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It has become increasingly clear that female obesity is associated with a myriad of 

adverse side effects including abnormal female reproduction due, in part, to amenorrhea 

and anovulatory infertility. The lethal yellow (LY) mouse possesses a deletion mutation 

which results in ectopic expression of agouti and adult-onset obesity.  Furthermore, LY 

mice exhibit premature loss of fertility, which has been associated with progressive 

obesity making the LY mouse line an excellent model to study the effects of obesity-

dependent factors on ovarian function.  In the current study blood serum and granulosa 

cells were obtained from LY (Ay/a) and age-matched B6 controls (C57BL/6J) to identify 

changes in metabolic hormone profiles and gene expression, respectively.  As expected, 

LY females exhibited higher circulating levels of insulin and leptin compared to age-

matched B6 controls.  For the first time, we identified a significant increase in circulating 

insulin like-growth factor-1 (IGF-1) levels in the LY compared to B6 at 6 weeks of age.  

Despite these differences in circulating hormone levels, there was little evidence that 

gene expression is altered in age-matched granulosa cells from LY and B6 females.  

However, age-dependent changes in the expression of several genes involved in follicular 

growth in both LY and B6 females were detected.   



 Given that IGF-1 exhibited increased levels in LY compared to B6 mice at 6 

weeks of age, the objective of our in vitro study was to determine the role of IGF-1 on 

granulosa cell gene expression. To this end, short-term granulosa cell cultures were 

treated with cAMP (the second messenger of both FSH and LH signaling), IGF-1, or a 

combination of both.  IGF-1 had an additive effect on cAMP-dependent regulation of a 

subset of genes involved in follicular growth, bi-directional communication, 

steroidogenesis, and ovulation.  Western blot analyses provided evidence that the additive 

effect of IGF-1 on cAMP regulation of gene expression is mediated by stimulation of Akt 

phosphorylation.  Thus, the cooperative effect of IGF-1 on FSH- and LH-dependent 

signaling may enhance the expression of genes which are crucial for optimal follicular 

growth and ovulation.  Furthermore, these collective data provide a plausible mechanism 

or age and obesity-dependent anovulatory infertility.  f
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CHAPTER 1 

Literature Review 

 

Nutrition and Female Reproductive Health 

 

Obesity is undoubtedly a growing problem in the United States and around the 

world. Since 1980 obesity has increased worldwide more than 75% with over one billion 

adults considered to be overweight or obese (1). In general, obesity results from a chronic 

disruption of energy balance. Specifically, when energy intake exceeds energy 

expenditure, lipid storage and carbohydrate oxidation increases and ultimately results in 

the expansion of existing fat cells and an increased number of fat cells (1). This increase 

in mature fat cell numbers is due to the differentiation of pre-adipocytes to adipocytes 

resulting from the enhanced deposit of trigylcerides into adipocytes (2). According to the 

American Obesity Association 62% of women aged 20-74 are overweight body mass 

index (BMI)  25] whereas 34% of those women are obese (BMI  30). Furthermore, 

studies report that between 18.5 - 38.3% of pregnant US women are obese. Obesity, 

either directly or indirectly, has a negative impact on several physiological systems 

including the cardiovascular, renal, and metabolic systems.  

Furthermore, it is becoming increasingly clear that female obesity is associated 

with a myriad of adverse side effects linked to reproduction. For example, prior to 

pregnancy, obese women have higher rates of amenorrhea and anovulatory infertility. In 

a Nurses Health Study, obese women had a 2.7 times higher risk of infertility problems 

compared to normal weight women (3).   



Complications Associated with Obesity: Obesity during pregnancy is also 

associated with clinical complications, which affect both the mother and the fetus.  Obese 

women have a 25-37% higher risk of miscarriage compared to normal weight women (4).  

Furthermore, overweight women have a 1.8 to 6.5 times greater risk while obese women 

have a 1 to 20 times greater risk of developing gestational diabetes mellitus (GDM) 

compared to normal weight women. Other maternal complications linked to obesity 

include higher arterial blood pressure and altered cardiac function (3).  Obese mothers 

also have 2.2 to 21.4 times greater prevalence of hypertensive disorders and 1.2 to 9.7 

times higher occurrence of preeclampsia (5).  The frequency of induced labor and 

caesarean sections is increased in obese women with 50% of deliveries being by 

caesarean in severely obese women (BMI  40) (6). The most common indications for 

caesarean delivery in this subset of women included failed cervical dilation, fetal distress, 

and risk of shoulder dystocia (6).  

Along with the maternal complications, the infants of obese mothers can have 

potentially serious problems as well. Obese mothers deliver large-for-gestational-age 

infants 1 to 18 times more often than normal weight mothers. This increase in birth 

weight has been linked to additional skinfold thickness suggesting that the elevation in 

birth weight is due to a larger fat mass (7).  Macrosomia, in turn, can result in other 

complications including increased risk of shoulder dystocia, birth injury, and perinatal 

death (6). Infants of overweight and obese mothers also face a considerable increased risk 

for congenital abnormalities [35% and 37.5%, respectively] (8). However, one of the 

most substantial problems is the increased risk for perinatal death. For overweight 

mothers, this incidence is increased by 1.1 to 2.5 fold and for obese women by 2.5 to 3.4 



fold compared to normal weight women. Interestingly, in domestic livestock, neonatal 

mortality is also increased in cattle and sheep that are overweight [body condition score 

(BCS)  4] (9).  

Complications Associated with Decreased Energy Balance: Women as well as 

female domestic livestock also have reproductive health issues when underweight. Nearly 

all studies regarding underweight women (BMI < 18.5) and pregnancy complications 

involve women who have eating disorders, specifically anorexia and bulimia. While 

several studies have been carried out, there are conflicting results between them. Bulik et 

al. reported a higher instance of miscarriage, lower birth weights, more premature births, 

and more cesarean sections when anorexic patients were compared to normal weight 

women (10). Using a similar comparison, Stewart et al. (11) also demonstrated lower 

Apgar scores and lower birth weights.  Conversely, Franko et al. did not find any 

differences in Apgar scores and birth weights between underweight and normal weight 

mothers (12). Despite the discrepancies between these studies, conclusive results 

regarding underweight women include an increase in the rates/risk of anovulatory 

infertility, miscarriage, caesarian sections, and postpartum depression (10, 12-14). In 

domestic livestock species, females that are underweight have similar reproductive health 

issues. Specifically, cattle, upon severe reduction in their body weight, exhibit cessation 

of estrous cycles, quiescent ovaries (i.e. lack of follicular development), a higher 

incidence of embryo mortality, and decreased birth weights of viable offspring (8). 

Likewise, underweight ewes produce lambs with reduced birth weights compared to 

normal-weight ewes (8).  



 Overeight and Underweight women Experience Increased Costs: Not only does 

increased or decreased maternal weight produce these adverse side affects during a 

women�’s reproductive lifespan, the cost for gynecologic, obstetric, and neonatal care is 

also greater for overweight and underweight mothers compared to their normal weight 

counterparts. A study conducted by Galtier et al followed 435 women during and after 

their pregnancy and the duration of nighttime and daytime hospitalizations were 

recorded. Overall, the total cost for women who were overweight prior to pregnancy was 

5 times higher than normal weight controls. The increase in total cost was primarily due 

to increased night and daytime hospitalizations, increased cost of pre and post-natal care, 

and an increased number of infants requiring admission into the neonatal intensive care 

unit (5).  In addition to these costs associated with an established pregnancy, the 

increased incidence of anovulatory infertility in overweight or underweight females may 

result in an increased need for assisted reproductive technologies, which also has a 

significant associated cost.  This problem is not unique in human medicine but also 

impacts the economics of the domestic livestock industry.  Specifically, if the 

reproductive performance of female animals is reduced due to fluctuations in energy 

balance, they will not be producing profit-generating offspring.  The producer will also 

have to bear the cost of replacing the animal within the herd.  

Given all of the complications and costs associated with fertility and pregnancy 

that overweight and obese women face; the most obvious question is what is the 

underlying cause and how can it be reversed? While pregnancy loss and infertility is 

complex and the result of multiple factors, this review will focus on the process of 



folliculogenesis and the development of an oocyte with high developmental 

ompetence, which plays a crucial role in reproductive success.   c

 
 

Folliculogenesis 
 
 
 Before evaluating what factors reduce oocyte quality in obese individuals, we 

must first understand how a mature and developmentally competent oocyte is ovulated.  

Growth and development of the oocyte takes place in intimate contact with somatic cells 

of the ovary, which collectively represent the follicle. The process by which a follicle is 

recruited, matured, and subsequently ovulated is known as folliculogenesis. The major 

steps involved in the process of ovarian folliculogenesis (Figure 1.1) include: (1) the 

formation of the quiescent pool of primordial follicles; (2) the recruitment and selection 

of primordial follicles for growth and development resulting in the progression of 

follicles through the primary, secondary, antral, and preovulatory stages; and (3) 

ovulation and the formation of a corpus luteum (CL) from residual somatic cells of the 

follicle (15).   

 

 Establishment of the Primordial Follicle Pool and Initiation of Follicular 

Growth: Current dogma indicates that at birth, a female�’s primordial pool contains all the 

oocytes that will ever be produced. However, it should be noted that Johnson et al. have 

recently challenged this dogma by providing evidence that mouse ovaries contain 

proliferative germ cells that sustain oocyte and follicle production in the postnatal 

mammalian ovary (16). Initially, oocytes are present in the ovary as germ cell clusters.  



These clusters subsequently undergo breakdown and individual germ cells are 

surrounded by squamous pre-granulosa cells. Primordial follicles form 1-2 days after 

birth in mice and in utero in humans (15). In domestic livestock, there are species-

dependent differences with the development of the primordial pool, occurring in utero 

(cattle, sheep) in some animals and during the neonatal period (horses, pigs) in other 

animals (17). Primordial follicles remain essentially quiescent with a small number of 

primordial follicles cyclically selected to grow (follicle activation) (18) and enter into the 

growing pool from puberty through menopause (19). The transition of primordial to 

primary follicles is characterized by the morphological change in granulosa cells from 

squamous to cubodial. The follicle has now entered the stage of preantral 

folliculogenesis, which is characterized by oocyte growth, granulosa cell proliferation, 

and the addition of a theca somatic cell layer (20). The growth of preantral follicles is 

primarily intraovarian which means it is dependent on autocrine and paracrine regulatory 

factors and is largely independent of gonadotropin (i.e. follicle stimulating hormone 

(FSH) and luteinizing hormone (LH) signaling. This is confirmed by studies in mice 

deficient in the FSH receptor which have normal preantral follicle growth (21). Once 

follicles have achieved two layers of granulosa cells, the theca then differentiates into the 

outermost layer of the follicle (20). The follicle now consists of the oocyte surrounded by 

multiple layers of cubodial granulosa cells, a theca interna, which is located just outside 

the basement membrane surrounding the granulosa cells, and the theca externa.  

 

 Antral Follicle Growth and Ovulation: The antral stage of folliculogenesis begins 

once the regulation of follicular growth becomes extraovarian (i.e. gonadotropin-driven) 



as opposed to intraovarian (i.e. paracrine factor driven). Many changes take place 

during this stage including the formation of a single antral cavity that separates two 

distinct granulosa cell populations. Mural granulosa cells line the wall of the follicle and 

are vital for steroidogenesis and ovulation, while cumulus granulosa cells remain in 

intimate contact with the oocyte and facilitate oocyte growth and acquisition of 

developmental competence (15). Antral to preovulatory folliculogenesis is primarily 

dependent on FSH and LH signaling. Specifically FSH prevents granulosa cell apoptosis 

and follicular atresia (22), and promotes granulosa cell proliferation, estradiol production, 

and LH receptor expression (23). Luteinizing hormone regulation is coordinated with 

FSH for antrum formation while the LH surge promotes ovulation of a fully grown and 

mature oocyte (15).  

 The majority of preantral and antral follicles will undergo atresia, whereas a small 

number will reach the preovulatory stage. Follicles that escape atresia likely have higher 

responsiveness to FSH due to increased follicle stimulating hormone receptor (FSHR) 

expression in the granulosa cells of that follicle (15). As follicles are progressing to the 

pre-ovulatory stage, rising estradiol levels suppress pituitary FSH release. Conversely, as 

estradiol levels reach a threshold level, pituitary LH secretion is enhanced, resulting in 

the LH surge, which is critical for the conclusion of folliculogenesis.  Specifically, the 

LH surge results in oocyte meiotic resumption, cumulus expansion, and ovulation of a 

mature, developmentally competent oocyte (24). The granulosa and theca cells retained 

in the follicle then undergo differentiation to form the corpus luteum (CL), which is 

responsible for the production of progesterone, a hormone that is crucial for a viable 

pregnancy (15).   



Hormone and Paracrine Factor Regulation of Folliculogenesis 
 
 

Paracrine Factors 
 

The processes of folliculogenesis and ovulation of a developmentally competent 

oocyte are complex and require the expression and interplay of many genes and signaling 

pathways.  The expression and activity of these genes and pathways are regulated by 

several endocrine hormones and paracrine factors. As stated earlier, the regulation of 

folliculogenesis can essentially be split into two categories, (1) intraovarian regulation 

during preantral follicle growth and (2) gonadotropin-dependent regulation during antral 

follicle growth. The major paracrine factors which regulate preantral follicle growth 

include kit ligand (Kitl), anti-müllerian hormone (Amh), and growth differentiation 

factor-9 (Gdf9). 

 

 Kit Ligand: Kitl is expressed in pre-granulosa and granulosa cells throughout 

folliculogenesis, but the interactions between KITL and KIT, which is a tyrosine kinase 

receptor expressed by the oocyte, appear to be most crucial during early folliculogenesis 

(15). This observation is based on the results of several studies conducted using the Steel 

Panda (Slpan) and Steel Contrasted (Slcon) mouse lines. The Slpan and Slcon mutations result 

in the reduced expression of Kitl transcripts in both male and female gonads. This 

decrease in Kitl expression leads to early arrest or increased atresia of ovarian follicles 

(15, 25).  Additional in vivo and in vitro studies support the idea that KIT-KITL signaling 

is important for early follicular growth. For example, when newborn mice are injected 

with ACK2 (an antibody to KIT, which blocks its interaction with KITL), follicular 



growth is blocked resulting in an ovary populated with only primordial stage follicles. 

Conversely, when neonatal rat ovaries were treated in whole organ culture with 

recombinant KITL, there is an acceleration of the primordial to primary follicle 

transition, resulting in an increased number of growing follicles (26). Collectively, these 

studies indicate the Kitl is crucial for the transition from primordial to primary follicles 

and the initiation of follicle development (15).  

 

Anti-Mullerian Hormone: Amh expression in granulosa cells is detected in 

primary follicles, with the highest expression occurring in the granulosa cells of preantral 

and early antral stage follicles (27). Amh is known to inhibit two major steps in 

folliculogenesis, initial follicle recruitment and cyclic selection of dominant follicles (19, 

27). Mice lacking Amh (Amh-/-) are fertile, but by 4 months of age, they have an 

increased number of growing follicles and a reduced number of primordial follicles 

compared to wild-type controls. At 13 months of age, there is a depletion of primordial 

follicles in Amh-/- females and there are very few growing follicles, reminiscent of 

premature ovarian failure (15). There is also evidence presented by Durlinger et al. 

indicating that Amh is an inhibitor of FSH-dependent follicle growth. This in vivo study 

demonstrated that Amh null mice have more growing follicles than wild-type mice in the 

presence of both low and high serum FSH concentrations (28). This inhibitory effect of 

Amh on FSH sensitivity in follicles could play a role in dominant follicle selection, as it 

has been speculated that each follicle exerts its own threshold FSH concentration that has 

to be exceeded for selection (19). Despite this evidence that Amh inhibits primordial 



follicle growth and dominant follicle selection, the exact mechanism of Amh-

dependent repression of follicle growth is not fully understood (15).   

 

Growth Differentiation Factor 9: Like Amh, Gdf9 expression first appears in the 

oocytes of primary follicles, and is sustained until ovulation (29, 30). Gdf9 -/- female mice 

form primordial and primary follicles, but experience a block in follicular development at 

the primary stage of folliculogenesis, indicating a role for Gdf9 during preantral follicle 

growth (31). The granulosa cells of Gdf9-/- mice also have reduced proliferation and 

defects in differentiation, as well as absence of theca layer development (31, 32). In 

addition, few granulosa cells undergo apoptosis, and Kitl, as well as the peptide inhibin, 

are dramatically increased in Gdf9-/- granulosa cells compared to controls, suggesting that 

Gdf9 inhibits granulosa cell production of these growth factors (32).  

 

Inhibin and Activin: Inhibin is a gonadal peptide that is present in follicular fluid 

and granulosa cells. Structurally, inhibin is made up of two subunits (  and ) that are 

linked by disulfide bonds. Dimers of the  subunits of inhibin ( A B, A A, B B) can 

also form and these dimers, which are collectively called activins, stimulate FSH actions 

(33). Inhibin is considered the antagonist of activin and both are reportedly important for 

regulating the formation and development of ovarian follicles (34). Recently, Woodruff 

et al. provided evidence that activin stimulates estrogen receptor (ER) expression in 

granulosa cells and helps maintain ER levels in the mouse ovary (34). However, further 

research needs to be conducted to determine inhibin and activin�’s specific effects during 

preantral folliculogenesis.  



 

Wnt Genes: In humans and mice, the Wnt family encodes a group of 19 highly 

conserved, secreted signaling molecules that are critical regulators of cell fate, growth, 

and differentiation, as well as cell-cell interactions (35).  This family of genes is related 

to the Drosophila segment polarity gene, wingless (wg).  In the prepubertal mouse, the 

majority of Wnt ligands, receptors and antagonists are expressed in the ovary suggesting  

a functional role for this pathway in folliculogenesis and oocyte maturation (36).  

Furthermore, Wnt2, Wnt4, and Wnt5A are expressed in the fully grown, but not ovulated 

oocyte, whereas Wnt7A is expressed in both the fully grown and ovulated oocyte.  Hsieh 

et al. demonstrated that Wnt4 and the receptor Fzd-1 are expressed in granulosa cells of 

the adult ovary and the expression of these genes is increased by eCG and hCG 

stimulation (37). Furthermore, females lacking Wnt4 expression in granulosa cells exhibit 

decreased ovary size, reduced litter sizes, reduced numbers of antral follicles, and 

decreased expression of genes involved in steroidogenesis (38). 

 

Early Growth Response 1: An additional gene important in follicle growth and 

ovulation is early growth response factor-1 (Egr-1). It is an inducible zinc finger 

transcription factor that binds specific GC-rich enhancer elements. Female mice null for 

Egr-1 are infertile (39).  Furthermore, multiple groups have demonstrated that FSH or 

forskolin, which activates adenylate cyclase, rapidly induces Egr-1 expression in 

granulosa cells (40)  Early growth response-1, in turn, regulates the expression of the LH 

receptor as well as components of the prostaglandin biosynthesis pathway (40).  Research 

on the role of Egr-1 is limited and further studies are required to fully understand the 



importance of this transcription factor for follicular growth, oocyte maturation, and 

ovulation.  

 

Gonadotropin-Dependent Regulation of Folliculogenesis 

 

 Once folliculogenesis has progressed to the antral follicle stage, regulation by 

gonadotropins (i.e. FSH and LH) is critical. This is evident in FSH-deficient female mice.  

Specifically, FSH-deficient females are infertile due to a block in antral follicle 

formation. However, when the ovaries of 6 week old animals are examined, they contain 

all earlier stages of folliculogenesis including primordial, primary, and multilayered 

preantral follicles (21, 41). Likewise, knockout of LH in female mice causes several 

abnormalities with regard to ovarian function. The mice are hypogonadal and show thin 

uterine horns as well as impaired estrous cycles evident by the fact that there was an 

absence of healthy antral and preovulatory follicles and CLs. Primary and secondary 

follicles appeared normal, whereas many antral follicles were abnormal containing 

degenerating oocytes (42).  For both FSH and LH null mice, exogenous gonadotropin 

administration rescues the follicular defects and restores fertility (15). Taken together, 

these studies indicate that early folliculogenesis is indeed gonadotropin-independent, but 

that gonadotropins are crucial for antral follicle development and ovulation (15).  

 

 Gonadotropin Releasing Hormone: The gonadotropin dependent regulation of 

folliculogenesis is initiated by gonadotropin-releasing hormone (GnRH), which is a 10 

amino acid peptide hormone secreted from neurons in the hypothalamus (43). Synthesis 



occurs in neurons found in the ventral portion of the hypothalamus, specifically in the 

arcuate nucleus, as well as in the preoptic nucleus of the anterior portion of the 

hypothalamus. The secretion of GnRH is regulated by several neurotransmitters and 

neuropeptides (33). Once released, GnRH is delivered into the portal vasculature and 

travels to the anterior pituitary. Gonadotropin releasing hormone binds to the GnRH 

receptor, type I, which is a Gs-coupled protein receptor, in gonadotroph cells of the 

anterior pituitary and stimulates the synthesis and release of both FSH and LH.  The 

release of these gonadotropins is differentially regulated by GnRH and is dependent on 

the area of the hypothalamus (i.e. arcuate nucleus, preoptic nucleus) that is stimulated by 

neural depolarization to release GnRH.  Upon stimulation of the arcuate nucleus, the 

hypothalamus mediates tonic or basal secretion of LH. When the preoptic nucleus is 

stimulated, there is a surge release of both FSH and LH. Finally, if there is a surge release 

of GnRH prior to ovulation, this mediates a secretory surge of LH, with less FSH (43).  

 

 Follicle Stimulating Hormone and Luteinizing Hormone: Follicle stimulating 

hormone and LH are both glycoproteins which travel through the systemic circulation to 

the ovaries. Structurally, FSH and LH are each composed of a common alpha subunit and 

a unique beta subunit. As previously stated, FSH prevents granulosa cell apoptosis and 

follicular atresia (22), and promotes granulosa cell proliferation, estradiol production, and 

LH receptor expression (23).  Luteinizing hormone regulates thecal cell steroidogenesis, 

antrum formation (in coordination with FSH), and ovulation (15).  

 Follicle stimulating hormone works through a Gs-coupled protein receptor 

(FSHR), and upon binding, activates adenylyl cyclase (AC) resulting in increased 



synthesis of the second messenger cyclic adenosine monophosphate (cAMP) and 

activation of protein kinase A (PKA) (33). Protein kinase A subsequently activates 

multiple downstream signaling factors including extracellular regulated kinase (Erk1/2), 

p38 MAPK, and PI3K (44). The primary acitvator of the PKB/Akt signaling pathway is 

P13K and therefore, cAMP indirectly regulates Akt signaling (45).  The activation of the 

Akt pathway is correlated to granulosa cell differentiation whereas the activation of the 

Erk1/2 pathway is associated with proliferation and cell survival (44, 46). Follicle 

stimulating hormone stimulation of the PI3K/Akt pathway is also associated with follicle 

maturation, granulosa cell proliferation, and cell survival (44, 46).  

The actions of LH are also mediated through a Gs-coupled protein receptor 

activating the cAMP/PKA signaling pathway, and subsequently stimulating the Erk1/2 

pathway, as well as cAMP-activated guanine nucleotide exchange factors (cAMP-GEFs) 

and phospholipase C (24). Figure 1.2 depicts the signaling cascades induced by the 

binding of either FSH or LH to their respective receptors.  

 The FSH receptor is expressed in granulosa cells of preantral follicles as well as 

mural and cumulus granulosa cells of antral follicles. Follicle stimulating hormone drives 

the proliferation, growth and differentiation of granulosa cells, characterized by the 

formation of a fluid-filled antrum within the maturing follicle, as well as the development 

of the two distinct populations of granulosa cells (i.e. mural and cumulus) (44). For 

example, in vitro studies in rat granulosa cells suggest that FSH signaling is required to 

remove the forkhead box-containing proteins in the O subfamily-1 (FOXO1) repression 

of cyclin D2 (Ccnd2) (47), which is a gene critical for granulosa cell proliferation. 

Studies have also shown that FSH alone promotes transcription of several 



�“differentiation�” target genes including aromatase, inhibin- , epiregulin, and LH 

receptor (44).  

 Mural granulosa cells adjacent to the basement membrane of the antral follicle 

express high levels of the LH receptor (LHCGR).  Upon binding of LH, these mural 

granulosa cells stimulate expansion of the cumulus granulosa cells. Conti et al. have 

shown that LH stimulates the expression of the epidermal growth factor (EGF)-like 

family members amphiregulin (Areg), epiregulin (Ereg), and betacellulin (Btc), which are 

rapidly expressed after the LH surge and stimulate cumulus expansion and oocyte 

maturation in vitro (48). These findings were confirmed when the U0126 inhibitor of 

Erk1/2 signaling prevented gonadotropin, EGF, and cAMP analog stimulation of cumulus 

expansion (49).  It should be noted that the oocyte itself is also required for cumulus 

expansion as demonstrated by several oocytectomized studies (15). The LHCGR is also 

expressed in thecal cells of preantral and antral follicles.  Interactions between LH-

LHCGR in thecal cells stimulates several enzymes involved in steroid biosynthesis, 

resulting in thecal cell synthesis of androgens. These androgens are subsequently 

aromatized to estrogens under the regulation of FSH in the granulosa cells. This 

coordinated effort to produce estradiol is known as the two-cell two-gonadotropin model 

(43).  

  

 Ovarian Steroids: Both acute and chronic regulation of steroidogenesis is 

predominately controlled by LH and FSH as described above (50). The acute response is 

initiated by the mobilization and delivery of cholesterol, the substrate required for all 

steroid hormone biosynthesis, from the outer to the inner mitochondrial membrane. The 



protein that facilitates this transfer of cholesterol is steroidogenic acute regulatory 

(Star) protein. Mutations characterized by loss-of-function in the Star gene are lethal and 

cause congenital lipoid adrenal hyperplasia, which results in the almost complete loss of 

steroid synthesis (51). Another important steroidogenic gene is aromatase (Cyp19a1), 

which is a member of the P450 cytochrome superfamily of enzymes and catalyzes the 

conversion of androgens to estrogens. Therefore, Cyp19a1 null mice are unable to 

produce estradiol (15). Ovaries from 12 to 14 week old Cyp19a1 null mice contain 

follicles of all types, however the mice were infertile and CLs were absent, suggesting 

impaired ovulation. Furthermore, many antral follicles were histologically abnormal with 

uneven granulosa cell layers and increased apoptosis (52). Serum FSH and LH were also 

elevated in Cyp19a1 null mice. An additional member of the P450 cytochrome family 

important in ovarian steroidogenesis is cholesterol side chain cleavage enzyme 

(Cyp11a1), which catalyses the conversion of cholesterol to pregnenolone (46). This 

conversion is the first step in steroid biosynthesis and is therefore critical in the process 

of steriodogenesis. 

 Increasing ovarian estrogen synthesis has an initial negative feedback effect on 

the hypothalamus and anterior pituitary, which depresses FSH and LH release.  However, 

upon reaching a threshold level, estrogen stimulates the surge release of GnRH, which in 

turn will activate gonadotrophs in the anterior pituitary to release a surge of LH and 

thereby induce ovulation. During this time, the granulosa cells will also be secreting 

inhibin, which has a negative feedback effect on FSH but not LH release. Estrogen 

interacts with inhibin to maximize this effect on FSH. After ovulation, a functional 

corpus luteum (CL) produces progesterone, which inhibits GnRH and subsequently, LH 



release (33). Increasing progesterone levels have a profound negative effect on GnRH 

secretion as well as FSH and LH secretion. This feedback loop between GnRH, FSH and 

LH, and the ovarian steroids (estrogen and progesterone) is collectively known as 

hypothalamic-pituitary-gonadal (HPG) axis, and is crucial for normal ovarian follicle 

development, as well as ovulation and subsequent fertilization and maintenance of a 

viable embryo. 

  

Additional Endocrine Regulators of Follicular Development 

 

Although FSH and LH are the main regulators of antral follicle growth, 

steroidogenesis, and ovulation, there are several other endocrine hormones that contribute 

directly or indirectly to these processes. This includes hormones which fluctuate with 

changes in adipose tissue mass (e.g. insulin, insulin-like growth factor-1 (IGF-1), and 

leptin).  

 

Insulin: Insulin is a polypeptide secreted by the -cells of the pancreatic islets of 

Langerhans, and is released when blood glucose levels are high (33). Circulating insulin 

levels in the peripheral blood of normal women is approximately 10 /U/ml in the fasting 

state and up to 50 /U/ml within one hour after oral ingestion of glucose. In obese 

women, these levels are elevated to 15 /U/ml and 60 /U/ml respectively (53). Insulin�’s 

receptor is a heterotetramer consisting of two  and two  subunits and belongs to the 

tyrosine kinase family of receptors (33) Upon insulin binding, the activated receptor 

recruits the insulin receptor substrate-1 complex (IRS-1), which contains several 



phosphorylation sites.  Once phosphorylated, IRS-1 activates downstream signal 

transduction cascades including the PI3K/Akt and Erk1/2 pathways (Figure 1.3). Insulin 

binding to its receptor can stimulate either mitogenic or metabolic effects including 

stimulation of DNA and protein synthesis, lipogenesis, transmembrane electrolyte 

transport, and transmembrane glucose transport (53).  

Insulin receptors are expressed throughout the ovary, including granulosa, thecal, 

and stromal tissues across multiple mammalian species (53).  However, the effect(s) that 

insulin has on the ovary is/are not yet fully understood. Several in vivo and in vitro 

studies have examined insulin�’s possible contribution to ovarian processes, including its 

role in ovarian steroidogenesis and ovulation. At present, there is conflicting evidence 

regarding insulin-dependent regulation of steroidogenesis.  In fact there are opposing 

results regarding the role of insulin on ovarian steroidogenesis with some studies 

indicating insulin-dependent increases in steroid production and other studies showing no 

effect of insulin on steroid synthesis (53). For example, a stimulatory effect of insulin on 

aromatase has been suggested by some in vitro studies of animal and human ovarian cells 

(54-57), while McGee et al. failed to confirm this finding (58). There are even more 

discrepancies in in vivo studies as Poretsky et al. provided evidence in rats that insulin 

has a stimulatory effect on ovarian and peripheral aromatase (59), whereas in vivo studies 

by Stuart et al. suggest that insulin may inhibit aromatase (60).  There is also evidence 

that insulin is required for the normal function of the HPG axis and therefore, it is likely 

that a threshold level of insulin is required for ovulation.  However, it is unclear if insulin 

directly regulates axis function or if insulin stimulates leptin secretion which has been 



shown to activate the HPG axis at the onset of puberty (53).  Thus, it is clear that 

further studies are required to fully define insulin�’s effects on the ovary.  

 

Insulin-like Growth Factor 1 (IGF-1): A close relative to insulin, IGF-1, has also 

been widely studied with regard to ovarian function. The structure of IGF-1 exhibits 

significant homology to proinsulin, which is the precursor to insulin. Insulin like growth 

factor-1 is a 70 amino-acid, single-chain polypeptide which is widely expressed in most 

tissues, although the major source of circulating IGF-1 is the liver (53). Growth hormone 

(GH) is the primary activator of IGF-1 gene transcription (61), while other activators 

include estradiol and angiotensin II (53). Insulin like growth factor-1�’s main effect on its 

target tissues is cell proliferation. IGF-1�’s receptor, like the insulin receptor, is a 

heterotetramer consisting of two  and two  subunits and belongs to the tyrosine kinase 

family of receptors. Upon binding of IGF-1 to its receptor, again, the IRS-1 complex is 

recruited, which contains several phosphorylation sites, and once phosphorylated will 

cause several signal transduction cascades to be activated including the PI3K pathway, 

which in turn activates the Akt pathway.  Insulin and IGF-1 can bind to each other�’s 

receptors but with less affinity (Figure 1.3) (33).  

In the human ovary, the IGF-1 receptor is expressed in granulosa cells and 

oocytes with higher expression levels in dominant compared to small antral follicles (62, 

63). In the rodent ovary, both IGF-1 and the IGF-1 receptor are abundantly and 

specifically expressed in granulosa cells. Insulin like growth factor-1 null mice are 

infertile due to diminished sex drives, as well as decreased estradiol synthesis, ovarian 

weight, uterine size, and FSH receptor expression (64). There is growing evidence that in 



the ovary IGF-1 has an additive or synergistic effect on FSH- and LH-dependent 

regulation of granulosa and thecal cell steroidogenesis and therefore represents a co-

gonadotropin. While Mani et al. found that IGF-1 treatment alone significantly increased 

Cyp19a1 expression, several reports show a synergistic effect of FSH and IGF-1 on 

Cyp19a1 expression including experiments using cultured bovine (65, 66) and rat 

granulosa cells (67).  Star is also a very important steroidogenic gene, as it facilitates the 

transfer of cholesterol into mitochondria. A synergistic effect of FSH and IGF-1 on Star 

expression has been shown in porcine granulosa cells (68). Studies have also looked at 

what pathways are involved in this synergistic effect with an emphasis on the Akt and 

Erk1/2 pathways due to the role of these pathways on cell survival and proliferation. 

Insulin like growth factor-1 alone increased Akt phosphorlyation in bovine granulosa 

cells (46), and there is evidence of significant increases in Akt phosphorylation when 

cells are co-treated with FSH and IGF-1 (66).  In contrast, Mani et al. demonstrated that 

IGF-1 alone and in combination with FSH had no effect on Erk1/2 phosphorylation (46). 

Therefore, the current data suggests that the Akt pathway mediates IGF-1-dependent 

expression of granulosa cell genes.  However, additional studies are required to confirm 

the specific pathways involved in the synergism of IGF-1 and gonadotropin regulation of 

ovarian steroidogenesis. Insulin like growth factor-1 is also implicated to synergize with 

gonadotropins to enhance their actions on cell cycle progression, apoptosis, and structural 

maintenance of the follicle during its development (64). Based on evidence collected so 

far, it is obvious that IGF-1 plays an important role in female reproduction, but further 

studies need to be completed in order to define the exact function of IGF-1 with regards 

to ovarian function.  



 Leptin:  Leptin is a polypeptide hormone product of the obese gene (ob) that 

consists of 146 amino acids. Leptin is produced by adipocytes, and the amount of leptin 

in the body is directly proportional to the amount of fat in the body (69). Because it is a 

protein hormone, leptin can travel through the blood in a free state and acts at the plasma 

membrane of cells. The leptin receptor is the product of the db gene and belongs to the 

class I cytokine superfamily of receptors (70). The receptor has two isoforms.  The long 

form is the primary form found in the hypothalamus. The short form is generally located 

in the peripheral tissue and at the blood brain barrier. Leptin receptors can be found in the 

liver, kidney, heart, skeletal muscles, and the pancreas (69). In the ovary, granulosa and 

theca cells express leptin receptor mRNA (70) as well as luteal tissue, microvascular 

endothelial cells, and oocytes (71).  Leptin signaling occurs through the JAK/STAT 

pathway. Once the receptor (Ob-Rb) is bound, the recruitment and activation of JAK2 

takes place, which involves dimerization of STATs through interaction with a conserved 

SH2 domain, which leads to the subsequent phosphorylation of STAT3 (Figure 1.3). 

STAT3 is a member of the STAT family of proteins, which binds to a DNA response 

element resulting in increased transcription and therefore regulation of gene expression 

(70).  

The main function of leptin is to regulate appetite by binding to specific neurons 

in the hypothalamus and producing a signal resulting in decreased food intake. It is also 

apparent that leptin plays a role in female reproduction given that the ob/ob mutant 

female mouse, which does not produce an active form of leptin, is acyclic and sterile. The 

sterility is reversed by treatment with recombinant leptin, but not by food restriction, 

indicating that leptin is required for normal reproductive function (70). Studies 



demonstrate that leptin increases plasma concentrations of LH, as well as LH pulse 

frequency and amplitude (72) and FSH (73, 74) indicating that it is a potential regulator 

of the HPG axis.   Genetic studies have also shown that leptin is required for the initiation 

of puberty, with higher circulating leptin levels associated with a younger age at 

menarche (53). Menstrual abnormalities in young, healthy women are notably related to 

decreased adiposity (<15%) and leptin (<3 ng/ml).  

It has also been suggested that leptin is involved in ovarian steriodogenesis.  In 

human granulosa cells, leptin inhibits LH�’s stimulatory effect on the production of 

oestradiol, whereas there was no effect on estradiol production when LH is not present 

(75).  Several studies have indicated that leptin has an inhibitory effect on IGF-1 in the 

ovary. Zachow and Magoffin reported that leptin could directly inhibit IGF-1 action in rat 

ovarian granulosa cells. Furthermore, leptin impaired IGF-1 dependent increase of FSH 

stimulation of estradiol synthesis in rat granulosa cells (76). Taken together, these studies 

indicate an important role for leptin in female reproduction and provide a link between 

energy balance and reproduction..  

 

Contribution of Granulosa Cells to Oocyte Growth and Maturation 

 

It is well established that the oocyte and cumulus granulosa cells form a 

regulatory loop which guarantees coordinated growth of the oocyte and proliferation of 

the granulosa cells (77). Moreover, granulosa cells also participate in maintenance of 

oocyte meiotic arrest, global suppression of oocyte transcriptional activity, and the 

induction of oocyte meiotic and cytoplasmic maturation (78).  This coordinated growth is 



dependent on bi-directional communication between cumulus cells and the oocyte, 

which is mediated by both gap junctional and paracrine signaling pathways. Paracrine 

regulation of folliculogenesis has been discussed in another section of this chapter.  Thus, 

the focus of this section will be gap junctional communication. 

 

Gap junctions: Gap junctions are small transmembrane pores that allow the 

transfer of ions, metabolites, and small molecules between neighboring cells.  The core 

proteins that make up gap junctions are called connexins and several studies have 

examined the importance of ovarian expression of connexins (15). Two specific 

connexins, connexin 43 (Cx43) and connexin 37 (Cx37) have essential and distinct roles 

during folliculogenesis. Connexin 43 forms gap junctions between granulosa cells which 

are found at all stages of folliculogenesis (79). Connexin 43 knockout mice display a 

block at the primary follicle stage with impaired granulosa cell proliferation and oocyte 

growth.  Furthermore, the oocytes are morphologically abnormal with defects in meiotic 

maturation (15).   This phenotype persists when ovaries from fetal and newborn Cx43 

knockout mice are cultured in vitro or transplanted under the kidney capsule of wild-type 

mice.   

Connexin 37 is localized to the interface of the oocyte and granulosa cell and 

forms gap junctions between the two cells during the primary follicle stage (80). Ovary-

specific knock-out of Cx37 also exhibits abnormalities in folliculogenesis.  Oocytes in 

mice lacking Cx37 have defects in the ability to resume meiosis and fail to grow to a 

normal size, although follicular development progresses to the late preantral stage (80). 

Connexin 37  deficient ovaries also have numerous small CL-like structures, suggesting 



that communication via gap junctions is a major mechanism regulating CL formation. 

From these studies, it can be concluded that Cx43 gap junctions are required for 

granulosa cell proliferation earlier in folliculogenesis to form multilayered follicles, 

whereas Cx37 gap junctions are critical for the preantral to antral follicle transition, with 

both types of junctions playing an important role in the support of normal oocyte 

development (15).  

Recent data suggests two important functions of gap junction dependent 

communication between the oocyte and granulosa cells. Mammalian oocytes reach 

prophase of first meiosis around the time of birth, and remain at this stage for months or 

years, depending on the species. Only after puberty will the fully grown oocytes begin to 

resume meiosis, which is stimulated by the LH surge (81). Gap junction communication 

is required to maintain this meiotic resumption as it mediates two factors that prevent it, 

cAMP and guanosine 3',5'-cyclic monophosphate (cGMP). When rat follicle-enclosed 

oocytes were incubated with carbenoxolone, a known blocker of gap junctions, meiotic 

resumption in the oocyte was inhibited, with a drop in intraoocyte cAMP concentrations 

indicating that gap junctions facilitate cAMP transfer into the oocyte (82). Furthermore, 

Norris et al. found that cGMP passes through gap junctions into the oocyte, where it 

inhibits hydrolysis of cAMP by the phosphodiesterase, PDE3A (83). This inhibition 

maintains a high concentration of intra-oocyte cAMP and thus blocks meiotic 

progression. Second, gap junctions play an important role in oocyte metabolism and 

energy production.  Specifically, oocytes are deficient in their ability to utilize glucose as 

an energy substrate and rely on cumulus cells to metabolize glucose (78). The cumulus 

cells metabolize glucose into pyruvate by glycolysis, which is then transported to the 



oocyte via facilitated diffusion using gap junctions (84).  Oocytes subsequently 

metabolize pyruvate through oxidative phosphorylation to produce energy for growth and 

maturation.  

 

Transzonal projections: Both paracrine and gap junctional communication is 

facilitated by the establishment of transzonal projections (TZP) by the granulosa cell. The 

TZPs are composed of microtubules or actin which transverse the zona peluicida 

allowing intimate contact between the oocyte and surrounding granulosa cells (85).  

Microtubule-derived TZPs originate from the centrosome and associated microtubule 

organizing center (MTOC).  There are a handful of genes that regulate centrosome and 

MTOC function.  One gene encodes for the transforming acidic coiled coil (TACC) 

proteins which play a role in normal development and tumorigenesis. The TACC proteins 

are a subfamily of coiled-coil domain containing proteins characterized by a specific 200 

amino acid C-terminal coiled coil domain. Transforming acidic coiled coil-1 is the 

founding member of the transforming acidic coiled coil genes and is expressed in the 

surface epithelium (86) and granulosa cells (Mack, unpublished data) of the ovary.  In 

addition to its role in microtubule formation, TACC1 interacts with transcriptional and 

translational machinery.   

Another family of genes that participate in centrosome function and interacts with 

the MTOC is the Nima-related kinase (Nek) genes.  Specifically, Nek2 regulates 

centrosome splitting and is associated with condensing chromosomes during prophase 

(87). Nima-related kinase 2 is expressed in growing oocytes, granulosa cells, and ovarian 

surface epithelium.  However, the function of Nek2 and its family member, Nek4, during 



folliculogenesis, oocyte-granulosa cell communication, and oocyte maturation remains 

unclear. 

TZPs have been reported to be most abundant in preantral follicles, and appear to 

be crucial for the transport of paracrine factors between the oocyte and granulosa cells.  

For example, Antczak and Van Blerkom have reported evidence of the delivery of follicle 

cell-derived leptin and STAT3 to the oocyte by TZPs (88).  Likewise, Albertini et al. 

have proposed a model that TZPs support uptake of oocyte products, like GDF-9, by 

granulosa cells, which is then processed by transcytosis and presented to more distal 

granulosa cells and even surrounding theca. Central to this model are key properties of 

TZPs: (i) they possess the appropriate subcellular machinery for orienting the trafficking 

of paracrine factors; and (ii) their dynamics are controlled by other factors (for example 

FSH) such that localized delivery and uptake is regulated (85). An in vivo study 

conducted by Combelles et al. provided evidence that FSH treatment results in a 

retraction of TZPs (89). Furthermore, recent studies indicate that a loss of oocyte-

granulosa cell contact reduces (90, 91) whereas increased TZP density enhances (92) the 

development potential of in vitro matured oocytes.  Based on these collective data, it is 

obvious that granulosa cells play a pivotal role in folliculogenesis and subsequently the 

development of a normal, developmentally competent oocyte 

 

Lethal Yellow Mouse Model 
 
 

There are several mouse models of obesity that can be used to study the effect of 

increased adiposity on reproduction including the ob/ob, lethal yellow (LY), and diet-



induced lines. Lethal yellow (Ay/a) (C57BL/6J Ay/a) mice exhibit progressive adult-

onset obesity, yellow coat color, embryonic lethality in Ay homozygotes, premature loss 

of fertility (93), and high circulating insulin, glucose, and leptin levels, which leads to 

insulin resistance, hyperleptinemia, and central leptin resistance (71, 94).  

The LY mouse possesses a gene deletion in the promoter and first exon region of 

the agouti gene locus, which brings an upstream promoter into place resulting in the 

constitutive expression of the agouti gene in numerous, if not all tissues (94, 95). The 

over-expressed agouti protein acts as an antagonist of melanocortin-4 receptors (MCR4) 

and melanocortin-1 receptors (MCR1). In the hypothalamus, the MCR4 plays a crucial 

role in central appetite and metabolism regulation. Located in the hypothalamus are the 

anorexigenic and orexigenic feeding centers of the brain. The anorexigenic center 

stimulates satiety upon activation of neurons by leptin and insulin.  These neurons 

produce -melanocyte-stimulating hormone ( -MSH) derived from pro-

opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART), 

which control satiety. The orexigenic center stimulates feeding due to ghrelin activation 

of neurons which produce neuropeptide Y (NPY) and agouti-related peptide (AGRP) 

(33).  In the LY mouse, the excess production of agouti competes with -MSH in the 

hypothalamus for binding to MCR4 interfering with normal satiety control (Figure 1.4). 

As a consequence, the LY mice exhibits uncontrolled eating resulting in adult-onset 

obesity, insulin resistance, hyperleptinemia, and central leptin resistance (96).  

As to why the LY displays a unique fur color, normally -MSH binding will 

activate MCR1 initiating a signal transduction pathway for eumelanin (black) synthesis. 

As in the hypothalamus, agouti competes with -MSH for MCR1 binding resulting in the 



inhibition of the eumelanin pathway and stimulation of only the pathway of 

phaeomelanin (yellow) synthesis (94).  Thus, the coat color of LY heterozygotes is 

yellow. As mentioned previously, LY also exhibit embryonic lethality in Ay 

homozygotes. It has been determined by Duhl et al. that this lethality characteristic is 

directly related to the LY gene mutation. The deletion removes most of the coding 

sequence for a gene that encodes an RNA-binding protein resulting in embryonic lethality 

of the Ay homozygotes (97).  

Several studies have been conducted on LY mice to examine obesity�’s effect on 

reproduction. Granholm et al. found that LY mice over 120 days old exhibited abnormal 

estrous cyclicity and decreased mating success compared to control, age-matched black 

(C56BL/6J a/a) mice. The normal estrous cycle of a control mouse is 4-5 days in length 

and lasts until 200-250 days of age.  However, the LY estrous cycle is lengthened and 

ceases prematurely (98).  To determine if LY impaired fertility is due to intrinsic ovarian 

defects or to extraovarian factors, Granholm et al. performed reciprocal ovarian 

transplantation between 70-90 day old LY and black mice. Black mice who received 

ovaries from LY mice exhibited normal fertility. Conversely, LY mice with transplanted 

ovaries from black mice experienced diminished reproductive function similar to intact 

LY mice (99). The results of this study indicated that impaired fertility must result from 

either abnormal hypothalamic-pituitary control or from extraovarian factors that altered 

the function of ovarian cells. Swier et al. then concluded that the loss of reproductive 

function in LY mice is directly related to obesity. They demonstrated that LY mice 

maintained on a fat-restricted diet that kept their body weight under 30 g continued to 

cycle normally as they aged. Furthermore, 270 day old LY mice fed a low-fat diet had 



similar ovarian histology and equivalent numbers of antral follicles at proestrus as age-

matched black mice (100). Brannian et al. also provided in vitro evidence that blastocyst 

development of embryos from 180 day old LY mice was impaired compared to the 

embryos of age-matched black mice (71). The collective results of these studies indicate 

that impaired fertility must result from either abnormal hypothalamic-pituitary control or 

from extraovarian factors that altered the function of ovarian cells, but the evidence 

regarding LY female reproduction have not distinguished between these two 

mechanisms.  These studies also indicate that the early loss of fertility in LY mice is the 

result of progressive obesity making the LY mouse line an excellent model to study the 

effects of obesity on reproduction, specifically ovarian function.  



Figure 1.1. Classification of the major stages of mammalian folliculogenesis. 
Schematic representation of the major stages of mammalian folliculogeneis. These 
stages are divided into two separate groups. (i) Intraovarian regulation of 
folliculogenesis. This includes the primordial, primary, and secondary stages. (ii) 
Gonadotropin-dependent regulation of folliculogenesis. This includes the antral, 
preovulatory, and ovulation of the follicle. Adapted from (15).
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Figure 1.2. Branching of the cAMP signaling and kinase cascades in granulosa 
cells. Schematic representation of the gonadotropin (i.e. FSH and LH) signaling 
cascade. The binding of either FSH or LH will increase cAMP/PKA activity activating 
multiple signal transduction cascades including Erk1/2 and PKB (Akt). Adapted from 
Conti M Biol Reprod 2002;67:1653-1661.
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Figure 1.3. Insulin, IGF-1, and leptin signal transduction pathways. Upon binding 
to their receptors, both insulin and IGF-1 recruit the IRS-1 complex, which contains 
several phosphorylation sites, and once phosphorylated will cause several signal 
transduction cascades to be activated including Erk1/2 and the PI3K pathway, which in 
turn activates the Akt pathway. Leptin can also activate signal transduction cascades 
through the IRS-1 complex via the activation of JAK/STAT pathway. Adapted from 
(101). 
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blood hypothalamus

Figure 1.4. Ectopic expression of agouti interrupts normal satiety control in the 
lethal yellow (LY) mouse.  Schematic representation of the regulating of the feeding 
centers (anorexigenic and orexigenic ) in the hypothalamus of the brain. The 
anorexigenic center stimulates satiety upon activation of neurons by leptin and insulin.  
These neurons produce -melanocyte-stimulating hormone ( -MSH) derived from pro-
opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript 
(CART), which control satiety. The orexigenic center stimulates feeding due to ghrelin
activation of neurons which produce neuropeptide Y (NPY) and agouti-related peptide 
(AgRP). In the LY mouse, the excess production of agouti competes with -MSH in 
the hypothalamus for binding to MCR4 interfering with normal satiety control. As a 
consequence, the LY mice exhibits uncontrolled eating resulting in adult-onset obesity 
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CHAPTER 2 

 Progressive Obesity Alters the Metabolic Hormone Profile and Ovarian Molecular 

Phenotype of the Lethal Yellow Mouse 

 

Abstract 

 
Maternal obesity has been correlated with anovulatory infertility and embryonic 

loss suggesting a negative impact of excess adipose tissue on folliculogenesis and oocyte 

maturation. The lethal yellow (LY) mouse possesses a deletion mutation which results in 

ectopic expression of agouti and adult-onset obesity.  Furthermore, LY mice exhibit 

premature loss of fertility, which has been associated with progressive obesity making the 

LY mouse line an excellent model to study the effects of obesity-dependent factors on 

ovarian function. In the current study blood serum and granulosa cells were obtained 

from LY (Ay/a) and age-matched C57BL/6J controls (B6) at 3, 6, 12, and 24 weeks of 

age to identify changes in metabolic hormone profiles and gene expression, respectively.  

As expected, LY females exhibited higher circulating levels of insulin and leptin 

compared to age-matched B6 controls.  For the first time, we also identified a significant 

increase in circulating IGF-1 levels in the LY compared to B6 at 6 weeks of age. Recent 

studies suggest that hormones including leptin, insulin, and IGF-1 regulate the molecular 

and cellular phenotype of the female reproductive tract.  Thus, to determine the impact of 

the altered hormone profile on the molecular phenotype of the ovary, qPCR analysis of 

gene expression was carried out using granulosa cell cDNA. Candidate genes selected for 

this study play a crucial role in steroidogenesis, follicular growth, bi-directional 

communication, or ovulation. Star, Egr-1, and Tacc1 were differentially expressed in LY 



compared to B6 granulosa cells. Interestingly, age-dependent changes in the 

expression of several genes in both LY and B6 females were also detected. Collectively, 

these data demonstrate for the first time that adipose tissue mass and age has a specific 

impact on granulosa cell gene expression. These genes play an important role in follicular 

growth and development. Therefore, alterations in their expression suggest a possible 

mechanism for obesity and age-dependent declines in fertility.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Introduction 

 

Obesity is growing at epidemic rates in the United States and around the world. 

Since 1980, obesity has increased more than 75% worldwide with over one billion adults 

considered to be overweight or obese (1). It is also increasingly clear that female obesity 

is associated with a myriad of adverse side-effects associated with reproduction. For 

example, prior to pregnancy, obese women (BMI > 30kg/m2) have higher rates of 

amenorrhea and anovulatory infertility. In a Nurses Health Study, obese women had a 2.7 

times higher risk of infertility problems compared to normal weight women (2). Obese 

women also experience a 1.2-, 3.5-, and 2.6-fold increased risk of early embryonic loss 

(6-12 weeks of gestation), recurrent (greater than 3) miscarriages, and late fetal 

pregnancy loss, respectively, compared to normal-weight woman (3, 4). These studies 

suggest a correlation between excess adipose tissue, infertility, and abnormal embryonic 

development. 

Several mouse models of obesity have been developed including the ob/ob, which 

lacks bioactive leptin and the db/db, which carries a dysfunctional leptin receptor (5).  

However, these mouse models do not mimic adult-onset obesity in humans which is a 

result of excess calorie intake.   Diet-induced models increase fat content and therefore, 

caloric density which causes progressive obesity. The lethal yellow (LY, Ay/a) mouse 

line also develops adult-onset obesity through increased consumption of normal rodent 



chow.  Thus, these two mouse models more closely reflect the mechanism of obesity 

development in humans.   

The LY mouse possesses a gene deletion in the promoter and first exon region of 

the agouti protein gene locus on the C57BL/6 background, which results in the ubiquitous 

expression of the agouti gene (6, 7).  In the hypothalamus, over-expressed agouti acts as 

an antagonist of -MSH by binding to melanocortin-4 receptors (MCR4); and therefore, 

interfering with normal satiety control. As a consequence, the LY mice overeat resulting 

in the development of obesity.  The LY mice also develop high circulating insulin, 

glucose, and leptin levels, which leads to insulin resistance, hyperleptinemia, and central 

leptin resistance (7, 8).  Furthermore, LY mice exhibit a yellow coat color, embryonic 

lethality in Ay homozygotes, and early loss of fertility (9).    

Early loss of fertility is also a distinctive feature of the LY mouse line. Granholm 

et al. found that LY mice over 120 days old exhibited abnormal estrous cyclicity and 

decreased mating success compared to control, age-matched C57BL/6J a/a (B6) mice 

(10). Reciprocal ovarian transplants demonstrate that the impaired fertility is due to 

abnormal hypothalamic-pituitary function or extraovarian factors that alter ovarian 

function rather than an intrinsic ovarian defect in the LY mouse (11). Furthermore, Swier 

et al. showed that LY mice maintained on a fat-restricted diet which kept their body 

weight under 30 g had normal cyclicity, ovarian histology, and antral follicle counts 

indicating that the loss of reproductive function in LY mice is directly related to obesity 

(12).  

 Collectively, these studies indicated that the early loss of fertility in LY mice is 

the result of progressive obesity mediated by altered ovarian function via extraovarian 



factors. Brannian et al. has previously looked at ovarian gene expression in 90 and 180 

day old female LY mice, and found some statistical differences in gene expression of the 

LY compared to age matched controls including increased expression of cholesterol 

synthetic genes, and genes involved in steroid synthesis and metabolism (13). In the 

current study, the affect of increased caloric intake on metabolic hormone profiles and the 

expression of genes involved in steroidogenesis and follicular growth in granulosa cells 

was examined in the LY female mouse.   

 

MATERIALS AND METHODS 
 
 

Animals: All procedures involving animals were reviewed and approved by the 

Institutional Animal Care and Use Committee at the University of Nebraska-Lincoln. All 

experiments were performed using C57BL/6 (B6; C57BL/6 a/a) and Lethal Yellow (LY; 

C57BL/6 Ay/a) female mice. Founder mice were originally obtained from Jackson 

Laboratory (Bar Harbor, ME, USA). Mice were fed standard rodent chow and fresh water 

ad libitum, and housed in groups of no more than 5 mice per cage on a 12/12 hour 

light/dark cycle. 

 

Granulosa Cell Collection: Female B6 and LY mice (n=5) were euthanized at 3, 

6, 12, and 24 weeks of age following vaginal smears to confirm that animals were in 

proestrus.  Following euthanasia, blood was collected by heart puncture, serum separated 

by centrifugation, and stored at -20 C for later analysis. Body weight and abdominal fat 

mass weights were recorded for all mice. Both ovaries were removed, cleaned, and 



placed in collection medium (1X Leibovitz (Sigma-Aldrich, St Louis, MO, USA), 10% 

heat- inactivated fetal bovine serum (FBS) (Hyclone, Logan, UT, USA) and 1% 

penicillin /streptomycin (Invitrogen, Carlsbad, CA, USA). Cleaned ovaries were 

subsequently placed in collection medium containing 6 mM EGTA (Sigma) and 

incubated for 15 minutes at 37 C. Ovaries were then placed in collection medium 

containing 0.5 M sucrose (Sigma) for 15 minutes at 37 C.  Ovarian follicles were 

punctured with a 27-gauge needle in collection medium and cells were applied to 40 m 

filters (BD Falcon, Franklin Lakes, NJ, USA) to remove cumulus-oocyte complexes. 

Granulosa cells were then collected in a 2mL centrifuge tube and spun down via 

centrifuge. Collection media was removed from cell pellets which were subsequently re-

suspended in TRI reagent (Ambion Inc., Austin, TX, USA) and stored at -80 C.

RNA extraction: RNA was extracted and purified from granulosa cells using the 

Ambion Ribopure Kit (Austin, TX, USA) according to the manufacurer’s directions.  

RNA concentration was determined using the Beckman Coulter DU 730 Life Science 

UV/Vis Spectrophotometer.  Purified total RNA was stored at -80 C.  

 

Reverse Transcription: To obtain cDNA for qPCR analysis of gene expression, 

total RNA (5 g) from each granulosa cell sample described above was combined with 5 

units of RQ1 RNase free DNase (Promega, Madison, WI)  and incubated at 37°C for 30 

minutes to remove genomic DNA contaminants.  The RNA was subsequently combined 

with 400 units of Moloney Murine Leukemia Virus reverse transcriptase (Promega), 500 

M dNTPs (Promega), and 100 ng of random primers (Roche Applied Science, 



Indianapolis, IN) and incubated at 37°C for 2 hours.  The resultant cDNA was stored 

t   -20 C.  a

Quantitative, Real-Time PCR (qPCR) Analysis:  To carry out qPCR analysis of 

gene expression, forward and reverse primers (Table 2.1) for genes associated with 

steroidogenesis, folliculogenesis, or ovulation were designed (Primer Express, Applied 

Biosystems, Foster City, CA) and synthesized (Integrated DNA Technologies, Coralville, 

IA).  Each set of gene-specific primers was tested empirically to determine the maximal 

concentration of primers that could be used to produce specific amplification of the target 

sequence in the absence of primer dimer amplification.   Quantitative PCR (qPCR) 

reactions were carried out using equivalent dilutions of each cDNA sample, Power 

SYBR Green PCR Master Mix (Applied Biosystems), the empirically determined 

concentration of each primer, and the 7900HT Fast Real-Time PCR system (Applied 

Biosystems).  To account for differences in starting material, qPCR reactions were also 

carried out for each cDNA sample using TaqMan rodent GAPDH control reagents 

(Applied Biosystems).  The relative abundance of specific gene products and GAPDH in 

each cDNA sample was determined using serial dilutions of whole ovary cDNA.  The 

relative abundance of each specific gene product was divided by the relative abundance 

of GAPDH in each sample to generate a normalized abundance for each gene 

interrogated.  The normalized abundance of each gene in granulosa cells from B6 and LY 

animals at 3, 6, 12, and 24 weeks of age were compared to gene expression in 3 week-old 

6 granulosa cells and expressed as a fold-change.   B



ELISA Analysis of Metabolic Hormones: The levels of insulin, insulin-like 

growth factor-1 (IGF-1), and leptin were measured in blood serum using ELISA kits 

according to the manufacturers’ directions.  Specifically, IGF-1 levels were measured 

using the Quantikine MG100 Mouse/Rat IGF-1 ELISA (R&D Systems, Minneapolis, 

MN).  Insulin and leptin were levels were measured using kits designed to detect 

mouse/rat insulin (EZRMI - 13K) and mouse leptin (EZML-82K), respectively 

(Millipore, Billerica, MA). Hormone levels were measured in all samples within a single 

LISA assay using standards included in the kit.   E

Statistical Analyses: All statistical analyses were carried out using GraphPad 

Prism 4.0 (Graphpad Software, La Jolla, CA). QPCR, hormone levels, and weight data 

were analyzed using 2-way ANOVA with animal and age as the variables.  Pairwise 

comparisons were carried out using the Bonferroni post-test.  Differences were 

onsidered significant at P < 0.05.c

Results 

 

Progressive obesity in the LY female mouse.

Previous studies indicated that LY mice develop progressive obesity as they age 

(8, 9, 13, 14). To confirm this phenotype in our population, both B6 and LY animals in 

our colony were fed normal rodent chow ad libitum.  Female animals were euthanized at 

3, 6, 12, or 24 weeks of age and body weight and abdominal fat mass were measured for 

both the B6 and LY mice. Average body weight (Figure 2.1) was significantly different 



in LY compared to B6 females (P < 0.01) at 12 weeks of age and this difference 

persisted and became greater at 24 weeks of age. Likewise, average abdominal fat mass 

(Figure 2.2) was significantly different between LY and B6 females at 12 weeks (P < 

0.01), and continued to increase in difference as animals aged to 24 weeks. These studies 

confirm that LY mice become obese as they age and that the increase in body weight is 

due, in large part, to an increase in visceral fat mass. 

 

Increased levels of circulating hormones leptin, insulin, and IGF-1 in the LY female 

mouse. 

Given the differences in the amount of adipose tissue in LY compared to B6 

females, circulating levels of leptin, insulin, and IGF-1 (Figure 2.3) were analyzed in 

blood serum collected from B6 and LY females at 3, 6, 12, and 24 weeks of age. When 

compared to age-matched B6 controls, LY females had significantly increased circulating 

levels of leptin (P < 0.001) at 12 and 24 weeks of age and increased insulin levels (P < 

0.001) at 24 weeks of age.  Interestingly, at the age of 6 weeks, circulating levels of IGF-

1 were significantly increased (P < 0.01) between the LY and age-matched B6 control, 

before returning to comparable levels by the age of 12 weeks.  

 

Significant gene expression differences between LY and age matched B6 controls.  

 Previous studies indicated that LY females develop anovulatory infertility as a 

result of the obese phenotype (8, 12, 15). Furthermore, several in vitro studies indicate 

that insulin, leptin, and IGF-1 regulate granulosa cell gene expression (16-23). Therefore, 

in the present study, the expression profiles of a number of candidate genes which 



contribute to follicle growth (Amh, Ccnd2, Egr1, Gdf9, Kitl, p27kip, Wnt4, Wnt5A, 

and Wnt5B), steroidogenesis (Cyp11a1, Cyp19a1, and Star), oocyte-granulosa cell 

communication (Cx37, Cx43, Tacc1, Nek2, and Nek4), and ovulation (Areg, Btc, Ereg, 

Il6) were determined using QPCR (Table 2.1).  To carry out this study, granulosa cells 

were collected from females during proestrus since this is when follicular growth is most 

active.  To confirm that animals were in proestrus, vaginal smears were performed prior 

to euthanasia.  Furthermore, the mRNA for several candidate genes associated with 

ovulation including Areg, Ereg, Btc, and LH receptor were not detected (data not shown) 

in granulosa cells from B6 or LY females.  

Most of the genes analyzed did not exhibit differences in mRNA abundance 

between LY and B6 females at any age.  The only significant differences in gene 

expression between LY and age matched B6 controls were Egr1, Tacc1, and Star (Figure 

2.4). The mRNA abundance of Egr1 was significantly decreased in the LY at age 3 

weeks when compared to B6 controls. Similarly, Star mRNA expression was also 

significantly decreased between LY and B6 age matched animals, but at the age of 24 

weeks. Conversely, Tacc1 mRNA abundance was significantly increased between LY 

and B6 age matched controls at the age of 6 weeks.  

 

Significant gene expression differences associated with age. 

 After analyzing genes specifically examining for gene expression differences 

between LY and age matched B6 controls, we interestingly discovered age-dependent 

differences in mRNA abundance for several genes. The first set of candidate genes 

displayed significant differences associated with age increased during early time points 



analyzed (i.e. 3 and 6 weeks) (Figure 2.5). Both Gdf9 and Cx37 gene expression were 

significantly increased at 3 weeks of age compared to all other age groups, whereas Amh 

mRNA abundance is significantly increased at 6 weeks of age compared to all other age 

groups. The second group of candidate genes displaying significant differences 

associated with age were increased during the latest time point analyzed (i.e. 24 weeks) 

(Figure 2.6). Specifically, Wnt5A, Tacc1, and Cyp11a1 gene expression were all 

significantly increased at 24 weeks of age compared to all other age groups.  

 

Discussion 

This study used the LY mouse model to examine potential mechanisms of 

obesity-dependent female infertility.  As expected, LY mice exhibit progressive adult 

onset obesity with a significant difference in body weight (BW) between LY and B6 

females detected at 12 weeks of age.  This difference in body weight persisted when 

animals were compared at 24 weeks of age. Although Brannian et al. did not see a 

difference in BW between LY and age-matched B6 controls at 90 days (i.e. 12 weeks) of 

age (13), our findings for differences in BW at the age of 24 weeks were consistent with 

several other studies (8, 9, 13, 14).  In addition, LY mice displayed significant differences 

in abdominal fat (AF) compared to age-matched B6 controls at 12 weeks of age, and this 

significant difference continued through the age of 24 weeks. Our findings at 24 weeks of 

age are consistent with that of Czyzyk et al. who displayed significant differences in 

white adipose tissue between 20-23 week old LY and B6 controls (14). Previous studies 

have only compared LY and wild type animals at older ages (i.e. 90-180 days). In this 



study, we measured BW and AF at 3 and 6 weeks of age, and found at trend in 

increases in both BW and AF at 6 weeks of age. These data suggest that over eating has a 

deleterious effect prior to clinical signs of obesity.  

 In previous studies, the circulating levels of leptin and insulin, both of which play 

an important role in obesity and reproduction, were compared between LY and B6 males 

and females (16, 24). We demonstrated that insulin and leptin levels were significantly 

increased in LY female mice compared to age-matched controls at both 12 and 24 weeks 

of age, consistent with previous findings (7, 8, 13, 14). One important hormone that had 

not been examined in the LY mouse is insulin like growth factor-1 (IGF-1). The structure 

of IGF-1 exhibits significant homology to proinsulin, which is the precursor to insulin, 

and furthermore insulin and IGF-1 can bind to each other’s receptors but with reduced 

affinity (25). While a handful of studies have detected increased circulating IGF-1 levels 

in obese compared to normal-weight individuals, others have reported decreased 

circulating IGF-1 levels or no difference in IGF-1 levels between obese and normal-

weight individuals. In this study, circulating levels of IGF-1 were significantly increased 

in the LY compared to B6 controls at 6 weeks. However, this difference in IGF-1 levels 

dissipated at 12 weeks and was undetectable at 24 weeks of age, suggesting correction of 

IGF-1 via a negative feedback mechanism during the development of progressive obesity.    

Previous studies have indicated a role for insulin, IGF-1, and leptin signaling on 

ovarian function (24).  Brannian et al. identified significant changes in ovarian gene 

expression in LY compared to B6 females at 180 days of age including genes involved in 

cholesterol metabolism and steroidogenesis (13). While these data provide evidence that 

the obese phenotype alters ovarian gene expression, it is not clear how it impacts the 



function of individual ovarian cells.  In the present study, gene expression in purified 

granulosa cells was compared between LY and B6 females across different ages (i.e. 3, 6, 

12, and 24 weeks).  Despite the fact that a large number of candidate genes involved in 

follicular growth were examined, only three genes displayed significant differences in 

age-matched granulosa cells between LY and B6 controls. Early growth response factor-1 

(Egr-1) is a gene important in follicle growth and ovulation (26, 27) and was down 

regulated in LY compared to age-matched B6 controls at three weeks of age. 

Transforming acidic coiled coil-1 (Tacc1), which plays a role in microtubule formation, 

was upregulated in LY compared to B6 controls at 6 weeks of age   Finally, the 

steroidogenic acute regulatory (Star) protein, which facilitates the transfer of cholesterol 

to the mitochondria for steroid hormone biosynthesis, was down regulated in the LY 

compared to age matched B6 controls at 24 weeks. Brannian et al. found that StAR 

expression was increased in the LY compared to age-matched B6 controls at 180 days of 

age (i.e. 24 weeks) (13).  However, this study was carried out using whole ovary RNA.  

These data provide two interesting observations.  First, it appears that gene expression in 

proliferating granulosa cells is in some way protected from the obese phenotype during 

proestrus.  Second, differential gene expression occurred, in some cases, prior to changes 

in body weight or abdominal fat mass suggesting an impact of over-eating on gene 

expression before clinical presentation of obesity.   

Interestingly, this study also identified differences in granulosa cell gene 

expression associated with age. Aging in the gonads has direct implications for longevity, 

as increased fertility is associated with decreased longevity in several species (28). There 

are a limited number of studies involving age and gene expression differences within the 



ovary (29), although no studies have specifically looked at age-associated gene 

expression differences in the granulosa cells. Growth differentiation factor-9 (Gdf9) anti-

mullerian hormone (Amh), and connexin 37 (Cx37) in both the LY and B6 controls were 

significantly increased early in age compared to all other age groups. Gdf9 expression 

first appears in the oocytes of primary follicles, and is sustained until ovulation (30, 31). 

GDF9 null female mice form primordial and primary follicles, but experience a block in 

follicular development at the primary stage of folliculogenesis indicating a role for Gdf9 

during preantral follicle growth (32) Amh is known to inhibit two major steps in 

folliculogenesis, initial follicle recruitment and cyclic selection of dominant follicles (33, 

34). This study provided evidence that Gdf9 and Amh were significantly upregulated in 

both the LY and B6 controls at 3 and 6 weeks respectively compared to all other age 

groups. This finding is consistent with a whole ovary gene expression study conducted by 

Sharov et al. (29). Connexin 37 is localized to the interface of the oocyte and granulosa 

cell and forms gap junctions between the two cells beginning in the primary follicle stage 

(35). Ovary-specific knock-out of Cx37 also exhibits abnormalities in folliculogenesis.  

Oocytes in mice lacking Cx37 have defects in the ability to resume meiosis and fail to 

grow to a normal size, although follicular development progresses to the late preantral 

stage (35). Cx37 expression was upregulated in both the LY and B6 controls at 3 weeks 

of age compared to all other age groups. There were also three genes that displayed an 

age-associated difference, but at the latest time point measured, 24 weeks. TACC1, as 

well as cholesterol side chain cleavage enzyme (Cyp11a1), which catalyses the 

conversion of cholesterol to pregnenolone (17), and Wnt5A. Wnt5A is part of the Wnt 

family, which encodes a group of 19 highly conserved secreted signaling molecules that 



are critical regulators of cell fate, growth, and differentiation, as well as cell-cell 

interactions (36).  

The studies discussed herein indicate that the LY female is a good model of 

progressive obesity and may serve as a model of obesity-induced infertility in humans.  

Furthermore, these animals exhibit changes in metabolic hormone signaling and therefore 

represent a good model to understand how these hormones regulate ovarian function.  

While we have identified a handful of genes with altered expression due to obesity or 

age, future experiments must be carried out to determine the significance of these 

changes in granulosa cell gene expression on fertility. 

 

 

 



Gene Accession # Primer Sequence 
Forward 5'-TCC TAC ATC TGG CTG AAG TGA TAT G-3' Amh  

NM_007445 Reverse 5'-CAG GTG GAG GCT CTT GGA ACT-3' 
Forward 5'-CAG CTG CTT TGG AGC TCA ATG-3' Areg  

NM_009704 Reverse 5'-GTG GTC CCC AGA AAG CGA-3' 
Forward 5'-TGC CCC AAG CAG TAC AAG C-3' Btc 

NM_007568 Reverse 5'-TTT GCT CGT CCA CCA CGA-3' 
Forward 5'-CGA GAG AGG CCC TGG AAA C-3' Cx37 

NM_008120 Reverse 5'-CCA CCA CGG TCG AGT GTT C-3' 
Forward 5'-TGA AAG AGA GGT GCC CAG ACA T-3' Cx43 

NM_010288 Reverse 5'-GTG GAG TAG GCT TGG ACC TTG T-3' 
Forward 5'-AGC AGG ATG ATG AAG TGA ACA CA-3' Ccnd2 

NM_009829 Reverse 5'-GGC TTT GAG ACA ATC CAC ATC AG-3' 
Forward 5'-TGA ATG ACC TGG TGC TTC GTA AT-3' Cyp11a1 

NM_019779 Reverse 5'-TCG ACC CAT GGC AAA GCT-3' 
Forward 5'-GGC CCT GGT CTT GTT CGA-3' Cyp19a1 

NM_007810 Reverse 5'-GCC GGT CCA AAT GCT GC-3' 
Forward 5'-GGG AGC CGA GCG AAC AA-3' Egr1 

NM_007913 Reverse 5'-TCA GAG CGA TGT CAG AAA AGG A-3' 
Forward 5'-GCA CTC CGC AAG CTG CA-3' Ereg 

NM_007950 Reverse 5'-AGC AGC GTC AAG ACC CAA GA-3' 
Forward 5'-GCC GGG CAA GTA CAG CC-3' Gdf9 

NM_008110 Reverse 5'-TTT GTA AGC GAT GGA GCC G-3' 
Forward 5'-AGT CGG AGG CTT AAT TAC ACA TGT T-3' Il6 

NM_031168 Reverse 5'-TGC CAT TGC ACA ACT CTT TTC T-3' 
Forward 5'-CGC ACA GTG GCT GGT AAC AG-3' Kitl 

NM_013598 Reverse 5'-GGT AGC AAG AAC AGG TAA GGA TGA G-3' 
Forward 5'-CTG TGG GCA GGA ACC TTT GT-3' Nek2a 

NM_010892 Reverse 5'-CAC ACA TCC ATT TGC AGA CCA-3' 
Forward 5'-AGA AGG AGA GGC TAC AGG GCA ATA-3' Nek4 

NM_011849 Reverse 5'-CAG GTC CAC CTT GGT TTC CAT CAT-3' 
Forward 5'-GAA GCC CGG CCT TCG A-3' p27kip 

NM_009875 Reverse 5'-CAT GTA TAT CTT CCT TGC TTC ATA AAG C-3' 
Forward 5'-GTG TGC CTT CGA CCC CC-3' Star 

NM_011485 Reverse 5'-AAA GTG CTT GCT GCC TAC CC-3' 
Forward 5'-CTA GGC AAA CAG TCC TTT TCT TAG AAA-3' Tacc1 

NM_199323 Reverse 5'-TGG CCC TCG TAT CCT CAG C-3' 
Forward 5'-ACC GGC GCT GGA ACT GT-3' Wnt4 

NM_009523 Reverse 5'-TCC CGG GTC CCT TGT GT-3' 
Forward 5'-GCA TCC TCA TGA ACT TAC ACA ACA A-3' Wnt5a 

NM_009524 Reverse 5'-CTC CAT GAC ACT TAC AGG CTA CAT CT-3' 
Forward 5'-CCA AGA CGG GCA TCA GAG A-3' Wnt5b 

NM_009525 Reverse 5'-GCG CTC ACT GCA TAC GTG AA-3' 
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Figure 2.1 Body weight (g) of 3, 6, 12, and 24 week old 
female B6 and LY mice. Total body weight (g) of 3, 6, 12, and 24 
week old B6 (white square, white bar) and  LY mice (black 
triangle, black bar) are shown. Significant differences between 
average body weights (n=5) of B6 and LY animals were 
determined using two-way ANOVA and Bonferonii post-test. **, 
significant difference (P < 0.01) between B6 and LY within each 
age. Error bars represent mean SE. 

57



Abdominal Fat

3 6 12 24
0

1

2

3

4

WT
LY

Age (weeks)

W
ei

gh
t (

gr
am

s)

*

*

*

0.0000

0.0025

0.0050

0.0075

0.0100

3 weeks 6 weeks 12 weeks 24 weeks
0.0

0.1

0.2

0.3

0.0

0.5

1.0

1.5

2.0

2.5

0

1

2

3

4*

W
ei

gh
t (

gr
am

s)

WT
LY

*

Abdominal Fat

Figure 2.2 Abdominal fat weight (g) of 3, 6, 12, and 24 week 
old female B6 and LY mice. Abdominal fat mass  (g) of 3, 6, 12, 
and 24 week old B6 (white square, white bar) and LY mice (black 
triangle, black bar) are shown. Significant differences between 
average abdominal fat mass (n=5) of B6 and LY animals were 
determined using two-way ANOVA and Bonferonii post-test. **, 
significant difference (P < 0.01) between B6 and LY within each 
age. Error bars represent mean SE. 
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Figure 2.3 Circulating levels of leptin (ng/ml), insulin (ng/ml), and IGF-1 
(ng/ml) in 3, 6, 12, and 24 week old female B6 and LY mice. Circulating levels of 
leptin (ng/ml), insulin (ng/ml), and IGF-1 (ng/ml) were measured by ELISA using 
blood serum collected from 3, 6, 12, and 24 week old B6 (white bar) and LY mice 
(black bar). Significant differences between average circulating hormone levels (n=5) 
of B6 and LY animals were determined using two-way ANOVA and Bonferonii post-
test. *, significant difference (P < 0.01); **, significant difference (P < 0.001) 
between B6 and LY within each age. Error bars represent mean SE. 
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Figure 2.4 Significant differences in Egr1, Tacc1, and Star granulosa cell gene 
expression between B6 and LY mice.  Granulosa cells were isolated from whole 
ovaries of B6 (n = 5; white bar) and LY (n = 5; black bar) mice. The mRNA 
abundance of each candidate gene from each sample group was normalized for 
GAPDH mRNA abundance. Candidate gene expression from LY and B6 mice across 
all ages was subsequently compared to expression in 3 week old B6 mice and 
expressed as a fold change. All QPCR data was tested for significant differences in 
mRNA abundance using two-way ANOVA and Bonferonii post-test. *, significant 
fold change (P < 0.05) between B6 and LY within each age. Error bars represent 
mean SE.
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Figure 2.5 Significant differences in Gdf9, Cx37, and Amh gene expression at 
an early time point compared to all other age groups. Granulosa cells were isolated 
from whole ovaries of B6 (n = 5; white bar) and LY (n = 5; black bar) mice. The 
mRNA abundance of each candidate gene from each sample group was normalized 
for GAPDH mRNA abundance. Candidate gene expression from LY and B6 mice 
across all ages was subsequently compared to expression in 3 week old B6 mice and 
expressed as a fold change.  All QPCR data was tested for significant differences in 
mRNA abundance using two-way ANOVA and Bonferonii post-test. *, significant 
fold change (P < 0.05) between that age group compared to all other age groups. 
Error bars represent mean SE.
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Figure 2.6 Significant differences in Wnt5a, Tacc1, and Cyp11a1 gene 
expression at the later time point compared to all other age groups. Granulosa 
cells were isolated from whole ovaries of B6 (n = 5; white bar) and LY (n = 5; black 
bar) mice. The mRNA abundance of each candidate gene from each sample group was 
normalized for GAPDH mRNA abundance. Candidate gene expression from LY and 
B6 mice across all ages was subsequently compared to expression in 3 week old B6 
mice and expressed as a fold change. All QPCR data was tested for significant 
differences in mRNA abundance using two-way ANOVA and Bonferonii post-test. *, 
significant fold change (P < 0.05) between that age group compared to all other age 
groups. Error bars represent mean SE.
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CHAPTER 3 
 

IGF-1 and cAMP Cooperatively Regulate Granulosa Cell Gene Expression through 
Akt- but not Erk1/2-Dependent Signaling 

 
 

Abstract 
 
 

Folliculogenesis and granulosa cell function are regulated, in part, by 

gonadotropin stimulation of cAMP-dependent signal transduction. IGF-1 also contributes 

to follicular development through its interaction with the IGF-1 receptor, and in some 

cases, requires simultaneous gonadotropin-dependent signaling.  The objective of this 

study was to identify mechanisms by which IGF-1 regulates the expression of genes in 

granulosa cells, which are crucial for follicle growth, steroidogenesis, bi-directional 

communication and ovulation. To achieve this objective, short-term cultures of murine 

granulosa cells were exposed to no treatment, 1mM cAMP, 100ng/mL IGF-1, or a 

combination of cAMP and IGF-1. Quantitative, real-time PCR demonstrated that cAMP 

alone regulated all of the genes tested and IGF-1 alone had no effect on mRNA 

abundance.  However, IGF-1 exhibited an additive effect on a subset of cAMP-regulated 

genes. IGF-1 and cAMP alter gene expression through activation of the downstream 

signaling proteins Akt and Erk1/2.  To assess the activity of these proteins, Western blot 

analyses were carried out using untreated, cAMP-treated, IGF1-treated, or cAMP plus 

IGF-1 treated granulosa cell protein extracts. These Western blots demonstrated that 

cAMP alone or in combination with IGF-1 increased Erk1/2 phosphorylation compared 

to untreated cells 30 and 60 minutes post-treatment. IGF-1 or cAMP treatment alone also 

increased Akt phosphorylation in the granulosa cells. Interestingly, the combined 



treatment of IGF-1 and cAMP resulted in an additive increase in Akt phosphorylation 

indicating cross-talk between the cAMP and IGF-1 signaling pathways.   Taken together, 

these data suggest that IGF-1 and cAMP may have an additive effect on paracrine factor 

gene expression due to the cooperative activation of Akt. Taken together, these data 

suggest that IGF-1 enhances the actions of FSH and LH, which may be important for 

optimal follicular growth and ovulation. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction 
 
 
 In the primary follicle, granulosa cells are arranged in a single layer surrounding 

the oocyte.  As the follicle grows, the granulosa cells differentiate into a mural granulosa 

cell layer which is associated with the basement membrane and a cumulus granulosa cell 

layer which retains intimate contact with the oocyte (1). These granulosa cells play an 

important role in follicular development.  For example, it has been clearly demonstrated 

that bi-directional communication between the cumulus granulosa cells and the oocyte is 

essential for oocyte growth and maturation (2). This communication is carried out by 

both gap junctional and paracrine factor signaling which are mediated by transzonal 

projections that transverse the zona pelucida (3). The mural granulosa cells are critical for 

steroidogenesis and ovulation. Thus, the mural and cumulus granulosa cells are necessary 

for the development and survival of the oocyte (4).  

 Several hormones are involved in the regulation of granulosa cell function 

including the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone 

(LH).  FSH is essential in preventing granulosa cell apoptosis and follicular atresia, as 

well as for granulosa cell proliferation, estradiol production, and LH receptor expression 

while LH regulates steroidogenesis and ovulation (4). FSH and LH work through Gs-

coupled protein receptors, and upon binding activate adenylyl cyclase (AC) which 

stimulates cyclic adenosine monophosphate (cAMP) synthesis and activates protein 

kinase A (PKA). PKA subsequently activates multiple downstream signaling factors 

including extracellular regulated kinase (Erk1/2) and phosphatidylinositol-3 kinase 

(PI3K)/Akt (5).  These signaling pathways, in turn, regulate the transcription of genes 



that contribute to granulosa cell proliferation, cell survival, and differentiation during 

follicular growth (6, 7).    

 In addition to the gonadotropins, other endocrine hormones and paracrine factors 

also modify granulosa cell function.  Among these factors, insulin-like growth factor 1 

(IGF-1) stimulates DNA synthesis, cell proliferation and survival (i.e. anti-apoptosis), 

and LH receptor expression in the granulosa and theca cells (8). IGF-1 acts through the 

IGF-1 receptor, which belongs to the tyrosine kinase family of receptors.  Upon IGF-1 

binding, the activated receptor recruits the insulin receptor substrate complex-1 (IRS-1), 

which contains several phosphorylation sites, and once phosphorylated will activate 

multiple signal transduction cascades including PI3K/Akt pathway (1). Recently Mani et 

al. presented evidence that IGF-1 alone causes activation of the Akt pathway in granulosa 

cells (7). There is also evidence that FSH and IGF-1 have an additive effect on granulosa 

cell function including regulation of granulosa cell steroidogenesis, cell cycle 

progression, follicle development, and apoptosis (1).  

 While studies have examined the regulation of steroidogenic enzymes by the 

gonadotropins and IGF-1 (7, 9-11), there is little information about the co-regulation of 

genes involved in follicular growth or ovulation by these hormones.  Therefore, the 

objectives of this study were to determine genes regulated by cAMP and IGF-1 in murine 

granulosa cell cultures.  Furthermore, the signaling pathways activated by cAMP and 

IGF-1 that regulate changes in granulosa cell gene expression were also examined.  The 

working hypothesis for this study is that IGF-1 either alone or in combination with 

cAMP-dependent signaling regulates the expression of genes in granulosa cells, which 



are crucial for folliculogenesis and the ovulation of a mature and developmentally-

competent oocyte. 

 

MATERIALS AND METHODS 

 

 Animals: All procedures involving animals were reviewed and approved by the 

Institutional Animal Care and Use Committee at the University of Nebraska-Lincoln. All 

experiments were performed using CF-1 female mice purchased from Charles River 

Laboratory (Wilmington, MA, USA).  

 

 Granulosa Cell Collection and Culture: To establish short-term granulosa cell 

cultures, ovaries (n=20) were isolated from 24-day-old, CF-1 mice and placed in 

collection medium (1X Leibovitz (Sigma-Aldrich, St Louis, MO, USA), 10% heat- 

inactivated fetal bovine serum (FBS) (Hyclone, Logan, UT, USA) and 1% penicillin 

/streptomycin (Invitrogen, Carlsbad, CA, USA)). Cleaned ovaries were subsequently 

placed in collection medium containing 6 mM EGTA (Sigma) and incubated for 15 

minutes at 37 C. Ovaries were then placed in collection medium containing 0.5 M 

sucrose (Sigma) for 15 minutes at 37 C.  Ovarian follicles were punctured with a 27-

gauge needle in collection medium and cells were applied to 40 m filters (BD Falcon, 

Franklin Lakes, NJ, USA) to remove cumulus-oocyte complexes.  Cells were pelleted, 

counted, and subsequently cultured on fibronectin-coated tissue culture plates in 

complete medium (DMEM/F12 (Sigma), 10% heat-inactivated FBS (Hyclone), and 1% 

penicillin/streptomycin (Invitrogen).  Prior to culture, tissue culture plates were pre-



treated with 0.25% human fibronectin (Sigma) for one hour at 37 C.  Cells were 

maintained in complete medium for 72 hours followed by culture in serum-free medium 

(DMEM/F12 (Sigma) and 1% penicillin/streptomycin (Invitrogen).  After 16-24 hours in 

serum-free medium, cells were incubated in the absence or presence of 1mM 8-

bromoadenosine 3’,5’-cAMP (8-br-cAMP) (Sigma), 100ng/mL IGF-1 (Cell Signaling 

Technology, Danvers, MA), or a combination of 8-br-cAMP and IGF-1 for 30 min, 60 

min, 2 hrs, 4 hrs, or 8 hrs.  After treatment, cells were collected in TRI reagent (Ambion 

Inc., Austin, TX, USA) (2, 4, and 8 hour time-points) or protein extraction buffer (30 and 

60 minute time-points).  

 

RNA extraction: RNA was extracted and purified from granulosa cells collected 

in Tri reagent using the Ambion Ribopure Kit (Austin, TX, USA) according to the 

manufacurer’s directions.  RNA concentration was determined using the Beckman 

Coulter DU 730 Life Science UV/Vis Spectrophotometer.  Purified total RNA was stored 

at -80 C.  

 

Reverse Transcription: To obtain cDNA for qPCR analysis of gene expression, 

total RNA (5 mg) from each treated and untreated-control sample was combined with 5 

units of RQ1 RNase free DNase (Promega, Madison, WI)  and incubated at 37°C for 30 

minutes to remove genomic DNA contaminants.  The RNA was subsequently combined 

with 400 units of Moloney Murine Leukemia Virus reverse transcriptase (Promega), 500 

mM dNTPs (Promega), and 100 ng of random primers (Roche Applied Science, 



Indianapolis, IN) and incubated at 37°C for 2 hours.  The resultant cDNA was stored 

at   -20 C.  

 

Quantitative, Real-Time PCR (qPCR) Analysis:  To carry out qPCR analysis of 

gene expression, forward and reverse primers (Table 3.1) for genes associated with 

steroidogenesis, folliculogenesis, or ovulation were designed (Primer Express, Applied 

Biosystems, Foster City, CA) and synthesized (Integrated DNA Technologies, Coralville, 

IA).  Each set of gene-specific primers was tested empirically to determine the maximal 

concentration of primers that could be used to produce specific amplification of the target 

sequence in the absence of primer dimer amplification.   Quantitative PCR (qPCR) 

reactions were carried out using equivalent dilutions of each cDNA sample, Power 

SYBR Green PCR Master Mix (Applied Biosystems), the empirically determined 

concentration of each primer, and the 7900HT Fast Real-Time PCR system (Applied 

Biosystems).  To account for differences in starting material, qPCR reactions were also 

carried out for each cDNA sample using TaqMan rodent GAPDH control reagents 

(Applied Biosystems).  The relative abundance of specific gene products and GAPDH in 

each cDNA sample was determined using serial dilutions of whole ovary cDNA.  The 

relative abundance of each specific gene product was divided by the relative abundance 

of GAPDH in each sample to generate a normalized abundance for each gene 

interrogated.  The normalized abundance of each gene in treated cells was compared to 

untreated control cells and expressed as a fold-change.   

Whole Cell Protein Extracts:  To extract total soluble protein from granulosa cell 

cultures, cells were collected into modified RIPA buffer (50mM Tris-HCl pH7,4, 1% NP-



40, 0.25% Na-deoxycholate, 150 mM NaCl, 1 mM EDTA) containing phosphatase 

inhibitors (1 mM Na3VO4, and 1 mM NaF) and Complete Mini Protease Inhibitor 

Cocktail (Roche Diagnostics).  Cells in the RIPA buffer were sonicated 10 seconds and 

the cell supernatant was subsequently separated from cell debris by centrifugation at 

12,000 x g.  The supernatant was collected, aliquoted, and stored at -80 C.  Protein 

concentrations were determined using the Pierce BCA (bicinchoninic acid) Protein Assay 

(Rockford, IL, USA).  

 

Western Blot Analyses: Whole cell extracts were resolved by SDS-PAGE (4% 

stacking; 10% separating gel) and separated protein transferred to Immobilon PVDF 

(Millipore, Billerica, MA). Following transfer, the membranes were blocked with 5% 

nonfat dry milk in 1X TBST (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 01% (v/v) Tween 

20). The membrane was then incubated with primary antibody against phospho-Akt (Cell 

Signaling Technology), or phospho-Erk1/2 (Cell Signaling Technology) overnight at 

4°C. Blots were washed with 1X TBST and incubated with HRP-conjugated secondary 

antibody.  Proteins were visualized using West Pico Chemiluminescent Substrate (Pierce, 

Rockford, IL) and exposure of blots to X-ray film.  Following visualization of 

phosphorylated protein, blots were stripped with Restore Plus Western Blot Stripping 

Buffer (Pierce), blocked with 5% milk in 1XTBST, and incubated with primary antibody 

against total Akt or total Erk1/2 (Cell Signaling Technology).  Total protein was 

visualized as described for the phosphorylated protein.  The visualized total protein 

served as a loading control for each experiment.  To quantify the relative amount of 

phosphorylated and total protein expressed in each sample, the density of each protein 



band in each sample was determined as described by Nahant 

(http://lukemiller.org/journal/2007/08/quantifying-western-blots-without.html).  Briefly, 

X-ray images of the Western blots were scanned and the density of the protein bands 

determined in Photoshop.  The density of the phosphorylated band in each sample was 

normalized using the density of the total protein band in each sample.  The normalized 

abundance of phosphorylated Akt or phosphorylated Erk1/2 in treated cells was 

subsequently compared to untreated control cells and expressed as a fold-change. 

 

 Statistical Analyses: All statistical analyses were carried out using GraphPad 

Prism 4.0 (Graphpad Software, La Jolla, CA). QPCR and Western blot data were 

analyzed using 2-way ANOVA with treatment and time as the variants.  Pairwise 

comparisons were carried out using the Bonferroni post-test.  Differences were 

considered significant at P < 0.05. 

 

Results 

 

cAMP regulates Granulosa Cell Steroidogenic Gene Expression.  

To identify genes regulated by gonadotropins and IGF-1, isolated granulosa cells 

were collected from 24-day-old CF-1 mice, placed in short-term culture, and treated with 

either 1mM of 8-bromoadenosine 3’,5’-cAMP (cAMP) which is the second messenger 

activated by FSH and LH in granulosa cells, 100ng/mL of IGF-1, or a combination of 

both cAMP and IGF-1.  Control cells were maintained in the absence of any treatment.  

Treatments were maintained for 2, 4, or 8 hours in order to identify acute changes in gene 

http://lukemiller.org/journal/2007/08/quantifying-western-blots-without.html


expression upon stimulation of the granulosa cells with cAMP and/or IGF-1. The 

regulation of steroidogenic enzyme genes by cAMP and IGF-1, alone or in combination, 

was examined first using quantitative, real-time RT-PCR (qPCR).  When the genes for 

side-chain cleavage (Cyp11a1), P450 aromatase (Cyp19a1), and steroidogenic acute 

regulatory protein (Star) were analyzed (Figure 3.1) cAMP increased the expression of 

all genes at all time points with the exception of Cyp11a1 at the 2-hour time point. 

Furthermore, IGF-1 alone had no effect on the expression of any of these genes at any 

time-point measured.  However, when cells were treated with a combination of cAMP 

and IGF-1, Star expression exhibited a modest but significant increase over cAMP alone 

at 8 hours while Cyp11a1 expression was blunted at both the 4 and 8-hour time point.  

These data indicate co-regulation of Cyp11a1 and Star expression by cAMP and IGF-1 at 

the later time points.  

 

Genes Associated with Follicular Growth are Co-Regulated by cAMP and IGF-1.  

To determine if cAMP and/or IGF-1 regulate the expression of paracrine factors 

associated with follicular growth, the mRNA abundance of Gdf9, Amh, Kitl, Egr-1, Wnt4, 

Wnt5A, and Wnt5B (Figure 3.2) was examined in the short-term granulosa cell cultures.  

Like the steroidogenic enzymes, the expression of growth differentiation factor-9 (Gdf9), 

early growth response (Egr-1), and Wnt4 was increased by cAMP while Wnt5B 

expression was modestly decreased by cAMP.  Conversely there was no change in anti-

Mullerian hormone (Amh), Kit ligand (Kitl), or Wnt5A (data not shown) expression upon 

cAMP alone treatment.  Furthermore, IGF-1 alone had no effect on the expression of any 

of the genes tested.  When cells were treated with a combination of cAMP and IGF-1 



several genes exhibited co-regulation.   There was an additive effect of the 

combination treatment on Egr-1 levels at the 2 hour time point and Wnt5B mRNA 

abundance at the 8 hour time point.  Interestingly, Kitl showed a significant increase 4 

and 8 hours post-treatment only when cells were treated with both cAMP and IGF-1.  

Likewise, there was a trend with a P-value of less than 0.06 for decreased Amh 

expression 2 hours after cells were co-treated with cAMP and IGF-1.  Taken together, 

these data suggest that the combined actions of cAMP and IGF-1 play an important role 

in the stimulation of follicular growth.  

 

Regulation of Gap Junction and MTOC-Associated Genes by cAMP.  

Connexin 37 (Cx37) and connexin 43 (Cx43) encode proteins that form crucial 

gap junctions between granulosa cells and between the oocyte and granulosa cells (12). 

Transforming acidic coiled coil gene 1 (Tacc1) interacts with the microtubule organizing 

center (MTOC) which may contribute to the establishment and maintenance of transzonal 

projections (13). Given that these genes play an important role in bi-directional 

communication between the oocyte and granulosa cells, the expression profile of each 

gene in cAMP and/or IGF-1 treated cells was examined (Figure 3.3).  cAMP significantly 

decreased the expression of both Cx37 and Cx43 at the 8 hour time. Conversely, cAMP 

significantly increased the expression of Tacc1 at both the 2 and 4-hour time points. 

However, IGF-1 alone did not alter the mRNA abundance of these 3 genes.  Furthermore, 

there was no additive effect on the expression of any of these genes when cells were co-

treated with cAMP and IGF-1.  

 



Genes Associated with Ovulation are Co-Regulated by cAMP and IGF-1.   

The last group of genes analyzed in the cAMP and IGF-1 treated granulosa cells 

play an important role during ovulation and include the EGF-like factors amphiregulin 

(Areg), epiregulin (Ereg), and betacellulin (Btc) (Figure 3.4).  Richards et al. has 

compared ovulation to an inflammatory process (5); and therefore, the expression profile 

of interleukin-6 (Il6) was also measured.  As expected, cAMP stimulated the expression 

of Areg, Epi, and Btc at all tested time points.  Likewise, Il-6 showed a significant fold 

increase 2 hours post cAMP treatment.  Similar to the other genes examined in this study, 

IGF-1 alone did not change the expression of any of these genes compared to the 

untreated control.  However, the combined treatment of cAMP and IGF-1 had a modest 

but significant additive effect on the expression of Areg 2 and 4 hours post-treatment, Btc 

4 hours post-treatment and Il-6 2 and 8 hours post-treatment.   

 

cAMP and IGF-1 have an Additive Effect on Akt but not Erk1/2 phosphorylation.  

The QPCR data suggests an additive effect of IGF-1 on cAMP-dependent gene 

expression.  To determine what signaling factors may be involved in this additive effect, 

Western blot analysis was carried out. Briefly, short-term granulosa cell cultures were 

treated with 1 mM cAMP, 100 ng/mL IGF-1, or a combination of cAMP and IGF-1 for 

30 or 60 minutes.  Control cells were maintained in culture an additional 30 or 60 

minutes in the absence of any treatment.  Protein extracts from the untreated and treated 

cells were separated by SDS-gel electrophoresis and Western blot carried out using 

antibodies against phosphorylated Akt or phosphorylated Erk1/2 (Figure 3.5).  Blots were 

subsequently probed for total Akt or total Erk1/2, which served as loading controls. 



Insulin like growth factor-1 alone significantly increased phospho-Akt levels 

compared to the untreated control 30 and 60 minutes post-treatment.  Furthermore, there 

was a significant additive effect on Akt phosphorylation at the 30 and 60-minute time 

points when cells were co-treated with cAMP and IGF-1. While cAMP alone increased 

Erk1/2 phosphorylation 30 and 60 minutes post-treatment, IGF-1 alone did not alter 

Erk1/2 phosphorylation levels compared to untreated controls.  Furthermore, combined 

treatment of cells with cAMP and IGF-1 did not increase Erk1/2 phosphorylation 

compared to cAMP treatment alone indicating no additive effect of IGF-1 on cAMP-

dependent Erk1/2 phosphorylation. 

 

Discussion 

 

It is well known that FSH- and LH-dependent regulation of steroid biosynthesis is 

mediated by the cAMP/PKA signaling pathway (14).  The increase in steroid synthesis is 

due, in part, to increased expression of steroidogenic enzymes including Star, Cyp11a1 

(P450 side chain cleavage), and Cyp19a1 (P450 aromatase).  Results from the present 

study confirm that cAMP increases the mRNA abundance of the steroidogenic genes 

Cyp11a1, Cyp19a1, and Star. However, the role of IGF-1 dependent signaling on 

steroidogenic enzyme gene expression is less clear.  Eimerl and Orly showed that IGF-1 

alone had no effect on Cyp11a1 or Star mRNA abundance in rat granulosa cells (15).  

Conversely, Mani et al. found that IGF-1 alone significantly enhanced mRNA expression 

of Cyp11a1 and Cyp19a1 in bovine granulosa cells (7).  Several reports have shown that 

the effect of IGF-1 on the expression of these steroidogenic enzyme genes is dependent 



on FSH.  Specifically, a synergistic effect of FSH and IGF-1 on Cyp19a1 expression 

has been reported in cultured bovine (10, 11) and rat granulosa cells (16), while a 

synergistic effect of FSH and IGF-1 on Star expression has been shown in porcine 

granulosa cells (9).  In the current study, the combination treatment of cAMP and IGF-1 

blunted the expression of Cyp11a1 4 and 8 hours post-treatment compared to cAMP 

alone. IGF-1 also had an additive effect on cAMP-dependent expression of Star 8 hours 

post-treatment.  However, there was no additive effect of IGF-1 on cAMP regulation of 

Cyp19a1.  Inconsistencies between these studies could be the result of differences in the 

length of treatment with our study focussing on acute regulation of IGF-1 up to 8 hours 

and other studies focussing on later time points. Also one should consider that species, 

stage of estrus, and/or experimental treatment protocols could influence Cyp11a1, 

Cyp19a1, and Star expression through mechanisms not yet fully understood.   

 Previous studies examining the effect of IGF-1 and its possible synergistic effect 

on gonadotropin-dependent regulation of granulosa cell function have generally focused 

on steroidogenic genes. Therefore, to our knowledge, the co-regulation of genes involved 

in follicular growth and ovulation by cAMP and IGF-1 has not been examined in 

granulosa cells. In this study, we demonstrated a significant cooperative effect of cAMP 

and IGF-1 on the expression profile of genes involved in follicular growth including Kitl 

and Amh. Kitl is crucial for the transition from primordial to primary follicles, follicle 

development, and preventing atresia (17), whereas Amh inhibits initial follicle 

recruitment and cyclic selection of a dominant follicle (18, 19). Co-treatment of 

granulosa cells with cAMP and IGF-1 was required to increase Kitl expression with no 

effect on Kitl mRNA abundance when cells were treated with either cAMP or IGF-1 



alone. On the other hand, there was a trend for decreased Amh expression at the 

earliest time point when cells were treated with a combination of cAMP and IGF-1.   

Together, these findings suggest that IGF-1 may sensitize the granulosa cells to FSH-

dependent signaling in order to increase follicular growth and prevent follicular atresia.  

This study also demonstrated for the first time an additive effect of IGF-1 on 

cAMP regulation of genes involved in ovulation including Areg and Btc. Areg and Btc 

are part of the epidermal growth factor (EGF)-1 family, which stimulate cumulus 

expansion and oocyte maturation. Conti et al. have shown that after the LH surge, there is 

a rapid increase in the expression of epidermal growth factor (EGF)-like family members 

(20). Although the additive effect of IGF-1 on Areg and Btc expression was modest, the 

increased mRNA levels produced when cells were treated with both cAMP and IGF-1 

may be very important for reaching a threshold level of these factors which is essential 

for appropriate ovulation and meiotic resumption in the oocyte.  It should be noted that 

none of the genes regulating follicle growth or ovulation exhibited changes in mRNA 

abundance when cells were treated with IGF-1 alone, indicating the IGF-1 must work in 

coordination with gonadotropins to exert its effects on these genes.  

 The QPCR data demonstrates that IGF-1 has an additive effect on the expression 

of certain genes, but the pathways that are involved in this regulation have not been 

clearly defined. This study focused on the Akt and Erk1/2 pathways due to the role of 

these pathways on cell survival and proliferation. IGF-1 alone increased Akt 

phosphorlyation in granulosa cells, which has also been demonstrated in bovine 

granulosa cells (7). In addition, there was a significant increase in Akt phosphorylation 

when cells were co-treated with cAMP and IGF-1, consistent with findings presented by 



Ryan et al. (11). In contrast, we found that IGF-1 alone and in combination with 

cAMP had no effect on Erk1/2 phosphorylation, which is in agreement with studies 

carried out by Mani et al. (7). Therefore, it is our conclusion that the additive effect of 

IGF-1 on granulosa cell gene expression is mediated by the Akt pathway.  

Based on the results of this study, we have proposed a model of cAMP and IGF-1 

dependent regulation of granulosa cell gene expression through either the Erk or Akt 

signaling pathways (Figure 3.6).  cAMP-dependent regulation of gene expression which 

is independent of IGF-1 signaling is likely mediated by the Erk1/2 signaling factor.  

Conversely, cAMP-dependent regulation of gene expression that is enhanced by IGF-1 is 

likely mediated through activation of Akt. There are a handful of genes (e.g. Star, Wnt5b, 

Egr1 and Btc), which may be regulated by both pathways in a temporal or cooperative 

manner.  Future studies will be carried out using inhibitors of the Akt or Erk signaling 

pathway to further define the cooperative nature of cAMP and IGF-1 on granulosa cell 

gene expression.  

Together, this study provides evidence that cAMP regulates granulosa cell gene 

expression through both the Akt and Erk1/2 pathways and that the additive effect of IGF-

1 on cAMP-dependent regulation of a subset of genes may be due to the increased 

stimulation of Akt phosphorylation. We have also shown that IGF-1 alone does not alter 

gene expression in granulosa cells maintained in short term culture. 

  

 

 

 



Table 3.1. Primer sequences used for QPCR analysis 

Gene Accession # Primer Sequence 
Forward 5'-TCC TAC ATC TGG CTG AAG TGA TAT G-3' Amh  

NM_007445 Reverse 5'-CAG GTG GAG GCT CTT GGA ACT-3' 
Forward 5'-CAG CTG CTT TGG AGC TCA ATG-3' Areg  

NM_009704 Reverse 5'-GTG GTC CCC AGA AAG CGA-3' 
Forward 5'-TGC CCC AAG CAG TAC AAG C-3' Btc 

NM_007568 Reverse 5'-TTT GCT CGT CCA CCA CGA-3' 
Forward 5'-CGA GAG AGG CCC TGG AAA C-3' Cx37 

NM_008120 Reverse 5'-CCA CCA CGG TCG AGT GTT C-3' 
Forward 5'-TGA AAG AGA GGT GCC CAG ACA T-3' Cx43 

NM_010288 Reverse 5'-GTG GAG TAG GCT TGG ACC TTG T-3' 
Forward 5'-AGC AGG ATG ATG AAG TGA ACA CA-3' Ccnd2 

NM_009829 Reverse 5'-GGC TTT GAG ACA ATC CAC ATC AG-3' 
Forward 5'-TGA ATG ACC TGG TGC TTC GTA AT-3' Cyp11a1 

NM_019779 Reverse 5'-TCG ACC CAT GGC AAA GCT-3' 
Forward 5'-GGC CCT GGT CTT GTT CGA-3' Cyp19a1 

NM_007810 Reverse 5'-GCC GGT CCA AAT GCT GC-3' 
Forward 5'-GGG AGC CGA GCG AAC AA-3' Egr1 

NM_007913 Reverse 5'-TCA GAG CGA TGT CAG AAA AGG A-3' 
Forward 5'-GCA CTC CGC AAG CTG CA-3' Ereg 

NM_007950 Reverse 5'-AGC AGC GTC AAG ACC CAA GA-3' 
Forward 5'-GCC GGG CAA GTA CAG CC-3' Gdf9 

NM_008110 Reverse 5'-TTT GTA AGC GAT GGA GCC G-3' 
Forward 5'-AGT CGG AGG CTT AAT TAC ACA TGT T-3' Il6 

NM_031168 Reverse 5'-TGC CAT TGC ACA ACT CTT TTC T-3' 
Forward 5'-CGC ACA GTG GCT GGT AAC AG-3' Kitl 

NM_013598 Reverse 5'-GGT AGC AAG AAC AGG TAA GGA TGA G-3' 
Forward 5'-CTG TGG GCA GGA ACC TTT GT-3' Nek2a 

NM_010892 Reverse 5'-CAC ACA TCC ATT TGC AGA CCA-3' 
Forward 5'-AGA AGG AGA GGC TAC AGG GCA ATA-3' Nek4 

NM_011849 Reverse 5'-CAG GTC CAC CTT GGT TTC CAT CAT-3' 
Forward 5'-GAA GCC CGG CCT TCG A-3' p27kip 

NM_009875 Reverse 5'-CAT GTA TAT CTT CCT TGC TTC ATA AAG C-3' 
Forward 5'-GTG TGC CTT CGA CCC CC-3' Star 

NM_011485 Reverse 5'-AAA GTG CTT GCT GCC TAC CC-3' 
Forward 5'-CTA GGC AAA CAG TCC TTT TCT TAG AAA-3' Tacc1 

NM_199323 Reverse 5'-TGG CCC TCG TAT CCT CAG C-3' 
Forward 5'-ACC GGC GCT GGA ACT GT-3' Wnt4 

NM_009523 Reverse 5'-TCC CGG GTC CCT TGT GT-3' 
Forward 5'-GCA TCC TCA TGA ACT TAC ACA ACA A-3' Wnt5a 

NM_009524 Reverse 5'-CTC CAT GAC ACT TAC AGG CTA CAT CT-3' 
Forward 5'-CCA AGA CGG GCA TCA GAG A-3' Wnt5b 

NM_009525 Reverse 5'-GCG CTC ACT GCA TAC GTG AA-3' 
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Figure 3.1. cAMP and IGF-1 stimulate significant changes in the expression of 
steroidogenic genes in cultured granulosa cells. Murine granulosa cells were 
isolated and maintained in short-term culture. After 24h serum starvation, cells were 
treated with 1mM cAMP (black bar), 100ng/mL IGF-1 (white bar), or a combination 
of cAMP and IGF-1 (gray bar) for 2, 4, or 8 hours. The mRNA abundance of each 
candidate gene (StAR, Cyp11a1, and Cyp19a1) in each sample was normalized for 
GAPDH mRNA abundance. Candidate gene expression in treated cells was 
subsequently compared to expression in untreated cells and expressed as a fold change. 
All QPCR data was tested for significant differences in mRNA abundance using two-
way ANOVA and Bonferonii post-test. *, significant fold change (P < 0.05) compared 
to untreated control within that treatment time only. **, significant fold change (P < 
0.05) between cAMP alone and cAMP + IGF-1 within that treatment time only. Error 
bars represent mean SE. 
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Figure 3.2. cAMP and IGF-1 stimulate significant changes in the expression 
of follicular growth genes in cultured granulosa cells. Murine granulosa cells 
were treated with cAMP (black bar), IGF-1 (white bar), or a combination of cAMP
and IGF-1 (gray bar) and the expression of Kitl, Gdf9, Amh, Egr1, Wnt4, and Wnt5b
analyzed by QPCR as described in Figure 3.1. *, significant fold change (P < 0.05) 
compared to untreated control within that treatment time only. **, significant fold 
change (P < 0.05) between cAMP alone and cAMP + IGF-1 within that treatment 
time only. , trend (P < 0.06) between cAMP alone and cAMP + IGF-1 within that 
treatment time only. Error bars represent mean SE. 
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Figure 3.3. cAMP and IGF-1 stimulate significant changes in the expression of 
gap junction and MTOC genes in cultured granulosa cells. Murine granulosa cells 
were treated with cAMP (black bar), IGF-1 (white bar), or a combination of cAMP and 
IGF-1 (gray bar) and the expression of Cx37, Cx43, and Tacc1 analyzed by QPCR as 
described in Figure 3.1. *, significant fold change (P < 0.05) compared to untreated 
control within that treatment time only. **, significant fold change (P < 0.05) between 
cAMP alone and cAMP + IGF-1 within that treatment time only. Error bars represent 
mean SE. 
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Figure 3.4. cAMP and IGF-1 stimulate significant changes in the expression of 
genes associated with ovulation in cultured granulosa cells. Murine granulosa cells 
were treated with cAMP (black bar), IGF-1 (white bar), or a combination of cAMP and 
IGF-1 (gray bar) and the expression of Areg, Ereg, Btc, and Il6 analyzed by QPCR as 
described in Figure 3.1. *, significant fold change (P < 0.05) compared to untreated 
control within that treatment time only. **, significant fold change (P < 0.05) between 
cAMP alone and cAMP + IGF-1 within that treatment time only. Error bars represent 
mean SE. 
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Figure 3.5. cAMP and IGF-1 activation of Akt phosphorylation and Erk1/2
phosphorylation. Murine granulosa cells were isolated and maintained in short-term 
culture. After 24h serum starvation, cells were treated with 1mM cAMP (black bar), 
100ng/mL IGF-1 (white bar), or a combination of cAMP and IGF-1 (gray bar) for 30 
and 60 minutes. Protein extracts from untreated and treated cells were separated and 
Western blot analysis carried out using phosphorylated Akt or phosphorylated Erk1/2 
antibodies (A).  Blots were subsequently probed for total Akt or total Erk1/2, which 
served as loading controls. Semi-quantitative analysis of band density was tested for 
statistically significant differences between treatment groups within each time point 
using two-way ANOVA and Bonferroni post-test analysis.  Significant differences (P 
< 0.05) in phospho-protein/total protein ratio between treatments is indicated by 
different letters Error bars represent mean SE. 
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Figure 3.6. Proposed model for cAMP and IGF-1 regulation of granulosa cell 
gene expression.  Genes in the black box are regulated solely by cAMP activation of 
the Erk1/2 pathways, while the genes in the gray box are regulated by the additive 
activity of both cAMP and IGF-1 on Akt phosphorylation. A subset of genes (white 
box) may be regulated by both the Akt and Erk1/2 pathways in a temporal or 
cooperative manner.  Future experiments using inhibitors to PI3K (LY294002) or 
MEK (U0126) will be carried out to confirm the mechanism of cAMP and IGF-1 
dependent regulation of granulosa cell gene expression. 
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