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Abstract

This paper describes a revision of the Hill-type muscle model so that it will describe the chemo-mechanical
energy conversion process (energetic) and the internal-element sti2ness variation (viscoelastic) during a skeletal
muscle isometric force twitch contraction. The derivation of this energetic–viscoelastic model is described by a
3rst-order linear ordinary di2erential equation with constant energetic and viscoelastic coe5cients. The model
has been implemented as part of a biomimetic model, which describes the excitation–contraction coupling
necessary to drive the energetic–viscoelastic model. Finally, the energetic–viscoelastic model is validated by
comparing its isometric force–time pro3le with that of various muscles reported in the literature.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction and background

The A.V. Hill model for skeletal muscle contraction is the classic macroscopic model that inter-
relates energetic events with intrinsic mechanical elements [1]. The model is directly applicable to
skeletal muscle contractions in which external shortening occurs under constant external load (an
isotonic contraction). However, this model is not applicable (either energetically or mechanically) to
skeletal muscle contractions in which the external length remains constant during force development
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Fig. 1. A.V. Hill (1938) model.

(an isometric contraction). Nevertheless, the Hill model [1] can provide the essential conceptual
basis for developing a mechano-energetic model for isometric skeletal muscle contraction.

An excellent review has already been written on the strengths and limitations of the A.V. Hill
model of skeletal muscle mechanics [2]. Consequently, this section will only focus on those aspects
of the Hill model that represent the foundational starting point for the development of the isometric
model developed in this paper.

The classic A.V. Hill paper described muscle heat (energetic) measurements that were the basis
of a model for the mechanical behavior of skeletal muscle [1]. The experimental technique itself
involved muscle contractions experiencing external length changes (shortening) under a constant load
(an isotonic type of muscle contraction). Hill’s observations on heat liberation (energetics) can be
directly converted into an equation on muscle mechanics:

(P + a)(V + b) = b(P0 + a): (1)

The mechanical variables are the muscle load force (P) and its velocity-of-shortening (V ). P0 is
an active state force (de3ned below for Eq. (4)), while ‘a’ and ‘b’ are coe5cients used to obtain
Eq. (1). Derivation of Eq. (1) from heat measurements has been nicely reviewed by Katz [3].

The basic model that is described by Eq. (1) is known as the two-element model (Fig. 1) and
is applicable to isotonic-type contractions. The 3rst element is called the series elastic element (SE)
and is assumed to be a spring, with a length and sti2ness determined by the instantaneous muscle
force. The second element is called the contractile element (CE) and is assumed to be characterized
as the force–velocity relation between the muscle instantaneous speed of shortening (V ) and the
instantaneous muscle force (P), as per Eq. (1). In an isotonic contraction, muscle force is constant
and the Hill model implies that the muscle shortening velocity is the same as the shortening velocity
of the CE (VCE):

V = VCE: (2)
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Fig. 2. Internal structure of the CE.

When Eq. (2) is substituted into Eq. (1), it is apparent that the force–velocity relationship of the
CE is a restatement of Eq. (1):

(P + a)(VCE + b) = b(P0 + a): (3)

For the Hill model, the CE embodies the process of chemo-mechanical energy conversion. This
separation of the elasticity and contractility of muscle into two di2erent phenomenological entities
connected in series is a fundamental characteristic of the Hill model. However, when one considers
the generally accepted cross-bridge theory of muscle contraction, the separation is somewhat arti3cial
because the cross-bridges are simultaneously contractile and elastic structures distributed uniformly
throughout the contractile tissue. It is noted by Zalahak [4] that Eq. (1) can be rewritten so as to
de3ne internal structure to the CE:

P = P0 − PV = P0 − C(V ;P0)V; (4)

where

C(V ;P0) =
P0 + a
V + b

: (5)

This algebraic manipulation can be interpreted as follows: the force (P) generated by the CE is the
di2erence between an internal contractile force (P0) and an internal viscous resisting force (PV),
which depends nonlinearly on the velocity. Fig. 2 is a diagram of the Hill model incorporating this
internal decomposition of the CE. Note the internal arrangement of the structure of the CE of the
Hill model showing the active state force (P0) and the quasi-viscous internal resisting force (PV).
Shown in dashes is the parallel elastic element (PE), which may be added to model the passive
elastic properties of unstimulated muscle.

Hill [5] de3ned the active state force (P0) as the force that a muscle exerted when the CE was
neither shortening nor lengthening—that is, when the CE velocity is zero. P0 may be approximated
as the isometric (tetanic) force (which is the force that a muscle exerts when the muscle length
is neither shortening or lengthening)—that is, the muscle length velocity is zero. This is because
a relatively high static sti2ness is generally attributed to the SE (in series with the CE) when the
muscle is maximally activated.

The Hill [1] model encounters its 3rst problem during an isometric twitch contraction because the
characteristic force–velocity relationship of the CE de3ned in Eq. (3), which embodies the process
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of chemo-mechanical energy conversion, is only valid during an isotonic muscle contraction. To
illustrate this point, consider an isometric muscle contraction so that the muscle force (P) is equal
to the isometric force (P0). Then substituting into Eq. (3):

(P0 + a)(VCE + b) = b(P0 + a): (6)

The result is that

VCE = 0: (7)

Hence, the force–velocity relationship reduces to an identity

(P0 + a)b= b(P0 + a): (8)

The Hill [1] model encounters a second problem during an isometric muscle twitch contraction
because there is a characteristic sti2ness variation during the time course of the contraction. Gassar
and Hill [6] found muscle to be especially rigid right after the initiation of stimulation (sti2ness
leading muscle force). Cecchi et al. [7] and Stein and Gordon [8] have carefully quanti3ed changes
in sti2ness during isometric contraction, showing that sti2ness leads force during the rising phase
of tetanic isometric contraction, as if it was in part a function of activation. However, sti2ness lags
behind muscle force during relaxation (and by even more than it leads during activation). Such
results are not consistent with the concept of sti2ness being a static function of force and activation,
and thus this important e2ect is very di5cult to incorporate within the Hill model structure [2].

These two problems with the Hill [1] model relate directly to the purpose of this research paper.
First, there is a need for an energetic Hill-type model that describes the chemo-mechanical energy
conversion process when muscle contracts isometrically. Second, a need exists for a viscoelastic
Hill-type model that relates P0 to isometric muscle force in terms of the internal mechanical elements
so that there is the characteristic sti2ness variation during the time course of an isometric contrac-
tion. Consequently, this paper describes the development and validation of an energetic–viscoelastic
Hill-type muscle model that satis3es these two needs.

2. Methods

2.1. Model development

2.1.1. Internal-element development
In the development of an energetic–viscoelastic model, the Hill [1] model (Fig. 1) is a good

starting point. The internal structure of the contractile element is utilized as depicted in Fig. 2. The
energetic–viscoelastic model (Fig. 3) introduces two additional elements into the model of Fig. 2.
First, an active force generator (FA) replaces P0 of the Hill model. FA de3nes the chemo-mechanical
energy conversion during an isometric twitch contraction. FA is a unidirectional active state force
that generates physical shortening of the contractile element (lCE) during the time course of an
isometric twitch.

Second, a passive viscous element (c2) is added in series with the SE (series elastic element) of
the Hill model. c2 (in combination with c1) interacts with the series elastic spring (k) and de3nes
a second viscoelastic time constant. The 6rst viscoelastic time constant is de3ned by only c1 (the
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Fig. 3. Energetic–viscoelastic model (FA is active state force).

Hill quasi-viscous element) interacting with k (the Hill series elastic element). The interaction of
these two viscoelastic time constants accounts for variability of sti2ness during an isometric muscle
contraction.

Sti2ness is considered a function of activation and in our model, FA (active state force) is the
force generated by calcium (C) activation of the contractile element. In other words, sti2ness may
be equated to activation force (FA). c1 is a Hill model “active” viscous “energy-dissipative” ele-
ment that acts as follows. During the initial, rapid activation force (FA) increase (or force devel-
opment), FA of the contractile element leads (i.e. is greater than) the actual isometric force (F)
development (occurring at the end of the muscle) due to some c1 energy absorption. This internal
energy absorption occurs at a rate determined by the 6rst viscoelastic time constant (de3ned above).
Consequently, internal sti2ness leads external force development. During the subsequent (more pro-
longed) activation force (FA) decrease (or force relaxation), FA of the contractile element lags
behind (i.e. is lower than) the actual isometric force (F) development (at the end of the muscle)
due to stored energy in the SE spring (k) being absorbed by c2 (in combination with c1), as repre-
sented by the second viscoelastic time constant. Consequently, internal sti2ness lags external force
decay.

2.1.2. Mathematical development
Mathematical development of the energetic–viscoelastic muscle model is guided by the “law of

parsimony” [9]. The most parsimonious skeletal muscle model to describe the energetics and me-
chanics of isometric force twitch dynamics would be a 3rst order linear ordinary di2erential equation
with constant coe5cients. In the development of such a model, we refer to Fig. 3 in deriving the
governing di2erential equation.

Relating the external isometric force (F) to the internal forces

F = FS = FV = FC + FA; (9)
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where FS is the series elastic force stored in the spring, FV is the series viscous force absorbed by
the “passive” dashpot (c2), and FC is the viscous force absorbed by the “active” dashpot (c1) of the
contractile element.

Relating the external velocity (V ) to the internal velocities (where x, xA, xV, and xS are per
Fig. 3):

V = ẋ = ẋA + ẋV + ẋS: (10)

For an isometric contraction, invoke the internal velocity constraint

− ẋA + ẋV + ẋS = 0: (11)

Substituting into Eq. (11), the internal velocities as a function of their respective force

− FC

c1
+
FS

c2
+

(dFS=dt)
k

= 0: (12)

For an isometric contraction, invoking the internal force constraint

FA − FC − FS = 0: (13)

Rearranging Eq. (12):

dFS

dt
=
k
c1
FC − k

c2
FS: (14)

Rearranging Eq. (13):

FC = FA − FS: (15)

Substituting Eq. (15) into Eq. (14):

dFS

dt
=
k
c1
FA − k

c1
FS − k

c2
FS: (16)

Rearranging Eq. (16):

dFS

dt
=
k
c1
FA − k

(
1
c1

+
1
c2

)
FS: (17)

De3ne

1
c12

≡ 1
c1

+
1
c2
: (18)

So

c12 =
c1c2

c1 + c2
: (19)

Substituting Eq. (18) into Eq. (17) and rearranging

dFS

dt
=

1
�∗2
FA − 1

�3
FS; (20)
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where

�∗2 =
c1

k
; (21)

�3 =
c12

k
=

c1c2

k(c1 + c2)
: (22)

Referring to Eq. (9), note

F = FS: (23)

Substituting Eq. (23) into Eq. (20) and rearranging

dF
dt

=
(

1
�∗2

)
FA −

(
1
�3

)
F: (24)

Now, de3ne

FA =
(

dF
dC

)
C; (25)

where dF=dC is the change in force (F) with respect to the change in the concentration of free
calcium (C) in the sarcoplasm.

Substituting Eq. (25) into Eq. (24):

dF
dt

=
(

1
�∗2

)(
dF
dC

)
C −

(
1
�3

)
F; (26)

which can be rewritten as

dF
dt

= k∗2C − k3F; (27)

where

k∗2 =
(

1
�∗2

)(
dF
dC

)
; (28)

k3 =
1
�3
: (29)

2.2. Model implementation

In order to implement Eq. (27), it is necessary to de3ne the time course of C. This was done
by developing a second di2erential equation for the free calcium (C) in the sarcoplasm of skeletal
muscle, as described in Part II of this study [10]:

Ċ = k∗1P − k2C: (30)

Since Ċ is the central factor in the excitation–contraction coupling process of skeletal muscle, this
required developing yet a third di2erential equation for the sarcoplasmic reticulum (SR) calcium
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permeability (P) in response to an action potential (V0):

Ṗ = −k1P (31)

for which at t = 0:

P(0) = P0 = �V0: (32)

The three di2erential equations (27), (30), and (31) and algebraic equation (32) constitute a phe-
nomenological model of the excitation–contraction coupling process. The values of the coe5cients
(�, k1, k∗1 , k2, k∗2 , and k3) of (27), (30), (31), and (32) were determined utilizing methods described
by Neidhard-Doll et al. [10].

The energetic–viscoelastic model was then validated using MATLAB R12 for the solution of the
three simultaneous di2erential equations (27), (30), and (31).

%C:\matlabR12\work\models\model 1.m
%Script �le
tspan = [0 400]; %time in msec
x0 = [1; 0; 0];
[t; x] = ode45(‘di2 1’,tspan,x0);
plot(t,x)

%C:\matlabR12\work\models\di� 1.m
%Function �le
function xdot = model 1(t; x);
xdot = zeros(3; 1);
k1 = 0:1578;
k1star = 0:29;
k2 = 0:0628;
k2star = 0:0572;
k3 = 0:0172;
xdot(1) = −k1∗x(1);
xdot(2) = k1star∗x(1) − k2∗x(2);
xdot(3) = k2star∗x(2) − k3∗x(3);

The investigators determined two characteristic features of the model-generated isometric force
twitch curve: the contraction time (tc) and the half-relaxation time (t1=2). The values were then
compared to known values in the published literature.

3. Results

Fig. 4 shows the SR calcium permeability (P), free calcium (C) in the sarcoplasm of skeletal
muscle, and isometric force twitch (F), as a sequentially coupled system. The energetic–viscoelastic
model is driven by SR membrane permeability changes and the resultant calcium Qux. Note that P,
C, and F are normalized with respect to their peak amplitudes.
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Fig. 4. SR membrane permeability (P), free calcium (C), and isometric force twitch (F) coupled in the ener-
getic–viscoelastic model.

Fig. 5 illustrates the isometric force twitch generated by the energetic–viscoelastic model. Note
that two isometric force twitch characteristics have been identi3ed: tc is approximately 36:2 ms and
t1=2 is 58:4 ms. Recall that tc is the isometric muscle contraction time interval (i.e. time-to-peak),
measured between the stimulus onset and the peak force amplitude. t1=2 is the half-relaxation time,
which denotes the interval of the isometric force twitch between peak amplitude and 50% of its
peak amplitude.

Table 1 represents the isometric force twitch–time characteristics (tc and t1=2) for various skeletal
muscles, animal species, and test temperatures. Where the literature has permitted, Table 1 also
identi3es the muscle 3ber-type composition.

4. Discussion

The objective of this paper was to revise the 1938 Hill model [1], so that it described the
chemo-mechanical energy conversion process (energetic) and internal-element sti2ness variation
(viscoelastic) during muscle contraction. This objective has been realized by deriving, implement-
ing, and validating an energetic–viscoelastic model. The derived model is described by a 3rst-order
linear ordinary di2erential equation (Eq. (27)) that consisted of a constant energetic parameter
(Eq. (28)) and a constant viscoelastic parameter (Eq. (29)). This is the most parsimonious form of
the energetic–viscoelastic model. The law of parsimony [9] states that when considering an array of
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Fig. 5. Isometric force twitch generated by biomimetic model (tc is 36:2 ms; t1=2 is 58:4 ms).

alternative models, one should chose the simplest model that satisfactorily describes the characteris-
tics to be modeled.

Because the energetic parameter depended upon a time-varying intra-cellular calcium Qux, imple-
mentation of the model required that it be driven by a pair of simultaneous di2erential equations.
These equations described SR membrane permeability changes (Eq. (31)) and the resultant calcium
Qux (Eq. (30)). The collective set of the three di2erential equations ((27), (30), and (31)) represents
a biomimetic model of isometric muscle contraction. The determination of the di2erential equation
k-parameters was the essential and critical element in the actual implementation of the model (Fig.
4). The details of the derivation of these various k-parameters are presented in Part II of this paper
by Neidhard-Doll et al. [10]. Validation of the model was then performed by determining two char-
acteristic features (tc and t1=2) of the model-generated isometric force twitch (Fig. 5) and comparing
these values with known values in the published literature (Table 1). In general terms, the tc of
the model (36:2 ms) is de3nitely within the minimum–maximum range (3.8 to 187 ms) from Table
1 with respect to various muscles, various species, and various temperatures. Also, the t1=2 of the
model (58:4 ms) is de3nitely within the minimum–maximum range (2.5 to 180 ms) from Table 1
when viewed across the board.

Closer examination of Table 1 allows a more speci3c identi3cation of the muscle and species
representative of the isometric force twitch shown in Fig. 5. The characteristic k-parameters of Eq.
(27) represented by Eqs. (28) and (29) were derived from the experimental data of Sun et al.
[13] and Cannell and Allen [14], both of which utilized frog anterior tibialis muscle. For details,
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Table 1
Isometric force twitch–time characteristics for various skeletal muscles, animal species, and test temperatures
Muscle Species Fiber type FPeak tc (ms) t1=2 (ms) Notes Source

Anterior tibialis Cat 81% Fasta (20% FOG, 61% FG) 19% Slowa — 53 52 37◦C [11]
Anterior tibialis Frog — — 101:54± 4.62 143:08± 4.62 4:5◦C (low temp.) [12]

(Rana esculenta)
Anterior tibialis Frog — (0:67 ± 0:02)F0 73:2 ± 2:1 180:0 ± 10:6 2–4◦C; [13]

(Rana temporaria) F0 = max tetanic force
Anterior tibialis Frog — 51:0 ± 1:8 mg 24:0 ± 2:0 18:0 ± 2:0 20◦C [14]
Anterior tibialis Frog — 5:24 ± 0:07 mN 72:73 ± 3:6 ms 127:28 ± 3:6 ms 5–6◦C [15]

(Rana temporaria)
Dorsal interosseus Human — 0:7 g 45 ms 25 ms 37◦C (in vivo) [16]
(3rst)
EDL Rat 59% FOGa 38% FGa 3% SOa 0:275 mN 33:33 ms 46:67 ms 27 ± 2◦C [17]
Extraocular Human 100% Fastb — 3:80 ± 0:63 2:53 ± 0:63 37◦C (in vivo) [18]
Flexor digitorum Cat 32% FOGa 61% FGa 7% SOa 7:51 ± 0:68 N 23:3 ± 3:8 14:7 ± 3:9 37◦C [19]
longus (FDL)
Gastronemius Human 50% Fastb 50% Slowb — 12:66 ± 0:63 10:76 ± 0:63 37◦C (in vivo) [18]
M. peroneus Cat Slowc 0:563 ± 0:093 29:6 ± 5:8 39:8 ± 9:1 37–38◦C [20]
longus (PerL)
M. peroneus Cat Fast-fatigue sensitivec 3:0 ± 0:093 17:4 ± 2 17:7 ± 3:2 37–38◦C [20]
longus (PerL)
M. peroneus Cat Fast-fatigue resistantc — 19:5 ± 2:9 20:9 ± 3:3 37–38◦C [20]
longus (PerL)
M. peroneus Cat 28% FOGa 66% FGa 6% SOa17% Slowc — 23 ± 2 17 ± 2 37–38◦C [21]
longus (PerL)
Sartorius Frog — — 76.47 41.18 0◦C [22]
Sartorius Frog — 51:7 ± 0:4 187:3 ± 2:5 268:3 ± 2:5 0◦C [23]
Soleus Cat 0% FOGa 0% FGa 100% SOa 4:934 ± 0:484 N 73:4 ± 6:2 84:2 ± 8:6 37◦C [19]
Soleus Human 80% Slowb — 41:14 ± 0:63 34:18 ± 0:63 37◦C (in vivo) [18]

a[24] FOG: fast oxidative glycolytic; FG: fast glycolytic; SO: slow oxidative.
b[25].
c[26].
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Fig. 6. Twitch force at muscle temperatures of 10◦C and 0◦C in the frog sartorius (normalized with respect to peak
amplitude).

the reader should refer to Part II of this study [10]. Inspection of Table 1 indicates that the tc for
[13,14], respectively, is 73.2 and 24:0 ms. The t1=2, respectively, for the same references is 180.0 and
18:0 ms. Recall that the tc for the energetic–viscoelastic model is 36:2 ms, which is an intermediate
value between 73.2 and 24:0 ms. Furthermore, the t1=2 for the model (58:4 ms) is an intermediate
value between 180.0 and 18:0 ms. This intermediate value is to be expected due to the di2erence in
muscle temperatures between the two studies. Sun et al. [13] studied frog anterior tibialis muscle at
2–4◦C, while Cannell and Allen [14] studied the same muscle at 20◦C. This is a muscle temperature
di2erence of 16–18◦C.

The frog is a poikilothermic animal so that its core temperate rises or falls according to the
surrounding ambient environmental temperature. As shown by Fig. 6, a muscle temperature di2erence
of 10◦C dramatically alters the time pro3le of an isometric force twitch [22]. The physiological
explanation is that the reaction rate of enzymes is highly dependent on their temperature. This holds
true for all enzymes including actin and myosin in skeletal muscle. Therefore, it is not surprising that
contraction velocity for both skeletal and cardiac muscle is highly dependent upon the temperature
of the contracting musculature. For example, a reduction in muscle temperature from 38◦C to 28◦C
will cause approximately a 50% reduction in the contraction velocity for the medial gastrocnemius
muscle of the cat, as shown in Fig. 7 [27]. In a similar manner, but for an isometric force twitch,
a decrease in muscle temperature from 10◦C to 0◦C will cause an approximate doubling (slowing)
of the isometric force-twitch time pro3le (Fig. 6). Consequently, Cannell and Allen [14] have the
shorter tc and t1=2, while Sun et al. [13] have the distinctly longer tc and t1=2. In e2ect, the model
predicted isometric force twitch (Fig. 5) would theoretically represent that of a frog anterior tibialis
muscle at 10◦C.

Knowing the speci3c muscle represented by the model allows us to approximate the 3ber-type
composition for the energetic–viscoelastic model. Table 1 does not directly provide such information
for the two studies [13,14]. However, Ariano et al. [24] do indicate that cat anterior tibialis muscle
is composed of 80% fast-twitch and 20% slow-twitch 3bers. Although a di2erent species than frog,
the tc of our model is about 70% of the characteristic tc for Ruch et al. [11], and the t1=2 of the
energetic–viscoelastic model is about 110% of the t1=2 for Ruch et al. [11].

The characteristic di2erentiation between fast- and slow-twitch muscle 3bers is that the contraction
time (tc) has shorter duration for fast-twitch muscle 3bers, when compared to slow-twitch muscle
3bers. For example, Garnett et al. [25] reported contraction times ranging from 90 to 110 ms for
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Fig. 7. The force–velocity relationship at muscle temperatures of 28–38◦C in the cat medial gastrocnemius muscle.

slow-twitch motor units, and from 40 to 84 ms for fast-twitch motor units of humans. Consequently,
it may be concluded that the isometric force-twitch time pro3le for the energetic–viscoelastic model
is representative of a mixed 3ber-type muscle of at least 50% fast-twitch and 50% slow-twitch 3bers,
and probably closer to 75% fast-twitch and 25% slow-twitch 3bers.

In conclusion, this study has developed, implemented, and validated an energetic–viscoelastic
model for the skeletal muscle isometric force twitch. However, the model implementation was de-
pendent upon the biomimetic model of skeletal muscle isometric contraction with respect to the
excitation–contraction coupling that precedes isometric force twitch development. Furthermore, the
energetic–viscoelastic model validation was dependent (in part) on the speci3c k-parameter values
utilized in the model di2erential equations. Consequently, in order to fully understand the implemen-
tation and validation of the energetic–viscoelastic model, it is necessary to understand the complete
biomimetic model of skeletal muscle isometric contraction and the theory and methods utilized in
determining the speci3c k-parameter values. Consequently, we now proceed to Part II of this paper
[10].

5. Summary

This paper describes the development and validation of an energetic–viscoelastic muscle model
that demonstrates the following features: (1) an energetic Hill-type model that describes the chemo-
mechanical energy conversion proves when muscle contracts isometrically; and (2) a viscoelastic
Hill-type model that relates active force P0 to isometric muscle force (F) in terms of the internal



320 C.A. Phillips et al. / Computers in Biology and Medicine 34 (2004) 307–322

mechanical elements so that there is the characteristic sti2ness variation during the time course of
an isometric contraction.

Mathematical development of the energetic–viscoelastic muscle model has been guided by the
“law of parsimony,” which requires that the most parsimonious skeletal muscle model (describing
the energetics and mechanics of isometric force twitch dynamics) should be a 3rst-order linear ordi-
nary di2erential equation with constant coe5cients. The energetic–viscoelastic model then introduces
two additional elements into the traditional Hill-type model. First, an active force generator (FA)
replaces P0 of the Hill model. FA de3nes the chemo-mechanical energy conversion during an iso-
metric twitch contraction. FA is a unidirectional active force that generates physical shortening of
the contractile element during the time course of an isometric twitch. The result is a 3rst-order
linear ordinary di2erential equation consists of an energetic parameter constant and a viscoelastic
parameter constant. The energetic–viscoelastic model has required that it be coupled with two other
di2erential equations that describe the sarcoplasmic reticulum membrane permeability changes and
the resultant calcium Qux. The three di2erential equations constitute a biomimetic model of the
excitation–contraction coupling process. MATLAB R12 was then utilized for the solution of the
three simultaneous di2erential equations.

The resultant energetic–viscoelastic model was then validated with both general and speci3c data.
In general terms, the contraction time of the model (36:2 ms) is de3nitely within the minimum–
maximum range (3.8 to 187 ms) for various skeletal muscles in the reported literature. The half-
relaxation time for the model (58:4 ms) is de3nitely in the minimum–maximum range (2.5–180 ms)
for the reported literature. In speci3c terms, it was determined that the isometric force–time twitch
of the energetic–viscoelastic model was reasonably approximated by that of frog anterior tibialis
muscle contracting at 10◦C. It was further determined that the model is representative of a mixed
3ber-type muscle of at least 50% fast-twitch and 50% slow-twitch 3bers.
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