample has an inside diameter of approximately 5.5-
inches and wall thickness of 0.5 inch.  Cylindrical hole and saw cut defects were manufactured 
along one row of the pipe sample to assess the capabilities of the sensor technology. 
 
The report sections below discuss the demonstration plan for the plastic pipe inspection tool and 
provides an “answer key” (Table 5-1) for the data sheets filled out by the inspection tool 
developer during the demonstration.  Additional information and photographs are provided in 
Figures 5-1 through 5-13 which show the locations and size of the plastic pipe defects.  This 
information was used as the guide to assess the performance of the sensor technology developer. 

6 INCH PLASTIC PIPE DEMONSTRATION PLAN   
The demonstration plan for the 6-inch plastic pipe test configuration is as follows: 
 
1. The technologies benchmarked included: 

a. DOE NETL plastic pipe sensor 
 

2. The pipe is 6.5-inch outside diameter 
 
3. The pipe wall thickness is 0.5 inch making the inside diameter approximately 5.5 inches.  

The pipe had some ovality and a slight twist. 
 
4. The demonstration sample was comprised of one medium density (yellow) polyethylene 

pipe: 

3.1. A 13 foot long 6" Polyethylene Pipe positioned horizontally was used as the test sample.  
The sample was supported from the bottom and only at the ends. 

3.2. A single row of defects was located directly above the center line (plus or minus 1/4 
inch).  Defects were placed 6 to 7 inches apart and one foot from the end, allowing 20 
defect locations.   
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3.3. Eight locations did not have a defect.  Defects were covered with a heavy material to 
prevent sensor developers from viewing the defects.  One defect near End A remained 
uncovered for system check-out and calibration. 

3.4. Typical defects included small cylindrical holes and saw cuts.  The volume of these 
defects ranged from 0.015 to 0.05 cubic inches.  All defects were on the outside surface 
of the pipe sample. 
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6 INCH PLASTIC PIPE ASSESSMENT INFORMATION 
 
Table 5-1. 6 inch Plastic Pipe Inspection Technology Data Sheet “Answer Key” 
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6 INCH PLASTIC PIPE SAMPLE DOCUMENTATION  

 
 

Figure 5-1. 6-inch Plastic Pipe Sample Defect Map 
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Plastic Pipe Sample Defect Photos 
 
 

 
 

Figure 5-2. Calibration Defect C1 
 

 
 

Figure 5-3. Defect D1 (D1) 
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Figure 5-4. Defect D4 (D2) 

 

 
 

Figure 5-5. Defect D5 (D3) 
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Figure 5-6. Defect D7 (D4) 
 

 
 

Figure 5-7. Defect D10 (D5) 
 



 

 131Pipeline Inspection Technologies 
Demonstration Report Appendix D

 
 

Figure 5-8. Defect D12 (D6) 
 

 
 

Figure 5-9. Defect D13 (D7) 
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Figure 5-10. Defect D14 (D8) 
 

 
 

Figure 5-11. Defect D15 (D9) 
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Figure 5-12. Defect D18 (D10) 
 

 
 

Figure 5-13. Defect D19 (D11) 
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