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ABSTRACT 

Evaluating the functionality of an engineered material lies in the proper 

characterization of its material and functional properties. In the treatment of 

musculoskeletal disorders, engineered bone or fat tissue must behave as an adequate 

replacement else failure of the material could result in discomfort and further surgical 

procedures. A significant material characteristic that reflects tissue development is the 

mechanical properties (i.e. shear strength and viscosity).  Shear strength and viscosity 

provide an indication of how efficient the material is in dissipating energy. Energy 

dissipation occurs naturally in many tissues including fat and can prevent damage to 

deeper tissues. Many of the techniques for determining a material’s shear modulus result 

in the destruction of the construct. However, few methods exist that can assess this 

property by evaluating a noninvasive cross-section of the construct.  As a result a need 

exists for the development of a nondestructive way to assess the biomechanical properties 

of engineered materials both before and after they have been implanted. In an effort to 

improve the quality of constructs being produced, a recently developed magnetic 

resonance imaging (MRI) technique termed magnetic resonance elastography (MRE) was 

applied to evaluate the development of adipogenic (fat) and osteogenic (bone) tissue 

constructs derived from mesenchymal stem cells. MRE is a technique in which motion 

from a mechanical actuator is synchronized to a phase contrast imaging pulse sequence 



 

 

and used to measure the generated displacement.  The captured displacement is displayed 

in shear wave images from which the properties of shear stiffness can be derived. For 

differentiation of the bone marrow-derived mesenchymal stems cells, the use of 

differentiation media kits was applied.  Change in stiffness was observed over the four 

weeks of in vitro growth. Constructs initially measured at approximately 3 kPa developed 

into 22 kPa osteogenic and 1 kPa adipogenic tissues.  Following four weeks in vitro 

growth, constructs were implanted in athymic mice and assessed with an MRE system 

custom built for animal imaging. The following thesis demonstrates the application of 

MRE to evaluate the mechanical properties of engineered constructs through in vitro 

growth and in vivo regeneration in an animal model. 
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CHAPTER 1: BACKGROUND AND GOALS 

Motivation 

Patients suffering from burn injuries, cancer resections, bone and cartilage loss, or 

degenerative disease are in need of a viable and cost effective solution.  In 2010, 18.4 

million soft tissue surgeries were performed with four million cases being related to 

tumor removal (American Society of Plastic Surgeons, 2011). Overall, the total expense 

of the 18 million procedures was approximately $10.1 billion. In addition to the financial 

burden, soft tissue defects as well as resections from breast and facial cancer leave 

patients with disfiguration and traumatic challenges (Patrick, 2001). Beyond soft tissue 

procedures, approximately 500,000 bone graft operations are conducted annually in the 

United States, resulting in approximately $1.5 billion in sales of bone graft and bone graft 

substitutes (Greenwald et al., 2001).  

The main solution for many of the above needs is the use of transplantable tissue 

either retrieved from other locations on the patient or another person.  However, 

availability of transplantable tissue is not always reliable and to complicate matters direct 

tissue grafts can suffer from donor site morbidity that can lead to further procedures, 

trauma and medical expenses (Rozen et al., 2009; Patrick C. W., 2001).  A potential 

alternative to direct transplantation of tissues is the use of tissue engineering (TE) to 

develop more robust constructs to treat regions of dead or diseased tissue. The 

development of engineered tissues requires careful attention to the material’s properties. 

For example, the mechanical properties are a relevant indicator of tissue growth and 

functionality. To improve the quality of available engineered constructs, a need exists to 

develop methods to better characterize their mechanical properties (Mauck et al., 2000; 
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Kotlarchyk et al., 2010).  Proper characterization will assure that the material will behave 

correctly in the transplanted environment and not cause further complications. The 

following thesis outlines the development and potential use of Magnetic Resonance 

Elastography (MRE) as a means to monitor the development of engineered constructs. 

Key Concepts 

 Tissue Engineering and Mesenchymal Stem Cells 

A goal of TE is to create functional biological replacements for various tissues of the 

human body (Butler et al., 2000). To accomplish this goal, it is necessary to rely on the 

principles of biology, cell transplantation, material science, and engineering to combine 

the appropriate cells, growth factors, and biomaterial scaffolds to create a functional 

tissue. Cells that can potentially be used in TE range from somatic differentiated cells to 

embryonic stem cells or adult stem cells, which can potentially be differentiated with the 

proper factors to many tissue lineages (Caplan et al., 1994; Langer and Vacanti, 1993; 

Magli et al., 2000). Bioactive signals may be used to direct tissue regeneration, 

remodeling, or cell differentiation using chemical factors or physical excitation 

(electrical, mechanical, or surface-induced) (Heng et al., 2004; Altman et al., 2001; 

McBeath et al., 2004).  In the case of stem cells, after differentiation, the mixture of cells 

and reagents can be left to expand in vitro for a specified period before being seeded onto 

a scaffold or can be directly seeded onto the scaffold (Alhadlaq et al., 2004). The scaffold 

serves as a physical support to localize and maintain cells and should provide an 

environment in which appropriate regulation of cellular behavior (adhesion, proliferation, 

migration, and differentiation) can occur such that a functional tissue can form. 
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Biomaterial scaffolds can be produced from natural (e.g., collagen) or synthetic (e.g., 

polyethylene glycol) materials (Glowacki et al., 2008; Tsang and Bhatia, 2004).  

For any material or tissue engineered construct that is being designed for potential 

human implantation, it has been, and continues to be, essential that the engineered 

materials exhibit the necessary mechanical properties (i.e. hardness, elasticity, yield 

strength) to achieve and maintain functionality (Butler et al., 2000). Understanding of 

material performance is critical since during TE construct growth, mechanical properties 

change due to cellular responses and material remodeling, including stem cell 

differentiation, cellular contraction, scaffold remodeling, and biodegradation of the 

scaffold (Dado and Levenberg, 2009; Choi et al., 2010).  For example, in bone 

engineering a cell-seeded biomaterial scaffold has to serve as a support to the cells, as 

well as mechanical support to the injury site, gradually transferring the load as the 

scaffolds degrades to accommodate the regenerating tissue (Yaszemski et al., 1996; 

Leong et al.. 2003; Mistry and Mikos, 2005).  However, the engineered bone or adipose 

tissue must behave as an adequate replacement else failure of the material could result in 

discomfort and further surgical procedures. 

For bone tissue engineering, mesenchymal stem cells (MSCs) isolated from bone 

marrow were identified to have a strong capability for inducing the osteogenic phenotype 

(Friedenstein, 1976). Bone marrow is naturally the source of osteoblasts and osteocytes. 

Osteoblasts are essential for synthesis and regulation of bone extracellular matrix 

deposition and mineralization while osteocytes are the supporters for bone matrix 

calcification. Beyond bone development, a major property of MSCs is their ability to be 

induced into multiple cell lineages such as fat and cartilage (Pittenger et al., 1999). Such 
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discovery has enabled MSCs to be investigated as an alternative for soft tissue 

reconstruction (Alhadlaq and Mao, 2004). As researchers continue to study the behavior 

and medicinal utility of MSCs in vitro, investigation has been extended into the use of 

animal models and clinical trials (Patrick et al., 2008; Derubeis and Cancedda, 2004).   

 Characterization Methods 

Characterization methods are one of many gate keepers applied in regulating the 

translation of products from the lab bench to the clinical setting. Characterization of 

engineered materials is accomplished with a variety of tools, many of which compromise 

the usefulness of the sample after testing. In culture, tissue engineers evaluate cell 

morphology and activity through the use of microscopy, biochemical assays and 

histologic stains. While such histologic procedures provide a representation of molecular 

content and signaling pathways – for example, staining for alkaline phosphatase (ALP) 

serves as an early osteogenic marker – it is destructive to the tissue (Sabokbar et al., 

1994). As a noninvasive means of assessment, imaging methods such as micro-computed 

tomography (micro-CT), ultrasound (US), and magnetic resonance imaging (MRI) have 

been applied (Jones et. al., 2009; Kim et al., 2008; Peptan et al., 2006).   

To date, the use of imaging technologies has contributed modestly to 

understanding of regenerating tissue. Many imaging modalities have attempted to be 

used, but possess limitations, noted in parentheses, in assessing engineered tissues 

including optical and fluorescent microscopy (low penetration depth), US (low 

resolution), and micro-CT (use of ionizing radiation) (Helmchen and Denk, 2005; Jones 

et. al, 2009; Kim et al., 2008). However, MRI has been demonstrated to potentially play 

an important role in tissue engineering through different contrast mechanisms including 
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T1, T2, diffusion, and magnetization transfer (MT). MR contrast is achieved through 

studying spin (proton) behavior under a strong magnetic field coupled with radio 

frequency (RF) and magnetic field gradients for spin manipulation and spatial 

localization, to acquire quantitative images to describe flow, molecular content, and MR 

physical properties (Xu et. al, 2008; Haacke et al., 1999; Bernstein et al., 2004).  MRI-

based techniques were identified by several research groups as a novel tool for assessing 

the structure and composition of TE bone constructs (Washburn et al., 2004; Xu et al., 

2006; Hartman et al., 2002; Potter et al., 2006). These studies correlated different 

measured MR parameters (e.g., T2 relaxation time, shear stiffness, and MT ratio) with 

mineral deposition and molecular content. In addition to determining morphologic 

information, some of these methods have developed the ability to assess mechanical 

properties. One technique for the measurement of mechanical stiffness via MRI is 

through a technique termed MRE.  

 MRE Basics 

MRE introduces a new quantitative parameter where measurement of cyclic shear 

wave motion in biological tissues provides unique spatially-localized information about 

the tissue’s material properties (Muthupillai et al., 1995; Muthupillai et al. 1996). MRE 

was originally developed to enhance disease diagnosis by allowing organ stiffness 

palpation through the visualization of induced low frequency spin motion. Since its first 

implementation, MRE has been applied clinically for the assessment of organ pathology. 

MRE has been implemented for detecting breast cancer (McKnight et al., 2002), as well 

as for the visualization of the elastic properties of the brain (Wuerfel et al., 2010; Clayton 

et al., 2011), and even bovine articular cartilage degradation with improved 
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instrumentation (Lopez et al., 2008). With increased availability of higher field magnets, 

MRE has been extended to the microscopic scale where high resolution MRE to monitor 

tissue engineered constructs regeneration has been demonstrated (Othman et al., 2005; 

Othman et al. 2011).  

Operation of MRE requires three essential components: a motion source, a pulse 

sequence, and an inversion algorithm. The motion component, often an acoustic actuator, 

is coupled to the tissue of interest to induce shear wave motion.  Second, a pulse 

sequence using bipolar gradients (motion-sensitizing gradients ─ MSG), synchronized 

with the acoustic shear waves, is used to encode the motion as MR phase difference 

images. The sequence provides the acquisition timing to generate images that effectively 

represent quantitative snapshots of tissue displacement caused by propagating mechanical 

waves. Finally, an inversion algorithm uses the measured displacements to calculate the 

shear stiffness distribution in the tissue (Muthupillai at al., 1995). Figure 1 illustrates a 

typical MRE setup.   

 

Figure 1. The acquisition process for regenerative elastography. A pulse sequence (a) 

controls the synchronization (b) of the function generator with the bipolar gradient pulses 

of the MRI scanner. Following the acquisition of bipolar gradients toggled in positive and 

negative orientations, (c) a shear wave image is produced using complex division. 
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MRE, similar to MRI, is a phase sensitive technique where after the Fourier 

transform of the raw data,  the magnitude and phase values are retrieved in each pixel; 

and the phase of a signal only has a meaning when the signal is repetitive or cyclic 

(Moran et al., 1985). Usually when the magnitude image is presented, phase information 

is superimposed within the magnitude information. By accessing the phase information of 

the complex reconstructed image         alone, additional encoded information can be 

discovered and applied to detect, for example, magnetic field homogeneity, MR 

temperature mapping as well as MRE (Bernstein et al., 2004, Ishihara, 1995). The phase 

image        is obtained from: 

                         
           

           
                                                                                      

Since the inverse tangent function is bounded between      , the phase image can only 

be mapped into this interval.  

In a general MR acquisition, a phase image by itself is not useful since data are 

contaminated by system imperfections such as gradient eddy current or physical effects 

such as magnetic susceptibility (Haacke et al., 1999). For these reasons, phase images are 

generally represented by phase difference images plotting the differences between the 

phases of two sets of data, i.e. for image A and B that differ by the presence of  a gradient 

lobe, for example, in order to negate everything except the phenomena under 

investigation, as described by the following function: 

                      .      [2] 

This phase can be used for shimming and correcting many MR nuances. However, one 

may also utilize the phase information to generate a contrast related to motion by 

intentionally introducing controlled motion artifacts into a phase image and studying 
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these phenomena related to motion by magnetic field gradient sensitization. Since the 

spins in a magnetic field possess a phase that is dependent on both the strength of the 

magnetic field and the applied magnetic field along the direction of the spin motion 

(Haacke et al., 1999), the phase equation can be correlated to the spin motion by: 

      
              

 

 
    

              
 

 
    

                
 

 
,  [3] 

where   is the gyromagnetic ratio characteristic of the nuclei,   
      is the static magnetic 

field strength,   
         is one of the encoding gradient vectors,       is the spin motion 

vector, and   
         is the MSG which is collinear to the encoding gradient and used for 

spin motion filtering (Muthupillai at al., 1995). 

A cyclic induced displacement will cause a temporal spin motion vector governed 

by: 

                     ,                            [4] 

where        represents the initial location of the spin at time t = 0, and          is the cyclic 

displacement of the spin about its mean position caused by the actuator acoustic wave 

excitation.  

If the MSG, with multiple bipolar pairs and duration   , is synchronized at the 

same frequency with the induced spin motion , i.e.,          , and turned on for a duration   

so that    
            

 

 
,  then the dynamic phase shift of the moving magnetization, i.e., 

equation [3] can be rewritten as: 

      
                 

 

 
    

                 
 

 
    

                   
 

 
,    [5] 

As explained previously in equation [2], while taking the difference between the phase 

images, the phase due to the static magnetic field and the encoding gradient is present and 
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assumed constant through toggled bipolar – reversed polarity− measurements and can be 

eliminated by the subtraction in equation [2]. However, the motion sensitization by the 

bipolar gradient can be set to be reversed and thus will be doubled in the subtraction. 

Therefore, only the third term of equation [5] remains and is used for motion detection: 

      
                   

 

 
,                    [6] 

The cyclic displacement vector          can be further written as: 

                                   ,                     [7] 

where         is the peak displacement of the spin from the mean position,     is the wave 

vector,   is the angular frequency of the acoustic wave excitation, and   is the 

introduced phase offset between the bipolar gradient pulses and the acoustic wave.  

Incorporating equation [7] into [6] and solving for equation [6] by choosing the 

integral of the dot product of the gradient vector and the position vector over   to be zero, 

i.e.,    
                         

 

 
 and setting the bipolar gradient to be a sinusoidal wave, i.e., 

  
           

            , the equation is reduced to a phase constant that is a function of 

position and phase shift:                            

                      
                       

 

 
                    

                          
                   

 
                                                                                                                                       

    

By examining equation [8], it becomes apparent that the measured phase magnitude is 

dependent on the duration ( ), the dot product of the amplitude of the bipolar gradient, 

and the peak displacement spin amplitude motion (  
            ) modulated by the cosine 

function. The dot product relationship indicates that the bipolar gradient acts as a filter 
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extracting its collinear displacement. It should also be noted that the phase difference 

depends on the shape of the bipolar gradients, such as rectangular (Muthupillai at al., 

1995). 

Two phase measurements are usually made by toggling the bipolar gradient 

pulses, positive to negative. The phase difference image is then calculated, either by 

subtraction or complex division, to give the shear wave image that reflects the phase shift 

caused by the propagating wave. 

From the shear wave images, it is possible to extract the mechanical property 

called the shear elastic modulus (  ), which describes the proportionality relationship 

between lateral stress and strain in a material (Manduca et al., 2001).  The speed of 

propagation (c) of shear waves in simple isotropic Hookean materials is related to the 

density (  ) and the shear modulus by: 

                  [9] 

The shear wave speed can be calculated from the wavelength ( ), which can be 

directly measured from the shear wave and the frequency of the externally applied 

mechanical excitation ( f ). 

Hence, if the local wavelength is measured in an image depicting propagating 

shear waves, the shear modulus can be estimated. The calculation is further simplified by 

the generalization that the density of most biological soft tissues is the same as water 

(1000 kg/m
3
) (Graff, 1999). This approach for estimating shear elasticity is clearly 

predicated on other simplifications, such as the assumption that the plane of section is 

parallel to the direction of wave propagation and that the mechanical properties of the 

tissue are approximately Hookean (non-viscous). The assumption holds merit since our 
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materials are assessed with induced motion of relatively small amplitudes (~100 μm). 

Recognizing that the latter assumption may be incorrect, the term shear stiffness is used 

to designate the quantity measured at a given shear wave frequency (Muthupillai et al., 

1995). Shear wave images are collected at multiple phase offsets to calculate the stiffness 

in each voxel using an inversion algorithm (Oliphant et al, 2001). The resulting 

measurements at each pixel have been shown to strongly correlate (R
2
>0.9914) with data 

collected using dynamic mechanical analysis, a common tissue testing device (Ringleb et 

al., 2005). 

In a typical MRE system, the imaging pulse sequence controls the timing and 

acquisition in MRI. The spin movement can be measured in MRI using a phase contrast 

pulse sequence (Muthupillai at al., 1995).  A simple gradient or spin-echo sequence can 

be modified to acquire the spin motion by synchronizing the actuator with the MSG 

(Muthupillai et al., 1995; Othman et al., 2005). The choice between the gradient- or spin-

echo is based on the needed signal to noise ratio and homogeneity of the magnetic field. 

Gradient-echo based sequences are more favorable in low field or clinical scanners while 

spin-echo based sequences are more desirable at high field where the T2 is shorter and 

there is a need for a more homogenous magnetic field. 

The quality of MRE-derived localized information about a tissue’s material is 

dictated by the spatial resolution. MRE has been performed in clinical MR systems, 

typically 1.5 T, with a voxel resolution of 1 mm x 1 mm x 10 mm. To achieve smaller 

voxel resolution requires a stronger magnet, i.e. 9.4T, and stronger magnetic field 

gradient with smaller and more sensitive RF coils that are capable of resolutions of less 

than 50 μm.  
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Long Term Goal 

 The long term goal of this research is to develop an MRE system capable of 

quantitatively monitoring the mechanical properties of tissue engineered materials both in 

vitro and in vivo. It is the intention that such a system will provide researchers with a 

noninvasive rapid-feedback method for improving the engineered outcome. Furthermore, 

a well designed MRE system will contribute to the body of knowledge concerning how 

differentiation, cellular contraction, scaffold remodeling, and biodegradation of the 

scaffold affect the morphological and mechanical environment of the construct over time.   

Such studies will enable the design of better engineered constructs that can be translated 

into treatment of tissue defects. Further extension of MRE includes the ability to provide 

a noninvasive feedback tool with which physicians and scientists can assess and respond 

to treatment without the need to remove the implanted material.  

Objectives 

     Within the context of the long term goal, the position taken in this thesis is that MRE 

can be used to test tissue engineered materials in vitro and in vivo using a 9.4T MR 

scanner.   As evidence to this point, the following chapters will demonstrate the 

application of MRE for testing constructs in vitro, establish a method for testing 

constructs implanted into mice, and provide quantitative assessment as to the 

development of the construct.   
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CHAPTER 2: MATERIALS AND METHODS 

Introduction 

In the following procedure, a 9.4 T MRE system was designed and implemented 

to evaluate the differentiation of bone marrow derived mesenchymal stem cells.  In 

parallel to the development of the MRE system, differentiation was validated with a 

cellular monolayer before progressing to construct development. After the monolayer 

study, cells of the same passage were seeded onto gelatin scaffolds.  Both mouse and 

human origin cells were differentiated by application of differentiation reagents and 

assessed with MRI and MRE through the use of a modified spin-echo sequence coupled 

with a piezoelectric actuator. After four weeks of in vitro study, the constructs were 

implanted and observed in an athymic mouse model. Figure 2 shows an illustrative 

timeline of the tissue monitoring process for both the in vitro and in vivo study. All 

procedures were approved by the University of Nebraska-Lincoln Institutional Animal 

Care and Use Committee and Institutional Biological Safety Committee.  
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Figure 2. Timeline of tissue monitoring process with MRE. After removing from 

cryopreservation, the cells are monitored using a microscope throughout expansion. Once 

the cells were seeded onto the scaffold and differentiation reagents were applied, the 

constructs were monitored using MRI for four weeks. After in vitro development the 

constructs were implanted into mice. The mice were evaluated using MRI and the 

stiffness measurement technique of MRE. Differentiation was also evaluated via stain of 

extracted tissues.   
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Cell Culture 

Mesenchymal stem cells (MSCs) obtained from adult human bone marrow (PT-2501, 

Lonza, Walkersville, MD) and mouse bone marrow (D1ORLUVA, ATCC, Manassas, 

VA) were purchased from their respective companies. The human MSCs (hMSCs) were 

expanded in the Lonza recommended mesenchymal stem cell growth media (MSCGMTM, 

PT-3001, Lonza) supplemented with L-glutamine. Mouse MSCs (mMSCs) were 

expanded in Dulbecco’s Modified Eagle Medium (DMEM, ATCC) with 10% (v/v) fetal 

bovine serum (FBS, Invitrogen, Carlsbad, CA) and 1% (v/v) antibiotics (PenStrep, 

Invitrogen).  Both cell types were incubated at 37 °C with 5.0 % CO2 and expanded to the 

populations essential for the respective study. 

 Differentiation Monolayer  

Differentiation of the human mesenchymal stem cells was performed by seeding 

the cells  at 3x10
3
 cells/ cm

2
 for osteogenic differentiation and  2.5x10

4
 cells/ cm

2
 for 

adipose (McBeath et al., 2004). Osteogenesis was induced with the use of the hMSC 

Osteogenic Differentiation Bullet Kit (PT-3002, Lonza).  The kit consisted of osteogenic 

basal medium, dexamethasone, ascorbate, growth supplements, L-glutamine, 

penicillin/streptomycin, and β-glycerophosphate.   

For differentiation of hMSCs into adipocytes, an hMSC Adipogenic 

Differentiation Bullet Kit (PT-3004, Lonza) was applied once cells appeared confluent in 

the well. The kit consisted of adipogenic induction medium, recombinant h-insulin, 

dexamethasone, indomethacin, isobutyl-methylxanthine and L-glutamine.  After three 

days, the induction media was replaced with adipose maintenance media with 

recombinant h-insulin and L-glutamine for 24 hours then return to induction media. The 
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cycle was repeated three times and then exchanged only in maintenance media every two 

days.   

Osteogenesis was validated through the use of a von Kossa silver stain counter 

stained with neutral red. Von Kossa was applied to examine the mineralization during 

differentiation due to calcium deposition of the extracellular matrix (Hong, 2005). To 

assess adipogenesis, oil red O was applied to label the formation of lipids. Assessment of 

the stains was conducted using a VWR VistaVision inverted microscope retrofitted with a 

Microsoft 
®
 LifeCam web camera for image acquisition. 

 Construct preparation  

Prior to evaluation with human mesenchymal stem cells, constructs were 

produced using mMSCs. Biodegradable sterile gelatin sponge scaffolds (Gelfoam®, 

Baxter Healthcare Corporation, Hayward, CA) were trimmed using a razorblade into 

4x4x3.5 mm
3
 pieces and  pre-wet in growth media (DMEM, ATCC).  The mMSCs were 

then seeded onto the constructs at a concentration of 1x10
6
 cells/ mL of suspension. To 

decrease air bubbles in the construct as well as improve seeding a 20 ml syringe applied a 

slight vacuum to each vial (Dennis, 1992).  After 24 hours of incubation, osteogenic 

differentiation media consisting of DMEM (ATCC), 50 μM L-ascorbic acid-2-phosphate 

(Sigma-Aldrich, St. Lois, MO), 10 mM β-glycerophosphate (Sigma), and 100 nM 

dexamethasone (Sigma) was added and exchanged every two days (Marion and Mao, 

2006).  

For preparation of the hMSC constructs, biodegradable sterile gelatin sponge 

scaffolds were trimmed using a biopsy punch into 4 mm diameter, 3.5 mm thick pieces 

and pre-wet in growth media (MSCGM, Lonza) for one hour before seeding. Next, 
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hMSCs were seeded onto the scaffolds at a density of 1x10
6
 cells/ mL for osteogenic 

constructs and 3 x 10
6
 cells/ mL for adipogenic constructs with the help of slight vacuum 

generated by a 20 ml syringe (Dennis, 1992). Then, the scaffold-cell suspension was 

incubated at 37 
°
C for two hours (Hong, 2005) before transfer to growth media for 24 

hours.   

Differentiation was induced the following day (Hong, 2005) for osteogenic 

constructs by culturing in osteogenic differentiation media (Lonza), which was 

exchanged every two days. For differentiation of hMSCs into adipocytes, adipose 

induction media (Lonza) was applied three days after seeding onto the scaffold with the 

intension of differentiating after cells had reached confluence.  After three days, the 

induction media was replaced with adipose maintenance media (Lonza) for 24 hours then 

return to induction media. The cycle was repeated three times and then exchanged only in 

maintenance media every two days.  

 MRE in vitro 

 MRI/ MRE system  

In vitro MRI experiments were conducted at 9.4 T (400 MHz for protons) using 

an 89 mm vertical bore magnet equipped with triple axis gradients (maximum strength 

100 G/cm) (Agilent, Santa Clara, CA). Measurements were acquired using a 1 cm Litz 

RF volume coil (Doty Scientific, Columbia, SC) to transmit and receive the nuclear 

magnetic resonance signals.  

  For MRE experiments, a modified phase contrast pulse sequence was written and 

integrated with the imaging software, VnmrJ 2.3A, enabling the user to select the MRE 

parameters. These parameters included gradient amplitude (0-100 G/cm), actuator 
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frequency, delay between the mechanical actuator and the bipolar gradient, MSG 

direction, and number of bipolar pairs.  

For all experiments, a piezoelectric bending actuator (Piezo systems, inc., 

Woburn, MA) provided the displacement for the system and was synchronized with the 

phase contrast imaging pulse sequence. The actuator was driven by a signal generator 

(Tektronix, Beaverton, OR) in line with a linear amplifier (Piezo).  To improve coupling 

between the actuator and the sample media of interest, a small tip approximately the size 

of a serial port pin was soldered to the non-fixed end of the actuator beam.  

 Actuator Characterization 

In order to provide optimal displacement to the system, actuator characterization was 

performed using a Laser Doppler Vibrometer (Polytec, Dexter, MI) as illustrated in 

Figure 3. For MRE testing of the samples, a tissue construct was placed in a 10 mm test 

tube and enclosed in 0.5% agarose gel to promote the transfer of motion through the 

construct.  By shining the laser beam onto the surface of the actuator, the reflected signal 

will indicate the actuator’s velocity or displacement.  Characterization of the actuator 

enables tailoring the actuator to deliver maximum displacement under loaded conditions. 

Identification of the optimal frequency is achieved by driving the actuator at 20 Vpp with 

white noise input sweeping from 0.02-2 kHz in 10 ms cycles. Then, analysis of the 

characterized actuator velocity reveals the loaded systems resonance frequency. After 

identification of the resonance frequency, the signal generator was then used to drive and 

observe the displacement of the actuator at the specific frequencies at 200Vpp.  Once 

completed, the frequency with greatest displacement was the one selected for use in the 
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MRE experiment. Depending on loading and condition of the actuator, driving 

frequencies were around 500-700Hz with displacements of ~200 microns.   

 Imaging Procedure 

Adipogenic, osteogenic, and undifferentiated (control) constructs were monitored at 

five points of growth (week 0, 1, 2, 3, and 4). Constructs were first quantified in terms of 

their spin-lattice (T1) and spin-spin relaxation (T2) properties as well as diffusion (ADC).  

T1 measurements were performed with multiple-echo multiple-slice sequence in 

which the repetition time was exponentially arrayed in 12 steps from 0.05 to 4 s with a 

single echo time of 8.72 ms, slice thickness of 1 mm, and spatial resolution of 78 μm x 78 

 

Figure 3. Actuator characterization procedure. To determine the frequency response of 

the actuator, a white noise is first sent into the system (1a) and the resulting motion is 

detected using a Laser Doppler Vibrometer (1b). Once the resonance frequency is 

detected, a continuous sinusoid signal at resonance (2a) is sent to for determining the 

displacement (2b) being transferred to the construct environment. 
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μm. Each slice was taken through the center of the construct. T2 measurements were 

acquired using the same sequence as the T1 measurements only with a repetition time 

fixed at 4 s and echo times evenly spaced from 10 to 320 ms in 32 steps. Furthermore, the 

apparent diffusion coefficient (ADC) was measured using a diffusion weighted image 

with the diffusion gradient encoding along the readout direction. The ‘b’ values of each 

of the 14 steps linearly corresponds to diffusion-weighted gradient strength (repetition 

time , 1 s; echo time, 27.65ms; separation (δ), 3 ms; difference (Δ), 18 ms; spatial 

resolution, 78 μm x 78 μm, averages, 1; and 14 ‘b’ values up to 2000 s/mm
2
). MR 

property values were calculated from the data using a least-squares single exponential 

fitting method using MATLAB 2009b (MathWorks, inc., Natick, MA).   

Standard spin echo images were acquired for each construct. Osteogenic images  

and respective controls were obtained with  repetition time, 1 s; echo time, 50 ms; slice 

thickness, 1; averages, 8; spatial resolution, 78 μm x 78 μm. Adipogenic constructs and 

respective controls were evaluated with the following parameters: repetition time, 1 s; 

echo time, 80 ms; slice thickness, 1; averages, 8; spatial resolution, 78 μm x 78 μm. 

MRE acquisitions were conducted at the frequency determined by the Laser 

Doppler Vibrometer. For the use of directional filtering, eight offsets were acquired. 

Typical parameters for an MRE acquisition were repetition time, 1 s; echo time, 25.5 ms; 

slice thickness, 1;spatial resolution, 78 μm x 78 μm; actuator frequency, 730 Hz, bipolar 

pairs, 4. It should be noted that for MRE the echo time is dependent upon the number of 

bipolar pairs and the period of the actuator frequency; hence, echo time is minimized in 

order to minimize the effects of T2 relaxation and maximize the available signal.  
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 Processing 

Following the collection of the motion encoded images, the files were load into 

MATLAB and complex division was performed on the positive and negative datasets. 

The resulting shear wave images were then saved as .mat files and transferred to a 

MATLAB script developed by Mr. Thomas Boulet, in which the three-dimensional 

dataset (two spatial, one temporal) was used to derive the localized stiffness of the tissue 

construct The algorithm approximates spatial second derivatives with finite difference 

and computes the shear modulus on a pixel-by-pixel basis. From this complex number, 

many mechanical parameters can be deduced such as the shear wave speed, wave 

attenuation, shear stiffness, shear elasticity, shear viscosity, etc. The algorithm also 

allows the selection of regions of interest from which the mean and standard deviation of 

each parameter is calculated.  

 Histological analysis 

After completion of the study, the tissue constructs were then placed in 10% formalin 

and transferred to either the University of Nebraska-Lincoln Veterinary Diagnostic 

Laboratory (Lincoln, NE) or Histoserv, inc. (Germantown, MD) for histology.  

Constructs were then paraffin embedded and sectioned. Morphology of each construct 

was evaluated after the application of hemotoxylin and eosin staining and if enough 

sample remained, stains such as oil red O or von Kossa were performed. 
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Animal Model MRE 

 Tissue implantation  

 Following four weeks of in vitro culture, constructs were implanted in eight week old 

male nude immunodeficient mice (nu/J, The Jackson Laboratory, Bar Harbor, ME). For 

the implantation surgery, the mouse was anesthetized with ketamine and xylazine at a 

dose of 90 mg/kg and 10 mg/kg, respectively. The surgical site was disinfected with 

betadine and isopropyl alcohol. A 20 mm incision was made mid-sagittal across the 

dorsum in the lower lumbar region where a subcutaneous pocket was created on the right 

side of the midline using blunt dissection. Tissues were then implanted as shown in 

Figure 4. Following surgery, the animals were allowed to heal for two weeks before 

removing the suture and conducting MRE testing.  

 

Figure 4. Implantation of a tissue into the subcutaneous of an athymic mouse. Athymic 

mice are used in order to reduce the occurrence of immune response.  
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 MRE System  

All in vivo MRE scans were conducted with a 4cm Millipede
®
 RF coil (Agilent) 

for transmission and reception of the nuclear magnetic resonance signals. Furthermore, 

an actuator was developed to accommodate the geometry of the mouse and provide 

sufficient displacement into the TE construct without disrupting the skin’s surface. The 

design was achieved through the use of an adjustable beam design which permits the 

actuator to be rotated over the curvature of the mouse’s body as shown in Figure 5. (For a 

more on the in vivo actuator designs see Appendix A). The mice were placed in ventral 

recumbency onto the animal positioning unit and the actuator attachment was placed 

adjacent to the tissue.  

Prior to placement in the magnet, the MRE actuator system was characterized 

using the Laser Doppler Vibrometer and the optimum operating frequency was 

determined in the same manner described for in vitro actuator characterization. 

 

Figure 5. Experimental setup for in vivo MRE and corresponding pulse sequence. The 

actuator was designed to be placed next to the construct for maximum wave propagation.  
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Additionally, for all uses in which the actuator was active and in contact with the mouse, 

sedation was kept at greater that 1.5 % isoflurane and breathing rate was less than 75 

breaths per minute for the health and wellbeing of the animal. During the MR 

experiment, the mice were kept anesthetized with 1-2% isoflurane (Molecular Imaging 

Products Company, Bend, OR) and monitored (Small Animal Instruments, inc., Stony 

Brook, NY). Monitoring and gating capabilities included the use of ECG, respiration, and 

pulse oximetry. The body temperature was assessed using a temperature probe and 

adjusted via an air heater. Each imaging session was approximately 2 hours per mouse.  

 Imaging Procedure 

Once the tissue location was identified, fast-spin or spin-echo images of the 

construct were acquired in addition to the MRE measurements. MRE acquisition was 

performed in the same manner as in vitro MRE with the addition of external respiration 

triggering to reduce motion induced artifacts. To reduce the amount of time the mouse 

spent in the magnet, multiple phase offset videos were acquired at four to six offsets 

rather that the eight that had been acquired in the in vitro study. Both mMSCs and 

hMSCs were implanted into mice in separate studies.  

 Histological Analysis  

The mMSC constructs were retrieved eight weeks after implantation and fixed 

with 10% neutral buffered formalin. Constructs were sent for analysis to University of 

Nebraska-Lincoln Veterinary Diagnostic Laboratory (Lincoln, NE) or HistoServ, inc. 

(Germantown, MD). The tissues were then paraffin embedded and stained with 

hematoxylin and eosin and von Kossa to identify morphology and examine calcium 

deposition.   
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CHAPTER 3: RESULTS  

In vitro 

 Monolayer 

Validation of hMSC monolayer differentiation was performed using oil red O and 

von Kossa. Figure 6 (a-d) shows the increasing number of lipids being produced for four 

weeks of differentiation. Each image from left to right was acquired in one week 

increments. In Figure 6 (e-g) the black regions are the indications of calcium deposition 

and the red regions are either collagen or osteoid. No week four data of the osteogenic 

induced cells was acquired due to delamination of the cells from the well’s surface. The 

monolayer study confirmed that the hMSCs were capable of differentiating toward both 

the adipogenic and osteogenic pathways.  

 

Figure 6. Evaluation of hMSC differentiation on a monolayer. The adipogenic 

differentiation was evaluated over weeks 1-4 (a-d) through the use of oil red O to stain 

lipids red. An increasing presence of lipids provided indication that cells were treated 

with adipogenic reagents were indeed differentiating toward adipocytes. Mineralization, a 

byproduct of osteogenesis was evaluated for weeks 1-3 (e-g) with von Kossa. All images 

were acquired at 250X. 
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 MR Properties 

The axial spin-echo images of the adipogenic and osteogenic constructs over four 

weeks of differentiation are shown in Figures 7 and 8. At the conclusion of the four week 

study the osteogenic constructs were the smallest in diameter and also had less signal 

intensity than the undifferentiated controls.  Conversely, the constructs directed toward 

adipogenesis, after an initial reduction in size, appeared to be increasing in construct size 

as well as intensity.  Figure 9 shows the changes in the relaxation times spin-lattice, spin-

spin relaxation times and the apparent diffusion coefficient for the four weeks of 

differentiation (n=3).  From the beginning of the study to the end at week 4, the 

osteogenic constructs for T1 decreased 8%, starting at 1.42±0.04 s to 1.30±0.02 s after 

four weeks; T2 decreased 14%, starting at 100.7±8.8ms to 86.3±6.2 ms; and ADC 

decreased by 11% for week zero to week 3. For the adipose constructs T1 decreased by < 

2%, T2 increased by 5% starting at 94.8±7.6 ms to 99.7±4.8 ms; and ADC experienced 

change of < 1%.   

 MRE sequence testing 

Testing of the MRE sequence provided the first evidence of the detection of shear 

waves using a vertical bore 9.4T system.  Figure 10 displays the displacement map as 

well as the derived elastogram. The top layer of 1.0% agarose gel was determined to have 

a shear stiffness of ~20 kPa and the 0.5 % base was ~5 kPa. The sequence was capable of 

encoding motion along the read, slice, and phase encoding gradient directions.  

 In vitro MRE 

Figure 11 shows the construct development map over a four week period. 

Adipogenic (A) and osteogenic (O) constructs are shown from left to right with 
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corresponding magnitude and shear wave images, elastogram, and average shear 

stiffness. The colormap for the elastogram corresponds with the color scheme of the bar 

chart. While both seeded sponges started at approximately 3 kPa, osteogenic directed 

tissues resulted in a stiffness of 22 kPa; whereas, adipose directed tissues decreased in 

stiffness to 1 kPa. Furthermore, the osteogenic constructs showed a notable decrease in 

size in comparison from beginning to end of the study as was previously noted in the 

magnitude acquisitions.  In addition to the shear stiffness properties derived using the 

inverse problem, shear elasticity and shear viscosity are reported in Table 1. 

 Histology 

Hematoxylin and eosin stained constructs revealed the morphology of the assessed 

constructs.  Figure 12 shows the material after four weeks with a magnification of 400X. 

The osteogenic construct had greater apparent cellularity in comparison to the 

adipogenic.  Also lipid vacuoles were identified in the adipogenic construct providing 

evidence of differentiation on the construct. Prior to implantation, week 4 constructs were 

evaluated with von Kossa and oil red O stains and confirmed differentiation, which is 

presented in Figure 13.   

  



28 

 

 

Figure 7. Adipogenic construct spin echo images. Axial images of control (top row) and 

engineered constructs undergoing adipogenic differentiation (bottom row) over four 

weeks of incubation. Undifferentiated constructs seeded at the same density as the 

adipogenic constructs decreased in diameter through the four weeks of study. Images 

parameters are as follows: spin-echo sequence; repetition time, 1 s; echo time, 80 ms; 

slice thickness, 1; averages, 8; field-of-view, 1.0 cm x 1.0 cm; spatial resolution, 78 μm x 

78 μm. 

 

Figure 8. Osteogenic construct spin echo images. Axial spin echo images of control (top 

row) and engineered constructs undergoing osteogenic differentiation (bottom row) over 

four weeks of incubation. Image parameters are as follows: spin-echo sequence; 

Repetition time, 1 s; echo time, 50 ms; slice thickness, 1; averages, 8; field-of-view, 1.0 

cm x 1.0 cm; spatial resolution, 78 μm x 78 μm. 
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Figure 9. Graphs of the MR properties: T1, T2 and ADC for adipogenic and osteogenic 

constructs over four weeks of tissue development. Mean and standard deviation were 

determined using a selected ROI for each image (n=3).  
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Figure 10. Demonstration of MRE shear wave. A two layer agarose gelatin phantom 

with magnitude (a) and corresponding shear wave (b) image. The resulting elastogram 

(c) was derived using an inverse problem algorithm. A piezoelectric actuator driven at 

600 Hz was placed on the top of the gel phantom. Images parameters are as follows: 

MRE spin-echo sequence; repetition time, 1.2 s; echo time, 41.19 ms; slice thickness, 1 

mm; averages, 1; field-of-view, 5.0 cm x 2.5 cm, in-plane resolution =  390 μm x 195 

μm, gradient amplitude = 45 G/cm, actuator frequency, 600 Hz; bipolar pairs, 8. 

 

 

 

Table 1. Mechanical properties of adipogenic and osteogenic constructs over a four week period of 

growth.

Week 0 Week 1 Week 2 Week 3 Week 4

Stiffness (kPa)
Adipogenic 3.28 ± 1.03 2.22 ± 0.99 2.51 ± 0.91 1.94 ± 0.76 1.19 ± 0.55

Osteogenic 3.06 ± 0.45 8.34 ± 1.29 8.91 ± 1.28 12.15 ± 0.88 22.11 ± 1.46

Shear elasticity 

µ1 (kPa)

Adipogenic 2.51 ± 0.94 1.76 ± 0.69 1.55 ± 0.67 1.08 ± 0.46 0.68 ± 0.30

Osteogenic 1.57 ± 0.35 4.37 ± 1.68 5.58 ± 1.48 8.22 ± 2.02 12.77 ± 3.17

Shear viscosity 

µ2 (Pa.s)

Adipogenic 0.43 ± 0.14 0.23 ± 0.14 0.17 ± 0.07 0.11 ± 0.08 0.10 ± 0.04

Osteogenic 0.36 ± 0.07 0.74 ± 0.22 0.81 ± 0.20 0.71 ± 0.22 2.02 ± 0.37
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Figure 11. Construct development map over four week period. The hMSC adipogenic 

(A) and osteogenic (O) constructs are shown from left to right with corresponding 

magnitude image, shear wave image, elastogram, and average shear stiffness. The 

frequency of assessment for all the constructs was approximately 720 Hz. The standard 

error bars are for the standard deviation of shear stiffness within the region of interest 

of the elastogram. 
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Figure 12. In vitro evaluation using hematoxylin and eosin stain. Osteogenic (a) and 

adipogenic (b) constructs were produced from undifferentiated hMSC. The hMSCs ere 

differentiated with adipogenic and osteogenic reagents and assessed after four weeks of 

in vitro growth. In (b) the arrow is identifies the lipid vacuole of a mature adipocyte.  

 

 
Figure 13. Von Kossa and oil red O stains of differentiated mMSCs. Following four 

weeks of in vitro differentiation, von Kossa (a) was conducted for identification of 

calcium deposition. Oil red O (b) was applied to adipogenic constructs to identify the 

presence of lipids with adipogenic cells. Lipids are the reds spheres shown in red on the 

purple matrix. Magnification 400X (Histoserv). 
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In vivo  

 Magnitude Images 

Following evaluation of the constructs in vitro and implantation of the tissues into the 

athymic mice, MR magnitude and shear wave images of the constructs were acquired at 

different growth periods. Figure 14 shows an osteogenic construct four weeks after 

implantation.  A comparison of constructs with the same acquisition parameters is shown 

in Figure 15. The osteogenic constructed had a measured diameter of 1.7 mm whereas the 

adipogenic construct had a diameter of 3.2 mm.  

 MRE 

  Figure 16 shows MRE shear waves through an osteogenic construct followed by von 

Kossa staining indicating the presence of calcium. Shear wave images for the construct 

and neighboring temporal muscles are shown in Figure 16 with phase delays of 
 

 
 and 

  

 
 

with corresponding magnitude image. Half a wavelength was attained in the temporal 

muscle, with stiffness of 15kPa. To better visualize the shear wave in the construct, a 

close up is shown of the two phase delays where the measured amplitude motion was up 

to 80 micron as shown in the horizontal line profile. Half a wavelength was not attained 

in the construct; hence, no stiffness estimation could be performed. In contrast to the 

osteogenic constructs, Figure 17 shows the presence of multiple waves in an adipogenic 

construct. The measured stiffness of the construct was 4.2±0.9 kPa. 

 Histology 

After eight weeks of in vivo testing a construct was excised from the host mouse 

and assessed with hematoxylin and eosin staining. The confirmation of the bone 

differentiation is shown in Figure 18.  
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Figure 14. Osteogenic construct after four weeks of incubation. The mMSC based 

construct is approximately 3 mm in diameter. Fast spin-echo multiple slice sequence: 

repetition time, 2 s; echo trail length, 4; echo spacing, 10 ms; field-of-view, 2.5 cm x 2.5 

cm; matrix size, 256 x 256; slice thickness, 1.0 mm; averages, 4. 

 

Figure 15. Constructs two weeks after implantation. The hMSC adipogenic (a) and 

osteogenic (b) are circled showing that the adipogenic construct is approximately three 

times larger than the osteogenic construct. Multiple echo multiple slice sequence: 

repetition time, 1 s; echo time, 9.27 ms; field-of-view, 2.0 cm x 2.0 cm; slice thickness, 

1.0 mm; matrix size, 256 x 256; averages, 4. 
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Figure 16. Osteogenic construct imaged four weeks post implantation. Shear wave 

images of an osteogenic mMSC construct were acquired with delays of π/2 (c,e,g,i) and 

3π/2 (d,f,h,j) with the corresponding MR coronal image shown in (a) and hematoxylin 

and eosin staining (b). Close up of the TE construct shows the propagation of the wave 

with different delays. Shear wave through the temporal muscle (e,f) produced recorded a 

shear stiffness  of 15kPa.  
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Figure 17. Shear wave taken through an adipogenic construct. From the shear wave 

(left), the hMSC adipogenic construct had measured shear stiffness (right) of 5 kPa. MRE 

spine-echo sequence: repetition time, 1 s (externally triggered); echo time, 32.01 ms; 

field-of-view, 2.4 cm x 2.4 cm; slice thickness, 1 mm; matrix size, 128 x 128, averages, 

2; actuator frequency, 915 Hz, gradient amplitude, 90 G/cm; bipolar pairs, 8. 

 

 

Figure 18. Excised osteogenic tissue assed with hematoxylin and eosin staining. The 

construct was removed eight weeks after in vivo growth. Consultation with a pathologist 

confirmed the formation of bone formation of the mMSC construct. The red-pink regions 

are areas of mineralization.  
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CHAPTER 4: SUMMARY AND SUGGESTED FUTURE WORK 

Summary 

Mechanical properties of engineered tissues were measured using MRE both in 

vitro and in vivo with a 9.4T MR scanner. The process of in vitro MRE was demonstrated 

from cell preparation to the generation of an elastogram. As was shown in Figure 6, the 

differentiation of mesenchymal stem cells had similar differentiation rates as those 

presented by McBeath et al. (2004). By applying a nondestructive mechanical assessment 

method to the tissue engineering pipeline, mechanical changes in engineered constructs 

were evaluated throughout multiple stages of development.  

Although further testing is needed, it is possible to pursue correlations between 

MR properties and MRE measurements as has been previously indicated (Xu et al., 

2006). Similar to the paper by Xu et al., the osteogenic axial images shown in Figure 8 

displayed a decrease in signal intensity from week one to week four as well as the MR 

properties in Figure 9 noted a decrease for T1, T2, and apparent diffusion coefficient 

values over  the same period. The assessment of such properties is useful; however, none 

of the MR property values showed as clear of contrast between the growth stages as the 

assessment using elastography. The range of assessment for MRE can span five orders of 

magnitude in contrast to only two orders of magnitude for T1 relaxation measurement 

(Mariappan et al., 2010).  

Furthermore, in comparison to the desired parameters of natural bone (Young’s 

modulus 0.6-3 GPa, (Cowin, 1989)), the osteogenic constructs by week four as shown in 

Table 1 attained a shear modulus of 22.11 kPa (Young’s modus 66.33 kPa).  Although 

the construct measurement indicates a lower stiffness, the measurement did provide 
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feedback that the current combination of cells, scaffold, and differentiation factors will 

not produce a construct that would be a suitable bone replacement. On the other hand, the 

shear stiffness of the adipogenic constructs after four weeks attained a shear modulus 

1.19 kPa (Young’s modulus 3.57 kPa).  Similarly, clinical MRE assessment of native 

adipose tissue within the breast determined the Young’s modulus to be 0.5 to 25 kPa (van 

Houten et al., 2003).   

As an extension of the TE testing process an original MRE system for in vivo 

testing was developed. Shear waves were observed in both osteogenic and adipogenic 

constructs; however only the adipogenic constructs produced multiple waves within the 

tissue. Furthermore, the assessment of animal models with MRE even enabled the 

analysis of an unanticipated development. 

As noted in the literature, mMSCs have the occasional tendency to progress 

toward the formation of carcinoma (Miura et al., 2006; Tasso et al., 2009). More 

precisely, the tumors produced from mMSCs developed into cases of pathologist 

diagnosed osteosarcoma and fibrosarcoma. Although tumors formation is not desirable in 

tissue development applications, in cancer research tumor formation provides a reliable 

model for evaluating oncogenesis. One dynamic of this process that will benefit from 

further study is the noninvasive evaluation of tissue/ tumor stiffness.  In alignment with 

IACUC protocols all mice were euthanized once tumors reached 1.5 cm along the longest 

axis. However, prior to euthanasia no noticeable changes in mouse behavior were evident 

between the tumor mice and those in which a tumor did not form. In the differentiation 

study two mice developed tumors and were assessed noting a change of stiffness that 

ranged from 9 kPa to 27 kPa at termination of the study.    
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Tumor formation was noted 6 weeks after implantation.  Seven weeks after 

implantation the first mouse was evaluated using magnetic resonance elastography. 

Figure 19 shows a traditional magnitude image of the tumor as well as its correlating 

shear motion image and elastogram. The average stiffness for the tumor was 18.6 kPa and 

the region with notably higher stiffness measured was 27.4 kPa.  T1 and T2-weighted 

images were also acquired as shown in Figure 20. Cross sections of the tumor, as shown 

in Figure 21, illustrate the morphology of the tumor. Analysis conducted ex vivo 

determined that the tumor’s stiffness was 20.4 kPa as displayed in Figure 22.   

The ability for MRE to evaluate tumors non-invasively holds promise for 

assessment in future studies. If assessed in the early stages of tumor development this 

technique could provide valuable information as to the changes in a tumor’s mechanical 

properties throughout each growth stage for diseases such as breast cancer (McKnight et 

al., 2002).  The tumor assessed in the study was diagnosed by a pathologist as being an 

osteosarcoma. Although these tumors were produced from the use of immortalized 

mMSC cells the study produced a model for generating and assessing tumor formation, 

which until now has been mainly a focus at the clinical scale.   
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Figure 19. Tumor with shear wave. The parameters used to acquire the shear wave 

images were as follows: repetition time, 1200 ms; echo time, 27.02 ms; slice thickness, 1 

mm; averages, 2; field-of-view,3.0 cm x 3.0 cm; in-plane resolution, 234 μm x 234 μm; 

actuator frequency, 640 Hz; gradient amplitude, 40 G/cm; bipolar pairs, 4. 

 

Figure 20. MR weigheted images illustrate variety of tissue types present in the tumor. 

The T1-weighted image was acquired using a fast spin-echo sequence with repetition 

time, 600 ms; echo train length, 4; echo spacing, 8.92 ms; kspace-encodings, 1;  field-of-

view, 3.0 cm x 3.0 cm; in-plane resolution, 117 μm x 117 μm; slice thickness, 1 mm; 

averages, 16. The T2-weighted image was acquired using a fast spin-echo sequence with 

repetition time, 3000 ms; echo train length, 8; echo spacing, 25 ms; kspace encodings, 4;  

field-of-view, 3.0 cm x 3.0 cm; in-plane resolution, 117 μm x 117 μm; slice thickness, 1 

mm; averages, 16. 
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Figure 21. Fast spin-echo image showing cross-sections of the tumor body. Note the 

bone-like core that formed in the mice. The image parameters were TR, 2000 ms; ETL, 8; 

ESP, 10 ms; kzero, 4;  field-of-view, 3.0 cm x 3.0 cm; in-plane resolution, 234 μm x 234 

μm; slice thickness, 1 mm; slices, 5; gap, 0.5 mm; averages, 2. 

 

 

Figure 22. Ex vivo assessment of tumor with correlating shear wave and elastogram.  The 

parameters used to acquire the shear wave images were as follows: repetition time, 1000 

ms; echo time, 29.2 ms; slice thickness, 1 mm; averages, 1; field-of-view, 2.5 cm x 2.0 

cm; in-plane resolution, 195 μm x 156 μm; actuator frequency, 545 Hz; gradient 

amplitude, 60 G/cm; bipolar pairs, 4. 
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Suggestions 

When performing MRE experiments, a few limitations should be noted. The 

assessment of in vitro specimens is a time sensitive study.  Therefore, it is recommended 

that studies should last no more than one hour so that any potential damage to the tissue 

construct is minimized.  Additionally, faithful recovery of the stiffness map can be 

compromised due to constructs being either too small or stiff (Oliphant et al., 2001).  The 

size and measured stiffness limitations in MRE, apparent from in vivo data, arise from the 

collected displacement data and noise distribution. The noise distribution in shear wave 

images can be different and it depends on the two acquisitions. The difference can arise 

from system instabilities and imperfections, such as eddy currents produced by toggled 

bipolar gradients, and fluctuation of the RF receiving chain (Othman et al., 2006). The 

available sample size places a constraint on the maximum measurable shear wavelength, 

λs, since the wavelength depends on the material stiffness and acoustic excitation 

frequency ( sf
) and the shear wave image resolution Δx places a constraint on 

the minimum wavelength, thus: 

                     2 FOV ≥ s ≥ 2∆x,         

Where 2x is the minimum wavelength based on the Nyquist criterion with half a 

wavelength to estimate the shear stiffness as mentioned previously. 

The above limitations are important to address as they represent hurdles to 

reconstructing elastograms. Furthermore, to compute the stiffness, the spatial resolution 

plays an important role. It has been shown that, for assessing the stiffness of a 

homogeneous material, at least half a wavelength should be visible. This was the case of 

the temporal muscle where a stiffness of 15 kPa was calculated as measured from 
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Figure16, but because of its small size (around 6 mm), the stiffness of the engineered 

tissue construct could not be evaluated. Considering that the mechanical actuator was 

driven at 400 Hz and using 1000 kg/m3 for the density, the expected wavelength was 

around 14 cm. Thus a length of about 7 cm of tissue construct should be available in 

order to assess a proper value for the stiffness. One possible solution to this problem is to 

operate at higher frequency (> 2.5 kHz), as the wavelength is inversely proportional to 

the frequency. Piezoelectric stack actuators driven by high voltage amplifiers are able to 

deliver sufficient motion at such frequencies to produce a full shear wavelength in the 

sample. Given the same experiment, in order for half a wavelength to be visible in the 6 

mm long construct, a frequency of at least 4600 Hz should have been used. A potential in 

vivo testing design utilizing a stack actuator is shown in Figure 23. It should also be noted 

that while moving to high frequency will provide a decreased wavelength, the higher 

frequencies can suffer from problems of attenuation if the supplied displacement is not 

sufficient (Lopez et al., 2008). 

Another possible pursuit for this project could be the incorporation of the MRE 

sequence into faster sequences such as fast spin-echo and echo planar imaging (Rydberg 

et al., 2001; Kruse et al., 2006). Through the use of faster sequence there is the potential 

for either the acquisition of more phase offsets that could provide more robust datasets 

for calculation of shear stiffness or the assessment of more slices within a single session 

would help in mapping the stiffness within larger constructs. 

As a means of cross verification of the MRE data, the development of either 

nanoindentation or dynamic mechanical analysis should be pursued. Both devices are 

capable of conducting frequency specific analysis to give a shear modulus measurement.  
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Beyond the possibilities in vitro and ectopic studies, the next step of pre-clinical 

assessment is to evaluate the effectiveness of tissue in tissue defects. These studies would 

potentially provide a better understanding of how to produce longer lasting functional 

implants for use in regenerative medicine.  

Imaging techniques have the potential to greatly advance the field of TE if they 

provide the tissue engineer with quantitative measurement reflective of the structure, 

composition, and function of the tissue during the regenerative process. By measuring the 

mechanical properties and their respective changes over a time course, estimations of 

functional tissue development can be calculated leading to a better understanding of 

tissue growth and host tissue integration. 

 

Figure 23. Potential in vivo piezoelectric stack actuator system. The MRE probe will be capable 

of high resolution elasticity analysis at frequencies greater than 2.5 kHz. 
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APPENDIX A: IN VIVO ACTUATOR DESIGNS 

The initial design for the animal actuator is show in Figure 24. Although the 

design offered diversity in the amount of places and orientation that the actuator could be 

placed, the sheer number of screws and adjustment points made this approach difficult to 

assemble in a short period of time.  Also note that of the 12 adjustable 2-56 nylon screws, 

there are points of rotation at which turning these screws was not possible. 

The next design that was developed was a simplified version that made use of the 

archway above the animal positioning holder. Notches were placed in 0.125” (3.175 mm) 

intervals along the 0.25” (6.35 mm) rod. This method increased accessibility; however, 

coupling between the surface of the mouse and the actuator was often an issue that 

resulted in no wave propagation.  

A redesign rotated the actuator beam 90° and change the motion from one of 

sweeping across the back of the animal to one more closely resembling a hammer 

motion. This method provided more consistent wave results; however, the current contact 

point sank a couple of millimeters into the back of the mouse creating undue tension on 

the skin of the mouse.  

The current method makes use of the same principal of applying motion normal to 

the back of the mouse. However, by increasing the contact area between the actuator and 

the mouse the system was able to maintain adequate coupling without deforming the 

region around the construct.  
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Figure 24. In vivo actuator designs.  (a) A highly adjustable design was originally implemented 

with the intention of providing the operator complete control over the placement of the actuator. 

(b) The system was reduced to needing only two nylon screw and no longer was attached over the 

body of the animal. (c) The actuator was rotated 90° and the tip was replaced with an elbow 

design.  (d) Contact area between the actuator and the back of the mouse was increased.  
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