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Fractals and the Chaos Gdme

A. Fractal History

The idea of fractals is relatively new, but theiots date back to facentury

mathematics. A fractal is a mathematically gersgt@attern that is reproducible at any
magnification or reduction and the reproductiork®ust like the original, or at least has
a similar structure. Georg Cantor (1845-1918) ttedchset theory and introduced the
concept of infinite numbers with his discovery afadinal numbers. He gave examples
of subsets of the real line with unusual properti€sese Cantor sets are now recognized
as fractals, with the most famous being the Catprare

Waclaw Sierpinski (1882-1969), a Polish mathemaricivorked
in set theory, point set topology, and number thedte is known
for the Sierpinski Triangle.

However, there are many other Sierpinski fractish as the
Sierpinski Carpet.

The term ‘fractal’ was coined in 1975 by Benoit Maibrot (1924 - ) from the
Latin fractus, meaning “broken” or “irregular.” This term wasad to describe
shapes that have the characteristic of self-siity|are. that when you magnify
any part it looks just like (or has the same strigtas the original. He is
widely known for the Mandelbrot set.

B. Basic Fractals

Now, let’s try to create some basic fractals usii
functions on the plane. We can start with a
square with corners at (0, 0), (1, 0), (O, 1), and
1, 1).

We will call our initial image of a square.S

1 Sections A, B, and C created in collaboration
with Sandi Snyder.
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We are interested in what happens to our square wkeconsider the functions
(XY _(x 1y (x 1y 1

fix,y) ===, (X, y)=|=+=,=|,and §(x, y) ={ = +=,=+=|, and evaluate

1(X, ) [ZZJz(y) [222) é(y)(2422j

them at the vertices of our square.

When we evaluate {x, y) = (g%) at the vertices ofSve get the following:
f1(0, 0) = (0, 0)
fi(1,0)=(%, 0)
f1(0, 1) = (0, )
fi(1, 1) = (2, ¥2)

Notice that this takesp@nd shrinks it to half of its original x lengthdahalf of its
original y height.

When we evaluate{X, y) = [g +%%) at the vertices of Swe get the following:

£,(0, 0) = (%, 0)
f2(1, 0) = (1, 0)
£(0, 1) = ( %, %)
fa(1, 1) = (1, %2)

Note that this is the same image as we get frotiout it is shifted ¥z unit to the right.

When we evaluatg(x, y) = (g +%% +%) at the vertices of Swe get the following:

f3(0, 0) = (Y4 , %)
f3(1, 0) = (% , %)
f3(0, 1) = (¥4, 1)
fa(1, 1) = (%, 1)

Note that this, too, is the same image as we get f, but it is shifted ¥ unit to the right
and %2 unit up.

We define the new function formed as F(S)EFO fx(S) O f3(S).
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Here is F(9):

We will call this new image S

We can now iterate our image again by followingghene pattern. To get &e can
start by evaluating fat the vertices of:Svhich would shrink $to half of its original x
length and half of its original y height. Next, weuld evaluate,fat the vertices of:S
This simply gives a % to the right translation §&f). Last, we would evaluate &t the
vertices of 3 This gives us a translation g{$,;), too. This one is shifted ¥4 unit left,
and %2 unit up.

We'll call this image &

Iterate the image again by evaluating the same tlurgctions at the vertices 0§.SThe
first function, f, will shrink the image,.fwill translate the shrunken figure to the right %,
and § will translate the shrunken figure to the rightanagd up %.
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We'll call this image &

This is starting to look like the Sierpinski Tridag We might wonder if our three
functions gave us the Sierpinski Triangle becausetarted with four corners of a
square. Let’s see what happens if we start witls@asceles triangle instead of a square.
We start with an isosceles triangle with corner®a0), (1, 0), and (%2, 1).

The initial image is the isosceles triangle.
We will call this image &

When we evaluate {x, y) = (g%) at the vertices of Sve get the following:
f1(0, 0) = (0, 0)
fi(1,0) =(*,0)
fi(2, 1) = (Y4, %)

Notice that evaluating fwith the vertices of $shrinks the image to half of the original
length of x and half the original height of y.
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When we evaluate{x, y) = [g + % %) at the vertices of Sve get the following:

f2(0, 0) = (2, 0)

f2(1,0) = (1, 0)

f2(%2, 1) = (%4, %)
Notice that this gives the same image that we aeligvith f, but it has been shifted %2
to the right.

1y

When we evaluatg(, y) = (g +Z’ 5 +%) at the vertices of Swve get the following:

£2(0, 0) = (V4 , ¥5)
fo(1, 0) = (%, %)
fo(te, 1) = (% , 1)

This, too, gives the same image as;jrbfit it has been shifted ¥4 to the right, and ¥z up.

We will call this new image S

=
,

After the second iteration we have the new image, S
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Continue with two more iterations. After the fdurt
lteration, we have the new image, S

After the fourth iteration, we can see that whenstét with a triangle the functions are
affecting the image in the same way as when weéestavith a square. In fact, we could
start with any initial image, even a silhouetteJioh Lewis, and after enough iterations
using our three functions we would begin to seeSteepinski Triangle. The final image
is actually independent of the initial image. (€arn more about how the final is
independent of the initial image, visittp://www.maths.anu.edu.au/~barnsley/pdfs/V-
var_super_fractals.pgf

If we do enough iterations, the initial image gatsaller and smaller, becoming a dot,
and so the final image is in a sense made up offarite number of dots. It does not

matter what shape we start with, if we apply thee#hree functions,

y x 1y (x 1y 1) :
fix,y)=|=,= 1, fa (X +=,= |, and §(x = = |, we will get the
1(Y)(22j2(Y)(222j é(y)(2422 g

Sierpinski Triangle.

Another famous iteration is known as the Cantorg®gu The Cantor Square, in contrast,
is an iteration of four functions. We learned ttie first two iterations of the Cantor

Square look like this:

From that, we were able to determine the functibas generate the fractal. To create
the Cantor Square, we begin with a 1 x 1 squarcethib image, we apply the following
functions:

() = [3 gj fL(xy) = (§§+§J

X 2 X 2 2
f,(%y) = (3+§ gj f,(x,y) = (3+5§+§j
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We did not know these four functions before cragpthre fractal. We determined these

functions by examining thep&nd S images. The functions came from discovering the
shrinks and translations applied to the initial g@a%.

The initial image of the Cantor Square is to tighti
We will call this image &

F(S) is an image that looks like this:

We will call this image §
We get these four squares by applying the fourtfans. The function;fsimply shrinks

the image. The function franslates the shrunken image to the right. Thetfon §

translates the shrunken image up, and the funéfitvanslates the shrunken image to the
right and up.

If we repeat the iteration on the previous image get:

We will call this image &

UL - m [ ] mm

And, after one more iteration, we produce this imag eonE ===
We will call this image &

mEE == [ ] mm

mEE == [ ] mm

] | ] mnm "



Lefler — MAT Expository Paper - 8

The Sierpinski Carpet is another unique fractale Marned that the first two images of
the Sierpinski Carpet look like the following:

By looking at these images, we determined the algfé@rent functions necessary to
generate the Sierpinski Carpet.

f(x, y)=[x, Y

w |
w |
N—

TERCEE

(322

TOR(ES

(522

(213

{50
y

_(x,2y.2
fs(x,y)_[3+3,3 3)

We found these eight functions by observing thegivnages &nd S and how $was
transformed to achieve SEach part of Swas formed by either shrinking or shrinking
and translating & The first four images are shown below. Notltat the second image
is actually eight shrunken copies of the previonage, seven of which are also
translated. This is why we have eight functionsreate the Sierpinski Carpet.
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All of the fractals we have looked at so far shtheecommon characteristic in that they
are self-similar. An object is said to be self+amif it looks "roughly" the same on any
scale of magnification. We can choose a small giatie image and it will look very
similar to the whole image. For example, consttlerSierpinski Triangle. Zoom in on a
section, say the pink region. Itis a miniaturgldiate or a copy of the whole triangle, as
is the yellow region. Itis self-similar. In faetll fractals share this characteristic of self-
similarity.

Many objects in nature also have the self-simigsitoperty as we will
see later.

C. Fractalsin Nature

This was not Barnsley’s only contribution in theaof fractals. Let's say you want to
store a picture of a fractal. That would take msitdrage space if we saved the
information by the pixel. Barnsley realized thex@o need to store the whole picture,
just store the functions needed to create the ngictWhen you want the picture, run a
program that iterates the functions as many tirsgga choose, and you will get a
picture like the fractal. Barnsley found and uieslfour functions necessary to generate
a very natural-looking image of a fern, called Bagnsley fern.

This prompted others to try their hand at genegagihsorts of natural images. Believe it
or not, the images below are actually computer-gead with the use of fractals, and not
taken with a powerful camera.

3 =
. —

h.:.,
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It has also become increasingly popular to usddtaechnology to create computer-
generated special effects.

Nature holds an array of items that have fractapprties. Among them are a fern and
romanesco.

Notice that the left picture is a picture of anientern.
But, look closer at one stem (in the upper-right
picture). Doesn't it look like a miniature versiohthe
whole fern? Then, look at one of the fronds.tdo,
looks like a small version of the stem, and an even
smaller version of the whole fern. This is an eglm
of how fractals display self-similarity.

Basically, self-similarity is a characteristic o&ftals in that a fractal looks the same, or
very similar, when you zoom in and magnify it.
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To the right is a picture of a broccoli-like plaralled a
romanesco. You can see how it, too, displaysssiflarity
as you imagine zooming in on it.

Trees, clouds, snowflakes, mountains, and rivessame other naturally occurring
fractals.

To understand self-similarity further, we can thirdw self-similarity is displayed in the
Sierpinski Triangle. The function $hrinks the exact previous image and placestktan
lower-left corner. The function §hrinks the previous image and places it in theete
right corner. The functioryshrinks the image and places it in the upper-neiddéa.
Since the functions are iterated infinitely, iuisderstandable how we could magnify any
section of the Sierpinski Triangle and see thepsiski Triangle. For more information
about self-similarity, visihttp://math.bu.edu/DYSYS/chaos-game/node5.html

D. The Chaos Game

Earlier, we created the Sierpinski Triangle usimgctions. However, can we also create
it using a different type of process? Perhapsavegenerate the Sierpinski Triangle by
random luck. This can be illustrated by the Chaos

Game. C

To play the Chaos Game, start with an isoscelasgle
with the vertices labeled A, B, and C.

A B

We will now assign each vertex numbers of the diertex A will be the numbers 1 or 2.
Vertex B will be the numbers 3 or 4. Vertex C vioé the numbers 5 or 6. We first start
playing the game by picking a point. Let’'s make starting point C. Whatever number
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we roll we will move half the distance toward thewbered vertex and plot a point. We
will remain at that point and roll the die agaW.e will then move half the distance
toward the numbered vertex and plot a point andanertihhere. We will repeat the
process over and over and over. Actually, we rgjleat this process an infinite number
of times. We might hypothesize what image we gall in the end. Since the dots are
being generated randomly, we may think that we khend up with dots that are
scattered chaotically.

We could now sit down and play the game. We wakad a die, graph paper, a ruler, and
a pencil. Let’s pick the starting poi@tand start playing the game.

@2y

P o+ o+ o+ + + + + + + + + o+
P+ o+ o+ o+ o+t +C+ + + + + + + + o+
P+ o+ + o+t o+ + + + + + + + + +
P+ + + + + + + +/H\F + + + + + + + +

We can use a 16 x 16 grid with verticesat (ODQ -~~~ "~ v x 000

and (1/2’0) F o+ + + + + + +/+ + £\t + + + + + + +
[ S S + + + + + + + + + +
F o+ + + + + +/+ + + + £\t + + + + + +
P+ o+ o+ o+ + + + + + + + + + + +
F o+ + + + +/+ + + + + + +\t+t + + + + +
o+ o+ o+ + + + + + + o+ + + + + +
F o+ o+ + +/+ + + + + F + + t\t+ + + + +
o+ o+ o+ + F + + + + + + o+ + + o+ o+
F o+ + +/+ + + + + + + + + + +\t+ + + +
o+ o+ + + + + + + + + + + + + + o+
o+ o+ + + + + + + + + + + + + + o+
o+ + + + + + + + + + + + + +
o+ + + + + + + + + + + + + +
t ———+—+—+—+—+—+—+—+—+—+— +
rA + + +t +t +t + + + + + + + + t+ + B
R + + + + +

(0,0) (1,0)

We can now roll the die and take note of what numaerolled. In this case, we rolled a
three so we will use a ruler to measure halfthe « ~ ~ = =« v v v v v v v r v v oo s
. . + + + + + + + + + + + + + + + + + + + + + + +
distance from C toward B and plot a pointand, . . . | . .. . . .. e e e e e
rema|n there + o+ + o+ + + + + + + +f+ + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
ﬂ_/z Oo=—t—0 + + + + + + + + + (3[4’ l[2+)
Notice that we landed at (3/4, 1/2). IR I L A e e
+ + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + . + + + +
+ + + + + + + + + + + + + + T + + + + + +
+ + + + l
+ + + + + + + + + + + + + + + + + + + + +
+ + + +A+ + + + + + + + + + B + +
+ + + + + + + + + + + + + + 314 + + + + + +
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We can now roll again and repeat the same proddbhs €haos Game.

++ + + 5+ + + + + + + + + +F + + + + + + + + +
This time we rolled a two and we will measure halyz B . J )
the distance toward A and plot a point and remain « © [~ */ 00 r 0 ferer
there. Notice that we landed at (3/8, 1/4). S E Y 4745 70 V2 ) .
:::: ++++Ir++++I+ +++4;
We can now see that this process of rolling thead@ measuring with a ruler may take
us more time than we have to devote to playingdhaos Game. In addition to using a
ruler to find the midpoint, we could also find timean of the coordinates of the point we
are at and the point we are moving toward. Howewes would also take a great deal of
time. Even if we roll the die 300 times and pl603Joints, we may not see a pattern.
Now is when computers are a great asset to ourajeadderstanding the Chaos Game.
Computers can be programmed easily to plot thetpdom us and we can take advantage
of the available technology. Let’s use the comptdgump ahead and see what image
we get after 1,000 rolls of the die.
The following web page came from
http://www.jgiesen.de/ChaosSpiel/Spiel1000Englighlh
2 Game of Chaos - Microsoft Internet Explorer g@@
@Back = lﬂ ﬁ :“ /V‘SEEI(h L‘_\‘} Favores @Y vedia 21 ‘v,;_ ] - ']’i
ece | 8] it . gosen oSSO0 i B -
. Google - v|[Clseath + & 0 B1zboded A% chek + 7K Autolink ~ [ed options &
After 10,000 rolls of the die, we have & 2
surprising image which seems to be
approaching the exact Sierpinski Triar
°
®
.
Help: Choose the starting point by clicking into the red triangle, shoote dice by clicking into the blue dice.
Attention: NEW clears all points.
more information @
] ame of Chaos" ... Welcame to the "G ® rtaimet

Ustart [

| G eplainngthew... | O Document3 M. G smE S (;J;‘uﬂ!":‘ 12:00PH

L
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It's amazing that a random process actually geaesrafpattern. In fact, this Chaos Game
was programmed to generate the Sierpinski Triankjiee were to play the Chaos Game
and roll the die an infinite number of times we \bgenerate exactly the Sierpinski
Triangle.

In addition to playing the Chaos Game on-line, &e also program our T184 calculator
to run the Chaos Game for a certain number of tisigsh as 5,000. Below is the
program that we can enter into our calculator.

PROGRAM: SIEPINS :If 1/3<N and N3
:FnOff :Then
:ClrDraw 25(.5 +XPp X
:PlotsOff 5L+ YPY
:AxesOff :End
:02>Xmin: 1> Xmax :If 2/3<N
:02>Ymin: 12> Ymax :Then
rand> X: rand>Y 251 + Xy>»X
:For (K, 1, 5000) .5¥»Y
rand>N :End

1f N<1/3 Pt—0On (X,Y)
:Then :End

.5X>X :StorePic Pic6
5Y=2>Y

:End

Again we see the Sierpinski Triangle being gemeran our calculator.

Let's now try to think about why this process gextes the Sierpinski Triangle.
Remember that | was given the three functionseabtginning of my project. The
functions weredx, y) = (x/2, y/2), §(x, y) = (xX/12 + 1/2, yI2), antslX, y) = (X/2 + Y4, y/2
+ 12). We'll be keeping those functions in mindagstry to figure out why the Chaos

Game works.

We will again start with an isosceles triangle widhitex A at the point (0, 0), vertex B at
the point (1, 0), and vertex C at the point (1)2, We will choose to start at a vertex,
such as the vertex at the point C (1/2, 1) andthelldie. We rolled a three which tells us
to plot a point half the distance to vertex B. Wi plot the point (3/4, ¥2). Notice that
our point is on the Sierpinski Triangle. We camvrabserve that this is the same point
we would have gotten if would have applied the fiorcf,(x, y) = (x/2 + 1/2, y/2) to our

starting point.

f(1/2, 1) = (1/4 + 1/2, 1/2)
f(1/2, 1) = (3/4, 1/2)
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We can now roll the die a second time. We rollédsa we will plot a point half the
distance from our last point to vertex A. Our gdands at (3/8, 1/4). Notice again that
our point is on the Sierpinski Triangle. We caaiagbserve that rolling a one or a two
means that we are applying the functigix,fy) = (x/2, y/2).

fi(x, y) = (x/12, y/2)
f1(3/4, 1/2) = (3/8, 1/4)

If I roll a five or six, then | would apply the fation f5(x, y) = (x/2 + ¥4, y/2 + %2) and
again land on the Sierpinski Triangle.

fa(X, y) = (X/12 + Ya, yI2 + Y2)
f3(3/8, 1/4) = (3/16 + Y4, 1/8 + %)
f3(3/8, Y4) = (7/16, 5/8)

This process of applying one of the three functioagpens every time we roll the die.
That is, rolling the die tells us which one of these functions to apply. If we roll a one
or a two, the functions is applied. If we roll a three or a fous,i$ applied. If we roll a
five or a six, § is applied. Using a die gives us a random prooésboosing which
function to apply. After an infinite number of igleach function is used one-third of the
time. This guarantees that each part of the SiskpiTriangle gets filled in. Our process
of generating dots is random, but the dots we naa&eart of the Sierpinski Triangle.

Additionally, another way to convince ourselves vihg Chaos Game works is that to
notice that if we pick a point in the Sierpinskiairgle and apply one of the three
functions we will always get a point in the SiegknTriangle. Every point on the
Sierpinski Triangle has a pre-determined outcom@@fSierpinski Triangle. Although
this is believable, it is very difficult to provedthe proof isn’t necessary for our
understanding of the Chaos game so we may takefditi.

Conversely, if we start in a cut out section arltlth@ die an infinite number of times, we
will always land on a cut out section. If we siarthe largest cut out triangle, the points
will eventually lie in successively smaller remouedngles. Actually, the removed
triangles quickly become so small in size thas gs$sentially invisible. Starting in a cut
out section will never allow us to land on the Bieski Triangle.

We can also explain the Chaos game in a slightfgrént way. We saw that when
making the Sierpinski Triangle earlier we applietee functions. The first one shrunk
the image and put it in the lower left area. Téeosid one shrunk the image and put it in
the lower right area. The third one shrunk thegenand put it in the top middle area.
This is just like the Chaos Game except insteastasting with the image and plotting the
image we are starting with a point and plottingpoent. Remember that we are using a
random process with the die which means that dyedioability we will plot points one-
third of the time in the lower left area and oneetfof the time in the lower right area and
one-third of the time in the top middle area. Tinisans that after an infinite number of
times of rolling the die and plotting points we vdtave the Sierpinski Triangle.
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Fractals are a branch of chaos theory and we heeGhaos Game to try to understand
how chaos theory works. The roots of Chaos Thdatg back to about 1900 when the
mathematician Henri Poincaré was working with timeé-body problem. While working
with the three-body problem, he became the firssqeto discover a chaotic
deterministic system. His work laid the foundatfonChaos Theory. In 1960, the
meteorologist Edward Lorenz became the first tioager to work with Chaos Theory.
His interest in Chaos Theory came about accidgnaéallhe was studying weather
patterns.

The Chaos Game is a very fast way to generateafsacFor a computer to generate a
fractal by applying the functions used to genetiagefractal it would take a great deal of
time. For example for a computer to generate the$&ey Fern it would require a full
day or more. However, using the Chaos Game torgenthe Barnsley Fern requires a
second or two to see an image that for all intantspurposes looks like the final Barnsly
Fern.

Interestingly, chaos theory is used to make sehaadstudy natural phenomena that
recently was thought to be pattern-less and indepztbeing described using
mathematical modeling. Some natural phenomenantbatow use chaos theory to study
are weather patterns, the occurrences of earthguakd fluctuations in the stock market.

In Chaos Theory, systems that show mathematicalschee deterministic which means
that they actually have a determined outcome desipé fact that they appear to be
complicated and random. Chaos uses determinisichvwithe philosophical belief that
every event is the inevitable outcome of a previexent. Historically, determinism

dates back several thousand years while Chaos Yefairly recent. With Chaos
Theory a random event produces a specific detedronécome. Chaos Theory was used
as a central role in the movie with Ashton Kutctiged The Butterfly Effect. The movie
got its title from the idea of the butterfly effeghich is where the flapping of a butterfly
is imagined to produce some effect to the atmosptieat eventually leads to some
dramatic event such as a tornado.

Chaos Theory is also portrayed in the book by ReadBury titledSound of Thunder

which used Chaos Theory as a central role. Th&smade into a movie of the same
name that was released in 2005. In the book, ddrexs pay money to time travel back
to the time of dinosaurs for a safari. The tinev& company is very strict that the
customers do not step off the path. However, atgmint one customer steps off the path
slightly and squishes a moth. Then, when theyrmettu present time, the world as they
knew it is drastically different. For instance teited States is now under the leadership
of a ruthless dictator. The outcome of killingttbae specific moth produced a specific
determined outcome of the dictatorship. This isrgpa random event (killing the moth)
produces a specific determined outcome (the dicthijp). This is similar to the playing
the Chaos Game where the random event of rollieglit an infinite number of times
produces a specific determined outcome of the BigkpTriangle. Also, every point on
the Sierpinski Triangle has a specific determinett@me of the Sierpinski Triangle.
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When playing the Chaos Game it looks complicatetrandom, but the outcome is pre-
determined. Chaotic systems are complicated agidliehavior appears random, but
they are really deterministic. Chaotic systemstdaways have to produce a pattern,
though they do in the end in the Chaos Game aniergites the Sierpinski Triangle.
Essentially, we used the Chaos Game to undersaudCihaos Theory works.

Summary

Fractals and the Chaos Game was an amazing tapieefo | gained an incredible
amount of knowledge working through the problerham also very excited to use much
of what | learned with my students. For exampleave an idea of having my students
play a year-long Chaos Game in which each classtia die two times a day for a total
of six rolls in a day.

In prior years | have had my students create tegpBiski Triangle using the process of
connecting midpoints and cutting out triangles.faBe working with my research
problem, | had no connection between functionsfeartals. Through my research |
learned to use functions to generate fractaldsd learned that a specific fractal would
be generated no matter what shape you initiallesdavith as long as you apply the
specific functions. | am also now able to detemrfimctions for some simple fractals.

When | stumbled upon some fractal landscapes lavezed that the images were not
actual pictures of nature. Fractal “art” becamenggresting topic to me that | would like
to share with my students. The fact that fradtads are naturally occurring in nature is
also something that | had not thought much abaot po working with my research
problem. Fractals truly became beautiful imageséasthrough creating fractals and
looking at fractal landscapes and fractals in reatur

When | first started working with the Chaos Gameak blown away by its magical
gualities. It seemed an impossible feat to prona it wasn’t working due to magic.
However, after hours upon hours of toiling with tfeame, | began to see how the
functions used to create the Sierpinski Triangleawming used. My understanding of
why the game works was solidified when | thoughthaf functions being applied to the
points rather that when we first created the SiesigiTriangle and applied the functions
to the image.

At that point, | thought | was completely done. vitaver, for some reason | decided to
start thinking about Chaos Theory. Again, | wasAsi away. The wonderful part about
delving into understanding Chaos Theory was tlzaie to understand how working
with the Chaos Game is a useful tool for understan@haos Theory. Also, working to
understand Chaos Theory helped me to understahduley point on the Sierpinski
Triangle has a specific determined outcome of ikep#iski Triangle. While working to
understand Chaos Theory, | was really pleasedtéhuse of Chaos Theory in Ray
Bradbury’'sSound of Thunder and in the movie titleButterfly Effect. Thinking about

this book and this movie helped me to understanak Wihaos Theory is about. | even
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was able to think about how Chaos Theory has played my own life and how every
event in my life has produced the outcome of whem now at this point in time.

Overall, the experience of researching fractalstaedChaos Game was excruciating but

incredibly wonderful. When it all came together foe | felt like | had never felt before,
superhuman.
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