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1. INTRODUCTION

The interaction of a molecular system with a con�
stant electric field F has attracted the attention of
researchers in recent years due to its close relation to
phenomena in strong low�frequency laser fields. In
particular, qualitative description of the high�energy
plateau in the higher�harmonic generation spectrum
of laser radiation emitted by gases [1] and above�
threshold ionization of atoms and molecules [2] is
based on the well�known rescattering model [3]. In
this model, ionization of a quantum system in the
effective constant electric field is a source of low�
energy electrons that are accelerated in the laser field
and that recombine with the emission of high�energy
radiation; or they are scattered from the atomic–
molecular core and form an angular distribution of
electrons in the region of the high�energy plateau
upon ionization. It is well known that the probability
of an atom being ionized by a strong low�frequency
field is determined to a high degree of accuracy by the
probability of ionization by a constant field F averaged
over the period and determined by the instantaneous
value of the laser field amplitude [4–7]. An analogous
result for molecules was obtained quite recently [8].
Even for a diatomic molecule, the problem is compli�
cated as compared to the case of an atom due to an
additional parameter (internuclear distance vector R)
appearing in the problem. This leads to the orientation
dependence (on angle θ between R and F) and the spa�

tial dependence (on distance R between the nuclei) of
the ionization probability of the molecule. The depen�
dence on R is essentially nonlinear, which does not
permit us to obtain simple approximations for ioniza�
tion probabilities in a wide range of R values. For this
reason, analytic results for the ionization probability
of molecules are limited to the tunnelling regime and
small internuclear distances [8].

A strong field may noticeably change the distance R
between the nuclei; therefore, the dependence of the
shift and field broadening of the molecular term on R
is of special interest. The shifts and widths of the elec�
tron molecular terms in a constant field were calcu�
lated numerically in [9] for the simplest molecule

( ion) by direct numerical integration of the
Schrödinger equation. Analogous but more detailed
numerical analysis was carried out in [10, 11] (see also
[12]). These numerical results confirmed the linear
field dependence of the position of the ground (�+)

and first excited (�–) states of  with increasing R,
which was predicted earlier in [13]:

Such a dependence of energy on the field strength and
internuclear separation is due to localization of an
electron at one of the centers, which leads to the emer�
gence of a dipole moment ± R/2 interacting with the
field [10, 11, 13]. Another interesting feature of the
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interaction of the  ion with constant field F is the

nonmonotonic dependence of width Γ– of the excited
state on the internuclear spacing upon an increase in
R. The physical origin of such a dependence is disput�
able, and three different hypotheses exist concerning
this dependence [9, 10, 14]. In [9], the nonmonotonic

dependence Γ–(R) is explained by charge resonance
1

existing between the ground state and the first excited

state of  (the wavefunctions of these states for F =
0 exhibit opposite symmetries relative to transposition
of nuclei) and by the lowering of the barrier for tunnel�
ing from the excited state for certain values of R and F.
Conversely, the nonmonotonic behavior of the width
is explained in [10] by the involvement of intermediate

resonances associated with highly excited levels of 
into tunneling of a particle through the barrier formed
by the field of the two centers and the constant field.
Finally, the nonmonotonic dependence of Γ– on R is
attributed in [14] (based on analysis of the 2D model

of the  ion in field F parallel to R) to the interfer�
ence of two waves emerging during tunneling from the
excited state; one of these waves is determined by
direct tunneling, while the other is determined by tun�
neling with rescattering from the neighboring atomic
center followed by the reflection from the barrier
formed by field F. (It should be noted that this inter�
pretation is confirmed in our study by the results of an
exactly solvable 3D model.) The orientation depen�

dence of widths Γ±(θ) of  terms was calculated
numerically in [16], in which it is shown that the posi�
tions of maxima and minima of width Γ–(θ) consider�

ably depend on the orientation of the  ion, while

the width Γ+(θ) of the ground state is a smooth func�
tion of θ. (Analogous results were also obtained for the
terms of multielectron molecules modified by an elec�
tric field [17]. In this case, the existence of two states
in charge resonance is also of fundamental impor�
tance.)

Although the contemporary level of the computa�
tional technique permits direct numerical analysis of
the Schrödinger equation for simple molecules in an
electric field, this approach does not give results in a
wide range of parameters of the problem due to signif�
icant technical difficulties; in some cases (e.g., for

), this approach even fails to give an unambiguous
physical interpretation of the numerical results. For
this reason, it is expedient to use simplified models for
explaining the qualitative features of interaction of a
strong electric field with multicenter (molecular) sys�

1 Two energy levels are in charge resonance if the distance
between them becomes negligibly small upon an increase in R,
while the dipole matrix element of the transition becomes
anomalously large (~R) [15].
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tems. For example, it was shown in [18] that some pat�

terns in the shifts and widths of energy levels of the 
ion aligned with field F can be described qualitatively
using the 1D model with two Coulomb potentials,
although the Schrödinger equation was also solved
numerically in [18]. Numerical analysis of ionization

of  in the 2D model was carried out in [19]. Exactly
solvable analytic models are known only for the case of
short�range atomic centers, which corresponds, for
example, to the interaction of a negative molecular ion
with an electric field. Detailed analysis of the simplest
1D model (electron in the field of two 1D zero�range
(δ) potentials in a constant electric field) was carried
out in [20–22]; in recent publication [23], this model
was used for a qualitative description of photodetach�

ment of an electron from the  negative molecular
ion in parallel geometry (F || R). More realistic results
should be expected in simulating atomic centers by 3D
δ potentials whose action is equivalent to imposition
of appropriate boundary conditions on the wavefunc�
tion near the centers [24]. It is well known that in zero
electric field, an electron in the field of two attracting
zero�range potentials has two bound states [25]. These
states precisely form a pair of charge�resonant states
[15] which, as noted above, play an important role in
the description of molecules in an electric field. The
system of short�range atomic centers was considered
for the first time in [26], where equations for molecu�
lar terms of a multicenter systems, as well as analytic
expression for the shifts and widths of the ground state
and the excited state of an electron in the field of two
identical 2D δ potentials, were derived in the weak
electric field approximation (in which the shift of a
level is described by the quadratic Stark effect, and the
width is determined by the semiclassical tunneling
probability).

In this study, we derived general relations for calcu�
lating the shift and width of bound states of an electron
in the field of several atomic centers taking into
account the interaction of the electron with each cen�
ter (i = 1, 2, …, N) in the effective range approxima�
tion. These results are applicable to the case of short�
range potentials sustaining (in zero field) the bound
states with zero orbital angular momentum li (s cen�
ters), as well as to the case with li > 0; e.g., for li = 1
(p centers). If all atomic centers are s centers, our
model coincides with the model of δ potentials [26] in

the approximation  = 0, where  is the effective
range [27] corresponding to the ith s center. For a two�
center system with s centers, as well as with s and p
centers, exact (with the model used here) numerical
results for the shift and width of the energy levels of the
quasi�molecule are given as functions of the electric
field F, separation R between the centers, and orienta�
tion of the quasi�molecule axis relative to vector F.
The analytic expressions are obtained for the shift and
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width of the levels using perturbation theory in the
exchange interaction (i.e., in the small ratio of the
overlap integral of one�center wavefunctions of an
electron localized at different centers to the energy
difference between the ground state and the excited
state of the quasi�molecule in field F), as well as ana�
lytic formulas for the shift and width of the electron
energy levels in the field of two nonequivalent (s–s and
s–p) centers in the weak field approximation, in which
the expansion of the level shift begins with the terms of
order F (linear Stark effect).

As in all publications on the interaction of a mole�
cule with electric field F mentioned above, angle θ
between the direction of the molecular axis and vector
F in our model is treated as a parameter of the prob�
lem; i.e., we assume that the predicted angular depen�
dences can be observed only in experiments with
ensembles of molecules aligned (in the case of identi�
cal centers) or oriented (in the case of nonequivalent
centers) in a fixed direction. (Corresponding results
for an ensemble of freely rotating molecules can be
obtained by averaging over θ.) In recent years, a num�
ber of effective methods have been developed for the
alignment of molecules by relatively weak laser radia�
tion (laser alignment), which are described, in partic�
ular, in reviews [28, 29] and are used in most contem�
porary experiments on observing angular distributions
during ionization of molecules by a high�intensity
femtosecond laser radiation. Recently, first experi�
ments [30] on orientation of asymmetric molecules by
two�frequency laser radiation have been carried out;
the orientation is preserved for several rotational peri�
ods of the molecule after an abrupt interaction with a
laser pulse.

In Section 2 of this paper, the formalism of the
effective range theory for a multicenter system is
briefly described. In Sections 3–5, the shift and width
of the energy levels of two�center systems with identi�
cal (Section 3) and nonequivalent (Section 4) ss cen�
ters, as well as s and p centers (Section 5), are ana�
lyzed. In Section 6, the main results are summarized
and a qualitative interpretation is given of some results
of numerical calculations of the ionization probability
for homo� and heteronuclear molecules by a low�fre�
quency laser field. The Appendix contains a number of
required analytical formulas.

In this article, we will use atomic units: � = m =
 = 1. 

2. BASIC RELATIONS OF THE EFFECTIVE 
RANGE THEORY FOR A MULTICENTER 

SYSTEM IN AN EXTERNAL FIELD

We first consider the relations in effective range
theory, which are essential for calculating energy � of
the quasi�stationary state appearing when interaction
V(r) with an external static field is superimposed on an

electron in a weakly bound state (r) with orbital

e

ψκlml

0( )

angular momentum l and energy E0 = –κ2/2 in the
short�range potential U(r) of the atomic center (U(r) =
0 for r � rc, where rcκ � 1) [31, 32]. According to [32],
to determine �, it is sufficient to find the solution

(r) to the Schrödinger equation for the electron

in the external field (for U(r) ≡ 0), which has an
asymptotic form of diverging spherical waves for r 
∞ and satisfies the following boundary condition for
rc � r � κ–1:

(1)

where ( ) is a spherical function and coefficient

Bl(�) can be formally expressed in terms of phase δl(k)

(k = ) of scattering from potential U(r):

(2)

Since Bl(�) is an analytic function of energy, which is
complex�valued in the general case (if the external

field leads to the decay of bound state (r)),

expression (2) can be treated as an analytic continua�
tion of scattering phases to complex plane k. Assuming
that � differs from unperturbed energy E0 only slightly
( /  � 1), we can limit the parameterization
of Bl(�) to only the first two terms in the expansion in
� in accordance with the effective range approxima�
tion for scattering phases in collision theory [27]:

(3)

where al and rl are the scattering length and the effec�
tive range, which are parameters of the problem. Note
that we can also use as parameters of the problem the
binding energy  = κ2/2 and coefficient C

κl in the
asymptotic form,

of the wavefunction of the bound state at large dis�
tances because [33]

(4)

Solutions (r), which are singular at zero, can be

written in terms of the spatial derivatives of the time�
independent Green function G�(r, r') of an electron in
an external field [31, 32]:

, (5)

where the differential operator is written in terms of
spherical function (∇r) of gradient operator ∇r

ψ�lml

ψ�lml
r( )Ylml

* r̂( ) Ωrd∫
∼ 1

rl 1+
������� … Bl �( )rl …,+ + +

Ylml
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2E

2l 1+( )!![ ]2

2l 1+
������������������������Bl E( ) �l E( ) k2l 1+ δl k( ).cot= =

ψκlml

0( )

� E0– E0
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���– rl�,+=

E0

ψκlml

0( ) r( ) Cκlr
1– κr–( )Ylml

r̂( )exp≈
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2
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[ (r) = rl ( )], and the Green function satisfies

the following equation:

The transcendental equation for energy � can be
obtained by joining the projection of solution (5) onto
spherical function ( ) with boundary condition (1)

(details and analysis of some of the most important
cases for applications for the one�center problem are
given in [32, 34]; a generalization to the case of mono�
chromatic perturbation V(r, t) can be found in [35, 36]).

Considering an electron in the field of N atomic
centers located at points Rj, j = 1, …, N, we assume

that  �  +  for i ≠ j (  is the range of
action of the potential of the kth center) and that each

center sustains a weakly bound state with energy  =

– /2 and orbital angular momentum lj . In this case,
under perturbation V(r), electron wavefunction ψ�(r)
is mainly determined by the action of the external field
except in the neighborhoods of points r = Rj at which
boundary conditions analogous to (1) must be satisfied
for ψ�(r):

(6)

Here, rj = r – Rj, mj ≡ , and  ≡ (�) are con�

stant coefficients. Since potential energy V(Rj) at
points r = Rj is generally not small as compared to
characteristic variations of �, the external field in the
vicinity of these points is taken into account in Eq. (6)
by the relevant shift of energy � in  (we assume that

V(0) = 0).

The general expression for wavefunction ψ�(r) of
the electron in the external field and the field of N
atomic centers can be written as a superposition on
one�center functions (5):

(7)

(8)

where  are the coefficients appearing in boundary

condition (6). Since wavefunction (r, Ri) of the

ith center is singular only for r = Ri, its expansion in
the vicinity of the jth center (in rj = ) taking into

�lml
Ylml

r̂

1
2
��∇2– V r( ) �–+⎝ ⎠

⎛ ⎞ G� r r',( ) δ r r '–( ).=

Ylml
r̂

Ri Rj– ri
c( ) rj

c( ) rk
c( )

E0
j( )

κj
2

ψ� r( ) r Rj→

1

rj

lj 1+
��������≈

��+ … Blj
� V Rj( )–( )rj

lj+ flj mj, Yljmj
r̂j( ).

mlj
flj mj, flj mj,

Blj

ψ� r( ) flimi
ψlimi

r Ri,( ),

mi li–=

li

∑
i 1=

N

∑=

ψlimi
r Ri,( ) 2π�limi

∇Ri
( )G� r Ri,( ),=

flimi

ψlimi

r Rj–

account only the principal terms in rj can be written in
the form

(9)

where only the regular part is left for i ≠ j (in particular,
the term with l = 0 in expression (9) is (Rj, Ri)).

The explicit form of matrix elements (�) is

given by the relations

(10)

(11)

in deriving these expressions, we used formula (6)
from [37] for the expansion of the irreducible rank J
tensor depending on vector rj + Rj into a series in

spherical harmonics (rj) taking into account only

the zero�order terms in rj in the expansion coefficients.
Formulas (10) and (11) obviously lead to the following
symmetry relations:

Projecting ψ�(r) onto ( ) in the vicinity of

point r = Rj with the help of (9) and comparing the
result with boundary condition (6), we obtain the fol�
lowing equation for coefficients flm:

(12)

In the general case, the dimensionality of system of
linear equations (12) is , and the energy of

the electron in the external field and the field of N
atomic centers (or quasi�molecule terms) is deter�
mined by the roots of the transcendental equation

(13)

In the approximation of the scattering length for scat�
tering phases [27], i.e., for

ψlimi
r Ri,( )

2lj 1–( )!!

rj

lj 1+
�������������������Yljmj

r̂j( )δi j, δmi mj,∼

+ …
Alimi; lml
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���������������������lml

rj( ),
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l

∑
l

∑+

ψlimi
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× �limi
∇Ri
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Alimi; lml

i i,( )
�( ) 8π2�limi

∇Ri
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∇Rj
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Rj Ri→
min=

× G� Rj Ri,( ) 1
2π Rj Ri–
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�lml

Alimi; lml
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�( ) Alml; limi

j i,( )
�( ).=

Yljmj
r̂j

�lj
� V Rj( )–( ) fljmj

=  Alimi; ljmj

i j,( )
�( ) flimi

.
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∑
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N

∑
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i∑
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(  is the effective range for the ith center), the depen�

dence of  on energy � disappears:

In particular, for a system of s centers (li = 0, i =
1, …, N), boundary conditions (6) and Eqs. (12) and
(13) in the scattering length approximation are trans�
formed into the corresponding results for the electron
wavefunction in the field of N δ potentials [24].

Matrix elements (10) and (11) are generally quite
cumbersome and can be expressed directly in terms of
G� only for a system with s centers:

If operator V(r) describes the interaction with uniform

electric field F, matrix elements (�) can be

expressed in terms of combinations of the Airy func�
tions and their derivatives. For a two�center system
(with ss and sp centers), these matrix elements are
given in the Appendix.

3. ELECTRON ENERGY LEVELS
FOR A SYSTEM WITH IDENTICAL s CENTERS

3.1. Exact Results for Complex Energy �(F, R, θ)
and Comparison with the Results for a Weak Field

We consider an electron in the field of two identical
s centers located at points r = R1 = R/2 and R2 = –R/2
and in an electric field F forming an angle θ with the
line connecting the centers. For F = 0 and R =

  ∞, each center can be described by
effective range r0 and it sustains the s state with energy

E0 = – /2. In this case, system of equations (12) for
complex energy � = Re� – iΓ/2 and coefficients

 ≡ f1,  ≡ f2 in Eq. (7) contains two

equations,

(14)

where

and the explicit form of J(ξ
±
) and ��(R) in terms of

Airy functions is given by formulas (A.6) and (A.7).

rli

�li

�li
� V Ri( )–( ) 1–( )

li 1+
κi

2li 1+
.=

A0 0; 0, 0,

i j,( )
2πG� Ri Rj,( ), i j,≠=

A0 0; 0, 0,

i i,( ) 2π G� Ri Rj,( ) 1
2π Ri Rj–
���������������������– .

Ri Rj→
lim=

Alimi; ljmj

i j,( )

R1 R2–

κ0
2

fl1 0 m1, 0= = fl2 0 m2, 0= =

A+ A0

A0 A–⎝ ⎠
⎜ ⎟
⎛ ⎞ f1

f2⎝ ⎠
⎜ ⎟
⎛ ⎞

0,=

A0 �� R( ),=

A± J ξ±( ) κ0 r0 � E0– F± R/2⋅( ),–+=

Writing determinant A+A– –  of system (14) in
the form

we obtain two independent equations for �:

(15)

(16)

For r0 = 0, Eqs. (15) and (16) follow from the results
obtained in [26] as equations for the poles of the exact
Green function for an electron in the field of two δ
potentials and in a constant electric field. For F = 0,
Eqs. (15) and (16) lead to equations for unperturbed
energies E

±
 of two electron energy levels correspond�

ing to symmetric (+) and antisymmetric (–) (relative
to the transposition of the centers) states of the system,

(17)

where k
±
 = . For r0 = 0 (we will confine our

analysis to this case for comparing exact numerical
results for �

±
 with the results obtained in [26] for a

weak field), relation (17) gives the familiar result for
splitting of energy levels of the electron in the field of
two δ potentials, which is associated with the exchange
interaction [25]. For F ≠ 0, relations (15) and (16) are
exact transcendental equations for complex energies
�+ and �– (which are transformed to E

±
, respectively,

for F = 0) for arbitrary F, R, and orientation of F rela�
tive to R,

(18)

where Δ�
±
 in the limit of weak field F gives the Stark

shift of energy levels E
±
, which is quadratic in the field:

For the one�center problem (negative atomic ion),
the shift and broadening of energy E0 of the bound s
state in the model of a δ potential were obtained in [38]
in the approximation of weak field F (in the tunnel
regime). The results for a strong field (including ana�
lytic approximations for Re � and Γ) are given in [39].
The formulas for the shift and broadening of energies
E
±
 of the bound states of a system with two identical s

centers in the regime of a weak field [F � , where

= (  – FR)3/2] were obtained in [26] [see formu�
las (29) for Γ

±
 and (28) for polarizability β

±
]. For fur�

A0
2

1
4
�� A+ A– A+ A––( )2 4A0

2+–+( )
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ther comparison, we will use only the formula for Γ
±

from [26], writing it in the form

(19)

where coshx = (ex + e–x)/2, and the term proportional
to F in the expression for g(F, R, θ) must be retained
only for Γ– as θ  π/2, when g ~ F and the depen�
dence of the preexponential factor on F changes to a
quadratic dependence.

To illustrate the behavior of function �
±
(F, R, θ) in

a wide range of values of F and R and the range of
applicability of analytic results obtained in [26],
Figs. 1 and 2 show the dependence of real and imagi�
nary parts of complex energies �+ and �– on F and R in
parallel (θ = 0) and perpendicular (θ = 90°) geometry.
It can be seen from Fig. 1 that for θ = 90°, the position
of the level excellently correlates with the results for a

weak field even in the range of strong fields (F � ),
and exact widths Γ

±
 exceed the values given by formu�

las (19) only slightly. (This is due to the fact that for θ =

Γ±
F

2k±

������� 2
3
��

k±

3

F
����–⎝ ⎠

⎛ ⎞ g F R θ, ,( ),exp=

g F R θ, ,( )
k±R θcos( )cosh 1 FR2

/4k±–( )±
1 k±R–( )exp±

������������������������������������������������������������������,=

k±

3

90°, diagonal matrix elements A
±
 from formula (14)

are independent of R and remain the same as for an
isolated atomic center, for which the results obtained

for a weak field in [38] are applicable up to F ~ 

[39].) However, for θ = 0, the results obtained in [26]

considerably exceed the exact results even at F ≈ 

(Figs. 1a and 1b). For θ = 90°, the conformity between
the exact and analytic results [26] is also observed for
the dependences of the position and width of energy
levels on R in a weak field (Figs. 1c and 1d). However,
for θ = 0, when the electric field caused complete
breaking of the symmetry of the problem, it can be
seen from Figs. 2a and 2b that the behavior of Re�

±

and Γ
±
 upon an increase in R beginning from R ≈ 3

sharply differs from the behavior predicted in the weak

field approximation even in weak field (F = 0.015 )

[26]. The most interesting effect of a strong field is a
peculiar minimum appearing on the curve describing
the dependence of Γ– on R in Fig. 2b, which can be
explained taking into account A0 in formula (14) in
perturbation theory (see below).
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Fig. 1. Electric field dependences of the position (Re�
±
) and width (Γ

±
 = –2Im�

±
) of electron energy levels in the field of two

identical s centers for R = 2  and θ = 0 (a, b) and 90° (c, d). Solid (dashed) curves correspond to exact results for �– (�+), while

dotted (dot�and�dash) curves are the results obtained by Dalidchik and Slomin [26] for �– (�+); F0 =  and E0 = – /2.
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3.2. Perturbation Theory in Exchange Interaction

Although the nondiagonal matrix element A0
responsible for the exchange interaction is generally
not small, its value rapidly decreases with increasing
R; therefore, starting from a certain value of R, we can
use an iterative procedure for taking into account A0 in
the determination of complex energies �

±
. The choice

of this procedure depends on the ratio of A0 to the dif�
ference A+ – A–. If the condition

(20)

is satisfied, the expansion of radicands in formulas (15)
and (16) gives

(21)

(22)

Treating the right�hand sides of formulas (21) and (22)
as perturbations, we obtain

(23)

where  are the roots of transcendental equations

(24)

Δ A0

A+ A––
���������������  � 1=

A+ A0
2
/ A+ A––( ),–=

A– A0
2
/ A+ A––( ).=

�± �±

0( ) δ± �±

0( )( ),+≈

�±

0( )

A– �+
0( )( ) 0, A+ �–

0( )( ) 0,= =

and corrections δ
±
( ) are defined by the relations

(25)

where  ≡ ∂A
±
(�)/∂�. As follows from the definition

of J(ξ
±
) (see (A.5) and (A.6)), A+ and A– differ only in

sing in the combinations � ± F ⋅ R/2 containing the
entire dependence of A

±
 on � and R. If we denote

� ± F ⋅ R/2 by �(DC), both equations in (24) become
identical and give the equation for complex energy
�(DC) of the negative atomic ion in field F, whose solu�
tion is well known both for weak and strong fields F
[38, 39]. As a result, the expression for �

±
 in approxi�

mation (20) assumes the form

(26)

The solution to system (14) for coefficients f1 and
f2, which determine the degree of localization of the
electron near the first and second centers (f1 = ±f2 in
zero field), gives

(27)
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Fig. 2. Same as in Fig. 1, but for the dependence on R for F = 0.015 . Thin solid and dashed curves are the results obtained in

perturbation theory in the exchange interaction (see Section 3.2).
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(28)

Thus, with increasing R, the electron in the state with
energy � = �+ is mainly localized near the second cen�
ter (at point R2 = –R/2), while in the state with energy
� = �–, it is localized in the vicinity of the first center
(R1 = R/2).

Expressions (26)–(28) are inapplicable in orthogo�
nal geometry (F ⋅ R = 0) when A+ = A– ≡ A(�) and con�
dition (20) does not hold. In this case, the iterative
inclusion of the exchange interaction involves the
solution of system (16), which can be reduced to the
equations

in this case, the right�hand side is treated as a pertur�
bation. This gives

(29)

It can easily be seen that for θ = π/2, we have ratio
 = 1 for both states (because the transposition

symmetry is preserved in orthogonal geometry in the
presence of the field also).

The results depicted in Fig. 2 show that iterative
inclusion of the exchange interaction is valid for R �

3 . It was noted above that with increasing R, the
electron is localized in the vicinity of one of the cen�
ters and, hence, the main contribution to the energy
shift is determined by the potential difference pro�
duced by the electric field between the origin (at which
V(r) = 0) and the point of location of the center (i.e.,
by the terms ±F ⋅ R/2 in relation (26)). It should be
noted that the linear dependence of the position of the

f2

f1

�� A0
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�����
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δ �
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����������

� �
DC( )=

.=

f1/f2

κ0
1–

level on R cannot be obtained in perturbation theory in
F because, in addition to the smallness of F, it is also
required that product F ⋅ R be much smaller than the
energy difference  [26]. Therefore, for F ⋅ R =
0, the Stark shift is quadratic in F and is correctly
described in perturbation theory (see Fig. 2c), while
for angles θ close to zero, the condition

 � 1 is violated upon an increase in R,
and the dependence of the level shift on F becomes
close to linear (i.e., the quadratic Stark effect is trans�
formed into the linear effect).

The dependence of the electron energy level widths
on R is most interesting in parallel geometry (θ = 0)
(see Fig. 2b as well as the results for a stronger field F =

0.06  in Fig. 3a). Upon an increase in R, the width
Γ+ of the ground state assumes the limiting value (for a
given F), which is determined by the imaginary part of
energy �(DC) of the one�center problem, exponentially
rapidly. Conversely, the width Γ– of the upper level first
decreases, attains its minimum in a narrow interval of
R, and then approaches it asymptotically, oscillating
about the limiting value of �(DC) (see Fig. 3a). Such a
behavior of Γ

±
(R) can be explained taking into

account the above�mentioned localization of the elec�
tron in the ground state and the excited state at differ�
ent centers upon an increase in R. In the ground state,
the electron is localized at the second center (at point
–R/2) and, hence, tunnels in the direction of –F
without an appreciable interaction with the first cen�
ter. The ratio of coefficients f1/f2 for the upper state
decreases exponentially upon an increase in R to its

value R = R0 ≈ /2F, after which it decreases much

more slowly (in proportion to R–3/2). Point R0 is distin�
guished by the fact that for R > R0, the electron cannot
be localized near point –R/2 any longer (because

�+ �––

F R/ �+ �––( )⋅
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Fig. 3. (a) Dependences of widths Γ± of a two�center ss system on R for F = 0.06 . Solid (dashed) curves are the exact results

for Γ–(Γ+); dotted curve corresponds to the result obtained from expression (34). (b) Dependences of the position of the mini�
mum (R = Re(F)) on the electric field. Solid curve is the exact result; dashed curve is the result obtained from formula (34);

F0 =  and E0 = – /2.
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F ⋅ R + �– > 0); in this case, the regime is referred to as
the “above�barrier decay” [12–14]. In this regime, the
electron localized in the excited state near the first
center (at point r = R/2) is partly scattered from the
potential of the second center when it passes through
the barrier. Therefore, oscillations in Γ–(R) are deter�
mined by the interference of two waves: the wave scat�
tered in the direction of –F and the wave emerging as
a result of scattering in the F direction and subse�
quently reflected from the potential barrier formed by
the electric field. Period ΔR of Γ– oscillations upon a
change in R can be estimated in terms of phase differ�
ence Δφ between the forward and reflected waves,
which is determined by classical action � accumu�
lated by the electron moving from the point at which it
emerges from under the barrier to the scattering center
(in absolute units):

(30)

where we have used for �– the approximate relation
�

⎯

≈ FR/2 – . Having determined ΔR from the
equation

in the limit of large R, we obtain

An analogous result can also be obtained for ΔR more
rigorously using the asymptotic expansion for A0 and
A
±
 in expression (25) for δ–. Obviously, the anomalous

behavior of Γ–(R) mentioned above is sensitive to the
geometry of the problem; for θ = 90°, oscillations in
Γ–(R) disappear because there is no barrier along the
axis of the molecule.

Expressions (25) and (26) are exact in field F.
Using the asymptotic forms of the Airy function, we
can obtain the analytic forms of Re�

±
 and Γ

±
 for small

F. In particular, the expression for Γ– can be written in
the form

(31)

where Γ(DC) is the level width in the one�center prob�
lem [38, 40]:

(32)
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Since z+ =  and z– = z for θ = 0, term f–(F, R, θ) in
formula (31) in this case changes only the preexpo�
nential factor in formula (32). Expressions (31)–(33)

for r0 = 0, a0 = , and θ = 0 make it possible to
describe analytically the dependence of Γ– on R in
Figs. 2b and 3a in the region of the minimum. In this
case, formula (31) is simplified:

(34)

where

and we consider that  =  for r0 = 0 (see rela�

tion (4)). Analysis of the dependence of the preexpo�
nential factor in formula (34) on R shows that in the

range of R < /(2F), it has the single minimum at
point R = Re(F), whose position is determined by the
root of the fifth�order polynomial. Figure 3b demon�
strates the conformity of the dependence of Re on F
obtained from analysis of relation (34) to the results of
solution of the exact equation for �–(θ = 0).

The orientation dependence of complex energies �
±

of the electron in the field of two s centers is shown in
Fig. 4 for two values of R. For small values of R (see
Fig. 4b), width Γ– of the upper state considerably
exceed Γ+, and both widths have a maximum at θ = 0
and a minimum at θ = 90°. Such a dependence is in
qualitative agreement with the results for a weak field
because the entire dependence of widths on θ is deter�
mined by the imaginary parts of the diagonal matrix
elements A

±
, i.e., by exponential terms of the type

(35)

where E
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(F = 0). It can be seen from formula (35)

that the dependence of Γ
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field approximation (together with expansions of type
(35)) becomes inapplicable, and the orientation
dependence becomes more complicated; in particular,
the positions of the maxima and minima of Γ– now
depend on R (see Fig. 4d), and the angular depen�
dence of Γ+ disappears.

4. TWO�CENTER SYSTEM
WITH NONEQUIVALENT s CENTERS

A system with nonequivalent s centers (κ1 ≠ κ2; for
definiteness, we assume that κ1 < κ2) basically differs
from the system with identical centers in that the
molecular system possesses a nonzero dipole moment
dss ~ R for F = 0 due to different effects of the centers
on a weakly bound electron and different electron
density distributions in the regions of the first and sec�
ond centers, which is associated with these effects.
Therefore, for F  0, the power expansion of the
level shifts in F begins with a term of order F (linear
Stark effect), and the energies of the ground state and
the excited state become closer up to the quasi�inter�
section point. For a unified description of the posi�
tions of energy levels for small values of F (including
the region of quasi�intersection of molecular terms), it

is convenient to use an iterative procedure for solving
system of equations (12) (with N = 2 and li = lj = 0)
based on the field�modified “zeroth” approximation,
in which the linear Stark effect is contained even for
energies E = E(F) of the zeroth approximation. To this
end, using the asymptotic expansion of the Airy func�

tions for  � 1, we expand matrix elements 
in (A.3) and (A.4) into asymptotic series taking into
account lower�order terms in the field for real (~F2)
and imaginary (~F) parts:

(36)

(37)

where

Taking into account only the principal (first) terms in
expansions (36) and (37) and replacing exact energy

ξ± A0 0; 0, 0,
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Fig. 4. Dependences of (a, c) the position and (b, d) the width of electron energy levels in the field of two s centers on angle θ

between R and F for F = 0.05  and R = 2  (a, b) and 7  (c, d). Solid and dashed curves are exact results for �– and �+;
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in perturbation theory in the exchange interaction (which almost coincide with the exact results); E0 = – /2.
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�(F) by E(F) = –k2/2, we can write system of equa�
tions (12) in the zeroth approximation in the form

(38)

(39)

where

and  and  are the effective radii for the first and
second centers. The entire dependence of system (38)
and, accordingly, of energy E on F is associated only
with terms ±F ⋅ R in the expressions for k

±
 in diagonal

matrix elements . The two real values of energy
E = E±(F) obtained from the solution of system of
equations (38) determine the zeroth approximations
for the energies of the ground (E+) and excited (E–)
molecular terms in the field, which are transformed

for F = 0 into unperturbed energies  following from

(38) upon the substitution of  =  for k
±
 and

k. The contribution from the terms of order F and F2

in expansions (36) and (37) for the matrix elements
appearing in the solution of Eq. (13) for � will be taken
into account in perturbation theory based on the solu�
tion of system (38). For this purpose, we write � in the
form

and confine the solution of transcendental equation (13)
to the term linear in Δ� and the terms on the order of
F and F2, which appear from expansions (36) and (37)

for matrix elements  in Eq. (13). It turns out
that the expansion for the level shift in F begins with
terms on the order of F 2 as in the case of the quadratic
Stark effect; therefore, the resultant expression for Δ�±

can be written in the form

(40)
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where

(43)

(44)

The result for α±(F = 0) (weak field approximation)

follows from formulas (41), (43) for k
±
 = k = k0,  =

:

(45)

where k0 =  for α+(0), k0 =  for α–(0),
and N(k0) is given by expression (43) with k

±
 = k = k0.

However, expression (45) gives polarizabilities β± of

unperturbed terms  independent of F only in
orthogonal geometry (θ = π/2) because additional
terms on the order of (Fcosθ)2 appear in the expansion
of energies E±(F) in the zeroth approximation into a
power series in F. This expansion can be obtained
using the iterative solution of Eq. (38) and represent�

ing E±(F) in the form E±(F) =  + ΔE±. Expanding k
±

in the diagonal matrix elements in expression (38) up
to terms of order F2, we obtain the following expres�
sion for ΔE±:

(46)

where  is the above�mentioned dipole moment

(47)

(It should be noted that expression (47) can also be

obtained by calculating  directly as the mean value
of vector r with unperturbed two�center wavefunc�
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 and  = ). Coefficient  defining the
term quadratic in F in expansion (46) has the form

(48)

and its sum with α±(F = 0) from (45) gives the total
polarizability of a heteropolar ion with κ1 ≠ κ2:

β±(R, θ) = α±(0) + .

The expression for β± is considerably simplified in the
case of a homeopolar ion (κ1 = κ2) and coincides with
the expression obtained in [26] in the model of δ

potentials for  =  = 0. (It should be noted that

the expression for polarizability β±(R, θ = 0) of an ion
with two s centers with κ1 ≠ κ2 was obtained in [41] in
the model of δ potential using a different method.
However, the expression given in [41] is extremely
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cumbersome and does not follow from our result for

 =  = 0. Numerical comparison also shows a
considerable difference between our results for
β±(R, 0) and the results obtained in [41].)

Widths Γ± from formula (42) in the limit of a weak

field (  ≡ ) and  =  = 0 have the form

(49)

It is interesting that in orthogonal geometry (θ = π/2),
the preexponential factor on the right�hand side of

expression (49) for the upper level (in ) has a mini�
mum, but does not vanish as in formula (19) for κ1 =

κ2 = κ0 (vanishing of  in formula (49) in the latter
case obviously follows from the relation
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Fig. 5. Dependences of the position and width of the levels of a two�center ss system with κ1 = 0.8κ2, which is oriented along field

F (θ = 0) on R (a, b; F = 0.04 ) and F (c, d; R = 4 ). Solid and dashed curves are exact results for �– and �+, respectively;

dotted and dot�and�dash curves are the results of calculations based on formulas (40)–(42); gray dotted and dot�and�dash curves
are the results for a weak field calculated by formula (49) (for Γ±) and (50) (for Re�±); gray solid curves in (b) and (d) are the

results of calculations by formulas (58) and (58), (61); E0 = – /2 and F2 = .

κ2
3

κ2
1–

κ2
2

κ2
3



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 112  No. 5  2011

DECAY OF A NEGATIVE MOLECULAR ION IN A CONSTANT ELECTRIC FIELD 737

which is a consequence of relation (17) for r0 = 0 and
is associated with an additional factor of order F in the
probability of tunneling from the antisymmetric state
in the direction perpendicular to the axial symmetry
axis analogously to the probability of tunneling from
the one�center p state with  = 1 [40].)

Figure 5 shows the positions and widths of terms �+

and �– of the ss system with κ2 = 0.8κ1 and  = =
0 in a wide range of values of R and fields F. It can be
seen that analytic results (41) and (42) are in excellent
agreement with the exact results for Re� and Γ
obtained from the numerical solution of Eq. (13). The
results for Re� in Figs. 5a and 5c were obtained using
the formula for the conventional Stark effect (with

quantities  and β± independent of F),

(50)

correctly describe the level shift up to the region of
quasi�intersection of terms (Re�+ ≈ Re�–), starting
from with which the description of the position of
energy levels in perturbation theory for isolated level is
not applicable any longer.

A characteristic feature of Figs. 5b and 5d is the
sharp variation in the behavior of the level width in the
region of quasi�intersection of terms �+ and �– upon
an increase in R or F. To explain such a behavior, let us
analyze the system of equations (38) in the limit of a
strong field F. Considering that the diagonal matrix
elements in (38) are functions of energy E(F), we
expand them in the vicinity pf the points

(51)

(52)

Here, we have introduced the asymptotic coefficients

of one�center wavefunctions in accordance with for�
mula (4). The determinant of system (38) with diago�
nal matrix elements (51) and (52) gives the transcen�
dental equation for energy E, which can be written in
the form

(53)

m
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where

Taking into account the exchange term (~ ) in
Eq. (53) by the iterative method on the basis of the
zeroth approximation,

we obtain

(54)

where

(55)

Analysis of relation (54) shows that for F ⋅ R > 0, with
increasing R or F, terms E± come closer to each other
up to a certain minimal distance, after which they
diverge.

We first consider the case when the field strength is
fixed and R is a free parameter. The values of R = R0 for
which the terms E± converge to the minimal distance
follows from the equality E1 = E2 (Δ12 = 0):

(56)

It can be seen from this relation that R0 has a minimum
in parallel geometry (θ = 0); we will confine our fur�
ther analysis to this case only. The minimal distance
Δmin between the terms for R = R0 is determined by the
exchange interaction,

(57)

and coefficients f1 and f2 determining the contribution
of one�center states to the two�center wavefunction at
the point of quasi�intersection are identical (in abso�
lute value) for the “+” as well as the “–“ term (with
energies E+ and E–, respectively). For the “+” term,
we have  >  for R < R0 and  <  for R > R0,
while for the “–“ term, these inequalities are inverted:

 <  for R < R0 and  <  for R > R0. This
means that during the passage through point R0, a res�
onant transition of the electron from one center to
another takes place, which leads to an almost abrupt
variation of the dependence of the level width (or
decay probability) of the ion on R (see Fig. 5b). We
prove this for width Γ+ of the “+” term, substituting E+

from Eq. (54) into (42) and using expansions (51) and
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(52) (in this case, we can omit the last term (~R) in
Eq. (42)). As a result, we obtain the following expres�
sion for Γ+ in the region of quasi�intersection of the
terms:

(58)

where function f(R) and the widths Γi of one�center
states in field F have the form

(59)

(60)

An analogous result for the “–” term can be obtained
from expression (58) by substitutions Δ+  Δ– and
Γ1  Γ2.

The case when R is fixed and the field strength is a
free parameter can be analyzed analogously to the case
of a fixed F. In particular, an analog of formula (58) for
this case can be obtained by substituting function f(R)
for f(F) into (58):

(61)

where F0 = (  – )/2R. Figures 5b and 5d demon�
strate the high accuracy of asymptotic formulas of type
(58) for Γ±(R) and Γ±(F) in the region of quasi�inter�
section of the terms.

5. ELECTRON ENERGY LEVELS
IN THE FIELD OF s AND p CENTERS

Modification of the results for two s centers upon a
change in the orbital symmetry of one�center states
can be seen even from a simple example of a heteropo�
lar ion of the AB– type, in which A and B centers sus�
tain, respectively, weakly bound s and p states ψ0 and

ψ1m with energies  = – /2 and  = – /2

(e.g., the OH– ion). Although the basis set required for
constructing the two�center function (7) contains four
one�center states, system of equations (12) for F = 0
and for the quantization axis directed along the axis of
the quasi�molecule contains only two equations for

coefficients  ≡  and  ≡  for

the mixture of states  and  corre�

sponding to two two�center states of an electron with
zero projection of the angular momentum onto the

interatomic axis with energies E0 = :  =
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where

and the explicit form of function (k0) is given by
formula (39),

(63)

Since the electron densities of two�center states are
different in the regions of the first and second centers,
the system with s and p centers has a constant dipole

moment  ≈ R like for a system with nonequivalent s
centers.

When an electric field is applied, it is convenient to
choose the quantization axis along vector F so that sys�
tem of equations (12) can be written in the form

(64)

where

and the explicit form of matrix elements (�) is

given in the Appendix (see formulas (A.8)–(A.13)).
Equating the determinant of system (64) to zero, we
obtain the following transcendental equation for com�
plex energies �:

(65)

In accordance with formulas (64) and (65), three
quasi�stationary two�center (molecular) states are
formed in the field F, forming an angle θ with the axis
of the molecule. One of these states appears only for
θ ≠ 0 because, in accordance with formula (A.12),

 = 0 for θ = 0, and the two�center system sus�
tains, in accordance with formulas (64) and (65), only
two molecular states formed from the wavefunction of
the s center and the state of the p center with zero pro�
jection m of the angular momentum onto the direction
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of F. The deviation of vector F from the molecular axis
leads to the exchange interaction (i.e., nonzero over�
lap integral) between the wavefunctions of the s center
and the states of the p center with angular momentum
projections m = ±1. As a result, the third two�center
state appears in the form of a superposition of the
wavefunction of the s center and a symmetric combi�
nation of states with m = +1 and m = –1 localized at
the p center (because in the case of an antisymmetric
combination, the terms in the matrix elements
responsible for the exchange interaction are mutually
compensated, and no molecular state is formed).

In the case of arbitrary geometry, analytic calcula�
tions of complex energy � are quite cumbersome; for
this reason, we confine our analysis to the most impor�
tant case of parallel geometry (θ = 0, π). It was men�
tioned above that the wavefunctions of two molecular
states are determined in this case by a superposition of
the wavefunctions for the s and p centers with projec�
tions m = 0 so that system (64) can be reduced to the
following two equations:

(66)

while the transcendental equation for complex ener�
gies � = �±, which are transformed onto unperturbed

energies  and  following from Eq. (62) for F = 0,
has the form

(67)

Analysis of system (66) by the methods of perturbation
theory in the exchange interaction is completely analo�
gous to the case of ss centers considered in Section 3.2.

We will now consider the results of analysis of
Eq. (67) based on the approach used in Section 4. The
equation for energies E = E±(F) of the sp system in the
zeroth approximation, which is analogous to Eq. (38),
can be derived from Eq. (62) using the substitution

k0  k =  in the exchange term Q(k0),

in (k0), and

in (k0). Writing now � in formula (67) in the form
�± = E±(F) + Δ�± and taking into account the terms on
the order of F appearing in expansions of type (36),

(37) for matrix elements  in (67), we obtain

complex correction Δ�± to E±(F):

(68)
where

(69)
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Â1 0; 1, 0,
2 2,( )

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

f0 0,

f1 0,⎝ ⎠
⎜ ⎟
⎛ ⎞

0,=

E0
+ E0

–

Â0 0; 0, 0,
1 1,( )
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and (k+), (k+), and (k–) are defined in
formulas (39), (44), and (63). It can be seen from for�
mula (68) that in contrast to expansion (40) for the s
centers, the principal term in the expansion of Δ�± is
linear in F so that the real correction of order F2 to
energies E±(F) is small. It should be noted that the
inclusion of this correction as well as the terms of order
F2 in the expansion of E±(F) in F makes it possible to
obtain an analytic expression for polarizability

(R, θ = 0) of the sp system, which is rather cumber�
some and is not given here.

Constant dipole moment  of the sp system,
which describes the linear Stark effect in the unper�

turbed terms with energies : Δ  = –  ⋅ F, is

given by the sum of d±(F = 0) and dipole moment 
that determines the principal term in the series expan�
sion of E±(F) in F:

The expression for  has the form
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where N(k0) ≡ N( ) follows from expression (71) for

N after the substitution of  =  for k, k+,

and k–. We can also write expression (70) for widths Γ±

in the limit of a weak field (F  0):
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(73)

The high accuracy of formulas (68)–(70) for the
shift and width of the energy levels of the sp system in
an electric field follows from comparison with the
results of numerical analysis of system (66) for κ2 =

1.4κ1, κ1 = 0.236,  = 2.64, and  = –1.49 (as for

the OH– ion); see Fig. 6. It can be seen from Fig. 6 that
as in the case of nonequivalent s centers, quasi�inter�
section of energy levels upon a change in R and pecu�
liarities in widths Γ± associated with it are also
observed for a quasi�molecule with s and p centers,
while no quasi�intersection takes place upon a change
in F for parameters κ1 and κ2 considered here. All
results obtained in Section 4 for the region of the
quasi�intersection of energy levels in the ss system are
also valid for an sp system to within notation. In par�
ticular, analogs of formulas (55) and (58) for sp centers
can be obtained from these formulas using the follow�

×
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ing substitution of coefficients describing the
exchange interaction:

(74)

In addition, decay probability Γ2 for the one�center
state in expression (58) for width Γ+ and in an analo�
gous expression for Γ– should be replaced by probabil�

ity  of the decay of a weakly bound p state with
angular momentum projection m = 0 in field F [40]:

(75)

It can be seen from Fig. 6b that widths Γ± of the sp sys�
tem in the region of quasi�intersection of terms, which
were obtained using the above method, are in good
agreement with the exact results as well as with the
results obtained by formula (70).

Cκ10Cκ20 k0
±R–( )exp

R
��������������������������������������

3Cκ10Cκ21
k0
±R–( ) 1 k0

±R+( )exp

κ2R2
�����������������������������������������.
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p( )
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Cκ21
2 F

4κ2
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3
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�������–⎝ ⎠
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Fig. 6. Dependences of the position and width of the levels of a two�center sp system with κ2 = 1.4κ1, which is oriented along field

F, on R (a, b; F = 0.05 ) and F (c, d; R = 2 ). Solid and dashed curves are exact results for �– and �+, respectively; dotted

and dot�and�dash curves are the results of calculations based on formulas (68)–(70); gray dotted and dot�and dashed curves are

the results for a weak field calculated by formulas Re�
±
 =  –  ⋅ F and (73) (for Γ±); gray solid curves in (b) are the results

of calculations by formula (58) taking into account (74) and (75); E1 = – /2 and F1 = .
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6. CONCLUSIONS

We have considered the simplest exactly solvable
model of interaction of a molecular system with a con�
stant electric field F, which generalizes the effective
range approximation for describing the interaction of
a weakly bound electron with field F [32] to the case of
several atomic centers. As in the method of effective
range for the one�center problem, the short�range
potentials of the centers are taken into account in
boundary conditions (6) for the wavefunction of the
multicenter problem near each of N centers, which are
determined by the spatial symmetry of the bound state
sustained by the field of the ith center. For a system
with s centers, transcendental equation (13) for
molecular terms � in the model considered here in the
approximation of the scattering length for scattering
phases is equivalent to the equation for the poles of the
exact Green function for an electron in field F and in
the field of N 3D δ potentials [26]. Since the equation
for � contains only Green function G�(Ri, Rj) for a free
electron in field F and its spatial derivatives, a conve�
nient analytic representation for G�(r, r') [26] makes it
possible to obtain exact numerical results for complex
energies � = �(F, R, θ) of the two�center system con�
sidered here, as well as analytic approximations for a
number of limiting cases. In spite of the simplicity of
the model used here, the results of analytic calcula�
tions give a visual qualitative interpretation of some
features of the probabilities of ionization of homo� and
heteronuclear molecules by a strong low�frequency
laser field, which follow from direct numerical calcu�
lations.

For two identical s centers, analytic expressions for
�(F, R, θ) were obtained in the limit of weak field
(F  0), in which our results are in conformity with
the data from [26], as well as using perturbation theory
in the exchange interaction without assumption of the
smallness of F. These results make it possible to ana�
lytically calculate the width and shift of the level both
in the tunneling regime (for F ⋅ R + �0 < 0, where �0 is
the characteristic energy of the molecular term under
investigation for F = 0) and in the above�barrier mode
of the decay (when F ⋅ R + �0 > 0). Comparison of
these results with the results of exact calculations of �
demonstrates good agreement even beginning with

interatomic distances R � Rcr ≈ 3 , for which the
expansions for the shift and width of energy levels in a
weak field become inapplicable. For R � Rcr, the posi�
tion of the levels in a strong field changes insignifi�
cantly when the exchange interaction is taken into
account and is successfully approximated by the for�
mula Re�

±
(F) ≈ /2 of the zeroth approxima�

tion. This result confirms the linear dependence of the
real part of the molecular term energy on R, which was
obtained in numerical calculations for one� [18], two�
[14], and three�dimensional [12, 17] problems. Con�
versely, modification of the exchange interaction by a

2 �0

�0 F+− R⋅

strong electric field is of fundamental importance for
the width of the levels. In particular, for a molecule
oriented along field F, the probability of ionization in
the above�barrier mode exhibits an oscillatory depen�
dence on R. Since an electron in a strong field is local�
ized in the vicinity of one of atomic centers, such
oscillations appear due to the interference of two
waves, one of which is determined by direct tunneling
of the electron in the –F direction, while the other is
determined by tunneling with rescattering from the
neighboring center followed by reflection from the
barrier formed by the electric field. This result is con�
firmed by the analysis carried out in [14] in the 2D
model and is in qualitative agreement with the results
of numerical calculations for molecular systems with
two Coulomb centers [11, 12, 16, 17]. The results
obtained in Section 3.2 also provide a qualitative
explanation of the dependence of the probability of

ionization of the  ion on its orientation relative to
vector F in the weak and strong field regimes. Numer�
ical calculations performed in [16] show that the prob�

ability of ionization of  from the excited state in the
tunnel regime is higher than from the ground state,
and the maxima (minima) of the ionization probabil�
ity are observed for the orientation of the molecule
along (across) the field. Conversely, in the above�bar�
rier regime, the probability of ionization from the
excited state can be lower than from the ground state,
and the orientation dependence is inverted (i.e., the
ionization probability maximum is observed for
F ⋅ R = 0). An analogous result also follows from anal�
ysis based on the model developed here (see Fig. 4).

For a system with nonequivalent atomic centers,
the position and width of energy levels in field F are
essentially determined by the effects of a constant
dipole moment; explicit expressions (47) and (72)

were derived for dipole moments  and  of sys�
tems with ss and sp centers. In particular, the position
of energy levels up to a strong field is mainly deter�
mined by the linear Stark effect. In a strong field, a
constant dipole moment leads to quasi�intersection of
energy levels, which substantially changes their field
widths: the smooth dependence of the width on R or F
can abruptly change in narrow intervals of R or F,
which are determined by the exchange interaction (see
Figs. 5 and 6). Such a variation is associated with a
change in the spatial localization of an electron in the
system of two centers in the region of quasi�intersec�
tion of energy levels. These results permit a clear phys�
ical interpretation of the results of numerical calcula�
tions [42] of the dependence of the probability of ion�
ization of asymmetric molecules on the internuclear
spacing. It was demonstrated numerically in [42] that
the probability of ionization of a molecule by a low�
frequency laser field as a function R has a sharp peak
corresponding to the region of R in which quasi�inter�
section of molecular terms takes place. Obviously, a

H2
+

H2
+

dss
± dsp

±
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slowly varying laser field induces in this region a non�
adiabatic transition (of the Landau–Zener type [27])
between the ground and excited molecular terms.
Thus, the molecule is in the ground state up to the
point of quasi�intersection of energy levels, and the
probability of its ionization increases with R; in the
vicinity of the point of quasi�intersection, a nonadia�
batic transition to the excited state takes place and a
further increase in R leads to a decrease in the ioniza�
tion probability, thus forming a peak in the depen�
dence of the probability on R.

It can be noted in conclusion that the model con�
sidered here permits direct generalization to the case
of a monochromatic perturbation V(r, t) with fre�
quency ω also. As in the theory of effective range for the
one�center problem [35, 36], a complication is due to
the fact that coefficients  in boundary condition (6)

are periodic functions of time in this case, while the
homogeneous system of linear algebraic equations (12)
changes for a homogeneous system of 1D integrodif�
ferential equations for (ωt) and complex quasi�

energy �(R, F, ω). The application of this model to
molecular photo�induced processes in a strong optical
field requires special analysis.
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APPENDIX

Analytic Expressions for Matrix Elements (�)

We write below matrix elements  for a two�

center system with ss centers (l1 = 0, l2 = 0) and sp cen�
ters (l1 = 0, l2 = 1) in a constant electric field.

The Green function for an electron in a constant
electric field has the form [26]

(A.1)

where

(A.2)

Ci(x) = Bi(x) + iAi(x), Ai(x) and Bi(x) being the regu�
lar and irregular Airy functions [43]. We write the ana�

lytic expressions for matrix elements  obtained

from formula (A.1) and definitions (10) and (11). For

flimi

flimi

Alimi; ljmj

i j,( )

Alimi; ljmj

i j,( )

G� r r',( )
Ai Z+( )Ci' Z–( ) Ai' Z+( )Ci Z–( )–

2 r r'–
����������������������������������������������������������������,=

Z±
1

2F( )2/3
������������� 2� F z z' r r'–±+( )–[ ],–=

Alimi; ljmj

i j,( )

ss centers (l1 = 0, l2 = 0), these expressions have the
form

(A.3)

(A.4)

where we have introduced the notation

(A.5)

(A.6)

(A.7)

while for the sp centers (l1 = 0, l2 = 0), we have

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

where
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