
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

MAT Exam Expository Papers Math in the Middle Institute Partnership

7-2006

Fractals and the Chaos Game Fractals and the Chaos Game

Stacie Lefler
University of Nebraska-Lincoln

Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap

 Part of the Science and Mathematics Education Commons

Lefler, Stacie, "Fractals and the Chaos Game" (2006). MAT Exam Expository Papers. 24.
https://digitalcommons.unl.edu/mathmidexppap/24

This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository
Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UNL | Libraries

https://core.ac.uk/display/188049142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/mathmidexppap
https://digitalcommons.unl.edu/mathmiddle
https://digitalcommons.unl.edu/mathmidexppap?utm_source=digitalcommons.unl.edu%2Fmathmidexppap%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.unl.edu%2Fmathmidexppap%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathmidexppap/24?utm_source=digitalcommons.unl.edu%2Fmathmidexppap%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages

Fractals and the Chaos Game

Expository Paper

Stacie Lefler

In partial fulfillment of the requirements for the Master of Arts in Teaching with a
Specialization in the Teaching of Middle Level Mathematics

in the Department of Mathematics.
David Fowler, Advisor

July 2006

Lefler – MAT Expository Paper - 1

Fractals and the Chaos Game1

A. Fractal History
The idea of fractals is relatively new, but their roots date back to 19th century
mathematics. A fractal is a mathematically generated pattern that is reproducible at any
magnification or reduction and the reproduction looks just like the original, or at least has
a similar structure. Georg Cantor (1845-1918) founded set theory and introduced the
concept of infinite numbers with his discovery of cardinal numbers. He gave examples
of subsets of the real line with unusual properties. These Cantor sets are now recognized
as fractals, with the most famous being the Cantor Square.

Waclaw Sierpinski (1882-1969), a Polish mathematician, worked
in set theory, point set topology, and number theory. He is known
for the Sierpinski Triangle.

However, there are many other Sierpinski fractals, such as the
Sierpinski Carpet.

The term ‘fractal’ was coined in 1975 by Benoit Mandelbrot (1924 -) from the
Latin fractus, meaning “broken” or “irregular.” This term was used to describe
shapes that have the characteristic of self-similarity, i.e. that when you magnify
any part it looks just like (or has the same structure) as the original. He is
widely known for the Mandelbrot set.

B. Basic Fractals
Now, let’s try to create some basic fractals using
functions on the plane. We can start with a
square with corners at (0, 0), (1, 0), (0, 1), and
(1, 1).

We will call our initial image of a square S0.

1 Sections A, B, and C created in collaboration
 with Sandi Snyder.

Lefler – MAT Expository Paper - 2

We are interested in what happens to our square when we consider the functions

f1 (x, y) = 








2
,

2

yx
, f2 (x, y) = 







 +
2

,
2

1

2

yx
, and f3(x, y) = 







 ++
2

1

2
,

4

1

2

yx
, and evaluate

them at the vertices of our square.

When we evaluate f1 (x, y) = 








2
,

2

yx
 at the vertices of S0 we get the following:

 f1(0, 0) = (0, 0)
 f1(1, 0) = (½ , 0)
 f1(0, 1) = (0, ½)
 f1(1, 1) = (½, ½)

Notice that this takes S0 and shrinks it to half of its original x length and half of its
original y height.

When we evaluate f2 (x, y) = 






 +
2

,
2

1

2

yx
at the vertices of S0 we get the following:

 f2(0, 0) = (½ , 0)
 f2(1, 0) = (1, 0)
 f2(0, 1) = (½, ½)
 f2(1, 1) = (1, ½)

Note that this is the same image as we get from f1, but it is shifted ½ unit to the right.

When we evaluate f3(x, y) = 






 ++
2

1

2
,

4

1

2

yx
at the vertices of S0 we get the following:

 f3(0, 0) = (¼ , ½)
 f3(1, 0) = (¾ , ½)
 f3(0, 1) = (¼ , 1)
 f3(1, 1) = (¾ , 1)

Note that this, too, is the same image as we get from f1, but it is shifted ¼ unit to the right
and ½ unit up.

We define the new function formed as F(S) = f1(S) ∪ f2(S) ∪ f3(S).

Lefler – MAT Expository Paper - 3

Here is F(S0):

We will call this new image S1.

We can now iterate our image again by following the same pattern. To get S2 we can
start by evaluating f1 at the vertices of S1 which would shrink S1 to half of its original x
length and half of its original y height. Next, we would evaluate f2 at the vertices of S1.
This simply gives a ½ to the right translation of f1(S1). Last, we would evaluate f3 at the
vertices of S1. This gives us a translation of f1(S1), too. This one is shifted ¼ unit left,
and ½ unit up.

We’ll call this image S2.

Iterate the image again by evaluating the same three functions at the vertices of S2. The
first function, f1, will shrink the image, f2 will translate the shrunken figure to the right ½,
and f3 will translate the shrunken figure to the right ¼, and up ½.

f1(S0)

f2(S0)

f3(S0)

f3(S1)

f1(S1) f2(S1)

Lefler – MAT Expository Paper - 4

We’ll call this image S3.

This is starting to look like the Sierpinski Triangle. We might wonder if our three
functions gave us the Sierpinski Triangle because we started with four corners of a
square. Let’s see what happens if we start with an isosceles triangle instead of a square.
We start with an isosceles triangle with corners at (0, 0), (1, 0), and (½, 1).

The initial image is the isosceles triangle.
We will call this image S0.

When we evaluate f1 (x, y) = 








2
,

2

yx
at the vertices of S0 we get the following:

 f1(0, 0) = (0, 0)
 f1(1 , 0) = (½ , 0)
 f1(½ , 1) = (¼ , ½)

Notice that evaluating f1 with the vertices of S0 shrinks the image to half of the original
length of x and half the original height of y.

f1(S2) f2(S2)

f3(S2)

Lefler – MAT Expository Paper - 5

When we evaluate f2 (x, y) = 






 +
2

,
2

1

2

yx
at the vertices of S0 we get the following:

 f2(0, 0) = (½ , 0)
 f2(1, 0) = (1, 0)
 f2(½ , 1) = (¾ , ½)
Notice that this gives the same image that we achieved with f1, but it has been shifted ½
to the right.

When we evaluate f3(x, y) = 






 ++
2

1

2
,

4

1

2

yx
at the vertices of S0 we get the following:

 f2(0, 0) = (¼ , ½)
 f2(1, 0) = (¾ , ½)
 f2(½ , 1) = (½ , 1)

This, too, gives the same image as in f1, but it has been shifted ¼ to the right, and ½ up.

We will call this new image S1.

After the second iteration we have the new image, S2.

f1(S0) f2(S0)

f3(S0)

f1(S1) f2(S1)

f3(S1)

Lefler – MAT Expository Paper - 6

Continue with two more iterations. After the fourth
Iteration, we have the new image, S4.

After the fourth iteration, we can see that when we start with a triangle the functions are
affecting the image in the same way as when we started with a square. In fact, we could
start with any initial image, even a silhouette of Jim Lewis, and after enough iterations
using our three functions we would begin to see the Sierpinski Triangle. The final image
is actually independent of the initial image. (To learn more about how the final is
independent of the initial image, visit http://www.maths.anu.edu.au/~barnsley/pdfs/V-
var_super_fractals.pdf.)
If we do enough iterations, the initial image gets smaller and smaller, becoming a dot,
and so the final image is in a sense made up of an infinite number of dots. It does not
matter what shape we start with, if we apply the same three functions,

f1 (x, y) = 








2
,

2

yx
, f2 (x, y) = 







 +
2

,
2

1

2

yx
, and f3(x, y) = 







 ++
2

1

2
,

4

1

2

yx
, we will get the

Sierpinski Triangle.

Another famous iteration is known as the Cantor Square. The Cantor Square, in contrast,
is an iteration of four functions. We learned that the first two iterations of the Cantor
Square look like this:

From that, we were able to determine the functions that generate the fractal. To create
the Cantor Square, we begin with a 1 x 1 square. To this image, we apply the following
functions:








=
3

,
3

),(1

yx
yxf 







 +=
3

2

3
,

3
),(3

yx
yxf








 +=
3

,
3

2

3
),(2

yx
yxf 







 ++=
3

2

3
,

3

2

3
),(4

yx
yxf

f1(S3)
f2(S3)

f3(S3)

Lefler – MAT Expository Paper - 7

We did not know these four functions before creating the fractal. We determined these
functions by examining the S0 and S1 images. The functions came from discovering the
shrinks and translations applied to the initial image, S0.

The initial image of the Cantor Square is to the right.

 We will call this image S0.

F(S0) is an image that looks like this:

We will call this image S1.

We get these four squares by applying the four functions. The function f1 simply shrinks
the image. The function f2 translates the shrunken image to the right. The function f3
translates the shrunken image up, and the function f4 translates the shrunken image to the
right and up.

If we repeat the iteration on the previous image, we get:

We will call this image S2.

And, after one more iteration, we produce this image:
We will call this image S3.

Lefler – MAT Expository Paper - 8

The Sierpinski Carpet is another unique fractal. We learned that the first two images of
the Sierpinski Carpet look like the following:

By looking at these images, we determined the eight different functions necessary to
generate the Sierpinski Carpet.

() 






=
3

,
3

,1

yx
yxf

() 






 +=
3

,
3

1

3
,2

yx
yxf

() 






 +=
3

,
3

2

3
,3

yx
yxf

() 






 +=
3

1

3
,

3
,4

yx
yxf

() 






 ++=
3

1

3
,

3

2

3
,5

yx
yxf

() 






 +=
3

2

3
,

3
,6

yx
yxf

() 






 ++=
3

2

3
,

3

1

3
,7

yx
yxf

() 






 ++=
3

2

3
,

3

2

3
,8

yx
yxf

We found these eight functions by observing the given images S0 and S1 and how S0 was
transformed to achieve S1. Each part of S1 was formed by either shrinking or shrinking
and translating S0. The first four images are shown below. Notice that the second image
is actually eight shrunken copies of the previous image, seven of which are also
translated. This is why we have eight functions to create the Sierpinski Carpet.

Lefler – MAT Expository Paper - 9

All of the fractals we have looked at so far share the common characteristic in that they
are self-similar. An object is said to be self-similar if it looks "roughly" the same on any
scale of magnification. We can choose a small part of the image and it will look very
similar to the whole image. For example, consider the Sierpinski Triangle. Zoom in on a
section, say the pink region. It is a miniature duplicate or a copy of the whole triangle, as
is the yellow region. It is self-similar. In fact, all fractals share this characteristic of self-
similarity.
Many objects in nature also have the self-similarity property as we will
see later.

C. Fractals in Nature
This was not Barnsley’s only contribution in the area of fractals. Let’s say you want to
store a picture of a fractal. That would take much storage space if we saved the
information by the pixel. Barnsley realized there is no need to store the whole picture,
just store the functions needed to create the picture. When you want the picture, run a
program that iterates the functions as many times as you choose, and you will get a
picture like the fractal. Barnsley found and used the four functions necessary to generate
a very natural-looking image of a fern, called the Barnsley fern.

This prompted others to try their hand at generating all sorts of natural images. Believe it
or not, the images below are actually computer-generated with the use of fractals, and not
taken with a powerful camera.

Lefler – MAT Expository Paper - 10

It has also become increasingly popular to use fractal technology to create computer-
generated special effects.

Nature holds an array of items that have fractal properties. Among them are a fern and
romanesco.

Notice that the left picture is a picture of an entire fern.
But, look closer at one stem (in the upper-right
picture). Doesn’t it look like a miniature version of the
whole fern? Then, look at one of the fronds. It, too,
looks like a small version of the stem, and an even
smaller version of the whole fern. This is an example
of how fractals display self-similarity.

Basically, self-similarity is a characteristic of fractals in that a fractal looks the same, or
very similar, when you zoom in and magnify it.

Lefler – MAT Expository Paper - 11

To the right is a picture of a broccoli-like plant called a
romanesco. You can see how it, too, displays self-similarity
as you imagine zooming in on it.

Trees, clouds, snowflakes, mountains, and rivers are some other naturally occurring
fractals.

To understand self-similarity further, we can think how self-similarity is displayed in the
Sierpinski Triangle. The function f1 shrinks the exact previous image and places it in the
lower-left corner. The function f2 shrinks the previous image and places it in the lower-
right corner. The function f3 shrinks the image and places it in the upper-middle area.
Since the functions are iterated infinitely, it is understandable how we could magnify any
section of the Sierpinski Triangle and see the Sierpinski Triangle. For more information
about self-similarity, visit http://math.bu.edu/DYSYS/chaos-game/node5.html.

D. The Chaos Game

Earlier, we created the Sierpinski Triangle using functions. However, can we also create
it using a different type of process? Perhaps we can generate the Sierpinski Triangle by
random luck. This can be illustrated by the Chaos
Game.

To play the Chaos Game, start with an isosceles triangle
with the vertices labeled A, B, and C.

We will now assign each vertex numbers of the die. Vertex A will be the numbers 1 or 2.
Vertex B will be the numbers 3 or 4. Vertex C will be the numbers 5 or 6. We first start
playing the game by picking a point. Let’s make our starting point C. Whatever number

A B

C

Lefler – MAT Expository Paper - 12

we roll we will move half the distance toward the numbered vertex and plot a point. We
will remain at that point and roll the die again. We will then move half the distance
toward the numbered vertex and plot a point and remain there. We will repeat the
process over and over and over. Actually, we will repeat this process an infinite number
of times. We might hypothesize what image we will get in the end. Since the dots are
being generated randomly, we may think that we should end up with dots that are
scattered chaotically.

We could now sit down and play the game. We will need a die, graph paper, a ruler, and
a pencil. Let’s pick the starting point C and start playing the game.

We can use a 16 x 16 grid with vertices at (0,0), (1,0),
and (1/2,0).

We can now roll the die and take note of what number we rolled. In this case, we rolled a
three so we will use a ruler to measure half the
distance from C toward B and plot a point and
remain there.

Notice that we landed at (3/4, 1/2).

A B

(3/4,1/2)1/2

3/4

BA

C

(0,0) (1,0)

(1/2,1)

Lefler – MAT Expository Paper - 13

We can now roll again and repeat the same process of the Chaos Game.

This time we rolled a two and we will measure half
the distance toward A and plot a point and remain
there. Notice that we landed at (3/8, 1/4).

We can now see that this process of rolling the die and measuring with a ruler may take
us more time than we have to devote to playing the Chaos Game. In addition to using a
ruler to find the midpoint, we could also find the mean of the coordinates of the point we
are at and the point we are moving toward. However, this would also take a great deal of
time. Even if we roll the die 300 times and plot 300 points, we may not see a pattern.
Now is when computers are a great asset to our goal of understanding the Chaos Game.
Computers can be programmed easily to plot the points for us and we can take advantage
of the available technology. Let’s use the computer to jump ahead and see what image
we get after 1,000 rolls of the die.

The following web page came from
http://www.jgiesen.de/ChaosSpiel/Spiel1000English.html .

After 10,000 rolls of the die, we have a
surprising image which seems to be
approaching the exact Sierpinski Triangle.

A B

(3/4,1/2)1/2

3/4

(3/8,1/4)

Lefler – MAT Expository Paper - 14

It’s amazing that a random process actually generates a pattern. In fact, this Chaos Game
was programmed to generate the Sierpinski Triangle. If we were to play the Chaos Game
and roll the die an infinite number of times we would generate exactly the Sierpinski
Triangle.

In addition to playing the Chaos Game on-line, we can also program our TI84 calculator
to run the Chaos Game for a certain number of times, such as 5,000. Below is the
program that we can enter into our calculator.

 PROGRAM: SIEPINS :If 1/3<N and N<2/3
 :FnOff :Then
 :ClrDraw :.5(.5 +X)�X
 :PlotsOff :.5(1 + Y)�Y
 :AxesOff :End
 :0�Xmin: 1�Xmax :If 2/3<N
 :0�Ymin: 1�Ymax :Then
 :rand�X: rand�Y :.5(1 + X)�X
 :For (K, 1, 5000) :.5Y�Y
 :rand�N :End
 :If N<1/3 :Pt – On (X, Y)
 :Then :End
 :.5X�X :StorePic Pic6
 :.5Y�Y
 :End

 Again we see the Sierpinski Triangle being generated on our calculator.

Let’s now try to think about why this process generates the Sierpinski Triangle.
Remember that I was given the three functions at the beginning of my project. The
functions were f1(x, y) = (x/2, y/2), f2(x, y) = (x/2 + 1/2, y/2), and f3(x, y) = (x/2 + ¼ , y/2
+ ½). We’ll be keeping those functions in mind as we try to figure out why the Chaos
Game works.

We will again start with an isosceles triangle with vertex A at the point (0, 0), vertex B at
the point (1, 0), and vertex C at the point (1/2, 1). We will choose to start at a vertex,
such as the vertex at the point C (1/2, 1) and roll the die. We rolled a three which tells us
to plot a point half the distance to vertex B. We will plot the point (3/4, ½). Notice that
our point is on the Sierpinski Triangle. We can now observe that this is the same point
we would have gotten if would have applied the function f2(x, y) = (x/2 + 1/2, y/2) to our
starting point.

f2(1/2, 1) = (1/4 + 1/2, 1/2)
f2(1/2, 1) = (3/4, 1/2)

Lefler – MAT Expository Paper - 15

We can now roll the die a second time. We rolled a 2 so we will plot a point half the
distance from our last point to vertex A. Our point lands at (3/8, 1/4). Notice again that
our point is on the Sierpinski Triangle. We can again observe that rolling a one or a two
means that we are applying the function f1(x, y) = (x/2, y/2).

f1(x, y) = (x/2, y/2)
 f1(3/4, 1/2) = (3/8, 1/4)

If I roll a five or six, then I would apply the function f3(x, y) = (x/2 + ¼ , y/2 + ½) and
again land on the Sierpinski Triangle.

 f3(x, y) = (x/2 + ¼ , y/2 + ½)

f3(3/8, 1/4) = (3/16 + ¼ , 1/8 + ½)
f3(3/8, ¼) = (7/16, 5/8)

This process of applying one of the three functions happens every time we roll the die.
That is, rolling the die tells us which one of the three functions to apply. If we roll a one
or a two, the functions f1 is applied. If we roll a three or a four, f2 is applied. If we roll a
five or a six, f3 is applied. Using a die gives us a random process of choosing which
function to apply. After an infinite number of rolls, each function is used one-third of the
time. This guarantees that each part of the Sierpinski Triangle gets filled in. Our process
of generating dots is random, but the dots we make are part of the Sierpinski Triangle.

Additionally, another way to convince ourselves why the Chaos Game works is that to
notice that if we pick a point in the Sierpinski Triangle and apply one of the three
functions we will always get a point in the Sierpinski Triangle. Every point on the
Sierpinski Triangle has a pre-determined outcome of the Sierpinski Triangle. Although
this is believable, it is very difficult to prove and the proof isn’t necessary for our
understanding of the Chaos game so we may take it on faith.

Conversely, if we start in a cut out section and roll the die an infinite number of times, we
will always land on a cut out section. If we start in the largest cut out triangle, the points
will eventually lie in successively smaller removed triangles. Actually, the removed
triangles quickly become so small in size that it is essentially invisible. Starting in a cut
out section will never allow us to land on the Sierpinski Triangle.

We can also explain the Chaos game in a slightly different way. We saw that when
making the Sierpinski Triangle earlier we applied three functions. The first one shrunk
the image and put it in the lower left area. The second one shrunk the image and put it in
the lower right area. The third one shrunk the image and put it in the top middle area.
This is just like the Chaos Game except instead of starting with the image and plotting the
image we are starting with a point and plotting the point. Remember that we are using a
random process with the die which means that due to probability we will plot points one-
third of the time in the lower left area and one-third of the time in the lower right area and
one-third of the time in the top middle area. This means that after an infinite number of
times of rolling the die and plotting points we would have the Sierpinski Triangle.

Lefler – MAT Expository Paper - 16

Fractals are a branch of chaos theory and we used the Chaos Game to try to understand
how chaos theory works. The roots of Chaos Theory date back to about 1900 when the
mathematician Henri Poincaré was working with the three-body problem. While working
with the three-body problem, he became the first person to discover a chaotic
deterministic system. His work laid the foundation for Chaos Theory. In 1960, the
meteorologist Edward Lorenz became the first true pioneer to work with Chaos Theory.
His interest in Chaos Theory came about accidentally as he was studying weather
patterns.

The Chaos Game is a very fast way to generate fractals. For a computer to generate a
fractal by applying the functions used to generate the fractal it would take a great deal of
time. For example for a computer to generate the Barnsley Fern it would require a full
day or more. However, using the Chaos Game to generate the Barnsley Fern requires a
second or two to see an image that for all intents and purposes looks like the final Barnsly
Fern.

Interestingly, chaos theory is used to make sense of and study natural phenomena that
recently was thought to be pattern-less and incapable of being described using
mathematical modeling. Some natural phenomena that we now use chaos theory to study
are weather patterns, the occurrences of earthquakes, and fluctuations in the stock market.

In Chaos Theory, systems that show mathematical chaos are deterministic which means
that they actually have a determined outcome despite the fact that they appear to be
complicated and random. Chaos uses determinism which is the philosophical belief that
every event is the inevitable outcome of a previous event. Historically, determinism
dates back several thousand years while Chaos Theory is fairly recent. With Chaos
Theory a random event produces a specific determined outcome. Chaos Theory was used
as a central role in the movie with Ashton Kutcher titled The Butterfly Effect. The movie
got its title from the idea of the butterfly effect which is where the flapping of a butterfly
is imagined to produce some effect to the atmosphere that eventually leads to some
dramatic event such as a tornado.

Chaos Theory is also portrayed in the book by Ray Bradbury titled Sound of Thunder
which used Chaos Theory as a central role. This was made into a movie of the same
name that was released in 2005. In the book, adventurers pay money to time travel back
to the time of dinosaurs for a safari. The time travel company is very strict that the
customers do not step off the path. However, at one point one customer steps off the path
slightly and squishes a moth. Then, when they return to present time, the world as they
knew it is drastically different. For instance the United States is now under the leadership
of a ruthless dictator. The outcome of killing that one specific moth produced a specific
determined outcome of the dictatorship. This is saying a random event (killing the moth)
produces a specific determined outcome (the dictatorship). This is similar to the playing
the Chaos Game where the random event of rolling the die an infinite number of times
produces a specific determined outcome of the Sierpinski Triangle. Also, every point on
the Sierpinski Triangle has a specific determined outcome of the Sierpinski Triangle.

Lefler – MAT Expository Paper - 17

When playing the Chaos Game it looks complicated and random, but the outcome is pre-
determined. Chaotic systems are complicated and their behavior appears random, but
they are really deterministic. Chaotic systems don’t always have to produce a pattern,
though they do in the end in the Chaos Game as it generates the Sierpinski Triangle.
Essentially, we used the Chaos Game to understand how Chaos Theory works.

Summary

Fractals and the Chaos Game was an amazing topic for me. I gained an incredible
amount of knowledge working through the problems. I am also very excited to use much
of what I learned with my students. For example, I have an idea of having my students
play a year-long Chaos Game in which each class rolls the die two times a day for a total
of six rolls in a day.

In prior years I have had my students create the Sierpinski Triangle using the process of
connecting midpoints and cutting out triangles. Before working with my research
problem, I had no connection between functions and fractals. Through my research I
learned to use functions to generate fractals. I also learned that a specific fractal would
be generated no matter what shape you initially started with as long as you apply the
specific functions. I am also now able to determine functions for some simple fractals.

When I stumbled upon some fractal landscapes I was amazed that the images were not
actual pictures of nature. Fractal “art” became an interesting topic to me that I would like
to share with my students. The fact that fractals that are naturally occurring in nature is
also something that I had not thought much about prior to working with my research
problem. Fractals truly became beautiful images to me through creating fractals and
looking at fractal landscapes and fractals in nature.

When I first started working with the Chaos Game, I was blown away by its magical
qualities. It seemed an impossible feat to prove that it wasn’t working due to magic.
However, after hours upon hours of toiling with the game, I began to see how the
functions used to create the Sierpinski Triangle were being used. My understanding of
why the game works was solidified when I thought of the functions being applied to the
points rather that when we first created the Sierpinski Triangle and applied the functions
to the image.

At that point, I thought I was completely done. However, for some reason I decided to
start thinking about Chaos Theory. Again, I was blown away. The wonderful part about
delving into understanding Chaos Theory was that I came to understand how working
with the Chaos Game is a useful tool for understanding Chaos Theory. Also, working to
understand Chaos Theory helped me to understand that every point on the Sierpinski
Triangle has a specific determined outcome of the Sierpinski Triangle. While working to
understand Chaos Theory, I was really pleased with the use of Chaos Theory in Ray
Bradbury’s Sound of Thunder and in the movie titled Butterfly Effect. Thinking about
this book and this movie helped me to understand what Chaos Theory is about. I even

Lefler – MAT Expository Paper - 18

was able to think about how Chaos Theory has played out in my own life and how every
event in my life has produced the outcome of where I am now at this point in time.

Overall, the experience of researching fractals and the Chaos Game was excruciating but
incredibly wonderful. When it all came together for me I felt like I had never felt before,
superhuman.

Lefler – MAT Expository Paper - 19

References

Applications of fractals. Retrieved on July 17, 2006, from

http://library.thinkquest.org/26242/full/ap/ap12.html

Barnsley, M., Hutchison, J., & Stenflo, O. V-variable fractals and superfractals.
Retrieved on July 19, 2006, from

http://www.maths.anu.edu.au/~barnsley/pdfs/V-var_super_fractals.pdf

Beck, Alan. What is a fractal? Retrieved on July 18, 2006, from

http://www.glyphs.com/art/fractals/what_is.html

Bourke, Paul. Fractals, chaos. Retrieved on July 17, 2006, from

http://astronomy.swin.edu.au/~pbourke/fractals/

Brown, Adam. (2005). Fractal landscapes. Retrieved on July 11, 2006, from

http://www.fractal-landscapes.co.uk/images.html

Burger, E. B. and Starbird, M. (2000). The heart of mathematics: an invitation to

effective thinking. Emeryville: Key College Publishing

Chaos Theory. Retrieved on July 22, 2006, from
http://www.reference.com/browse/wiki/Chaos_theory

Collins, W, et al. (1998). Glencoe algebra 2: integration applications connections.
Westerville: The McGraw-Hill Companies.

Fractal ferns. Retrieved on July 20, 2006, from
http://www.home.aone.net.au/~byzantium/ferns/fractal.html

Fractals. Retrieved on June 25, 2006, from http://webweevers.com/fractals.htm

Fractals. Retrieved on July 17, 2006, from

http://math.youngzones.org/Fractal%20webpages/fractal_applications.html

Fractals. Retrieved on July 16, 2006, from

http://motivate.maths.org/conferences/conf77/c77_investigating_fractals_harder.s
html

Fractals and the chaos game. Retrieved on July 17, 2006, from
http://wps.aw.com/wps/media/objects/52/54247/lessons/frac3.html

Panorama of fractals and their uses. Retrieved on July 18, 2006, from

http://classes.yale.edu/fractals/Panorama/Nature/NatFracGallery/NatFracGallery.
html

Lefler – MAT Expository Paper - 20

Playing the chaos game in class. Retrieved on July 18, 2006, from
http://math.bu.edu/DYSYS/chaos-game/node4.html

Self-similarity. Retrieved on July 19, 2006, from

http://math.bu.edu/DYSYS/chaos-game/node5.html

Sierpinski gasket. Retrieved on July 17, 2006, from

http://planetmath.org/encyclopedia/SierpinskiTriangle.html

Spencer, Philip. (1999). Fractals and their history. Retrieved on June 25, 2006, from

http://www.math.toronto.edu/mathnet/questionCorner/fracthist.html

The game of chaos. Retrieved on July 15, 2006, from

 http://www.jgiesen.de/ChaosSpiel/ChaosEnglish.html

Walker, John. (2005). Fractal food. Retrieved on July 19, 2006, from

http://www.fourmilab.ch/images/Romanesco/

Winter, Dale. Fractals. Retrieved on July 20, 2006, from

http://www.math.lsa.umich.edu/mmss/coursesONLINE/chaos/chaos7/index.html

	Fractals and the Chaos Game
	

	/var/tmp/StampPDF/hX8reQC1YO/tmp.1274463696.pdf.pTetI

