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Background. Fabric-like hemostatic dressings offer
promise for hemorrhage control in noncompressible
areas, especially given their similarity in form to stan-
dard gauze currently in use. Recently, two such prod-
ucts, Combat Gauze (CBG) and TraumaStat (TMS),
were introduced. Their performance is evaluated in
two vascular injury models.

Materials and Methods. The dressings were evalu-
ated in anesthetized Yorkshire pigs, hemorrhaged by
full transection of the femoral vasculature with 2 min
free bleeding period (CBG [ 6, TMS [ 6) or by 4 mm
femoral arterial puncture with 45 s free bleeding pe-
riod (CBG [ 8, TMS [ 8). After injury, dressings were
applied, followed by 5 min of manual compression
and then 500 mL resuscitation fluid infused over 30
min. Vital signs, blood pressure, and blood loss were re-
corded throughout the 3-h experiment. Bleeding con-
trol was the primary outcome.

Results. All animals had similar pretreatment mean
arterial pressure (MAP) (w36.5 mmHg); pretreatment
bloodloss following injury was similar for both dressing
groups in the two models [24% ± 8% estimated blood vol-
ume (EBV) 2 minafter transection and 17% ± 4% EBV 45 s
after puncture. Incidence of post-treatment bleeding,
primarily occurring after release of manual compres-
sion or restoration of blood pressure, was more fre-
quent in the puncture model (17% with both CBG and
TMS) than the transection model (57% with CBG versus
75%withTMS). Post-treatmentbloodlossnotcontrolled
by the dressing was 19% ± 22% and 31% ± 17% EBV, for
CBG and TMS, respectively. Survival rate was 100%

for both dressings in the transection model, and was
88% for CBG and 50% for TMS in the puncture model.

Conclusions. These findings indicated that CBG and
TMS were similarly effective in improving hemostasis.
These two fabric-like dressings showed easy applica-
tion and removal, leaving a clean wound for surgical
repair. � 2011 Elsevier Inc. All rights reserved.

Key Words: hemorrhage; bleeding control; hemo-
static dressings; bandages; trauma; hemostasis; swine
models.

INTRODUCTION

Mortality from hemorrhagic shock caused by massive
bleeding in a wound is preventable if acted upon imme-
diately after injury. With proper compression on the
wound site, use of adequate hemostatic dressing for
bleeding control, timely fluid resuscitation for hemody-
namic restoration, and definitive management, compli-
cations such as compartment syndrome, limb loss, or
death can be minimized. In an effort for better hemo-
static control in noncompressible areas such as the
neck or the groin where tourniquets cannot be used,
a variety of highly effective hemostatic dressings have
become available and can be selected according to vari-
ous qualities like their physical nature. In a previous se-
ries of experiments comparing 10 hemostatic dressing
products to compressed gauze (as the standard of care)
[1, 2], three products, X-Sponge (Z-Medica, Wallingford,
CT), a synthetic gauze coated with kaolin; Woundstat
(TraumaCure, Bethesda, MD), a smectite/polymer
granular product; and Celox (Sam Medical Products,
Newport, OR), a chitosan-based product, were found to
be the most effective dressings for survival, blood loss,

1 To whom correspondence and reprint requests should be
addressed at Naval Medical Research Center, RMD, Trauma and
Resuscitative Medicine, 503 Robert Grant Avenue, Silver Spring,
MD 20910-7500. E-mail: francoise.Arnaud@med.navy.mil.
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� 2011 Elsevier Inc. All rights reserved.
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and bleeding control among those tested. A key observa-
tion in those experiments was that the fabric-based
products (e.g., X-Sponge) were similar in form to stan-
dard gauze and could be relatively easily removed, leav-
ing a clean wound, ready for surgical repair.

After completion of our previous study, two products,
(1) Combat Gauze (CBG; Z-Medica, Wallingford, CT),
and (2) TraumaStat (TMS; Ore-Medix, Salem, OR),
were newly introduced and proposed for experimental
comparison. CBG was essentially a next generation of
X-Sponge but configured as a roll of kaolin-coated poly-
ester gauze rather than the 4 in. by 4 in. gauze format of
X-Sponge. TMS was a chitosan-based chemical formu-
lation, a similar agent as used in Celox, but TMS was
supported on a solid matrix rather than presented as
a loose powder as Celox. These two new dressings are
compact fabric-like dressings, a quality that is similar
to the current standard gauze, and, based on our expe-
rience with previous hemorrhage control experimenta-
tion, this supports easy application and removal from
the wound. This type of dressing is well suited for rapid
deployment in the battlefield [3–5].

It is recognized that massive bleeding approaching
45% of original blood volume is devastating, particularly
if there is a secondary bleeding (rebleeding) during the
compensation phase [4, 5]. Two injury models [6–13],
a full femoral transection (including artery and vein)
and a femoral artery puncture yield massive blood loss
in the early phase of bleeding and severe hemorrhagic
shock consequences if untreated. Our previous results
indicated that dressing efficacy outcomes were different
across these two injury models [1, 2]. There was more
post-treatment bleeding after the compensatory phase
in the puncture injury model than the transection.
Therefore, the use of two models provides a broader
span of challenge to test dressings. It is an important
consideration while testing hemostatic dressings in situ-
ations where there are high risks of excessive blood loss.

We report on the evaluation of two relatively new fab-
ric-like hemostatic dressings in these two surgical
models, developed to simulate injuries from the battle-
field [1, 2] and to address various levels of vascular
injury. The objective of this study is to evaluate the effi-
cacy of CBG and TMS. The specific hypothesis of this
project is that the new products have similar efficacy
in controlling initial bleeding and preventing additional
bleeding. This should consequently improve survival.

MATERIALS AND METHODS

Hemostatic Products

The products tested were Combat Gauze (CBG) and TraumaStat
(TMS). CBG is a tightly rolled 4-yard long, 3-in. wide gauze. The fabric
material (non-woven rayon/polyester) is coated with kaolin, an alumi-
num silicate very potent coagulation initiator that acts as a surface

activator [14]. TMS is presented as a 4-in. 3 16-in. and 1/16-in. thick
compressed non-woven mesh structure composed of uniquely porous,
densely-filled fibers made of chitosan (from shellfish). The chitosan-
based pad has both hemostatic and absorbent properties. The manu-
facturer indicated that TMS contains multiple hemostatic agents
mixed with fibers of high surface area for rapid interaction with the
clotting components of blood [15]. These two products (weight
w16 g) cover similar area in a groin injury. Standard dressing (SD;
H and H compressed gauze; H and H Associates, Bena, VA) was
used on top of the test dressings. All products were kindly provided
by the manufacturers and used per manufacturers’ instruction.

Animal Model

The experiments reported herein were conducted according to the
principles set forth in the Guide for the Care and Use of Laboratory
Animals, Institute of Laboratory Animals Resources, National
Research Council, National Academy Press, 1996. The study was ap-
proved by the Naval Medical Research Center/Walter Reed Army In-
stitute of Research Institutional Animal Care and Use Committee and
Uniformed Services University of Health Science. All procedures were
performed in accordance to the Animal Welfare Act and in an animal
facility approved by the Association for Assessment and Accreditation
for Laboratory Animal Care International (AAALAC).

Yorkshire swine, weight range 25–35 kg, (Animal Biotech Industry
(Danboro, PA) were refrained from food the night before the experi-
ment but had free access to water. Estimated blood volume (EBV)
was calculated as: animal weight (kg) 3 65 mL /kg. Experiments
with these models and methods have been previously thoroughly de-
scribed [1, 2]. Briefly, the animals were intubated after anesthesia in-
duction (ketamine HCl (30 mg/kg, i.m.) and inhalation of isoflurane
3%–4%. The animals were allowed to breathe spontaneously or
were mechanically ventilated (Narkomed Ventilator; North American
Dräger, Telford, PA) if end tidal CO2 and respiration rate fell outside
normal values. An 18-20 G angiocatheter and a 7F Introflex intro-
ducer were placed in the right carotid artery and the right external
jugular vein, respectively, to acquire blood pressure and withdraw
blood samples. All catheters were maintained patent (0.9% saline so-
lution at 5 mL /h). A temperature probe (Thermometer/Model BAT12;
Physitemp, Clifton, NJ) was placed in the groin cavity to monitor
change in temperature when the bleeding was started [7]. Vital signs
were continuously recorded and rectal temperature was monitored
and maintained between 37–39�C using a Bair Hugger device (model
505; Augustine Medical, Eden Prairie, MN). A splenectomy was not
performed on these animals in contrast to other models [9].

Transection (CBG and TMS, n ¼ 6)

The skin at the right inguinal area of the thigh was incised approx-
imately 10 cm long and parallel to the groin area. Femoral vessels
were accessed by blunt dissection, avoiding vessel constriction or
spasm. After recording of baseline parameters, the injury was made
by transecting the femoral blood vessels (and the adjacent muscles,
partially) to produce an uncontrolled arterial and venous hemorrhage
(time 0).

Puncture (CBG and TMS, n ¼ 8)

CBG and TMS were evaluated in this model. The skin of the ingui-
nal area of the right thigh was incised longitudinal to the groin ap-
proximately 12 cm to expose the femoral vasculature. The femoral
artery was invasively isolated on 4 cm on the distal side of the groin.
Lidocaine (1%–2%) was spread on the artery to maximize dilation of
the vessel. Any proximal side branches from the artery were ligated
to avoid redirection of blood to the main circulation. Bulldog clamps
were placed on the artery and a 4 mm hole was perforated by an aortic
vascular punch (APU440; Medtronic, Minneapolis, MN). Following
this injury, the clamps were removed to produce a rapid and immedi-
ate high pressure arterial uncontrolled hemorrhage (time 0).
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Treatment, Monitoring, and Data Acquisition

Blood was aspirated from the wound cavity and collected in a sealed
container (2L MediVac; Cardinal Health, Dublin, OH) and continu-
ously weighed on a top-loading scale (PS 5100; Mettler, Columbus,
OH) [volume blood loss (mL) ¼ weight (g)/1.056 (g/mL)]. Blood loss
was divided into pretreatment and post-treatment hemorrhage. After
free bleeding for 2 min (transection model) or 45 s (puncture model)
(pre-treatment blood loss), the animals were randomly assigned to
a treatment group in each respective model by a blinded assistant.
The dressing was unfolded and applied one fold at a time with pressure
to the wound. Standard dressing was placed over the test dressing, and
the wound remained covered for the remainder of the experiment (3 h).
A constant pressure of w200 mmHg (HM 28 pressure monitor; Dwyer,
Michigan City, IN) was applied for 5 min following injury [7, 8, 11].
Then the pressure was released and the wound was closed by clamping
the two skin flaps, leaving a residual pressure of approximately 35
mmHg. At 15 min, the animals received resuscitation fluid (fixed
volume of isotonic colloidal fluids (500 mL of Hextend; Biotime, Ala-
meda, CA) through the jugular catheter over 30 min (w15 mL /kg)
(Masterflex pump; Cole Parmer, Vernon Hills, IL). Animals were
euthanized after 180 min with Euthasol (0.3 mL/kg, i.v.).

Recurrence of bleeding (rebleeding) was defined as blood oozing
from the dressings (post-treatment blood loss) and requiring aspira-
tion as opposed to no bleeding or bleeding controlled by the dressing
(i.e., blood, if any, was retained in the dressing and there was no
need for aspiration). Each product was evaluated for recurrence of
bleeding following release of the 5 min manual compression and fol-
lowing MAP restoration to 40 mmHg. Shed blood contained in test
and standard dressings was weighed at the end of the experiment.

Rectal and wound temperatures (at the blood and dressing inter-
face) were continuously recorded using temperature monitors (BAT
12; PhysiTemp, Clifton, NJ). Vital signs (Hewlett Packard, Palo
Alto, CA) and pulse oximetry (Transpac IV; Hospira, Lake Forest,
Il) were continuously recorded. Blood pressure (MAP, diastolic, sys-
tolic), heart rate (HR), ETCO2, isoflurane level, respiration rate,
and oxygen saturation were continuously measured. Blood samples
(10 mL) were withdrawn through the arterial line at time 0, 5, 15,
45, 60, 120, and 180 min. Blood count (CBC with differential) was
measured on a Pentra 60Cþ cell counter (ABX Diagnostics, Irvine,
CA) as standard animal monitoring.

In Vitro Measurements

For each of the test dressings (CBG, TMS), blood retention ability
(absorption) was assessed by weight after pouring 20 mL of blood on
top of 20 mg of product. Clot formation was assessed in test tube
with 2 mL blood recalcified with CaCl2 in which 1 mg of the product

was added. Clotting time was measured by tilting the tube 45� every
30 s until firm clotting was detected [6]. These tests were performed in
triplicate.

Statistical Analysis

Evaluation of eight animals per group has been sufficient in our
studies with these injury models [1, 2, 8] to distinguish bleeding con-
trol and high mortality rates in nontreated groups (100% mortality
[8]) or standard of care (compressed gauze) groups (>75% mortality
[8]). Evaluation of CBG and TMS immediately followed a series of sim-
ilar dressing comparisons [1, 2] and therefore no nontreatment or
standard of care group was repeated. Power analysis on blood loss
(continuous variable) could differentiate between dressings. Further-
more, in the case four animals consecutively survived the 3 h experi-
ment with both dressings in a model, two additional animals were
tested and the total number of animals was re-evaluated. The group
number remained at six if 100% survival and similar outcomes to
the rest of the group were achieved, as was the case for the transection
model here. This procedure was intended to reduce the use of animals
in this experiment to only those needed for research objectives. Each
injury model was treated independently and only the dressing within
each model was randomly assigned. ANOVA, Kaplan Meier, and
Fisher Exact tests were performed (Statistix, Tallahassee, FL; SAS
Institute, Inc., Cary, NC). Data are presented as mean 6 standard de-
viation and P < 0.05 was considered significant.

RESULTS

A total of 12 pigs were used in the transection model,
n¼ 6 for CBG and for TMS. A total of 17 pigs were used
in the puncture model, n ¼ 8 for CBG and for TMS, and
1 pig died within 15 min due to severe initial injury
(hemorrhagic shock) and was not included in the data
analysis. There was no difference in baseline levels of
weight and vital signs (temperature, MAP, or HR)
between treatment groups (CBG or TMS) or between
experimental injury groups (transection versus punc-
ture). Baseline parameters are listed in Table 1. All an-
imals had normal hematology, coagulation, and serum
chemistry (not shown). Immediately after injury, there
was no difference in pretreatment MAP between treat-
ment groups or between the respective experimental

TABLE 1

Baseline, Pretreatment, and Pre-resuscitation Parameters Among the Two Injury Groups

Transection Puncture

Parameter (mean 6 SD) CBG TMS CBG TMS P

Weight (kg) 29.1 6 5.2 32.6 6 5.4 28.3 6 1.1 28.2 6 1.9 0.09
Rectal temperature (oC) 37.0 6 0.6 37.7 6 0.8 38.0 6 0.5 38.2 6 0.6 0.06
Initial MAP (mmHg) 57.5 6 18.7 65.2 6 21.2 60.0 6 6.2 63.6 6 3.8 0.32
Pretreatment MAP (mmHg) 33.2 6 14.5 40.8 6 24.9 34.4 6 5.3 38.6 6 10.5 0.72
Pretreatment blood loss (% EBV) 25.5 6 7.3 23.1 6 11.1 18.3 6 3.0* 15.4 6 3.9* <0.05
Rate of loss during injury (mL/ min) 557 6 150 650 6 240 417 6 87* 340 6 103* <0.05
MAP before resuscitation (mmHg) 52.2 6 17.4 62.5 6 20.8 36.9 6 11.7* 32.9 6 10.1* <0.05

Results are expressed as mean 6 standard deviation.
MAP ¼ mean arterial pressure; EBV ¼ estimated blood volume; CBG ¼ combat gauze ; TMS ¼ TraumaStat.
*P < 0.05 between transection and puncture models for CBG and TMS.
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injury groups transection (37.0 6 14.5 mmHg, at 2 min)
versus puncture (35.2 6 8.0 mmHg at 45 s). However,
blood loss was greater in the transection model than
in the puncture model (24% 6 8% EBV 17% 6 4%
EBV, respectively; P < 0.05).

Survival rate in the transection model was 100% for
both CBG and TMS dressings (Table 2). In the puncture
model, survival rates were less than 100% [88% for
CBG, 50% for TMS (no statistical difference)]. Simi-
larly, there was no statistically significant difference
between groups in mean survival time (174 min for
CBG and 153 min for TMS). This dynamic is illustrated
in a Kaplan Meier plot (Fig. 1) indicating that animals
died after 90 min for TMS and after 120 min for CBG
(median time) in the puncture model.

Aspirated blood was significantly less in the transec-
tion model than in the puncture model. Total post-
treatment blood, as a measure of control of bleeding
from the dressing, showed a lower mean with CBG
treatment than with TMS treatment in the puncture
model (28.6% 6 25.2% versus 43.3% 6 19.4 % EBV, re-
spectively) but this mean difference was not statisti-
cally significant. Amount of blood in the standard
dressing (applied on top of the test dressing) was simi-
lar in CBG and TMS treatment groups but less in the
transection model than in the puncture model.

Rebleeding was evident at two specified events:
release of manual compression and restoration of

MAP after injury (40 mmHg, which occurred between
time 20 and 45, during fluid resuscitation; Table 3). In
the transection model, rebleeding incidence was 0%
for CBG and 17% for TMS without significant reduction
of MAP post-treatment, allowing the animals to survive
the 3 h with a final MAP above 60 mmHg. In the punc-
ture model, rebleeding occurred frequently at compres-
sion release (Table 3), causing a significant reduction in
MAP to an average of 25.0 6 8.0 mmHg (lowest MAP,
Table 3) compared with pre-treatment MAP (average
35.2 6 8.0 mmHg, P < 0.01, ANOVA). Thereafter,
MAP increased due to compensation regardless of
dressing (MAP before resuscitation, Table 1). After re-
suscitation and MAP increasing steadily to a maximum,
similar for CBG, and TMS, treatments (59 6 17, 54 6

13 mmHg, respectively, P ¼ 0.3, ANOVA), incidence
of rebleeding occurred similarly with both dressings
but there was less blood loss with CBG (P < 0.05). At
the end of the experiment, MAP reached approximately
44 mmHg.

In this circumstance, the animals surviving the punc-
ture injury ended the experiment with a lower MAP
(P < 0.01) than the transection injury.

Wound Temperature

Increase of temperature has been a concern with
zeolite [8] in the past but no such temperature increase
was observed after application of the two test dressings
in this study. The temperature recorded at the interface
of the products and the inguinal muscle was no differ-
ent than rectal temperature for all animals across
time, groups, and models (37.5 6 1.4�C).

Additional Characteristics of Test Hemostatic Dressings

Additional observations of dressing properties made
during in vitro experiments are described in Table 4.
CBG has greater absorption than TMS (P < 0.05).
CBG has a greater ability to promote clotting than
TMS (P < 0.05). During in vivo experiments, each
dressing was subjectively evaluated at each treatment
for ease of application and difficulty of removal, using
a 3-level rating scale. These actions, application, and
removal presented no difficulty for either test dressing.

DISCUSSION

Combat Gauze and TraumaStat are two fabric-based
hemostatic dressings newly released at the time of this
experiment that showed potential immediate applica-
tion for battlefield deployment. Both are lightweight
and are suitable for long-term storage under a wide
temperature range. We tested them in two injury
models: a full femoral vessel transection and a 4 mm

TABLE 2

Rate and Time of Survival

Survival time

Combat gauze TraumaStat P

Transection 180 min (6/6) 180 min (6/6) ¼1
Puncture 174 6 16 min (7/8) 153 6 55 min (4/8) >0.2

Average time is expressed as mean 6 standard deviation.
None of these values reached statistical significance.
Ratio of surviving animals is included in parenthesis.
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FIG. 1. Survival across all dressings: Kaplan Meier plot in punc-
ture model.
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arterial punch [1, 2]. These models provide challenges
to the hemostatic dressing to control bleeding in two
ways: (1) recurrence of bleeding immediately after re-
lease of the manual compression, and (2) recurrence
of bleeding after MAP has rebounded.

In the transection model, where standard gauze
yielded less than 20% survival in a previous study
with this injury model, both dressings demonstrated
100% survival, and were comparable to the top ranked
dressings in the previous evaluation [1]. In the punc-
ture model, CBG yielded comparable survival to
a precursor product, X-Sponge (87.5% and 75%, respec-
tively), which was ranked as a superior dressing in
a previous evaluation [2]. In contrast, TMS ranked
lower than a product of similar chitosan composition,
Celox (50% and 88%, respectively) [2].

CBG showed a similar incidence of rebleeding in the
puncture model as its precursor X-Sponge, (50% and
60%, respectively), similar volume of blood loss (20%
EBV aspirated blood), and similar survival (75% and

87.5%). Rebleeding with TMS was associated with
higher aspirated blood loss than Celox; products made
of the same base ingredient (chitosan). There was
a trend of higher incidence of rebleeding after MAP res-
toration with TMS compared with CBG. The perfor-
mance of CBG in supporting bleeding control resulted
in a slightly but not statistically higher survival rate
than for TMS in the puncture model. Although not
statistically significant, this survival rate, taken to-
gether with the lower incidence of rebleeding and lower
volume of blood loss, was consistent with lower TMS
performance.

Mechanism of action of these dressings may be asso-
ciated with their absorption and clotting abilities,
which were seen as important characteristics with
previous testing of other hemostatic dressings [1].
The lower ability of TMS to control bleeding with res-
toration of MAP may be due to the matrix support
permitting rapid initial blood absorption but less abil-
ity to control secondary bleeding. These differences
may be due to the space/volume occupied by the prod-
ucts in the wound. When filled with blood, CBG may
have achieved a better contact with the wound surface
and consequently exerted a more homogeneous wound
compression, preventing further blood flow. We have
noted that the fabric used in CBG ensured good initial
contact and absorption that is important in the initial
hemostasis (data not shown). In vitro data indicate
that this product, impregnated with hemostatic agent
(kaolin), provides additional properties that yield good
hemostatic control in vivo, as seen in the maintenance
of higher MAP. The physical support (texture) of
fabric-like dressings might also play a large role in
the dressing properties. Furthermore, in supporting

TABLE 3

Post-Treatment Events and Parameters Observed in Transection and Puncture Models

Incidence of rebleeding MAP after dressing application (mmHg) Blood loss during rebleeding (% EBV)

Dressings at CR at MAP R Lowest MAP Highest MAP Timey (min) MAP at 3 h at CR At MAP R

Transection
CBG 0% 0% 33 6 15 77 6 21 58 6 19 68 6 13 0 0
TMS 17% 17% 41 6 25 88 6 13 59 6 26 72 6 10 1.3 2.8

Puncture
CBG 63% 50% 29 6 10 59 6 17 48 6 24 45 6 17 4.1 6 2.3 6.6 6 7.3*
TMS 75% 75% 23 6 7 54 6 13 40 6 4 46 6 17 4.4 6 1.1 23.1 6 19.7

Incidence of rebleeding, MAP, and blood loss in the transection and puncture models.
Incidence of rebleeding is indicated after compression (CR) and after restoration of MAP (MAP R, �40 mm Hg) and is calculated as % of an-

imals that had blood aspirated from the wound.
Results are expressed as mean 6 standard deviation.
MAP ¼ mean arterial pressure, CBG; Combat Gauze, TMS; TraumaStat.
Pre-T ¼ pretreatment blood loss; Asp ¼ aspirated blood loss; Post-R ¼ post-resuscitation blood loss.
*P < 0.05.
yTime at which MAP was the highest. MAP is subdivided as: lowest MAP after compression and before fluid resuscitation, peak MAP (highest

MAP maintained after dressing application and time (min) it occurred), MAP at end point.

TABLE 4

Characteristics of Hemostatic Dressings

Hemostatic dressings
Absorp factory

(g/g)
In vitro clotting

timez (s)

Gauze dressings
Combat gauze n ¼6 7.1 6 0.1 105 6 16*
TraumaStat n ¼6 5.7 6 0.1* 190 6 16
* P < 0.05 P < 0.01

In vitro properties of dressing material tested in the laboratory.
*Level of significance determined with ANOVA.
yAbsorption factor: weight of blood absorbed/weight of dressing (g/g).
zclotting time (s) determined with 2 mL blood at 37�C.
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observations from a separate study of hemostatic
dressings, Kheirabadi et al. reported that CBG was
more effective than TMS in bleeding control and pro-
vided better bleeding control than the standard of
care dressing (compressed gauze) (personal communi-
cation, [16]. Interestingly, they outlined the impor-
tance of the nature of the support material in gauze
dressing property.

Incidence of rebleeding during resuscitation indi-
cates that there are higher risks of rebleeding for any
dressings while under high pressure hemorrhage.
This was clearly observed in the puncture model, the
more challenging model in this respect. It was notable
that in the puncture model, after injury, MAP was re-
duced to the same level as in the transection by less
blood loss. This is likely caused by a shorter bleeding
time at high rate. However, due to higher rebleeding
after compression release in the puncture model,
more blood loss occurred and caused MAP to decrease
further before fluid resuscitation. In the transection
model, little blood loss occurred after application of
either dressing. The reason for this difference between
models is not clear. It could be attributed to the retrac-
tion of the vessels and constriction of the artery after
full transection, and the high risk of bleeding in the
puncture injury on a fully dilated vessel.

In consideration of some limitations, this study was
designed to evaluate two dressings that may have clin-
ical potential for bleeding control. Additional compari-
sons between dressings could have been made, had
a larger number of animals been used. The fluid resus-
citation limit of 500 mL is a second limitation and
might have left the animal hypotensive; however,
this study was designed for military application where
hypotensive resuscitation is recommended to simulate
austere situation [17]. Administration of this smaller
volume of colloid infusion compared with a greater
volume of crystalloid might have affected the study’s
outcomes such as additional rebleeding and lower sur-
vival. In this regard, surviving animals could have
been subdivided into groups that had stable MAP to
the end of experiment or that had MAP decrease to-
wards the end of the experiment. For the animals
that did not die within the experimental time but
had decreasing MAP, loss of hemodynamics could be
attributed to substantial blood loss occurring either
before or after the resuscitation regimen. This sug-
gests that if experimental time had been prolonged,
the survival rate might be different. Ultimately, these
animal models are research tools only and do not con-
vey to direct translation with a human scenario on
a battlefield. However, swine is an appropriate cardio-
vascular model with MAP and response to hemor-
rhagic shock and resuscitation fluid approaching that
in human.

CONCLUSION

Overall, CBG and TMS dressings were equally effica-
cious for bleeding control after severe hemorrhage in
the transection injury model. Departure between these
dressings becomes distinguishable in a more challeng-
ing puncture injury model, conceding a slight advan-
tage to CBG. Both dressings have clear advantages
for hemostasis over standard of care dressing. Impor-
tantly, these new dressings retain rather than sacrifice
the fabric-like properties of standard of care dressings
already familiar to care providers.
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