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G ene duplication is known to play 
an important role in the evolu-

tion of novel protein functions. How-
ever, there is still much debate about 
the evolutionary mechanisms that are 
responsible for the initial retention 
and subsequent divergence of newly 
created gene duplicates (Lynch et al., 
2001; Zhang, 2003; Lynch and Katju, 
2004; Taylor and Raes, 2004). Accord-
ing to the neofunctionalization (NEO-
F) model of Ohno (1970), the functional 
redundancy of duplicated genes en-
tails a relaxation of purifying selection 
that results in the accumulation of de-
generative mutations in one gene copy, 
while the other duplicate copy contin-
ues to perform the essential tasks of the 
ancestral, single-copy gene. In the vast 
majority of cases, the redundant gene 
duplicate will eventually be rendered 
functionless by inactivating mutations. 
In a very small minority of cases, the 
redundant gene may escape this fate 
by fixing one or more mutations that 
fortuitously adapt the encoded protein 
to a new or modified function.

An alternative model for the evo-
lution of novel protein functions, 
originally suggested by Piatigor-
sky and Wistow (1991) and Hughes 
(1994), invokes the presence of func-
tional divergence before gene dupli-
cation and does not require a postdu-
plication phase of relaxed functional 
constraint. This model envisions an 
ancestral, single-copy gene that en-
codes a generalist protein that is ca-
pable of performing two or more dis-
tinct subfunctions. The product of this 
gene experiences “adaptive conflict,” 
as joint optimization of the protein’s 
multiple subfunctions is constrained 
by antagonistic pleiotropy. For exam-
ple, imagine a “promiscuous” enzyme 
that acts on a broad range of different 
substrates. Newly arisen mutations 
that increase enzyme activity on sub-
strate A may be prevented from going 
to fixation because they compromise 
the enzyme’s activity on substrate 
B. Likewise, mutations that increase 

enzyme activity on substrate B may 
compromise the activity on substrate 
A. If the underlying gene is dupli-
cated, then each of the two nascent 
paralogs can break free of these pleio-
tropic constraints and specialize on a 
more narrow range of substrates. In 
this way, gene duplication can resolve 
adaptive conflicts between competing 
subfunctions of a pleiotropically con-
strained single-copy gene. The NEO-F 
model of Ohno (1970) and the escape 
from adaptive conflict (EAC) model 
both invoke the accumulation of mu-
tations that would have been off-lim-
its before duplication. One key dis-
tinction is that in the EAC model, the 
division of labor between the dupli-
cated genes is brought about by the 
fixation of advantageous mutations 
that refine or elaborate ancestral sub-
functions of the encoded protein.

In a recent study of duplicated 
genes in the anthocyanin biosyn-
thetic pathway of morning glories, 
Des Marais and Rausher (2008) argue 
that the evolution of novel enzymatic 
functions is best explained by the EAC 
model. The authors reached this con-
clusion by performing phylogeneti-
cally based tests of positive selection 
in conjunction with experimental as-
says of enzyme function. The authors 
used two criteria to distinguish the 
NEO-F and EAC models. First, they 
reasoned that EAC entails adaptive 
change in both duplicate gene copies, 
whereas NEO-F is expected to involve 
adaptive changes in only one copy be-
cause purifying selection acts to main-
tain the ancestral function of the other 
duplicate copy. Second, EAC entails 
an adaptive improvement of both an-
cestral and derived protein functions, 
whereas NEO-F does not necessarily 
involve any modification of the ances-
tral function. The authors applied both 
criteria to distinguish between NEO-F 
and EAC as explanations for adaptive 
change in duplicate copies of the an-
thocyanin biosynthetic pathway gene, 
dihydroflavonol-4-reductase (DFR).

The DFR enzyme reduces the fla-
vonoid precursors of anthocyanin pig-
ments, and therefore plays a role in pro-
ducing the red, purple and blue flower 
petals of morning glories and other an-
giosperm plants. A number of morning 
glory species possess triplicated copies 
of the DFR gene (DFR-A, DFR-B and -
DFRC), and the remainder possess a 
single copy. Phylogenetic reconstruc-
tions of the DFR gene family in morn-
ing glory species that possess three 
DFR paralogs show that an initial du-
plication event gave rise to DFR-B and 
the proto-DFR-A/C gene, and a subse-
quent duplication event gave rise to the 
separate A and C genes (Figure 1).

Subsequent to the first duplica-
tion event that gave rise to the DFR-
B and proto-DFR-A/C genes, both of 
the newly created paralogs appear to 
have evolved a specialization of func-
tion. Adaptive change in the DFR-A/
C gene is indicated by a highly accel-
erated rate of amino-acid substitution 
in the postduplication branch leading 
to the DFR-A/C clade (Figure 1). Al-
though a similar excess of amino-acid 
substitution was not observed in the 
postduplication branch leading to the 
DFR-B gene, functional assays revealed 
that the product of this duplicated 
gene evolved enhanced activity on an-
cestral flavonoid substrates. These re-
sults satisfy the first criterion for the 
operation of EAC, as adaptive modifi-
cations of enzyme function appear to 
have occurred in both daughter copies 
of the first duplication (the DFR-B and 
DFR-A/C genes). As the postduplica-
tion functional changes in DFR-B en-
zyme activity were not accompanied 
by any statistically significant excess 
of amino-acid substitutions, it may be 
that the causative changes in enzyme 
function were attributable to a small 
number of amino-acid substitutions 
with large effects. The postduplica-
tion improvement of ancestral protein 
function in the DFR-B gene also satis-
fied the second criterion for the oper-
ation of EAC. The inference is that the 
ability of DFR to reduce dihydroflavo-
nols was pleiotropically constrained 
in the ancestral, single-copy gene, and 
this constraint was then alleviated by 
gene duplication.

Des Marais and Rausher (2008) ar-
gue that EAC may be a relatively com-
mon explanation for the retention and 
functional divergence of duplicated 
genes. Other possible cases that have 
recently been reported include dupli-
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cated globin genes of rodents that di-
rect the synthesis of hemoglobin iso-
forms with graded oxygen-binding 
affinities and/or auto-oxidation rates 
(Storz et al., 2008), and duplicated 
genes in the galactose-use pathway 
of yeast that have evolved specialized 
transcriptional control of coinducer 
and galactokinase functions (Hittinger 
and Carroll, 2007). To assess the gener-
ality of the EAC model, more studies 
will be required to determine whether 
specialization of function between du-
plicated genes typically evolves as a 
refinement of preexisiting subfunc-
tions of a pleiotropically constrained 
ancestral gene.

One of the especially commendable 
aspects of the study by Des Marais and 
Rausher (2008) is that molecular evo-
lution analyses were integrated with 
experimental studies of enzyme func-

tion. This study illustrates the growing 
appreciation that statistical inferences 
about positive selection based on com-
parative sequence analysis need to be 
buttressed by functional data in order 
to draw firm conclusions about molec-
ular adaptation.
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Figure 1. Gene tree of dihydroflavonol-4-re-
ductase (DFR) coding sequences for morn-
ing glory species that possess three DFR 
gene copies (A, B and C) and out-group spe-
cies that possess a single copy (or an inde-
pendently derived pair of duplicated copies 
in the case of Petunia hybrida). The postdu-
plication branch that leads to the progenitor 
of the DFR-A and DFR-C genes was charac-
terized by a highly elevated rate of amino-
acid substitution, as indicated by a dN/dS 
ratio 1 (where dN is the rate of nonsyn-
onymous substitution per nonsynonymous 
site and dS is the rate of synonymous substi-
tution per synonymous site). This lineage-
specific excess of amino-acid substitution 
suggests that the functional divergence of 
the DFR-B and DFR-A/C gene copies was 
driven by positive selection that adapted 
the proto-DFR-A/C isozyme to a new or 
modified function.
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