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On Constitutive Models for Limited Elastic, 
Molecular Based Materials 

Millard F. Beatty 
Department of Engineering Mechanics, University of Nebraska-Lincoln 

Dedicated to Professor Cornelius O. Horgan in esteem and friendship, with highest regard. 

Abstract: 
The response function for a general class of elastic molecular based materials characterized 
by their limiting molecular chain extensibility and depending on only the first principal in-
variant of the Cauchy–Green deformation tensor together with a certain molecular based 
limiting extensibility parameter is introduced. The constitutive response function for the 
Gent material is then derived inversely as the [0/1] Padé approximant of this class, a re-
sult that leads naturally to an infinite geometric series representation of its response func-
tion. Truncation of this series function characterizes a familiar class of quadratic materials 
now having physically relevant material constants. It is shown that the [0/2] approximant 
of the response function for the general class of restricted elastic materials leads inversely 
to a new constitutive model and its series representation. Of course, many familiar limited 
elastic material models are members of the general class. The Padé approximants for some 
response functions are not, and empirical modifications that admit these as members of 
the general class are described. Examples of two limited elastic models in the class that are 
not Padé approximants are noted. The strain energy functions for a few of the restricted 
elastic models described are presented. 

Keywords: Constitutive models, rubber elasticity, molecular based materials, limiting 
chain extensibility, Padé approximants, Gent model, Arruda-Boyce model, strain energy 
functions 

1. Introduction 

The classical non-Gaussian statistical theory of molecular based rubberlike materials [1, 
2] long ago established the limited elasticity of even the most highly elastic materials 
due to the finite extensibility of their molecular chains. As a consequence, the stress re-
sponse of the material in a simple extension, for example, grows indefinitely great as 
the stretch approaches its ultimate value imposed by the limiting molecular chain ex-
tensibility in an affine deformation of the material. Experiments by Dickie and Smith 
[3] in simple extension, pure shear and equibiaxial deformation show that the degree of 
limiting extensibility of the material, however, varies with the type of deformation. The 
limiting extensibility in a pure shear is only slightly smaller, whereas in an equibiaxial 
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extension it is generally about 30% smaller than that in a simple extension. These dif-
ferences, however, are resolved by their adopting a limiting value of the first principal 
invariant as a deformation invariant measure of the limited extensibility of the mate-
rial. This is consistent with the results of basic non-Gaussian molecular based constitu-
tive theory. The fundamental molecular theory, however, leads to a formidable consti-
tutive relation for the general mechanical response of the material. To circumvent this 
difficulty, a number of phenomenological models have been introduced to describe ma-
terials having limiting molecular chain extensibility, including the equivalent averaged 
stretch, full-network [4] and Arruda–Boyce 8-chain [5] models, the Gent [6], Puso [4], 
Treloar [7] models, and others [8–10], some that include a dependence on the second 
principal invariant [11]. These kinds of materials with limiting extensibility are collec-
tively referred to as limited or restricted elastic materials. 

Gent [6] has shown that the stiffening response in a simple tension predicted by his 
model is similar to that characterized by the classical molecular based Kuhn–Grün [1] 
statistical model in which the increasing stiffness arises from the inverse Langevin func-
tion. Both models exhibit rapidly increasing stresses as the stretch approaches its lim-
iting value, though the Gent model does so at a somewhat smaller stretch. Boyce [12] 
has shown that when these models are compared with both uniaxial and biaxial ex-
perimental data by Treloar their physical response is virtually identical. It is important 
to mention that the averaged stretch model is widely known as the Arruda–Boyce 8-
chain model [5]. This constitutive equation was first reported by Wang and Guth [13, 
Equation (4.13b)] based on a 4-chain model, but they never explored it further. Four de-
cades later, the relevance and easy derivation of the result for a simple 8-chain molecu-
lar based physical model was developed and studied by Arruda and Boyce [5] in com-
parison with experiments. Beatty [4] subsequently derived this result by approximation 
from the formidable constitutive equation for the amorphous, full- network molecular 
based Wu and van der Giessen model [14]. Therefore, emphasis on the special heuristic 
8-cell morphology of the Arruda–Boyce construction is not necessary—the end result in 
[4] is simply the Arruda–Boyce constitutive equation for an averaged stretch, full-net-
work of arbitrarily oriented molecular chains. All of the statistical mechanical models 
that are based on the Kuhn–Grün [1] probability distribution function, or its amended 
form discussed in [8], essentially exhibit dependence on only the first principal invari-
ant of the Cauchy–Green deformation tensor. Consequently, the non-Gaussian molec-
ular network models are characterized by a general constitutive equation whose re-
sponse function depends on only the first principal invariant, and a certain molecular 
based material constant that characterizes its limiting extensibility. 

In an effort to provide a molecular foundation for the material constants of the phe-
nomenological Gent model, Horgan and Saccomandi [15] show analytically that when 
these constants are identified with those of the molecular based averaged stretch, full-
network model (that is, the Arruda–Boyce constitutive equation), the response func-
tion of the much simpler Gent model provides a very accurate approximation of the re-
sponse function of the latter. In addition, they show that none of the appropriate Padé 
approximations [16, 17] of the inverse Langevin function of the molecular based model 
exhibit the correct singularity at the point of limiting extensibility, so they find no direct 
connection of the Gent model as a Padé approximant of the averaged stretch model. On 
the other hand, they demonstrate very close agreement of the Gent model with a cer-
tain modified Padé approximant due to Cohen [18]. Although it is true that the Gent 
model, as remarked in [15], cannot be obtained by a truncated power series approxima-
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tion of the molecular models based on the inverse Langevin function, this fact does not 
preclude its representation as an infinite power series with the correct limiting singu-
larity, as described below. 

The response function for a general but simple subclass of elastic molecular based 
materials characterized by their limiting molecular chain extensibility and depend-
ing on only the first principal invariant of the Cauchy–Green deformation tensor and a 
certain limiting extensibility parameter is introduced in Section 2. The constitutive re-
sponse function for the Gent material is then derived inversely in Section 3 as the [0/1] 
Padé approximant of this subclass of limited elastic materials, a result that leads nat-
urally to an infinite geometric series representation of the Gent constitutive response 
function. Truncation of this series function characterizes a class of quadratic materi-
als having physically relevant material constants, a model used frequently by others in 
nonlinear, finite amplitude vibration studies [19–23]. The subclass of response functions 
for limited elastic materials is expanded in Section 5 to characterize all limited elastic 
material models with dependence on the first principal invariant alone. These include 
the Arruda–Boyce, Cohen, Puso, Treloar, van der Waals and other restricted elastic ma-
terials. Certain Padé approximants of the averaged stretch model are not included—
these fail to exhibit the correct limiting chain singularity in the response, so these are 
not restricted elastic materials. Empirical modifications that render their membership in 
a few cases are described. It is shown that the [0/2] Padé approximant of the response 
function for the general class of restricted elastic materials leads inversely to a new con-
stitutive model and its convergent series representation. The strain energy functions for 
a few limited elastic models, one being new, the others seldom seen, are presented at 
the end. 

2. Materials With Limiting Extensibility 

The theory of highly elastic, ideal rubberlike materials assumes that the range of the 
principal stretches λk in any finite deformation may vary from zero to infinity: 0 < λk < 
∞, unless otherwise constrained. Of course, real rubberlike materials cannot be com-
pressed or extended indefinitely, and various molecular based [1, 2, 13, 14] and phe-
nomenological constitutive models [4–6, 8–11] have been introduced to characterize 
their limiting extensibility. This kinematical property is variously exhibited through the 
material response functions β1(I1, I2) and β–1(I1, I2) in the constitutive equation relating 
the Cauchy stress T to the Cauchy–Green deformation tensor B for a homogeneous, iso-
tropic and incompressible elastic material, namely 

(2.1) 

Here I1 and I2 are principal invariants of B, p is an arbitrary hydrostatic pressure, 1 is 
the identity tensor, and the response functions are required to satisfy the empirical 
inequalities 

(2.2)

for all deformations from an undistorted state of the material [24]. For hyperelastic ma-
terials with a strain energy function Σ(I1, I2) per unit volume, the response functions are 
given by 
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(2.3) 

In terms of the principal stretches λk , we recall that the principal invariants for an in-
compressible material may be written as 

(2.4) 

the last relation reflecting the incompressibility constraint. 
Here we consider the class of molecular based constitutive models characterized 

by their limiting molecular chain extensibility so that any isochoric deformation of the 
material is restricted by imposing bounds on the extent of its deformation. Two kinds 
of bounds have been investigated. One method (see [9, 25], for example) restricts the 
greater of the three principal stretches, say λk  < λm ,where λm is a certain kinematical 
material constant reflecting the limiting chain extensibility. In the molecular theory λm 
= √‾N‾ is identified as the network locking constant, the limiting stretch of a chain of N 
links [2]. A second method (see [4, 11], for example) imposes an upper bound on the 
first principal invariant, I1 < Im ,where Im is a certain kinematical material constant. This 
is consistent with results of molecular based theory in which Im = 3N, for example [4, 5]. 
But there are some difficulties associated with relating these methods (see [4, 8, 25, 26], 
for example). 

These difficulties aside for now, we recall that experiments by Dickie and Smith 
[3] in simple extension, pure shear and equibiaxial deformation show that the degree 
of limiting extensibility of the material varies with the type of deformation. The lim-
iting extensibility in a pure shear is only slightly smaller than that in a simple exten-
sion, whereas in an equibiaxial extension it is generally about 30% smaller. And these 
observations concur with the use of Im as the limiting extensibility parameter. More-
over, this extensibility limit is consistent with the experimental data in model com-
parisons reported by Boyce [12]. Therefore, these few experiments, as emphasized by 
Gent [27], clearly demonstrate that the limiting extensibility of noncrystallizing elas-
tomers under various large, homogeneous deformations is governed by Im alone in 
all affine network deformations of the material. While this does not preclude a de-
pendence on I2 in (2.1), an independent limit on I2 as a material constant is at variance 
with these results. 

Therefore, in general terms, let Im denote a molecular based, dimensionless material 
constant and consider the simple subclass 0 of elastic, limiting extensibility materials 
defined by 

(2.5) 

such that the shear response function G(I1; Im) ≥ G0 is a monotonic increasing func-
tion of I1  [3, Im ] that grows indefinitely large as I1 → Im  for all deformations of the 
material: 

(2.6) 

Obviously, the empirical inequalities are satisfied. It is convenient to refer to all limit-
ing chain extensibility models as limited or restricted elastic materials. To be specific, we 



Co n s ti tu ti v e Mo d els f o r Li mi ted El as ti c,  Mo l ec ul ar Bas e d Mate r i al s       379

recall below two models widely used in the literature for which β–1 ≡ 0 and G0 denotes 
a material constant, usually the shear modulus of the undistorted, natural state. We are 
going to see that one limiting extensibility model satisfies both (2.5) and (2.6), the other 
does not. This leads subsequently to an extension of the definition (2.5). For our imme-
diate purposes and for the sake of simplicity, however, it is convenient to begin with 
(2.5) and (2.6). 

3. Padé Approximants of the Response Function 

An [L/M] Padé approximant [16, 17] is a particular type of rational fraction approxima-
tion of the value of a function F(x) expressed as the ratio of two polynomials PL (x) = ∑ 
L
i=0 ai xi of degree at most L and QM(x) =  ∑M

j=0 bj x
j of degree at most M. The idea usually 

is to match this ratio with a given power series expansion F(x) =  ∑∞
k=0 ck xk as closely as 

possible, but in simpler form so that, with only a few terms, 

(3.1) 

The power series F(x) thus determines the coefficients ai and bj upon solving a linear 
algebraic system. And the resultant [L/M] Padé approximant of F(x) is unique. Here, 
however, we proceed differently, actually somewhat inversely. 

We have in mind that the response function (2.5) is a certain power series whose 
precise form we wish not to specify at this time. We shall return to this momentarily. 
First, let us suppose that the response function (2.5)1 is given by the simplest [0/1] Padé 
approximant, namely 

(3.2) 

where a0, b0, b1 are constants and I1  [3, Im ]. Since the ratio function is unaltered by 
the multiplication of both the numerator and the denominator by an arbitrary con-
stant, there is no loss of generality in our setting b0 = 1. We then find, in accordance 
with (2.5)2, that a0 = G0(1 + 3b1); and, from the singularity condition (2.6), we take 1 
+ b1 Im = 0. Therefore, the simplest possible rational estimate (3.2) of the general re-
sponse function having the properties (2.5)2 and (2.6) is given by the monotonic in-
creasing function 

(3.3) 

This is exactly the response function for the phenomenological Gent material [6], often 
written as 

(3.4) 
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Though Pucci and Saccomandi [11] essentially recognized that the Gent response 
function is an [0/1] rational approximation of what they called the reduced tensile 
force, they did not derive it inversely from the general properties of the simple class 0. 
In a different, general framework, Horgan and Saccomandi [28] apply a modified Riv-
lin polynomial approximation scheme in which the strain energy function is derived by 
integration of (2.3) for assumed rational function approximants of the response func-
tions that may involve both principal invariants for an incompressible hyperelastic ma-
terial. In addition, they obtain a thermoelastic Gent model by the extension of their pro-
cedure to thermoelastic materials with an additional thermal invariant dependence. 
The Gent constitutive equation (3.3) or (3.4), however, here follows easily and naturally 
from only the fundamental properties of general limited elastic materials without men-
tion of a strain energy function. We shall return to this farther on. 

Now consider our second restricted elastic model. The response function for the mo-
lecular based, averaged stretch, full-network model [4], also widely known as the Ar-
ruda–Boyce 8-chain model [5], is described by 

(3.5) 

in which –1(λr) is the inverse of the Langevin function 

(3.6) 

and λr ≡ √‾I1‾/‾‾Im‾ is called the relative chain stretch. The Taylor series approximation [7, 
p. 895] of –1(λr) derived from (3.6) is given by 

(3.7) 

Based on this series expansion, Cohen [18] has derived the [3/2] Padé approximant of 
the inverse Langevin function; and introduction of this result in the response function 
(3.5) leads to 

(3.8) 

The latter approximate expression is adopted by Cohen to capture exactly the singu-
larity of –1(λr) for large chain stretches at λr = 1, for which the approximant (3.8)1 fails. 
Similarly, the [1/6] Padé approximant [15] of (3.7) is given by 

(3.9) 
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The first of these relations was obtained initially by Kuhn and Grün [1] based on (3.7), 
but not by the method of Padé approximants. More than a decade later, Treloar [7] in-
troduced the latter empirical estimate (3.9)2 to preserve the singularity at λr = 1, for 
which the [1/6] approximant (3.9)1 fails. Treloar’s estimate (3.9)2 is within 1% of the ex-
act value of –1(λr) over the entire range λr . Notice, however, that the response function 
(3.5) and hence those for the modified Cohen and Treloar functions (3.8)2 and (3.9)2 are 
not members of the simple subclass 0 of limited elastic materials; they do not satisfy 
(2.5)2. We shall return to this below. 

With (3.3) or (3.4) cast in these molecular based terms the analytical simplicity of the 
Gent model in comparison with (3.5), or even the Cohen and Treloar empirical approx-
imations, is evident: 

(3.10) 

The Gent model, therefore, is the simplest rational function of λr  having the proper-
ties (2.5) and (2.6). This is not, as shown in [15], an [0/2] Padé approximant of the ratio 
function in (3.5), which is given by 

(3.11) 

This has the correct quadratic structure of (3.10) but it does not exhibit the required sin-
gularity at λr = 1. 

4. Series Representations of the Gent Model 

 Now let us return to the Gent model, and recall that 0 ≤ (I1 – 3)/(Im – 3) ≤ 1, the equali-
ties holding only at the respective end points I1 = 3 and I1 = Im . It is readily shown that 
the Gent response function (3.4) has an infinite geometric series [29, pp. 111–112] repre-
sentation that converges absolutely and uniformly to precisely the Gent response func-
tion for (I1 – 3)/(Im – 3) < 1, namely 

(4.1) 

An alternate series representation based on (3.3) is 

(4.2) 
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in which we note that ∑∞
n=0 (3/Im)n = (1 – 3/Im )–1. These relations, therefore, are merely 

alternate forms of the infinite geometric series for a positive quantity k < 1, namely, 
∑∞

n=0 k
n = (1 – k)–1, and this is the fundamental basis for the Gent or any similar model, 

an example of which is provided later on. 
Notice that the series functions (4.1)1 and (4.2)1 satisfy (2.5)2 when I1 = 3 and (2.6) for  

which ∑∞
n=0 1

n = ∞ when I1 = Im , but any truncation of either series at a finite number of 
terms, like the series (3.7), does not. In particular, consider the function (4.1) for n = 1 to 
obtain 

(4.3) 

Let us now recall a simple shear deformation [24] with an amount of shear  σ = tan , 
where  is the angle of shear, and I1 – 3 = σ 2. Let σm denote the limiting amount of shear 
for which Im – 3 =  σm

2. Then (4.3) may be written as 

(4.4)

in which  μ(σ 2)  = G(σ 2 + 3; Im),  μ0 = G0,  and  2μ1 = G0/σm
2. The problem of the vibra-

tion of a load supported symmetrically by simple shear springs was solved exactly 
in [19] for all isotropic hyperelastic materials characterized by the quadratic shear re-
sponse function (4.4); and this simple shear problem has served as a signature exam-
ple in the study of a variety of analytical methods applied to nonlinear vibration prob-
lems [19–23]. Here we find a specific representation for the moduli in (4.4) in terms of 
meaningful physical constants whose connection with the Gent model was previously 
unknown. An exact solution of the shearing oscillator problem for the Gent model (3.3) 
is reported in [30] where several additional references on shearing oscillation problems 
may be found. 

5. Extended Class of Limited Elastic Materials 

It is known that the function (3.5) has only the property (2.6). Hence, the averaged 
stretch, full-network model, which clearly exhibits limited extensibility as λr → 1, is not 
a member of the class 0. For the averaged stretch model, the value of the response 
function G(3; Im ) = G0 √‾I‾m‾ ‾/ ‾‾‾3 –1 (√‾3‾/‾I‾m‾  )/3 depends on the material extensibility con-
stant Im. So, (2.5)2 holds only for sufficiently small λr , that is, when Im  is sufficiently 
large; and then G(3; Im ) → G0. Otherwise, the material constant G(3; Im ), the response 
modulus of the undeformed state for the averaged stretch model, also depends on the 
material constant Im . This suggests extension of the definition (2.5) to the general class  
of limiting elastic materials defined by 

(5.1) 

together with (2.6), where  (Im ), the shear modulus in the undeformed state of the ma-
terial, is a positive-valued function of the extensibility constant Im . The models for 
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which (2.5) hold clearly form a subclass of those defined by (5.1) and for which it is al-
ways admissible to consider a model, such as the Gent model and another to be dis-
cussed shortly, for which G(3; Im ) =  (Im ) ≡ G0 .

Various other models for which (2.5)2 fails, including the modified Cohen model 
(3.8)2 and the Treloar model (3.9)2, are now included in the expanded class  of limited 
elastic materials for which (2.6) and (5.1) hold. An alternative but less elegant approach 
is to modify the material response function (3.5) to remove the Im dependence by an ev-
ident normalization so that both (2.5) and (2.6) hold, which then leads to a somewhat 
different material model. Notice that the location of the singularity for the Padé approx-
imants (3.8)1, (3.9)1, and (3.11) fall outside the range of limiting molecular chain exten-
sibility at λr = 1, so these are not limited elastic material models. Clearly, various lim-
ited elastic models having a response function defined in terms of powers of principal 
stretches or additional invariants are not members of the class studied here. Needless to 
say, there are several limited elastic or modified limited elastic models, such as the van 
der Waals model [15] with 

(5.2) 

for which (2.5)2, hence (5.1), and (2.6) hold; and the Puso model [4] defined by 

(5.3) 

 

for which G(3; Im ) =  (Im ) = G0/(1 – (3/Im ) 3/2) and hence (5.1) and (2.6) hold. Similarly, 
it is seen that the empirical Treloar [2, p. 1781 7, p. 895] model (3.9)2 with 

(5.4) 

in which f(λr
2) = 3λr

2/5 + λr
4/5 + λr

6/5, and 0 < f(λr
2) ≤ 1, equality holding at λr = 1, is 

a member of the extended class  of limited elastic materials for which (5.1) and (2.6) 
hold. None of these additional models, however, are Padé approximants. In fact, the 
van der Waals and Puso models are not rational fractions, and the Cohen and Treloar 
empirical models are rounded estimates of Padé approximants of the inverse Langevin 
function modified to exhibit the correct singularity at λr = 1. Notice, however, that sev-
eral of our models in the class  have essentially the same structure, which suggests that 
these may be represented by their infinite geometric series in a = f (I1; Im ), for 0 < a < 1, 
that sums exactly to the simplified form (1 – f (I1; Im )–1. The van der Waals model (5.2), 
for example, may be written as an infinite geometric series in a = f (I1; Im ) = [(I1 – 3)/(Im 
– 3)]1/2, where 0 < (I1 – 3)/(Im – 3) < 1. The Gent model, however, is unique among all of 
these—it is the only limited elastic material that is also the unique [0/1] Padé approx-
imant of the general class of restricted elastic materials characterized by (2.5) and (2.6) 
and having the exact infinite geometric series representation (4.1) or (4.2). 
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It is evident from the molecular theory that larger values of the extensibility param-
eter Im imply greater elastic (extensibility) response of the material, while smaller val-
ues of Im imply its greater stiffness. Hence, as Im grows indefinitely large, (3.3) for the 
Gent material shows that β1 → G0 and (2.1) thus reduces to the constitutive equation for 
the classical, ideal elastic neo-Hookean model of the Gaussian molecular network the-
ory. For all materials within the class  of limiting extensibility materials defined by 
(5.1) and (2.6), this reduction to the neo-Hookean case may be generalized by the addi-
tional condition that 

(5.5) 

and in some applications it is occasionally useful to include 

 (5.6) 

Both the Gent and averaged stretch, full-network models respect these additional prop-
erties. For the latter, we recall λr  [3/Im , 1], and note that lim λr →1 –1(λr ) = lim I1 → Im 

–

1(λr ) → ∞; and as Im → ∞, the ratio in (3.5) goes to 1. 

6. A New Restricted Elastic Model 

We have seen that the Gent model is not the [0/2] Padé approximant (3.11) of the ra-
tio function in (3.5), which has the correct quadratic structure but does not exhibit the 
required singularity at λr = 1. Let us return to our general model defined by (2.5) and 
(2.6), and let us consider the [0/2] Padé approximant for which 

(6.1) 

To simplify the calculation, set a0 = G0, that is, we chose (Im ) = G0 in (5.1). Then to sat-
isfy (5.1)2, or equivalently (2.5)2, we must have b1 + 3b2 = 0; and to satisfy (2.6) requires 1 
+ b1 Im + b2 Im

2 = 0. Solving this algebraic system for b1 and b2, we find that the [0/2] Padé 
approximant of the general response function for which (6.1) holds may be written as 

(6.2) 

In addition, this function also satisfies (5.5) and (5.6), and it has the exact infinite geo-
metric series representation 

(6.3) 
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for 0 < a < 1. Notice that for I1 = 3, a = 0 and (2.5)2 holds, and when I1 = Im , ∑
∞
n=0 a

n → +∞ 
and (2.6) holds. This is a new constitutive equation for incompressible, isotropic limited 
elastic materials. 

7. Strain Energy of Restricted Elastic Materials 

We have seen that the constitutive equations for the Gent material (3.4) and the new 
relation (6.2) follow easily and naturally from the fundamental properties of the gen-
eral class of limited elastic materials without mention of a stored energy function. Of 
course, this function is readily obtained by integration of (2.3)1. Gent’s strain energy 
function [6] follows easily from (3.4): 

(7.1) 

And the strain energy function for the new elastic material (6.2) is given by 

(7.2) 

The similarity with the much simpler Gent model is evident. 
The stored energy function for the Puso model (5.3) is given by 

(7.3) 

in which here and below the constant C0 is chosen so that Σ(3; Im ) = 0. This structure is 
similar to the empirical Treloar model (5.4) for which the strain energy function is given 
by 

(7.4) 

The special quadratic material (4.3) has the strain energy function  
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(7.5) 

in terms of physical, molecular based material coefficients. This also follows by the se-
ries expansion of (7.1). This is a special variety within the general class of compressible 
and incompressible quadratic energy functions applied in [19] to study simple shear os-
cillators for which (4.4) holds. Now, however, the material coefficients have an explicit 
physical relevance in terms of the shear modulus G0 and the limiting extensibility pa-
rameter Im . 

For all of these models the lim Im → ∞ Σ(I1; Im ) = G0(I1 – 3)/2, the familiar neo-Hookean 
constitutive equation of the Gaussian molecular network theory. Plainly, the functions 
(7.1)–(7.4) have infinite power series representations for 3 ≤ I1 < Im . So, specifically, it 
may be shown, though it most surely is not necessary to do so, that the result for (7.1) 
follows from the infinite geometric series (5.5), and conversely. Indeed, in consequence 
of the logarithmic functions in (7.1) and (7.2), for example, it is not surprising that the 
response functions for these models should have the respective infinite power series 
representations (4.1) and (6.3). Indeed, for 0 < x < 1, we have exactly 

(7.6) 

References 

[1]  	 Kuhn, W. and Grün, F. Beziehungen zwischen elastischen Konstanten und Dehnungsdoppel-
brechung hochelastischer Stoffe. Kolloid-Zeitschrift, 101, 248–271 (1942). 

[2] 	 Treloar, L. R. G. The Physics of Rubber Elasticity, 3rd edn. Clarendon Press, Oxford, 1975. 
[3] 	 Dickie, R. A. and Smith, T. L. Viscoelastic properties of a rubber vulcanizate under large de-

formations in equal biaxial tension, pure shear, and simple tension. Transactions of the Society of 
Rheology, 15, 91–110 (1971). 

[4] 	 Beatty, M. F. A stretch averaged full-network model for rubber elasticity. Journal of Elasticity, 
70, 65–86 (2003). 

[5] 	 Arruda, E. M. and Boyce, M. C. A three-dimensional constitutive model for the large stretch 
behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41, 389–412 
(1993). 

[6] 	 Gent, A. N. A new constitutive relation for rubber. Rubber Chemistry and Technology, 69, 59–61 
(1996). 

[7] 	 Treloar, L. R. G. The photoelastic properties of short-chain molecular networks. Transactions of 
the Faraday Society, 50, 881–896 (1954). 

[8] 	 Zúñiga, A. Elías-and Beatty, M. F. Constitutive equations for amended non-Gaussian network 
models of rubber elasticity. International Journal of Engineering Science, 40, 2265–2294 (2002). 

[9] 	 Horgan, C. O. and Saccomandi, G. Constitutive modelling of rubber-like and biological mate-
rials with limiting chain extensibility. Mathematics and Mechanics of Solids, 7, 353–371 (2002). 

[10] 	 Horgan, C. O. and Saccomandi, G. Phenomenological hyperelastic strain-stiffening constitu-
tive models for rubber. Rubber Chemistry and Technology, 79, 152–169 (2006). 

[11] 	 Pucci, E. and Saccomandi, G. A note on the Gent model for rubber-like materials. Rubber Chem-
istry and Technology, 75, 839–851 (2002). 

[12] 	 Boyce, M. C. Direct comparison of the Gent and the Arruda–Boyce constitutive models of rub-
ber elasticity. Rubber Chemistry and Technology, 69, 781–785 (1996). 



Co n s ti tu ti v e Mo d els f o r Li mi ted El as ti c,  Mo l ec ul ar Bas e d Mate r i al s      387

[13] 	 Wang, M. C. and Guth, E. Statistical theory of networks of non-Gaussian flexible chains. Jour-
nal of Chemical Physics, 20, 1144–1157 (1952). 

[14] 	 Wu, P. D. and van der Giessen, E. On improved network models for rubber elasticity and their 
application to orientation hardening in glassy polymers. Journal of the Mechanics and Physics of 
Solids, 41, 427–456 (1993). 

[15] 	 Horgan, C. O. and Saccomandi, G. A molecular-statistical basis for the Gent constitutive model 
of rubber elasticity. Journal of Elasticity, 68, 167–176 (2002). 

[16] 	 Baker, G. A. Essentials of Padé Approximants, Academic, New York, 1975. 
[17] 	 Cabannes, H. Padé Approximants Method and Its Applications to Mechanics, Vol. 47, Lecture Notes 

in Physics, Springer, Berlin, 1976. 
[18] 	 Cohen, A. A Padé approximant to the inverse Langevin function. Rheologica Acta, 30, 270–273 

(1991). 
[19] 	 Beatty, M. F. Finite amplitude vibrations of a body supported by simple shear springs. Journal 

of Applied Mechanics, 51, 361–366 (1984). 
[20] 	 Beatty, M. F. and Bhattacharyya, R. Stability of the free vibrational motion of a vehicular body 

supported by rubber shear mountings with quadratic response. International Journal of Non-
Linear Mechanics, 24, 401–414 (1989). 

[21] 	 Zúñiga, A. Elias-. Absorber control of the f inite amplitude nonlinear vibrations of a simple 
shear suspension system. University of Nebraska-Lincoln, Ph.D. dissertation, 1994. 

[22] 	 Zúñiga, A. Elias- and Beatty, M. F. Forced vibrations of a body supported by hyperelastic 
shear mountings. Mechanics Research Communications, 28, 429–446 (2001). 

[23] 	 Zúñiga, A. Elias-and Beatty, M. F. Elliptic balance solution of two degree-of-freedom, un-
damped, forced systems with cubic nonlinearity, Nonlinear Dynamics, in press. 

[24] 	 Beatty, M. F. Introduction to nonlinear elasticity, in Nonlinear Effects in Fluids and Solids, dedi-
cated to Ronald S. Rivlin, eds. M. M. Carroll and M. A. Hayes, Plenum Press, New York, 1996, 
pp. 13–112. Alternatively, see Topics in finite elasticity: Hyperelasticity of rubber, elastomers, 
and biological tissues—with examples. Applied Mechanics Reviews, 40, 1699–1734 (1987). 

[25] 	 Carroll, M. M. Polymers with limiting chain extensibility. Private communication. 
[26] 	 Murphy, J. G. Some remarks on kinematic modeling of limiting chain extensibility. Mathemat-

ics and Mechanics of Solids, 11, 629–641 (2006). 
[27] 	 Gent, A. N. Extensibility of rubber under different types of deformation. Journal of Rheology, 

49, 271–275 (2005). 
[28] 	 Horgan, C.O. and Saccomandi, G., Finite thermoelasticity with limiting chain extensibility. 

Journal of the Mechanics and Physics of Solids, 51, 1127–1146 (2003). 
[29] Knopp, K. Theory and Application of Infinite Series, a translation by R. C. H. Young of the 4th German 

ed., Hafner, New York, 1947. 
[30] Beatty, M. F. On the oscillations of a load supported by incompressible, isotropic limited elastic 

shear mounts (in press).


	On Constitutive Models for Limited Elastic, Molecular Based Materials
	

	tmp.1245423627.pdf.JJYJx

