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PHYSIOLOGY, BIOCHEMISTRY, AND TOXICOLOGY

Distribution and Inhibition of Esterases in Various Body Tissues
of Susceptible and Resistant German Cockroaches

(Dictyoptera: Blattellidae)

NO-JOONG PARK AND SHRIPAT T. KAMBLE1

Department of Entomology, University of NebraskaÐLincoln, Lincoln, NE 68583Ð0816

Ann. Entomol. Soc. Am. 92(4): 556Ð562 (1999)

ABSTRACT The distribution and inhibition of esterase activity among body of the resistant
Crawford and susceptible CSMA strains of male German cockroach, Blattella germanica (L.), were
evaluatedwith a- and b-naphthyl esters using a spectrophotometric assay andnative polyacrylamide
gel electrophoresis. The esterase activities in the Crawford strain were signiÞcantly higher than in
the CSMA strain in most tissues except midgut and male genitalia, where the activities were similar.
In both strains, isozyme a was dominant in the brain and fat body and isozymes c and d were more
abundant in the midgut; but in addition to isozyme a, isozyme b was observed only in the Crawford
strain. The a-naphthyl butyrate (a-NB) and b-naphthyl acetate (b-NA) esterase activities in the
brain of both strains were completely inhibited by most inhibitors (DEF, 3,4-dichloroisocoumarine,
paraoxon, pepstatin A, and propoxur). However, in the midgut tissue and contents, the activities and
inhibition patterns of the a-NB and b-NA esterase were apparently different from the brain and
betweenstrains.Thecomplete inhibitionbyparaoxonwasobserved regardlessof the strain, substrate
type, and body part for enzyme source. In esterase inhibition on native PAGE gels, paraoxon
completely inhibited the activity of most esterases similar to the results from spectrophotometric
assay. In addition, the esterase b was observed from the whole body homogenates of several German
cockroach resistant strains on native PAGE analysis.

KEY WORDS Blattella germanica, cockroach, esterase, distribution, inhibition

ESTERASES ARE CLASSIFIED as hydrolases, a large and
diverse group of enzymes that catalyze the hydrolysis
of a wide range of aliphatic and aromatic esters, cho-
lineesters, andorganophosphorous compounds(Dau-
terman 1985). Because most insecticides are esters of
substituted phosphoric, carbamic, or cyclopropane-
carboxylic acids, they are subject to degradation by
esterases (Devonshire 1991).General esterases canbe
resolved by electrophoresis and detected using simple
spectrophotometric assayswithmodel substrates such
as the esters of p-nitrophenol, a- and b-naphthol
(Soderlund and Bloomquist 1990).

The biological function and role of esterases in in-
secticide resistance from the German cockroach has
not been clearly determined because of their multiple
forms and nonspeciÞc substrate afÞnity like in other
insects (Maa and Terriere 1983, Devonshire 1991,
Siegfried and Scott 1992). The overproduction of es-
terase isozymes responsible for the sequestration of
insecticidal compounds rather than hydrolysis was
suggested in resistant German cockroaches (Prab-
hakaran and Kamble 1995, Scharf et al. 1997). This
phenomenonhas beenobserved inmanyother insects
such as peachÐpotato aphids (Devonshire andMoores
1982), mosquitoes (Cuany et al. 1993), and brown
leafhoppers (Chen and Sun 1994).

Despite numerous studies of esterases in insecti-
cide-resistant strains, it is not clear what the normal
physiological role and natural substrate of these es-
terases are. In this study,we examined the distribution
of general esterase activity among body parts and
inhibition of esterase activity for understanding the
basic characteristics of esterases in susceptible and
resistant strains of German cockroach.

Materials and Methods

Chemicals.Technical grade propoxur (.99% [AI])
and DEF (S.S.S-tributylphosphorotrithioate, 98.1%
pure) were purchased from ChemService (West
Chester, PA) and PBO (piperonyl butoxide, 90%
pure) from Aldrich (Milwaukee, WI). Paraoxon
(diethyl p-nitrophenyl phosphate, 95% pure), DCI
(3,4-dichlorisocoumarin), N-ethylmaleimide, eserine
(physostigmine), and pepstatin A (90% pure) were
purchased from Sigma (St. Louis, MO). All other bio-
chemical and electrophoresis reagents were obtained
from Bio-Rad (Hercules, CA) and Sigma.

Insects. Insecticide-susceptible (CSMA) and resis-
tant (Crawford) German cockroaches were basically
used in this experiment. Four resistant stains (Bay-
gon-R, Las Palms, Morris, and Puerto Rico) were used
only to conÞrm the esterase b from the whole body
homogenate. German cockroach strains collected1 To whom correspondence should be addressed.
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from Las Palms, Morris, and Puerto Rico strains were
obtained from M. Ross (Virginia Polytechnic Institute
and State University, Blacksburg, VA) in 1996, and
they were determined as multiresistant strains (N.J.P.,
unpublished data). Characteristics of Baygon-R and
Crawford strains used in this study have been pub-
lished previously (Prabhakaran and Kamble 1995,
Park and Kamble 1998).

All strains of German cockroach were reared on
Purina dog chow (Ralston Purina, St. Louis, MO) and
water, andmaintained inPlexiglas containers (30.3 cm
wide by 30.3 cm high by 30.3 cm deep). Cockroach
colonies were maintained at 25 6 28C, 60 6 10% RH,
and a photoperiod of 12:12 (L:D) h.

Preparation of Enzyme. Each body region or tissue
of German cockroach male of CSMA and Crawford
strains used in the experiment was collected by the
dissection under a stereomicroscope. Thirty brains
were collected from heads dissected from male Ger-
man cockroaches of each strain, and homogenized in
300ml of ice-cold50mMTris-HClbuffer (pH7.8).The
entire alimentary canal and male genitalia were care-
fully removed from the decapitated body after re-
moval of the last 1or 2 abdominal segmentsusing2Þne
tweezers. Each remaining tissue (foregut, midgut,
hindgut, Malpighian tubules, male genitalia, fat body)
was collected from10male cockroaches of each strain,
andhomogenized in300ml of ice-cold50mMTris-HCl
buffer (pH 7.8). The homogenization was conducted
with a microcentrifuge tube tissue grinder (KontesÕ
Pellet Pestle, Fisher, Pittsburgh, PA) using a cordless
motor (Fisher). The homogenate was centrifuged for
20 min at 48C at 10,000 3 g and the supernatant was
used as the enzyme source for esterase activity assays
and native polyacrylamide gel electrophoresis. The
whole body homogenates from all 6 strains were pre-
pared as per methods of Park and Kamble (1998) and
used for the native PAGE analysis of esterase isozyme
pattern among German cockroach strains.

For the inhibition study, homogenates were ex-
tracted from the brain, midgut, and midgut contents,
as described in the previous paragraph with some
modiÞcation for midgut and midgut contents. The
midgut contents were extracted through low speed
centrifugation for 10 min at 48C at 3,000 3 g after the
disruption of intact midgut in the buffer by vortexing
for 10 s. The supernatants were recentrifuged at
10,0003 g, and the supernatantswereused as amidgut
contents sample. The pellets from low speed centrif-
ugation were resuspended in the buffer, and homog-
enized with a tissue grinder. After centrifugation at
48C at 10,000 3 g, the supernatants were collected as
a sample of the midgut contents.

Protein, EsteraseAssay, and Inhibition.Theprotein
concentrationwasdeterminedby themethodofBrad-
ford (1976). Bovine serum albumin was used to obtain
the standard curve. Total nonspeciÞc esterase activity
was measured according to the technique of Van As-
peren (1962), with some modiÞcations for 1 ml assay
volume. The enzyme assay was conducted by mea-
suring the production of a- and b-naphthol from the
substrates of a-naphthyl acetate (a-NA), propionate

(a-NP), butyrate (a-NB), and b-naphthyl acetate (b-
NA), respectively. Each sample was added to make a
Þnal volume of 1 ml of reaction mixture with 50 ml of
enzyme solution containing 1 mg of protein, and 20 ml
of 6.25 mM substrate in 50 mM Tris-HCl buffer (pH
7.8).The reactionwas initiatedby the additionof 20 ml
of 6.25 mM substrate and incubated at 388C. The re-
actionwas stoppedafter 10minanddarkbluecolor for
a-naphthol or red color for b-naphthol was developed
by addition of 166 ml of stop solution (0.3% diazo blue
B in3.5%sodium lauryl sulfate).Theabsorbanceat 600
nm for a-naphthol or 555 nm for b-naphthol was read
against an enzyme blank 10 min later, and the con-
centration of hydrolyzed substrate was determined
from the standard curves of a-naphthol and b-naph-
thol, respectively.

For the inhibition study, 100 mM of each inhib-
itor (DCI, DEF, eserine, N-ethylmaleimide, and
propoxur) was prepared in methanol, and the con-
centrations for paraoxon and pepstatin A were 10 mM
and 0.1%, respectively. Each reaction tube containing
enzyme was incubated with 10 ml of each inhibitor for
10 min to allow irreversible inhibitors to react or re-
versible inhibitors to equilibrate at 388C before reac-
tion with substrate.

Native PAGE and Inhibition. Native polyacryl-
amide gel electrophoresis was performed in a vertical
electrophoresis unit (Protean II mini electrophoresis
cell, Bio-Rad,Hercules, CA)byusing a 10% separating
gel and 2.5% stacking gel, with a discontinuous tris-
glycine buffer system. Samples of prepared enzyme
were diluted 4-fold with stacking gel buffer so that
they contained 10% glycerol and 0.002%bromophenol
blue as tracking dye, and 10 mg of protein for each
sample was loaded onto the gel. Electrophoresis was
conducted at a constant 100 V for '2 h in a 48C cold
chamber.

For the inhibition study, each gel was incubated in
the same buffer containing 100 ml of each inhibitor
solution (0.2 mM Þnal concentration of DCI, DEF,
eserine, and propoxur, and 0.02 mM for paraoxon) for
10 min at room temperature before starting the reac-
tion with substrate. Gels were stained for esterase
activity in 100 ml of 50 mM sodium phosphate buffer
(pH 7.0), 0.5% (by volume) 50 mM of a-NB dissolved
in acetone, and 0.04 g of fast blue RR salt to visualize
produced a-naphthol. The incubation continued at
room temperature for 30min. After staining, gelswere
transferred to a destaining chamber containing 5%
acetic acid solution. Gels and cellophane membranes
were placed in the drying solution containing 0.3%
glycerol and 20% methanol, and the Þxed gels were
dried between 2 sheets of Þlter paper in a gel dryer
(model 583 Gel Dryer, Bio-Rad).

Results

Distribution of Esterases. Esterase activities in the
resistant Crawford strain were signiÞcantly higher
than those activities in the susceptible CSMA strain in
most tissues examined, except inmale genitalia, where
activitieswere similar (Fig. 1). Esterase activities from
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the brain and midgut homogenates were generally
higher than in other homogenates, in both susceptible
and resistant strains with all substrate types. In par-
ticular, the activities from brain tissue were much
greater in the resistant strain than those in the sus-
ceptible strain (3.8-fold with a-NA, 2.3-fold with
a-NP, 2.1-fold with a-NB, and 1.7-fold with b-NA,
respectively). The b-NA esterase activity was signif-
icantly higher in brain and fat body tissue than those
in other tissues, and it also was much greater in the
resistant strain than that in the susceptible strain.
Moreover, the a-NP and a-NB esterase activity in the
midgut tissue was much higher than a-NA and b-NA
esterase activities in both strains.

Esterase isozyme analysis with native polyacryl-
amide gel electrophoresis revealed 5major bandswith
a high capability of hydrolyzing a-naphthyl butyrate
(Fig. 2). Those major bands were previously desig-
nated as a, b, c, d, and e according to their mobility
(Park and Kamble 1998). In the susceptible CSMA
strain, themobile isozymeawas thedominantesterase
existing more intensely in the brain and fat body, and
esterases c and d were the major esterases in the
midgut. Esterases c and d were 2 dominant isozymes
in the midgut content but esterase d was the only
dominant isozyme in the midgut tissue of both strains.
In contrast, esterases a and b were dominant in the

brains of the resistant Crawford strain, whereas ester-
ase b was not observed from the susceptible CSMA
strain. The distribution of other esterase isozymes in
most tissues was similar to the susceptible CSMA
strain.

Inhibition of Esterases. The a-NP and b-NA ester-
ase activities in the brain of both strains were com-
pletely inhibited by most inhibitors (DEF, DCI, para-
oxon, pepstatin A, and propoxur) and strongly
inhibited by N-ethylmaleimide (Fig. 3). In the midgut
tissue, the a-NB esterase activity was much higher in
the Crawford strain than in the CSMA strain, whereas
the b-NA esterase activity was similar in both strains
(Fig. 4). However, the activities of a-NB and b-NA
esterases in the resistant strain were more sensitive to
inhibition by DEF, DCI, and N-ethylmaleimide than
those in the susceptible strain. The a-NB and b-NA
esterase activities in the midgut content showed sim-
ilar level of activity, and the inhibition by the inhib-
itors except N-ethylmaleimide was more sensitive in
the Crawford strain than in the CSMA strain (Fig. 5).
Complete inhibition by paraoxon was observed re-
gardless of the strain, substrate type, and tissue for
enzyme source (Figs. 3Ð5).

The a-NB esterase activities of the brain, midgut
tissue, and midgut contents were inhibited by 5 se-
lected inhibitors (DCI, DEF, eserine, paraoxon, and

Fig. 1. Activity of nonspeciÞc esterases from the body parts of the susceptible (CSMA) and resistant (Crawford)German
cockroaches toward 3 a-naphtholic esters and a b-naphthyl acetate. Br, brain; Fg, foregut; Mg, midgut; Hg, hindgut; MT,
Malpighian tubules; MG, male genitalia; FB, fat body. Mean 6 SE of 2 preparations with 3 replications.
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propoxur) after separationbynativePAGE(Fig. 6). In
noninhibited controls, the esterase isozymes a and b
were observed as dominant esterases in the brain
preparation of the susceptible and resistant strains.
Esterase isozyme d was the most intensely stained
band in themidgut tissue, and at least 3 different forms
including isozyme c were abundant in the midgut
contents. DCI completely inhibited the activity of
esterase isozyme a, b, and minor esterase bands in the
brain preparations from both strains, and slightly in-
hibited theactivityofmidgut tissue andcontents.DEF
had no effect on the most major isozymes in all 3
samples for both strains, except the inhibition of some
minor esterases in thebrainpreparation.Eserinemod-
erately inhibited most esterases observed in every
tissue of both strains, compared with the noninhibited
gel. Paraoxon was the most potent inhibitor of every
esterase isozyme.However, a slight activityof isozyme
d was observed from the sample of midgut tissue and

contents in both strains. Propoxur strongly inhibited
the activity of isozyme a and b in brain samples from
both strains, and activities of minor esterases in brain
sample and other isozymes in midgut tissue and mid-
gut contents were slightly inhibited.

Esterase b in Resistant Strains. The isozyme pat-
terns among different strains were similar to each
other except the existence of esterase b in every re-
sistant strain examined in this experiment. The ele-
vated activity of esterase b was observed from the
whole body homogenates of the resistant Baygon-R,
Las Palms, Morris, and Puerto Rico strains of German
cockroach (Fig. 7).

Discussion

The involvement of increased carboxylesterase ac-
tivity in insecticide-resistant insects has been recog-
nized in many insect species (Devonshire and Moores

Fig. 2. NonspeciÞc esterase isozymes from the body parts of the susceptible (CSMA) and resistant (Crawford) German
cockroaches, separated by native polyacrylamide gel electrophoresis and visualized with a-naphthyl butyrate as substrate.
Br, brain; Fg, foregut; Mg, midgut; Hg, hindgut; MT, Malpighian tubules; MG, male genitalia; FB, fat body; WB, whole body.
Letters a-e indicate the 5 major isozyme bands of increasing mobility in the native gel.

Fig. 3. Inhibition of nonspeciÞc esterase activity in brain
homogenate ofCSMAandCrawford strains ofGerman cock-
roach. DEF, S. S. S-tributylphosphorotrithioate; DCI, 3,4-
dichloroisocoumarin; NEM, N-ethylmaleimide; PAR, para-
oxon; PEP, pepstatin A; PRO, propoxur; None, no inhibition.
Mean 6 SE of 2 preparations with 3 replications.

Fig. 4. Inhibition of nonspeciÞc esterase activity in mid-
gut tissue homogenate of CSMA and Crawford strains of
German cockroach. Abbreviations for inhibitors in x-axis are
the same as those in Fig. 3. Mean 6 SE of 2 preparations with
3 replications.
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1982, Cuany et al. 1993, Xu and Brindley 1994, Chen
and Sun 1994, Chiang and Sun 1996). Increased es-
terase activity also was observed in many insecticide-
resistant strains of German cockroach (Siegfried and
Scott 1992; Prabhakaran and Kamble 1995 and 1996;
Scharf et al. 1997; Park and Kamble 1998). In the
German cockroach, it has been suggested that car-
boxylesterases act to sequester OP compounds as a

result of high oxon afÞnity for carboxylesterase active
sites (Prabhakaran and Kamble 1995, Scharf et al.
1997). However, the resistance-conferring mecha-
nism by German cockroach esterases in a given tissue
is still unclear, because previous results were obtained
from the homogenates of abdomen (Siegfried and

Fig. 5. Inhibition of nonspeciÞc esterase activity in mid-
gut contents homogenate of CSMA and Crawford strains of
German cockroach. Abbreviations for inhibitors in x-axis are
the same as those in Fig. 3. Mean 6 SE of 2 preparations with
3 replications.

Fig. 6. Inhibition of nonspeciÞc esterase isozymes from the body parts of the susceptible (CSMA) and resistant
(Crawford) German cockroaches, separated by native polyacrylamide gel electrophoresis by 5 different inhibitors. B, brain;
T, midgut tissue; C, midgut contents.

Fig. 7. NonspeciÞc esterase isozymes from whole body
homogenates of a susceptible (CSMA) and 5 resistant Ger-
man cockroach strains, separated by native polyacrylamide
gel electrophoresis and visualized with a-naphthyl butyrate
as substrate. CS, CSMA; CF, Crawford; BR, Baygon-R; LP,
Las Palms; MO, Morris; PR, Puerto Rico.
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Scott 1992), or of decapitated (Prabhakaran and
Kamble 1995) or whole bodies (Scharf et al. 1997).

In this study, we found esterases in most German
cockroachbody tissueswith different levels of activity
(Fig. 1) and potentially various molecular forms (Fig.
2). Higher esterase activity was found in the midgut
and brain than other body tissues from both strains. It
is interesting that the increasedactivity in the resistant
Crawford strain was observed from the brain, foregut,
hindgut, and fat body homogenate, not from the mid-
gut. It is assumed that the main fraction of the total
esterase activity in theGerman cockroach exists in the
midgut because of its digestive function as observed in
the whole body homogenate separated on the native
gel (Fig. 2). The esterases a, b, and e were much more
abundant in the resistant Crawford strain than in the
susceptible CSMA. Esterase b in the Crawford strain
seems to have similar substrate speciÞcity to esterase
a in the brain tissue of both strains. Both esterases a
and b were observed in most body tissues except
foregut and hindgut with various activity in the native
PAGE analysis. Further investigation is needed to un-
derstand the biological function and involvement of
these brain esterase isozymes in detoxiÞcation.

DEF, DCI, N-ethylmaleimide, paraoxon, pepstatin
A, and propoxur inhibited both the a-NP and b-NA
esterase activities in the brains of both strains (Fig. 3).
This suggests that both isozymes a and b in the brain
are vulnerable and possess more broad substrate spec-
iÞcity than other esterases, as shown in the similar
levels of a-NB and b-NA esterase activity. However,
in native PAGE those activities were not inhibited by
DEF, a synergist believed to inhibit esterase activity
(Soderlund and Bloomquist 1990). However, DCI, a
covalent reacting, irreversible inhibitor of serine pro-
tease (Harper et al. 1985), and propoxur, a carbamate
insecticide that inhibits some esterases (Devonshire
1991, Scharf et al. 1997), consistently inhibit the es-
terase activity of the brain in both spectrophotometric
assays and native gel. The inhibition of esterase ac-
tivity by DEF was observed in spectrophotometric
assay with the whole body sample of the pyrethroid-
resistant strain of Egyptian cotton leafworm (Riskal-
lah 1983). Considering the synergistic and moderate
toxic character of DEF, it is assumed that the DEF
would reversibly react with the esterase a and b of the
brain. The inhibition observed only in the spectro-
photometric assay could be explained as a result of a
much larger molar excess (1 mM) of inhibitors than
the amount of enzyme (1 mg of protein) (Bieth 1995)
or poor permeability into the native gel owing to the
low solubility inwater (2.3 ppmat 208C)(Anonymous
1995). In the reaction with a gel, however, 0.1 mM of
each inhibitor was incorporated into 10 mg of protein
per lane.

In the midgut tissue, esterase d was the dominant
isozyme (Fig. 6). The a-NB esterase activity in the
resistant Crawford strain was much more sensitively
inhibited by DEF, DCI, and N-ethylmaleimide,
whereas b-NA esterase activity was not inhibited by
N-ethylmaleimide (Fig. 4). N-ethylmaleimide is a cys-
teine peptidase inhibitor rapidly reacting with fully

thiol-activated enzymes, and pepstatin A is a tight-
binding inhibitor of aspartic proteases (Barrett 1994).
Thedifferent inhibitionpatternbetween the reactions
with each substrate implies that the midgut tissue
contains different types of esterases. Further study of
midgut esterase should involve substrate speciÞcity,
inhibition kinetics, and enzyme activation.

The midgut contents are composed of a mixture of
various digestive hydrolases such as peptidases,
lipases, and carbohydrate digestive enzymes (Chap-
man 1971). The a-NB and b-NA esterase activities in
the midgut contents were poorly inhibited by most
inhibitors exceptparaoxon(Figs. 5 and6). Perhaps the
esterases in themidgut contentswould be amixture of
unidentiÞed hydrolases that might share the catalytic
activity toward the naphthyl esters and strongly bind
to paraoxon. In the spectrophotometric assay with the
homogenate from the mixed body tissues, these es-
terases will serve as a major esterase activity in whole
body homogenate as show in enzymatic visualization
of native gels (Fig 7). The substrate speciÞcity and
exact biological function of these esterases from gut
contents are still unknown. Based on our result, it is
probable that these esterases are not responsible for
esterase-related detoxiÞcation mechanisms, although
theyobviously consist of themajor fractionof the total
esterase activity from whole body and are strongly
inhibited by paraoxon.

Paraoxon was the most potent inhibitor against ev-
eryesterase isozyme inboth spectrophotometric assay
andnativegel; however, theactivityof esterased is not
fully inhibited by several inhibitors in midgut tissue
and contents of both strains (Fig. 6). Propoxur com-
pletely inhibited the activity of esterase a and b from
various body parts (Fig. 6); and eserine, a strong ace-
tylcholinesterase inhibitor, did not signiÞcantly in-
hibit any of the major esterases in the native gel (Fig.
6). According to the deÞnition by Aldridge (1953), all
esterases observed in this study are classiÞed as B
esterases because of their strong inhibition by para-
oxon, and all of them can be classiÞed as carboxyles-
terases, as a result of their lack of inhibition by eserine
(Devonshire 1991).

The major difference between susceptible and
other resistant strains is the existence of esterase b in
the resistant strains (Fig. 7). Our data show that the
esterases c andd aredominant in themidgut tissue and
midgut contents. These 2 esterases observed as major
fractions of esterase activity from the whole body
homogenate in native PAGE. Further, esterases c and
d were less sensitive to all inhibitors except paraoxon
than other esterases in other tissues (Fig. 6). Both of
the carboxylesterases a and b were dominant in the
brain tissue of the resistant Crawford strain, whereas
esterase b was not detected from the susceptible
CSMA strain. Moreover, we observed esterase b in
other body tissues of the Crawford strain, and could
detect signiÞcant enzymatic activity of this particular
esterase in whole body homogenate of several resis-
tant strains by the native gel electrophoresis. Here,we
suggest the possibility that the esterases in brainmight
play an important role in insecticide resistance of
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German cockroach. Further studies of enzyme kinet-
ics toward various substrates and inhibitors, and study
of the role of these esterases in the insect body, are
clearly required to understand their involvement in
resistance.
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