Orthogonal Polynomials with Orthogonal Derivatives

M. S. Webster
University of Nebraska - Lincoln

Follow this and additional works at: https://digitalcommons.unl.edu/mathfacpub
Part of the Mathematics Commons

[^0]This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

ORTHOGONAL POLYNOMIALS WITH ORTHOGONAL DERIVATIVES*

M. S. WEBSTER

1. Introduction. Let $\left\{\phi_{n}(x) \equiv x^{n}+\cdots\right\}$ be a set of orthogonal polynomials satisfying the relations

$$
\begin{aligned}
\int_{a}^{b} p(x) \phi_{m}(x) \phi_{n}(x) d x=\int_{a}^{b} q(x) \phi_{m}{ }^{\prime}(x) \phi_{n}{ }^{\prime}(x) d x & =0, \\
m \neq n ; m, n & =0,1, \cdots,
\end{aligned}
$$

$$
\begin{align*}
& \alpha_{i} \equiv \int_{a}^{b} p(x) x^{i} d x, \quad \beta_{i} \equiv \int_{a}^{b} q(x) x^{i} d x, \quad i=0,1, \cdots, \tag{1}\\
& p(x) \geqq 0, \quad q(x) \geqq 0, \quad \alpha_{0}>0, \quad \beta_{0}>0 .
\end{align*}
$$

Lebesgue integrals are used and the interval $(a, b) \dagger$ may be finite or infinite.

We are concerned with the following assertion:
Theorem. If $\left\{\phi_{n}(x)\right\}$ and $\left\{\phi_{n}^{\prime}(x)\right\}$ are orthogonal systems of polynomials, then $\left\{\phi_{n}(x)\right\}$ may be reduced to the classical polynomials of Jacobi, Laguerre, or Hermite by means of a linear transformation on x.

This result was first proved by W. Hahn \ddagger who obtained a differential equation of the second order for $\phi_{n}(x)$. When (a, b) is finite, Krall§ derived the Jacobi polynomials by using the moments β_{i} to determine the weight function $q(x)$. The present paper extends his method to the case (a, b) infinite, thus obtaining the Laguerre and Hermite polynomials.
2. Weight function for $\left\{\phi_{n}{ }^{\prime}(x)\right\}$. Krall's proof shows that constants r, s, t (not all zero) may be determined so that

[^1]\[

$$
\begin{equation*}
\int_{a}^{b} q_{1}(x) x^{i} d x=\int_{a}^{b} q(x) x^{i} d x, \quad q_{1}(x) \equiv\left(r x^{2}+s x+t\right) p(x), ~ i=0,1, \cdots . \tag{2}
\end{equation*}
$$

\]

We suppose that (a, b) is the smallest interval in the sense that no number $h,(a<h<b)$, exists such that $\int_{a}^{h} p(x) d x=0$ or $\int_{h}^{b} p(x) d x=0$. There is no restriction in assuming likewise that either $(a, b)=(0, \infty)$ or $(a, b)=(-\infty, \infty)$. (Perform, if necessary, a linear transformation on x.)

Following Krall we let

$$
\begin{equation*}
S(x)=K \int_{a}^{x}(z-L) p(z) d z, \quad a \leqq x \leqq b \tag{3}
\end{equation*}
$$

where K, L are constants determined by the conditions $S(b)=0$, $\int_{a}^{b} S(x) d x=\int_{a}^{b} q(x) d x$. The boundary conditions on $S(x)$ require that the integrand $(z-L) p(z)$ change sign so that $a<L<b$. Then $\int_{a}^{x}(z-L) p(z) d z$ decreases in (a, L) and increases in (L, b), therefore this integral is always less than or equal to zero. Hence,

$$
\int_{a}^{b} K\left(\int_{a}^{x}(z-L) p(z) d z\right) d x=\int_{a}^{b} q(x) d x>0
$$

requires $K<0$ and therefore $S(x) \geqq 0$. Suppose

$$
\boldsymbol{\epsilon}_{x} \equiv \int_{x}^{\infty} K(z-L) p(z) d z
$$

and

$$
\epsilon_{x}^{\prime} \equiv \int_{x}^{\infty} K z^{i}(z-L) p(z) d z
$$

i a positive integer. Then, $S(x)=-\epsilon_{x},-\epsilon_{x}^{\prime} \geqq-\epsilon_{x} x^{i}$ if $x>|L|$, and $\epsilon_{x}, \epsilon_{x}^{\prime} \rightarrow 0$ as $x \rightarrow \infty$. Therefore, $S(x) \leqq-\epsilon_{x}^{\prime} / x^{i}$ if $x>|L|$, and $x^{i} S(x) \rightarrow 0$ as $x \rightarrow \infty,(i=0,1, \cdots)$. Similarly, if $a=-\infty$, we prove that $x^{i} S(x) \rightarrow 0$ as $x \rightarrow-\infty,(i=0,1, \cdots)$. In every case, $\int_{a}^{b} x^{i} S(x) d x$ exists, $(i=0,1, \cdots)$. We conclude that $S(x)$ has the following properties:

$$
\begin{aligned}
K & <0, a<L<b, S(x)>0, a<x<b, S(a)=S(b)=0, \\
S^{\prime}(x) & =K(x-L) p(x) \text { exists almost everywhere, } \\
\text { (4) } \quad S^{\prime}(x) & \geqq 0, a \leqq x \leqq L, \text { almost everywhere, } \\
S^{\prime}(x) & \leqq 0, L \leqq x \leqq b, \text { almost everywhere, } \\
x^{i} S(x) & \rightarrow 0 \text { as } x \rightarrow a \text { or } b, \quad i=0,1, \cdots .
\end{aligned}
$$

Again, with Krall, we obtain

$$
\begin{align*}
& \int_{a}^{b} S(x) x^{i} d x=\int_{a}^{b} q_{1}(x) x^{i} d x=\int_{a}^{b} q(x) x^{i} d x, \quad i=0,1, \cdots \\
& \int_{a}^{b} S(x) \phi_{m}^{\prime}(x) \phi_{n}^{\prime}(x) d x=\int_{a}^{b} q_{1}(x) \phi_{m}^{\prime}(x) \phi_{n}^{\prime}(x) d x=0 \tag{5}\\
& m \neq n ; m, n=0,1, \cdots \\
& q_{1}(x) \equiv S(x)+T(x), \quad \int_{a}^{b} T(x) x^{i} d x=0, \quad i=0,1, \cdots
\end{align*}
$$

In the finite interval this requires that $T(x) \equiv 0$ almost everywhere, but in the infinite interval this result does not follow.* However, it is known that if $\int_{-\infty}^{\infty} T(x) x^{i} d x=0,(i=0,1, \cdots)$, and if $\int_{-x}^{x}|T(z)| d z$ exists for every x, and $T(x) \geqq 0$ for $|x|$ sufficiently large, then $T(x) \equiv 0$ almost everywhere. We shall now prove this statement.

Suppose $T(x) \geqq 0$ for $|x| \geqq A$. In view of (5), $\int_{-x}^{x}|T(z)| d z$ exists for all x. Choose $A^{\prime}>A$ and i even. Then

$$
\begin{aligned}
\int_{-\infty}^{\infty} T(x) x^{i} d x= & \int_{-\infty}^{-A} T(x) x^{i} d x+\int_{-A}^{A} T(x) x^{i} d x+\int_{A}^{A^{\prime}} T(x) x^{i} d x \\
& +\int_{A^{\prime}}^{A^{\prime}+1} T(x) x^{i} d x+\int_{A^{\prime}+1}^{\infty} T(x) x^{i} d x=\sum_{n=1}^{\mathfrak{5}} I_{n}=0
\end{aligned}
$$

where $I_{1} \geqq 0, I_{3} \geqq 0, I_{4} \geqq 0, I_{5} \geqq 0, I_{2} \leqq 0, I_{1}+I_{3}+I_{5} \geqq 0$, and $I_{2}+I_{4} \leqq 0$. Given $\epsilon>0$, suppose $T(x) \geqq \epsilon$ on some set G of positive measure in (A, ∞). Choose $A^{\prime},\left(A^{\prime}>A\right)$, such that the interval $\left(A^{\prime}, A^{\prime}+1\right)$ contains a subset of G of measure $\sigma>0$. Then $I_{4}>0$ and

$$
\frac{\left|I_{2}\right|}{I_{4}} \leqq \frac{\int_{-A}^{A} x^{i} \cdot|T(x)| d x}{\sigma \cdot \epsilon\left(A^{\prime}\right)^{i}} \leqq \frac{A^{i} \int_{-A}^{A}|T(x)| d x}{\sigma \cdot \epsilon\left(A^{\prime}\right)^{i}}<1
$$

if i is sufficiently large, since $A / A^{\prime}<1$. Then $\left|I_{2}\right|<I_{4}, I_{2}+I_{4}>0$, which is a contradiction. Thus $T(x) \equiv 0$ almost everywhere in (A, ∞), and likewise in $(-\infty,-A)$. We conclude that $\int_{-A}^{A} T(x) x^{i} d x=0$, ($i=0,1, \cdots$), therefore $T(x) \equiv 0$ almost everywhere.

Since $S^{\prime}(x)=K(x-L) p(x)$ almost everywhere, (2) and (5) lead to the differential equation

$$
\begin{equation*}
\left(r x^{2}+s x+t\right) S^{\prime}(x)-K(x-L) S(x)=K(x-L) T(x) \tag{6}
\end{equation*}
$$

The solution of (6) is

[^2]$$
S(x)=S_{1}(x)+C f(x), \quad \log f(x)=\int^{x} \frac{K(z-L) d z}{r z^{2}+s z+t}
$$
\[

$$
\begin{equation*}
S_{1}(x)=f(x) \int_{c}^{x} \frac{K(z-L) T(z) d z}{\left(r z^{2}+s z+t\right) f(z)}, \quad \quad c, C \text { constants } \tag{7}
\end{equation*}
$$

\]

3. Discussion of $r x^{2}+s x+t$. (i) Suppose first that $r x^{2}+s x+t$ has imaginary zeros. Then

$$
f(x)=\left(r x^{2}+s x+t\right)^{\alpha} e^{\beta \arctan (\gamma x+\delta)}, \quad \alpha, \beta, \gamma, \delta \text { constants }
$$

where $r\left[1+(\gamma x+\delta)^{2}\right] \equiv \gamma^{2}\left(r x^{2}+s x+t\right), 2 \alpha r=K$, and $\beta r=-\alpha(2 r L+s)$. Since $\beta_{0}=\int_{a}^{b} q_{1}(x) d x>0$, we conclude that $r>0, \alpha<0$, and $r x^{2}+s x+t$ >0 in (a, b).

Let i be an integer such that $\alpha+i \geqq 0, i \geqq 1$, and let $f_{1}(x)$ $\equiv\left(r x^{2}+s x+t\right)^{i}[(\alpha+i)(2 r x+s)+\beta r / \gamma] f(x)$.

Integrating by parts we have

$$
\begin{aligned}
& \int_{a}^{b} \frac{S(x)}{f(x)} f_{1}^{\prime}(x) d x=\left[f_{1}(x)\left\{\int_{c}^{x} \frac{K(z-L) T(z) d z}{\left(r z^{2}+s z+t\right) f(z)}+C\right\}\right]_{a}^{b} \\
& -K \int_{a}^{b}(x-L)\left(r x^{2}+s x+t\right)^{i-1}\left[(\alpha+i)(2 r x+s)+\frac{\beta r}{\gamma}\right] T(x) d x \\
& \int_{a}^{b} S(x)\left(r x^{2}+s x+t\right)^{i-1}\left\{\left[(\alpha+i)(2 r x+s)+\frac{\beta r}{\gamma}\right]^{2}\right. \\
& \left.\quad+2 r(\alpha+i)\left(r x^{2}+s x+t\right)\right\} d x=0
\end{aligned}
$$

Since the integrand does not change sign, we conclude that $S(x) \equiv 0$ almost everywhere, which is impossible in view of (4).
(ii) Suppose that $r x^{2}+s x+t=r(x-g)^{2}$. As in (i), $r>0$. Here

$$
f(x)=(x-g)^{\alpha} e^{\beta /(x-g)}, \quad \alpha, \beta \text { constants }
$$

Let i be an integer such that $\alpha+i \geqq 0, i \geqq 2$, and

$$
f_{1}(x) \equiv(x-g)^{i}[(\alpha+i)(x-g)-\beta] f(x)
$$

As in (i),

$$
\int_{a}^{b} \frac{S(x)}{f(x)} f_{1}^{\prime}(x) d x=0
$$

which is impossible.
(iii) Suppose that $r x^{2}+s x+t=r(x-g)(x-h)$, (g, h real; $g<h$). (If (a, b) is finite, this is the only possible case, since $T(x) \equiv 0$ almost everywhere.) Here $f(x)=(x-g)^{\alpha}(x-h)^{\beta}$,

$$
\begin{aligned}
& S(x)=(x-g)^{\alpha}(x-h)^{\beta}\left\{\int_{c}^{x} \frac{K(z-L) T(z) d z}{r(z-g)^{\alpha+1}(z-h)^{\beta+1}}+C\right\} \\
& \alpha, \beta, c, C \text { constants, } r(\alpha+\beta)=K .
\end{aligned}
$$

If i, j are integers such that $\alpha+i>0, \beta+j>0, i \geqq 1, j \geqq 1$, then, integrating by parts, we find that

$$
\begin{aligned}
& \int_{a}^{b} \frac{S(x)}{(x-g)^{\alpha}(x-h)^{\beta}} \frac{d}{d x}\left[(x-g)^{\alpha+i}(x-h)^{\beta+j}\right] d x=0 \\
& \int_{a}^{b} S(x)(x-g)^{i-1}(x-h)^{j-1}(x-\bar{x}) d x=0, \bar{x}=\frac{(\alpha+i) h+(\beta+j) g}{\alpha+\beta+i+j}
\end{aligned}
$$

This is impossible, as we shall show when $a=0$. (The proof is similar if $a=-\infty$.) If $\bar{S}(x) \equiv S(x)(x-g)^{i-1}(x-h)^{i-1}(x-\bar{x})$, and if constants A, A^{\prime} are chosen so that $A^{\prime}>A>3|h|+|L|+1$, then

$$
\begin{aligned}
\int_{0}^{\infty} \bar{S}(x) d x=\int_{0}^{A} \bar{S}(x) d x & +\int_{A}^{A^{\prime}} \bar{S}(x) d x+\int_{A^{\prime}}^{A^{\prime}+1} \bar{S}(x) d x \\
& +\int_{A^{\prime}+1}^{\infty} \bar{S}(x) d x \equiv \sum_{n=1}^{4} i_{n}=0
\end{aligned}
$$

If i is so large that $|\bar{x}-h|<|h|+1$, we have

$$
i_{2}>0, \quad i_{3}>0, \quad i_{4}>0, \quad i_{1}<0, \quad i_{2}+i_{4}>0, \quad i_{1}+i_{3}<0
$$

On the other hand,

$$
\frac{\left|i_{1}\right|}{i_{3}} \leqq \frac{(A-g)^{i-1}(A-h)^{j-1}(A-\bar{x})}{\left(A^{\prime}-g\right)^{i-1}\left(A^{\prime}-h\right)^{i-1}\left(A^{\prime}-\bar{x}\right) S\left(A^{\prime}+1\right)} \int_{0}^{A} S(x) d x<1
$$

if i is sufficiently large. Then $\left|i_{1}\right|<i_{3}$, contradicting $i_{1}+i_{3}<0$.
From these cases we conclude that $r=0$.
(iv) Suppose that $r=0, s \neq 0$. Let

$$
\frac{K(x-L)}{s x+t}=\beta+\frac{\alpha s}{s x+t}, \quad \alpha, \beta \text { constants, } \beta s=K
$$

The condition $S(b)=0$ gives

$$
\begin{aligned}
\int_{a}^{b}[\beta(s x+t) p(x)+\alpha s p(x)] d x & =\beta \int_{a}^{b} q_{1}(x) d x+\alpha s \int_{a}^{b} p(x) d x \\
& =\beta \beta_{0}+\alpha s \alpha_{0}=0
\end{aligned}
$$

We must have $\alpha>0$, because $\alpha_{0}, \beta_{0}>0, \beta s<0$. In this case, $f(x)$ $=(s x+t)^{\alpha} e^{\beta x}$, and

$$
S(x)=(s x+t)^{\alpha} e^{\beta x}\left\{\int_{c}^{x} \frac{K(z-L) T(z) d z}{(s z+t)^{\alpha+1} e^{\beta z}}+C\right\}, \quad c, C \text { constants }
$$

If $a<-t / s \equiv-t^{\prime}$, the existence of $S(x)$ near $-t^{\prime}$ requires the existence of the integral

$$
\int_{c}^{-t^{\prime}} K(z-L)(s z+t)^{-\alpha-1} e^{-\beta z} T(z) d z
$$

so that $S\left(-t^{\prime}\right)=0$, which is impossible. Thus $s x+t$ does not change sign in (a, b), and $s>0$ because $\beta_{0}>0$. Then $a=0, \beta<0, t^{\prime} \equiv t / s \geqq 0$.

Let

$$
S_{2}(x) \equiv\left\{\begin{array}{l}
0 \quad \text { in }\left(0, t^{\prime}\right) \\
S\left(x-t^{\prime}\right) \quad \text { in }\left(t^{\prime}, \infty\right)
\end{array}\right.
$$

where

$$
\begin{aligned}
S\left(x-t^{\prime}\right) \equiv \frac{1}{s} x^{\alpha} e^{\beta x}\left\{\int_{c^{\prime}}^{x} \frac{K\left(z-L-t^{\prime}\right) T\left(z-t^{\prime}\right) d z}{z^{\alpha+1} e^{\beta z}}+C^{\prime}\right\} \\
c^{\prime}, C^{\prime} \text { constants. }
\end{aligned}
$$

The weight functions $S\left(x-t^{\prime}\right)$ in $\left(t^{\prime}, \infty\right)$ and $S_{2}(x)$ in ($0, \infty$) give rise to the same system of orthogonal polynomials $\left\{\phi_{n}{ }^{\prime}\left(x-t^{\prime}\right)\right\}$ since the moments are the same. Let

$$
T_{1}(x) \equiv S_{2}(x)+C_{1} x^{\alpha} e^{\beta x}
$$

where the constant C_{1} is determined so that $\int_{0}^{\infty} T_{1}(x) d x=0$. Integrating by parts, we obtain

$$
\begin{array}{ll}
\int_{0}^{\infty} \frac{T_{1}(x)}{x^{\alpha} e^{\beta x}} \frac{d}{d x}\left[x^{\alpha+i} e^{\beta x}\right] d x=0, & i \geqq 1 \\
\int_{0}^{\infty} T_{1}(x) x^{i-1}[\alpha+i+\beta x] d x=\int_{0}^{\infty} T_{1}(x) x^{i-1} d x=0, \\
i=1,2, \cdots
\end{array}
$$

Hence, if we neglect the function $T_{1}(x)$ whose moments vanish, the weight function is of the form $C x^{\alpha} e^{\beta x}$ (C an arbitrary constant). Replacing x by $-x / \beta$ and putting $C=(-\beta)^{\alpha}$, we obtain the weight function $x^{\alpha} e^{-x}$ which is the weight function for the derivatives of the Laguerre polynomials with the property that

$$
\begin{aligned}
& \int_{0}^{\infty} x^{\alpha-1} e^{-x} \phi_{m}(x) \phi_{n}(x) d x=\int_{0}^{\infty} x^{\alpha} e^{-x} \phi_{m}^{\prime}(x) \phi_{n}^{\prime}(x) d x=0 \\
& \alpha>0 ; m \neq n ; m, n=0,1, \cdots
\end{aligned}
$$

(v) Suppose that $r=s=0, t \neq 0$. Since $\beta_{0}>0$, we must have $t>0$. Here $f(x)=e^{K^{\prime}\left(x^{2}-2 L x\right)}$, and

$$
\begin{aligned}
S(x)= & e^{K^{\prime}\left(x^{2}-2 L x\right)}\left\{\int_{c}^{x} 2 K^{\prime}(z-L) e^{-K^{\prime}\left(z^{2}-2 L z\right)} T(z) d z+C\right\} \\
& K^{\prime}, c, C \text { constants, } K^{\prime}=K / 2 t<0 .
\end{aligned}
$$

If i is an odd positive integer, the function

$$
e^{-K^{\prime}\left(x^{2}-2 L x\right)} \int_{\infty}^{x}(z-L)^{i} e^{K^{\prime}\left(z^{2}-2 L z\right)} d z
$$

is a polynomial in x. Hence, integration by parts gives $\int_{a}^{b} S(x)(x-L)^{i} d x$ $=0$, (i odd), which requires $a=-\infty$. Since by (5)

$$
\begin{aligned}
\int_{-\infty}^{\infty} p(x)(x-L)^{i} d x & =\int_{-\infty}^{\infty} p(x+L) x^{i} d x=\int_{-\infty}^{\infty} p(-x+L) x^{i} d x=0 \\
\int_{-\infty}^{\infty} p(x+L) x^{i} d x=\int_{-\infty}^{\infty} p(-x+L) x^{i} d x, & i \text { odd } \\
& i \text { even }
\end{aligned}
$$

it follows that $p_{1}(x) \equiv p(x+L)+p(-x+L)$ is a weight function for $\left\{\phi_{n}(x+L)\right\}$. Assuming that $p(x)$ has been replaced by $p_{1}(x)$, we find that $p_{1}(-x) \equiv p_{1}(x), T(-x) \equiv T(x), S(-x) \equiv S(x)$, and

$$
S(x)=e^{K^{\prime} x^{2}}\left\{\int_{0}^{x} 2 K^{\prime} z e^{-K^{\prime} z^{2}} T(z) d z+C\right\}, \quad K^{\prime}, C \text { constants }
$$

Let

$$
T_{1}(x)=e^{K^{\prime} x^{2}}\left\{\int_{0}^{x} 2 K^{\prime} z e^{-K^{\prime} z^{2}} T(z) d z+C_{1}\right\}
$$

where C_{1} is a constant to be determined. Then $T_{1}(-x) \equiv T_{1}(x)$, and $\int_{-\infty}^{\infty} T_{1}(x) x^{i} d x=0$, (i odd). If i is even, then integration by parts shows that

$$
u(x) \equiv e^{-K^{\prime} x^{2}} \int_{\infty}^{x} z^{i} e^{K^{\prime} z^{2}} d z=x P_{i-2}(x)+C_{2} e^{-K^{\prime} x^{2}} \int_{\infty}^{x} e^{K^{\prime} z^{2}} d z
$$

where $P_{i-2}(x)$ is a polynomial of degree $i-2$ in $x,\left(i \geqq 2, C_{2}\right.$ constant $)$. It follows that

$$
\begin{aligned}
& \int_{0}^{\infty} T_{1}(x) x^{i} d x=\left[\int_{\infty}^{x} z^{i} e^{K^{\prime} z^{2}} d z\left\{\int_{0}^{x} 2 K^{\prime} z e^{-K^{\prime} z^{2}} T(z) d z+C_{1}\right\}\right]_{0}^{\infty} \\
& -2 K^{\prime} \int_{0}^{\infty} x T(x) u(x) d x \\
& =C_{2}\left\{C_{1} \int_{\infty}^{x} e^{K^{\prime} z^{2}} d z\right. \\
& \left.-2 K^{\prime} \int_{0}^{\infty} x T(x) e^{-K^{\prime} x^{2}}\left(\int_{\infty}^{x} e^{K^{\prime} z^{2}} d z\right) d x\right\} \\
& =0, \\
& i \text { even, }
\end{aligned}
$$

if C_{1} is properly chosen. Thus $\int_{-\infty}^{\infty} T_{1}(x) x^{i} d x=0,(i=0,1, \cdots)$. Except for a function whose moments vanish, the weight function reduces to $C_{3} e^{K^{\prime} x^{2}}$, (C_{3} an arbitrary constant). Replacing x by $x /\left(-K^{\prime}\right)^{1 / 2}$ and putting $C_{3}=1$, we obtain $e^{-x^{2}}$, which is the weight function for Hermite polynomials.
4. Conclusion. Having completed a proof of the theorem, we give the following corollary:

Corollary. If $\left\{\phi_{n}(x)\right\}$ is an orthogonal system of polynomials which is also an Appell system, so that $\phi_{n}^{\prime}(x) \equiv n \phi_{n-1}(x)($ that is, $p(x) \equiv q(x))$, then $\left\{\phi_{n}(x)\right\}$ is reducible to the system of Hermite polynomials by means of a linear transformation on x.

Meixner* first proved this result, but other proofs have been given by W. Hahn, \dagger the author, \ddagger and Shohat. § Sheffer's $\|$ recurrence relation for Appell polynomials and the recurrence relation for orthogonal polynomials \uparrow enable us to give a more direct proof.** Comparing Sheffer's relation

[^3]\[

$$
\begin{gathered}
\phi_{n}(x)=\left(x+b_{0}\right) \phi_{n-1}(x)+(n-1) b_{1} \phi_{n-2}+(n-1)(n-2) b_{2} \phi_{n-3}(x) \\
+\cdots+(n-1)(n-2) \cdots 1 b_{n-1} \phi_{0}(x)
\end{gathered}
$$
\]

with

$$
\phi_{n}(x)=\left(x-c_{n}\right) \phi_{n-1}(x)-\lambda_{n} \phi_{n-2}(x)
$$

we have

$$
c_{n}=-b_{0}, \quad b_{2}=b_{3}=\cdots=b_{n-1}=0, \quad \lambda_{n}=-b_{1}(n-1)>0
$$

for $n>1$. Let $x=\left(-2 b_{1}\right)^{1 / 2} y-b_{0}$; then $\phi_{n}(x) \equiv\left(-2 b_{1}\right)^{n / 2} \psi_{n}(y)$, where $\psi_{n}(y) \equiv y \psi_{n-1}(y)-[(n-1) / 2] \psi_{n-2}(y)$, which proves that $\left\{\psi_{n}(y)\right\}$ is the set of Hermite polynomials.

University of Nebraska

[^0]: Webster, M. S., "Orthogonal Polynomials with Orthogonal Derivatives" (1938). Faculty Publications, Department of Mathematics. 28.
 https://digitalcommons.unl.edu/mathfacpub/28

[^1]: * Presented to the Society, November 28, 1936.
 \dagger There is no loss of generality in assuming the intervals of orthogonality for $\left\{\phi_{n}(x)\right\}$ and for $\left\{\phi_{n}^{\prime}(x)\right\}$ to be the same, since the definitions of $p(x), q(x)$ may always be extended to a common interval (a, b). More generally, $p(x) d x$ may be replaced by $d \psi_{1}(x) \equiv A p(x)+d T(x)$, where A is a constant, and $\int_{a}^{b} x^{i} d T(x)=0$, ($i=0,1, \cdots$); $q(x) d x$ may be replaced by $d \psi_{2}(x)$, where $\psi_{2}(x)$ is monotone nondecreasing.
 \ddagger W. Hahn, Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Mathematische Zeitschrift, vol. 39 (1935), pp. 634-638.
 § H. Krall, On derivatives of orthogonal polynomials, this Bulletin, vol. 42 (1936), pp. 423-428.

[^2]: * Stieltjes' example is $\int_{0}^{\infty} x^{n} e^{-x^{1 / 4}} \sin \left(x^{1 / 4}\right) d x=0,(n=0,1, \cdots)$,

[^3]: * J. Meixner, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion, Journal of the London Mathematical Society, vol. 9 (1934), pp. 6-13.
 \dagger Loc cit.
 \ddagger M. Webster, On the zeros of Jacobi polynomials with applications, Duke Mathematical Journal, vol. 3 (1937), pp. 426-442.
 § J. Shohat, The relation of the classical orthogonal polynomials to the polynomials of Appell, American Journal of Mathematics, vol. 58 (1936), pp. 453-464.
 || I. Sheffer, A differential equation for Appell polynomials, this Bulletin, vol. 41 (1935), pp. 914-923.

 Il J. Shohat, Théorie Générale des Polynômes Orthogonaux de Tchebichef, Mémorial des Sciences Mathématiques, vol. 66, Paris, 1934.
 ** This Bulletin, abstract 42-3-127.

