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Photodetachment of H™ by a short laser pulse in crossed static electric and magnetic fields

Liang-You Peng, Qiaoling Wang,™ and Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0111, USA
(Received 24 April 2006; published 3 August 2006)

We present a detailed quantum mechanical treatment of the photodetachment of H™ by a short laser pulse in
the presence of crossed static electric and magnetic fields. An exact analytic formula is presented for the final
state electron wave function (describing an electron in both static electric and magnetic fields and a short laser
pulse of arbitrary intensity). In the limit of a weak laser pulse, final state electron wave packet motion is
examined and related to the closed classical electron orbits in crossed static fields predicted by Peters and
Delos [Phys. Rev. A 47, 3020 (1993)]. Owing to these closed orbit trajectories, we show that the detachment
probability can be modulated, depending on the time delay between two laser pulses and their relative phase,
thereby providing a means to partially control the photodetachment process. In the limit of a long, weak pulse
(i.e., a monochromatic radiation field) our results reduce to those of others; however, for this case we analyze
the photodetachment cross section numerically over a much larger range of electron kinetic energy (i.e., up to
500 cm™!) than in previous studies and relate the detailed structures both analytically and numerically to the

above-mentioned, closed classical periodic orbits.

DOI: 10.1103/PhysRevA.74.023402

I. INTRODUCTION

High resolution studies of atomic Rydberg states in the
presence of external static electric and magnetic fields have
proved to be exceedingly fruitful for the investigation of
atomic dynamics because, owing to the large radial extent
and weak binding of atomic Rydberg levels, the effects of
external static fields are much more significant for Rydberg
levels than for atomic ground or low-lying excited states [1].
Consequently for more than a quarter century (up to the
present) experimentalists and theorists have been investigat-
ing atomic Rydberg spectra in external fields, including in
particular the interesting case of crossed static electric and
magnetic fields [1-36]. These latter investigations for the
crossed field case include studies of motional Stark effects
on Rydberg atom spectra in a magnetic field [2], of novel,
highly excited resonance states [3,6-8,10,12,14,17,24], of
circular Rydberg states [9], of Rydberg wave packets in
crossed fields [11,13], of nonhydrogenic signatures in Ryd-
berg spectra [21,23], of doubly excited states in crossed
fields [29], of recurrence spectra [30-32], and of various
aspects of electron dynamics in combined Coulomb and
crossed static electric and magnetic fields
[1,15,16,18-20,22,25-28,33-36].

The related problem of photodetachment of a weakly
bound electron (e.g., as in photodetachment of a negative
ion) in the presence of crossed static electric and magnetic
fields has been the subject of fewer investigations despite its
having a comparably rich spectrum. (Note that the weakly
bound electron in a negative ion can simply decay, or be-
come detached, solely due to the presence of the external
static electric and magnetic fields, a process that has long
been studied theoretically, as in, e.g., [37,38].) Experimen-
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tally, crossed field effects have been found to be significant
in photodetachment of negative ions in the presence of a
static magnetic field owing to the influence of the motional
electric field experienced by the detached electron [39,40].
The photodetachment spectrum of H™ in the presence of
crossed static electric and magnetic fields has been treated
theoretically by Fabrikant [41] and by Peters and Delos
[42,43]; a generalization to the case of photodetachment of
H™ in the presence of static electric and magnetic fields of
arbitrary orientation has been given by Liu et al. [44-46]. In
each of these works the static fields are assumed to be suffi-
ciently weak that they do not affect the relatively compact
initial state. Fabrikant [41] gave the first quantum treatment
of single photon detachment in crossed static electric and
magnetic fields using the zero-range potential model to de-
scribe the initial state of H™; rescattering of the electron from
the potential was also investigated, although the effect was
found to be small except for high magnetic field strengths.
Peters and Delos [42] gave a semiclassical analysis of H™
photodetachment in crossed fields and correlated significant
features of the spectrum with closed classical orbits. Subse-
quently they derived quantum formulas for this process (us-
ing the zero-range potential model for the initial state) and
exhibited the connection to their predicted classical closed
periodic orbits [43]. The generalization of Liu et al. [44—-46]
to the case of static electric and magnetic fields of arbitrary
orientation is also based upon the zero-range potential
model. In all of these works the electromagnetic field that
causes photodetachment is assumed to be weak and mono-
chromatic. Also, the photodetachment spectrum is analyzed
numerically over only a very small energy range above
threshold.

While we are not aware of any experimental work on
photodetachment in the presence of crossed static electric
and magnetic fields, numerous experimental investigations
have been carried out that involve photodetachment in the
presence of other static field configurations. The group of
Bryant and collaborators have over about 2 decades studied
various aspects of photodetachment of the H™ ion in the pres-
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ence of a static electric field [47-52]. Experimental investi-
gations of other negative ions in static electric fields have
also been carried out (see, e.g., [53,54] and references
therein). Photodetachment of negative ions such as S~
[55,56] and O~ [40,56-58] in the presence of a static mag-
netic field have been studied experimentally as well. Re-
cently, detachment of S~ in the presence of parallel static
electric and magnetic fields has been investigated experimen-
tally [59]. We note that the experimental work in Ref. [40]
involved use of laser pulses much shorter than the cyclotron
period.

In this paper we consider detachment of H™ by a short
laser pulse in the presence of crossed static electric and mag-
netic fields. In practice, the laser pulses are short in the sense
that they are comparable to the cyclotron period Ty (tens of
ps in this work) of the electron in the magnetic field, and
comparable to the return times of the classical closed orbits
of the detached electron in the crossed fields. However, they
still contain at least several hundred laser cycles or more
(5-5.5 fs per cycle in this work), which makes it still appro-
priate to talk about photons with well-defined frequencies.

We present an analytic expression for the final state of the
detached electron taking into account exactly the effects of
both the laser field and the two static fields. The initial state
is described by the solution of the zero-range potential, as in
all other quantum treatments to date [41,43—-46]. We present
also an analytic expression for the photodetachment transi-
tion amplitude that can be used to describe the probabilities
of multiphoton detachment in crossed fields. In this paper,
however, our focus is on single photon detachment by short
laser pulses and on the connection between the detached
electron wave packet motion and the predicted classical
closed periodic orbits of Peters and Delos [42]. As noted by
Alber and Zoller [60] (in connection with electronic wave
packets in Rydberg atoms), such wave packets “provide a
bridge between quantum mechanics and the classical concept
of the trajectory of a particle” and “the evolution of these
wave packets provides real-time observations of atomic or
molecular dynamics.” We show this connection for the case
of short pulse laser-detached electron wave packets in
crossed static electric and magnetic fields. In addition, we
show analytically how our short pulse results reduce to the
quantum monochromatic field results of Fabrikant [41] and
Peters and Delos [43] in the long pulse limit as well as the
connection between our analytic quantum formulation for the
photodetachment spectrum and those features that we asso-
ciate with the predicted classical closed orbits [42]. Finally,
we present numerical results in the long pulse limit over a
large energy range above the single photon detachment
threshold in order to demonstrate clearly these manifesta-
tions of classical behavior in our predicted photodetachment
spectrum.

This paper is organized as follows: In Sec. II we present
our theoretical formulation for detachment of H™ by a short
laser pulse in the presence of crossed static electric and mag-
netic fields. In particular, in this section (with details given in
an appendix) we present an exact, analytic expression for the
wave function for an electron interacting with both the laser
pulse and the crossed static electric and magnetic fields. We
present here also analytic expressions for the transition prob-
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ability amplitudes for both a single laser pulse and a double
laser pulse (i.e., two coherent single pulses separated by a
time delay). In addition, the long pulse (monochromatic
field) limit of our results is presented and this result is com-
pared with a number of prior works for various static field
cases. In Sec. III we establish the connection between the
long pulse limit of our results and the closed classical peri-
odic orbits predicted by Peters and Delos [42]. In Sec. TV we
present our numerical results, starting first with a comparison
with prior results for the long pulse (monochromatic field)
case and then examining the short pulse case, including the
final state motion of the detached electron wave packets.

II. THEORETICAL FORMULATION

We consider photodetachment of H™ by one or more short
laser pulses in the presence of crossed static electric and
magnetic fields. In the final state, we assume the detached
electron experiences only the laser and static fields; we ig-
nore final state interaction of the electron with the residual
hydrogen atom. For weak external fields, this is expected to
be a good approximation for this predominantly single pho-
ton process. In this section, we first give the S-matrix transi-
tion amplitude for photodetachment of H™. Then we present
an exact quantum mechanical solution to the time-dependent
Schrodinger equation for the final state of the detached elec-
tron in both the crossed static electric and magnetic fields
and the time dependent laser pulse. We then use this result
together with S-matrix theory to obtain detachment rates and
cross sections. Atomic units are used throughout this paper
unless otherwise stated.

A. S-matrix transition amplitude for photodetachment of H™

We adopt the Keldysh approximation for the final state,
i.e., we neglect the binding potential [61]. In this case, the
S-matrix transition amplitude from the initial state ; to the
final state ¢ is given by

Sﬁ=—if dr" (.t )V |e(p.t')). (1)

where V; represents the laser-electron interaction and the
bracket () stands for integration over momentum space. For
the zero range potential for which the bound state wave func-
tion has the form e™*"/r, the S-matrix element in Eq. (1) can
be shown to be gauge-invariant [62,63]. Such a bound state
wave function can be used to represent the weakly bound
electron of H™. We use that of Ohmura and Ohmura [64],
which in momentum space is given by

C. g—is,-t
-
\'277])2/2 —-&; ’

{r/,i(pJ) = (2)
where C; is a normalization constant and g; is the initial state
energy. Using the variational results of Ref. [64] and effec-
tive range theory for a weakly bound s-electron [65], one
obtains [66] C;=0.31552 and &;=-0.027751 a.u. The gauge-
invariant S-matrix transition amplitude for H™ detachment is
then given by [cf. Eq. (27) of Ref. [63]]

023402-2
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FIG. 1. Geometrical arrangement of fields in photodetachment
of H™ by a linearly polarized laser (with electric field Ep) in the
presence of crossed static electric (Eg) and magnetic (B) fields.
Both the laser and the static electric fields point along the z axis. As
indicated, the drift motion of the detached electron is along the y
axis.

(S, =1 f d' Wyp.NCzme ™. (3)

B. The final state wave function

In order to calculate the S-matrix transition amplitude in
Eq. (3), we present in this section an analytical expression
for the final state wave function ;. As aforementioned, we
neglect the binding potential after detachment. Therefore i,
is actually a Volkov-type wave function that describes a free
electron moving in the combined field of the crossed static
electric and magnetic fields and the time-dependent electric
field associated with the short laser pulse. In Fig. 1 we illus-
trate the configuration of the external fields in which the
detached electron moves: the uniform static magnetic field
defines the x axis and the static electric field defines the z
axis, i.e.,

B =Bi, (4)

ES=ESI’;‘ (5)

We assume that each laser pulse has the following general
form:

EL(1) = Eee™ = sin(wr + B)K, (6)

where  is the laser frequency, 7 is the time delay with
respect to r=0, and B is a (generally constant) phase. The
duration of the laser pulse is defined to be the full width at
half maximum (FWHM) of the laser intensity, and is given
by
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7= \2in )

We introduce the vector potentials for the magnetic field and
the laser field, respectively, as follows:

Ap=-2zBj, (8)

ALt =- Cf Ep(1")dr’, )

where c is the speed of light in vacuum.

The final state wave function for the detached electron is
obtained as the solution of the time-dependent Schrédinger
equation (TDSE) in momentum space,

d
igw}”(p,r) = HyP (p.1), (10)

in which the Hamiltonian H is given by

1 1 2
H(p,t):E{p+;(AL+AB)] +1-Eg (11)

1,5 Es\d 1,
=—Ewcgi—lwc(py—— +—pz

) ap. 2
1 1 1 1
+=pA () +=p*+—p>+ —A%1), 12
P (1) SPxt 5Pyt 3 (0 (12)

where w.=B/c is the cyclotron frequency.

It can be shown that Eq. (10) has an exact analytical so-
lution. The details of the derivation are presented in Appen-
dix A. The final expression of the solution is given by

'//](Cp)(p’t) = 5(px - kx) 5(17) - ky)exp[_ ieft - lf(t)]
—
X w; g, (\24, Jexpl- ib(k,,032¢, 1, (13)
in which g,,z(x) is defined by

1
———e""H, (x), (14)

gn_(x) =
‘ V2", !N

where H, (x) is the Hermite polynomial of order n_. In Eq.
(13) we have also defined

Lo e lop_la B LES
&= 2( LK) +g, - 2wcgky_ ket \";cgky+8nz+ 20
(15)
1 1 t t
J) == &0 + Ff AZ(e"dt' —J L(t")dt',
YW, - c —o0 —00
(16)
blk,1) = &~ EDNw, (17)
where the arguments £, and §kv are given by
—
gpz(t) = [Pz - g(t)]/\/zwc’ (18)
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= (k —§>, (19)

\(1) [OF

and the energy of the nth Landau level &
given by

. in Eq. (15) is

1
g, = (nz+ E)wc. (20)

In Eq. (16), L(r) and &(¢) are functions related to the vec-
tor potential of the short laser pulse. L(z) is defined as

L= 3580 - 380 A0, (@)

while &(¢) satisfies the following differential equation:

2

&)+ 2E(0) = - %AL(», (22)

where £(¢) denotes the second derivative of &(f). We present
the exact solution for &(¢) in Appendix B. However, in the

long pulse case (a/w< 1), a simplified expression for &(r)
can be obtained as

&) = a(w)e @~ cos(wt + B), (23)
where we have defined
Eowz.
a(w) = . 24
@= i (24)
In this case, the first derivative, &(7), is thus given by
&) =- wa(w)e_az(’_ n’ sin(wt + B). (25)

In order to investigate wave packet dynamics, it is useful
to derive an expression for the final state wave function in
which its z component is given in coordinate space. This is
achieved by taking the Fourier transform of Eq. (13) with
respect to p_, i.e.,

WZ)(PmPyZ t) = k k ., (px’pwz t)

1 .
=——| dpy(p.0e" (26)
\”277 —

Changing the integration variable to ¢, [cf. Eq. (18)], we
obtain '

. —
lzb](‘Z)(px’py’Z’t) = 5(17)( - kx) 5(1)) - ky)l Lwimgnz[ Vo .z — b(ky’t)]

X explizé(t) —iggt — if(1)], (27)

where we have made use of Egs. 7.388(2) and 7.388(4) in
Ref. [67].

C. S-matrix amplitude for photodetachment of H™~

In order to examine the motion of the detached electron
wave packet in crossed E and B fields, we define in analogy
to Eq. (23) of Ref. [68] a time-dependent transition ampli-
tude Ry;(7) from the initial state to the final state (k,ky,n,):

PHYSICAL REVIEW A 74, 023402 (2006)
G ! o
(sz(t))k k n, = =i /2—\’200 f dt' et +if(t")
vV s

* _ ~ . f ’r'_
X J w; " g, (28, Jexplib(ky,1')¥28, 14, |

(28)

where £;,=¢g,~¢;, b(k,,t') is given by Eq. (17), and where
we have used Eq. (13) for the final state wave function in Eq.
(3). Using Eqgs. 7.388(2) and 7.388(4) in Ref. [67] to carry
out the integration over {, , we obtain

t
R e, = ”“Q[dﬁ%ﬁw ;" g, [b(ky,1")].

(29)

Note that in the limit of #—, R(t) reduces to the S-matrix
transition amplitude (3), i.e.,

(*Svfi)kxkynz = thm (Rfi(l‘))kxkynZ . (30)

In principle, with this analytical S-matrix amplitude one
can readily calculate the total and multiphoton transition
rates, as done for H™ detachment in a static electric field in
Ref. [63]. However, in the present paper, we restrict our con-
sideration to the one-photon detachment process. (Note that
there are still many cycles in the short laser pulses that we
consider in this work.) Our analytical results facilitate easy
comparison with some other previous results. Consequently,
we evaluate Eq. (29) only to first order in the laser electric
field strength E,, i.e., we employ the following approxima-
tions:

t)~1+lf(t)~1+l fé“kf(f)
Vo

' / &)
gnz[b(ky,t )] = g,,z(fky) + g"z(gk}') |:_ ﬁ] ,

¢

where gn ((k) stands for the derivative of g,_ ({k) Thus, to

first order in E,, the time-dependent transition amphtude is
given by

t
(Rj(ﬁl')(t))kxkynz= inZHCiw;Mgnz(Zkv)f dt' s

i +1C (1)1/4 ’ (g )f di'e zsft/ g( )
—x (l)
t ) , lJ
- inzcigk wimgn (gk )f dt,elsﬂt Q
y R Vo,

(31

Note that, as usual, the first term in Eq. (31) does not con-
tribute to the photodetachment process (since for t— o, the
only contributions are for sﬁ—>0); hence this term is dis-
carded in the following discussion.
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In the long pulse approximation, with the help of Eqgs.
(23) and (25), one can show that

+1C1gn (gk ) wwgm)

c —o0

2040 20 4!
(Rfl (t))k kyn, dt' e @ (t" = D +iggt

Xsin(wt' + B) = i":C; i$y8n, (é"k ) w 1/)4

Xf dt' e 2 - 7')2+isﬁ.t’ cos(wt’ +B), (32)

which reduces to

cr. (ﬁl[wgn (6) + 0.4,8,(8)]

R gy, == i

t
% J dtre—az(z’ - r)2+isﬁt’—iwt’—iﬂ (33)

if we neglect the emission process (i.e., if we discard terms
involving e*i*!").

The integration over ¢’ in Eq. (33) can be carried out
analytically:

t
f dr'exp[— o*(t' — 7> + igpt’ —iot' —if]

—
—L erf a(t—r)—zu +1
2a 2a

PRY:
Xexp[— (—8% +i(ef—w)7— iﬂ}.
o :

Thus for the single laser pulse in Eq. (6), the first-order time-
dependent transition amplitude in the long pulse approxima-
tion is given by

(w)
(Rfl (t))lscg}c ua = /4 [wgn (gk ) + wcg)gn (gk )]
X Dsgl(sfh t) 5a(8fi - (1)) s (34)
where we have defined
Dyy(eg1) = e"<€ff—w>f-iﬂ{ 1+ erf[ alt—1) - IEZL(D:| }
a
(35)
and have also introduced the quasi-S-function [68],

(ﬁu] (36)

O(e— w) = (277'/2a)_lexp{— 1l
a

In the limit that our finite laser pulse becomes a monochro-
matic plane wave, the quasi-S-function becomes the usual
Dirac é-function,

Aep— ) =limb,(ef— ). (37)
a—0
Taking the limit r— +%, we obtain from Eq. (34) the

following analytical expression for the S-matrix amplitude
for the case of a single, finite laser pulse:

PHYSICAL REVIEW A 74, 023402 (2006)

ma(w)
(S}}) Isci;cynz == z i 5/4 [wgn (gk ) + wcgvgn (gk )]
X e’@ff-w”—’ﬂaa(sﬁ - ), (38)

where we have used the fact that erf(co+iy)=1 for any finite
real number y.

D. Detached electron wave packet

We may obtain the detached electron wave packet prob-
ability amplitude as a sum over all final states of the product
of the time-dependent transition amplitude for transition to
the final state (k,,k,,n,) at a particular time ¢ [Eq. (34)] and
the wave function [Eq. (27)] for that state (cf. Sec. II D of
Ref. [68)):

wWP(px’py’ <5 t) = E

n=0 v -

XR_;'II‘)(t)kxkynz' (39)

dkxf dk}’lpl(ci),k},,nz(px’p}”z’t)

By using Egs. (27) and (34), the wave packet for the single
laser pulse (6) is given by

Tra(w)
Vi popy i =-C S Ciy exp[zzg—zsft

¢ n=0

1 —
_l(__gp,§:| X gn,[vwcz_b(py’t)]
Vwc y 2

x[wg) (¢,)+ 0y (6]
X Dsgl(s}i,t) 5(1(8}1 - a’)’ (40)
where §p and b(p,.t) are defined by Egs. (19) and (17),

respectlvely, sfl sf g;, and sf is given by Eq. (15) with g"k
replaced by Zpy

E. S-matrix and wave packet amplitudes for the double pulse
case

We consider here the case that there are two laser pulses
of the form of Eq. (6), with the second one delayed with
respect to the first by a time interval 7 and having a relative
phase of B, i.e.,

EP (1) = Ej[e" sin(wr) + e~ sin(wr + B)IK.
(41)

To first order in E, it is easy to show that for the double
laser pulse case, the time-dependent transition amplitude is
given by

RO, =~1"C; (5,4)[wg,, (&) + 0l (5]

X Dypi(&fin1) 6,(e — 0), (42)

where the function Dy (e/;,1) is given by
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Ef— W . )
Ddbl(sﬁ,t) =1+ erf[ at — 1—2;] + olEpim@)™iB
o

X{l+erf[a(t—r)—i§%w]}. (43)

When ¢t— o, the above formula reduces to
(i ik, = i R i,

ma(w)

C; 5/4 [wgn (gk ) + o, gygn (gk )]

=—i%C

xX[1+ e’<8ﬂ-w>f-’ﬁ] Sulesi— w). (44)

The wave packet amplitude for the double laser pulse case is
correspondingly given by

G o) E (=1

2 . n,=0

deb})(px»py’ 2, t) ==

1
Xexp[izg— iggt —i——=(, 5]
’ Vo,

xg,[Vwz~b(p,.0]wg) (&)

+ wcgygnz(gpy)] X Ddbl(s}i?t) 5(1(8],‘1' - w)'
(45)

F. Photodetachment cross section

The transition probability to a particular final state
(ky,ky,n,) is given by

Py = (S,

and the total photodetachment probability is calculated by
integrating over all final states,

% (46)

P=> | dk, f dkyPy g .- (47)
n=0 J - —© l

For an infinitely long, monochromatic beam, the probability
P is proportional to time, t. In this case, it does not make
sense to talk about the total transition probability. Instead,
one normally considers the total transition rate, W, which is
given by [61]

!
W=Ilim—P. (48)
1—0 t
The total photodetachment cross section is obtained by di-
viding the total photodetachment rate W by the photon flux F
(the number of photons per unit area per unit time):

Opw=""1 (49)

where “pw” stands for the monochromatic plane wave case.

For the short laser pulse case, it does not make sense to
talk about a transition rate since the transition probability is
not simply proportional to time ¢. In addition, the photon flux

PHYSICAL REVIEW A 74, 023402 (2006)

F is not well-defined. Nevertheless, it is possible to renor-
malize the total probability for detachment by a short laser
pulse in such a way that the renormalized probability re-
duces, in the limit of an infinitely long pulse, to the usual
formula for the photodetachment cross section. Since the
renormalized probability will have the dimensions of area,
we denote it as an effective photodetachment cross section,
o. To derive this effective cross section, one uses the time
duration of the laser pulse as the unit of time. One calculates
the total photodetachment probability P over the laser pulse
duration and the total number of photons per unit area (i.e.,
the time-integrated photon flux), X, over the laser pulse du-
ration. Then an effective photodetachment cross section, o,
may be defined as

o==. (50)

Clearly o defined in this way has the dimensions of a cross
section. (Such effective cross sections were employed also in
Ref. [68].) In the rest of this paper, o should be understood
to be this effective photodetachment cross section, i.e., cal-
culated according to Eq. (50)). We shall show below that this
o for the short laser pulse case reduces in the limit a— 0 [cf.
Eq. (6)] to the usual photodetachment cross section for a
monochromatic plane wave.

The time-integrated photon flux, 3., is calculated as fol-
lows:

3= —— f dlEG). (51)
drw ) _.,

For a single Gaussian pulse [defined by Eq. (6) with 7=
=0], X is given by

CEO \'277
o= T . 52
el = 87w 2« (52)

For the double pulse case [defined by Eq. (41)], 2 is corre-
spondingly given by

E2 \27
c V2
—0—[1 + cos Bexp(- a

2
— 712)]. (53)

b =
Taking B and 7 to be zero in Eq. (38), and using Egs. (24),

(46), (47), (50), and (52), we have for the photodetachment
cross section of H™ by a single pulse of the form of Eq. (6):

47 Cl? <
o= 2)2 2 dék)_[ikywcgnz(gky) + wgéz(é“k)_)]z

co(w’ -
x f " kB ), (54)
where we have employed a second quasi-S-function [68],
5 o(Efi— ) = 1— ex p[ (—SL;))Z], (55)
a2 2a

which reduces to the usual Dirac J-function in the limit of a
monochromatic plane wave, i.e.,
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des— w) = lim Ea(sﬁ -w). (56)
a—0
Note that
1
- o=+ 0)], (57)

in which we have defined [cf., Eq. (15)]

2E
QL) = (&, + L) (58)
Y= T

Vo, 1 Ej
gmin_ Es nz+5 wc+2_w2._

(&

where

g - w:|. (59)

The integration over k, in Eq. (54) has an analytical result
when Q({k‘_) =0. The result is

* 1 (g — w)?
f dk, ,—exp{ —7]

o a2
([ [k +0(5)T
= \’mJ_w dk, expl— T ea? * }
1 E Eﬁ(gk + L)
2 2
1/4[ ES(i:;jzmm) }, (60)

where we have used the following formula [cf. Eq. (3.323)
on p. 307 of Ref. [67]]:

f dx exp[- B - 29727 = 2-3’2%74’2’321@/4(y4/2/32>,
0

which holds for |arg 8| <7 and |arg y| <7, and where K (z)
is a modified Bessel function (cf. p. 375 of Ref. [69]). When
oz kv) <0, the integration in Eq. (60) must be done numeri-
cally.

1. Plane wave limit of the cross section

In the plane wave limit, «— 0, the integration over k,
[making use of Eq. (55)] becomes

f dk,Se s — w) = f dkx6<%k§+%Q(§ky)). (61)

This integral is nonzero only when sﬁ—w=%kx

2 1

+§Q(§kv)=0’
i.e., when we have strict energy conservation. For nonzero
real k,, we should thus require

2E
Q&) = Lk, + i) <0
Y= T,

or

8, ==&, > bmine (62)

Thus we have
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J_wdk 5<2 ki + Q(ik ))

l o]
1o | dklk+lol) sk -0l
2w1/4 1

[

) \“”’Q_ES \/_ gk), - gmin .

In the plane wave limit, we have then (converting £, to Zk )
y y

" 80
O™ co(a - a)2)2 \’Z_Esn ~ fmm m[gk Oc8y_ (§k
+ g, (4T (63)

We consider now two limiting cases, corresponding to
weak static magnetic and electric fields, respectively.

a. The weak magnetic field limit. The plane wave cross
section in Eq. (63) can be simplified when the cyclotron
frequency, w,, is much smaller than the laser frequency, w,
ie., w.< w. In this case,

o r2
y i G
O-a—O , <w=
=0

\’ ES : min \/ g min

where we have defined

872 C?

3cw’

0'0=

K, (65)

in which ¢" is the photodetachment cross section for H™ in
the monochromatic field limit in the absence of any static
fields, and k is the magnitude of the detached electron’s mo-
mentum, k2=2Ef=2(w+s,~).

We note that our weak magnetic field result in Eq. (64)
agrees with the formula of Peters and Delos [see Egs. (3.6)
and (3.7a) of Ref. [43]]. Equation (64) agrees also with Fab-
rikant’s result [see Eq. (53) of Ref. [41]] except for the extra
term in his formula that accounts for final-state interaction of
the electron with the atomic residue.

b. Weak static electric field limit. In the limit Eq— 0, we
have that {;,— —%, and we have also

lim \rZES\/§k §mm—w]/4\/2w { (&, + w)/w, —(n + = )J

E¢—0

(66)

Substituting this result into Eq. (63) and carrying out the
integration involving the Hermite polynomials, we obtain
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T a=0,E;=0 = L

) 8772Ci2a)3 2 {w2+wf 1:|
2

cw(w + wc)zn =0 ((1) - wc)

X ! (67)

\/Zw{(si+ w)lw, - (nz+ %)J

where the upper limit of summation, 7, is the largest integer

that satisfies
gi+tow 1
}’ll < - 1.
W, 2

Equation (67) is exactly the same as Gao’s result for the
one-photon detachment cross section in a static uniform
magnetic field [see Eq. (31) of Ref. [70]].

2. Cross section for the double pulse case

From Egs. (44), (47), (50), and (53), it is easy to show
that for the double laser pulse case, the cross section is given
by

0 477 Clo?

Ogpl = 2)2 2 d§k g Wc8n, (fk )+ wgn ((k Mg

co(w® - o

dek

We note that for 7=8=0, this formula reduces to the single
pulse result in Eq. (54), as it should [cf. Eq. (41)].

1+ cos[(sf, w)7- B]
1 +cos Bexp(— a*7/2) ¢

5 (e — ). (68)

III. CONNECTIONS TO CLASSICAL CLOSED ORBITS

In the previous section we have derived a general quan-
tum mechanical expression for the (effective) photodetach-
ment cross section for H™ by a short laser pulse in the pres-
ence of crossed static electric and magnetic fields. We have
also shown that our plane wave limit result [given by Egq.
(63)] reduces for the limiting cases of weak static magnetic
[cf. Eq. (64)] or weak static electric [cf. Eq. (67)] fields to
known results of others. Magnetic field strengths, B, that are
readily available at present in the laboratory are weak in the
sense that they satisfy the relation, w.< w. Therefore the
quantum result for the photodetachment cross section in the
plane wave limit given in Eq. (64) is of great interest owing
to the possibility of experimental measurements with cur-
rently available technology. In this section we analyze this
equation for the purpose of making a connection with the
classical closed orbits analyzed by Peters and Delos [42].
This connection will prove useful for interpreting some of
the numerical predictions presented in the next section.

For w>> w,, the detached electron energy lies in the re-
gion of large n.. In this limit the integrand in Eq. (64) be-
comes highly oscillatory, as may be seen by considering the
large n, (Plancherel-Rotach) limit of the Hermite function,

8n, [711:
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Z)= | ——2 - LR PO o
8n (L) = m{sm[(nz+2>(ml 7

—arcos 7) + %T} + O(ngl)}, (69)
where we have defined
n= Zky/ \’%, (70)
and note that
es<arcos p<=m—-¢€, €— 0,

i.e., the argument of the Hermite function, gm(Zk ,)’ must lie
between the classical turning points: o

—\12n1+1<Zk <\2n,+1.

The function gn ({k ) that occurs in the integrand of Eq. (64)
may be calculated by differentiation of Eq. (69) with respect

to {kv, as follows:

J ~
_gn7(§k))

~ an
/ _——
gnz(gky) - ~ a 77

5§ky

— 1 2 (1 2)—5/4
V2n,+1 NV 7T\'2n

Xsin[S(n, 7)]+ 2n, + 1)(1 - 772)1/4cos[S(nZ, 77)]},

(71)

where we have defined the phase
1 —
5)(77\' -7 -

Assuming that n,>> 1, Eq. (71) can be simplified (in particu-
lar, the first term within the curly brackets can be ignored in
comparison with the second term), so that we obtain

3
S(n,,m) = (nz+ arcos 7) + 777 (72)

8(&) = \/Z(znz)““(l = 77)" cos[S(n, )] (73)

Owing to the fact that n_ is large, the phase function
S(n.,m) changes significantly as # varies [cf. Eq. (72)], so
that gn (§k ) oscillates rapidly as a function of {k From Eq.
(64) we see that the magnitude of the photodetachment Cross
section will have the highest maxima when the squares of the
various gn (§k) functions that are summed (over n,) have

their maxima and minima in phase with each other, i.e.,
when neighboring phase functions differ by an integer mul-
tiple of

S[np 7](’11)] - S[nz - l’ 7](”1 - 1)]

d . .
=—=S(n,n)=jm, where j=0,=1,+2,....

dn,

This condition is similar to that found for the largest local
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maxima in the photodetachment cross section of H™ in the
presence of parallel static electric and magnetic fields [72].
We compute the total derivative of S(n., 7) as

d as a8 any
_S s :__+___
i (n,m) o

Z Z

. 74
dmadn, (74)
The partial derivatives of the phase S(n., 7) follow straight-
forwardly from the definition in Eq. (72). The partial deriva-
tive, dn/ dn,, is calculated using the definition in Eq. (70) and
the expression for Zky obtained from the energy conservation
condition, &;—w=0, together with Egs. (57)-(59) and (62).
After some straightforward algebra, one obtains

d — o,
—S(n,, ) =—arcccos p+ V1 — =128, =j.
di’lZ © ES z

(75)
The condition (75) for the highest local maxima in the

photodetachment cross section (64) may be rewritten in
terms of the scaled energy e, defined by

2
e=¢g, <&> , (76)
¢4 ES
and the angle ¢, defined by
T
¢=7- arcos 7, (77)
to obtain
o 1 ( . 1)
cosp+—————|j+=|m=0. (78)
¢ \J'% \2e / 2

This result is identical to the classical equation expressing
the relationship of the azimuthal angle ¢ and the scaled en-
ergy ¢ for a closed orbit of an electron in crossed fields [see
Eq. (3.12) of Ref. [42]].

The classical Hamiltonian corresponding to the quantum
Hamiltonian (12) for the detached electron is given by

H,= %wi# + wcz<py - i—i) + %p? + %pi + %P)Z
s B oo o 5]
- %i—% (19)
Denoting
sz=%p3+%[wc.z+<py_i_i)r’ (80)

and introducing the following scaled coordinate, momentum,
and time variables,

q, (81)
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o,
P=—"p, 82
P=pP (82)
= w.t, (83)
Eq. (79) may be rewritten as
1, _ 1
E=8+5px+py—5, (84)

where E=w’(w+g;)/E; is the scaled total energy and & is
given by Eq. (76) in which the quantum energy ¢, [cf. Eq.
(20)] is replaced by the classical energy &, in Eq. (80).

With the help of Egs. (20), (19), and (62), it is easy to
show from the definition (70) that

Py~ Eglo,

77=—W, (85)

which can be rewritten, in terms of scaled energies, as
e—(E-1/2)

: (86)
V22

n

by using the energy conservation equation (84) and the fact
that p,=0 for closed orbits. Substituting Eq. (86) into Eq.
(77), we can rewrite Eq. (78) as

—-(E-1/2
Ale) = \’/28 - [8 -(E- 1/2)]2 - MCCOS{L/Z—)} =jm
V2e

(87)

For a given scaled total energy E, the number of the solu-
tions of Eq. (87) gives the total number of closed orbits. The
return time of a closed orbit in crossed fields is given by [42]

T = Z(wc)_l \J’% Cos ¢, (88)
which can be rewritten with the help of Egs. (77) and (86) as
T =2(w) 26 -[e - (E-1/2)]. (89)

As discussed in [42], there exists a very important group
of closed orbits whose total energies are given approximately
(in the large energy limit) by

™ E? 1\2 3
Ej-’=—:§[<j+—) —?}, (90)

where j=1,2,3,.... These are called boundary energies, be-
cause for each j a new closed orbit appears at the energy
given by Eq. (90) and for higher total energies this newborn
closed orbit will split (or “bifurcate”) into a pair of closed
orbits with two different energies and return times, given by
Egs. (87) and (89).

Actually, each boundary energy defines the onset of large
oscillations in the cross section. However, the largest ampli-
tude oscillation in the cross section occurs at a slightly
higher energy at which a different type of closed orbit occurs
that has a truly circular motion in the drift frame in the y-z
plane. The energy of this orbit may be obtained by setting the
initial momentum along the y axis equal to the drift velocity,
ie.,

023402-9



PENG, WANG, AND STARACE

py=—". (91)
wC

From the energy conservation equation (84) and the fact that

p=0 for a closed orbit, we have e=E—1/2. Substituting this

result into Eq. (87) gives

— 1
V2e = (] + 5)77, (92)

which in unscaled variables corresponds to a total energy

equal to
E —ﬁE—é[(+l>2+L] (93)
T2 W / 2 |

&

Comparing Egs. (90) and (93), one sees that the energy dif-
ference between the boundary orbits and the orbits having pg
equal to the drift velocity is 2E5/w?, independent of the
value of j. Boundary closed orbits satisfy dA(g)/de=0,
which gives the relationship 8=E+% in the large energy
limit. Closed orbits for which Eq. (91) applies have e=E
—%. From Egs. (89) and (92), we find for these latter orbits
that

1
T = (] + E)TB’ (94)

where Tp=27/w, is the cyclotron period and j is a positive
integer. This formula is very similar to that obtained for the
case of parallel static electric and magnetic fields [72,73], in
which the largest oscillation amplitude of the cross section
corresponds to classical orbits for which for an electron is
ejected along the static field direction and reflected by the
static electric field such that its return time satisfies 7T,
=jTg. In the parallel fields case, the motion in the plane
perpendicular to the magnetic field is simply cyclotron mo-
tion with period Tp. Classical closed orbits having a return
time equal to an integer multiple of 7 are associated with
the largest oscillations in the cross section [72].

In the crossed fields case, however, the situation is much
more complicated. However, since ¢, [cf. Eq. (80)] is con-
served, when the detached electron has an initial momentum
pg given by Eq. (91) (and an initial position z=0), the initial
momentum along the z axis takes its maximum value. This
implies that this particular closed orbit starts out (in the drift
frame) aligned with the laser polarization direction. These
circular orbits (in the drift frame), having energies given by
Eq. (93), are associated with the largest amplitude oscillation
of the cross section.

IV. RESULTS AND DISCUSSION

In this section we present numerical results based on the
quantum mechanical theoretical formulation presented
above. We present first plane wave limit results for the pho-
todetachment cross section of H™ in the presence of crossed
static electric and magnetic fields over a much larger energy
range than in prior works [41-43]. This large range allows us
to demonstrate very clearly the signatures of the predicted
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FIG. 2. Photodetachment cross section for H™ in the plane wave
limit for a static magnetic field B=1 T and three different values of
the static electric field strength. Results are plotted versus detached
electron kinetic energy above the zero field detachment threshold,

w+e, up to 2.7 cm™!.

classical closed orbits [42], both in the energy spectrum and
in the time (i.e., Fourier transform) spectrum. We examine
next the short laser pulse case, demonstrating first the effects
of laser pulse duration on the photodetachment cross section.
We then examine the detached electron wave packet dynam-
ics in the y-z plane and the possibility of modulating the
detachment cross section by pump probe (Ramsey interfer-
ence) techniques. The connection between the time develop-
ment of the quantum wave packet of the detached electron
and the predicted classical closed orbits is also discussed.

A. Photodetachment cross section in the plane wave
limit
1. Static electric field dependence for near threshold energies

In Figs. 2 and 3 we present the photodetachment cross
section for H™ for a static magnetic field, B=1 T, and six
different values of the static electric field, Eg. Our quantum
theory predictions are obtained from the plane wave limit
result given in Eq. (63). One sees in Fig. 2 that, as noted by
Fabrikant [41], even a very small static electric field removes
the known singularity in the detachment cross section for
energies corresponding to integer multiples of the cyclotron
frequency in the pure magnetic field case (see, e.g., [70]). In
particular, for E¢=0.5 V/cm, the behavior of the cross sec-
tion is very similar to that of the pure magnetic field case
[70] [to which our results reduce in the limit of zero static
electric field, as shown in Sec. I F 1 b above], but without
the cyclotron singularities. On the other hand, beginning
with Eg¢=7 V/cm, the oscillatory modulation of the cross
section by the static electric field becomes obvious. As
shown in Fig. 3 the frequency of this modulation decreases
as the static electric field magnitude increases, just as is
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FIG. 3. Same as Fig. 2 but for three higher static electric field
strengths and detached electron kinetic energies up to 5 cm™!.

found for the case of a pure static electric field or for the case
of parallel static magnetic and electric fields (see, e.g., [68]).
One sees also that the cross section becomes nonzero at the
zero-field threshold owing to the lowering of the threshold
by the static electric field. For the present crossed static mag-
netic and electric field case, the modulation of the cross sec-
tion becomes increasingly complex the higher the maximum
total energy E, becomes. For a maximum detached electron
kinetic energy of 30 cm™!, Fig. 4 shows that the oscillatory
modulations differ above and below approximately 15 cm™.
For energies below 15 cm™, there exists only a sinusoidal
modulation. Above about 15 cm™!, the modulation consists
of more than one frequency and becomes more complicated
the higher in energy one looks.

40 T T T T T T T

w
S
|

1

(10" a.u)

N
=}
I
|

Cross Section

0 10 20 30
-1
®+g(cm )

FIG. 4. Photodetachment cross section for H™ in the plane wave
limit for B=1 T, Eg=60 V/cm, and detached electron kinetic ener-
gies up to 30 cm™.
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FIG. 5. The oscillatory part of the cross section, o, [cf. Eq.
(95)], for B=1 T and E¢=60 V/cm for w+g; ranging from (a) 0 to
60 cm™!; (b) 0 to 180 cm™"; and (c) O to 500 cm™'. Dashed lines
indicate the boundary energies [cf. Eq. (90)] at which a new closed
orbit appears [42] and the open triangles indicate the energies at
which the amplitude of the oscillatory part of the quantum cross
section is expected to have a local maximum [cf. Eq. (93)].

In order to examine these structures in detail, it is instruc-
tive to plot only the oscillatory part of the cross section,
which is defined by

Oosc = (all() - (TO’ (95)

where O'SLO is the total cross section in the plane wave limit

[given by Eq. (63)] and ¢° is the photodetachment cross
section in the absence of any external static fields [given by
Eq. (65)]. Figure 5 shows the oscillatory part of the cross
section over three different energy ranges, corresponding to
total energies up to 60, 180, and 500 cm™!, respectively.
While the oscillatory modulations of the cross section be-
come increasingly dense and complex as the total energy
increases, we see also that clear patterns in the spectra
emerge and become more obvious the higher in energy we
look. The onset of these repetitive patterns is indicated in
each panel by the vertical dotted lines, which represent the
locations of the boundary energies [42] defined by Eq. (90).
The peak amplitudes are indicated by the open triangles at
the energies defined by Eq. (93), which correspond to the
locations of circular classical orbits in the drift frame. The
connection of these classical closed orbits and our quantum
mechanical cross sections can be most easily investigated in
the time domain, which we consider next.

2. Fourier transform spectra and closed classical orbits

In order to show the connection between o, and the
classical closed orbits, we define the time spectrum, P,.(7),
as the absolute square of the Fourier transform of o
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FIG. 6. Time spectrum, P,.(r) [cf. Eq. (96)], of the oscillatory
part of the cross section [cf. Eq. (95)] for different maximum ener-
gies, Ef''’=w+eg;, as indicated in each panel. See text for a detailed
description.

2
(96)

Poxc(t) = ‘ f Uosce_iEtdE

This time spectrum, P,.(), is presented in Fig. 6 for increas-
ing values of the maximum total detached electron kinetic
energy, £y, Times are given in units of the cyclotron pe-
riod, Tz. We see from Fig. 6(a) that at the lowest maximum
energy, only one peak appears in the time spectrum. The
peak position indicates the return time (i.e., orbit period) of a
closed classical orbit having an energy of 10.98 cm™'. As
E7* increases to 15.91 cm™! in (b), another peak emerges.
This corresponds to the first classical boundary energy [cf.
Eq. (90)] for j=1. Unlike the case of classical dynamics,
however, where the boundary energy is sharply defined, our
calculations indicate that the second peak in Fig. 6(b) begins
to appear around the energy 13.5 cm™'. Note also that the
first peak in (b) shifts to the right as compared to that in (a).
This indicates that the return time of the first closed orbit
increases when the total energy increases. In panel (c) we
observe that the second peak increases in magnitude while
the first peak decreases in magnitude. In panel (d), when the
total energy equals 21.97 cm™, one observes the bifurcation
of the second peak that first appeared in panel (b). For
Ep*=48.49 cm™!, in panel (e), one sees the appearance of a
third peak around 2.4 T and notices that the width of the
splitting of the second peak increases as compared to that in
(d). The left and right boundaries of the split and broadened
second peak correspond to the return times of the two bifur-
cated orbits at the maximum available total energy E7“". The
serrated U-shaped region between the left and right bound-
aries of the split second peak correspond to the return times
of the two bifurcated orbits for lower total energies [e.g.,
such as those two shown in panel (d) for a total energy of
21.97 cm™']. Finally, in panel (f) for a slightly higher total
energy we observe that the third peak grows in magnitude
relative to the first and second (split) peaks.
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FIG. 7. Time spectrum, P,.(1) [cf. Eq. (96)], of the oscillatory
part of the cross section [cf. Eq. (95)] given in Fig. 5(c), calculated
over two different energy ranges: (a) 0= w+¢;=500 cm™'; and (b)
400 cm™' = w+£,=500 cm™'. In (a) the open circles indicate the
return times (i.e., orbit periods) of the 15 closed orbits for w+e;
=500 cm™! (see Table I). Also in (a), the open triangles indicate the
return times of the circular closed orbits (in the drift frame) having
ﬁ?, =1 [cf. Egs. (82) and (91)]; these return times are given by Eq.
(94).

Consider now a much larger total final state energy,
E7*=500 cm™'. The oscillatory part of the cross section is
shown in Fig. 5(c). In this figure, the dashed lines correspond
to the seven boundary orbit energies, given by Eq. (90), that
appear for energies up to 500 cm™!, and the triangles corre-
spond to the seven circular orbit (in the drift frame) energies,
given by Eq. (93). The time spectrum, P, (¢) [cf. Eq. (96)],
of the oscillatory part of the cross section [cf. Eq. (95)] for
energies in the range from 0 to 500 cm™' is shown in Fig.
7(a), while the time spectrum of only part of the spectrum in
the range from 400 to 500 cm™' is shown in Fig. 7(b). In
7(a), the open circles denote the return times (periods) of the
15 closed classical orbit solutions of Eq. (87) that exist for a
total energy of 500 cm™'. These periods are calculated using
Eq. (89) and the results are given in Table I together with the
corresponding orbit energies. [Note that for each j>0 and
for a total energy E not equal to one of the boundary energies
given by Eq. (90), Eq. (87) has two solutions.] The open
triangles, on the other hand, correspond to the circular orbits
in the drift frame corresponding to the local maximum am-
plitudes of the oscillatory part of the cross section; their re-
turn times are given by the very simple Eq. (94).

Note that the bowl-like structures appearing in Fig. 7(a)
above each open triangle result from the fact that closed
orbits have different return times for each different total en-
ergy and from the fact that the Fourier transform spectrum in
this figure results from a large range of total energies, i.e.,
from 0 to 500 cm™!. When we calculate the Fourier trans-
form of the oscillatory part of the cross section over only the
limited energy range, 400 cm™' = w+¢g;=500 cm™!, as in
Fig. 7(b), then we observe that the first 13 peaks are approxi-
mately located at the positions of the first 13 closed classical
orbit periods given in Table I, which were calculated for a
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TABLE L. Numerical solutions of Eq. (87) for the energies, £7 (in units of cm™"), for the closed orbits that
exist for a total energy w+£;=500 cm™" (302.869 in scaled units) and the corresponding closed orbit periods,
T;T' (in units of Tp), calculated from Eq. (89). Note that there is only one solution for the case j=0.

j 0 1 2 3 4 5 6 7
&) 461459 462389 463987 466337  469.595 474056  480.398  491.231
T, 0959 1.918 2.876 3.831 4783 5.730 6.665 7.571
el 542137 541.0371  539.127 536264  532.160  526.143  515.609
T 1.041 2.082 3.126 4172 5.204 6.286 7.378

maximum total energy of 500 cm™!. The energy region 0
=w+¢&;=400 cm™' is thus inferred to be responsible for the
bowl-like structures in Fig. 7(a) owing to the shifts of the
lowest 13 classical orbit periods (having j =6) for lower to-
tal energies. The bowl-like structure remains between the
14th and 15th closed classical orbits (having j=7) as this pair
of orbits first occurs above a total energy of approximately
455 cm™! [cf. Fig. 5(c)]. We also observe from the data in
Figs. 5 and 7 that the oscillation amplitude of the cross sec-
tion becomes larger as the total energy increases.

B. Detachment by short laser pulses

Photodetachment by means of one or more short laser
pulses differs from that by a monochromatic laser. Most ob-
viously, the pulse bandwidth affects the measured spectrum
of detached electrons. In addition, short laser pulses produce
localized detached electron wave packets whose motion in
crossed fields can be investigated and compared to classical
predictions [60,77,78]. Most interesting, perhaps, is the pos-
sibility of controlling the modulation of the detachment spec-
trum by variation of the parameters of one or more laser
pulses. In the rest of this section, we examine each of these
topics in turn for the crossed static electric and magnetic
field case.

We note first, however, several previous works on related
problems. Ramsey interference effects resulting from photo-
detachment of H™ by two short, coherent laser pulses as a
function of their relative phase was examined by Wang and
Starace for the case of a static electric field [74] and the case
of parallel static electric and magnetic fields [68]. The latter
work [68] showed that a large modulation of the effective
detachment probability can be achieved by optimizing the
static field magnitudes and the time delay between laser
pulses, as follows: the field magnitudes should be such that
the classical time for reflection of an electron back to the
origin by the static electric field equals an integer multiple of
the harmonic oscillator period for electron motion in the
static magnetic field; also, the time delay of the second pulse
should coincide with the classical time for the electron’s re-
turn to the origin. For the case of a single short laser pulse,
Du [75] examined the photodetachment of H™ in the pres-
ence of a static electric field using modified closed orbit for-
mulas. He showed that when the laser pulse duration is
shorter than particular closed orbit periods, then those orbits
no longer contribute to the photodetachment spectrum. Fi-
nally, Zhao et al. [76] have derived a uniform semiclassical
formula for the photodetachment cross section of a negative

ion by a short laser pulse for the case of parallel static elec-
tric and magnetic fields.

1. Pulse duration effects

The fundamental difference between using a short laser
pulse and using a continuous (monochromatic) laser is the
bandwidth of the short laser pulse. In the former case, the
laser pulse will excite a group of final states that form an
electron wave packet, whereas in the latter case only a well-
defined final state will be reached. In our present case of
detachment in the presence of crossed static electric and
magnetic fields, the spacing of Landau levels is very small
(0.93 cm™' for B=1 T), so that one expects that even a quite
long pulse having a duration of several picoseconds will
have considerable finite bandwidth effects on the detached
electron wave packet and its dynamics.

In Fig. 8, we present the effective total cross section [cf.
Eq. (54)] for a laser pulse of the form (6) (with 7=8=0) and
four different pulse durations [cf. Eq. (7)] in the presence of

1.2 T T T T T I T .
P =0, Eg=B=0 .
) L —— 15ps 4 E
Q‘N ——— 30ps /
S Fo - 45 ps 4
= | — 240ps / 1
4
c ‘s
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— ‘s, -
8 = _;/ / B
on [ A ]
n <
[@) F < 4
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L adl 4
L =T i
ol 1 1 1 L 1 1 1 1
0 0.9 1.8 2.7
-1
o+¢e{cm )
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FIG. 8. Effective photodetachment cross section of H™ [cf. Eq.
(54)] by a single laser pulse of the form (6) with four different pulse
durations [cf. Eq. (7)] in the presence of crossed static electric and
magnetic fields, E¢=15 V/cm and B=1 T. Results are plotted vs
electron kinetic energy beginning from the zero-field threshold.
Also shown (dotted line) is the photodetachment cross section for
the case of a continuous (monochromatic) laser without any exter-
nal static fields present.
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crossed static electric and magnetic fields of magnitudes Eg
=15 V/cm and B=1T. For the longest pulse duration,
240 ps, the effective cross section is indistinguishable from
that for a monochromatic plane wave on the scale of Fig. 8.
(For this reason, the monochromatic plane wave results are
not shown.) As the pulse duration decreases, the modulation
of the cross section is suppressed, beginning at the highest
energies shown and progressing to structures at lower ener-
gies. Thus when the pulse duration is reduced to 45 ps, the
modulation structure beyond the energy 2.3 cm™! is largely
suppressed. As the pulse duration is further reduced to 30 ps,
even the modulation between 1 and 2 cm™' decreases in
magnitude. At the shortest pulse duration, 15 ps, the oscilla-
tory structure completely disappears and the effective cross
section becomes a smooth curve passing through the oscilla-
tory cross sections for longer pulse durations. In this case,
the cross section is nearly identical to the one for detachment
by a continuous (monochromatic) laser in the absence of any
external static fields, as shown by the dotted line in Fig. 8.
The major difference between these cases occurs near the
threshold: our short pulse effective cross section is finite at
the zero static field threshold, while the monochromatic field
cross section, in accordance with Wigner’s threshold law, is
zero at threshold. This difference is due to the lowering of
the detachment threshold by the static electric field.

It is interesting to relate these changes in the structure of
the effective detachment cross sections as a function of pulse
duration to the energy positions of the known classical
closed orbits [42,43]. For the maximum energy 2.7 cm™
considered here, there are three closed orbits available for the
static field parameters we employ. These three orbits have
return times (periods) of 30.69, 40.94, and 60.72 ps. As the
energy decreases to 1.8 cm™!, the return times decrease to
28.94, 43.32, and 56.19 ps, respectively. As the energy is
further decreased to 1 cm™!, there are only two closed orbits
having return times of 26.95 and 48.58 ps, respectively. We
observe in Fig. 8 that as the laser pulse durations become
shorter than the closed orbit periods, the structure of the
effective cross section is reduced. In particular, for the short-
est pulse duration, 15 ps, which is smaller than any closed
orbit period, all structure has disappeared.

2. Wave packet dynamics

We examine here the dynamics of a detached electron
wave packet produced by a short laser pulse under the influ-
ence of crossed static electric and magnetic fields. As dis-
cussed in Refs. [42,43], the oscillatory part of the photode-
tachment cross section produced by a monochromatic laser
field may be associated with those closed orbits that exist for
a given value of the photon energy. As discussed in the pre-
vious section, the oscillatory part of the effective cross sec-
tion produced by a short laser pulse is suppressed when the
pulse duration is smaller than the classical orbit periods of
those orbits that exist at the energy being considered. (See
[75] for the related pure static electric field case.) From the
correspondence between classical and quantum mechanics,
we expect to observe that the detached electron wave packets
produced by short laser pulses will trace the paths of allowed
classical closed orbits.

PHYSICAL REVIEW A 74, 023402 (2006)

In order to illustrate the quantum wave packet motion
corresponding to the classical dynamics, we shall only con-
sider two-dimensional quantum motion by imposing the re-
striction p,=0. As discussed above, the x component of the
momentum has to be zero in order for there to be any closed
orbits. In this case, the time-dependent electron wave packet
in coordinate space is given by

Y 1 N WV ip,y
lyl{gg]pk(09y9Zst) = ’ETJ I#gg]pk(ovp.y'3z9t)e py)& (97)
Al —o

which is the Fourier transform of Eq. (40), taking p,=0. A
similar Fourier transform can be employed for the double
pulse case in Eq. (45). The probability density in the y-z
plane (for x=0) at time ¢ is given by

P(x=0,y,2,0) = [$3P0,y.2,0)|*. (98)

In Figs. 9-11 we present snapshots of the probability den-
sity P(x=0,y,z,1) for the case of a single laser pulse of the
form (6) with pulse duration 7,=2 ps. The time evolution
starts from #y=-T,. The static electric and magnetic field
strengths are taken to be 60 V/cm and 1 T, respectively, in
all cases. Note that the cyclotron period is 75=35.72 ps for
B=1T. In Fig. 9, we take the total energy E to be 8 cm™!.
There is only one classical closed orbit for this energy and
these static field parameters. The return time of the closed
orbit is calculated to be Yfet=24.1 ps (0.674 Tp). In Fig. 9(a),
we see that two electron wave packets are created at the peak
intensity of the laser pulse on either side of the z=0 axis,
which correspond to electrons being ejected either along or
opposite to the direction of increasing static electric field, Eg
(cf. Fig. 1). After the end of the pulse in Fig. 9(b), the two
electron wave packets move apart. However, as time in-
creases we see in Fig. 9(c) that both wave packets are turned
back by the external magnetic field. As shown in Figs. 9(c)
and 9(d), each wave packet undergoes considerable spatial
spreading. The most interesting plot is shown in Fig. 9(e),
where we see a large portion of the left-hand wave packet
sweep through the residual core (at the origin). We note that
the time corresponding to this snapshot is exactly the return
time of the only classical closed orbit in the present case. It is
the return of this piece of the wave packet that leads to the
regular sinusoidal oscillation one sees in Fig. 5(a) below
15.9 cm™!. As the time approaches 1 T in Fig. 9(f), we see
that the two wave packets refocus on the positive y axis (the
direction of drift motion) and that they pass through each
other and continue their rotational motion during the next
cyclotron period. However, owing to the drift motion along
the y axis, we see in Fig. 9(h) that the left-hand wave packet
is no longer able to return to the atomic core in the second
cyclotron cycle for this total energy. The two wave packets
do refocus further along the positive y axis again at 27, as
shown in Fig. 9(i).

We note that the refocusing and the drift of the electron
wave packets are exactly analogous to the classical dynamics
discussed by Peters and Delos in [42]. They showed that
classical orbits with different initial conditions will refocus at
various points along the drift axis. We note also that pump-
probe experimental studies of the related problem of the mo-
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tion of pump-laser-produced Rydberg-state electron wave
packets in the Rubidium atom in the presence of crossed
fields have found enhancements of probe laser-produced ion-
ization signals when the delay of the probe laser equals the
orbital period of the appropriate closed classical orbit for this
related problem [13].

We present similar snapshots in time for the increased
energy of 15.9 cm™! in Fig. 10. At this energy, the first so-
called boundary orbit [42] may be populated [cf. Eq. (90) for
j=1]. There are thus two classical closed orbits that exist at
this total energy, whose return times are 27.4 ps (0.766T)
and 48.8ps (1.366 Tp). In Figs. 10(e) and 10(g) we see that
different parts of the quantum electron wave packet return to
the atomic core at these two times. The most distinctive fea-
ture of the part of the electron wave packet that returns to the

origin at approximately 49 ps [cf. Fig. 10(g)] (which corre-
sponds to the higher energy, classical boundary orbit) is that
most of the arc in Fig. 10(g) passes through the atomic core
at the origin (which we have confirmed by observing the
motion of the electron wave packet on a finer time scale). We
note also that the energy of the classical boundary orbit cor-
responds to the abruptly increased amplitude of the oscilla-
tory part of the cross section seen in Fig. 5(a) around the
energy location 15.9 cm™! indicated by the first dashed line.

The fact that electron wave packet amplitudes return to
the region of the atomic core implies the possibility of modu-
lating the detachment cross section, analogously to the case
of a monochromatic laser, as shown in Figs. 4 and 5. How-
ever, the present wave packet studies show why for the
crossed field case the modulation of the cross section is very
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FIG. 11. (Color online). Same as Figs. 10(e)-10(h) except that
the probability densities P(x=0,y,z,7) are shown here in three-
dimensions rather than as contour plots. Note the scale change in
panel (b), which shows the refocusing of the wave packet amplitude
along the drift axis (i.e., away from the atomic core at the origin).

small. Consider the three-dimensional wave packet snapshots
in Fig. 11, which are calculated for times corresponding to
those in Figs. 10(e)-10(h). Owing to the spreading of the
electron wave packet, when it returns to the origin the part of
the wave packet that overlaps the origin is nearly two orders
of magnitude smaller than the probability in Fig. 10(f), in
which the wave packet refocuses along the drift axis, i.e.,
away from the origin. Because of such wave packet spread-
ing and drift away from the origin, modulation of the photo-
detachment cross section in the crossed static field case is
necessarily small. For similar reasons, the use of short pulse,
pump-probe type techniques to control the photodetachment
cross section in the crossed static field case also results in
only small modulations of the cross section, as we discuss
next.

3. Pump-probe coherent control of the effective photodetachment
cross section using short laser pulses

The idea of using laser pulses shorter than electron wave
packet orbital periods to control electron wave packet motion
was initially formulated theoretically for Rydberg (i.e.,
bound) electron wave packets [79]. This idea was extended
theoretically to photodetached (i.e., continuum) electron
wave packets in the presence of external static fields, includ-
ing static electric [74] and parallel static electric and mag-
netic [68] fields. Experimentally, short pulse, pump-probe
studies of photodetachment of O~ in the presence of a static
magnetic field demonstrated Ramsey interference between
photodetached electron wave packets [40]. Such Ramsey in-
terference may also be demonstrated in the present crossed
electric and magnetic field case.

In Fig. 12 we present the effective total photodetachment
cross section [cf. Eq. (68)] as a function of the relative phase
B and the time delay 7 between two laser pulses [cf. Eq.
(41)] for a total detached electron energy of 15.9 cm™' and
for Eg=60 V/cm and B=1 T. The pulse duration 7, of both
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FIG. 12. The effective cross section for the double laser pulse
case as modulated by: (a) the relative phase between the two pulses
for several time delays, as indicated; and (b) the time delay between
the two pulses for two fixed relative phases, O and .

pulses is taken to be 4 ps. Figure 12(a) shows the depen-
dence of the effective cross section on the relative phase, B,
for six time delays, 7, between the pulses. One observes that
the modulations of the cross section have local maxima for
time delays of 0.77Tp (=27.5 ps) and 1.37T5 (=49 ps),
which are precisely the return times of the two allowed clas-
sical closed orbits for a total electron energy of 15.9 cm™.
However, the modulation of the cross section for the larger
time delay is much greater than for the smaller time delay,
which is consistent with the extent of electron wave packet
overlap with the origin shown in Figs. 10(e) and 10(g). In
other words, in the latter case a large portion of the wave
packet passes over the origin, which makes the Ramsey in-
terference with the newly produced wave packet amplitude
(due to the second pulse) of greater amplitude.

Figure 12(b) shows the dependence of the effective cross
section on the time delay, 7, for two relative phases, 3, be-
tween the pulses: 0 and 1 7. Figure 12(b) clearly shows that
the maxima and minima in the effective cross section as a
function of the time delay between the pulses occur for time
delays of 0.77 T (=27.5 ps) and 1.37 Ty (=49 ps), which
are the orbital periods of the two allowed classical closed
orbits. We see once again that the modulation of the effective
cross section is much larger for the classical closed orbit
having the larger time delay, as explained above.

V. CONCLUSIONS

In this paper we have presented a detailed quantum me-
chanical analysis of detachment of a weakly bound electron
by a short laser pulse in the presence of crossed static electric
and magnetic fields. For specificity, we have chosen the pa-
rameters of the initial state of the weakly bound electron as
those appropriate for the outer electron in H™. In particular
we have presented an analytic expression for the final state
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electron wave function, i.e., the wave function for an elec-
tron moving in the field of a laser pulse of arbitrary intensity
as well as in crossed static electric and magnetic fields of
arbitrary strengths. The general detachment probability for-
mulas we present may therefore be used to analyze multipho-
ton detachment in crossed fields (although we have not pre-
sented this analysis here, but instead have focused on the
weak laser field case).

Based upon our analytic results for the detachment prob-
ability by a short laser pulse, we have defined an effective
detachment cross section for the short pulse case that is
shown to reduce, in the long pulse limit, to results of others
for the monochromatic, plane wave case. Our effective cross
section formula allows us to demonstrate the effects of the
laser pulse duration, such as, e.g., that for pulse durations
shorter than the period of a particular classical closed orbit,
the features of that closed orbit in the photodetachment spec-
trum will simply vanish. By means of a stationary phase
analysis, we have derived a condition for the existence of
closed classical orbits that agrees exactly with that obtained
by Peters and Delos by a purely classical analysis [42]. We
have also illustrated the bifurcation of the closed classical
orbits at the so-called boundary energies [42] by Fourier
transforming the oscillatory part of our quantum cross sec-
tion (in the long pulse limit) over various ranges of the final
state electron energy.

Finally, our analysis of the motion of detached electron
wave packets produced by a short laser pulse provides a
direct comparison of quantum and classical features for the
crossed static electric and magnetic field problem. We find
that the dynamics of our two-dimensional detached electron
wave packets are consistent with the predictions of closed
classical orbit theory [42]. We have also shown that wave
packet spreading and the fact that wave packet refocusing
only occurs at the origin in the drift frame means that control
of electron detachment in crossed static fields by means of
laser pulses is less effective than in the parallel static electric
and magnetic field case [68].
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APPENDIX A: ANALYTICAL WAVE FUNCTION
FOR FREE ELECTRON MOTION IN A LASER FIELD
AND CROSSED STATIC ELECTRIC
AND MAGNETIC FIELDS

In this appendix we give the details of the solution of Eq.
(10), which describes free electron motion in a laser field in
the presence of crossed static electric and magnetic fields.
The configuration of the external fields is shown in Fig. 1.
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The solution is clearly separable in momentum space and has
the following form:

WP (p.0) = PP, (py ) i (ps1)

1 [
lﬁf A%(l')dt'i|

Xexp| =
= 5(px - kx) 5(17\ - k») ‘//z(pz’t)
1 2 2 : 1 ' 20,1 !
><exp_—l§(kx+ky)t—zz—c2 _wAL(t )dt' |,

(A1)

where the z component of the final state wave function sat-
isfies the following equation:
. Es\d 1,
ol-B) 1

1,8
l_lﬂ(p,, )_ |:_ _(U _2_ ® (7]) 2

c
2 “ap;

1
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In order to solve Eq. (A2), we make the following substi-
tution:

1 E
U(p,t) = eXp{— i—<ky - —S)pz} Yalp,t),  (A3)
Q)C wC

which serves to eliminate the term involving the first deriva-
tive of p, from the equation satisfied by #.,(p.,?),

1, 1 1
lﬁzl(l?ﬂ 1= {— —w —, Tt _Pv _pZAL(t)

2 “op? 2

Z

1 Eg\?
_ E(ky— ﬁ) ](ﬁzl(pz,t).

Upon making the substitution,

(A4)

IJI l(ppt) exp|:l_<k - (,Eu ) :|Irlfz2(p1’t) (AS)

Eq. (A4) gives the following equation for ¢.,(p.,?):

%AL(l)pz:| ‘/’zz(Pz, t) .

(A6)

d 1,5 1
- )= - Zw. 5+ P
latll"zZ(pz ) |: 2(1) (9[7 2p

Equation (A6) has the form of the equation for a forced
harmonic oscillator, which can be solved exactly [80]:

& -

Yo(p.,t) = exp |: - isnzt + i_w/E \J2§pZ

+iJ L(t’)dt’]w;”“gnz(\’agpz), (A7)

where {, and g, are given by Eqgs. (18) and (20), respec-
tively. The function &(r) is related to the vector potential of

the laser pulse and satisfies the differential equation given in
Eq. (22). The function L(z) is defined in Eq. (21) in terms of
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&@1). In Eq. (A7), the function g, (x) is defined by Eq. (14).
Note that g, (x) is normalized, ie.,

fm [gnz]zdx= 1. (A8)

We note also that g, (x) is simply proportional to a parabolic
cylinder function (see Eq. 19.13.1 of Ref. [69]):

1 1 =
x)=——=U|-n.— —V2x]. A9
gnz( ) \/m ( z 2\ ) (A9)
Combining Egs. (A3), (A5), and (A7), we find for the
solution of Eq. (A2),

Yulpot) = expl - bk, N2, Jo g, (124,)

. 1 1
Xexp| —ie, t—i——={, &) +iz
¢4 er y 2

+if L(t')dt’:|,

where b(k,,?) and {; are given by Egs. (17) and (19), re-
spectively. Finally, sui)stltutlng Eq. (A10) into Eq. (A1) gives
us the analytical expression for the final state wave function
in momentum space given in Eq. (13).

2
W, gkvt
. )

(A10)

APPENDIX B: SOLUTION OF EQ. (22) FOR &(1)

In this appendix we present the solution for the laser-
field-dependent function &(¢), which satisfies the differential
equation (22). The corresponding Green’s function satisfies

G(t,t") + w2G(t,t) = 81t —1'), (B1)
whose solution is
zw’(t—z )
G(tt')=— J . (B2)
w -w'?

In terms of this Green’s function, the solution of Eq. (22) is

o 2
&) = f G(t,t’){— %AL(t’)]dt

2 (oo io't o
w, e 1 PN
:_Ef dw' P /ZJ dt, —_AL(ZJ) e_“”l .
27) w, -0 ") c

(B3)

Using the definitions in Egs. (6) and (9), the integral over ¢’
can be evaluated (using integration by parts) to obtain

I(w') = f dt[ —AL(t)} —iw't!

in which the function W(w') is defined by

\77 E,

o' 2i aW(w)

(B4)

W(w’) — e—(o) - w')2/4a2+[(w—w')7'+[,8 _ e—(w + w')2/4a2—[(w+w')7'—iﬂ

and where it has been assumed that A;(—o)=A;(°)=0.
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Thus &(¢) is now given by

2 [ io't [
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E, \
= = L0 + 1) + ()], (BS)

where we have defined the following three integrals over w’:

o0

1 1 -
Lt)=—| do'—W(w')e’, (B6)
i ®

—00

1 (7 1 -
I(r)=- —f do'— W(w')e'™ !, (B7)
2ri w

—w - (DC

1 (” 1 .
L(t)=- —f do'— W(w")e'® . (B8)
" ®

2 ) _ + w,

1. Calculation of Iy(¢), I,(¢), and I,(¢)

Consider first 7,(z), which satisfies the following relation:

©

d_ . 1 ooy
E[e—zwczll(t)] - _ ;T do' W(w’)e'(w —w)t

—00
Ra - 2, .
=——=e" (1= Do gin(wt + ).
N

Thus we have that

Ra . ! 200 2
L) =- —= t’f e~ = DO gin(wr' + B)di’
v —oo

(B9)
1. I (w—-w, ]
- _ezw(.(z‘—’r) erf( a(t _ 7.) _ g) +1
2 L 2a i
% e_((,) — wr)2/4a2+i,8+[w7'
1. [ i(w+ w, ]
" _ezwc(z‘—'r) erf( Cl(t _ T) + g) +1
2 L a0 _
g~ (0 + w)HAcP~if-iwr (B10)

Replacing o, by —w,. in the above formula, we get

i(w+ a)c.)> . 1}
2a

Xe—(w + wc)2/4a2+i,8+iw7'+ %e‘iwf(’_7)|:erf( a(t _ ’T)

1 .
L(t)=- Ee““’v("f){erf< alt—1) -

2a

Setting w, equal to zero in Eq. (B10) and multiplying by a
factor of -2, we get
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iw s o
I(n) =- [erf( alt— 1)+ —) + 1:|e—w /4P —iB-iwT
2a
+ erf( a(t _ T) iw ) : 1 _w2/4a2+iﬁ+iw7"
2a

(B12)

2. Some relations for £(¢) and its derivatives

From Egs. (B5) and (B9) [and equations similar to Eq.
(B9) for I(t) and I,(r)], we have that

&1 = °\' - Liol0) +11(0) + £x(0)] (B13)
E""’C" =2 (1) - L), (B14)
The second derivative of &(r) is given by
() = 0 ”T[Il( ) - b)) = 0( 2k ‘”[n(r) +5(0)].
(B15)
Writing now
2
&0 =2 &), (B16)
i=0
where
f,()—EOWI() (B17)
Egs. (B14) and (B15) give
&0 =iw (1) - &0, (B18)
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&) = - oL &(1) + (0] (B19)
Substituting these equations into Eq. (22) gives
&) = —AL 7). (B20)

3. Long pulse approximation for &(¢)

In the long pulse case (in which a/w< 1), simplified ex-
pressions can be obtained for the integrals I,(f) in a way
similar that used in Ref. [68]. For example, starting from Eq.
(B9) one can expand the sine function in terms of exponen-
tials and then do the resulting integration by parts, dropping
terms that are of order a/w or higher, as follows:

1
a . 20,0 2. . ’s . , .
Il(t) —_ elwclf e« t"-17 [e’(“""’c)l +if3 _ e—z(w+wc)l —zﬁ]
NTT —o0

(B21)
i A - 7')2|: 1 i(wt+f) —i(wt+ﬁ):|
=3 /—_e e + e :
\,'77 w—-w W+ W,
(B22)

In a similar way one may obtain the following approximate
expressions for I,(r) and Iy(1):

(1) = i/ée—az(l— 7-)2|: 1 pl@r+B) 4 1 e—i(wt+ﬁ):| ,
VT 0w+ ®-w,
(B23)
4la l
1o(t) = emat= 7" cos(wt + B). (B24)
\r

Substituting these long pulse approximations for the inte-
grals I,(r) into Eq. (B5), the function &(¢) in the long pulse
limit is then given by Eq. (23).
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