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PHYSICAL REVIEW A

VOLUME 48, NUMBER 3

Resonant two-color detachment of H™ with excitation of H(n = 2)

Ning-Yi Du* and Anthony F. Starace’

Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder, Colorado 80309-0440
and National Institute of Standards and Technology, Boulder, Colorado 80303

N. A. Cherepkovt

Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111
(Received 2 September 1992)

The cross sections for resonant two-color, two-photon detachment of H~ with excitation of the
degenerate H(2s) and H(2p) levels are calculated within a semiempirical adiabatic hyperspherical
representation. The first photon, with energy w; = 0.4017 a.u., is resonant with the well-known
Feshbach 'P° resonance below the H(n = 2) threshold. The second photon, with energy w, >
0.126 05 a.u., scans the energy region above the H(n = 2) threshold over which long-range dipole-
field-induced cross-section oscillations are predicted to occur. Such Gailitis-Damburg oscillations
have not yet been observed experimentally. Results for various pairs of light polarization for the two
photons are presented. Our resonant two-color, two-photon detachment cross sections are 89 orders
of magnitude greater than the corresponding nonresonant, single-color, two-photon detachment cross
sections obtained by Liu, Du, and Starace [Phys. Rev. A 43, 5891 (1991)]. Unmistakable evidence of
long-range dipole-field effects is presented over the 5-meV energy range above the H(n = 2) threshold.
Furthermore, the differential cross sections for right- and left-circularly polarized, copropagating
photons and especially the circular dichroism differential cross sections are shown to have nearly
a full cycle of a greatly enhanced dipole-field-induced oscillation extending over the region from
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threshold to ~ 34 meV above.
PACS number(s): 32.80.Wr

I. INTRODUCTION

The dipole interaction between an electron and the
degenerate H(2s) and H(2p) energy levels can result in
an attractive long-range potential in particular channels
[1]. Processes involving transitions to these channels
have been shown theoretically to have finite cross sec-
tions at threshold, which oscillate above threshold [2].
Such Gailitis-Damburg oscillations [2] have never been
observed experimentally, however. Indeed, until recently
such oscillations in the cross section were expected to be
strongly suppressed above threshold (3, 4].

More recent theoretical work has indicated ways in
which these long-range, dipole-field-induced oscillations
may be observed. Liu and Starace [5] have pointed out
that such oscillations are in general not suppressed in
differential cross sections, which are sensitive to phase-
interference effects between different channels. They pre-
dicted [5(a)] sizable dipole-field-induced oscillations in
the angular distributions for collisional detachment of
H~ accompanied by excitation of H(n = 2). However,
for this process the intense shape resonance feature at 18
meV above threshold in one of the ! P° final-state chan-
nels obscures these oscillations in the meV energy re-
gion. These predicted sizable oscillations can only there-
fore be observed in the collisional detachment process
in the energy region below =~ 1 meV above threshold in
the H™ reference frame. Such low-energy features of the
H(n = 2)-e~ system appear on a much larger energy
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scale in the laboratory frame, but are concentrated in
the forward direction [5].

Liu, Du, and Starace [6] have pointed out that the
obscuring effect of the intense ! P° shape resonance fea-
ture can be avoided by studying two-photon detachment
of H™ accompanied by excitation of H(n = 2). Electric
dipole selection rules, for example, restrict the allowed
final states to have even parity. Furthermore, the 1 D¢+
final-state channel of the H(n = 2)-e~ system, which is
populated in two-photon detachment of H™, was shown
to have quite sizable dipole-field-induced oscillations in
its cross section over an energy range extending from
threshold to about 34 meV above [6]. Of course, as is
true for any nonresonant two-photon process, the cross
section for populating the 1 D¢+ channel is small.

In this paper we present semiempirical, adiabatic hy-
perspherical theoretical calculations for resonant, two-
color, two-photon detachment of H~ with excitation of
H(n = 2). One of the photons is chosen to have an en-
ergy in resonance with the lowest ! P° Feshbach resonance
below the H(n = 2) threshold. The other is chosen to
scan the energy region above threshold. We predict that
these resonant two-color, two-photon detachment cross
sections are nine orders of magnitude larger than the
nonresonant, single-color, two-photon detachment cross
sections studied previously [6]. However, because the 1 P°
Feshbach resonance is so close to the H(n = 2) thresh-
old, it has a very large radial extent. In general, this
fact restricts the energy over which dipole-field-induced
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oscillations in the total cross sections are unmistakable
to a much smaller energy region than in the nonresonant,
two-photon process studied previously [6]. Nevertheless,
the partial differential cross sections show unmistakable
effects of the long-range, dipole field over a large energy
region from threshold up to 100 meV or more in cer-
tain cases. Furthermore, the two-color process allows us
to examine the influence of alternative polarizations for
the two photons. In particular, when the first photon is
circularly polarized, it causes the resonant intermediate
state to be oriented, and hence for this state there is a
nonzero circular dichroism effect [7].

In Sec. Il we review briefly our theoretical approach,
discussing both our semiempirical adiabatic hyperspher-
ical method and the long-range dipole-field-induced ef-
fects to be examined. In Sec. III we present expressions
for the resonant two-color detachment cross sections for
three different pairs of light polarization and examine the
magnitude of the circular dichroism effect. For simplic-
ity we restrict our considerations to the case in which the
characteristic light polarization vectors are collinear. In
Sec. IV we present our results and in Sec. V we discuss
our results and give our conclusions. In the Appendix we
specify which other channels converging to excited states
n of the H(n)-e~ system are expected to have significant
dipole-field oscillations above threshold.

II. GENERAL THEORETICAL ASPECTS

In this paper we are concerned with the process of
resonant two-color detachment of H~ with excitation of
the H(n = 2) state, i.e.,

H +m+v—>Hn=2)+e , (1)

where ~; is resonant in energy with the lowest-energy ! P°
Feshbach resonance of H™ below the H(n = 2) threshold.
Due to the degeneracy of the H(2s) and H(2p) states, the
final state of this process is influenced by the long-range
dipole-field interaction between the H atom and the de-
tached electron. We first describe these effects and then
examine the process (1) in particular. Since a more de-
tailed description of our general approach has been pre-
sented in Ref. [6], we emphasize here those key aspects
needed to properly interpret our results.

A. Low-energy states of the H(n = 2)-e~ system

In our calculations we describe the H(n = 2)-e™ three-
body system in an adiabatic hyperspherical representa-
tion [8-10] since this is known to describe fairly accu-
rately the key dynamical features of this system [11] and
since this representation is known to diagonalize asymp-
totically the long-range dipole interaction for this system
8, 11].

In the hyperspherical approach the exact two-electron
wave function ¥ (r1,rz) is expanded in a complete set of
adiabatic eigenfunctions ¢,(R,a,f1,F2), which depend
parametrically on a hyperradius R = (r? +r2)/2 and are
functions of the five angular variables a = tan™1(rz/r;),
r; and Fy:
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Y(R,a, t1,%2) = [R%?sin(a) cosa] !

XZF“(R)(,bM(R,Ol,f‘hf'z) - (2)

The ¢, satisfy an angular equation [8-10] having an
eigenvalue U, (R). The F,, satisfy a set of coupled radial
equations [8-10]; however, in the adiabatic approxima-
tion all but the diagonal coupling matrix elements are
dropped so that each F,(R) satisfies a one-dimensional
radial Schrédinger equation,

dz

a7~ VelB)+ 12| Fua(R) =0, 3)

(The effect of nonadiabatic coupling on the ground-state
radial wave function is discussed in Sec. IVB.) In Eq.
(3) the effective radial potential V,(R), which character-
izes the dynamical features of a particular hyperspherical
channel p converging to the nth level of the H atom is
defined by
U.(R)+ % d?¢ 1
—Vu(R) = *R2—4 + <¢m H;) -=, 4

n2
where (¢,,d?*¢,/dR?) is the R-dependent diagonal cou-
pling matrix element for the uth channel. Since the
long-range dipole interaction due to the degeneracy of
the H(n = 2) states [1] is diagonal in the hyperspherical
representation [8,11], the asymptotic form of the effective
radial potential is

Vu(R) Ri‘ﬁw’\u()‘u + 1)/R2 . (5)

In Eq. (5) A, is an effective orbital angular momentum,
which may be real or complex depending on the channel
p. For channels p in which the long-range dipole inter-
action [1] is repulsive at asymptotic distances, ), is real.
Hence at threshold the cross section for any excitation
to the channel p is zero since it depends on |k*=+1/2|2]
which is zero for £ — 0. On the other hand, for chan-
nels p in which the long-range dipole interaction [1] is
attractive at asymptotic distances, one may write quite
generally [12]

Ay =—3 +iay, . (6)

As a consequence, the threshold value of the cross sec-
tion for any excitation to the channel y is finite [2] since
it depends on |k*+*1/2|2 = 1. In addition, as noted by
Gailitis and Damburg [2], the transition matrix elements
for channels having complex A, are influenced above
threshold by the term k*+*1/2 = kiow [cf. Eq. (6)],
which, when rewritten as exp(ia, Ink), may be seen to
oscillate as a function of In k.

Some of the effective potentials V,(R) that converge
asymptotically to the H(n = 2) threshold are shown in
Fig. 1. All of the 1S© and ! P° potential curves are shown
as well as the most important ' D® potential curve. Since
the total orbital and spin angular momenta are insuffi-
cient to specify the potential curves uniquely, additional
specification is necessary. In Fig. 1 we have employed
abbreviated labels corresponding to Lin’s classification
of doubly excited states [13].
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FIG. 1. Effective radial hyperspherical potentials V,, in
rydbergs plotted vs the hyperradius R for six channels con-
verging to H(n = 2): 'S(K = +1), ' P+, 'P(pd), and 'D+.
Note that the zero of energy is chosen to be the H(n = 2)
threshold and that near R=25 the vertical energy scale is
changed.

The key features of the interactions within the H(n =
2)-e” system are clearly exhibited in the effective poten-
tial curves shown in Fig. 1. These are, first, that the 1 P+
potential is attractive at short distances and weakly re-
pulsive at large distances, thereby giving rise to a shape
resonance (which is seen experimentally at about 18 meV
above threshold) [11]. This shape resonance feature dom-
inates the cross section of any process that populates the
1 P° final-state channels above the H(n = 2) threshold.

Second, because of their long-range repulsive behavior,
the 1P+, 'P(pd), and 1S(K = —1) potentials all have
zero cross sections at threshold. Third, the three poten-
tials corresponding to the 'S(K = +1), 1P—, and D+
channels are attractive at asymptotic distances. As dis-
cussed above, they therefore have complex effective angu-
lar momenta. Hence the excitation cross section for each
of these channels is finite at threshold [within the center-
of-mass frame of the H(n = 2)-e~ system]. Furthermore,
the transition amplitudes for excitations to these three
channels oscillate on a In k scale above threshold [2].

B. Two-photon detachment of H- with excitation
of H(n = 2)

The two-photon detachment process in Eq. (1) is a
very favorable one for observing Gailitis-Damburg oscil-
lations [2] above the H(n = 2) threshold [6]. This is so
for two reasons. First, electric dipole selection rules do
not permit population of ! P° final-state channels. Hence
the strong shape resonance in the ! P+ final-state chan-
nel about 18 meV above threshold cannot obscure these
near-threshold oscillations. Second, the two-photon pro-
cess does populate 15° and ! D¢ final-state channels, one
of which, the 1D+ channel, is the only one converging
to the H(n = 2) threshold having significant, undamped
oscillations above threshold [6].

In calculating these Gailitis-Damburg oscillations [2]
for this process, we must ask how we can be sure that
the wiggles our calculations give for the two-photon de-
tachment plus excitation cross sections of H™ are really
due to long-range dipole-field effects and are not due to
some other cause. The answer is that the generalized
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quantum-defect theory (QDT) of Greene, Fano, and Stri-
nati [12] for a long-range dipole field enables us to dis-
entangle dipole-field effects from our numerical results
analytically. In this way we are able to state with assur-
ance which features of our cross-section results are truly
the Gailitis-Damburg oscillations [2] and which features
are energy-dependent wiggles arising from other causes.

Through use of the QDT for long-range dipole fields
[12] one may show that our adiabatic hyperspherical ra-
dial functions, defined by Eq. (3), tend asymptotically
to

Fuk(R) RO (2/7Tk)1/2 Sin(kR+€u +77u.) ’ (7)

where 7, is the short-range phase shift in the pth channel
and the ¢, is an analytically known phase dependent on
the effective angular momentum A, characterizing the
long-range dipole interaction of the H(n = 2)-e~ system
[12]. For real values of A,

£u=—3TAu, (8)
while for complex values of A,

bu=—1ir+0,, (9)
where

6, = — tan-1 tan[a, In(k/2) + z,,) (10)

tanh(mwa,/2)

and

z, =argl(1 —ia,) . (11)

The generalized QDT may also be used to extract
the long-range dipole-field-induced energy dependence of
F,1(R) by representing our adiabatic hyperspherical ra-
dial wave functions as [14]

Fuu(R) = Nu(k)Fi(R), (12)

where N, (k) is an effective normalization factor that de-

termines essentially all of the energy dependence of the
radial wave function near R = 0, and where Fj, (R) is
a more smoothly varying function of k. The oscillatory,
energy-dependent normalization factor N, (k) is an ana-
lytically known function of Ink [6, 14].

There are two major ways in which an attractive dipole
field introduces oscillations in measured cross sections on
a Ink energy scale. The first is due to the rapid varia-
tion of the analytically determined dipole phase 6, [cf.
Egs. (9) and (10)] for those hyperspherical channels p
having complex values of the effective angular momen-
tum A,. This analytically determined phase 6, (through
£,.) appears explicitly in the phase factor included in the
two-photon transition amplitudes [6]. Interference effects
between different amplitudes, such as occur commonly
in calculating the angular distributions for the detached
electrons, generally lead to sizable, undamped oscilla-
tions in the corresponding cross sections due to the rapid
decrease of the analytically determined phases 6, with
increasing Ink. This behavior is shown in Fig. 2 for all
three channels having complex A, above the H(n = 2)
threshold.
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FIG. 2. Analytically known phases 6, [defined in Eq.
(10)] vs In k, where k (a.u.) is the detached-electron mo-

mentum, for the three adiabatic hyperspherical channels p =
'S(K=+1), *P—, and 'D+.

The second major way the long-range dipole field in-
troduces oscillations in the cross sections is through the
effective normalization N, (k) introduced in Eq. (12).
Its behavior is shown in Fig. 3 for each of the three
channels above the H(n = 2) threshold having complex
Au. One sees clearly that whereas the long-range dipole-
field-induced oscillations of N, (k) for the 1S(K = +1)
and !P— channels are strongly damped [3, 4], those for
the D+ channel are quite sizable [6]. The amplitude
of these oscillations depends sensitively on the value of
o, the complex part of the effective angular momen-
tum A, [cf. Eq. (6)] [3,4,15]. In the Appendix to this
paper we indicate all channels of the H(n)-e~ system for
which such oscillations have an amplitude exceeding 10%.
We have found only eight such channels in a search that
considered principal quantum numbers n in the range
2 < n < 15 and total orbital angular momentum L in
the range 0 < L < 3.

III. FORMULAS FOR RESONANT, TWO-COLOR
DETACHMENT CROSS SECTIONS

As already stated, a detailed description of our theo-
retical approach has been presented in Ref. [6]. In Sec.
II of this paper the key physical aspects of the detach-
ment plus excitation process in Eq. (1) have been dis-
cussed. In this section we specify those modifications
of the formulas presented in Ref. [6] that arise due to
the resonant nature of process (1) and due to the use of
two different frequency photons having possibly different
polarizations.

A. Two-photon transition amplitudes

If we characterize the resonant intermediate state in
process (1) by its complex energy E, + i%P,, where I,

U'm' LM p

mimk(F1,72) = K71/ Z Z Z V(R a,fy,F2) €
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ln[kia‘u.)]

FIG. 3. Normalization factors N, (k) [cf. Eq. (12)] for
the three adiabatic hyperspherical channels p = 'S(K=+1),
!P—, and D+ vs In k, where k is the detached-electron mo-
mentum.

is its width, then the two-photon transition amplitude
defined in Eq. (20) of Ref. [6] becomes

T® = _jor (U

nbmk = rtmic| Pt [0, Y, [ Dg|[Wo) . (13)

We have assumed in Eq. (13) that the first photon’s
frequency is exactly on resonance, i.e., w = E, — Ej.
Also, the electric dipole operator D; is defined by

2
&3 mi, (19)
=1

where €, is the polarization vector of the photon ex-
pressed in spherical tensor form in which ¢ = +1 (—1)
for right- (left-) circularly polarized light and in which
q = 0 for linearly polarized light.

The initial-state wave function for H™ in Eq. (13) is
given in the adiabatic hyperspherical approximation by

il

1
Dq

$olr1,r2) = [R¥/? cos(a) sina] -
><<I)#=0(R,a,f'1 7f.2)Fll=0(R) ’ (15)

where p = 0 is the lowest adiabatic hyperspherical 1S
channel; its potential converges asymptotically to the
H(n = 1) threshold. ®,—¢ becomes proportional to the
H(1s) wave function as ry — co0. Fj,—o(R) is the lowest-
energy radial solution for the u = 01S potential.

The intermediate state wave function ¥, (ri,rz) in
Eq. (13) has a form identical to that of Eq. (15), except
for a different index pu,, which denotes the 1 P— channel
converging to the H(n = 2) threshold whose radial po-
tential is shown in Fig. 1. F, (R) is the lowest-energy
radial solution for this p, = ! P— potential.

The incoming-wave-normalized wave function in Eq.
(13) describing the final state in which asymptotically
the H atom is excited to its nlm level and the detached
electron departs with relative momentum k is defined by

Al L (EMml'm) Vi (k) (16)
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Here ¥, is an incoming-wave-normalized hyperspherical
wave function for the channel y, where k& is defined by

1

&, is the analytically determined phase characteristic of

(8)—(11)]. The matrix AI )

transforms the dipole-field channels p to the independent
electron channels [’ characterized by the orbital angular
momenta ! and I’ of the H atom electron and the detached
electron, respectively. The channel index g designates
implicitly the total orbital and spin angular momenta,
LS, of the final state, although this fact is not made ex-
plicit in Eq. (16) for simplicity of notation. Similarly,
the dependence of the wave function ¥ , on the mag-
netic quantum numbers M and Mg corresponding to L
and S is also suppressed. The Clebsch-Gordan coefficient
projects the total orbital angular momentum state (LM |
onto the independent electron state |lml’'m’), while the
spherical harmonic projects the detached—electror} state
(I'm'| onto the state having momentum direction k. The
prefactor k! in Eq. (16) is needed to ensure normal-
ization of the wave function in Eq. (16) to a d function
in electron momentum k. Finally, the incoming-wave-
normalized hyperspherical channel wave function \Il;k in

the channel p [cf. Egs.

|
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Eq. (16) is given by

= [R%? cos(a) sina] 1@, (R, a, 1, F2)

X F(R)e "™ . (18)

T (R, f1, 2)

Note that the form of this final-state wave function differs
from that of the initial-state wave function in Eq. (15)
by the incoming-wave-normalization phase factor, where
7. is the phase shift in the channel p relative to the
analytically known long-range dipole-field phase ,. The
asymptotic form of F,(R) is given in Eq. (7).
Substituting Egs. (15), (16), and (18) in Eq. (13) [as
well as an expression similar to Eq. (15) for ¥, ], we
may express the two-photon transition amplitude as

7@

nimk — w2 Z Z Y;’m’

U'm' L,M

k) (Iml'm'|LM) XD

(19)

where X(l),f’l{vl is the amplitude for the resonant two-
photon electric dipole transition from the initial state to
a final state of angular momentum LM characterized by
the hydrogen atom in the nl state and by the detached
electron having wave number k and orbital angular mo-
mentum !’. Specifically,

XOEM = 000 S Ay expil€ + ) / dR F,y, (R)RI%, (R)F, (R)
0
m

x /oo dR' F,. (R)R'I% , (R)Fo(R) . (20)
0

In Eq. (20), I}, (R) is the five-dimensional angular in-
tegral of the dipole operator in Eq. (14) between the
channel functions ®,(R;a,t1,F2) and @, (R;a, 1, F2).
For linearly polarized light (i.e., ¢ = 0) this angular in-
tegral is defined explicitly in Eq. (9) of Ref. [16]. For
other values of the light polarization, one may obtain IZ, "
in terms of a reduced angular integral I,,,(R), which is
defined by the Wigner-Eckart theorem as follows:

(—1)En— M ( Lu 1 L*")IWI(R).

q
I‘AMI(R) _Mp. q MIJr'

il

(21)

Expressing IZ;‘ and I] , in Eq. (20) in terms of their

reduced matrix elements [cf. Eq. (21)], we may similarly

(2)LM

write the amplitude X 3" in terms of an amplitude

X fl‘l x> Which is independent of magnetic quantum num-

bers, as follows:
M _ _ L 1 L,
Xr(j)kl' = (—1)f-MFEr M”( )

-M ¢ M,
L, 1 0
x (‘Mr q 0) an Kl - (22)

Equation (22) permits one to easily examine the de-
pendence of the photodetached-electron angular distri-
butions on the polarizations ¢ and ¢’ of the two photons,
as we show next.

B. Differential cross sections

The differential cross sections for two-color, two-
photon detachment of the 1.5¢ ground state of H™ with
excitation of the H(2l) state (i.e., 2s or 2p) are given by

dUzz
dQ

= 873a’wuw'k Z |T2(12731k|2 , (23)

where Tz(lz'r)nk is defined by Egs. (19) and (20). Substi-
tuting Eq. (22) in Eq. (19) and using standard angular
momentum algebra [17], the summations over magnetic
quantum numbers may be performed to obtain

o2t 1 2
_4_20

P;;(cos o), (24)

where
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8m3 02w’ (L L e e K\ Y L 11 L 11
2¢ I — —1)tete (L2 Z07 0" 07
klod) =522 (1 ( e —(g+4d) ¢ q¢)\-(¢+d) ¢ ¢

2" LL'
» L K L
a+q 0 —(g+4)
In Eq. (25) we have used the notation [a,b,...] = (2a +
1)(2b +1)... . For K = 0, we obtain the total cross
section,
8mialwiw L 11 ?
2¢ AN 1w2
o5 (9,9') = 3(4m)1/2 Z (_(q+q1) q q)

2L
S ‘Xrl;l,kl’ |2 (26)

C. Circular dichroism cross sections

With Eq. (25) in hand, it is easy to examine the possi-
bility of circular dichroism (CD) in the angular distribu-
tions for process (1) [7]. Consider first the case in which
the first photon is linearly polarized, i.e., ¢ = 0. The po-
larization axis for this photon determines the z axis. The
second photon is assumed to be right- or left-circularly
polarized along this axis, i.e., ¢ = +1. Inspection of
Eq. (25) and use of standard symmetry properties of 3j
symbols show that

0%(q=0,q' = +1) =a%(q=0,q’ =-1). (27)

Hence in this case there is no CD effect.

Consider, however, the case in which the first photon
is right-circularly polarized, i.e., ¢ = +1. If the second
photon is also circularly polarized along the same axis,
then Eq. (25) shows that there is a CD effect since for
K =0and K =2

Aa% = af{e(q =+1,¢' = +1)

—o}(g=+1,¢' = -1) #0. (28)

The advantage of considering the CD cross section is that
it gives a simplified angular distribution. By inspection
of Eq. (25) one may verify that

Aok s = o¥_s(g=+1,4 = +1)

2¢

—o¥_4(g=+1,d=-1)=0. (29)

Thus the CD differential cross section has only constant
and cos? f; terms; there are no higher powers of cos Oy -

IV. RESULTS

We present here our semiempirical adiabatic hyper-
spherical results for the resonant two-color detachment
process (1). We examine the cases in which the two
photons are respectively linearly and circularly polar-
ized, both right-circularly polarized, and right- and left-
circularly polarized. In all cases the two photons have the
same polarization axis, which we take to be the z axis.
We also examine the circular dichroism cross section for
the case in which the first photon is right-circularly po-

¢ K L K L , ‘I'
)(0 0 0 ){é” ¢ el}sz,kz' (sz,kzu) - (25)

r

larized and the second photon is alternately right- and
left-circularly polarized.

A. Numerical aspects

In our semiempirical adiabatic hyperspherical treat-
ment, we have adjusted the lowest-energy 'S adiabatic
hyperspherical radial potential V,,—o(R) [cf. Eq. (4)] so
that the total ground-state energy E, for H™ agrees with
the nonrelativistic energy predicted by Pekeris [18], i.e.,
—0.527751 a.u. This compares with the adiabatic hy-
perspherical value of —0.525917 a.u. The adjustment of
V,.(R) is accomplished by deepening the bottom of the
well very slightly, and smoothly joining the deepened part
onto the adiabatic hyperspherical potential by a spline
procedure. No correction to the angular function ¢,—¢
for the 1S channel was made.

A similar semiempirical adjustment was made for the
p, =1P°— radial potential V, (R) so that the so-called
2s3p ! P° Feshbach resonance has the energy —0.126 049 8
a.u. predicted by Ho [19]. This compares with the adi-
abatic hyperspherical energy of —0.1258927 a.u. We
have also employed Ho’s width for this resonance of
I, = 1.32 x 107% a.u. [19]. As shown in Ref. ([19],
there appears to be theoretical agreement on the reso-
nance energy. Such is not the case, however, for the
resonance width. We have selected Ho’s value since it is
one of the most recent and also since it is consistent with
earlier work of Callaway [20].

Our potentials V,,(R) and angle functions ¢,, were only
calculated numerically for R < 40 a.u. In the range 40
a.u. < R <200 a.u., the analytically known asymptotic
forms for these functions [8] were used. A spline fit was
used to join the numerical and analytic values of quanti-
ties dependent on U, (R) and ¢,, in the vicinity of R = 40
a.u.

Finally, we note here our estimate of the possible ef-
fect of nonadiabatic couplings on our initial-state wave
function. The H™ ground-state radial wave function has
been calculated by Sadeghpour [21] both with and with-
out coupling to the next higher 1S° channel. Below the
wave function maximum at R=3.099 a.u., the two wave
functions differ by much less than 1%. At the maximum,
they differ by about 0.3%. Above the maximum, between
10 and 15 a.u. where the wave function is decreasing in
magnitude, the two wave functions differ by about 5%.
Now, in the exponential tail region the ground-state en-
ergy determines the behavior of the wave function. Be-
cause our semiempirical radial wave function is adjusted
to have the correct energy eigenvalue, it is superior to
either of these two ab initio wave functions in the ex-
ponential tail region. Otherwise, on the basis of these
calculations [21], it is probably fair to say that our radial
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wave function is correct to within a few percent. There-
fore, our cross-section predictions certainly will not be
affected significantly as a result of our neglect of nonadi-
abatic coupling in the initial state.

B. Use of QDT to examine long-range
dipole-field effects

As discussed in Sec. II B, there are two major ways in
which attractive, long-range dipole fields introduce oscil-
lations in measured cross sections on a Ink energy scale.
The first is due to the analytically known dipole phases
&, and 6, which are defined in Eqgs. (9) and (10). These

phases enter the amplitudes Xﬁ?,fj,” defined in Eq. (20).
Interference effects between different amplitudes, such as
commonly occur in the differential cross sections [cf. Egs.
(24) and (25)], generally lead to sizable undamped oscil-
lations in these cross sections, due to the rapid decrease
of the phase shifts 6, with increasing Ink, as shown in
Fig. 2.

The second major way that attractive, long-range
dipole fields introduce oscillations in measured cross sec-
tions on a Ink energy scale is through the effective nor-
malization factor N, (k) [cf. Eq. (12) and Fig. 3]. N, (k)
is defined as follows [14]:

Nu(k) = [Bycos®n, + B;'(1+ G2)sin®n,
—Gu Sin(znu)]l/z ) (30)

where 7, is the phase shift in the uth channel [cf. Eq.
(7)] and where B,, and G, are analytic functions defined
by [12]

_ sinh(ma,)
Bu= cosh(ra,) — cos{2[a, In(k/2) + z,]} ’ (31)
_ —sin{2[a, In(k/2) + =]} (32)

Gu= cosh(ra,) — cos{2[a, In(k/2) + z,]}

The parameters o, and z, are defined in Egs. (6) and
(11).

A third, usually rather minor, way that attractive,
long-range dipole fields introduce oscillations in mea-
sured cross sections on a In k energy scale is through the
phase shift n, [cf. Eq. (7)]. This phase may be expressed
in terms of a smooth, short-range phase 7)) as follows [14]:

B, tan 7;2

t = ——,
anmn, 1+G, tannﬂ

(33)
Here B, and G, are defined in Eqgs. (31) and (32). For
large values of o, B, = 1 and G, — 0 so that 1, — 172.
In this case, we also see from Eq. (30) that N, — 1. For
finite values of a,, however, both B,, and G, oscillate on
a scale of Ink, thereby introducing oscillations in both
N, (k) and n,. However, whereas N, (k) affects both to-
tal as well as differential cross sections, 7, affects only
differential cross sections through phase-interference ef-
fects between different amplitudes. Furthermore, since it
appears together with the analytically known phase &,
[cf. Eq. (20)], its effect is subsidiary to that of §,.

We compare 7, and 772 in Fig. 4 for the two most im-
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portant final-state channels in the present calculations,
g = D+ and p = 'S(K=+1). One sees clearly that
the oscillations in 7, for p = D+ are of much larger
amplitude than are those for p = 1S(K=+1). This is
similar to the relative amplitude of oscillations of the
effective normalization factors N, (k) for these two chan-
nels, as shown in Fig. 3. Indeed, for both N,(k) and
1. (k), the primary source of oscillatory behavior stems
from the function B, in Eq. (31) [4]. Neglecting terms
of order exp(—2na,) compared to 1, B, in Eq. (31) may
be approximated by

B, ~ (1 — 27 ™% cos{2[a, In(k/2) + z,]}) " . (34)

Hence, one sees clearly that the amplitude factor 2e ="«
for the oscillatory cosine term is in general likely to be
small. This suppression of the dipole-field-induced oscil-
lations above threshold was first pointed out by Fabrikant
[3] and was analyzed in detail for single-photon photode-
tachment of H™ with excitation of the residual H atom by
Greene and Rau [4]. However, Liu, Du, and Starace [6]
found that the ! D+ potential converging to the H(n = 2)
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[cf. Eq. (33)].



2420

threshold has an unusually small value of «a, equal to
0.748. This gives an amplitude factor 2¢~7*» equal to
0.19. This behavior of the ! D+ channel contrasts with
the o, value of 2.2 and the amplitude factor value of
0.002 for the 1S(K=+1) channel. In the Appendix we
indicate all channels of the H(n)-e~ system for which the
amplitude factor exceeds the value 0.1. There are only
eight such channels for principal quantum numbers n in
the range 2 < n < 15 and total orbital angular momenta
L in the range 0 < L < 3.

Our procedure for demonstrating effects of the long-
range dipole field as contrasted to other dynamical effects
is as follows. In the figures that follow, the solid curves
give our semiempirical adiabatic hyperspherical results.
The dashed curves indicate what these results would be if
the long-range dipole field were removed. These are cal-
culated by dividing each F);(R) final-state radial func-
tion in the amplitude in Eq. (20) by the normalization
factor NV, (k). For the total cross sections ¢ in Eq. (26)
this is sufficient to remove all of the oscillatory energy
dependence for Ink < —4. For the other components
of the differential cross sections (namely, o2 and o4 [cf.
Eq. (25)]) one must also remove the dipole-field-induced
energy dependence of both the analytically known phase
shift 6, [cf. Eq. (10)] and the phase shift 7, [cf. Eq.
(33)]. As noted already, these phases enter into the ex-
pressions for the transition amplitudes in Eq. (20). For
this purpose, 8, is fixed to its value at Ink = —9; 7, is
simply replaced by 772. When these phases are so treated,
the dashed curves for o, and o4 [cf. Eq. (25)] also be-
come constant in energy for Ink S —4.

C. Results

We present our calculated cross-section results for the
two-color detachment process (1) for various pairs of light
polarization on a scale of Ink in order to demonstrate
clearly the predicted long-range dipole-field-induced os-
cillations. Conversion of In k to detached electron kinetic
energy k2/2 is given in Table I. As indicated in Table
I, the assumption of degeneracy in the n = 2 level of
H breaks down due to the spin-orbit interaction and the
Lamb shift at values of Ink < —6. We have nevertheless
plotted our results over the region Ink > —9 in order to
exhibit at least one full cycle of the oscillatory behavior
expected above threshold under the assumption that the
n = 2 levels are degenerate.

In general, the resonant cross sections presented here
are eight to nine orders of magnitude larger than the non-
resonant two-photon detachment cross-sections presented
in Ref. [6]. However, a price paid for this increased cross-
section magnitude near threshold is a reduced energy re-
gion over which the long-range dipole-field-induced os-
cillations are unmistakable. The reason for this is that
the resonant intermediate Feshbach state is so close to
the H(n = 2) threshold that it has a very broad spatial
extension. Hence, the radial integral for dipole transi-
tions to the final state becomes sensitive to the detached
electron’s kinetic energy at much lower values of kinetic
energy even in the absence of long-range dipole-field ef-
fects. Furthermore, cancellation in this dipole radial in-
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TABLE I. Comparison of In k versus electron energy k*/2.
Ink (a.u.) k?/2 (eV)

—9.0 2.1 %1077
—-8.0 1.5 x 1076
—7.5 4.3 x107%"
-7.0 1.1 x1075
-6.3 45x107°"
—6.0 8.4 x 107°
—5.0 6.2 x 107*
—4.0 4.6 x 1073
-3.0 3.4 %1072
—2.0 2.5 x 107!
-1.0 1.8

-0.5 5.0

® Magnitude of 25, /2-2p, /2 Lamb shift.
® Magnitude of 2p; 2-2p3/2 spin-orbit splitting.

tegral becomes so severe by Ink = —2 (250 meV) that
the predicted cross sections are effectively zero on the
cross-section scale shown. However, this nondipole-field
energy-dependence is rather minor over the 5-meV en-
ergy region —6 < Ink < —4. In addition, by examination
of the photodetached electron angular distribution and,
most importantly, circular dichroism cross sections, this
nondipole-field energy dependence may be shown to be
minor over a much larger energy region, sometimes ex-
ceeding even the 34-meV energy region above threshold
that was predicted for the nonresonant two-photon cross
sections in Ref. [6].

Note that the rapid decrease of all cross sections by
several orders of magnitude for In & > —2 makes this en-
ergy region uninteresting for the purposes of the present
paper. For this reason we present the differential cross-
section parameters oo, 02, and o4 themselves [cf. Egs.
(24)—(26)] rather than their ratios, the asymmetry pa-
rameters Sx = ok /0o.

In all cases, the first photon is resonant with the
2s3p 1 P° Feshbach resonance. It therefore has an en-
ergy w; = 0.40170 a.u. The second photon scans the
energy region above the H(n = 2) threshold. Hence
wg > 0.126 05 a.u.

1. Linear plus circularly polarized photons

Here we assume that the two light beams are orthog-
onal. The first is linearly polarized with its polariza-
tion vector determining the z axis. The second photon
beam is assumed to be right-circularly polarized along
this z axis. (However, identical results are obtained if
left-circular polarization is assumed, as discussed in Sec.
III C.) Electric dipole selection rules permit both * D¢ and
1pe final states but not 'S¢ ones. Furthermore, the ! P¢
final states are possible only when the H atom is left in
the 2p state.

For the case in which the H atom is left in the H(n = 2)
state [=H(2s) + H(2p)], we present the differential cross
section defined in Eq. (24) for various angles of photo-
electron detection in Fig. 5(a). The total cross sections
for leaving the H atom in the H(2s), H(2p), or H(n = 2)
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FIG. 5. Generalized cross sections for the
process H- + . +v¢ — H(n = 2) +e™. (a)
Differential cross sections [cf. Eq. (24)] for
H(n = 2) = H(2s) + H(2p) final states. (b)

Total cross sections [cf. Eq. (26)]. (c) o2
[cf. Egs. (24) and (25)]. (d) o4 [cf. Eags.
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(24) and (25)]. Solid curves give present re-
sults. Dashed curves give present results with
long-range dipole-field effects removed using
quantum-defect theory (cf. Sec. IV B).

states are shown in Fig. 5(b). Finally, the corresponding
angular distribution parameters o for K = 2 and 4 [cf.
Eq. (24)] are shown respectively in Figs. 5(c) and 5(d).

One sees for this combination of light polarizations
that the most dramatic differences between the full
curves (which include long-range dipole-field effects) and
the corresponding dashed curves (which do not) occur
for a?é’:z, which has a very strong dipole-field-induced
oscillation over the 34-meV range from —6 < Ink < -3
[cf. Fig. 5(c)]. Similar striking effects are seen also in the
differential cross section for producing the H(n = 2) state
for photoelectron angles 0° and 18° [cf. Fig. 5(a)]. In
contrast, the total cross sections show rather weak dipole-
field oscillations in the region Ink > —6 over which the
theory is valid [cf. Fig. 5(b)].

In[k(a.u.)]

2. Two right-circularly polarized photons

Here we assume that the two photon beams are right-
circularly polarized and that they are copropagating
along the same z axis. Because electric dipole selection
rules only permit the population of !D® final states in
this case, the possibility of observing significant interfer-
ence effects in the differential cross sections is severely
reduced. This is so because only the u = D+ channel
has a significant magnitude; the other 1 D¢ channels are
much weaker. Our results are shown in Fig. 6. One
sees that the difference between our solid curves (which
include long-range dipole-field effects) and our dashed
curves (which do not) is not dramatic in the energy range
above Ink > —6 over which the theory is applicable.

FIG. 6. Generalized cross sections for the
process H™ +’Yc(R)+’Y};(R) — H(n = 2) +e™.
The arrangement of the figure and the label-
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However, we present these results, nevertheless, as they
are needed to understand our circular dichroism results
shown below.

3. Right- and left-circularly polarized photons

Here we assume that the two photon beams are right-
and left-circularly polarized and that they are copropa-
gating along the same z axis. In this case, My, = 0 in the
final state and hence electric dipole selection rules permit
all 1De, 1P, and !S° final-state channels to contribute.
Furthermore, interference effects can be observed in the
differential cross sections for both H(2p) and H(2s) final
states: for the former, all final states contribute, and, for
the latter, both *D® and S channels contribute.

Figure 7(c) shows that the interference effects on o5 are
very dramatic. It is this component of the differential
cross section that gives the differential cross section in
Fig. 7(a) its dramatic behavior. Note that o4 for this
polarization case is not shown, as it is identical to that for
the case of two right-circularly polarized photons, which
is shown in Fig. 6(d), as has been discussed in Sec. III C.
Equality of the o4 coeflicients for these two different cases
of light polarization stems in part from the fact that only
the D¢ channels contribute to oy.

4. Circular dichroism cross sections

The circular dichroism differential cross section
A(do /dR?), given analytically in Eq. (28), is presented in
Fig. 8(a). This cross section is obtained by subtracting
the generalized cross sections for right- and left-circularly
polarized photons [cf. Fig. 7(a)] from those for two right-
circularly polarized photons [cf. Fig. 6(a)]. As discussed
above, o4 is the same for these two cases, so that the
circular dichroism differential cross section has Aoy = 0.
Finally, the corresponding circular dichroism total cross
sections Aoy and K = 2 components Aoy are shown in
Figs. 8(b) and 8(c), respectively.

For 6; = 36°, the circular dichroism differential cross
section is close to oscillating about the value zero, thus
implying near cancellation of the average differential
cross sections in Figs. 6(a) and 7(a) at this angle. Such
cancellation permits one to observe an enhancement of
the long-range, dipole-field-induced oscillations. In Fig.
9 we have plotted A(do/dQ) for the final states, H(n =
2), H(2p), and H(2s) at angles for which the cross sec-
tions appear to be oscillating about zero in the energy
range Ink > —6. For the H(2s) final state at an angle
of 6 = 37.55°, in particular, the cross section shown by
the dashed line (for which long-range dipole-field effects
have been removed) appears to be almost constant as a
function of In k, with value zero. In any case, the actual
circular dichroism differential cross section has almost a
full cycle of oscillation in the energy region Ink > —6.

Now, we hasten to add that the precise value of the
average (dashed-line) circular dichroism differential cross
section depends on the fact that we have fixed the ana-
lytically known phase shifts 6, (k) [cf. Eq. (10)] at their
values at Ink = —9 (—8.5 in the case of Fig. 5). Chang-

ing the value of Ink at which these parameters are fixed
in value would have a negligible effect on the value of the
average cross section for the case of two right-circularly
polarized photons shown in Fig. 6 for angles near 36°
since the dashed and solid curves are already very close
together. It would have a significant effect on the average
value of the cross section for the case of right- and left-
circularly polarized photons shown in Fig. 7, however,

(0)

do/dQ (10™**cm®sec)

g, (107*cm®sec)

0, (10"*cm®sec)

-8 6 -4 -2

lgl[k(a.u.)]

FIG. 7. Generalized cross sections for the process H™ +
Yo(r)+Yo(y — H(n = 2) +e7. The arrangement of the figure
and the labeling of curves are identical to those of Figs. 5(a)—
5(c). Note that o4 for this case is identical to o4 presented in
Fig. 6(d) for the case of two right-circularly polarized pho-
tons.
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since the solid curves have such a large amplitude of os-
cillation. Nevertheless, the angular region over which
the circular dichroism differential cross sections can pos-
sibly oscillate about the value zero is very restrictive,
as careful comparison of Figs. 6(a) and 7(a) demon-
strates. Furthermore, as Fig. 9 indicates, the measur-
able differential cross sections (solid lines) in the vicinity

A(do/dQ) (10™*cm?sec)

Ad, (107 *cm®sec)

Ag, (10™**cm®sec)

FIG. 8. Generalized circular dichroism cross sections for
the process H™ + vyo(r) + Yo,y — H(n = 2) +e”. The re-
sults in Figs. 8(a)-8(c) are obtained by subtracting the results
in Figs. 7(a)-7(c) from those in Figs. 6(a)-6(c).
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of 36° have a very different and much more dramatic en-
ergy dependence than do the hypothetical cross sections
(dashed curves) from which the long-range dipole-field
energy dependence has been removed. In particular, the
positive-sloped curves in the ~ 5-meV energy region from
—5.5 < Ink < —4 are unmistakable evidence of the long-
range, dipole-field-induced cross-section oscillations.
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FIG. 9. Generalized circular dichroism differential cross

sections at angles for which the cross sections oscillate about
the value zero. (a) H(n = 2) final state for §; = 34.47°. (b)
H(2p) final state for 6 = 32.46°. (c) H(2s) final state for 6
= 37.55°.
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V. DISCUSSION AND CONCLUSIONS

It has been 30 years since Gailitis and Damburg [2]
predicted that attractive, long-range dipole fields pro-
duce oscillations in near-threshold cross sections on a
scale of Ink, where k£ is the momentum of an electron
scattered by the field. Such oscillations have yet to be
observed experimentally, for reasons discussed in Sec. II.
Liu, Du, and Starace [6] predicted theoretically that the
process of two-photon detachment of H™ with excitation
of H(n = 2) is probably the most likely process for ob-
serving such oscillations experimentally. They calculated
the cross sections for nonresonant two-photon detach-
ment plus excitation of H™ and predicted that the long-
range dipole field produces a half-cycle of oscillation over
an energy range from threshold to 34 meV above. How-
ever, since the process they calculated is nonresonant,
the cross sections are small.

In this paper we have presented theoretical calculations
of the two-color, two-photon detachment of H™ with ex-
citation of H(n = 2) in which the first photon is reso-
nant with the well-known Feshbach ! P° resonance below
the H(n = 2) threshold. We have also presented results
for various pairs of polarization states for the two pho-
tons. We find that our resonant cross sections are 108-10°
times larger than those of the corresponding nonresonant
cross sections of Ref. [6]. However, because the Feshbach
state has such a large radial extent, we find that the range
over which long-range dipole-field oscillations are unmis-
takable is reduced to about 5 meV. Nevertheless, studies
of differential cross sections and, in particular, of circular
dichroism cross sections give more prominent long-range
dipole-field effects. In particular, there is nearly a full cy-
cle of oscillation in these cross sections over the 34-meV
energy region —6 < Ink < —3. This fact, combined with
the much larger cross sections, may make the resonant
process considered in this paper an interesting alterna-
tive to the nonresonant process of Ref. [6] for experi-
mentalists planning to observe these effects for the first
time.
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APPENDIX

The purpose of the Appendix is to demonstrate which
other channels of the H(n)-e~ three-body system may be
expected to have significant long-range dipole-field oscil-
lations. As the discussion concerning Eq. (34) of this
paper indicates, the key indicator of the magnitude of
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TABLE II. Dipole potential strengths [A, (A, + 1)], com-
plex parts of A, (a,), and oscillatory amplitudes (2e~"*#) for
all channels L of the H(n)-e~ system for which the am-
plitudes are greater than 0.1. All values of n in the range
2 < n < 15 and all values of L in the range 0 < L < 3 were
considered.

n Term (*L) Ap(Ap +1) ay ® 2e”"H
2 IDe —0.8102 0.7485 0.1905
4 D¢ —0.8548 0.7778 0.1738
4 tpe, tFe —0.3434 0.3056 0.7658
5 1pe, 'D° —0.4581 0.4562 0.4771
6 1pe, tDe —1.1532 0.9503 0.1010

*ay = ["\u()‘u +1) - 1/4]1/2'

such oscillations is the amplitude factor 2e~7%», where
o, is the complex part of the effective angular momen-
tum A, [cf. Eq. (6)] when the long-range part of the
effective potential is attractive [cf. Eq. (15)]. In order to
calculate a,,, one may start from an independent electron
representation.

As shown by Seaton [1], the long-range dipole interac-
tion between an electron at r; having angular momentum
¢' and a bound electron with angular momentum £ at ry,
where 7 > 7y, is

a (¢ +1) + 2rycos b
-3 = 3 . (Al)
T2 T2

The effective angular momentum A, is determined by
diagonalizing the matrix a in a hydrogenic basis of states
having angular momenta £, ¢’ for the two electrons:

AtaA = A(a+1), (A2)

where the matrix A, was introduced in Eq. (16).
As shown by Macek [8], the adiabatic hyperspherical po-
tentials have this diagonal form asymptotically [cf. Eq.
(5).

We have carried out the diagonalization of the matrix
a within a basis of coupled hydrogenic states R,.(r1)
Yeoroae (r1,r2), where Yppura (r1,r2) is a product of
spherical harmonics coupled to total angular momentum
L and component M. Once we obtain those eigenvalues
Au(Ap + 1) having a value < —1/4, we obtain «, from

o, = [“Au(A, +1) —1/4]Y2 (A3)

Our results are presented in Table II. We list here
all values of n and L that produce an amplitude fac-
tor 2e7"*» > 0.1. Our search extended over the range
2<n<15and 0 < L < 3. The D¢+ channel con-
verging to H(n = 2) is the first entry, with an amplitude
factor of 0.19. One sees from the table that there are ! F'®
and ! F° channels converging to H(n = 4), which have an
amplitude of 0.77, and that there are 1 D¢ and ' D° chan-
nels converging to H(n=>5), which have an amplitude of
0.48. However, because of the larger radial extent of the
H(n = 4) and H(n = 5) bound-state wave functions, the
energy range above threshold over which such large oscil-
lations may be observed and clearly distinguished from
nondipole-field dynamical energy dependences is still an
open question.
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