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Abstract.—Data partitioning, the combined phylogenetic analysis of homogeneous blocks of data, is a common strategy used
to accommodate heterogeneities in complex multilocus data sets. Variation in evolutionary rates and substitution patterns
among sites are typically addressed by partitioning data by gene, codon position, or both. Excessive partitioning of the
data, however, could lead to overparameterization; therefore, it seems critical to define the minimum numbers of partitions
necessary to improve the overall fit of the model. We propose a new method, based on cluster analysis, to find an optimal
partitioning strategy for multilocus protein-coding data sets. A heuristic exploration of alternative partitioning schemes,
based on Bayesian and maximum likelihood (ML) criteria, is shown here to produce an optimal number of partitions. We
tested this method using sequence data of 10 nuclear genes collected from 52 ray-finned fish (Actinopterygii) and four
tetrapods. The concatenated sequences included 7995 nucleotide sites maximally split into 30 partitions defined a priori
based on gene and codon position. Our results show that a model based on only 10 partitions defined by cluster analysis
performed better than partitioning by both gene and codon position. Alternative data partitioning schemes also are shown
to affect the topologies resulting from phylogenetic analysis, especially when Bayesian methods are used, suggesting that
overpartitioning may be of major concern. The phylogenetic relationships among the major clades of ray-finned fish were
assessed using the best data-partitioning schemes under ML and Bayesian methods. Some significant results include the
monophyly of “Holostei” (Amia and Lepisosteus), the sister-group relationships between (1) esociforms and salmoniforms
and (2) osmeriforms and stomiiforms, the polyphyly of Perciformes, and a close relationship of cichlids and atherinomorphs.
[Cluster analysis; data partitioning; Holostei; nuclear loci; phylogenetics; ray-finned fish; Actinopterygii.]

Phylogenomic approaches in systematics based on the
analysis of multilocus sequence data are becoming in-
creasingly common. Large numbers of characters and
independent evidence from many genetic loci often re-
sult in well-resolved and highly supported phylogenetic
hypotheses (e.g., Rokas et al., 2003a, 2003b, 2005; Philippe
et al., 2005; McMahon and Sanderson, 2006; Baurain et al.,
2007; Comas et al., 2007). In spite of this success and initial
optimism about the phylogenomic approach (Gee, 2003;
Rokas et al., 2003b), large and complex data sets also exac-
erbate many unresolved methodological challenges. As
model-based phylogenetic methods gain acceptance in
systematic biology, discussion of model selection strate-
gies has shifted to a central place in the recent liter-
ature (reviewed by Sullivan and Joyce, 2005). Many
long-standing challenges such as sparse taxon-sampling
(Soltis et al., 2004), base compositional bias (Phillips et al.,
2004; Collins et al., 2005), missing data (Wiens, 2003;
Waddell, 2005), or incomplete lineage sorting (Kubatko
and Degnan, 2007) also increase in relevance as multilo-
cus data sets grow in size and complexity.

One important challenge concerns heterogeneity in
evolutionary rates among genes and nucleotide sites
(Bull et al., 1993; Buckley et al., 2001). An increasingly
common approach to address this heterogeneity involves
the definition of relatively homogeneous data blocks
and subsequent optimization of independent (unlinked)
models for each block. Several methods are available to
choose the optimal model for any particular data set (or
data block), based on testing criteria such as likelihood-
ratio tests (Sullivan et al., 1997; Posada and Crandall,
1998), the AIC (Akaike information criterion; Posada and
Crandall, 2001), BF (Bayes factors; Nylander et al., 2004),
the BIC (Bayesian information criterion; Schwarz, 1978),
and performance-based criteria (Minin et al., 2003). The

relative merits of these alternative approaches have been
recently reviewed by Posada and Buckley (2004) and
Sullivan and Joyce (2005). For heterogeneous data sets
such as multilocus protein-coding sequences, phyloge-
netic analyses are increasingly based on partitioning the
data by gene and/or codon position (Reed and Sperling,
1999; Nylander et al., 2004). Simulation and empirical
studies have demonstrated the benefits of this approach
by significantly improving overall likelihood scores
and nodal support (Caterino et al., 2001; Pupko et al.,
2002; Castoe et al., 2004; Brandley et al., 2005; Brown
and Lemmon, 2007). In general, several methods are
available for comparing and selecting for evolutionary
models, an area of recent growth in phylogenetics. But
unfortunately, the best approach to optimally define
the number of homogenous data blocks in complex
multilocus data sets has received substantially less at-
tention (e.g., Brandley et al., 2005; Poux et al., 2005), and
currently there is no explicit method available to heuris-
tically search among all plausible partitioning schemes
from a potentially vast array of alternatives—but see
the mixture model, an alternative way to accommodate
heterogeneity among sites (e.g., Pagel and Meade, 2004).

A common strategy for partitioning data is to use a pri-
ori knowledge and divide the concatenated sequences
by gene, codon position, or both. This method is rea-
sonable because it may capture most of the heterogene-
ity in the sequences. Many studies, indeed, reported
that partitioning by both gene and codon position re-
sulted in the best fit of the data (Caterino et al., 2001;
Brandley et al., 2005). Under this approach, a mul-
tilocus data set with, for example, 10 protein-coding
genes would be divided into 30 blocks, each with its
own specified model. However, “overpartitioning”—
dividing the data into too many blocks—will naturally
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result in overparametrization (Sullivan and Joyce, 2005),
because too many parameters associated with excess
data blocks need to be estimated from the data. For fi-
nite data with relatively small number of characters in
each data block, the degree of uncertainty in parame-
ter estimation could seriously compromise the perfor-
mance of the model (Rannala, 2002). It has been shown
that both underpartitioning and overpartitioning led to
erroneous estimates of bipartition posterior probabili-
ties (BPPs) and increased the risk of phylogenetic error
(Brown and Lemmon, 2007).

Reducing the number of parameters by merging all
sites that exhibit similar substitution patterns into a sin-
gle data block should improve the overall fit of a par-
titioned approach. For example, first codon positions of
two genes with similar evolutionary constraints might be
analyzed more efficiently with one model than with two
separate models. To choose the best partitioning strat-
egy, ideally, analyses of all possible combinations of pre-
defined data blocks should be compared. The number of
combinations, however, becomes prohibitively large and
impractical to evaluate exhaustively when many genes
are used. The number of ways a set of n elements can be
partitioned into nonempty subsets is called a Bell num-
ber, Bn (Bell, 1934). Bell numbers can be generated using
the recurrence relation

Bn+1 =
n∑

k=0

(
n
k

)
Bk (1)

The first six Bell numbers are B1 = 1, B2 = 2, B3 = 5,
B4 = 15, B5 = 52, and B6 = 203, but for 10 and 30 par-
titions the number of possible combinations grows ex-
ponentially to B10 = 115,975 and B30 = 8.47E+23 (Bell
numbers are implemented in Mathematica as BellB[n];
http://mathworld.wolfram.com/BellNumber.html). A
data set with 20 protein-coding genes split into 60 a pri-
ori data blocks (3 codons × 20 genes) can give rise to
B30 = 9.77E+59 possible partitioning schemes. Clearly, a
heuristic approach is necessary to search for the optimal
partitioning scheme for large multilocus data sets.

In some studies, “background information” or esti-
mated model parameter values (e.g., evolutionary rate)
for each potential data block have been used to guide
the process of defining the optimal number of partitions
for analysis (Mueller et al., 2004; Brandley et al., 2005;
Poux et al., 2005; Castoe and Parkinson, 2006; McGuire
et al., 2007; Nishihara et al., 2007). For example, us-
ing background information for protein-coding genes,
the first plus second but not the third codon positions
were grouped (Brandley et al., 2005). In another study
(Poux et al., 2005), data blocks were originally defined
by gene and codon position and each was optimized in-
dependently for its best-fitting model; subsequently, the
number of partitions was reduced by grouping together
original blocks when none of their model parameters dif-
fered by more than 100%. In yet another study using 2789
genes (Nishihara et al., 2007), the evolutionary rate of
each gene was used as a criterion to define alternative

partitioning schemes. These few attempts present sim-
ple methods to avoid overpartitioning while effectively
dealing with heterogeneity by first detecting (or infer-
ring) similarities and then grouping similar data blocks.
However, they fail to provide a systematic and objec-
tive way to explore the combinatorial space and/or to
assess the potential improvement resulting from alter-
native partitioning schemes. In this study, we use cluster
analysis (Hartigan, 1975) to guide the process of choosing
the optimal partitioning scheme for multilocus protein-
coding genes. Starting with all possible predefined data
blocks (by both gene and codon position), our method
provides a strategy to explore systematically alternative
groupings of blocks and define a reasonable partitioning
scheme based on explicit model selection criteria.

An alternative to data partitioning is mixture analysis
(Pagel and Meade, 2004, 2005). Mixture methods can ac-
commodate rate and pattern heterogeneity among sites
by fitting a set of models with different weights to each
site. It has the advantage that no a priori assumptions are
made about the data. Currently, both mixture and par-
titioned methods are increasingly used in phylogenetic
studies. The comparison between the two approaches
and the evidence favoring one or the other await more
thorough examination. The method we developed in this
study is a proposal to solve one of the methodological
obstacles in a partitioned analysis.

We apply this new approach to explore optimal par-
titioning schemes in a new data set of 10 protein-
coding genes sampled from 52 actinopterygian fishes.
Ray-finned fishes (class Actinopterygii) are the most
species-rich group of vertebrates, with high diversity
in morphology, ecology, behavior, and physiology (see
Helfman et al., 1997). They comprise nearly 27,000 de-
scribed species, currently classified into three subclasses,
44 orders, and 453 families (Nelson, 2006). Phylogenetic
relationships among the major groups of ray-finned
fishes are still controversial and unresolved, as are many
of the proposed higher-level taxa (e.g., Greenwood et al.,
1973; Lauder and Liem, 1983; Stiassny et al., 1996; Kocher
and Stepien, 1997; Meyer and Zardoya, 2003; Miya et al.,
2003; Cloutier and Arratia, 2004; Springer and Johnson,
2004). A small sample of current controversies may in-
clude such classic debates as the evidence for “Holostei”
(Jessen, 1972; Olsen, 1984; Grande and Bemis, 1996), a
group that contains gars (Lepisosteus) and the bowfin
(Amia); the identity of the most early diverging lineages
of living teleosts (Patterson and Rosen, 1977; Arratia,
2000; Inoue et al., 2001), or the interrelationship among
ostariophysans (Fink and Fink, 1981; Dimmick and Lar-
son, 1996; Ortı́ and Meyer, 1996; Saitoh et al., 2003). In ad-
dition to these classic debates, unexpected relationships
among several groups of teleosts have been proposed
by recent molecular studies, such as the sister relation-
ship of osmeriforms with stomiiforms (Lopez et al., 2004)
and gonorynchiforms as a basal clupeomorph (Saitoh
et al., 2003), which need more rigorous testing. Most no-
toriously without resolution is the crown of the teleost
tree. One of the major questions in ichthyology is the
pattern of phylogenetic relationships among the higher
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“perch-like” fishes, the order Perciformes and their rela-
tives (e.g., Chen et al., 2003; Miya et al., 2003; Orrell and
Carpenter, 2004; Dettai and Lecointre, 2005; Smith and
Craig, 2007). Given the high taxonomic diversity and the
lack of unambiguous morphological synapmorphies for
many traditionally proposed groupings, it has been dif-
ficult to resolve higher-level phylogenies of ray-finned
fish with morphological characters alone. More recently,
molecular data have been used with varying degrees of
success (Kocher and Stepien, 1997; Wiley et al., 2000;
Chen et al., 2003; Miya et al., 2003, 2005; Lopez et al.,
2004). Many of the early molecular studies used rela-
tively short sequences from few genetic loci and/or lim-
ited taxonomic coverage. A successful strategy to collect
large data sets has been to sequence complete mitochon-
drial genomes, assisted by well-established laboratory
procedures and uncomplicated identification of ortholo-
gous genes (Curole and Kocher, 1999; Miya and Nishida,
2000). Pioneering phylogenetic results have been ob-
tained with mitogenomic data spanning a huge taxo-
nomic diversity and the resolution of many parts of
the ray-finned fish phylogeny has been improved (Miya
et al., 2001, 2003, 2005; Inoue et al., 2003; Ishiguro et al.,
2003; Saitoh et al., 2003). However, the major caveat with
mitogenomic data is that all mitochondrial genes repre-
sent but a single genetic locus, increasing the risk of sys-
tematic error (Curole and Kocher, 1999). In fact, many of
the novel hypotheses proposed on the basis of mitoge-
nomic evidence await scrutiny from morphological evi-
dence and independent corroboration based on nuclear
genes.

Currently, a truly comprehensive phylogenomic ap-
proach to fish phylogeny is not possible with only a
handful of complete fish genomes available. Some recent
studies have analyzed sequences from large chromoso-
mal regions or a large number of genes representing rel-
atively few actinopterygian (Amores et al., 2004; Chen
et al., 2004; Chiu et al., 2004) and sarcopterygian (Noonan
et al., 2004) species. These studies with a high gene-to-
taxon ratio stand in contrast to the most commonly used
“many taxa, few genes” approach attempting to span
the diversity of actinopterygian fishes with few genetic
markers (e.g., Chen et al., 2003). The strategy reported
in this study stands in between. We analyze DNA se-
quences for 10 newly developed nuclear gene markers
(Li et al., 2007) sequenced from 52 ray-finned fish taxa
and four outgroups to assess their phylogenetic utility
for higher-level systematics and assess some hypothe-
ses of actinopterygian relationships. If successful, this
approach could set the stage for future gene-taxon sam-
pling schemes toward efficiently building the tree of life
for ray-finned fishes.

MATERIALS AND METHODS

Taxon Sampling, Amplification, and Sequencing

We sampled 52 ray-finned fish taxa representing 41
of the 44 recognized orders of ray-finned fish (Nel-
son, 2006), except for Saccopharyngiformes, Ateleopod-
iformes, and Stephanoberyciformes due to the lack of

viable tissue samples (see Appendix 1). Four tetrapods,
Xenopus tropicalis, Monodelphis domestica, Mus musculus,
and Homo sapiens were used as outgroup to root the phy-
logeny. Admittedly, our taxon sampling is not compre-
hensive enough to represent the diversity of ray-finned
fishes, if nothing else because the delineation of many
orders is still an open question and key taxa with un-
expected affinities may be missing from the study. Nev-
ertheless, this is the first report attempting to address
phylogenetic relationships among ray-finned fishes us-
ing sequences of multiple nuclear genes at a relatively
large taxonomic scale.

The nuclear gene makers chosen for this study were
selected among putatively single-copy genes using a
bioinformatics approach to scan available genomic data
for fishes (Li et al., 2007). DNA fragments between 700
and 1000 bp were amplified and sequenced from the
following genes: zic family member 1 (zic1), cardiac
muscle myosin heavy chain 6 alpha (myh6), ryanodine
receptor 3-like protein (RYR3), si:ch211-105n9.1-like pro-
tein (Ptr), T-box brain 1 (tbr1), ectodermal-neural cor-
tex 1-like protein (ENC1), glycosyltransferase (Glyt),
SH3 and PX domain-containing 3-like protein (SH3PX3),
pleiomorphic adenoma protein-like 2 (plagl2), and brain
superconserved receptor 2 (serb2) gene. Sequences of
these 10 loci for the four tetrapod and two tetraodonti-
form species were retrieved from the ENSEMBL genome
browser (www.ensembl.org; see Appendix 1). Sequences
for the rest of the taxa were collected for this study
(EU001863 to EU002148) or were previously reported by
Li et al. (2007). Primers used for PCR and sequencing and
the reaction conditions are as reported by Li et al. (2007).

Alignment, Homology Assessment, and Quality Control

Because the sequenced 10 nuclear fragments corre-
spond to exons of protein-coding genes, alignments were
based on translated protein sequences using ClustalW
(Thompson et al., 1994), implemented in MEGA3.1
(Kumar et al., 2004). After alignment, the aligned pro-
tein sequences were translated back into the original nu-
cleotides for phylogenetic analysis.

The 10 nuclear genes were operationally defined
as “single-copy” in the genomes of model organisms
used for the bioinformatic analysis: zebrafish (D. re-
rio), torafugu (T. rubripes), stickleback (G. aculeatus),
and medaka (O. latipes). This operational definition of
a single-copy gene only requires that the fragment is
not present as a second copy in the genome with sim-
ilarity higher than 50%. Some single-copy genes may,
in fact, have duplicates in the genome that are less
than 50% similar (Li et al., 2007). Therefore, to test
whether the sequences collected for each locus may have
paralogous copies resulting from fish-specific genome
duplication events (Taylor et al., 2003; Van de Peer
et al., 2003), the most similar fragments, or putative
“out-paralogs” (Remm et al., 2001), in the genome
were download from the ENSEMBL database for ze-
brafish, stickleback, medaka, torafugu, and spotted-
green pufferfish. These putative paralogs were aligned
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with the sequences collected in the present study and
neighbor-joining trees (NJ; Saitou and Nei, 1987) were
constructed for each locus. “Confused paralogy” would
be diagnosed by this procedure if any of the putative out-
paralogs are nested among the sequences collected for
ray-finned fishes in our study. If all sequences collected
for this study are orthologous to each other, paralogous
copies should be placed in a sister-group relationship to
all sampled ray-finned fishes. This expectation assumes
that the duplication events preceded the early diversifi-
cation of actinopterygians or the split between tetrapods
and the ray-finned fish lineages. A discrepancy between
the gene trees and species tree could occur if a duplication
event took place after the diversification of actinoptery-
gains and the duplicated genes were lost in different lin-
eages asymmetrically. In this case, recovering the species
tree would require consistent and independent phyloge-
netic signal from many unlinked loci, such as the ones
used in this study. During this preliminary analysis, se-
quences placed at unexpected positions in the NJ tree
were identified and checked for accuracy. Quality con-
trol performed in this way also was aimed to minimize
laboratory mistakes (e.g., contamination) in addition to
problems that may arise due to confused paralogy.

Data Partitioning, Parameter Estimation,
and Cluster Analysis

As a first step, the concatenated data matrix of 10 nu-
clear gene sequences was partitioned by gene and by
codon position, producing 30 blocks of data. A smaller
number of data blocks, however, may be sufficient
because some of them are likely to exhibit similar evo-
lutionary properties. These properties were assessed by
phylogenetic analysis (see below) using the ML method
implemented in TreeFinder (Jobb, 2006) and a Bayesian
approach implemented in MrBayes (Nylander et al.,
2004). For these analyses, each of the 30 data blocks was
optimized independently under a GTR+� model. Over-
all similarity among data blocks was evaluated on the
basis of their estimated parameter values, counting five
substitution rates, three base composition proportions,
the gamma parameter (alpha), and the rate multiplier
for each. We did not include the invariable parameter
(theta) in the models, because the alpha and theta esti-
mated under I+� model might be highly correlated (Sul-
livan et al., 1999). Hierarchical cluster analysis was used
to analyze the level of similarity among data blocks, us-
ing the parameter values as input for PROC CLUSTER
with the centroid method in SAS. We choose centroid as
the amalgamation approach because this method is more
robust to outliers than most other hierarchical methods
(Milligan, 1980). Separate cluster analyses were run for
parameters estimated by ML and Bayesian approaches.
The resulting hierarchical clustering graphs were used
to guide the grouping process to propose increasingly
smaller numbers of data partitions. Starting with all 30
blocks at the tips of the cluster dendrogram, this method
identifies and groups the two most similar, yielding 29
data partitions; it subsequently identifies and groups the

next most-similar data blocks to yield 28 partitions, and
so on down the guide-tree to assemble progressively
larger clusters of data blocks with high similarity, con-
tinuing down to the root until single group is defined.
Although this approach is not an exhaustive exploration
of all possible partitioning schemes, it prescribes a rea-
sonable and explicit strategy to group data blocks on the
basis of their overall similarity in evolutionary parame-
ters. To test the performance of our clustering approach,
we also carried out an exhaustive search of all possible
combinations for a subset of our data (6 data blocks = 2
genes × 3 codon positions). The partitioning schemes de-
termined by cluster analysis (6 alternative schemes, from
1 to 6 partitions) were compared to all possible combina-
tions of 6 blocks into 1, 2, 3, 4, 5, or 6 partitions (B6 = 203
different combinations). An alternative nonhierarchical
clustering approach (k-means; Hartigan and Wong, 1979)
was compared to the hierachical method implemented in
this study. k-means clustering was implemented using
CLUSTER (Hoon, 2002). Although it does not guarantee
to return a global optimum, the k-means method is faster
and could be useful for larger data sets, when the hier-
archical approach would be computationally slow and
tedious to implement.

The effects on phylogenetic estimation of all the result-
ing partitioning schemes, from 30 to a single block, were
evaluated using several decision criteria. The procedures
for phylogenetic analysis using each partitioning scheme
(each scheme defines a model for the analysis) are ex-
plained in the next section. For the ML-based infer-
ence, the following two criteria were applied: (1) the
Akaike information criterion (AIC) was calculated as
AICi = −2lnLi+ 2ki , where Li is the maximum likeli-
hood of the model and ki is the number of parameters in
the model i . When the ratio of the number of nucleotides
to the number of parameters n/ki ≤ 40, AICC is used
instead of AIC to correct for small sample size (Burn-
ham and Anderson, 2002). The AICC was computed by
AICCi = −2lnLi+ 2ki+ 2ki (ki+ 1)/(n − ki – 1). As a de-
ciding rule, �i = AICi – AICmin ≤ 10 was used as an
indication of nonsignificant difference between model i
and the best model (Burnham and Anderson, 2002), and
model i was preferred if it was based on a smaller number
of data blocks (i.e., a smaller number of parameters). (2)
The Bayesian information criterion (BIC) that penalizes
free parameters more strongly than the AIC was calcu-
lated as: BICi = −2lnLi+ ki lnn.

To evaluate partitioning schemes using estimates
based on Bayesian analyses, the BIC and Bayes factor (BF)
were used to compare models. The BF was calculated as
the difference of harmonic means of likelihoods between
models compared (Nylander et al., 2004). A recent study
has shown that BF provides a statistically sound measure
for evaluating alternative partitioning schemes (Brown
and Lemmon, 2007).

In addition to evaluating the fit of the data to different
partitioning models by all the above criteria, the effects
of different partitioning schemes on the inferred topol-
ogy also were examined. In addition to listing alterna-
tive topologies in the appendix, the meta-tree method
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by Nye (2008) based on tree-to-tree distances was used
to visualize differences among results, treating each phy-
logeny as a node, and using a tree to describe the
relationship among them. The method is based on min-
imization of the total Robinson-Foulds distance (Robin-
son and Foulds, 1981). Another important issue related
to phylogenetic analyses under alternative partitioning
schemes concerns nodal-support values (Buckley et al.,
2001). Based on results of Bayesian analysis, the effects
of data partitioning on the bipartition posterior proba-
bilities (BPPs) were examined by plotting BPP values for
common nodes resulting from over- and underpartition-
ing relative to the preferred partitioning scheme.

Phylogenetic Analysis

The basic summary information for each locus, such
as the number of parsimony informative sites, aver-
age genetic p-distance among taxa, and consistency in-
dex were calculated using PAUP (Swofford, 2003). All
data-partitioning schemes were tested using both ML
and Bayesian methods. Bayesian phylogenetic analy-
ses implemented in MrBayes v3.1.1 and ML analyses
in TreeFinder (Jobb, 2006) were performed on the nu-
cleotide sequences. For the first set of analyses, de-
signed to assess the similarity among the initial 30 data
blocks and to compare the alternative data partitioning
schemes, unlinked GTR+� models were used for all data
blocks, and the model parameters were estimated inde-
pendently for each. The GTR+� model was used for all
data blocks to allow direct comparison of results from
different partitioning schemes and also because the GTR
model is the most commonly used model reported in
the literature (Kelchner and Thomas, 2007). The GTR
model implemented in Treefinder or MrBayes has eight
free parameters (see manual of Treefinder and MrBayes),
so each data block adds 10 parameters to the overall
model—8 parameters for the GTR model, 1 parameter
for �, and 1 rate multiplier, used to accommodate the
overall rate difference among partitions. The best par-
titioning scheme was chosen according to the decision
criteria outlined above.

A second set of analyses was performed after the
optimal partitioning scheme was chosen. In this case,
ModelTest (Posada and Crandall, 1998) and PAUP* were
applied on each data block separately to select the best
model (under AIC), rather than arbitrarily fitting each
block with a GTR+� model. If this procedure finds sim-
pler models than the GTR+�, additional savings in the
number of parameters is possible. PAUP* was used to ob-
tain the score for each model proposed by the ModelTest
block on the tree topology estimated from the best parti-
tioning scheme with the GTR+� model for all data blocks
(as described above). However, because both TreeFinder
and MrBayes only implement a subset of models, the
closer but more parameter-rich model to that suggested
by ModelTest available in TreeFinder or MrBayes was
used for the analyses. For all Bayesian analyses, MCMC
was run for 3 million generations with four chains, with
tree-sampling frequency of 1 in 100 (30,000 trees saved).
The last 5000 trees sampled were used to compute the

consensus tree and the posterior probabilities. Two inde-
pendent runs were used to provide additional confirma-
tion of convergence of posterior probability distribution.
All Bayesian analyses were run for the same number of
generations (3 million), to allow direct comparison of the
convergence rate for different partitioning schemes, as
indicated by the average standard deviation of split fre-
quencies among two MCMC runs, printed by MrBayes
at the end of each run. For the ML analysis, 200 boot-
strap replicates were carried out for the best partitioning
scheme. Alternative hypotheses were assessed by one-
tailed Shimodaira and Hasegawa (SH) tests (Shimodaira
and Hasegawa, 1999) with 1000 RELL bootstrap repli-
cates, implemented in TreeFinder.

RESULTS

Characteristics of the Ten Nuclear Loci Amplified
in Ray-Finned Fishes

The aligned sequences concatenating all 10 loci pro-
duced 7995 nucleotides for each taxon. The complete
alignment is available on the TreeBASE website (study
accession number = S2044, Matrix accession number =
M3827). Gaps resulting from the alignment were treated
under the default setting in MrBayes and TreeFinder.
Some gene sequences were excluded from further anal-
ysis due to poor sequencing quality (deficient amplifi-
cation and/or incomplete sequence data), resulting in a
data matrix with about 16% missing data (see Appendix
1). The summary information for each locus is listed in
Table 1.

Preliminary NJ analyses for each individual gene frag-
ment, plus additional sequences of varying degrees of
similarity downloaded from the ENSEMBL database for
zebrafish, stickleback, medaka, torafugu, and spotted
green pufferfish, were performed to detect putative “out-
paralogs.” Resulting NJ trees showed that the putative
paralogs detected in the databases were all positioned
as either a sister group of the other actinopterygian se-
quences or that they joined at the root of the tree as a
polytomy (results not shown), supporting the assump-
tion that all the sequences directly collected for this study
are orthologous for each locus.

Comparison among Alternative Partitioning Schemes
and Models

The maximum number of data blocks defined a pri-
ori for the concatenated data set was 30 (3 codon po-
sitions × 10 genes). For each block, parameter values
for the GTR+� model estimated using both ML and
Bayesian approaches are shown in Appendices 2 and
3. These values were used as input for cluster analy-
sis to obtain a branching pattern reflecting overall sim-
ilarity among data blocks (Fig. 1). Clustering diagrams
obtained based on ML and Bayesian estimation of pa-
rameter values are similar, except for minor differences
within the major clusters (Fig. 1). For both cases, the
three major clusters correspond to codon position of the
genes, suggesting a major effect of this a priori factor
in overall similarity among data blocks. The importance
of individual model parameters affecting the clustering
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TABLE 1. Characteristics of the 10 nuclear loci amplified in ray-finned fishes. PI: parsimony-informative sites; CI-MP: consistency index on
the maximum parsimony tree.

Gene No. of bp No. of variable sites No. of PI sites Average p-distance (Min–Max) CI-MP No. of taxa (out of 56)

zic1 927 395 345 0.158 (0.010–0.267) 0.232 54
myh6 735 369 325 0.174 (0.034–0.300) 0.232 48
RYR3 834 497 425 0.215 (0.039–0.338) 0.280 41
Ptr 705 426 375 0.206 (0.023–0.352) 0.272 51
tbr1 720 410 328 0.196 (0.021–0.337) 0.367 42
ENC1 810 405 359 0.180 (0.029–0.283) 0.242 50
Glyt 888 589 509 0.215 (0.029–0.364) 0.291 44
SH3PX3 705 373 319 0.168 (0.051–0.285) 0.270 45
plagl2 684 410 344 0.179 (0.012–0.372) 0.316 44
sreb2 987 431 387 0.149 (0.015–0.273) 0.254 51

structure can be gauged by their RSQ/(1 − RSQ) value
(ratio of between-cluster variance to within-cluster vari-
ance). The parameters with greatest effect, ranked ac-
cording to this criterion (and their respective values),
are the gamma-function parameter alpha (195.2), the rate
multiplier (48.5), and the C-G (15.2), C-T (7.9), and A-T
(7.3) substitution rates.

The alternative groupings of data blocks prescribed by
the clustering analysis, from a single data block (no par-
titions) to the maximum of 30 data blocks, that were used
in subsequent analyses are shown in Table 2. All parti-
tioning schemes, as well as the frequently used approach
of partitioning only by gene only, were assessed for their
effects on phylogenetic inference under different testing
criteria to determine the best partitioning scheme. For pa-
rameter values estimated under ML, the likelihood and
AIC scores improved consistently with increasing num-
ber of data blocks (Table 3), with the best values obtained
by the model with 30 blocks (299 parameters). Similarly,
BIC values also improved with increasing number of
data blocks (Table 3 and Fig. 2), but interestingly the best
BIC score corresponded to a partitioned model based on
10 data blocks (99 parameters). The 10-block partitioning
scheme was chosen as the optimal model in this study ac-
cording to its BIC value, but the result from the 30-block
partitioning model selected by the AIC also is reported
(Table 3 and Fig. 2).

ModelTest and PAUP* were used to determine the best
model for ML analysis for each of the 10 data blocks in the
optimal partitioning scheme. The models with the best
AIC values and the models used in ML analysis are listed
in Table 4. The models implemented in TreeFinder that
were closer to the models suggested by ModelTest (under
AIC) actually had eight fewer parameters, and the final
likelihood and BIC scores were worse than simply ap-
plying a GTR+� for all data blocks (Table 4). Therefore,
GTR+� was used for the final analysis to construct the
phylogeny. The tree topologies obtained under the two
models are, however, the same (topology C, see below).

The results of the Bayesian analysis to test the ef-
fects on phylogenetic inference of alternative partition-
ing schemes were similar to those presented above for
ML (Table 3, Fig. 3). For the Bayesian approach, the best
BIC value was obtained by grouping the data into 17
blocks, whereas the best partitioning scheme according
to Bayes factor is 22 blocks (Table 3, Fig. 3). BIC has been

used under Bayesian context for choosing optimal par-
titioning schemes (McGuire et al., 2007). The 17-block
scheme was chosen as the preferred model but the re-
sult of the 22-block model is reported as well (Table
3, Fig. 3, Supplementary Materials, available online at
www.systematicbiology.org). The models selected using
ModelTest (under AIC) for each of these 17 data blocks
and the closest models available in MrBayes are listed in
Table 5. The 17-block partitioning model implemented in
the Bayesian analysis had 14 parameters less (total 155)
than the model using GTR+� for all blocks (total 169 pa-
rameters). The likelihood and BIC scores were best under
the simpler models selected by ModelTest (Table 5), so
these were used for the final Bayesian phylogenetic in-
ference. Another interesting result of Bayesian analysis
concerns the rate of convergence of posterior distribu-
tions obtained for the different partitioning schemes. Par-
titioning the data into higher number of blocks resulted
in slower convergence of two MrBayes runs, as indicated
by the average standard deviation of split frequencies
(ASDSF) after 3 million MCMC generations (Table 3).

Finally, the frequently used partitioning scheme by
gene only (10 blocks in this case) resulted in signifi-
cantly worse likelihood and BIC scores for both ML and
Bayesian analysis (Table 3, Figs. 2 and 3).

Effects of Alternative Partitioning Schemes and Models
on Tree Topology

Overall, phylogenetic analyses based on 30 alter-
native partitioning schemes under ML and Bayesian
approaches resulted in 23 different tree topologies (trees
were labeled A to W; see Supplementary Materials).
For each data-partitioning scheme, the tree topology
obtained is shown in Figures 2 and 3 for ML and
Bayesian analyses, respectively. ML analyses resulted in
only six different topologies (A to F), the most frequently
obtained topology was C (in 26 out of 31 cases), and
this topology also resulted from analysis of the optimal
partitioning scheme with substitution models selected
by ModelTest using AIC. Interestingly, topology C was
a stable outcome with partitioning schemes involving
18 or more data blocks; thus, overparametrization in
this case had little effect on the resulting tree. Therefore,
topology C is considered the best hypothesis under the
ML criterion.



2008 LI ET AL.—DATA PARTITIONING GUIDED BY CLUSTER ANALYSIS 525

a)
Partitions

zic1-1

plagl2-1

Gylt-3
RYR3-3
sreb2-3

SH3PX3-3
plagl2-3
ENC1-3

tbr1-3
Ptr-3

myh6-3
zic1-3

plagl2-2
ENC1-2

Ptr-2
Gylt-2

SH3PX3-2
RYR3-2
myh6-2
sreb2-2

tbr1-2
zic1-2

SH3PX3-1
sreb2-1
ENC1-1
myh6-1

Ptr-1

Gylt-1
RYR3-1

tbr1-1

0.0 4.54.03.53.02.52.01.51.00.5

Distance Between Cluster Centroids

1s
t 

co
d

o
n

3r
d

 c
o

d
o

n
2n

d
 c

o
d

o
n

b)
Partitions

zic1-1

Ptr-1

tbr1-3
plagl2-3

SH3PX3-3
RYR3-3

Gylt-3
ENC1-3

Ptr-3
myh6-3
sreb2-3

zic1-3
plagl2-2
ENC1-2

Ptr-2
RYR3-2

Gylt-2
SH3PX3-2

myh6-2
sreb2-2

tbr1-2
zic1-2

myh6-1
sreb2-1
ENC1-1
plagl2-1

SH3PX3-1

Gylt-1
RYR3-1

tbr1-1

0.0 4.54.03.53.02.52.01.51.00.5

Distance Between Cluster Centroids

1s
t 

co
d

o
n

3r
d

 c
o

d
o

n
2n

d
 c

o
d

o
n

FIGURE 1. Clustering diagrams showing overall similarity among 30 data blocks of the full data set (10 genes × 3 codon positions). Each
block is indicated at the tip of terminal branches by gene name (see Table 1 and Materials and Methods) and codon position. The shifting of some
nodes (e.g., the node joining zic1-2 and tbr1-2) is the result of centroid method. (a) Cluster analysis of model parameters estimated using ML.
(b) Cluster analysis of model parameters estimated using a Bayesian approach.
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TABLE 2. Alternative partitioning schemes (from 30 to 1 partitions)
suggested by cluster analysis on model parameters of the original 30
partitions. CL(number) indicates the composition of partitions grouped
at each step, indicated by progressing from the tips to the root of the
clustering diagrams shown in Figure 1 (e.g., CL 27 in the second column
is composited of ENC1-3 plagl2-3).

Partitions

Number of
clusters

Joined based
on ML-estimated

parameters (Fig. 1a)

Joined based
on Bayesian-estimated

parameters (Fig. 1b)

29 myh6-3, Ptr-3 zic1-3, sreb2-3
28 zic1-1, tbr1-1 zic1-1, tbr1-1
27 ENC1-3, plagl2-3 myh6-2, SH3PX3-2
26 CL27, SH3PX3-3 ENC1-3, Gylt-3
25 myh6-2, RYR3-2 SH3PX3-3, plagl2-3
24 CL26, sreb2-3 myh6-3, Ptr-3
23 CL25, SH3PX3-2 CL24, CL26
22 ENC1-1, sreb2-1 CL27, Gylt-2
21 CL23, Gylt-2 CL22, RYR3-2
20 CL29, tbr1-3 CL23, RYR3-3
19 RYR3-1, Gylt-1 Ptr-2, ENC1-2
18 CL28, CL19 CL21, CL19
17 CL20, CL24 CL28, RYR3-1
16 CL17, RYR3-3 CL20, CL25
15 Ptr-2, ENC1-2 CL29, CL16
14 CL16, Gylt-3 CL17, Gylt-1
13 CL18, plagl2-1 SH3PX3-1, plagl2-1
12 CL21, CL15 ENC1-1, sreb2-1
11 CL13, Ptr-1 CL14, Ptr-1
10 zic1-3, CL14 CL15, tbr1-3

9 myh6-1, CL22 CL11, CL13
8 CL11, CL9 CL18, plagl2-2
7 CL12, plagl2-2 zic1-2, tbr1-2
6 zic1-2, tbr1-2 CL9, CL12
5 CL6, sreb2-2 CL7, sreb2-2
4 CL5, CL7 CL5, CL8
3 CL8, SH3PX3-1 CL6, myh6-1
2 CL3, CL4 CL3, CL4
1 CL2, CL10 CL2, CL10

The effect of data partitioning on tree topology using
Bayesian analysis was more pronounced, resulting in 17
alternative topologies (G to W). Topology I was the most
frequent result (11 out of 31 cases). The preferred topol-
ogy under the optimal-partitioning scheme and mod-
els selected by ModelTest (using AIC) was topology L
(Fig. 3). In contrast to ML analysis, partitioning schemes
with more than 16 blocks had highly heterogeneous out-
comes (11 different topologies, L to V), suggesting a
larger effect of overparametrization on the resulting pos-
terior distribution of tree topology. Under the Bayesian
approach, topology L is considered the best hypothesis.
A strict consensus between topologies L and C is shown
in Figure 4.

Tree-to-tree distances among alternative topologies (A
to W) are presented using the meta-tree method (Fig. 5).
The six topologies resulting from ML analysis (shown as
circles A to F in Fig. 5) were split into two distinct groups.
Topologies A and F (resulting from no partitioning and
partitioning by genes alone, respectively) had the lowest
BIC values (Fig. 2, Table 3) and are quite different from
the rest (B to E), suggesting that partitioning by genes
alone has a very similar effect on the topology and likeli-
hood value has no partitioning at all. A similar pattern is

observed for the topologies obtained by Bayesian anal-
yses (shown as squares G to W in Fig. 5). The topology
obtained when no partitioning was assumed (G) also is
close to that obtained by partitioning by gene alone (W).
Interestingly, many topologies produced by our analyses
located in the internal nodes of the meta-tree, suggesting
high degree of congruence among them (all tree topolo-
gies are available at Supplementary Materials).

To check the effects of different partitioning schemes
on nodal support, we plotted the BPPs resulting from
over- and underpartitioning against the preferred par-
titioning schemes. Two extreme strategies (no partition-
ing and 30 partitions) were compared with the optimal 17
partitions selected by our approach (Fig. 6). Either under-
or overpartitioning decreased the correlation among
BPPs relative to values obtained with the preferred
scheme (Fig. 6). The change of BPPs was found more
severe in overpartitioned analysis (r = 0.0083) than un-
derpartitioned analysis (r = 0.0176), which is similar to
the results of a recent simulation study (Brown and Lem-
mon, 2007). In contrast to that simulation study, how-
ever, our results showed that there were 91 bipartitions
supported by a PP = 1.0 among 112 bipartition patterns
shared by both the underpartitioning and the preferred-
partitioning schemes. Similarly, 91 bipartitions with PP =
1.0 were found among the 110 bipartition patterns shared
by both the overpartitioning and the preferred scheme.
Therefore, the different partitioning schemes had a mi-
nor effect on the BPPs, because most estimates with high
support (BPP = 1) were unchanged in this study.

Evaluation of Clustering Analysis as a Heuristic Approach
for Data Partitioning

For a subset of the data (two genes), the six partition-
ing schemes chosen by cluster analysis were compared
with all 203 possible ways of partitioning the data (one
to six partitions, B6 = 203). Bayesian analyses using all
different partitioning schemes were implemented and
the −lnL values of the resulting trees are presented in
Figure 7. In all cases, the partitioning schemes selected
by our hierarchical clustering approach (shown as the
squares in Fig. 7) have the best likelihood, except for the
four-class partitioning where a random combination of
data blocks outperformed the one selected by clustering
analysis but the difference was not significant (Bayes fac-
tor < 5). The k-means methods (shown as the circles in
Fig. 7) also resulted in best partitioning schemes in most
of the cases, except that it was outranked by four other
partitioning schemes in the four-class partitioning case
(Fig. 7).

The thorough comparison using a subset of the data
suggests that the heuristic data-partitioning approach
based on cluster analysis should be useful when ana-
lyzing multilocus data. The k-means clustering method
often is faster than the hierarchical methods, but it does
not guarantee to return a global optimum (Hartigan and
Wong, 1979), which may explain the suboptimal solu-
tion chosen by the k-means method in one of the cases
reported.
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TABLE 3. Comparison of log likelihoods, AIC, BIC, and Bayes factors among different partitioning schemes (from 1 to 30 partitions). For
each type of analysis (ML or Bayesian), the following results are shown: total number of parameters; log likelihood calculated using TreeFinder
(L ML ); uncorrected AIC values (when n/k > 40; n = the number of sites and k = number of parameters) or corrected AICC (when n/k ≤ 40,
only necessary when the number of partitions ≥ 20); the difference in AIC values among model i and the best model (�i = AICi – AICmin);
the harmonic mean of −log likelihood calculated using MrBayes (LBA); the Bayes factor calculated by comparing model i to the model with
maximum likelihood, BF = (−lnLi )− (−lnLbest); and average standard deviation of split frequencies of two independent runs of MrBayes. Boxed
text indicates the best partitioning schemes chosen by different model selection criteria.

Maximum likelihood Bayesian analysis

Number of partitions No. of parameters L ML AIC or AICC �i BICML L B A Bayes factor BICB A Split deviation

1 9 130,936 261,890 10,167 261,953 131,050 5193 262,180 0.005943
2 19 127,075 254,188 2465 254,321 127,095 1238 254,361 0.004624
3 29 126,686 253,431 1708 253,633 126,720 863 253,701 0.007499
4 39 126,654 253,387 1664 253,659 126,694 837 253,739 0.005629
5 49 126,484 253,066 1343 253,408 126,542 685 253,525 0.006435
6 59 126,421 252,961 1238 253,373 126,474 617 253,478 0.008284
7 69 126,373 252,885 1162 253,367 126,364 507 253,349 0.008371
8 79 126,324 252,806 1083 253,358 126,327 470 253,364 0.008377
9 89 126,237 252,652 929 253,273 126,282 425 253,363 0.009426

10 99 126,190 252,579 856 253,270 126,261 404 253,412 0.010901
11 109 126,160 252,538 815 253,299 126,178 321 253,335 0.008561
12 119 126,119 252,475 752 253,307 126,136 279 253,342 0.014122
13 129 126,068 252,393 670 253,294 126,126 269 253,412 0.008394
14 139 126,038 252,353 630 253,325 126,114 257 253,477 0.015416
15 149 125,988 252,275 552 253,316 126,086 229 253,511 0.016578
16 159 125,966 252,249 526 253,360 125,947 90 253,324 0.015155
17 169 125,913 252,165 442 253,345 125,857 0 253,232 0.031614
18 179 125,861 252,079 356 253,330 125,907 50 253,423 0.020992
19 189 125,829 252,036 313 253,356 125,881 24 253,461 0.028444
20 199 125,816 252,041 318 253,421 125,865 8 253,517 0.039061
21 209 125,718 251,866 143 253,315 125,921 64 253,720 0.025118
22 219 125,703 251,856 133 253,374 125,840 −17 253,649 0.035717
23 229 125,691 251,854 131 253,441 125,893 36 253,843 0.023924
24 239 125,678 251,849 126 253,504 125,885 28 253,918 0.048132
25 249 125,650 251,814 91 253,537 125,935 78 254,107 0.034249
26 259 125,630 251,795 72 253,587 125,903 46 254,133 0.035437
27 269 125,607 251,771 48 253,632 125,897 40 254,212 0.096736
28 279 125,600 251,779 56 253,708 125,897 40 254,302 0.064801
29 289 125,569 251,738 15 253,736 126,032 175 254,662 0.051778
30 299 125,551 251,723 0 253,788 125,937 80 254,560 0.132187
10 (by gene) 99 130,509 261,216 9493 261,908 130,570 4713 262,030 0.021610

Phylogenetic Relationships among Ray-Finned Fishes

The topology shown in Figure 4 summarizes the pre-
ferred hypothesis of relationships based on the 10-gene
data set analyzed in this study. Many traditionally rec-
ognized high-order taxa (Holostei, Teleostei, Clupeo-
cephala, Euteleostei, Neoteleostei, and Acanthopterygii)
were supported by the data and received high boot-
strap and posterior probability values. Other groups,
such as Paracanthopterygii, Protacanthopterygii, and the
order Perciformes were not supported as traditionally
recognized.

A few a priori alternative hypotheses about the branch-
ing pattern near the base of the actinopterygian tree were
tested by ML (Table 6). The SH test rejected hypotheses
placing either Amia (Patterson, 1973; Grande and Bemis,
1996) or Lepisosteus (Olsen, 1984) as the sister taxon to
Teleostei. The previously proposed grouping of Amia and
Lepisosteus (Nelson, 1969; Jessen, 1972) and of Polypterus
and Polyodon (Schaeffer, 1973; Nelson, 1994) could not be
rejected. The position of Polypterus as the sister group to
all other ray-finned fishes, however, could not be rejected
by the SH test. A group of “ancient fishes” (Acipenseri-
formes plus Holostei) suggested on the basis of mitoge-

nomic data (Inoue et al., 2003) and indel distribution in
RAG genes (Venkatesh et al., 2001) also could not be re-
jected by the SH test. Other significant results concerning
fish phylogenies are addressed in Discussion.

DISCUSSION

Optimal Data Partitioning

Much effort has been devoted to select the best-fitting
substitution model for maximum-likelihood or Bayesian
analysis (reviewed by Posada and Buckley, 2004; Sulli-
van and Joyce, 2005) because it has long been known
that model selection can have a significant effect on
phylogenetic inference (Sullivan et al., 1997; Cunning-
ham et al., 1998; Kelsey et al., 1999). As large and com-
plex data sets with heterogeneous sequence data became
more common, partitioned analyses were developed to
accommodate this heterogeneity (Yang, 1996; Posada
and Crandall, 2001; Nylander et al., 2004). Individually
fitted parameter-rich models can be applied to prede-
fined types of data blocks and combined into a “super-
model” that can be analyzed with Bayesian (Nylander
et al., 2004) or ML (Jobb, 2006) approaches. The issue of
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FIGURE 2. BIC (Bayesian information criterion) values for maximum likelihood (ML) analyses under different data partitioning schemes.
Letters A to F indicate alternative best tree topologies supported by different partitioning schemes; these topologies are shown in Supplementary
Materials.

defining the optimal partitioning strategy, however, has
not been addressed in a systematic way (but see McGuire
et al., 2007). A recent study has shown that both over- and
underpartitioning schemes may increase the risk of phy-

TABLE 4. Models selected by ModelTest under the AIC criterion for the optimal 10-partition scheme for ML analysis. These models were
implemented in TreeFinder and compared to using GTR+� for all partitions.

Partition
Data

included
Model chosen by

ModelTest
Model implemented

in TreeFinder
No. of

parameters
No. of parameters

for GTR+�

1 zic1-1, RYR3-1, ptr-1,
tbr1-1, Glyt-1, plagl2-1

GTR+I+G GTR+I+G 10 9

2 zic1-2 TVM+G GTR+G 9 9
3 zic1-3, myh6-3, RYR3-3,

ptr-3, tbr1-3, ENC1-3,
Glyt-3, SH3PX3-3,
plagl2-3, sreb2-3

TVM+I+G GTR+I+G 10 9

4 myh6-1 TIM+I+G GTR+I+G 10 9
5 myh6-2, RYR3-2, ptr-2,

ENC1-2, Glyt-2,
SH3PX3-2

GTR+I+G GTR+I+G 10 9

6 tbr1-2 F81+I+G HKY+I+G 6 9
7 ENC1-1, sreb2-1 GTR+I+G GTR+I+G 10 9
8 SH3PX3-1 F81+I+G HKY+I+G 6 9
9 plagl2-2 F81+G HKY+G 5 9
10 sreb2-2 F81+I+G HKY+I+G 6 9

No. of multipliers for relative rates 9 9
Total no. of parameters 91 99
ln Likelihood −126,287 −126,190
BIC 253,391 253,270

logenetic error (Brown and Lemmon, 2007), but they did
not provide an efficient solution to explore all possible
partitioning schemes. Our study is the first to propose a
heuristic approach to systematically define and evaluate
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TABLE 5. Models selected by ModelTest under the AIC criterion for the optimal 17-partition scheme for Bayesian analysis. These models
were implemented in MrBayes and compared to using GTR+� for all partitions.

Partition
Data

included
Model chosen
by ModelTest

Model implemented
in MrBayes

No. of
parameters

No. of parameters
for GTR+�

1 zic1-1, tbr1-1, RYR3-1 TVM+I+G GTR+I+G 10 9
2 zic1-2 TVM+G GTR+G 9 9
3 zic1-3, sreb2-3 TVM+I+G GTR+I+G 10 9
4 myh6-1 TIM+I+G GTR+I+G 10 9
5 myh6-2, SH3PX3-2, Glyt-2,

RYR3-2, ptr-2, ENC1-2
GTR+I+G GTR+I+G 10 9

6 myh6-3, ptr-3, ENC1-3,
Glyt-3, RYR3-3

TVM+I+G GTR+I+G 10 9

7 ptr-1 GTR+G GTR+G 9 9
8 tbr1-2 F81+I+G F81+I+G 5 9
9 tbr1-3 TrN+G GTR+G 9 9

10 ENC1-1 SYM+I+G GTR+I+G 10 9
11 Glyt-1 HKY+G HKY+G 5 9
12 SH3PX3-1 F81+I+G F81+I+G 5 9
13 SH3PX3-3, plagl2-3 TVM+G GTR+G 9 9
14 plagl2-1 TVM+G GTR+G 9 9
15 plagl2-2 F81+G F81+G 4 9
16 sreb2-1 GTR+I+G GTR+I+G 10 9
17 sreb2-2 F81+I+G F81+I+G 5 9

No. of multipliers for relative rates 16 16
Total no. of parameters 155 169

ln Likelihood −125,791 −125,857
BIC 252,975 253,232
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FIGURE 3. BIC values for Bayesian analyses under different data partitioning schemes. Letters G to W indicate alternative best tree topologies
supported by different partitioning schemes; these topologies are shown in Supplementary Materials.
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Fundulus heteroclitus
Gambusia affinis
Oryzias latipes

Labidesthes sicculus
Mugil curema

Oreochromis niloticus
Cichlasoma cyanoguttatum

Monopterus albus
Porichthys plectrodon

Brotula multibarbata
Myripristis violacea

Regalecus glesne
Polymixia japonica

Zeus faber
Neoscopelus macrolepidotus

Gadus morhua
Coryphaenoides rupestris

Aphredoderus sayanus
Synodus foetens

Stomias boa
Thaleichthys pacificus

Oncorhynchus mykiss
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FIGURE 4. Strict consensus tree of ray-finned fishes based on two different trees (topologies C and L) obtained by partitioned analyses of
10 nuclear genes (7995 bp), under ML and Bayesian criteria, respectively. Data were partitioned into 10 data blocks for the ML analysis and 17
blocks for the Bayesian analysis. The numbers on branches are ML bootstrap values and Bayesian posterior probabilities. Asterisks indicate a
bootstrap value of <50%. The names of species, orders, and supraordinal taxa sampled for this study are indicated.
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org) resulting from different partitioning strategies. The meta-tree was
built by minimizing the total Robinson-Foulds distance (Nye, 2008,
www.mas.ncl.ac.uk/∼ntmwn/phylo comparison/multiple.html).

alternative partitioning schemes for phylogenetic analy-
sis of complex multilocus data sets.

In this article, cluster analysis is proposed as a method
to explore alternative partitioning schemes based on
overall similarity among predefined data blocks. Our re-
sults show that a relatively simple model based solely on
partitioning by codon position (total data set split into
two or three partitions) resulted in the largest improve-
ment in AIC and BIC values (Figs. 2 and 3), indicating
that most heterogeneity in this example is explained by

0.0
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0.5 1.0 0.0 0.5 1.0
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(No partitioning assumed)
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(30 partitions assumed)

B
P

P

FIGURE 6. The effect of over- and underpartitioning on nodal sup-
port (bipartition posterior probabilities, BPPs) for Bayesian phyloge-
nies inferred with alternative partitioning schemes. Models with two
extreme partitioning strategies shown here include no partitioning
(left) or 30 partitions (right). The BPPs for each of these cases were
plotted against values obtained with the 17-partition model chosen as
the optimal partitioning strategy. Diagonal lines imply equal values of
nodal support for the compared models. On the left graph, 91 observa-
tions (among 112 shared bipartitions) for both models have BPP = 1,
and in the right graph 91 observations (among 110 shared bipartitions)
for both models also have BPP = 1.
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FIGURE 7. Likelihood values (vertical axis) for phylogenetic trees
obtained under different partitioning schemes (from 1 to 6 partitions,
horizontal axis). A subset of the data (2 genes) was used to exhaustively
explore all 203 possible partitioning schemes for 6 data blocks (2 genes
× 3 codon positions, B6 = 203). The results of two different clustering
methods, hierarchical (open squares) and k-means (open circles) are
presented.

evolutionary differences among codon positions, espe-
cially due to third positions. Further partitioning of the
data resulted in minor improvements. Partitioning the
data by gene only (e.g., Nylander et al., 2004; Nishihara
et al., 2007), as the present analysis shows, can be as in-
effective as using a single data block. This pattern may
be expected when genes do not differ significantly in
their overall evolutionary rates (“fast” vs “slow” genes).
The 10 genes chosen for our study exhibit relatively ho-
mogeneous rates (Appendices 2 and 3), most likely as a
consequence of the way that they were chosen (Li et al.,
2007). Therefore, this example may not be representa-
tive of complex data sets that combine fast and slow
genes (e.g., mitochondrial and nuclear gene sequences).
Our results show that the most important parameters
defining the clustering schemes are the rate multiplier
and the gamma function parameter alpha. Differences in
these parameters among the a priori partitions (1st-, 2nd-,
and 3rd-codon positions for each gene) determine low
within-cluster variance and high between-cluster vari-
ance. This is most notably reflected in the clustering di-
agrams shown in Figure 1, where for three clusters the
partitions are grouped according to codon position, and
these are known to evolve at very different rates.

TABLE 6. Tests of alternative hypotheses of interrelationships
among the early-branching actinopterygians. Based on the Shimodaira
and Hasegawa test.

Hypotheses tested References SH P-value

Polypteriformes basal Nelson, 1994; Schaeffer,
1973

0.823

“Ancient fish” Inoue et al., 2003;
Venkatesh et al., 2001

0.225

Amia and teleosts
sister-group

Grande and Bemis,
1996; Patterson, 1973

0.028

Lepisosteidae and teleost
sister-group

Olsen, 1984 0.023
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Overpartitioning the data can have negative effects on
phylogenetic inference, as has been discussed for cases
using parameter-rich models that may lead to overpa-
rameterization in general (Nylander et al., 2004; Sullivan
and Joyce, 2005). In this example, partitioning the data
with more blocks always resulted in higher likelihood
scores, but higher number of parameters may result in
increasing sampling error. This problem can be most se-
vere when some of the data blocks are relatively small,
having a few characters, potentially hindering the rate
of convergence of MCMC chains to a stationary poste-
rior distribution. A slower rate of convergence was ob-
served for Bayesian analyses when data were grouped
into more than 10 to 15 blocks, as indicated by the stan-
dard deviation of split frequencies (Table 3, last column).
The progression of averaged standard deviation of split
frequencies (ASDSF) recorded for the MCMC runs with
the worse final ASDSF values (models with 27, 28, 29,
and 30 partitions) show that the best ASDSF values were
achieved before reaching 2 million MCMC generations;
therefore, the additional one million generations had lit-
tle effect in achieving stationarity.

The optimal partitioning scheme identified with the
clustering approach partitioned the data with an inter-
mediate number of blocks, 10 for ML and 17 for Bayesian
inference. Application of this approach to more complex
data sets should yield reasonable partitioning schemes
for analysis as a compromise solution to avoid systematic
errors (underpartitioning) or overparametrization. Sim-
ulation studies similar to the one reported by Brown and
Lemmon (2007) may be used to test the generality of our
approach. These authors tested the utility of Bayes factors
as a criterion for choosing among alternative partitioning
strategies. They found that BF provided a robust method
to determine the simulated partitioned model. Although
we based our choice of optimal partitioning scheme on
BIC or AIC, Bayes factors gave a similar result, selecting
a 22-group partitioning scheme (see Table 3 and Supple-
mentary Materials) that should also be considered as a
candidate for “optimal partitioning.” Although the BIC
seems to prefer models with fewer parameters, the per-
formance of the BIC as applied to phylogenetic models
is not well understood and deserves further exploration.

A critical shortcoming of this method is that it depends
on the definition of combinable data blocks a priori (e.g.,
partitions by gene, codon position, or other structural
considerations). A more robust approach free of this con-
straint should be based on methods that do not require a
priori definitions of data blocks, perhaps by exploration
of all data simultaneously on a per site basis, such as the
mixture model (Pagel and Meade, 2004). Combination
of k individual sites into an optimal number of homoge-
neous partitions by exploration of all possible (Bk) combi-
nations would be computationally intractable (NP-hard),
but it could be achieved heuristically by cluster analysis,
as proposed here for a more limited number of prede-
fined data blocks.

The effect of partitioning scheme on tree topology is
shown in Figures 2 and 3 and the supplementary fig-
ures (available online at www.systematicbiology.org).

Earlier work has shown that contrary to the large change
in the likelihood scores among alternative partition-
ing schemes, the topology of the resulting phylogenetic
trees has been relatively stable (Buckley et al., 2001). In
this study, however, changes in topology were obtained
when data were analyzed under different number of
blocks for both ML and Bayesian methods (Figs. 2 and 3).
These effects were more conspicuous in Bayesian anal-
ysis than for ML methods (Fig. 3), which is consistent
with the properties of Bayesian approaches accounting
for model parameter value uncertainty. The failure to ef-
fectively reach convergence among MCMC runs with in-
creasing number of partitions, indicated by the standard
deviation of split frequencies, also is consistent with the
observed changes in the supported topologies (Fig. 3).

“Lower” Actinopterygians

The classic concept of “Chondrostei” that groups
Polypterus and living sturgeons and paddlefishes and
their fossil relatives (Schaeffer, 1973; Nelson, 1994) re-
ceived some support in this study, albeit with a low boot-
strap value of 65% and a posterior probability of 0.74
(Fig. 4). However, recent evidence from both morpho-
logical (Grande and Bemis, 1996; Gardiner et al., 2005)
and molecular (Venkatesh et al., 2001; Inoue et al., 2003;
Kikugawa et al., 2004) data suggests that “Chondrostei”
is actually a paraphyletic group. The current consensus
view places polypteriforms as the sister taxon to all other
actinoterygians, while considering sturgeons and pad-
dlefish as the sister group to neopterygians (Lepisosteus,
Amia, and teleosts; Nelson, 2006).

Most morphological (Regan, 1923; Patterson, 1973)
and molecular (Lê et al., 1993; Kikugawa et al., 2004;
Crow and Wagner, 2006; Hurley et al., 2007) evidence
supports the monophyly of Neopterygii, a group repre-
sented by extant lepisosteiforms, amiiforms, and teleosts.
However, the relationships among these three lineages
are hotly debated. Historically, Lepisosteus and Amia were
grouped into a monophyletic clade as “Holostei,” placed
as the sister-group to teleosts (Nelson, 1969; Jessen, 1972).
More recent morphological hypotheses suggest that ei-
ther Amiiformes (Patterson, 1973; Grande and Bemis,
1996) or Lepisosteiformes (Olsen, 1984) is the sister-
group of teleosts. However, mitogenome data and in-
del patterns in the nuclear gene RAG2 support a very
different view, with Acipenseriformes, Lepisosteidae, and
Amia forming a monophyletic “ancient fish” group. This
group is placed as the sister-group to teleost (Venkatesh
et al., 2001; Inoue et al., 2003). Our study supports
the “Holostei” hypothesis with high probability. The
“Holostei” hypothesis also was recovered in a study us-
ing multiple nuclear genes (Kikugawa et al., 2004) and
in a reanalysis of morphological characters using both
extant and fossil species (Hurley et al., 2007).

Interrelationships among Major Teleostean Lineages

The monophyly of Teleostei is supported by many
morphological characters (de Pinna, 1996; Arratia,
2000). Four major teleostean lineages, Elopomorpha,



2008 LI ET AL.—DATA PARTITIONING GUIDED BY CLUSTER ANALYSIS 533

Osteoglossomorpha, Ostarioclupeomorpha (or Oto-
cephala = Clupeiformes plus Ostariophysi), and Eu-
teleostei are currently recognized (Nelson, 2006). All
these, except Elopomorpha, received strong support in
this study. Ostarioclupeomorphs are generally placed
as the sister-group to euteleosts (Lê et al., 1993;
Arratia, 1997; Inoue et al., 2001), a grouping named
Clupeocephala, which excludes elopomorphs and os-
teoglossomorphs. However, interrelationships among
elopomorphs, osteoglossomorphs, and Clupeocephala
are still controversial. Both morphological (Patterson and
Rosen, 1977) and molecular (Inoue et al., 2001) studies
support the position of osteoglossomorphs at the base of
the teleosts, but this view was challenged by the alter-
native hypothesis suggesting that elopomorphs are the
living sister-group of all other extant teleosts (Arratia,
1991, 1997, 2000; Shen, 1996). A third alternative was
suggested by Lê et al. (1993) based on relatively weak
evidence from 28S ribosomal gene sequences, with os-
teoglossomorphs and elopmorphs more closely related
to each other than to the rest of the teleosts. The consen-
sus phylogeny obtained in this study (Fig. 4) does not
resolve these relationships.

Results of this study show strong support for the Os-
tarioclupeomorpha hypothesis (Otocephala), with Clu-
peiformes as a sister group to Ostariophysi (Fig. 4), in
contrast to a recent result using mitogenomic data (Saitoh
et al., 2003), suggesting that gonorynchiforms are more
closely related to Clupeiformes. Relationships within Os-
tariophysi are consistent with the current view placing
Cypriniforms as a sister to the rest (Fink and Fink, 1981),
but relationships among Characiformes, Siluriformes,
and Gymnotiformes cannot be resolved with confidence
with such limited taxonomic sampling.

Protacanthopterygians

The composition of Protacanthopterygii has changed
drastically since Greenwood et al. (1966) defined the
group as primitive teleosts of their division III (Fink,
1984; Williams, 1987; Arratia, 1997; Lopez et al., 2004).
The current hypothesis of Protacanthopterygii (Nel-
son, 2006) includes Argentiniformes, Osmeriformes,
Salmoniformes, and Esociformes, but esociforms were
sometimes regarded as the sister-group to neoteleosts
(Johnson and Patterson, 1996). Many recent studies
(including this one) support a sister-taxon relation-
ship between Esociformes and Salmoniformes (Williams,
1987; Arratia, 1997; Ishiguro et al., 2003; Lopez et al.,
2004). Interestingly, Lopez et al. (2004) also suggested
a novel sister-group relationship between osmeriforms
and stomiiforms (Neoteleostei) based on RAG-1 and
mtDNA sequences. Results from this study corroborate
both findings of Lopez et al. (Fig. 4), suggesting that
Stomiiformes should be excluded from Neoteleostei.

Neoteleostei

Neoteleostei is a monophyletic group defined by few
morphological characters (Johnson, 1992; Nelson, 1994),
but this study provides strong support for Neoteleostei

(excluding stomiiforms) with 100% bootstrap value and
1.0 Bayesian posterior probability. Paracanthopterygii is
a classical grouping of neoteleosts that has been exten-
sively debated in the literature (Greenwood et al., 1966;
Patterson and Rosen, 1989; Miya et al., 2003, 2005). None
of the taxa traditionally assigned to the Paracanthoptery-
gii (Gadiformes, Percopsiformes, Lophiiformes, Ophid-
iformes, Batrachoidiformes) formed a monophyletic
group in this study (Fig. 4) but were instead scattered
among other Acanthopterygian lineages. The hypothe-
sis of paracanthopterygians proposed by mitogenomic
analyses (Miya et al., 2003, 2005) also was not supported
in this study since Polymixia and Zeus did not form a
monophyletic group with gadiforms and percopsiforms.

Acanthopterygii

If ophidiiforms, batrachoidiforms, and lophiiforms are
included, Acanthopterygii also is strongly supported
in this study as a monophyletic group. Beryciformes,
Ophidiiformes, and Batrachoidifromes branch near the
base of acanthopterygians, and the rest of the taxa in-
cluded in this study formed a monophyletic group of
crown acanthopterygians with a 99% bootstrap support.
Taxa traditionally assigned to the order Perciformes (Lut-
janus, Morone, Lycodes, Oreochromis, and Cichlasoma) do
not form a monophyletic group, in agreement with sev-
eral results supporting the polyphyletic nature of this
group (Lauder and Liem, 1983; Johnson and Patter-
son, 1993; Miya et al., 2003; Nelson, 2006). One inter-
esting group among the crown acanthopterygian taxa
is a well-supported clade of atherinomorphs (Atherini-
forms, Beloniformes, and Cyprinodontiformes), Mugili-
formes, and cichlids. A close relationship among rice fish
(Oryzias) and tilapia (Oreochromis) was first suggested
by a phylogenomic study with model organisms (Chen
et al., 2004).

Many relationships among major fish lineages still
need to be resolved to obtain a solid phylogenetic
framework for the ray-finned fishes. The current study
presents an important contribution, both methodological
and practical, towards developing appropriate strategies
to achieve this goal. Future studies based on the set of 10
nuclear genes analyzed here but using a dense taxonomic
sampling should provide promising results to resolve the
persistent ichthyological dilemma appropriately labeled
“the bush at the top” (Rosen, 1982).
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APPENDIX 2. Parameters of 30 partitions estimated using ML method and GTR+� model.

Substitution rates Base frequencies

Partitions AC AG AT CG CT A C G Alpha Multiplier

zic1-1 0.1906 0.2598 0.1003 0.0238 0.3345 0.2342 0.2518 0.3283 0.1221 0.1577
zic1-2 0.1157 0.0786 0.0265 0.7191 0.0599 0.3194 0.2734 0.2001 0.1387 0.0304
zic1-3 0.0641 0.3168 0.0635 0.0532 0.4324 0.1633 0.3873 0.2838 1.2711 1.9424
myh6-1 0.1050 0.0930 0.0746 0.0366 0.5199 0.3153 0.1767 0.3428 0.2044 0.3096
myh6-2 0.0506 0.2660 0.0552 0.4116 0.1442 0.3747 0.2219 0.1375 0.1301 0.1619
myh6-3 0.0839 0.3966 0.1404 0.0172 0.3217 0.1678 0.3382 0.2758 2.9230 2.4993
RYR3-1 0.1997 0.1627 0.0988 0.0717 0.3722 0.2961 0.1766 0.3384 0.3025 0.5128
RYR3-2 0.0499 0.3284 0.0157 0.3639 0.1812 0.4051 0.1663 0.1238 0.2454 0.3727
RYR3-3 0.0909 0.3623 0.1071 0.0111 0.3903 0.1355 0.3379 0.3619 1.7506 3.3205
Ptr-1 0.1406 0.2433 0.0583 0.0168 0.4585 0.3355 0.1875 0.2310 0.4141 0.2293
Ptr-2 0.1345 0.4321 0.0567 0.2608 0.0992 0.2762 0.1933 0.1408 0.2994 0.1456
Ptr-3 0.0846 0.4030 0.1381 0.0269 0.3089 0.1149 0.4174 0.2850 2.6673 2.4090
tbr1-1 0.1798 0.3229 0.1150 0.0672 0.2510 0.2316 0.2093 0.3433 0.3303 0.3971
tbr1-2 0.1238 0.1900 0.0523 0.3634 0.1106 0.2291 0.4051 0.2063 0.2569 0.1662
tbr1-3 0.0895 0.3815 0.1298 0.0726 0.2399 0.1549 0.3971 0.2831 1.7164 1.8345
ENC1-1 0.1558 0.1168 0.0361 0.0315 0.5831 0.2524 0.2576 0.3182 0.2583 0.2106
ENC1-2 0.1579 0.3591 0.0374 0.1761 0.2454 0.3115 0.2129 0.1806 0.1001 0.0580
ENC1-3 0.0640 0.3225 0.1612 0.0252 0.3654 0.1241 0.3825 0.3347 2.2789 2.4439
Gylt-1 0.1426 0.1985 0.1295 0.0643 0.3766 0.3009 0.2361 0.3133 0.4711 0.5441
Gylt-2 0.0635 0.3615 0.0690 0.2342 0.2264 0.3254 0.2184 0.1588 0.2407 0.3698
Gylt-3 0.0651 0.3058 0.1719 0.0267 0.3826 0.1726 0.3138 0.3459 2.7511 3.0404
SH3PX3-1 0.1958 0.2066 0.2194 0.0287 0.1992 0.2783 0.2818 0.2636 0.2019 0.3483
SH3PX3-2 0.1026 0.3464 0.0519 0.3587 0.1276 0.3698 0.1940 0.1650 0.1529 0.1636
SH3PX3-3 0.0747 0.3388 0.1743 0.0101 0.3672 0.0938 0.4093 0.3696 1.3703 3.2724
plagl2-1 0.1366 0.3133 0.1635 0.0055 0.3149 0.2790 0.2915 0.2572 0.3190 0.3504
plagl2-2 0.2023 0.2048 0.0161 0.3840 0.1442 0.3455 0.2245 0.2081 0.3660 0.1182
plagl2-3 0.0717 0.3906 0.1879 0.0154 0.2968 0.0949 0.3947 0.3561 1.8646 2.4753
sreb2-1 0.2133 0.1440 0.0245 0.0114 0.5885 0.2491 0.2431 0.2747 0.1804 0.1706
sreb2-2 0.0567 0.0716 0.0830 0.4465 0.3052 0.1791 0.2370 0.2024 0.1001 0.0206
sreb2-3 0.0724 0.3239 0.1390 0.0264 0.3746 0.0929 0.4475 0.3234 1.3789 2.0777

APPENDIX 3. Parameters of 30 partitions estimated using Bayesian method and GTR+� model.

Substitution rates Base frequencies

Partitions AC AG AT CG CT A C G Alpha Multiplier

zic1-1 0.1858 0.2723 0.1158 0.0205 0.3196 0.2194 0.2609 0.3532 0.1801 0.4900
zic1-2 0.0988 0.0820 0.0322 0.7063 0.0578 0.2971 0.3129 0.2049 0.1902 0.0565
zic1-3 0.0690 0.3513 0.0816 0.0447 0.3863 0.1255 0.4225 0.2969 1.4395 1.4379
myh6-1 0.0742 0.0686 0.0719 0.0214 0.5713 0.3135 0.2050 0.3334 0.2476 0.6342
myh6-2 0.0534 0.2933 0.0573 0.3956 0.1361 0.3542 0.2231 0.1513 0.1605 0.3246
myh6-3 0.0940 0.3731 0.1213 0.0227 0.3487 0.1867 0.2921 0.2856 2.9869 1.9368
RYR3-1 0.2086 0.1857 0.0941 0.0793 0.3383 0.2905 0.1866 0.3096 0.3396 0.4495
RYR3-2 0.0489 0.3350 0.0197 0.3231 0.1995 0.4130 0.1910 0.1325 0.2677 0.4003
RYR3-3 0.0908 0.3672 0.0664 0.0239 0.4063 0.1781 0.3086 0.3100 1.7262 2.6833
Ptr-1 0.1343 0.2491 0.0652 0.0175 0.4441 0.3247 0.2123 0.2379 0.4299 0.2085
Ptr-2 0.1312 0.4234 0.0549 0.2648 0.1025 0.2858 0.1865 0.1257 0.3442 0.0902
Ptr-3 0.0752 0.3902 0.1115 0.0410 0.3414 0.1521 0.3776 0.2596 2.6146 2.3452
tbr1-1 0.1753 0.3161 0.1261 0.0644 0.2509 0.2252 0.2221 0.3504 0.3733 0.3418
tbr1-2 0.1225 0.1895 0.0581 0.3594 0.1123 0.2250 0.4063 0.2058 0.2535 0.0934
tbr1-3 0.0878 0.3721 0.1777 0.0545 0.2221 0.1196 0.4492 0.2983 2.0430 1.2163
ENC1-1 0.1333 0.1348 0.0462 0.0300 0.5647 0.2381 0.3201 0.2687 0.2890 0.2863
ENC1-2 0.1516 0.3426 0.0385 0.1829 0.2509 0.3262 0.1999 0.1700 0.1075 0.0628
ENC1-3 0.0586 0.3124 0.1325 0.0315 0.3995 0.1497 0.3607 0.3175 2.1514 2.5027
Gylt-1 0.1278 0.2057 0.1402 0.0604 0.3702 0.3109 0.2576 0.2937 0.5161 0.5746
Gylt-2 0.0572 0.3950 0.0683 0.2161 0.2114 0.3442 0.2121 0.1648 0.2644 0.5850
Gylt-3 0.0700 0.3356 0.1561 0.0302 0.3620 0.1752 0.3128 0.3185 2.8676 2.8350
SH3PX3-1 0.1757 0.1905 0.2310 0.0280 0.2074 0.2790 0.3008 0.2626 0.2337 0.3452
SH3PX3-2 0.1038 0.3412 0.0594 0.3412 0.1314 0.3421 0.2024 0.1709 0.1561 0.1919
SH3PX3-3 0.0751 0.3658 0.1455 0.0117 0.3682 0.1014 0.4130 0.3388 1.3172 3.5048
plagl2-1 0.1313 0.3316 0.1793 0.0060 0.2876 0.2534 0.3252 0.2559 0.3706 0.3553
plagl2-2 0.1949 0.2159 0.0210 0.3719 0.1382 0.3427 0.2515 0.1975 0.4314 0.1553
plagl2-3 0.0625 0.3963 0.1560 0.0195 0.3205 0.1202 0.3892 0.3261 1.6625 2.4051
sreb2-1 0.2351 0.1780 0.0319 0.0134 0.5203 0.2078 0.2865 0.2704 0.1539 0.1123
sreb2-2 0.0654 0.0840 0.0910 0.4099 0.2982 0.1766 0.2449 0.1910 0.0828 1.4711
sreb2-3 0.0681 0.3294 0.0877 0.0470 0.3948 0.1376 0.4170 0.2758 1.3135 1.7771
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