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ANATOMY AND PHYSIOLOGY OF GIANT NEURONS IN THE
ANTENNIFORM LEG OF THE AMBLYPYGID

PHRYNUS MARGINEMACULATUS

A. J. Spence: Department of Integrative Biology, 3060 Valley Life Science Building
#3140, University of California at Berkeley, Berkeley, California 94720-3140, USA.
E-mail: aspence@rvc.ac.uk

E. A. Hebets: School of Biological Sciences, 324 Manter Hall, University of
Nebraska, Lincoln, Nebraska 68588, USA.

ABSTRACT. Amblypygids have modified front legs that are not used for locomotion, but rather to
probe the environment in the manner of antennae. These elongate, motile sense organs are referred to as
antenniform legs. We have found remarkable replication in structure and function of giant neurons in the
antenniform leg of the amblypygid Phrynus marginemaculatus C. L. Koch 1841 when compared with
other amblypygids. These neurons have such large diameter axons (several �m) that their action potentials
can be recorded outside the cuticle. Their cell bodies are found in the periphery, in the distal-most segments
of the antenniform leg, centimeters away from the central nervous system. Primary afferents from sense
organs on the antenniform leg synapse onto some of the giant fibers in these distal segments of the leg.
Standard histological techniques and a novel whole mount preparation were used to identify the location
of giant cell bodies within the antenniform leg. We found several new cell bodies in segments 10–20,
three of which were predicted by previous electrophysiological studies of another amblypygid, Hetero-
phrynus elaphus Pocock 1903. Electrophysiology was used to show that the structure and function of four
of the giant neurons, GN1, 2, 6, and 7, is very similar in P. marginemaculatus and H. elaphus. Hetero-
phrynus elaphus inhabits humid tropical forests in South America while P. marginemaculatus individuals
were collected from a pine rock hammock in the Florida Keys, USA. The similarity of findings in species
with such distinct habitats suggests that the giant neurons are required for basic neuromechanical operation
of these extended limbs, and are not subject to intense selection via ecological factors.

Keywords: Whip spider, giant neurons, mechanoreceptor, antennae

Giant neurons are a specialization of the
nervous system in many animals that has en-
abled investigators to observe directly how
neuron structure and function bring about be-
havior. Having exceptionally large diameter
axons, giant neurons conduct action potentials
very quickly (on the order of one to tens of
meters per second). As conduction velocity
scales with the square root of diameter, this
increase in axon diameter and hence conduc-
tion velocity is one way in which organisms
can reduce the conduction time of nervous
signals. This results in faster turnaround from
perceived stimuli to motor response. Selection
pressure for fast escape behaviors is thought
to have led to the development of the giant
neurons found in squid, fish, crayfish, crickets,
flies and cockroaches (Levine & Tracey 1973;
Tauber & Camhi 1995; Mizrahi & Libersat
1997; Eaton et al. 2001; Jablonski & Straus-

feld 2001). The function of the giant neurons
in the above cases has been demonstrated
clearly; their unusually rapid spike conduction
time facilitates fast escape behavior.

Giant neurons and the conspicuous rapid
behaviors they underlie have led to notable
advancements in neuroscience. For example,
in teleost fish, giant Mauthner neurons facili-
tate rapid evasive turning behavior. As a re-
sult, the entire neural pathway from sensory
input (predator approach angle) to motor out-
put (bilateral flexing of trunk muscles) is well
understood and has been modeled mathemat-
ically (Eaton et al. 2001). Studies of wind-
sensitive giant interneurons in the cricket are
demonstrating how dendritic morphology pro-
duces complex spatiotemporal responses (Ja-
cobs & Theunissen 2000). Finally, the painted
redstart (Myioborus pictus) employs a visual
display specialized to trigger giant neuron me-
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diated escape responses, enabling them to for-
age more effectively (Jablonski & Strausfeld
2001). In all of these examples, giant neurons
have served as a model system for under-
standing the neural system in general, at the
anatomical, physiological, and behavioral lev-
els, and have offered insight into the neural
basis of behavioral and ecological adaptations.

Amblypygids (Arachnida, Amblypygi),
commonly called whip spiders, have a system
of giant neurons in their first pair of legs that,
in addition to having unique morphology and
synaptic connectivity, has not yet been linked
to any behavior. Unlike most other arachnids,
these nocturnal predators do not use this first
pair of legs for locomotion. The legs instead
are elongated, motile, sensory appendages that
are used to probe the environment in a manner
similar to insect antennae. The antenniform
legs are very long relative to body size. At
approximately 5 cm long for an adult Phrynus
marginemaculatus C. L. Koch 1841, the an-
tenniform legs are 5 times the width of the
prosoma and 2.5 times longer than the walk-
ing legs, yet are very thin, measuring only 150
�m in diameter at the distal end. They are
used in orientation, prey capture, agonistic
displays, and even courtship displays (Wey-
goldt 1972, 1974; Beck & Gorke 1974; Foelix
& Hebets 2001; Fowler-Finn & Hebets 2006).
The tips of the antenniform legs are covered
with various types of sensilla (Beck et al.
1974, 1977; Foelix et al. 1975; Igelmund
1987; Weygoldt 2000; Foelix & Hebets 2001),
some of which have been shown (using elec-
trophysiology) to have mechanosensory (Ig-
elmund & Wendler 1991b) or olfactory (He-
bets & Chapman 2000) function. Several other
types of sensilla are also found on the anten-
niform leg tip, some of unknown function, and
others that are morphologically similar to con-
tact chemoreceptive or hygroreceptive sensil-
la, though this latter function has not been
demonstrated with electrophysiology (Foelix
et al. 1975; Beck et al. 1977; Foelix & Troyer
1980). The two nerves inside the antenniform
leg contain some 20,000 small primary sen-
sory axons (typically 100–200 nm in diame-
ter) projecting from these sensilla, but they
also contain several conspicuous giant neu-
rons (axon diameter up to 12 �m).

Several features differentiate these giant
neurons from those found in any other taxa.
The cell bodies, or somata, of these giant neu-

rons are found in the periphery, located in spe-
cific segments of the antenniform leg tarsus,
in some cases centimeters away from the cen-
tral nervous system (CNS). While some of
these giant neurons are interneurons, others
are proprioceptors. Synapses between primary
afferent neurons and the giant interneurons
also occur in the periphery, in the antenniform
leg, a feature first discovered by Foelix
(1975). Some of these synapses are axo-axo-
nal, connecting the primary sensory neuron’s
axon to the axon of a giant interneuron. In
almost all other arthropods studied to date,
primary afferents project all the way into the
CNS before synapsing onto second order neu-
rons, making this peripheral integration a
unique feature. Equally intriguing is the fact
that the primary afferents, in addition to syn-
apsing onto the giants, project in parallel all
the way to the CNS. So the animal receives
fast, highly summed information from the gi-
ant interneurons, and slower, sense organ spe-
cific sensory information in parallel. It is un-
known whether primary afferents from
olfactory or contact chemosensory sensilla
synapse onto any of the giants, although stim-
ulation with common odorants does not elicit
spikes in the giants in another species of am-
blypygid, Heterophrynus elaphus Pocock
1903 (Igelmund & Wendler 1991a, b).

As intriguing as the morphological differ-
ences are, even more mysterious is the behav-
ioral role of the amblypygid giant neuron sys-
tem. The system does not seem to underlie
escape or foraging behaviors. Touching the
antenniform leg in a manner sufficient to elicit
spikes in the mechanosensitive giants does not
elicit an escape response of the animal, or
even a reliable retraction of the antenniform
leg (Igelmund & Wendler 1991b). In prey cap-
ture, touching a prey item with the antenni-
form leg does not directly precede the rapid
strike movement, and often a delay of several
seconds occurs between the touch and the
strike (Foelix et al. 2002). Courtship and intra-
specific aggressive behaviors are accompanied
by high-speed (�30 Hz) flicking of the anten-
niform leg; whether they are mediated by the
giant neurons remains to be seen (Weygoldt
2002; Fowler-Finn & Hebets 2006).

Although the majority of the 136 described
species of amblypygid inhabit tropical and
subtropical habitats, a few species are found
in the temperate zones and still others inhabit
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arid and semi-arid regions (Weygoldt 2000).
With such a range of habitat types, one might
expect environmental factors to play an im-
portant role in shaping the sensory biology of
ecologically disparate species. The purpose of
this study was to characterize the giant neuron
system of Phrynus marginemaculatus and
compare it with previously studied amblypy-
gids, in an attempt to shed light on the behav-
ioral role of these giant fibers. The specific
question that drove this study was whether
these giant neurons are broadly used tools,
supporting a variety of functions, or whether
they are more specialized, facilitating species-
specific tasks. Prior to this study, only the gi-
ant neurons in H. elaphus had been studied in
detail using both histology and electrophysi-
ology (Igelmund 1984, 1987; Igelmund &
Wendler 1991a, b). Our studies suggest that
while there are some similarities and differ-
ences between species, the giant neurons ap-
pear to remain conserved across disparate eco-
logical niches.

We chose to study P. marginemaculatus for
several reasons. While it is in the same family
as H. elaphus (Phrynidae), the species used
for earlier neurophysiological work, the two
genera do not appear closely related (Wey-
goldt 1996). P. marginemaculatus is also the
species about which we know the most. It has
been the subject of several behavioral studies
including those focusing on life cycle and de-
velopment (Weygoldt 1970), reproductive be-
havior (Weygoldt 1969, 1974), male-male
contests, and female-female contests (Wey-
goldt 1969; Fowler-Finn & Hebets 2006). Fur-
thermore, the habitats of H. elaphus and P.
marginemaculatus differ greatly. H. elaphus is
found on the vertical surfaces of large but-
tressed trees underneath the dense tropical for-
est canopies of South America. Their habitat
is extremely heterogeneous both in terms of
physical structure and biotic composition. In
contrast, P. marginemaculatus is found hori-
zontally underneath limestone rocks in the rel-
atively open pine rock hammocks of the Flor-
ida Keys, USA where the complexity of both
physical and biotic structure is likely much
lower. Comparing the giant neuron structure
and function between P. marginemaculatus
and the previously studied H. elaphus not only
adds to our knowledge of the unique structure
of amblypygid giant neurons, but also pro-

vides insights in the behavioral role of this
giant neuron system.

METHODS

Specimens.—Adult male and female whip
spiders (Phrynus marginemaculatus) were
collected from Big Pine Key, Florida (24.67N,
81.35W) on 6–9 November 2002 and were
brought back to the laboratory where they
were housed and cared for in an identical
manner to a previous study (Hebets & Chap-
man 2000). Voucher specimens are available
from the personal collection of E. Hebets.

The antenniform leg of P. marginemacu-
latus comprises a femur (�1 cm long), tibia
(�1.7 cm long), and tarsus (�2 cm long), re-
sulting in an appendage � 5 cm in length (rel-
ative to a body length of 1 cm). The tibia and
tarsus are made up of many cylindrical small-
er segments, called pseudosegments, giving
rise to visible segmental boundaries and re-
peated sensory structures, and having length
on the order of roughly 0.5–1 mm. In keeping
with past convention, the pseudosegments of
the antenniform leg are labeled with increas-
ing numbers starting at the distal-most tip.
The tip segment then is 1 (segment is some-
times abbreviated S, hence the tip segment is
S1), moving proximally with increasing num-
ber to the most proximal segment of the tar-
sus, at the tarsus-tibia joint, which was typi-
cally segment 59 (S59).

Histology.—Standard histological proto-
cols were used to stain and image cross- and
longitudinal sections of the antenniform leg.
Three techniques were used. The first consist-
ed of Propidium Iodide staining of whole
mount preparations (Duch et al. 2000). The
antenniform leg was clipped distal to the pa-
tella, and dissected in Schneider’s culture me-
dium at room temperature (RT). A sliver of
razor blade was used to shave approximately
the top third of the cuticle from the distal-
most 30 segments of the tarsus. Tissue was
fixed in 3.5% paraformaldehyde in PBS
(phosphate buffered saline), and rinsed in sev-
eral changes of PBS for 30 min. In two prep-
arations, the tissue was incubated in RNase A
(Sigma, 0.1 mg/ml, in PBS) for 30 min at 37�
C, to reduce background staining. After being
rinsed for 30 min in PBST (PBS � 0.3% Tri-
ton-X 100), the tissue was incubated in Pro-
pidium Iodide (Sigma, 1:1000 in PBST) for
60 min at RT. After final rinses in PBS, the
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tissue was mounted on a slide with Vecta-
Shield mounting media (VectaLabs, Inc.).

Methylene blue and Osmium Tetroxide
stains were utilized with resin (Ultra Low Vis-
cosity Embedding Kit, Polysciences, Inc.) em-
bedded tissue. For both, the antenniform leg
was cut into short (2–5 mm) tubes and fixed
with an aldehyde based fixative. Osmium Te-
troxide staining proceeded as documented in
Igelmund & Wendler 1991a. Tissue was cut
into 5, 8, and 10 �m thick sections using a
Leitz 1512 microtome. Tissue that had not
been stained with OsO4 was stained on the
slide with 1% methylene blue solution, before
being mounted with Entellan mounting media.
Slides were imaged with a Leica DM4000B
compound microscope and DFC480 digital
camera.

Propidium iodide staining of whole mount
preparations provided adequate contrast to im-
age the large cell bodies, was the most rapid
imaging technique, and had the advantage of
leaving long intact lengths of leg, which made
noting in which segment each cell body was
found an easy task. Due to the need to con-
serve our limited number of specimens for the
electrophysiological studies, we discontinued
our histological studies upon obtaining images
adequate to resolve the axons within the nerve
cross section and the locations of giant cell
bodies.

Electrophysiology.—Extracellular record-
ings from the antenniform leg were made us-
ing a technique similar to that of Igelmund &
Wendler (1991a). Animals were anesthetized
with CO2 or by placing them on a bed of ice
for 3 min. Once anesthetized, they were re-
strained using strips of dental wax, and cov-
ered with a moist Kim-wipe to prevent des-
iccation. The antenniform leg was extended
laterally and woven through four pairs of met-
al pins. These were made by cutting one side
of a 16-pin DIP socket into four small plastic
pieces, each containing two pins spaced by
2.54 mm. Electrochemical connection be-
tween each pin and the leg was made using a
small amount of EEG paste. These pins con-
stituted four pairs of differential recording
electrodes, with the spacing between each pair
being approximately 5 mm, that were con-
nected to the positive and negative inputs of
a differential voltage amplifier. As the distal-
most 50 segments of the tarsus that we were
interested in typically measured between 1

and 1.5 cm, we placed the electrodes as close
together as possible. The amplifier was a cus-
tom built, miniature 16 channel extracellular
voltage amplifier, with a gain of 1000. The 4
amplified signals were digitized (20 kHz sam-
ple rate) by a 16 channel FireWire A/D box
(DAQPad, National Instruments, Inc.), and ac-
quired directly into MATLAB (Mathworks,
Inc.) for analysis.

Multichannel spike waveforms were ana-
lyzed in MATLAB using custom scripts that
performed an amalgam of the most popular
manual and automated sorting techniques
(Lewicki 1998; Spence et al. 2003). Briefly,
the raw waveforms were bandpass filtered
(passband: 300Hz to 5 kHz), occurrences of
spikes were detected and sorted by amplitude
using an energy window filter, and then the
distributions of propagation times between
channels were used to identify unique spike
types. The cleanest (i.e., not overlapping with
other spikes on any other channel) individual
spikes were extracted from the raw record-
ings, aligned on channel four, and averaged to
produce a spike template (for details, see
Spence et al. 2003). Each of these ‘‘tem-
plates’’ for a particular multichannel spike
having distinct spike amplitude on each chan-
nel and distinct propagation time between
channels is assumed to originate from an in-
dividual giant fiber.

Stimuli were applied manually under a dis-
secting microscope. For mechanosensory
stimuli, a small plastic rod was used to gently
deflect bristle hairs at various points along the
antenniform leg. Two bouts of 30 sec of stim-
ulation were applied at each point. For deflec-
tion stimuli, the same rod was used to deflect
the antenniform leg laterally in the plane of
the animal.

RESULTS

External morphology.—Ten molted, pre-
served, or whole mount antenniform legs were
qualitatively surveyed with an optical micro-
scope for the presence and distribution of sen-
silla. Examination confirmed the presence of
bristle, club, porous and rod hair sensilla in
addition to modified tarsal claws, a pit organ,
and a plate organ (Igelmund 1987). The leaf-
like hairs reported on H. elaphus were not sys-
tematically found, with a single leaf-like hair
being found on only one animal out of 10 ob-
served. The rod sensilla are grouped in a sin-
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gle oval shaped patch on segment 1. The plate
organ was typically found on segment 11,
once on segment 13, and in one case two plate
organs appeared: one each on segments 11
and 13. A bulbous (and angled relative to the
plane perpendicular to the leg axis) segmental
boundary appears at the S22/S23 boundary, as
opposed to the S21/22 boundary in H. ela-
phus. This boundary likely contains the large
slit sensilla reported for the similar boundary
in H. elaphus, but we were unable to resolve
the slit in the optical microscope.

Histology.—The internal morphology of
the antenniform leg of P. marginemaculatus
is similar to that of H. elaphus. At segment
40, the antenniform leg is approximately 140
�m in diameter (Figs. 1–3). Visible within the
tarsus are 2 tendons, the lumen, a blood vessel
and 2 large nerves. The nerves contain several
large axons, the most readily apparent of
which are 2 giant axons located in nerve 1,
and 5 others in nerve 2 (Figs. 2, 3). These are
in addition to an estimated 20,000–30,000 pri-
mary sensory afferents of much smaller di-
ameter, of order 0.1 �m, contained in fascicles
(Foelix & Troyer 1980). In this segment (40),
the largest seven axons have effective radii (�
reff) of 1.8, 2.1, 2.3, 2.5, 2.6, 5.1, and 6.8 �m
respectively, where the effective radius is
computed from

A
r �eff ��

and ‘‘A’’ is the measured cross-sectional area
of the axon (n � 1).

Longitudinal sections of the antenniform
leg revealed giant cell bodies in segments 5,
6, 10, 11, 12, 14, 15, 16, 20, 22, 23, and 26
(Figs. 4–10). These somata are several tens of
�m in length and width (the largest was in
segment 6, measuring �100 by 50 �m, Fig.
4), and are readily identified by their large size
and distinct structure. They consist of an oval
shaped outer cell body, a circular, outlined nu-
cleus with homogenous, lightly stained inte-
rior, and an innermost nucleolus, which ap-
pears as a spot. The Propidium iodide stained
cell bodies (Figs. 4–7) display a white out-
lined nucleus with dark interior, and the nu-
cleolus appears as a white spot. The Osmium
Tetroxide (Fig. 4) and Methylene Blue (Figs.
7, 10) stained cell bodies have the reverse
contrast. It is assumed that these cell bodies
give rise to the giant axons seen in Figs. 1–3.

The cell bodies in segments 11 and 26 were
of slightly smaller size, having narrower and
more elongated cell bodies, but still displaying
the distinct circular nucleus and nucleolus
(Figures 4–10). Finding the location of the
cell bodies within the antenniform leg is use-
ful because these results can be compared
with multi-site electrophysiological record-
ings, establishing a connection between the
observed cytology and sensory physiology.

Electrophysiology.—Large (�50 �V–1.5
mV) action potentials of varied amplitude and
conduction velocity were recorded across 4
positions on the antenniform leg tarsus (Fig.
11). The spacing between pins in an individ-
ual recording pair was 2.54 mm, and the spac-
ing between pairs was approximately 5 mm
(see Fig. 11). For the purposes of understand-
ing spike timing and conduction velocity, the
spike can be thought of as ‘‘at’’ the midpoint
between a pair of recording sites at the time
when the inner part of its spike waveform
crosses zero. Spontaneous activity from small-
er units was common, while mechanical stim-
ulation (brushing hairs or bending the leg) was
required to elicit bursts of spikes from larger
units. At least 7 distinct types of spikes were
observed. Four of these were elicited repeat-
edly and classified reproducibly (n � 5 dif-
ferent animals) using mechanosensory stimu-
lation. Stimulation of the bristle hairs at 3
different points along the tarsus (Fig. 11) was
adequate to identify spikes corresponding to
two of the giant neurons, which we label GN1
and GN2 following the convention of Igel-
mund & Wendler (1991a).

The largest spike, corresponding to GN1,
had peak-to-peak amplitude 1.3 mV at seg-
ment 52 (recording site 4), and an average
conduction velocity of 2.9 m/s. It responded
to deflections of bristle hairs, maximally at the
tarsus tip and with reduced sensitivity as the
stimulation site was moved proximally (Fig.
11). The GN1 spike is generated at the site of
stimulation, and propagates both proximally
and distally inside the neuron, appearing on
our most distal recording site at segment 10.
GN1 is most likely the largest axon (Figs. 1–
3, Axon 1), and one of the cell bodies in seg-
ment 5 or 6 (Fig. 4), due to its large spike
amplitude and appearance on our segment 10
recording site.

The same bristle hair stimulation traces
were also adequate to identify spikes origi-
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Figures 1–3. Figure 1.—Cross section of the tarsus of the antenniform leg, stained with methylene blue.
Labeled are two tendons (te), a blood vessel (bv), and the two nerves (n1 and n2). Enlarged views of
nerves n1 and n2 are seen at right (Figures 2, 3), with outlines of the nerve bundle and largest seven
giant axons. Scale bars in Figures 2 and 3 are 10 �m.

nating from GN2. Although this neuron’s
spike also originates at the point of stimula-
tion and propagates in both directions, it is
smaller in amplitude and conduction velocity
than GN1 (0.41 mV and 2.6 m/s), and does
not appear on our segment 10 recording site
(Fig. 11). This places its cell body between
segments 10 and 28. These traits suggest that
it is GN2, and based on the similarity of our
results to those of Igelmund & Wendler
(1991a), it seems likely that it consists of one
of the axons of intermediate size (Figs. 1–3,
Axons 2–7), and one of the cell bodies found
in segment 23 (Figs. 9, 10). The amplitudes
and conduction velocities of both GN1 and
GN2 we have found are similar to those found
in H. elaphus (Igelmund 1984). The firing
rates of GN1 and GN2 adapted quickly, with
repeated stimulation of the same bristle hairs
producing few spikes.

Two types of spike that responded to de-
flection of the antenniform leg near segment
20 were identified. Deflection (bending) of the
tarsus at other points produced fewer or no
spikes from these neurons. We did not localize
the exact segmental boundary for which bend-
ing maximally elicits these spikes. The fact
that these spikes responded to bending of the
tarsus, propagated solely proximally, and did
not appear on our segment 12 recording site
(suggesting the cell body is proximal to seg-

ment 12 but distal to segment 28) identifies
them as GN6 and 7. These spikes had rela-
tively small average amplitude and conduction
velocity (GN6: 0.20 mV and 1.8 m/s, GN7:
0.16 mV and 1.7 m/s). The amplitude of these
spikes is in good agreement with that found
for them in H. elaphus, which varied between
0.1 and 0.2 mV (Igelmund 1984).

DISCUSSION

Morphology of the antenniform leg of P.
marginemaculatus.—We found that P. mar-
ginemaculatus has a close replication of the
sensory physiology found in H. elaphus. The
tarsus of the antenniform leg is equipped with
similar classes of sensory organs, and with
similar distribution. The rod hairs are grouped
in a single oval-shaped patch on the first tarsal
segment, which is similar to H. elaphus, but
in contrast to H. longicornis Butler 1873, in
which they are grouped in 3 distinct circular
patches on each of the first 3 segments (Igel-
mund 1987). We did not repeatedly find the
leaf-like hairs found on specific segments of
H. elaphus (Igelmund 1987). In this manner,
P. marginemaculatus is similar to H. longi-
cornis and H. batesii Butler 1873, which also
lack the leaf-like hairs (Igelmund 1987).

Internally, the antenniform leg of P. mar-
ginemaculatus has a neural architecture that
closely parallels previously studied amblypy-
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Figures 4–10.—Representative longitudinal sections of the antenniform leg. Whole mount Propidium
iodide stains of the following segments: (Figure 4) 6 , (Figure 5) 10, (Figure 6) 12, and (Figure 7) 22,
respectively. Osmium tetroxide stain of segment 10 (Figure 8, different specimen from Figure 5), and
methylene blue stained sections of segment 23 (Figures 9 and 10). Single cell bodies (arrows) are visible
in segments 6 (Figure 4), 10 (Figures 5 and 8), and 12 (Figure 6). Three are seen in segment 22 (Figure
7), and 23 (Figures 9 and 10; these are serial sections through the same tissue; two cell bodies are seen
in Figure 9, and a third appears in Figure 10). Cell bodies (cf. panel Figure 4) consist of outer cell body
membrane (in this case �100 �m wide by 50 �m tall), inner nucleus (white circular line enclosing dark
area, here 26 �m diameter) and innermost nucleolus (inner white spot, 6 �m diameter). Scale bars �
50 �m.

gids. The giant axons in P. marginemaculatus
are distributed between the two nerves with
remarkable similarity to H. elaphus. The larg-
est 2 axons, presumably GN1 and GN2, are
situated adjacent to each other in one nerve,
while the remaining smaller axons are bun-
dled together in the other nerve. The periph-
eral giant cell bodies and sensory synapses
found in whip spiders (Amblypygi), whip
scorpions (Uropygi), and harvestmen (Opili-
ones) are rare, and to date this type of neural
architecture has only been found in a few cas-
es within the animal kingdom (Foelix 1975;
Foelix & Troyer 1980). Insects and other ar-
thropods are thought to have their neuronal
cell bodies and the first site of synaptic inte-
gration located centrally, either in the brain or
ganglia.

We used a new preparation and staining
method to image the giant cell bodies: whole

mount dissection of the antenniform leg fol-
lowed by Propidium Iodide labeling (Figs. 4–
7). We found that the unique cytology of the
giant neuron somata, especially the homoge-
neous, light staining inside the nucleus but
outside the nucleolus, was reproduced with
the Propidium Iodide stain (Figs. 4–7). This
peculiar staining and large nucleus size led
previous investigators to ask whether these
cells were polyploid, but a Feulgen stain es-
tablished that this was unlikely (Foelix &
Troyer 1980). This new preparation provided
a more rapid technique to locate in which seg-
ment each cell body lies, and resulted in lon-
ger, multi-segment pieces of intact antenni-
form leg for observation. This more readily
enables observation of structures that span
multiple segments, such as nerves, tendons,
and blood vessels.

Giant cell bodies in segments 10–20, and
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Figure 11.—Four point recording from the tarsus, and spikes from GN1 and GN2. Average spike (dark
line) overlaid on individual spikes (gray lines). The number of individual spikes averaged to calculate
each template is shown on the fourth recording site waveform. Peak-to-peak amplitude of average wave-
form on fourth site, and average conduction velocity are shown below the first GN1 and GN2 spike types.
Propagation direction can be seen in time course between channels and as a reversal of peak order
(proximal � positive then negative, distal � negative then positive). Spikes were aligned in time on the
fourth recording site, and thus the variation in conduction time is most easily seen in the ‘‘jitter’’ of spikes
on channel 1. The geometry of the recording pins is not drawn to scale. Separation between pins within
a recording site is 2.54 mm, and the center to center spacing between pairs was approximately 5 mm. As
a result the spacing between pins on the edge of neighboring pairs was also approximately 2.5 mm. The
measured center to center spacings for this recording are indicated with arrows.

GN3, 4 and 5.—In P. marginemaculatus we
have found giant cell bodies in segments 5, 6,
10, 11, 12, 14, 15, 16, 20, 22, 23, and 26. In
H. longicornis, H. batesii, and H. elaphus gi-
ant cell bodies were found most frequently in
segments 1, 5, 6, 13, 19, 20, 21, 22, 25 and
101 (Foelix & Troyer 1980; Igelmund & Wen-
dler 1991a; Foelix & Hebets 2001). There is
remarkable replication in the location of the
cell bodies, with those in S5 and 6 being in
the identical segment, and those in the region
of 19–26 likely to be slightly shifted but ho-
mologous cell bodies. We found several new
giant cell bodies between segments 10 and 20.
This finding agrees with the electrophysiolog-
ical results of Igelmund & Wendler (1991a),
whose recordings predicted that the cell bod-
ies of GN3, 4 and 5 would lie in this region.
Now that the segmental location of these giant

neuron cell bodies is known, tracer-fills of
sensory neurons on individual segments can
be pursued to look for connectivity between
the giant neurons and the various sensilla. In
addition to bristles, these sensilla include the
club and porous hairs that are found on the
distalmost �20 segments, which are thought
to have hygrometric and olfactory function,
respectively. This is in addition to the slit
sense organs that are found on each tarsal seg-
ment, which may sense cuticular stress or seg-
mental deflection.

The sensory function of GN3, 4, and 5 is
unknown. Although we recorded additional
types of spikes that matched examples from
these neurons in H. elaphus (Igelmund &
Wendler 1991a), we could not elicit their ac-
tivity with basic mechanosensory or odor
stimuli. The odor stimuli used were a leaf-
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Figure 12.—Four point recording from the tarsus, and spikes from GN6 and GN7. Average peak to
peak amplitudes are shown for each recording site, and the average conduction velocity denoted below.
Both templates are averages of 100 individual spikes.

alcohol and a leaf-aldehyde, odorants com-
monly emitted by plants. This confirms some
of the results for H. elaphus, in which me-
chanical, olfactory, and even temperature and
hygrometric stimuli did not elicit a response
from these neurons, apart from a phasic re-
sponse of GN5 to tobacco smoke (Igelmund
& Wendler 1991a).

Structure and function of giant neurons
1, 2, 6 and 7.—GN1 and GN2 are mechano-
sensory interneurons that respond to deflec-
tions of the bristle hairs. We were able to iden-
tify them clearly in P. marginemaculatus
using several factors: their spike amplitude
and conduction velocity, response to bristle
hair stimulation, spike initiation at the point
of stimulation and propagation in both direc-
tions, and the location of their cell bodies im-
plied by the recording sites (i.e. GN1 distal to
segment 10, GN2 between segments 10 and
28). We qualitatively tested the receptive
fields of GN1 and GN2 in P. marginemacu-
latus and found agreement with H. elaphus:
stimulation at the tip of the antenniform leg
produces only GN1 spikes, stimulation at seg-
ment 20 produces both GN1 and GN2 spikes,

and nearing segment 45 only GN2 spikes are
elicited. Thus it appears P. marginemaculatus
has a similar organization of GN1 and 2: GN1
covers the distalmost 20 segments, ramping
down its sensitivity moving proximally as
GN2 begins to take over, becoming more sen-
sitive as segment 40 is approached. GN1 and
2 adapt quickly to repeated stimulation of the
same bristles. Given their large (several mm)
receptive fields and rapid adaptation, GN1 and
2 appear to function as rapid touch detectors
for the tarsus.

GN6 and 7 are sensory neurons. They func-
tion as rapid proprioceptors, giving the animal
feedback in the amount and direction of bend-
ing at the segment 22/23 joint. We were able
to identify GN6 and 7 in P. marginemaculatus
using similar criteria: their smaller amplitude
spikes always originated at the same point
(between segments 12 and 28), propagated
solely proximally, and responded to deflection
of the leg, all of which matches the behavior
previously found in H. elaphus. GN6 and 7
are thought to be either coupled to a large slit
sense organ at the segment 22/23 border, or
part of a separate joint receptor mechanism at
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that boundary. Either connectivity could allow
them to perform their observed proprioceptive
function.

Comparing histology with multi-site elec-
trophysiology, it was found that in H. elaphus
the GN1 cell body is the one found in segment
5, GN2 is in segment 23, and GN6 and 7 are
two of four found in segment 22. Our electro-
physiological results suggest that P. margi-
nemaculatus has markedly similar structure
and function of GN1, 2, 6, and 7. GN1 is one
of the cell bodies in segment 5 or 6, GN2 is
most likely in segment 23, and GN6 and 7 are
two of those found in segment 22.

The role of the giant neurons in natural
behavior.—The role of the giant fiber system
of amblypygids in the natural behavior of the
animal remains a mystery. Although there are
cases in which giant fibers are not directly
linked to specific behaviors (DiCaprio 2003),
typically, in other arthropods, giant neurons
facilitate rapid escape or predatory behavior
(Levine & Tracey 1973; Tauber & Camhi
1995; Mizrahi & Libersat 1997). Touching the
antenniform leg in a manner that elicits spikes
in GN1 or 2, even repeatedly, does not evoke
a rapid escape response of the amblypygid,
while puffs of air directed at trichobothria on
the walking legs usually does. Giant neurons
can underlie rapid predatory behaviors (Gro-
nenberg 1995a, b), but while amblypygids
make rapid prey strikes with their pedipalps,
the antenniform legs do not touch the prey
immediately before a strike, and often a pe-
riod of seconds will elapse between the last
touch of the antenniform leg and the strike
(pers. obs.).

Rapid tapping and vibratory movements are
made with the antenniform legs during court-
ship and intraspecific aggressive behaviors
(Weygoldt 2000; Fowler-Finn & Hebets
2006). High speed video of aggressive behav-
iors (Fowler-Finn & Hebets 2006) has found
the frequency of tapping to be �30 Hz. Spikes
from GN1 take on the order of 30 ms to get
to the CNS, and so it is possible that the an-
imal could use GN1 to receive feedback dur-
ing each cycle of the tapping behavior. While
feedback at the same rate as the tapping may
not be needed to regulate the behavior, it
would be required in order to react to changes
within a single cycle. Spikes in the primary
afferents could not provide feedback on the
time scale of a single tapping cycle: applying

local circuit theory to these unmyelinated ax-
ons, we predict conduction velocity to scale
as the square root of axon radius (Aidley
1998), and so estimate that primary afferents
having a radius 20 times smaller than the gi-
ants would take �140 ms to arrive at the CNS.
This would give a maximum feedback driven
tapping rate of about 7 Hz. However, the rapid
adaptation of GN1 to stimulation of the same
bristles, and the lack of an obvious need for
feedback, makes this hypothesis (that GN1 ex-
ists to provide fast feedback for rapid vibra-
tions) unlikely. It is possible that some of the
other motor or proprioceptive giants facilitate
this high-speed tapping of the antenniform
legs. As the vibratory tapping occurs during
courtship and aggressive behaviors, it seems
likely that it signals individual quality, and is
used as a basis of assessment of a mate or
competitor. Whether information about quality
is contained in the frequency of the vibration
or some other component of the signal re-
mains open. If the frequency of antenniform
leg vibration were to signal the quality of an
individual, however, this could be a source of
evolutionary pressure on the development of
a faster sensorimotor system in the antenni-
form leg.

Amblypygids will intermittently exhibit
rapid retraction of the antenniform leg when
touched, a behavior that appears highly de-
pendent on the animal’s state of alertness
(Spence pers. obs.). Given the costs of losing
these appendages (animals missing both legs
cannot orient or proactively hunt), and per-
haps even the costs of being entrapped by
them, fast touch detection and rapid proprio-
ceptive feedback may simply be required for
adequate maneuverability in such long ap-
pendages.

The sense organs and underlying giant fiber
system we have studied in P. marginemacu-
latus is remarkably similar to that of H. ela-
phus, yet the habitats of these two species, the
Florida Keys for P. marginemaculatus and
Brazilian rainforest for H. elaphus, are quite
different. One predicts that the environment of
P. marginemaculatus would offer a smaller
diversity of prey, fewer vertical surfaces, more
seasonality, a lack of canopy and correspond-
ingly more light, and lower humidity than the
Brazilian home of H. elaphus. The similarity
in the giant neuron systems across these spe-
cies suggest that they are crucial for the mo-
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tility and basic function of the antenniform
legs, and as such are not under great selection
pressure from these ecological differences.
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