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Abstract-In this paper, we describe how the Katz cell-survival model has been used to predict survival 
along the central axis of the dose vs depth curve of beams of heavy charged particles. Unmodified beams 
with sharp Bragg peaks as well as ridge-filter-modulated beams with spread Bragg peaks have been 
studied. The analysis in terms of this model leads to the definition of two coefficients, "ion kill" and 
"gamma kill", which characterize the radiation quality of the beams. In this way, the relative importance 
of the primary lind secondary (fragmentation) contributions can be assessed easily. 

Setting the model parameter m equal to 2 yields two interesting results: the survival expression becomes 
linear--<juadratic at low doses and the inactivation cross-section at small values of Z*2/P2 (low-LET) 
increases as (Z *2/KP 2)2 in accordance with the Lethal-Potentially Lethal (LPL) model. With this restriction 
on m and these approximations (low-LET and low dose) and for delayed plating experiments of stationary 
phase cells (i.e. when repair is complete), the Katz model and the LPL model reduce to the same analytical 
form (linear--<juadratic) with simple expressions linking the constants. 

1. INTRODUCTION 

THE KATZ cell-survival model (Katz et aI., 1971) is a 
convenient model for calculating survival for beams 
of particles with broad LET spectra. The prescription 
for how to handle different LETs can be specified 
easily and the calculations are straightforward. 
Interesting results are obtained by keeping the 
various LET contributions separate so that the 
relative importance of the secondary fragments in the 
beam can be determined. In addition, if one of the 
model parameters is fixed (m = 2), the model can be 
compared to other models of cell killing and simple 
relationships between constants are found at low dose 
and low LET. 

2. ANALYTICAL FORM OF THE MODEL 

The model as formulated for cell killing can be 
written in the following form: 

S=e- uD/L{I_[I_e-(I-P)(D/Do)jm} (I) 

Where 

CI = Clo(l _ e-Z"M')m 

P=CI/Clo 

D = the absorbed dose 

L=LET 

(2) 

(3) 

Z* = the effective charge on the charged particle 

P = the velocity of the particle relative to that of 
light. 
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The four parameters of the model are lTo, /C, m and 
Do. 0'0 has the dimensions of an area and can be 
interpreted as the effective cross-sectional area of the 
radiation-sensitive material in a cell nucleus; m can be 
interpreted as a target number, Do as the reciprocal 
final slope of a low-LET or gamma ray survival curve 
and K are relating to the characteristics of an individ­
ual target. If L is given in keV/J,lm, 0' in J,lm2, then D 
is to be expressed in keV/J,lm3• 

3. THE SITUATION FOR MIXED 
LET BEAMS 

For a beam of particles with various Z*s and ps, 
the O'S are going to vary in accordance with equation 
(2) and L, of course, will also vary. With the assump­
tion that each dose element dD makes an independent 
contribution to the exponents in equation (1), we can 
address the case of a mixed radiation field with LET 
spectra given by D;(LJ where i denotes the ion type 
(total = N) and 

f D;(LJ dL; = D; (4) 

where D; is the dose contribution of the ith particle 
type. 

Equation (I) becomes 

S =ex{ -~ f~D;(LJdL] 

x {I -[1 -ex{ - ~o ~ f (I -PJD;(LJ dL]J} 

(5) 
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where the summation is over all the particles in the 
beam: the primaries and the secondary fragments. 

It is convenient to now separate the primaries from 
the secondaries, obtaining 

(6) 

Here the integrals over the primary particle spectra 
have been replaced by the products of the appropriate 
dose-averaged quantities and the absorbed dose due 
to the primaries through the relationship defining the 
dose-averaged quantities: 

() fO"P Dp(Lp) dLp 

~: D = fLP 
Dp(Lp) dLp 

(7) 

f (1 - Pp)Dp(Lp) dLp 

(1- PP)D = (8) 

f Dp(Lp)dLp 

In a similar way, the secondary fragment coefficients 
can be defined yielding 

s = exp [ -(~:) D Dp - (~:) D DsJ 

x {-[I-exp[~: «1-Pp)DDp 

+ (1- PS)DDs)JJ}. (9) 

We see that two coefficients can be defined for each 
component of the beam, one involving the first 
exponential term, which we will call the ion kill 
coefficient, and the other involving the second 
exponential term, which we will call the gamma kill 
coefficient. The ion kill coefficient is the dose· 
averaged value of 0" /L and the gamma kill coefficient 
is the dose-averaged value of (1 - P)/DQ• 

4. APPLICATION OF THE MODEL 

If the LET spectra are known or can be calculated 
at points of interest in heavy charged particle beams, 
they can be used to calculate the quantities in 
equation (9). The following calculations were made 
using a first generation transport code HZESEC 
(Curtis, 1977). Figure 1 shows the central axis depth 
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FIG. I. Central axis dose vs depth curves (solid lines) calculated from the HZESEC computer code for 
four different unmodified heavy charged particle beams: a carbon beam with a range of 25 em of water, 
and neon, silicon and argon beams with ranges of 15 em of water. The solid circles are experimental data 
obtained from parallel plate ionization chambers placed on each side of a variable water column. The 

dashed curves are the calculated contributions from the primary particles only. 
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CONTRIBUTION TO ION KILL FOR OXYGENATED CELLS 
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FIG. 2. Ion kill exponents (i.e. ion kill coefficients as defined in the text multiplied by the dose) for I Gy 
absorbed at the water surface plotted against water absorber as calculated for the four beams described 
in Fig. I. The solid lines are the contributions from the primary particles and the dashed lines are the 
contributions from the secondary fragments. The differences occurring at the surface (zero depth) reflect 
the differences in biological response for the incident LETs for the different beams. The variation of values 
along the X -axis result from the variation of both the absorbed dose and the biological response per unit 

dose for the "ion kill" mode. 

dose curves for the unmodified carbon, neon, silicon, 
and argon beams obtained at the Berkeley BEV­
ALAe accelerator. The carbon beam had a range of 
about 25 cm of water while the others had ranges of 
about 15 cm. The experimental data (solid circles) are 
shown in comparison to the calculated values for the 
total dose (solid line). The contributions from the 
primaries are shown in each case as dashed lines. This 
Code calculates LET spectra for the secondaries and 
primaries before integrating to obtain the total dose. 
These spectra were used to calculate the ion and 
gamma kill coefficients* as a function of depth for 
these four beams. The results are shown in Fig. 2 for 
the ion kill coefficient, with the coefficient for the 
primaries as a solid line, and for the secondaries as 
a dashed line, calculated for I Gy incident (i.e. at zero 
Water depth). The four examples are for the same four 
beams shown in Fig. 1. Results for the gamma kill 

coefficient are shown in Fig. 3. We note that the 
gamma coefficient dominates the ion kill coefficient at 
shallow depth for all the beams except argon, where 
the two are comparable. However, in the peak region, 
the ion kill coefficient dominates for all beams. The 
secondaries are not important for the carbon beam, 
but for the heavier beams the secondaries play an 
increasingly important role in both coefficients and 
become as important as the primaries for the argon 
ion beam. 

5. FRACTION OF CELL KILLING BY TWO 
LET COMPONENTS 

If we denote the ion and gamma kill coefficients as 
Ip and Gp respectively for the primaries and Is and Gs 
for the secondaries, equation (9) becomes 

S = e-IpDp-lsDs{l_ [1 - e-GpDp-GsDslm}. (10) 

'The values used for the parameters were: 0"0 = 67 Jim2; K = 1000; Do = 1.7 Gy; and m = 2.5. [These as well as the hypoxic 
values given in the second footnote come from a best-fit procedure for families of experimental data on T - I human cells 
from Todd (1967).) 
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CONTRIBUTION TO GAMMA KILL FOR OXYGENATED CELLS 
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FIG. 3. Gamma kill exponents (i.e. gamma kill coefficients as defined in the text multiplied by the dose) 
for 1 Gy incident at the water surface plotted for the same conditions as in Fig. 2. Here all beams produce 
roughly the same gamma kill response at the surface (zero depth). The variation along the X-axis reflects 

both the variation of biological response and the variation of dose. 

The fractional cell killing Kp due to primaries only is 

Kp = I - Sp = I - e- /pDp{ 1 - [I - e-GpDpr} (ll) 

and Ks due to secondaries only is 

Ks = I - Ss = 1 - e-/sDs{l - [I - e-GsDst}. (12) 

We note that the sum of these is not the total 
fractional cell killing since the cell may be killed by 
a combination of primaries and secondaries by means 
of the gamma mechanism. Therefore, we have three 
fractional cell killing terms: 

Kp= I-Sp, Ks= I-Ss, Kps= I-Sps· 

The total killing is 

K = 1 - S = I - SpSsSps, (13) 

so that 

- KsKps + KpKsKps. (14) 

Ratios of Kp/K, Ks/K, and Kps/K are plotted at the 

10% survival level for the four beams in Fig. 4. We 
note that the secondaries kill less than half of the cells 
for all beams except for the argon beam in the lowel 
right-hand panel. 

6. SPREAD BRAGG PEAKS 

Similar calculations can be made for spread beams 
that are more typically used in the therapeutic 
situation. Four of these are shown in Fig. 5, all 
having spread peaks of 10 cm. Ion and gamma kin 
coefficients have been calculated for a dose of 1 Gy 
incident and are shown in Fig. 6 for both oxic and 
hypoxict cells. We see in this figure the extent to 
which gamma kill dominates in both the oxic an6 
hypoxic cases in the plateau regions, while ion kill 
dominates increasingly in the peak regions for the 
heavier ion beams. Also seen clearly is the extent to 
which ion kill varies across the peak region, particu· 
larly in the case of the carbon ions. 

Presently, LET spectra obtained with a 
silicon-germanium detector (the BERKLET) are 

tParameters used for hypoxic cells were: 0'0 = 67 11m2; K = 1300; Do = 4.6 Gy; and m = 2.5. 
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RELATIVE CELL KILLING FOR 10% SURVIVAL OXYGENATED CELLS 
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FIG. 4. Fraction of cell kill contributed by each of the three components defined in the text: primaries 
only, secondaries only, or a combination of primaries and secondaries calculated at the 10% survival level 

for the four beams described in Fig. I. 

being used as input to a code that calculates survival 
using the Katz model as described here as well as 
other models of cell killing. Comparisons are being 
made with experimental cell survival data obtained at 

2,----.----,----,----,----,----, 
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Depth (em) 

FIG. 5. Central axis dose vs depth curves in water for 
~rbon, neon, silicon, and argon beams spread by a ridge 

ler to IO em and having a range of 27 cm of water 
calculated with the computer code HZESEC. 

the same positions in the beam that the physical data 
were obtained. 

7. A CONNECTION BETWEEN THE KATZ 
MODEL AND OTHER MODELS OF 

CELL KILLING 

Several other model descriptions of cell killing 
(Chadwick and Leenhouts, 1981; Kellerer and Rossi, 
1978; Roesch, 1978) arrive at cell survival expressions 
that vary as e-·D - PD2 (a linear-quadratic dependence 
on dose), with varying interpretations of the IX and P 
parameters. To avoid confusion, these parameters 
will be called a1 and a2 in this paper. Two additional 
models (Tobias et al., 1980; Curtis, 1986) arrive 
at survival expressions that approach an exponen­
tial slope at high doses and approximate a 
linear-quadratic dependence at low doses. In the 
following, we discuss the conditions under which the 
Katz expression can be linear-quadratic in form at 
low doses and in this case show that simple relation­
ships exist between parameters of the Katz, the 
linear-quadratic and LPL (Curtis, 1986) models at 
low doses and low-LET. 

If we rewrite equation (1) as follows: 

S = e-(u/L)D+ln{l-[I-e-II-P1D/DO]mJ, (15) 
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CONTRIBUTION TO ION AND GAMMA FOR OXYGENATED AND HYPOXIC CELLS 
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FIG. 6. Ion and gamma kill exponents for oxygenated (solid line) and hypoxic cells (dashed lines) for I Gy 
Incident calculated for the beams described in Fig. 5. 

we can work with the negative of the exponent 
defined as a function of D 

(16) 

where 

cl=a/L and c2=(l-P)/Do. (17) 

We now expandf(D) in a Maclaurin series expan­
sion in powers of D: 

D2 
feD) = f(O) + .f'(O)D + rCO) -- + ... 

2! 

Dn 
+ rCO) -- + ... (18) 

n! 

wherefn(o) is the nth derivative off CD) evaluated at 
D =0. 

Performing the appropriate differentiations, we can 
calculate the coefficients of the terms in the series. 
The results are: 

fCO) = 0 (19) 

.f'(O)=CI form =1-1 

= CI + C2 for m = I (20) 

r (0) = 0 for m =I- 2 

= 2d for m = 2. (21) 

Therefore, feD) is linear-quadratic in form if, and 
only if, m = 2, and in that case 

(22) 

Then, in this case, we can identify al and a2 in the 
linear-quadratic formulation: 

(23) 

a2 = (I - p? (24) 
D6 

At high-LET in this formulation, a2 tends to zero if 
tends to unity) and a tends to ao so al decreases as 
I/L. 

At low-LET, we can expand equation (2) in powelS 
of Z*2/(K{32) and retain only the first term, obtaining 

a = a{ (~;:J (~ 
and 

(26, 
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AlSO p ~ I, and so 

I 
a2=2· 

Do 
(27) 

In the LPL model, the linear and quadratic 
coefficients in the low dose approximation are 
(curtis, 1986): 

a l = t'/L + t'/PL e-'PL/, 

2 

a2 = ~l (I _ e-'PU,)2, 

(28) 

(29) 

where '1l and t'/Pl are the production per unit 
absorbed dose of irreparable (lethal) and reparable 
(pOtentially lethal) lesions, respectively, £pl is the rate 
per unit time of lesions to be repaired, and £ is the 
ratio of £PL to the rate per unit time of two lesioI}.s 
combining to produce a lethal lesion (binary 
misrepair). 

If we now consider only delayed plating 
experiments for cells in plateau phase, we have 
complete repair and tf ~ I/£Pl. This yields 

_ Ch _ 110 {I [-kz.2/P2(1 + kZ*2)Jn} (30) al =I1L -y -L - e T 
t'/2 112 F2n2k 2(Z*2/P2)2 

a2 = ~ = 0 c e- 2kZ*'/P' (31) 
2£ 2L2£ 

where k, n, 110 , and Fc are parameters of the LPL 
model. Here 110 has the same meaning as in the Katz 
model, k relates the probability of producing a lesion 
which may become a potentially lethal lesion to the 
charge and velocity of the charged particle, n is the 
mean number of times a charged particle track 
traverse targets (a critical region along the DNA 
helix) in passing through a cell, and Fc is a measure 
of how many potentially lethal lesions are not 
restituted (chemically repaired). 

The low-LET approximation yields 

l1onk2(Z*2/P2)2 
a l = 2L (32) 

and 

115F;n2k2(Z*2/ P2)2 
a2 = 2L2£ (33) 

Finally, we can equate appropriate constants 
linking the Katz and LPL models for m = 2 and for 
fully repaired cells from equations (26) and (32), (27) 
and (33). The result is shown in Table I. 

N.J.16_liJ_C 

Table I. Link of constants· in the Katz and LPL models 

Katz LPL 
(2In)1 " 

K 
k 

[m =2] 

0"0 0"0 

Do 
L(2El'2 

O"oF,nk(Z*'/f3') 

*See text for definitions of the constants. 

An interesting conclusion is that according to the 
LPL model, Do is not exactly independent of LET but 
varies as the ratio L/(Z*2/P2). Since LET is roughly 
proportional to (Z*2/P 2), this variation is small and 
probably could not be detected in experimental data. 
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