Wildlife Exposure Factors Handbook, Appendix: Literature Review Database, Volume II of II

United States Environmental Protection Agency

Follow this and additional works at: https://digitalcommons.unl.edu/usepapapers
Part of the Civil and Environmental Engineering Commons

Agency, United States Environmental Protection, "Wildlife Exposure Factors Handbook, Appendix: Literature Review Database, Volume II of II" (1993). U.S. Environmental Protection Agency Papers. 54. https://digitalcommons.unl.edu/usepapapers/54

Wildlife Exposure Factors Handbook

Appendix: Literature Review Database

Volume II of II

WILDLIFE EXPOSURE FACTORS HANDBOOK

APPENDIX: LITERATURE REVIEW DATABASE

Volume II of II

Office of Health and Environmental Assessment Office of Research and Development
 U.S. Environmental Protection Agency
 Washington, D.C. 20460

Additional major funding for this Handbook was provided by the
Office of Emergency and Remedial Response,
Office of Solid Waste and Emergency Response and by the
Office of Science and Technology, Office of Water
U.S. Environmental Protection Agency

Washington, D.C. 20460

DISCLAIMER

This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

TABLE OF CONTENTS

The tables in this Appendix accompany the selected species profiles provided in Chapter 2 of the Handbook. The references for each of the tables are in Chapter 2 of the Handbook at the end of each individual species' profile.
A-1. INTRODUCTION A-1
A-2. TABLE FORMAT AND ABBREVIATION KEY A-3
A-2.1. Organization of Tables A-3
A-2.2. Column Headers A-4
A-2.3. Abbreviations A-6
A-3. TABLES FOR BIRDS A-9
Great Blue Heron A-11
Canada Goose A-23
Mallard A-47
Lesser Scaup A-61
Osprey A-75
Red-tailed Hawk A-89
Bald Eagle A-105
American Kestrel A-125
Northern Bobwhite A-137
American Woodcock A-159
Spotted Sandpiper A-169
Herring Gull A-173
Belted Kingfisher A-193
Marsh Wren A-203
American Robin A-213
A-4. TABLES FOR MAMMALS A-225
Short-tailed Shrew A-227
Red Fox A-235
Raccoon A-253
Mink A-269
River Otter A-281
Harbor Seal A-295
Deer Mouse A-309
Prairie Vole A-329
Meadow Vole A-339

TABLE OF CONTENTS (continued)

Muskrat A-351
Eastern Cottontail A-366
A-5. TABLES FOR REPTILES AND AMPHIBIANS A-381
Snapping Turtle A-383
Painted Turtle A-395
Eastern Box Turtle A-413
Racer A-419
Northern Water Snake A-431
Eastern Newt A-441
Green Frog A-453
Bullfrog A-461

A-1. INTRODUCTION

This Appendix is intended to accompany the Wildlife Exposure Factors Handbook (hereafter referred to as the Handbook) and should be used only by individuals familiar with the Handbook. The species-specific values for the exposure factors presented in Chapter 2 of the Handbook of are a subset of the data included in the tables of this Appendix. Most values identified in the literature reviewed for the Handbook are included in this Appendix. For some exposure factors for some species, large quantities of data are available. For these factors and species, we tried to select data that represented a range of values and geographic locations for the Appendix, and did not include the other reviewed data. All data obtained from secondary sources are so identified in the "Notes" column of the tables. Appropriate data identified in primary sources were included in the Appendix unless the results were inadequately reported (e.g., no methods, units of measure unclear). The references for this Appendix are in Chapter 2 of the Handbook.

We caution users of this Appendix that some values or studies included may be inaccurate. We have not attempted to evaluate the quality of the original studies and associated data. When potential difficulties were obvious (e.g., method of estimating home range not reported), we have tried to indicate the limitation in the "Notes" column. Also in the notes column, we have tried to identify potential confounding factors (e.g., low reproductive success due to DDT or other pollutant). Due to resource limitations, our quality-assurance program consisted of reviewing all data for consistency with other reported values, reviewing any unusual values against the original reference, and verifying values that were included in Chapter 2 of the Handbook. Many of the data presented in the Appendix required conversion to metric units (e.g., density reported as N/acre to density as N/hectare), and we have not verified that all such conversions were performed correctly for the Appendix. For several factor values, we computed a mean and standard deviation (SD) from original data provided in the reference (e.g., mean \pm SD of 10 density values representing 10 different years of study in the same location). Again, we have only verified a subset of these data as part of our quality assurance procedures. Users of this Handbook therefore are strongly encouraged to retrieve the original literature for any studies that are important to their exposure assessment. We
would welcome being informed of any possible inaccuracies in the Handbook and this Appendix at the following address:

Exposure Assessment Group
Wildlife Exposure Factors Handbook Project USEPA (8603)
401 M St., SW
Washington, DC 20460

The remainder of Section A-2 describes the column headers and abbreviations used in the Appendix. The exposure factor tables are provided for birds in Section A-3, for mammals in Section A-4, and for reptiles and amphibians in Section A-5. Again, the references for the citations in the Appendix are in Chapter 2 of the Handbook at the end of each individual species profile.

A-2. TABLE FORMAT AND ABBREVIATION KEY

In this section, we describe the organization of the tables (Section A-2.1), their column headers (A-2.2), and abbreviations used in the tables (Section A-2.3).

A-2.1. ORGANIZATION OF TABLES

Quantitative data for each species in the Appendix are presented in tables arranged in four main groups in the following order:

- Normalizing and Contact Rate Factors;
- Dietary Composition;
- Population Dynamics; and
- Seasonal Activities.

The exposure factors included in each of these groups are explained in Chapter 1 of the Handbook. As in the Handbook, exposure factors included under each of these four groups vary slightly from species to species according to the species' biology and available data. For example, under "Population Dynamics," factors related to reproduction for birds might include "Age at Fledging," whereas for mammals they could include "Age at Weaning." If no data were found for a given factor, the factor is not listed. The meaning of the exposure factors included in the Appendix should be clear to users who have read Chapters 1, 3, and 4 of the Handbook and corresponding species profiles.

We explain the Appendix table column headers for the four groups of factors in Section A-2.2 and the abbreviations used under each column header in Section A-2.3. A few table entries do not conform to the format as described below. Any exceptions are explained in the "Notes" column for the individual entry.

A-2.2. COLUMN HEADERS

The column headers for each of the four main groups of exposure factors are described below according to the group(s) of exposure factors to which they apply.

ALL GROUPS

Reference: Reference citation (see Chapter 2 of the Handbook for full references). If a particular subspecies was studied and identified, the subspecies name will be listed under the reference in parentheses.

Age: \quad Age of animals, if reported and relevant.
Sex: Sex of animals, if reported and relevant.
$\mathbf{N}: \quad$ Sample size if reported (sometimes, a sample size is described in the notes instead).

Location: State (United States assumed) or Canadian province (identified by CAN).
Habitat: Short descriptors of habitat if reported and if relevant.
Notes: Additional information needed to evaluate the data, when necessary.

NORMALIZING AND CONTACT RATE FACTORS

Cond: Condition of animals (e.g., lactating, swimming, non-breeding), or linespecific number to be described in the notes column.

Seas: Season in which data were collected, if reported and relevant.
Mean: Mean value for population sampled.
SD/SE: Standard deviation, if reported, or else standard error if reported.
Units: Units for measurements.
Minimum: Minimum value reported for the population sampled, or minimum average value if several populations or years evaluated.

Maximum: Maximum value reported for the population sampled, or minimum average value if several populations or years evaluated.

DIETARY COMPOSITION

Food type: Type of food, usually identified in as much detail as reported.
Spring,
Summer,
Fall,
Winter: The data are reported by season whenever possible.

Spring:	March, April, May
Summer:	June, July, August
Fall:	September, October, November
Winter:	December, January, February

Habitat -
Measure: Habitat type and description of measure used to indicate dietary composition.

POPULATION DYNAMICS

Cond: Condition of animals (e.g., lactating, swimming, non-breeding), or linespecific number to be described in the notes column.

Seas: Season in which data were collected, if reported and relevant.
Mean: Mean value for population sampled.
SD/SE: Standard deviation, if reported, or else standard error if reported.
Units: Units for measurements.
Minimum: Minimum value reported for the population sampled, or minimum average value if several populations or years evaluated.

Maximum: Maximum value reported for the population sampled, or minimum average value if several populations or years evaluated.

SEASONAL ACTIVITIES

Begin: Month that the activity usually begins.
Peak: Month(s) that the activity peaks (i.e., most of the population involved).
End: Month that the activity usually ends.

A-2.3. ABBREVIATIONS

The abbreviations used in the Appendix for age, sex, condition, season, and units are defined below. They are arranged alphabetically unless otherwise noted. Any other abbreviations in the Appendix tables are explained in the "Notes" column.

AGE (LIFE STAGE) Listed in order of increasing age (not alphabetically):

All Species:

J juveniles (i.e., independent, but not yet sexually mature)
A adults (i.e., sexually mature)
B both adults and juveniles

- not specified or relevant

Birds:

E egg
H hatchling (i.e., on day of hatching)
C chick (for precocial birds such as herring gulls and northern bobwhite)
$\mathrm{N} \quad$ nestling (for altricial birds such as osprey, kingfishers, robin)
F fledgling (i.e., first day of sustained flight)

Mammals:

$\mathrm{N} \quad$ neonate (i.e., on day of birth)
$P \quad$ pup (before weaning)
Y yearling (i.e., one year of age)

Reptiles and Amphibians:

H hatchling (for those species that lay eggs)
$\mathrm{N} \quad$ neonate (for water snakes)
T tadpole (for frogs)
E eft (for newts)

SEX

All Species:

B	both sexes
F	female
M	male

CONDITION (for non-metabolic records)

All Species:

BR breeding (may be any stage of reproductive efforts, including courtship, mating, egg-laying or pregnancy, feeding young)
DI diurnal (i.e., during the day)
NB nonbreeding
NO nocturnal (i.e., at night)

- not specified or not relevant

Birds:

FY feeding young
I incubating
IC in covey (for northern bobwhite only)
L laying
LI laying or incubating
MI migrating
N nesting

Mammals:

G during gestation (i.e., during pregnancy)
L lactating
NG non-gestating (i.e., not pregnant)
NP nulliparous (i.e., females that have never given birth)
$P \quad$ parous (i.e., females that have given birth previously)

CONDITION (for non-metabolic records) (cont'd)

Reptiles and Amphibians:
HI hibernating
L laying eggs

CONDITION (for metabolic records)

All Species:

AC	light activity
AD	average daily metabolism
BA	basal metabolism
EX	existence metabolism
FL	free-living metabolism
R	resting
ST	standard metabolism
SW	swimming
-	not specified or not relevant
\#	note number

UNITS
time:

d	day
wk	week
yr	year

energy:
cal calorie
kcal kilocalorie
area:

ha	hectare
m^{2}	square meter

length:
mm millimeter
cm centimeter
m meter
km kilometer
temperature:
${ }^{\circ} \mathrm{C}$ degrees Centigrade

A-3. TABLES FOR BIRDS

Page A-10 is left blank.
***** GREAT BLUE HERON *****
*** NORMALIZING AND CONTACT RATE FACTORS ***
Reference Age Sex Cond Seas Mean SD/SE Units

Minimum Maximum
N Location
Habitat
Notes

BODY WEIGHT

METABOLIC RATE (OXYGEN)

Benedict \& Fox
14.6
$102 / \mathrm{kg}-\mathrm{d}$

NS
NS

Year of collection not specified.

Weights of herons found alive or dead but not decomposed. Juveniles found in (1) July; (2) August
December. $Y=$ yearlings; they were collected from June - January.
As cited in Dunning 1984.

Based on records from museum collections.

Number of days in the units column is the age of the nestlings.

As cited in Altman and Dittmer 1968

Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
$\begin{aligned} & \text { Cottam \& Uhler } \\ & 1945 \\ & \text { (herodias \& wardi) } \end{aligned}$		non-game fish valuable fish unidentified fish aquatic insects crustaceans herpetofauna mice \& shrews misc. \& plant		$\begin{array}{r} 43.2 \\ 24.8 \\ 3.6 \\ 8.2 \\ 8.9 \\ 4.3 \\ 4.7 \\ 2.5 \end{array}$			189	throughout US	```NS % (measure NS); stomach contents```	Season and basis for determining percentage unknown. As cited in Palmer 1962.
$\begin{aligned} & \text { Cottam \& Williams } \\ & 1939 \end{aligned}$	- -	fish aquatic beetles aquatic plants		$\begin{array}{r} 75.8 \\ 1.7 \\ 22.5 \end{array}$			6	Vermont	```marsh % (measure NS); stomach contents```	As cited in Palmer 1962.
Hoffman 1978	B B	Cyprinidae (carp, minnows, goldfish) Centrarchidae (sunfish, crappie, large-mouth bass) Sciaenidae Percidae (perch) Amiidae Astacidae (crayfish) Insecta		$\begin{array}{r} 53.8 \\ 9.5 \\ \\ 3.5 \\ 10.1 \\ 6.5 \\ 31.3 \\ 28.4 \end{array}$			31	nw Ohio $1972-73$	```sw Lake Erie % frequency of occurrence; stomachs```	```Mean of values for two heronries; N = total number of stomachs examined. Season = March - September.```
Hoffman 1978	$J \quad B$	Cyprinidae (carp, minnows, goldfish) Ictaluridae Clupeidae (gizzard shad, alewife) Sciaenidae Percidae (perch) Centrarchidae (sunfish, crappies, black bass) Astacidae		$\begin{array}{r} 50.0 \\ 4.6 \\ 5.0 \\ 10.1 \\ 27.9 \\ 6.6 \\ 4.8 \end{array}$			166	$\begin{aligned} & \text { nw Ohio } \\ & 1972-73 \end{aligned}$	```sw Lake Erie % frequency of occurrence; boluses regurgitated by nestlings```	Mean of values for two heronries; N = total number of boluses examined (June - August). Items found in less than 1\% of samples not included here.
Kirkpatrick 1940	$J \quad B$	crayfish dragonfly leopard frog yellow perch yellow pike-perch northern rock bass common white sucker northern pike large-mouthed bass nort. black bullhead bluegill pumpkinseed black crappie		$\begin{array}{r} 6 \\ 3 \\ 12 \\ 154 \\ 21 \\ 20 \\ 17 \\ 14 \\ 11 \\ 9 \\ 9 \\ 7 \\ 4 \end{array}$			297	$\begin{aligned} & \text { ne Wisconsin } \\ & 1940 \end{aligned}$	```lakes number of prey items; regurgitated by nestlings```	Collected from June 28 - August 7. Species found 1 or 2 times not presented here. Number of fish $=$ both whole fish and fragments. Size of whole fish and fragments ranged from 6 to 41 cm ; most were between 6 and 23 cm .

Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Krebs 1974	A B	```staghorn sculpin small medium large starry flounder small medium large other (see note) small medium```		$\begin{array}{r} 27.8 \\ 7.6 \\ 2.2 \\ 15.0 \\ 8.1 \\ 5.2 \\ 30.6 \\ 3.5 \end{array}$			78	Br . Columbia, CAN 1972	```coastal island % of number of fish captured; observations```	Other includes shiner sea perch and penpoint gunnels. Small = less than $1 / 3$ beak length; medium $=$ about $1 / 2$ beak length; large = greater than beak length.
Peifer 1979	A M	bullhead sunfish 13-lined ground squirrel eastern chipmunk prair. pocket gopher eastern fox squirrel eastern cottontail leopard frog grasshoppers		$\begin{array}{r} 200+ \\ 10 \\ 36 \\ 5 \\ 5 \\ 1 \\ 1 \\ 8 \\ 10+ \end{array}$			4	$\begin{aligned} & \text { c Minnesota } \\ & 1977 \end{aligned}$	lakes, uplands number of prey items; observed eaten	Number of prey captured during observations of 4 radiotagged herons from April 7 - July 22.
Quinney 1982	N B	Atlantic silverside mummichog American eel Gaspereaux pollock yellow perch		$\begin{array}{r} 3.6 \\ 2.4 \\ 52.6 \\ 29.9 \\ 8.9 \\ 2.6 \end{array}$				Nova Scotia, CAN 1977-78	```Boot island % wet weight; items regurgitated by nestlings```	Dates = May 15 to July 15. Percent wet weight calculated from \% of total items collected and mean wet weights of items.

*** POPULATION DYNAMICS ***

Reference Age Sex Cond Seas Mean SD/SE Units
\qquad Habitat
Notes

FEEDING TERRITORY SIZE

Bayer 1978	A	B	1	FA	0.129	0.028	SD km	
	A	B	2	FA	0.6	0.1	SD ha	
Bayer 1978	A	B	1	WI	0.355	0.168	SD	km
	A	B	2	WI	8.4	5.4	SD ha	

7 Oregon 1972

Oregon 1973-76

Average length (1) and area (2) area defended by one birds foraging territory.

Average shoreline length (1) and area (2) of intertidal area defended as foraging territory by one bird. Territories were largest in the winter.

DISTANCE FROM HERONRY TO FORAGING GROUNDS

Peifer 1979
A M - SU
km
$0.4-0.7$
24.4
4.2

Parne
1978

Thompson 1978
A
6.5
km
20.4

NS

Idaho 1977-78

S Dakota
1980-81

Oregon 1975 Willamette River
lake, mountain ridge

Distance from heronry to nearest feeding grounds.

Conservative estimate of average and maximum distances flown from colony to foraging sites during the breeding season.

Of 31 heronries, 24 were located within 100 meters of known feeding areas.

The average distance of heronries to possible feeding areas (i.e., lakes greater than 40 ha in size). As cited by Short and Cooper 1985.
Most heronries along the North Carolina coast were located near concentrations of fish. The average distance from the heronries to the inlets was $7.0-8.0 \mathrm{~km}$. As cited by Short and Cooper 1985.
Distance of actively defended foraging territories from colony radiotagged herons (April 7 - July used for feeding, including uplands, were between $4-20 \mathrm{~km}$ of the colony (heronry).
lakes, uplands
34.1
c Minnesota
1977

Average flight distances (probably foraging) of breeding herons. As cited in Dowd and Flake 1985.

Reference A	Age S	ex	Cond	deas		Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
POPULATION DENSITY															
Dowd \& Flake 1985	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$		$\begin{aligned} & 2.3 \\ & 3.6 \end{aligned}$			$\begin{aligned} & \mathrm{N} / \mathrm{km} \\ & \mathrm{~N} / \mathrm{km} \end{aligned}$				$\begin{aligned} & \text { N Dakota } \\ & \text { 1980-81 } \end{aligned}$	river \& tributaries	Density of foraging herons based on censuses along water bodies; (1) stream with nearly continuous pools but little or no flow - 14 km sampled, almost half of the herons found were within 4 km of the heronry; (2) James River - sampled 12 km in each direction away from colony, 57\% of herons found within 4 km.
Gibbs et al. 1987	-	-	-	SU		149	53.4	SD	nests/ha			11	Maine 1983	marine islands	Mean nest density for 11 colonies. Colonies usually occupied a small area in the interior of the island.
$\begin{aligned} & \text { Werschkul et al. } \\ & 1977 \end{aligned}$	-	-	-	SU		461			nests/ha	447	475	2	w Oregon 1974	coastal island	Density of nests within colonies.
$\begin{aligned} & \text { Werschkul et al. } \\ & 1977 \end{aligned}$	-	-		SU		160	123		nests/ha	15	358	6	w Oregon 1974	coastal canyon	Density of nests within colonies.
$\begin{aligned} & \text { Werschkul et al. } \\ & 1977 \end{aligned}$	-	-		SU		169			nests/ha	68	269	2	w Oregon 1974	coastal flat	Density of nests within colonies.
CLUTCH SIZE															
Baird et al. 1884	-	-	-	-		3							Florida	NS	As cited in Palmer 1962.
McAloney 1973	-	-	-	-		4.17	0.85	SD		3	6	36	Nova Scotia, CAN 1971	island	
Miller 1943	-	-	-	-		4.37				3	6	347	Pennsylvania	NS	As cited in Palmer 1962.
Mitchell 1981	-	-	-	-		3.58							Texas 1981	NS	As cited in Pratt and Winkler 1985.
Page 1970	-	-	-	-		3.6							California	NS	As cited in Pratt 1972.
Palmer 1962	-	-	-	-		+/-				3	7		NS	NS	
Powell \& Powell	-	-	1	-		2.9	0.6					64	s Florida	bay	(1-3) For 1981 to 1984: (1)
1986 \&	-	-	2	-		3.2	0.7					82			Unsupplemented colonies; (2)
	-	-	3	-		3.6	0.8					32			supplemented colonies (fed by
	-	-	4	-		3.8						11			nearby residents); (3) identified supplemented nests. (4) 1923 data (prior to human disturbances).

Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Pratt 1972	-	-	-	-	3.6					53	$\begin{aligned} & \text { c California } \\ & 1967-70 \end{aligned}$	coastal canyon	
$\begin{aligned} & \text { Pratt \& Winkler } \\ & 1985 \end{aligned}$	-	-	-	-	3.16	0.04 SE		1	5	297	$\begin{aligned} & \text { c California } \\ & 1967-79 \end{aligned}$	coastal canyon	$\begin{aligned} & \text { Yearly means ranged from } 2.72 \\ & \text { (1971) to } 3.35 \text { (1968). } \end{aligned}$
Quinney 1982	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 4.6 \\ & 5.0 \end{aligned}$					$\begin{aligned} & 42 \\ & 26 \end{aligned}$	Nova Scotia, CAN 1977-78	Boot Island	Year: (1) 1977; (2) 1978.
Vermeer 1969	-	-	-	-	5.0					11	$\begin{aligned} & \text { s Alberta, CAN } \\ & 1967-68 \end{aligned}$	Dowling Lake	As cited in Pratt 1972 and English 1978.
CLUTCHES/YEAR													
English 1978	-	-	-	-	1		/yr				nw Oregon 1975	river	Renesting was not observed in undisturbed populations, but groups did lay new clutches after their original nesting trees were cut down.
Miller 1943	-	-	-	-	1		/yr				Pennsylvania	NS	May replace clutch if eggs are lost, but will raise only one

DAYS INCUBATION

AGE At fledging

Reference	Age Sex	Cond	Seas		Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
McAloney 1973	- -	-	-		45		days				Nova Scotia, CAN 1971	island	Observed around the colony being fed by adults for another 10 days after leaving the nest at 45 days.
Quinney 1982	- -	-	-	49	- 56		days				Nova Scotia, CAN 1977-78	Boot Island	Attained 86% of adult weight by 44 days.

n fledge/active nest

English 1978	-	-	-	-	1.96		N/pair		
Pratt 1972	-	-	-	-	1.7		N/pair	0	
$\begin{aligned} & \text { Pratt \& Winkler } \\ & 1985 \end{aligned}$	-	-	-	-	1.45	0.06 SE	$\mathrm{N} /$ act nest	0.85	2.38
Quinney 1982	-	-	1 2 3	-	$\begin{aligned} & 2.6 \\ & 3.1 \\ & 2.8 \end{aligned}$		N/pair N/pair N/pair		
McAloney 1973	-	-	-	-	2.84		N/pair		

n FLEDGE/SUCCESSFUL NEST

Collazo $1981 \quad-\quad-\quad-\quad$

English 1978	-	-	-	2.43	N/suc nest
Forbes et al. 1985	-	-	-	2.5	0.1 SE N/suc nest
Henny \& Bethers 1971	-	-	-	2.61	
Kelsall \& Simpson 1979	-	-	-	2.3	-2.9

Windsor Island heronry.
Number fledged per pair; no pair raised more than one brood but many replaced lost clutches.
Minimum and maximum are yearly means.

Fledging success in two different years: (1) 1977, (2) 1978; (3) = weighted average for both years. 1978.

42 Nova Scotia, island CAN, 1971

Idaho 1977-78
lake, mountain ridge Average value of total of 257 nests over two years. Minimum and maximum $=$ value for one of the years. Overall, 1.95 were fledged per pair.
Value for seven heronries combined
Minimum and maximum are yearly means.

As cited in McAloney 1973.
As cited in Pratt \& Winkler 1985.

age at sexual maturity

Herons are "ready to breed" after their second winter.

Reference	Begin	Peak	End	Location	Habitat	Notes
HATCHING						
Collazo 1981	mid Apr			Idaho 1977-78	lakes, mountain ridge	
English 1978		earl May		nw Oregon 1975	river	
$\begin{aligned} & \text { Hoffman \& Curnow } \\ & 1979 \end{aligned}$	mid May		mid Jul	Ohio 1973	sw Lake Erie	
$\begin{aligned} & \text { Werschkul et al. } \\ & 1977 \end{aligned}$	late Mar	earl May		w Oregon 1974	coastal	
FLEDGING						
Collazo 1981			mid Aug	Idaho 1977-78	lakes, mountain ridge	
English 1978		earl Jul		nw Oregon 1975	river	
$\begin{aligned} & \text { Hoffman \& Curnow } \\ & 1979 \end{aligned}$	mid July		mid Sept	Ohio 1973	sw Lake Erie	
$\begin{aligned} & \text { Werschkul et al. } \\ & 1977 \end{aligned}$		Jul		w Oregon 1974	coastal	
FALL MIGRATION						
Bent 1926			mid Oct	 Manit., CAN	NS	Late date of departure.
Bent 1926			late Oct	Wisconsin	NS	Late date of departure.
Bent 1926			mid Nov	Illinois	NS	Late date of departure.
Hoffman \& Curnow 1979		Oct		Ohio 1973	sw Lake Erie	Departure following breeding season.
Palmer 1962	mid Sep		late Oct	northern US	NS	
SPRING MIGRATION						
Bent 1926	mid Feb			Illinois	NS	Early date of arrival.
Bent 1926	late Mar			Nova Scotia, CAN	NS	Early date of arrival.
Bent 1926	mid Mar			Wisconsin \&	NS	Early date of arrival.

Reference	Begin	Peak	End	Location	Habitat	Notes
Bent 1926	mid Apr			Manitoba, CAN	NS	Early date of arrival.
Collazo 1981	late Feb			Idaho 1977-78	lakes, mountain ridge	First observation of herons on breeding grounds.
$\begin{aligned} & \text { Hoffman \& Curnow } \\ & 1979 \end{aligned}$		Mar		Ohio 1973	sw Lake Erie	Arrival for breeding season.
Werschkul et al.	mid Feb		mid Mar	w Oregon 1974	coastal	Arrival at breeding grounds.

***** CANADA GOOSE *****
*** NORMALIZING AND CONTACT RATE FACTORS ***

Body WEIGHT

Nelson \& Martin
1953

A	$\mathrm{M}-\mathrm{Z}$	
A	F	3,800

(canandensis)
Webster (unpubl.
(canandensis) (canandensis)

Ratti et al. 1977
(fulva)
$\stackrel{A}{A}$

Nelson \& Martin
1953
(hutchinsii)
Estel 1983
Estel 1983
(interior)

Raveling 1968 (interior)

A
A
$\begin{array}{ll}\mathrm{M}-\quad 3,800 \\ \mathrm{~F}- & 3,300\end{array}$
$\begin{array}{lll}\mathrm{A} & \mathrm{F}-\mathrm{C} & 1,900 \\ \mathrm{~A} & \mathrm{M}-\mathrm{C} & 2,000\end{array}$

Age Sex Cond Seas Mean SD/SE Units
Minimum Maximum N Location

Habitat
Notes
g
g
6,300
232
United States
NS
5,900
g
g

M	-	-	3,992	
F	-	-	3,447	
M	-	-	3,402	
F	-	-	3,084	

A $\mathrm{F}-\mathrm{SU}$ 3,043 $\mathrm{g}+/-46$
$9+/-46$
$9+/-41$
4, 175 N
3,452
3,406
3,406
3,444
3,444
134
se Alaska 1973
Glacier Bay
$\begin{array}{lll}2,400 & 37 & \text { United States } \\ 2,700 & 31\end{array}$
g
g

A	M	-	FA	4,058		9
A	M	-	WI	4,173		9
A	F	-	FA	3,575		g
A	F	-	WI	3,652		9
J	M	-	FA	3,567		9
J	M	-	WI	3,817		g
J	F	-	FA	3,152		g
J	F	-	WI	3,345		9
A	M	-	FA	4,212	35 SE	g
J	M	-	FA	3,645	24 SE	9
A	F	-	FA	3,550	31 SE	g
J	F	-	FA	3,067	39 SE	9
A	M	-	WI	4,215	36 SE	g
J	M	-	WI	3,642	29 SE	g
A	F	-	WI	3,573	45 SE	g
J	F	-	WI	3,122	36 SE	g
A	M	-	SP	4,122	31 SE	9
J	M	-	SP	3,582	44 SE	g
A	F	-	SP	3,433	31 SE	g
J	F	-	SP	3,132	31 SE	g

3,799
3,317
3,147
2,523
3,827
3,317
3,119
2,58
3,85
3,20
3,062
2,778

3,799	4,727
317	3,884
147	3,856
523	3,629
827	4,621
317	4,026
3,119	3,827
580	3,544
3,856	4,649
3,204	3,941
3,062	3,91
2,778	3,43

66	Ilinois	lakes in refuges
235	$1982-83$	
74		
323		
98	Illinois	lake
453	$1982-83$	
90		
421		orchard, lake

Data from USFWS records (from bird banders, game bag investigations).

As cited in Bellrose 1976.

Molting geese captured in July Values after the +/- in the units column are 95\% confidence limits.

Data from USFWS records (from bird banders, game bag investigations).

Fall weights are from October through November; Winter are from through November;
(pre-migration).

Fall weights are from October November; winter weights are from December - mid February (pre-migration).

Collected from October 12-24 (fall), November 16-December 9 (winter), and February 10 - March 9 year. Data also provided for
yearlings, but sample sizes were
small (6-16); means for yearlings were always larger than juveniles and smaller than adults for the same sex and season.

Reference Age	Age Se	ex	Cond	d Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
McLandress \& Raveling 1981 (maxima)	A	F	1	WI	3,712			g	3,252	4,117	5	Minnesota 1974	fields near lake	Prior to migration to breeding grounds, geese put on weight quickly. Collection dates: (1) February 12-16; (2) March 4-7; March 14-16; (4) April 4-6.
	A	F	2	SP	3,942			g	3,845	4,160	4			
	A	F	3	SP	4,381			g	4,009	4,901	6			
	A	F	4	SP	5,033			g	4,725	5,243	4			
	A	M	1	WI	4,149			g	3,968	4,433	3			
	A	M	2	SP	4,883			g	4,535	5,128	5			
	A	M	3	SP	5,200			g	5,134	5,266	2			
	A	M	4	SP	5,574			g	5,424	5,725	2			
```Johnson et al. 1 9 7 9 (minima)```	-	M	-	-	1,546	200	SD	g				Alaska	NS	
	-	F	-	-	1,312	200	SD	9						
$\begin{aligned} & \text { Kortright } 1942 \\ & \text { (minima) } \end{aligned}$	-	M	-	-	1,542			9			28	NS	NS	As cited in Bellrose 1976.
	-	F	-	-	1,270			g			17			
$\begin{aligned} & \text { Nelson \& Martin } \\ & 1953 \\ & \text { (minima) } \end{aligned}$	A	M	-	-	2,000			g		2,500	30	United States	NS	Data from USFWS records (from bird banders, game bag investigations).
	A	F	-	-	1,400			g		2,300	20			
Raveling 1978a (minima)	J	M	-	FA	1,360		SD	g	1,180	1,510	13	$\begin{aligned} & \text { California } \\ & 1973-74 \end{aligned}$	lakes in refuges	Fall geese collected in late October, winter geese collected in late December.
	J	M	-	WI	1,250	65	SD	9	1,150	1,310	5			
	J	F	-	FA	1,200	90	SD	9	1,070	1,350	18			
	J	F	-	WI	1,070		SD	9	940	1,210	8			
$\begin{aligned} & \text { Raveling } 1979 \\ & \text { (minima) } \end{aligned}$	A	M	1	FA	1,540		SE	9	1,380	1,705	9	$\begin{aligned} & \text { California } \\ & 1973-74 \end{aligned}$	lakes in refuges	(1) Fall migration (Oct 23); (2) Dec 27; (3) spring migration (April 4-5).
	A	M	3	SP	1,487		SE	9	1,340	1,665	10			
	A	F	1	FA	1,287	53	SE	g	1,145	1,515	6			
	A	F	2	WI	1,205	33	SE	9	1,125	1,320	5			
	A	F	3	SP	1,295		SE	9	1,105	1,650	11			
$\begin{aligned} & \text { Raveling } 1979 \\ & \text { (minima) } \end{aligned}$	A	M	1	SP	1,530			g	1,410	1,640	5	Alaska 1973-74	delta	(1) prelaying; (2) day their eggs hatched; (3) early molt.
	A	M	2	SU	1,460	52	SE	9	1,315	1,665	6			
	A	M	3	SU	1,443	32	SE	9	1,260	1,605	9			
	A	F	1	SP	1,387	61	SE	g	1,180	1,530	5			
	A	F	2	SU	1,095	37	SE	9	950	1,295	9			
	A	F	3	SU	1,362	54		9	1,195	1,590	8			
Murphy \& Boag 1989 (moffitti)	A	F	1	SP	3,817	229		9			13	Alberta, CAN	lakes	```Incubation stage: (1) early; (2) late.```
	A	F	2	SP	3,186	196.0		9			12	$1985-86$		
```Nelson & Martin 1953 (moffitti)```	A	M	-	-	4,600			9		5,700	9	United States	NS	Data from USFWS records (from bird banders, game bag investigations).
	A	F	-	-	3,500			g		4,300	6			
$\begin{aligned} & \text { Yocom } 1972 \\ & \text { (moffitti) } \end{aligned}$	B	M	-	FA	4,334						10	Washington	Snake River area	Taken during hunting season.
	B	F	-	FA	3,930			g			9	1940-51		

Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
Chapman 1970 (occidentalis)	J	M	-	-	3,163	294	SD	g	2,840	3,664	8	Oregon 1966-67	NS	Banded near Copper River Delta,
	J	F	-	-	2,722	265	SD	g	2,300	3,096	7			Alaska; shot in Oregon from late
	A	M	-	-	3,814	542	SD	g	3,181	4,942	10			October - early January. Adult
	A	F	-	-	3,038	402	SD	g	2,755	3,749	5			values include yearlings (3 males, 2 females).
Chapman 1970 (occidentalis)	A	M	-	WI	3,712			9	2,925	4,317	69	Oregon 1965-66	NS	Average of means of geese collected
	J	M	-	WI	3,408			9	2,386	4,260	96			during December 9-22 and December
	A	F	-	WI	3,093			9	2,272	3,806	55			23 - January 26.
	\checkmark	F	-	WI	2,906			g	2,102	3,522	79			
Chapman 1970 (occidentalis)	A	M	-	FA	3,636			9	2,868	4,459	65	Oregon 1965	NS	Average of means of geese collected
	J	M		FA	3,253			g	1,931	4,658	340			during November $10-24$ and
	A	F		FA	3,059			9	2,244	4,044	43			November 25 - December 8.
	J	F	-	FA	2,812			9	1,874	3,635	287			
```Johnson et al. 1 9 7 9 (occidentalis)```	-	M	-	-	3,233	261	SD	g				Alaska	NS	
	-	F	-	-	2,640	202	SD	g						
$\begin{aligned} & \text { Grieb } 1970 \\ & \text { (parvipes) } \end{aligned}$	A	M	-	WI	2,769		SE	g			184	se Colorado	reservoirs, lakes	Primarily parvipes subspecies, but
	A	F	-	WI	2,472	23	SE	9			194	1951-64		likely to include 5-10\% hutchinsii
	J	M	-	WI	2,481	43	SE	9			125			
	J	F	-	WI	2,185	29		$g$			151			
```Nelson & Martin 1 9 5 3 (parvipes)```	A	M	-	-	2,700			9		4,800	$113$	United States	NS	Data from USFWS records (from bird
								9						
$\begin{aligned} & \text { Johnson et al. } \\ & 1979 \\ & \text { (taverneri) } \end{aligned}$	-	M	-	- 2	2,606.5	267.4	SD	g				Alaska	NS	
	-	F	-	-	2,420.7	238.2		9						
Yocom 1972 (taverneri)	B	M	-	FA	2,665				2,835	2,495	2	e Washington	NS	Taken during hunting season.
	B	F	-	FA	2,154			g	1,928	2,604	4	1940-51		
BODY FAT														
Williams \& Kendeigh 1982 (interior)	A	F	1	FA	440						2	from s	captive	Month: (1) Oct-Dec; (2) Jan; (3)
	A	F	2	WI	550			9			2	Illinois		Apr; (4) May; (5) June; (6) July.
	A	F	3	SP	750			9			1			
	A	F	4	SP	610			g			1			
	A	F	5	SU	570			g			1			
	A	F	6	SU	150			9			1			

Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
Williams \& Kendeigh 1982 (interior)	A	M	1	FA	550			9			2	from s	captive	Month: (1) Oct-Dec; (2) Feb; (3)
	A	M	2	WI	860			9			2	Illinois		Apr; (4) Jun; (5) July.
	A	M	3	SP	930			9			2			
	A	M	4	SU	890			g			1			
	A	M	5	SU	330			9			1			
```Mainguy & Thomas 1985 (maxima)```	A	F	L	SP	726	27	SE	g			55	Ontario, CAN	fields, farms	Breeding condition: L = beginning
	A	F	I	SP	563	26	SE	9			41	1980-81		of laying; I = post laying
	A	F	P	SP	166	18	SE	9			10			(incubating) ; $\mathrm{P}=$ post incubation;
	A	F	M	SP	436	43	SE	9			15			$\mathrm{M}=$ molting. Non-migratory population.
McLandress \& Raveling 1981 (maxima)	A	F	1	WI	642			9	433	854	5	Minnesota 1974	fields near lake	Prior to migration to breeding
	A	F	2	SP	619			9	433	925	4			grounds, geese put on weight
	A	F	3	SP	951			g	814	1,096	6			quickly. Collection dates: (1)
	A	F	4	SP	1,442			9	1,303	1,577	4			February 12-16; (2) March 4-7; (3)
	A	M	1	WI	580			9	413	724	3			March 14-16; (4) April 4-6.
	A	M	2	SP	639			9	375	948	5			
	A	M	3	SP	881			9	797	964	2			
	A	M	4	SP	1,253			9	1,133	1,372	2			
```Peach & Thomas 1986 (maxima)```	N	B	1	-	7.1	1.3	SD	9			14	Ontario, CAN	lab	Total body lipids: Age: (1) at
	J	B	2	-	35	12	SD	9			14	1983		hatching; (2) 10 days; (3) 20 days;
	J	B	3	-	160	41	SD	9			14			(4) 25 days.
	J	B	4	-	236	87	SD	9			13			
Thomas et al. 1983 (maxima)	A	F	1	SP	751	45		9			34	Ontario, CAN	captive	Non-migratory population from
	A	F	2	SP	611	40	SE	9			29	1981		Toronto. Condition: (1) pre-laying;
	A	F	3	SP	166	18	SE	9			10			(2) post laying (incubating); (3)
	A	F	4	SU	485	37	SE	9			21			late incubation; (4) molting.
Raveling 1979 (minima)	A	M	1	FA	230	20	SE	9	129 33	292	9	California	lakes in refuges	
	A	M	2	WI	70 205		SE	g 9	33 157	123 265	10 5	1973-74		migration (Oct 23); (2) Dec 27; (3) spring migration (April 4-5).
Raveling 1979 (minima)	A	M	1	SP	56	26		g	26	107	3	Alaska 1973-74	delta	Total body lipid weight: (1)
	A	M	2	SU	53		SE	9	27	82	6			Prelaying; (2) hatch day; (3) early
	A	M	3	SU	93	11	SE	9	47	146	9			molt.
Raveling 1979 (minima)	A	F	1	FA	182	24	SE	9	117	264	6	California	lakes in refuges	Total body lipid weight: (1) fall
	A	F	2	WI	57		SE	9	34	71	5	1973-74		migration (Oct 23); (2) Dec. 27;
	A	F	3	SP	172	25		g	68	362	11			(3) spring migration (April 4-5).
Raveling 1979 (minima)	A	F	1	SP	171			9	136	205	2	Alaska 1973-74	delta	Total body lipid weight: (1)
	A	F	2	SU SU	33 108		SE	g 9	14 62	51 179	9 8			prelaying; (2) hatch day; (3) early molt.

Reference Ag	e S	ex	Con	Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
Murphy \& Boag 1989 (moffitti)	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { SP } \end{aligned}$	$\begin{array}{r} 511 \\ 66 \end{array}$	$\begin{array}{r} 127 \\ 32 \end{array}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \end{aligned}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { Alberta, CAN } \\ & \text { 1985-86 } \end{aligned}$	lake	Incubation state: (1) early; (2) late. Energy from fat catabolism supplied 83\% of energy requirements during incubation.
EGG WEIGHT														
Owen 1980 (hutchinsii)	-	-	-	-	116			9				NS	NS	As cited by Dunn and MacInnes 1987.
Manning 1978 (interior)	-	-	-	-	150	1.7	SE	9			125	Ontario, CAN 1973	islands	Weighed at an average of 1.5 days after the start of incubation.
Owen 1980 (interior)	-	-	-	-	152			9				NS	NS	As cited by Dunn and MacInnes 1987.
Thomas \& Peach Brown 1988 (interior)	-	-	-	-	161.2	14.1	SD	9			544	$\begin{aligned} & \text { s Ontario, CAN } \\ & 1979 \end{aligned}$	lake	
Owen 1980 (leucopareia)	-	-	-	-	127			9				NS	NS	As cited in Dunn and MacInnes 1987.
Owen 1980 (minima)	-	-	-	-	96			9				NS	NS	As cited by Dunn and MacInnes 1987.
LeBlanc 1987a (moffitti)	-	-	-	-	163			g			564	$\begin{aligned} & \text { Alberta, CAN } \\ & 1983-84 \end{aligned}$	lake	Weight of eggs varied by clutch size and by position in the laying order.
Owen 1980 (moffitti)	-	-	-	-	175			g				NS	NS	As cited by Dunn and MacInnes 1987.
Williams (unpubl.) (moffitti)	-	-	-	-	145			9				Utah	NS	Just after laying (i.e., before water loss). As cited in Palmer 1962, 1976.
Kortright 1942 (occidentalis)	-	-	-	-	161			9				NS	NS	As cited by Dunn and MacInnes 1987.
HATCHING WEIGHT														
Sedinger 1986 (minima)	$\begin{aligned} & \text { H } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 61.8 \\ & 61.4 \end{aligned}$			$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			4 1	Alaska 1978-79	coastal tundra	Males $=2$ days old, female $=3$ days old.

Reference Ag	S	x	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
LeBlanc 1987b (moffitti)	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 108.7 \\ & 109.5 \end{aligned}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 90 \\ & 85 \end{aligned}$	$\begin{aligned} & \text { Alberta, CAN } \\ & \text { 1983-84 } \end{aligned}$	lake	Weight at hatching of birds from six egg clutches. Weights varied by number in clutch and by egg-laying order.
GOSLING WEIGHT													
Sedinger 1986 (minima)	$\begin{aligned} & \text { J } \\ & \text { J } \\ & \text { J } \\ & \text { J } \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$		$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 150 \\ 450 \\ 755 \\ 950 \\ 1,050 \end{array}$		g day 10 g day 20 g day 30 g day 40 g day 47				Alaska 1978-79	coastal tundra	Interpolated from graph of age vs. weight; $\mathrm{N}=27$ total. Age (days) is in units column.
Sedinger 1986 (minima)	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~J} \\ & \mathrm{~J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 150 \\ 515 \\ 875 \\ 1,100 \\ 1,200 \end{array}$						Alaska 1978-79	coastal tundra	Interpolated from graph of age vs. weight, $\mathrm{N}=25$ total. Age (days) is in the units column.
Williams (unpubl.) (moffitti)	$\begin{aligned} & \text { H } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 110 \\ 240 \\ 440 \\ 1,400 \\ 2,400 \\ 2,600 \end{array}$		g day 0 g day 9 g day 16 g day 30 g day 44 g day 51			$\begin{aligned} & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \end{aligned}$	NS	NS	Age (days) of goslings is in units column. As cited in Palmer 1976.
GOSLING GROWTH RATE													
$\begin{aligned} & \text { Williams (unpubl.) } \\ & \text { (moffitti) } \end{aligned}$	J	-	-	-	50.5		g/day			13	NS	NS	From 1 to 51 days. As cited in Palmer 1976.
FLEDGING WEIGHT													
Sedinger 1986 (minima)	$\begin{aligned} & \text { J } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 1,284 \\ & 1,228 \end{aligned}$	47.2 SE	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 3 \\ & 1 \end{aligned}$	Alaska 1978-79	coastal tundra	Males weight was 87% of adult weight, female was 89% of adult weight. Note that N is very small.
LeBlanc 1987b (moffitti)	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	-	-	$\begin{aligned} & 2,360 \\ & 2,030 \end{aligned}$		$\begin{array}{ll} g & 50 \text { days } \\ g & 50 \text { days } \end{array}$			$\begin{aligned} & 28 \\ & 17 \end{aligned}$	Alberta, CAN 1983	lake	Near fledging (50 days old).
LEAN (DRY) BODY WEIGHT													
$\begin{aligned} & \text { Peach \& Thomas } \\ & 1986 \\ & \text { (maxima) } \end{aligned}$	N J J J	B B B B	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$		$\begin{array}{r} 16 \\ 76 \\ 244 \\ 338 \end{array}$	2.1 SD 16 SD 25 SD 58 SD	g 9 9 9			$\begin{aligned} & 14 \\ & 14 \\ & 14 \\ & 13 \end{aligned}$	Ontario, CAN 1983	lab	Age: (1) at hatching; (2) 10 days; (3) 20 days; (4) 25 days.

METABOLIC RATE (KCAL BASIS)

Williams \&
(interior)
$\begin{array}{lllll}\text { A } & \text { M } & 1 & \text { WI } & 105 \\ \text { A } & \text { M } & 2 & \text { SP } & 105\end{array}$
$\begin{array}{llll}\text { A } & \text { M } & 2 & \text { SP } \\ & 3 & \text { SU }\end{array}$
$\begin{array}{llll}\text { A } & \text { M } & 4 & \text { FA }\end{array}$
kcal/kg-d kcal/kg-d kcal/kg-d kcal/kg-d

Williams \&
Kendeigh 198
(interior)

Williams \&
Kendeigh 198
(interior)
$\begin{array}{llll}\text { A } & \text { M } & 1 & \text { WI } \\ \text { A } & \text { M } & 2 & \text { SP }\end{array}$
A \quad M $\quad 3 \quad$ SU
M 4 FA
kcal/kg-d
kcal/kg-d kcal/kg-d kcal/kg-d

Williams \&
(interior)
$\begin{array}{llll}\text { A } & \text { F } & 1 & \text { SP } \\ \text { A } & \mathrm{F} & 2 & \text { SU }\end{array}$
kcal/kg-d
kcal/kg-d

203
253
209

220
274
from s
from s
Illinois

from s

from s
Illinois

Existence metabolism at typical breeding ground (Ontario, CAN spring and summer) and wintering ground (s Illinois - fall and winter) temperatures. Temperature (C) and weight of geese: (1) (December) $4.2-4.65 \mathrm{~kg} ;(2)$ (May) $1.4-4.80 \mathrm{~kg}$ (average of April and $3.84 \mathrm{~kg} ;(4)$ (Nov) $8.8-4.65 \mathrm{~kg}$ (Oct and Dec weight).
Existence metabolism at typical breeding ground (Ontario, CAN spring and summer) temperatures
Temperature (C) and weight of Temperature (C) and weight of (July) $13.9-2.95 \mathrm{~kg}$. ${ }^{(2)}$

Maximum free-living metabolism at typical breeding ground (Ontario, CAN - spring and summer) and wintering ground (s Illinois - fall and winter) temperatures.
remperature (C) and weight of geese: (2) (May) $1.4-4.80 \mathrm{~kg}$ (average of April and June weight); (3) (July) $13.9-3.84 \mathrm{~kg}$; (4) (Nov) $8.8-4.65 \mathrm{~kg}$ (Oct and Dec weight).
Maximum free-living metabolism at typical breeding ground (Ontario, CAN - spring and summer)
temperatures. Temperature (C) and 3.68 kg ; (2) (July) 13.9 - $2.95{ }^{-} \mathrm{kg}$.

Original data in grams dry weight feed, corrected to grams wet weight feed. Feed (i.e., corn, sunflower seeds, wheat, and milo) contained

Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Martin et al. 195	51 A B	sago pondweed FW barley (seed) W hardstem bulrush FW wheat (seed) W wildbarley W bromegrass W wild oats W				$\begin{array}{r} 25-50 \\ 10-25 \\ 10-25 \\ 5-10 \\ 5-10 \\ 5-10 \\ 2-5 \end{array}$	45		```NS rough approx. of % diet; "stomach" contents```	Eating the vegetative part of the plant and any other part noted in parenthesis. The initial at the end of each plant notes what season that item was important. Geese caught in winter $=35$; spring $=0$; summer = 1; and fall = 9. Items comprising 2% or less not included here.
Martin et al. 195	51 A B	saltgrass SuFW sago pondweed SuFW glasswort FW wheat SuW bulrush (seed) FW widgeongrass SuFW bromegrass FW wild barley FW rabbitfoot grassSuFW seepweed FW peppergrass FW				$\begin{array}{r} 10-25 \\ 10-25 \\ 10-25 \\ 5-10 \\ 5-10 \\ 5-10 \\ 2-5 \\ 2-5 \\ 2-5 \\ 2-5 \\ 2-5 \end{array}$	183	$\begin{aligned} & \text { w US, mostly } \\ & \text { Utah } \end{aligned}$	```NS rough approx. of % diet; "stomach" contents```	Eating the vegetative part of the plant and any other part noted in parenthesis. The initial at the end of each plant notes what season that item was important. Geese caught in winter $=92$; spring $=0$; summer = 19; and fall = 72. Items comprising 2% or less not included here.
Martin et al. 195	51 A B	cordgrass saltgrass glasswort bulrush (seeds) bermuda grass naiad lycium				$\begin{array}{r} 10-25 \\ 5-10 \\ 5-10 \\ 5-10 \\ 2-5 \\ 2-5 \\ 2-5 \end{array}$	10	Gulf coast	```NS rough approx. of % diet; "stomach" contents```	Eating the vegetative part of the plant and any other part noted in parenthesis. spring $=0$; summer $=$ 1; and fall = 9. Items comprising 2% or less not included here.
Martin et al. 195	51 A B	cordgrass FW widgeongrass W spikerush (seeds) W sea lettuce W				$\begin{array}{r} 25-50 \\ 10-25 \\ 10-25 \\ 5-10 \end{array}$	45	Atlantic coast	```NS rough approx. of % diet; "stomach" contents```	Eating the vegetative part of the plant and any other part noted in parenthesis. 44 birds caught in winter, 4 in fall. Items comprising 2% or less not included here. Initial after plant name denotes what season that food was important.
Yelverton \& Quay 1959	$\text { B } \quad \text { B }$	sedges native grasses corn kernels animal other				$\begin{array}{r} 63 \\ 11 \\ 22 \\ 0.01 \\ 4 \end{array}$	294	$\begin{aligned} & \text { NC 1951-52, } \\ & 1953-54 \end{aligned}$	lake \% volume; crop and gizzard contents	Sedges were roots, stems and seeds of spike rush and roots, rhizomes and seeds of American bulrush. From 263 gizzards and 31 crops collected during hunting season. As cited in Bellrose 1976 and Craven 1981.

Reference	Age Se	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Naylor 1953	-	-	BR	-	155		nests/ha				California	NS	Thirty-one nests on 0.5 ha . As cited in Palmer 1962.
```Jensen & Nelson 1948```	-	-	BR	-	136-163		nests/ha				se Idaho	NS	As cited in Palmer 1962.

home range size

Brakhage 1965 A M BR SP 0.8 ha
(maxima)

Eberhardt et al.
A F F
983
1989a
(moffitti)
(moffitti)
POPULATION DENSITY

N/ha
nests/ha

N/ha
N/ha
N/ha
N/ha
N/ha
N/ha
18.1

15 sc Washington
Missouri
1961-64
reservoir, marsh

15 sc Washington
river
2,830

1983-4

1983-4

6 S Dakota
1979-80
reservoir

## NS

various

Missouri
1955-198
109.2
117.6
117.6
119.6
119.6
94.8
wildlife refuge

Approximate size of nesting territory defended by "aggressive" males in this resident, managed population.
Radiotagged females and broods. Estimate based 75\% harmonic mean Estimate based $75 \%$ harmonic
values based on three other calculation methods are presented in the paper.

Length of river used by radiotagged females and broods

Humburg et al.
1985

B	B	1	FA	10.4
B	B	2	FA	20.7
B	B	3	FA	25.3
B	B	4	FA	27.2
B	B	5	FA	27.7
B	B	6	FA	22.0

$N$ number of
concentrations" found in aerial thermal infrared census of reservoir. Measured N/ha within these concentrations.
Summary of nesting densities found
in 14 locations. Both values in 14 locations. Both values represent mean densities. As cited in Byrd \& Woolington 1983.

N reflects number of thousands of geese. Data are five year averages for early November of: (1) 1955-59; (2) 1960-64; (3) 1965-69; (4) Total area of refuge is 4,318 ha

Reference	Age S	ex	Cond	d Seas	s Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Humburg et al. } \\ & 1985 \end{aligned}$	B	B	1	WI	3.6		N/ha			15.5	Missouri	wildife refuge	N represents number of thousands of
	B	B	2	WI	11.8		N/ha			50.9	1955-84		geese. Data are five year averages
	B	B	3	WI	9.8		N/ha			42.2			for early January of: (1) 1955-59;
	B	B	4	WI	9.1		N/ha			39.1			(2) 1960-64; (3) 1965-69; (4)
	B	B	5	WI	10.5		N/ha			45.4			1970-74; (5) 1975-79; (6) 1980-84.
	B	B	6	WI	3.7		N/ha			15.9			Total area of the refuge is 4,318 ha.
```Byrd & Woolington 1983 (leucopareia)```	,	-	1	-	0.35		nests/ha			288	Alaska 1975-77	Buldir Island	Nest density in preferred habitat:
		-	2	-	0.16		nests/ha			203			(1) "most" preferred = beach rye umbel community; (2) "next most" preferred = beach rye - umbel fern community. $N=$ ha of each plant community on the island.
Geis 1956 (moffitti)	-	-	1	-	16.6 6.8		nests/ha nests/ha			5 4	$\begin{aligned} & \text { Montana } \\ & 1953-54 \end{aligned}$	wooded islands in lake	Density of nests on islands between (1) $0.2-0.8$ ha in size; (2) $0.8-2.2$
	-	-	3	-	1.3		nests/ha			4			ha; and (3) 8-121 ha. $N=$ number of islands in each size class.
McCabe 1979 (moffitti)	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		$\begin{array}{r} 0.16-.20 \\ 2.2-4.4 \end{array}$		$\begin{aligned} & \text { nests/ha } \\ & \text { nests/ha } \end{aligned}$				OR, WA 1974-75	islands in river	Major nesting islands (1) largest; (2) smallest; (3) in-between sized
	-	-	3	- 0	$0.16-1.2$		nests/ha						islands. Nesting on ground and on man-made nesting platforms. Range is values found in 1974 and 1975.
Bromley (pers. comm.) (occidentalis)	-	-	BR	-			nests/ha		0.707		Alaska 1978	coastal wetland	Highest density found. As cited in Cornely et al. 1985.
Trainer 1959 (occidentalis)	-	-	BR	-	0.417		nests/ha				Alaska 1959	coastal wetland	As cited in Cornely et al. 1985.
$\begin{aligned} & \text { Smith \& Sutton } \\ & \text { 1953; 1954 } \\ & \text { (parvipes) } \end{aligned}$	B	B	BR	SU	0.0051	0.0032 SD	N/ha	0.0013	0.0093	7	$\begin{aligned} & \text { Yukon, CAN } \\ & 1948-54 \end{aligned}$	old crow flats	510,230 hectares sampled; $N=$ number of years sampled. As cited in Grieb 1970.
```Smith & Sutton 1953; 1954 (parvipes)```	B	B	BR	SU	0.00038		N/ha	0.00031	0.00050	4	NW Terr., CAN 1951-54	forest tundra	25,062,900 hectares sampled; $N=$ number of years sampled. As cited in Grieb 1970.
$\begin{aligned} & \text { Smith \& Sutton } \\ & \text { 1953; 1954 } \\ & \text { (parvipes) } \end{aligned}$	B	B	BR	SU	0.00080	0.000086 SD	N/ha	0.00007	0.0019	5	$\begin{aligned} & \text { NW Terr., CAN } \\ & 1948-54 \end{aligned}$	coastal tundra	2,241,645 hectares sampled; $N=$ number of years sampled. As cited in Grieb 1970.
$\begin{aligned} & \text { Smith \& Sutton } \\ & 1953 ; 1954 \\ & \text { (parvipes) } \end{aligned}$	B	B	BR	SU	0.0011	0.0018 SD	N/ha	0.00004	0.0046	6	$\begin{aligned} & \text { NW Terr., CAN } \\ & 1948-53 \end{aligned}$	treeless delta	414,400 hectares sampled; $N=$ number of years sampled. As cited in Grieb 1970.


Reference A	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Smith \& Sutton } \\ & \text { 1953; 1954 } \\ & \text { (parvipes) } \end{aligned}$	B	B	BR	SU	0.0025	0.0015 SD	N/ha	0.001	0.0046	6	$\begin{aligned} & \text { NW Terr., CAN } \\ & 1949-54 \end{aligned}$	closed forest	$10,739,430$ hectares sampled; $\mathrm{N}=$ number of years sampled. As cited in Grieb 1970.
CLUTCH SIZE													
```MacInnes 1962; MacInnes et al. 1 9 7 4 (hutchinsii)```	-	-	-	-	4.34					580	NW Terr., CAN	river	As cited in Dunn and MacInnes 1987.
$\begin{aligned} & \text { Raveling \& Lumsden } \\ & 1977 \\ & \text { (interior) } \end{aligned}$	n -	-	-	-	4.57					272	Ontario, CAN	Kinoje Lake	As cited in Dunn and MacInnes 1987.
```Byrd & Woolington 1983 (leucopareia)```	-	-	-	-	5.6	0.1 SE		2	8	188	Alaska 1974-77	Buldir Island	82\% of nests contained 5-7 eggs.
Bellrose 1976 (maxima)	-	-	-	-	5.22					2,982	NS	NS	Summary of many studies.
```Bultsma et al. 1 9 7 9 (maxima)```	-	-	-	-	5.27					159	$\begin{aligned} & \text { S Dakota } \\ & 1974-75 \end{aligned}$	wetlands/stock ponds	Only incubated nests counted.
$\begin{aligned} & \text { Combs et al. } 1984 \\ & \text { (maxima) } \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{aligned} & - \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.9 \\ & 5.1 \end{aligned}$			5.2	5.9	$\begin{array}{r} 277 \\ 14 \\ 14 \end{array}$	$\begin{aligned} & \text { se AL, Sw GA } \\ & 1977-82 \end{aligned}$	reservoir	Nesting attempts: (1) initial attempt; (2) renesting attempt. Min and Max are yearly averages. Resident flock of mostly maximas, but also some interior and canandensis.
```Spencer et al. 1951 (minima)```	-	-	-	-	4.7					47	Alaska	NS	As cited in Palmer 1976.
```Akesson & Raveling 1981 (moffitti)```	g -	-	-	-	5.5			5	7	11	$\begin{aligned} & \text { California } \\ & 1976-78 \end{aligned}$	captive	
Dow 1943 (moffitti)	-	-	-	-	5.1					355	California	Honey Lake	As cited in Palmer 1976.
Geis 1956 (moffitti)	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 5.55 \\ & 5.15 \end{aligned}$			2 3	10 9	$\begin{aligned} & 169 \\ & 189 \end{aligned}$	$\begin{aligned} & \text { Montana } \\ & 1953-54 \end{aligned}$	lake, river	Year: (1) 1953; (2) 1954.

n FLEDGE/ACTIVE NEST

(moffitti)
n fledge/Successful nest

Dey 1966	-	-	-	-	3.9		fledge/suc				Utah	Ogden Bay
Hardy \& Tacha 1989 (interior)	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 1.3 \\ & 2.2 \end{aligned}$		fledge/suc fledge/suc				IL, WI 1985-87	lake
Byrd \& Woolington 1983 (leucopareia)	-	-	-	-	3.99	0.008 SE	fledge/suc	1	7	255	Alaska 1976	Buldir Island
$\underset{\substack{\text { Raveling } \\ \text { (maxima) }}}{ } 1981$	-	-	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\begin{aligned} & 2.3 \\ & 2.9 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 0.39 \mathrm{SE} \\ & 0.22 \mathrm{SE} \end{aligned}$	fledge/suc fledge/suc fledge/suc			$\begin{aligned} & 12 \\ & 27 \\ & 76 \end{aligned}$	Manitoba, CAN	lake
$\begin{aligned} & \text { Eberhardt et al. } \\ & 1989 \mathrm{~b} \\ & \text { (moffitti) } \end{aligned}$	-	-	-	-	3.93	1.87 SD	fledge/suc	1	7	15	$\begin{aligned} & \text { Washington } \\ & \text { 1983-84 } \end{aligned}$	river

PERCENT NESTS SUCCESSFUL

$\begin{aligned} & \text { Byrd \& Woolington } \\ & 1983 \text { } \\ & \text { (leucopareia) } \end{aligned}$	-	-	-	-	91	\%/yr	89	93	188	Alaska 1975-76	Buldir Island	Percent hatching at least one egg; island does not have any mammalian predators.
$\begin{aligned} & \text { Bultsma et al. } \\ & 1979 \\ & \text { (maxima) } \end{aligned}$	-	-	-	-	57	\%/yr			159	$\begin{aligned} & \text { w S Dakota } \\ & 1974-75 \end{aligned}$	stockponds/wetlands	Percent hatching at least one egg.
$\begin{aligned} & \text { Combs et al. } 1984 \\ & \text { (maxima) } \end{aligned}$	-	-	-	-	44	\%/yr	27	64	323	$\begin{aligned} & \text { se AL, Sw GA } \\ & 1977-82 \end{aligned}$	reservoir	Percent hatching at least one egg; resident flock descended from mostly maxima, but some interior and canandensis.
Geis 1956 (moffitti)	-	-	-	-	61	\%/yr	51	73	423	$\begin{aligned} & \text { Montana } \\ & 1953-54 \end{aligned}$	lake, river	Percent hatching at least one egg.
LeBlanc 1987c (moffitti)	-	-	-	-	53	\%/yr	49	58	118	$\begin{aligned} & \text { Alberta, CAN } \\ & \text { 1983-84 } \end{aligned}$	lake	Percent hatching at least one egg.
age at sexual maturity												
```MacInnes & Dunn 1988 ("small")```	-	B	-	-	2-3	years				NW Terr., CAN 1965-71	river	"Small" subspecies were hutchinsii and parvipes.
$\begin{aligned} & \text { Palmer } 1962 \\ & \text { ("large") } \end{aligned}$	-	B	-	-		years	2			NS	NS	
Moser \& Rusch 1989 (interior)	-	F	-	-	4-5	years	2			$\begin{aligned} & \text { Manitoba, CAN } \\ & \text { 1981-84 } \end{aligned}$	coastal	Mean age at first nesting; most 2, 3 , and 4 year olds did not nest.
Brakhage 1965 (maxima)	-	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 2-3 \\ & 2-3 \end{aligned}$	years years	$\begin{aligned} & 1 \\ & 2 \end{aligned}$			$\begin{aligned} & \text { Missouri } \\ & 1961-64 \end{aligned}$	reservoir, marsh	Resident population.
ANNUAL MORTALITY												
Samuel et al. 1990	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { J } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	1 2 1 2	- - -	$\begin{aligned} & 21.4 \\ & 23.1 \\ & 31.5 \\ & 41.4 \end{aligned}$	$\begin{aligned} & \circ / y r \\ & \% / y r \\ & \% / y r \\ & \% / y r \end{aligned}$				$\begin{aligned} & \text { Wisconsin } \\ & 1974-80 \end{aligned}$	wildife refuge	Band location: (1) leg banded; (2) neck banded. Neck vs. leg banding results were significantly different for the juvenile data, but not significantly different for the adult data. Difference thought to be due primarily to higher reporting percentage of neck bands. Subspecies not specified.


Reference	Age S	ex	Con	Seas	Mean	SD/SE	Units		Minimum	Maximum	N	Location	Habitat	Notes
Chapman et al. 1969   (fulva)	A	B	-	-	33.5		\%/yr					Alaska 1956-65	NS	Banded as adults; as cited in Bellrose 1976.
Hanson \& Smith 1950   (interior)	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	-	-	$\begin{aligned} & 65.4 \\ & 52.0 \end{aligned}$		$\begin{aligned} & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$					$\begin{aligned} & \text { Illinois } \\ & 1940-47 \end{aligned}$	lake	As cited in Bellrose 1976.
```Vaught & Kirsch 1966 (interior)```	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~A} \\ & \text { A } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$			$\begin{aligned} & 62.6 \\ & 53.1 \\ & 35.4 \\ & 24.4 \\ & 49.5 \\ & 35.4 \end{aligned}$		$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$					$\begin{aligned} & \text { Missouri } \\ & 1950-60 \end{aligned}$	NS	Banded as immatures; as cited in Bellrose 1976.
```Brakhage et al. 1987 (maxima)```	J	-	1	-	43		\%/yr				229	Missourri 1983	lake	(1) Gosling mortality.
Brakhage 1965 (maxima)	J	B	-	-	32		\% to	fledge	20	36		$\begin{aligned} & \text { Missouri } \\ & 1961-64 \end{aligned}$	reservoir, marsh	Gosling mortality from hatching to fledging; resident population.
$\begin{aligned} & \text { Bultsma et al. } \\ & 1979 \\ & \text { (maxima) } \end{aligned}$	J	B	-	-	16		\% to	fledge			159	$\begin{aligned} & \text { S Dakota } \\ & 1974-75 \end{aligned}$	wetlands/stock ponds	Gosling mortality from hatching to fledging; $N$ reflects number of nests in the study.
$\begin{aligned} & \text { Cummings } 1973 \\ & \text { (maxima) } \end{aligned}$	$\begin{aligned} & \text { J } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	-		$\begin{aligned} & 37.0 \\ & 22.9 \\ & 28.4 \end{aligned}$		$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$					Ohio 1968	NS	Banding study; as cited in Bellrose 1976.
$\begin{aligned} & \text { Gulden \& Johnson } \\ & 1968 \\ & \text { (maxima) } \end{aligned}$	A	B	-	-	45.8		\%/yr					Minnesota $1961-66$	NS	Banded as adults; as cited in Bellrose 1976.
Sherwood 1965 (maxima)	-	-	-	-	35		\%/yr					Michigan $1962-64$	NS	As cited in Bellrose 1976.
West 1982   (maxima)	J	B	-	-	74		\% to	fledge				$\begin{aligned} & \text { Missouri } \\ & 1977-79 \end{aligned}$	reservoir, marsh	Gosling mortality from hatching to fledging; as cited in Brakhage et al. 1987.
$\begin{aligned} & \text { Nelson \& Hansen } \\ & 1959 \\ & \text { (minima) } \end{aligned}$	$\begin{aligned} & \text { J } \\ & \text { A } \end{aligned}$	B	-	-	$\begin{aligned} & 46.0 \\ & 35.9 \end{aligned}$		$\begin{aligned} & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$					Alaska 1949-54		Banded as immatures; as cited in Bellrose 1976.
```Eberhardt et al. 1989b (moffitti)```	J	B	-	-	50.9	0.4 SE	\% to	fledge			152	Washington 1983-84	river	Gosling mortality from hatching to fledging.


Reference A	Age S	Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Geis 1956 (moffitti)	J	B	-	-	19		\% to fledge			1,390	$\begin{aligned} & \text { Montana } \\ & 1953-54 \end{aligned}$	river, lake	Gosling mortality form hatching to fledging. $\mathrm{N}=$ number that hatched.
```Hanson & Eberhardt 1 9 7 1 (moffitti)```	$\begin{aligned} & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$		-	$\begin{aligned} & 30 \\ & 40 \end{aligned}$		$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				$\begin{aligned} & \text { Washington } \\ & 1950-60 \end{aligned}$	NS	Banded as immatures; as cited in Bellrose 1976.
Martin 1964 (moffitti)	$\begin{aligned} & \text { J } \\ & \text { J } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 63 \\ & 65 \\ & 46 \\ & 50 \end{aligned}$		$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				Utah 1952-58	Ogden Bay Refuge	As cited in Bellrose 1976.
Martin 1964 (moffitti)	$\begin{aligned} & \text { J } \\ & \text { J } \\ & \text { J } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{~B} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$			$\begin{aligned} & 53 \\ & 47 \\ & 47 \\ & 38 \\ & 40 \\ & 36 \end{aligned}$		$\begin{aligned} & \% / y r \\ & \% / y r \end{aligned}$				Utah 1946-58	Bear River	Banded as immatures; as cited in Bellrose 1976.
$\begin{aligned} & \text { Rienecker } 1987 \\ & \text { (moffitti) } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \mathrm{J} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$		-	$\begin{aligned} & 28 \\ & 49 \end{aligned}$	$\begin{array}{ll} 0.8 & \text { SD } \\ 3.7 & \text { SD } \end{array}$	$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				$\begin{aligned} & \text { ne CA, w NV } \\ & 1949-1979 \end{aligned}$	lakes	Based on band recoveries from approximately 33,000 geese banded on nesting and molting areas; includes harvest and natural mortality.
```Chapman et al. 1969 (occidentalis)```	$\begin{aligned} & \text { A } \\ & \text { J } \\ & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$		-   -   -	$\begin{aligned} & 38.8 \\ & 58.8 \\ & 32.1 \\ & 53.5 \end{aligned}$		$\begin{aligned} & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				Alaska 1952-59	NS	Banded as immatures; as cited in Bellrose 1976.
$\begin{aligned} & \text { Grieb } 1970 \\ & \text { (parvipes) } \end{aligned}$	B	B	-	-	23.8		\%/yr			1,540	Texas 1955-59	shortgrass prairie	Calculated using composite dynamic \& relative recovery rate methods (Geis \& Taber 1963).
$\begin{aligned} & \text { Grieb } 1970 \\ & \text { (parvipes) } \end{aligned}$	$\begin{aligned} & \text { J } \\ & \text { A } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{~B} \end{aligned}$	- - - -	- - - -	$\begin{aligned} & 28.8 \\ & 27.2 \\ & 41.0 \\ & 37.1 \\ & 28.0 \end{aligned}$		$\begin{aligned} & \circ / y r \\ & \circ / y r \\ & \% / y r \\ & \% / y r \\ & \% / y r \end{aligned}$			$\begin{aligned} & 4,052 \\ & 3,168 \\ & 1,825 \\ & 1,857 \\ & 7,220 \end{aligned}$	$\begin{aligned} & \text { Banded in CO } \\ & 1951-64 \end{aligned}$	shortgrass prairie	Calculated using composite dynamic recovery rate method (Geis \& Taber 1963). $N=$ number of geese banded.
$\begin{aligned} & \text { Timm } 1974 \\ & \text { (taverneri) } \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$		-	$\begin{aligned} & 45.6 \\ & 24.0 \end{aligned}$		$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				Alaska 1948-58	NS	Mortality in first year after banding; as cited in Bellrose 1976.

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING/LAYING						
Bellrose 1976	earl Mar			California		Summary of several studies (i.e., Dow 1943; Naylor 1953; Miller \& Collins 1953; Rienecker \& Anderson 1960)
$\begin{aligned} & \text { Collias \& Jahn } \\ & 1959 \end{aligned}$	Apr 4			Wisconsin	marsh	As cited in Bellrose 1976.
```Byrd & Woolington 1983 (leucopareia)```	late May	late May	earl Jun	Alaska 1974-77	Buldir Island	
Brakhage 1965 (maxima)	mid Mar			$\begin{aligned} & \text { Missouri } \\ & 1961-64 \end{aligned}$	reservoir, marsh	Resident population.
$\begin{aligned} & \text { Combs et al. } 1984 \\ & \text { (maxima) } \end{aligned}$	late Feb	Mar-Apr	mid May	$\begin{aligned} & \text { se GA, Sw AL } \\ & 1972-82 \end{aligned}$	reservoir	Resident poulation descended from primarily maxima but also some interior and canandensis.
```Mainguy & Thomas 1985 (maxima)```	earl Apr		mid Apr	Ontario, CAN 1981-82	farms, fields	
Mickleson 1973 (minima)	late May			Alaska	Yukon Delta	As cited in Bellrose 1976.
$\begin{aligned} & \text { Akesson \& Raveling } \\ & \text { 1981 } \\ & \text { (moffitti) } \end{aligned}$		mid/late Mar		$\begin{aligned} & \text { California } \\ & 1976-78 \end{aligned}$	captive	
Geis 1956 (moffitti)	mid Mar	late Mar-Apr	May	$\begin{aligned} & \text { w Montana } \\ & 1953-54 \end{aligned}$	lake in valley	About 3,000 ft elevation; at 6,500 feet was about two weeks later.
McCabe 1979 (moffitti)	earl Mar	late Mar		OR, WA 1974-75	islands in river	
Steel et al. 1957 (moffitti)	earl Apr	mid Apr	earl May	Idaho 1959-51	Gray's Lake	
Trainer 1959 (occidentalis)	mid May			Alaska	coastal wetlands	As cited in Bellrose 1976.

Reference	Begin	Peak	End	Location	Habitat	Notes
HATCHING						
```Byrd & Woolington 1983 (leucopareia)```		earl Jul		Alaska 1974-77	Buldir Island	
$\begin{aligned} & \text { Combs et al. } 1984 \\ & \text { (maxima) } \end{aligned}$	Mar	Apr - May	earl Jun	$\begin{aligned} & \text { se GA, sw AL } \\ & 1977-82 \end{aligned}$	reservoir	Resident flock of primarily maxima, with some interior and canadensis also.
Sedinger \& Raveling 1986 (minima)	mid Jun	mid-late Jun	mid Jul	Alaska 1977-79	river- up \& lowlands	Hatching was highly synchronous each year.
$\begin{aligned} & \text { Geis } 1956 \\ & \text { (moffitti) } \end{aligned}$	mid Apr	late Apr-May	late May	$\begin{aligned} & \text { w Montana } \\ & 1953-54 \end{aligned}$	lake in valley	About 3,000 ft elevation; at 6,500 feet was about two weeks later.
```Steel et al. 1957 (moffitti)```	earl May	mid May	late Jun	Idaho 1959-51	Gray's Lake	
FALL/BASIC MOLT						
Williams \& Kendeigh 1982 (interior)	late Jun		late Oct	s Illinois	captive outside	Wing molt began in late June, body molt began in August when flight feathers were 70-80\% regrown.
```Byrd & Woolington 1983 (leucopareia)```	mid Jul	mid Aug	late Aug	Alaska 1974-77	Buldir Island	Wing molt.
$\begin{aligned} & \text { Mainguy \& Thomas } \\ & 1985 \\ & \text { (maxima) } \end{aligned}$		Jun 25		Ontario, CAN 1981-82	fields, farms	
```Steel et al. 1957 (moffitti)```	mid Jun			Idaho 1959-51	Gray's Lake	Wing molt.
FALL MIGRATION						
$\begin{aligned} & \text { Bell \& Klimstra } \\ & 1970 \\ & \text { (interior) } \end{aligned}$	mid Sep	Nov		arrive S Illinois	refuges	Population often continues farther south in late Dec-early Jan when food becomes scarce.
Byrd \& Woolington 1983		Sep		Alaska 1974-77	island	

Reference	Begin	Peak	End	Location	Habitat	Notes
Raveling 1978b (maxima)	Sep 20		Nov 20	$\begin{aligned} & \text { Manitoba, CAN } \\ & 1968-75 \end{aligned}$	lake	Migrating south from Manitoba.
Grieb 1970 (parvipes)	Oct	earl Nov	mid Dec	$\begin{aligned} & \text { arriving Co, } \\ & \text { TX } \end{aligned}$	lakes in refuges	Coming from Yukon and North West Territories, Canada.
SPRING MIGRATION						
```Bell & Klimstra 1 9 7 0 (interior)```	Feb	earl Mar		leave S Illinois	refuges	
Prevett et al. 1985   (interior)	mid Apr		earl May	$\begin{aligned} & \text { Ontario, CAN } \\ & 1976-80 \end{aligned}$	bay	Migrating through the James Bay area.
```Byrd & Woolington 1983 (leucopareia)```	earl May	mid May		arrive Alaska 1974-7	Buldir Island	
Raveling 1978b (maxima)	late Mar	earl Apr		leave Minnesota	lakes	

Page A-46 left blank.

Reference Ag	Age S	Sex	Cond	d Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
BODY WEIGHT														
Bellrose \& Hawkins 1947	A A	M	-	FA	1,240			g			631	Illinois	NS	As cited in Palmer 1976.
	J	M	-	FA	1,170			g			730			
	A	F	-	FA	1,080			9			402			
	J	F	-	FA	1,030			g			671			
Bellrose 1976	A	M	-	-	1,247			9			1,809	NS	NS	
	A	F	-	-	1,107			9			1,417			
Delnicki \&Reinecke 1986	A	M	-	WI	1,246	108	SD	g			1,308	w Mississippi	NS	Alluvial Valley.
	A	F	-	WI	1,095	106	SD	9			453	1979-83		
	J	M	-	WI	1,181			9			169	w Mississippi	NS	Alluvial Valley.
Reinecke 1986	J	F	-	WI	1,040			9			188	1979-83		
Heitmeyer 1988a	A	F	-	FA	1,010			9			11	$\begin{aligned} & \text { se Missouri } \\ & 1981-83 \end{aligned}$	Mingo Basin	The fall middle prealternate molt.
Heitmeyer 1988a	A	F	-	WI	1,118	21	SE	9			44	$\begin{aligned} & \text { se Missouri } \\ & \text { 1981-83 } \end{aligned}$	Mingo Basin	Females initiating the prebasic molt.
Heitmeyer 1988a	A	F	-	WI	983			g			21	$\begin{aligned} & \text { se Missouri } \\ & 1981-83 \end{aligned}$	Mingo Basin	Females in midwinter, alternate plumage, unpaired.
Heitmeyer 1988a	A	F	-	WI	1,280			g			10	$\begin{aligned} & \text { se Missouri } \\ & 1981-83 \end{aligned}$	Mingo Basin	Females in basic plumage; prespring migration departure.
Krapu \& Doty 1979	A	F	1	SP	1,197	104.9	SD	9			41	N Dakota	prairie potholes	All are nesting females. Age $\mathrm{Y}=$
	Y	F	1	SP	1,137	106.9	SD	9			21	1974-76		yearlings. Month: (1) April; (2)
	A	F	2	SP	1,079	104.5	SD	g			60			May; (3) June.
	Y	F	2	SP	1,028	96.5	SD	g			20			
	A	F	3	SU	1,012	134.1	SD	9			4			
	Y	F	3	SU	889	13.6	SD	g			3			
$\begin{aligned} & \text { Lokemoen et al. } \\ & \text { 1990a } \end{aligned}$	A	M	-	SP	1,206			9		1277	660	$\begin{aligned} & \text { c N Dakota } \\ & 1976-81 \end{aligned}$	uplands, wetlands	Maximum value represents mean of birds weighed during March 21-March 31; following this period males lost approximately 10% of body weight until about mid May when they began gaining weight again.
$\begin{aligned} & \text { Nelson \& Martin } \\ & 1953 \end{aligned}$	A	M	-	-	1,225			9		1,814	3963	US	NS	Data from US FWS records (from
	A	F	-	-	1,043			9		1,633	3169			banders, game bag investigations).

Reference Ag	Age Se	ex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Poole 1938	A	F	-	-	1,234		g			2	NS	NS	
Whyte \& Bolen 1984	$\begin{array}{ll} 4 & \text { A } \\ & \text { A } \end{array}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 1,237 \\ & 1,088 \end{aligned}$	$\begin{aligned} & 118 \text { SD } \\ & 105 \mathrm{SD} \end{aligned}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 87 \\ & 42 \end{aligned}$	Texas 1980-82	s high plains	Late winter (January 8 to February 9).
Whyte \& Bolen 1984	$4 \mathrm{~J}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { FA } \\ & \text { FA } \end{aligned}$	$\begin{array}{r} 1,214 \\ 996 \end{array}$	$\begin{aligned} & 121 \mathrm{SD} \\ & 145 \mathrm{SD} \end{aligned}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 18 \\ & 20 \end{aligned}$	Texas 1980-82	s high plains	Late winter (January 8 to February 9).
BODY FAT													
Heitmeyer 1988a	A	F	1	-	>200		g				$\begin{aligned} & \text { se Missouri } \\ & 1981-83 \end{aligned}$	wetlands	(1) Females beginning prebasic molt.
Krapu \& Doty 1979	$\begin{aligned} & \text { A } \\ & \text { Y } \\ & \text { A } \\ & \text { Y } \\ & \text { A } \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$	1 1 2 2 3 3		$\begin{array}{r} 105.9 \\ 81.8 \\ 49.4 \\ 39.5 \\ 22.2 \\ 9.6 \end{array}$	$\begin{array}{r} 34.3 \\ 36.6 \mathrm{SD} \\ 29.8 \\ 16.3 \mathrm{SD} \\ 21.9 \\ \mathrm{SD} \\ 8.3 \end{array}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			19 8 19 5 4 3	$\begin{aligned} & \text { N Dakota } \\ & 1974-76 \end{aligned}$	prairie potholes	All are nesting females. Age $\mathrm{Y}=$ yearling. Month: (1) April; (2) May; (3) June.
Whyte \& Bolen 1984	$\begin{array}{ll} 4 & \mathrm{~A} \\ & \mathrm{~A} \end{array}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { NB } \\ & \text { NB } \end{aligned}$	$\begin{aligned} & \text { WI } \\ & \hline \end{aligned}$	$\begin{aligned} & 174 \\ & 171 \end{aligned}$	$\begin{aligned} & 66 \mathrm{SD} \\ & 56 \mathrm{SD} \end{aligned}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 87 \\ & 42 \end{aligned}$	Texas 1980-82	s high plains	Late winter (January 8 to February 9). Percent fat is of body weight: males $=14 \%$; females $=15 \%$.
Whyte \& Bolen 1984	$4 \begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { NB } \\ & \text { NB } \end{aligned}$	$\begin{aligned} & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 171 \\ & 128 \end{aligned}$	$\begin{aligned} & 67 \mathrm{SD} \\ & 72 \mathrm{SD} \end{aligned}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 18 \\ & 20 \end{aligned}$	Texas 1980-82	s high plains	Late winter (January 8 to February 9). Percent fat is of total body weight: males $=14 \%$, females $=13 \%$.

EGG WEIGHT

Eldridge \& Krapu 1988	-	-	-	-	52.2		9	32.2	66.7	613	N Dakota	plains	
Eldridge \& Krapu 1988	-	-	-	-	53.7		g	39.7	68.8	484	N Dakota	captivity	Some of the variation in egg weight induced by feeding of various diets.
$\begin{aligned} & \text { Lokemoen et al. } \\ & \text { 1990b } \end{aligned}$		-	1	-	$\begin{aligned} & 49.3 \\ & 45.5 \end{aligned}$	$\begin{aligned} & 3.5 \mathrm{SD} \\ & 3.9 \mathrm{SD} \end{aligned}$	$\begin{aligned} & g \\ & g \end{aligned}$			$\begin{array}{r} 27 \\ 302 \end{array}$	$\begin{aligned} & \text { C N Dakota } \\ & 1976-81 \end{aligned}$	uplands, wetlands	(1) Fresh egg; (2) pipped egg.
hatching weight													
$\begin{aligned} & \text { Lokemoen et al. } \\ & \text { 1990b } \end{aligned}$	-	-	-	-	32.4	2.4 SD	9			36	$\begin{aligned} & \text { C N Dakota } \\ & 1976-81 \end{aligned}$	uplands, wetlands	One-day-old young: 42\% were dry and 58% were damp at time of weighing.

Reference Age	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
DUCKLING WEIGHT												
$\begin{aligned} & \text { Lokemoen et al. } \\ & \text { 1990b } \end{aligned}$	$\begin{array}{ll} - & B \\ - & F \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	- - - - - - - -	$\begin{array}{r} 32.4 \\ 115.3 \\ 265.0 \\ 288.9 \\ 401.2 \\ 575.0 \\ 774.3 \\ 740.0 \end{array}$	$\begin{array}{r} 2.4 \\ 37.3 \mathrm{SD} \\ 91.9 \\ \mathrm{SD} \\ 60.5 \\ 92.2 \mathrm{SD} \\ 152.9 \end{array} \mathrm{SD}$	$\begin{aligned} & g-3.5 d \\ & g-9.5 d \\ & g-15.5 d \\ & g-22.0 \mathrm{~d} \\ & g-30.5 \mathrm{~d} \\ & g-40.5 \mathrm{~d} \\ & g-50.5 \mathrm{~d} \\ & g-56.0 \mathrm{~d} \end{aligned}$			$\begin{array}{r} 36 \\ 6 \\ 2 \\ 14 \\ 20 \\ 22 \\ 38 \\ 5 \end{array}$	$\begin{aligned} & \text { C N Dakota } \\ & 1976-81 \end{aligned}$	wetlands, grasslands and croplands	Weights for age groups depicted under units column: (1) 3.5 days old, both males and females, (2) 9.5 days old, females only, and so on. Flying by 56 days of age.
$\begin{aligned} & \text { Lokemoen et al. } \\ & \text { 1990b } \end{aligned}$	$\begin{array}{ll}\text { - } & B \\ - & M \\ \text { - } & \text { M } \\ \text { - } & \text { M } \\ \text { - } & \text { M } \\ \text { - } & \text { M } \\ \text { - } & \text { M } \\ \text { - } & \text { M }\end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	- - - - - - -	$\begin{array}{r} 32.4 \\ 92.2 \\ 215.0 \\ 343.2 \\ 460.3 \\ 648.4 \\ 863.9 \\ 817.1 \end{array}$	$\begin{array}{rl} 2.4 & \mathrm{SD} \\ 11.5 & \mathrm{SD} \\ 5.0 & \mathrm{SD} \\ 75.3 & \mathrm{SD} \\ 93.4 & \mathrm{SD} \\ 128.4 & \mathrm{SD} \\ 102.1 & \mathrm{SD} \\ 91.4 & \mathrm{SD} \end{array}$	$\begin{aligned} & g-3.5 d \\ & g-9.5 \mathrm{~d} \\ & g-15.5 \mathrm{~d} \\ & g-22.0 \mathrm{~d} \\ & g-30.5 \mathrm{~d} \\ & g-40.5 \mathrm{~d} \\ & g-50.5 \mathrm{~d} \\ & g-56.0 \mathrm{~d} \end{aligned}$			$\begin{array}{r} 36 \\ 4 \\ 3 \\ 11 \\ 30 \\ 19 \\ 31 \\ 7 \end{array}$	$\begin{aligned} & \text { C N Dakota } \\ & 1976-81 \end{aligned}$	wetlands, grasslands and croplands	Weights for age groups depicted under units column: (1) 3.5 days old, both males and females, (2) 9.5 days old, males only, and so on. Flying by 56 days of age.
FLEDGING WEIGHT												
$\begin{aligned} & \text { Lokemoen et al. } \\ & 1990 \text { b } \end{aligned}$	$\begin{array}{ll} \mathrm{J} & \mathrm{M} \\ \mathrm{~J} & \mathrm{~F} \end{array}$	-	-	$\begin{aligned} & 817.1 \\ & 740.0 \end{aligned}$	$\begin{array}{r} 91.4 \mathrm{SD} \\ 114.9 \mathrm{SD} \end{array}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			7 5	c N Dakota	uplands, wetlands	Average age $=56$ days. Author suggests that weight loss may be associated with onset of flight.
LEAN (DRY) BODY WEIGHT												
Whyte \& Bolen 1984	$\begin{array}{ll} \text { A } & \mathrm{M} \\ \text { A } & \mathrm{F} \end{array}$	$\begin{aligned} & \text { NB } \\ & \text { NB } \end{aligned}$	$\begin{aligned} & \text { WI } \\ & \hline \end{aligned}$	$\begin{aligned} & 260 \\ & 220 \end{aligned}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$				Texas	s high plains	
Whyte \& Bolen 1984	$\begin{array}{ll} \text { A } & \text { M } \\ \text { A } & \mathrm{F} \end{array}$	$\begin{aligned} & \mathrm{NB} \\ & \mathrm{NB} \end{aligned}$	$\begin{aligned} & \text { FA } \\ & \text { FA } \end{aligned}$	$\begin{array}{r} 263.3 \\ 245 \end{array}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & 260 \\ & 240 \end{aligned}$	$\begin{aligned} & 270 \\ & 250 \end{aligned}$	$\begin{aligned} & 22 \\ & 14 \end{aligned}$	Texas	s high plains	Average of three intervals between Nov 2 and Dec 14. Min = average value for Nov 2 to 15. Max $=$ average value for Dec 1 to 14.
metabolic rate (KCAL basis)												
$\begin{aligned} & \text { McEwan \& Koelink } \\ & 1973 \end{aligned}$	$\begin{array}{ll} \text { A } & \text { B } \\ \text { A } & \text { B } \\ \text { A } & \text { B } \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 104 \\ 85 \\ 80 \end{array}$		$\begin{aligned} & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \end{aligned}$				Canada	lab	Resting - estimated from figure. Temperature (degrees C): (1) 0; (2) 10; (3) 15-25. Measured 02 consumption and CO 2 production to estimate kcal values; 43 observations on 9 birds.

Reference
Age Sex Food type
B wild millet smartweed duckweed (veg. spikerush
pondweed (seed/veg.)
rice
naiad (seed/veg.)
widgeongrass
arrowhead (tuber) coontail (seed/veg.) buttonbrush
chufa (tuber/seed) bald cypress

McAtee 1918

Perret 1962

Perret 1962

Perret 1962

Stoudt 1944

B grasses
sedges
smartweed seeds pondweeds duckweeds
wild celery
tree seeds
misc. seeds insects snails

A M invertebrates (primarily Insecta) other

A F invertebrates (primarily Insecta) 64
36

J B invertebrates (primarily Insecta) 99
1 other

B B seeds
Zizamia aquatica Potamogeton
strictifolius
Sparganium
chlorocarpum

1578 US, CAN

50 Manitoba, CAN NS
\% by volume
46 Manitoba, CAN NS
\% by volume
19 Manitoba, CAN
\% by volume
306 Minnesota 1940 NS

- diet; measure NS
percent (type NS
stomach contents

Data predominantly from Louisiana, but also from 22 other states and 2 but also from 22 other states and specified. As cited in Palmer 1976

Items in the $0.5-2 \%$ category not included here.

As cited in Swanson \& Meyer 1973 Evaluated in spring and summer.

As cited in Swanson \& Meyer 1973 Evaluated in spring and summer.

As cited in Swanson \& Meyer 1973 Evaluated in spring and summer.

As cited in Palmer 1976.

POPULATION DENSITY

Reference
Age Sex Cond Seas Mean SD/SE Units
Habitat
Notes
CLUTCH SIZE

Bellrose 1976	-	-	-	9
Coulter \& Miller	-	-	-	9.6
1968				

1968 \& Miller
9.6

Doty 1975	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{array}{r} 10-11 \\ 3-6 \end{array}$	
Duebbert \&	-	-	-	-	8.6	
Lokemoen 1976						
Fuller 1953	-	-	-	-	9.6	
Krapu \& Doty 1979	Y	F	-	-	9.3	1.7 SE
	A	F	-	-	10.3	1.1 SE
Lokemoen et al.	-	-	1	-	8.96	1.38 SE
1990b	-	-	2	-	8.49	1.23 SE
Palmer 1976	-	-	-	-	8.9	
Palmer 1976	-	-	-	-	7.1	
Palmer 1976	-	-	-	-	8.6	

1
1
185170 NS
>100 Maine, Vermont
NS

8 w N Dakota
1st clutch
1st clutch
2nd clutch
8.28 .8
$100 \begin{aligned} & \text { S Dakota } \\ & \text { 1971-73 }\end{aligned}$
Utah
7 N Dakota
78 c N Dakota
$\begin{array}{ll}78 & \text { C N Dak } \\ 57 & 1976-81\end{array}$
494 California
257 Montana
185 Utah

As cited in Bellrose 1976

NUMBER OF CLUTCHES/YEAR

Swanson unpub.
Swanson et al.
1985
Bellrose 19761

NS
undisturbed fields

Ogden Bay
prairie potholes
prairie potholes

NS
NS

Min and max are yearly means.

As cited in Bellrose 1976
Initial completed clutches. $\mathrm{Y}=$ yearling female.
(1) After-second-year females; (second-year females.

Summarizing several other studies. Summarizing several other studies
Summarizing several other studies.

Nests purposely destroyed to stimulate renesting.

Many females will renest if they lose their clutch

As cited in Palmer 1976
As cited in Palmer 1976

AGE AT FLEDGING

Bellrose 1976	J B	-	-	$52-60$	days
Gollop \& Marshall 1954	-	-	-	$52-60$	days

Gollop \& Marshal
52-60
day

195
days
NS
NS
n FLEDGE/SUCCESSFUL NEST
Bellrose 1976 - $\quad-\quad-\quad 8$
Cowardin \& Johnson - - - - 4.9
1979
N/suc nest
United States
NS
N/suc nest
NS
NS
\% hatched
: hatched
\% hatched
prairie potholes, undisturbed field

As cited in Palmer 1976

PERCENT NESTS SUCCESSFUI

 Lokemoen 1976	-			$\begin{aligned} & 54 \\ & 61 \\ & 51 \end{aligned}$	\%
Johnson et al. 1988	-	-		7	\%
Klett et al. 1988		-		$\begin{array}{r} 9 \\ 10 \end{array}$	\%
Klett et al. 1988	-	-		19	\%
Klett et al. 1988	-	-		$\begin{array}{r} 8 \\ 11 \\ 10 \end{array}$	\%
Klett et al. 1988	-	-		5	

33 S Dakota
61
47

99 ND, SD, MT
1983

51 e S Dakota

487 C S Dakota 1966-74
210 C N Dakota
1,036
929
314 W MN,
W MN,
e N Dakota
61 1971-73
都

99	ND, SD, MT 1983	various unmanaged areas in prairie pothole regions (e.g., grassland, hayland, right-of way, wetland)
51	e S Dakota	prairie potholes
79	C S Dakota	prairie potholes
487	1966-74	
210	C N Dakota	prairie potholes
036		
929	W MN,	prairie potholes

Summary of many sources
Average fledged brood size. As cited in Johnson et al. 1987.

Percent nests hatched: (1) 1971
(2) 1972; (3) 1973. Main egg predators found to include red fox, raccoon, badger, skunk, and avian species. Author suggests success is high in part because sample does not include actively farmed area where more nests are destroyed.

Mayfield measure of nesting Mayfield measure of nesting biggest cause of losses. Success falls below 15% level thought to be needed to maintain a stable population.
Years: (1) 1966-74; (2) 1980-84. Population not self-sustaining in this area.
(1) 1966 -
$1980-84$.

Data from two study sites combined: w Minnesota 1980-84 and e North Dakota 1966-84

Reference	Age S	Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Lokemoen et al. } \\ & \text { 1990a } \end{aligned}$	-	-	-	-	11		\% hatched		27	53	N Dakota $1976-81$	mixed	Calculated using the Mayfield 40\% method. Habitats consisted of cropland, grazed mixed-grass prairie, hayland, wetlands, and miscellaneous.
$\begin{aligned} & \text { Lokemoen et al. } \\ & 1988 \end{aligned}$	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{array}{r} 8 \\ 60 \end{array}$		\% hatched \% hatched			$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { C N Dakota } \\ & 1985-86 \end{aligned}$	NS	(1) untreated control areas; (2) areas with predator barriers.
Simpson 1988	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 15.4 \\ & 31.7 \end{aligned}$		\% success \% success			$\begin{aligned} & 14 \\ & 39 \end{aligned}$	$\begin{aligned} & \text { ne S Dakota } \\ & 1985-86 \end{aligned}$	game production areas	Mayfield measure of nesting success in (1) 1985 and (2) 1986 in game production areas throughout ne S Dakota.
Simpson 1988	-	-	1	-	43.2		\% success			63	$\begin{aligned} & \text { ne S Dakota } \\ & 1985-86 \end{aligned}$	island in large lake	Mayfield measure of nesting success in (1) 1985 on Lake Albert Island.
ANNUAL MORTALITY													
Bellrose 1976	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		-	$\begin{aligned} & 27.2 \\ & 38.2 \end{aligned}$		$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				Eastern c flyway	NS	Summary of other studies.
$\begin{aligned} & \text { Brownie et al. } \\ & 1978 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \mathrm{J} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \end{aligned}$		-	$\begin{aligned} & 37.2 \\ & 54.5 \end{aligned}$		$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$			$\begin{aligned} & 6 \mathrm{yr} \\ & 6 \mathrm{yr} \end{aligned}$	Minnesota	NS	As cited in Kirby and Cowardin 1986.
$\begin{aligned} & \text { Chu \& Hestbeck } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { J } \\ & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { FA } \\ & \text { FA } \\ & \text { FA } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 40.1 \\ & 41.1 \\ & 49.9 \\ & 48.8 \end{aligned}$	$\begin{array}{ll}3.1 & \mathrm{SE} \\ 7.2 & \mathrm{SE} \\ 3.3 & \mathrm{SE} \\ 6.0 & \mathrm{SE}\end{array}$	$\begin{aligned} & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$	$\begin{aligned} & 22 \\ & 31 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 51 \\ & 59 \\ & 72 \\ & 68 \end{aligned}$	$\begin{array}{r} 5376 \\ 12391 \\ 5429 \\ 11137 \end{array}$	$\begin{aligned} & \text { w m Atlantic } \\ & 1971-85 \end{aligned}$	NS	H1 and H2 models of Brownie et al. 1985.
$\begin{aligned} & \text { Chu \& Hestbeck } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { J } \\ & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { FA } \\ & \text { FA } \\ & \text { FA } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 36.3 \\ & 46.6 \\ & 45.6 \\ & 50.7 \end{aligned}$	$\begin{array}{ll} 1.8 & \mathrm{SE} \\ 3.0 & \mathrm{SE} \\ 1.7 & \mathrm{SE} \\ 3.1 & \mathrm{SE} \end{array}$	$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$	$\begin{aligned} & 12 \\ & 21 \\ & 16 \\ & 38 \end{aligned}$	$\begin{aligned} & 52 \\ & 60 \\ & 69 \\ & 74 \end{aligned}$	$\begin{array}{r} 5528 \\ 12821 \\ 7392 \\ 12047 \end{array}$	MI, n OH, IN 1971-85	NS	H1 and H2 models of Brownie et al. 1985.
$\begin{aligned} & \text { Chu \& Hestbeck } \\ & 1989 \text { K } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { J } \\ & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { FA } \\ & \text { FA } \\ & \text { FA } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 38.5 \\ & 55.9 \\ & 47.7 \\ & 57.3 \end{aligned}$	$\begin{aligned} & 1.3 \mathrm{SE} \\ & 1.8 \mathrm{SE} \\ & 1.4 \mathrm{SE} \\ & 2.0 \mathrm{SE} \end{aligned}$	$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$	$\begin{aligned} & 19 \\ & 43 \\ & 23 \\ & 41 \end{aligned}$	$\begin{aligned} & 53 \\ & 73 \\ & 59 \\ & 68 \end{aligned}$	$\begin{array}{r} 9252 \\ 20274 \\ 12912 \\ 22371 \end{array}$	$\begin{aligned} & \text { WI, } n \text { IL } \\ & 1972-85 \end{aligned}$	NS	H1 and H2 models of Brownie et al. 1985.
Chu \& Hestbeck	$\begin{aligned} & \text { A } \\ & \text { J } \\ & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { FA } \\ & \text { FA } \\ & \text { FA } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 32.9 \\ & 49.7 \\ & 42.0 \\ & 48.4 \end{aligned}$	$\begin{array}{ll} 1.6 & \mathrm{SE} \\ 2.2 & \mathrm{SE} \\ 1.8 & \mathrm{SE} \\ 2.8 & \mathrm{SE} \end{array}$	$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$	$\begin{aligned} & 12 \\ & 32 \\ & 15 \\ & 27 \end{aligned}$	$\begin{aligned} & 55 \\ & 66 \\ & 64 \\ & 56 \end{aligned}$	$\begin{array}{r} 8908 \\ 18553 \\ 9129 \\ 17570 \end{array}$	w MN 1969-85	NS	H1 and H2 models of Brownie et al. 1985.
$\begin{aligned} & \text { Chu \& Hestbeck } \\ & 1989 \text { (} \end{aligned}$	A J A J	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { FA } \\ & \text { FA } \\ & \text { FA } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 33.8 \\ & 29.8 \\ & 40.5 \\ & 33.8 \end{aligned}$	$\begin{array}{ll} 1.2 & \mathrm{SE} \\ 4.7 & \mathrm{SE} \\ 3.2 & \mathrm{SE} \\ 6.8 & \mathrm{SE} \end{array}$	$\begin{aligned} & \circ / \mathrm{yr} \\ & \frac{0}{\circ} / \mathrm{yr} \\ & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 56 \\ & 49 \\ & 62 \\ & 68 \end{aligned}$	$\begin{array}{r} 15765 \\ 3613 \\ 7373 \\ 3463 \end{array}$	ND 1969-85	NS	H1 and H2 models of Brownie et al. 1985.

Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Chu \& Hestbeck	A	M	-	-	32.7	0.9 SE	\%/yr	8	54	18289	n CA 1971-85	NS	H1 and H2 models of Brownie et al.
1989	J	M	-	-	46.1	2.3 SE	\%/yr	28	65	11372			1985.
	A	F	-	-	45.5	1.3 SE	\%/yr	26	64	13704			
	J	F	-	-	43.7	4.5 SE	\%/yr	16	78	8205			
Chu \& Hestbeck	A	M	-	FA	39.0	2.3 SE	\%/yr	9	60	4097	ne US 1971-85	NS	H1 and H2 models of Brownie et al. 1985.
	J	M	-	FA	48.1	5.3 SE	\%/yr	7	69	10103			
	A	F	-	FA	51.5	1.9 SE	$\% / \mathrm{yr}$	33	64	4596			
	J	F	-	FA	56.8	3.2 SE	$\% / \mathrm{yr}$	38	68	9890			
Kirby \& Cowardin	A	B	-	-	37.2		\%/yr				n c Minnesota	NS	
1986	J	B	-	-	54.5		\%/yr				$1968-74$		
Lee et al. 1964	J	-	-	-	71		$\% / \mathrm{yr}$				Minnesota	NS	As cited in Bellrose 1976.
	A	-	-	-	56		\%/yr						
$\begin{aligned} & \text { Lokemoen et al. } \\ & \text { 1990a } \end{aligned}$	J	B	-	-	32		\%/yr				$\begin{aligned} & \text { C N Dakota } \\ & 1976-81 \end{aligned}$	prairie potholes	Calculated mortality from hatching to near fledging.

*** SEASONAL ACTIVITIES ***

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING/LAYING						
Bellrose 1976		May		$\begin{aligned} & \mathrm{CA}, \mathrm{UT}, \mathrm{MT}, \mathrm{SD}, \\ & \mathrm{NY}, \mathrm{VT} \end{aligned}$	NS	
Krapu \& Doty 1979	Apr 4	May 3	Jul 17	s c N Dakota	NS	Total of 265 nests. Median date of nest initiation by adults was 7 days earlier than for yearlings.
Lokemoen et al. 1990b	late Apr	mid May	mid Jun	c N Dakota	prairie potholes	Time of nest initiation.

hatching

Toft et al. 1984
June

NW Terr., CAN wetlands

FALL/BASIC MOLT

 Heitmeyer 1988	mid Sept	Nov	Mississippi
 Heitmeyer 1988	Dec	Marested wetlands	Prealternate molt.
Varebasic molt.			

Reference	Begin	Peak	End	Location	Habitat	Notes
Heitmeyer 1988a		mid Oct	late Nov	$\begin{aligned} & \text { se Missouri } \\ & 1980-83 \end{aligned}$	lowland hardwood wetlands	
FALL MIGRATION						
Fredrickson \& Heitmeyer 1988	mid Sep	Oct	earl Nov	$\begin{aligned} & \text { Mississipi } \\ & \text { Valley } \end{aligned}$	forested wetlands	Arrival of mallards to the upper Mississippi Alluvial Valley.
Palmer 1976	late Sep		Nov	Canada	NS	Leaving prairie provinces.
Palmer 1976	mid Oct	Nov		northern US	NS	Leaving northern third of US breeding areas.
Palmer 1976	mid Oct	Dec		mid-central US	NS	Leaving mid-central US breeding areas.
Rutherford 1966	mid Sep	mid Nov		Colorado	high plains	Arrival of wintering mallards. As cited in Ringelman et al. 1989.
SPRING MIGRATION						
Fredrickson \& Heitmeyer 1988		mid Mar		Mississipi Valley	forested wetlands	Departure of mallards from the upper Mississippi Alluvial Valley.
Johnson et al. 1987	Mar 15		May 10	n c US	prairie potholes	Arrive on breeding grounds.
$\begin{aligned} & \text { Lokemoen et al. } \\ & \text { 1990b } \end{aligned}$	late Mar	mid Apr	mid May	c N Dakota	prairie potholes	Arrival of females on breeding grounds; second-year hens arrived significantly later than after-second-year hens.
Palmer 1976	late Mar	Apr		arrive Canada	prairie potholes	
Rutherford 1966		earl Mar		Colorado	high plains	Departure of wintering mallards. As cited in Ringelman et al. 1989.

***** LESSER SCAUP *****

*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE	Uni		Minimum	Maximum	N	Location	Habitat	Notes
BODY WEIGHT														
Austin \&	A	F	1	SU	688		9				21	Manitoba	lake	Post breeding females collected
Fredrickson 1987	A	F	2	SU	647		g				24	1981-82, 84		from mid July-October; weights are
	A	F	3	SU	693		g				8			sequential from beginning to end of
	A	F	4	SU	842		g				32			wing molt. Molt stage (1)
														preflightless; (2) flightless; (3)
Chappel \& Titman 1983	A	B	-	-	814.9	13.4 SE	9				39	Quebec, CAN	lake	Migrants (31 males and 8 females)
	A	-	-	-	57.7	0.72 SE	\% w	water			39	1979,80		collected in April, November,
	-	-	-	-	11.2	1.14 SE	g ab	abd fat			39			December, and October.
	-	-	-	-	7.24	0.88 SE	g i	nt fat			39			Abbreviations: abd fat = abdominal
														fat; int fat = intestinal fat.
Gammonley \& Heitmeyer 1990	A	M	-	SP	734	24 SE	g				6	s OR, n CA	palustrine wetlands	Spring migrants; males were
	A	F	-	SP	663	52 SE	9				5	1986-87		non-molting, females were in early pre-basic molt.
$\begin{aligned} & \text { Nelson \& Martin } \\ & 1953 \end{aligned}$	A	M	-	-	860		9			1,100	130	United States	NS	Data from U.S. Fish and Wildlife
	A	F	-	-	770		g			950	144			Service records; collected from
														bird banders and game bag investigations.
Palmer 1976	A	F	-	-	790		g		540	960	118	NS	NS	As cited in Dunning 1984.
	A	M	-	-	850		g		620	1050	112			
Poole 1938	-	F	-	-	763		9				1	NS	NS	
BODY FAT														
$\begin{aligned} & \text { Austin \& } \\ & \text { Fredrickson } 1987 \end{aligned}$	A	F	1	SU	50.7			(7.4\%)			21	Manitoba	lake	Post-breeding females collected
	A	F	2	SU	37.2			(5.7\%)			24	1981-82, 84		from July-October; weights are
	A	F	3	SU	46.5			(6.7\%)			8			sequential from beginning to end of
	A	F	4	SU	188.1			(22.3\%)			32			wing molt. Molt stage: (1)
														preflightless; (2) flightless; (3)
														postflightless; (4) migratory.
														Percent in units column is percent fat of total body weight.
$\begin{aligned} & \text { Gammonley } \\ & \text { Heitmeyer } \\ & 1990 \end{aligned}$	A	M	-	SP	78	9 SE	g	(11\%)			6	s OR, n CA	palustrine wetlands	Spring migrants; percent in units
	A	F	-	SP	53	27 SE	g	(8\%)			5	1986-87		column = percent fat of total body
														weight.

1984 Lightbody \& Ankney

9 fledge

1981
7
itoba, CAN

captive
estimated from Figure 1. Fledge (primary feathers are fully clear of shafts) at 65 days. By
(1972), these captive scaup
have been 200 grams lighter than would be expected for wild scaup by fledging.

Weight of scaup at various ages between 1 and 12 weeks (see unit column). Measurements taken at midpoint of the week. Starting at scaup were about 200 grams lighter than expected for wild scaup by fledging (at 8 to 9 weeks).

Alberta, CAN
g/day
g/day
g/day
nada

Alberta, CAI

3 weeks 6 weeks 9 weeks

captive - eggs from ild nests

DUCKLING GROWTH RAT

Sugden \& Harris	J	B	1	SU	6.9	g/day
1972	J	B	2	SU	14	g/day
	J	B	3	SU	1.5	$9 /$ day
	J	B	4	SU	1.2	g/day

METABOLIC RATE (KCAL BASIS)
kcal/kg-d
McEwan \& Koelink
$\begin{array}{llll}\text { A } & \text { B } & 1 & - \\ \text { A } & \text { B } & 2 & -\end{array}$
125
90
1973

$$
\mathrm{kcal} / \mathrm{kg}-\mathrm{c}
$$

kcal/kg-d
captive - eggs from ild nests
lab

Ages: (1) 0 to 3 weeks; (2) 3 to 6 weeks; (3) 6 to 9 weeks; (4) 9 to 12 weeks.

Resting values estimated from figure. Temperature (degrees C) $=$ (1) 0 ; (2) approximately 10
85 observations on 9 birds. Measured oxygen consumption and CO2 production to estimate kcal values. Did not specify whether greater or lesser scaup.

Reference	Age S	Sex	Con	d	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
FOOD Ingestion rate														
Sugden \& Harris	J	B	1	-		0.162		g/g-day			40	Saskatchewan	captive from wild-	Based on dry weight of food. Ages:
1972	J	B	2	-		0.077		g/g-day			40		collected eggs	(1) 1 to 5 weeks; (2) 6 to 12
														weeks. Food ingestion of young
														maintained in 18-27 C electric
														brooder. Fed commercial duck
														starter: ME of food $=3.09 \mathrm{kcal} / \mathrm{g}$
														dry weight; GE = $4.47 \mathrm{kcal} / \mathrm{g}$ dry

*** DIET ***

Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Afton et al. 199	A B	animal (scuds) (dragonflies) (caddis flies) (snails) (fingernail clams) (brook stickleback) (fathead minnow) plant - seeds (bushy pondweed) plant - vegetative			$\begin{array}{r} 90.5 \\ (54.9) \\ (2.4) \\ (7.6) \\ (10.2) \\ (5.1) \\ (4.1) \\ (5.0) \\ 9.4 \\ (7.1) \\ 0.1 \end{array}$		14	$\begin{aligned} & \text { nw Minnesota } \\ & \text { 1984-87 } \end{aligned}$	```lake, marshes, pool % dry weight; esophageal & proventricular contents```	Adult diet during fall migration. Diets between males and females fairly similar, however males tended to consume more insects and fewer leeches. Items comprising less than 2% not included here.
Afton et al. 199	J B	```animal (scuds) (crayfish) (midges) (snails) plant - seeds (bushy pondweed) plants - vegetative```			$\begin{array}{r} 92.8 \\ (74.5) \\ (2.9) \\ (7.6) \\ (3.0) \\ 6.2 \\ (5.8) \\ 1.0 \end{array}$		34	$\begin{aligned} & \text { nw Minnesota } \\ & 1984-87 \end{aligned}$	```lake, marshes, pool % dry weight; esophageal & proventricular contents```	Juvenile diet during fall migration; items comprising less than 2% not included here.
Afton et al. 199	A B	```animal (scuds) (caddis flies) (midges) (other insects) (snails) (fingernail clams) (fish) plant - seeds plant - vegetative```	91.8 (33.2) (8.8) (2.3) (4.9) (31.9) (6.0) (3.5) 6.0 2.2				57	$\begin{aligned} & \text { nw Minnesota } \\ & \text { 1986-88 } \end{aligned}$	```lake, marshes, pool % dry weight; esophageal & proventricular contents```	Spring migration; items comprising less than 2% not included here. Diets were similar for males and females.

Bartonek \& Hickey 1969		```animal foods (scuds) (pond snails) (midges) (water boatmen) (aquatic beetles) (leeches) (caddis flies) plant foods```	99 (8) (4) (6) (1) (2) (61) (16) TRACE
$\begin{aligned} & \text { Bartonek \& Hickey } \\ & 1969 \end{aligned}$		animal foods (scuds) (pond snails) (midges) (water boatmen) (caddis flies) plant foods	$\begin{array}{r} 98 \\ (46) \\ (4) \\ (41) \\ (2) \\ (2) \\ 2 \end{array}$
Bartonek \& Hickey 1969 1969	J B	animal foods (scuds) (pond snails) (midges) (water boatmen) (aquatic beetles) (leeches) (caddis flies) plant foods	99 (49) (39) (8) (2) (trace) (trace) (trace) (trace)

7 Sw Manitoba	wetlands, lake
$1963-64$	-
	\% wet volume;
	esophagael contents

Sw Manitoba
 1963-64

wetlands, lake
 wet volume;
 esophagael contents

cummer. Author aling spring and summer. Author also presents data from esophagus, proventriculus, and gizzard contents, but suggests that because there is less bias due to digestion.

25 Sw Manitoba 1963-64

Author also presents dat and summer esophagus presents data from gizzard contents, but suggests that esophagus only is most accurate because there is less bias due to digestion.
wetlands, lak

- wet volume;
esophagael contents

Duckling diet. Season $=$ spring and summer. Author also presents data from esophagus, proventriculus, and gizzard contents, but suggests that because there is less bias due to digestion.

Reference	Age Se	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Bartonek \& Murdy 1970 1970			```scuds snails clams water fleas caddis flies water beetles midges dragon/damselflies leeches fairy shrimp```		$\begin{array}{rcc} 34 & \pm & 7 \\ 14 & \pm & 6 \\ 12 & \pm & 4 \\ 8 & \pm & 5 \\ 7 & \pm & 4 \\ 7 & \pm & 4 \\ 7 & \pm & 4 \\ 4 & \pm & 3 \\ 3 & \pm & 2 \\ 2 & \pm & 2 \end{array}$			23	Northwest Territory	```lake % volume; esophageal contents```	Average percent volume $\pm-$ SE (standard error).
Bartonek \& Murdy 1970			```scuds midges clam shrimps dragon/damselflies water bugs water mites caddis flies water beetles mayflies plant matter```		$\begin{array}{rcc} 1 & \pm & 1 \\ 54 & \pm & 8 \\ 30 & \pm & 8 \\ & & - \\ 4 & \pm & 3 \\ 8 & \pm & 3 \\ & & - \\ 2 & \pm & 1 \end{array}$	$\begin{array}{rcc} 57 & \pm & 9 \\ 1 & \pm & 1 \\ 2 & \pm & 2 \\ 17 & \pm & 8 \\ 11 & \pm & 7 \\ & & - \\ 6 & \pm & 5 \\ 4 & \pm & 3 \\ & & - \\ & & \end{array}$		19	Northwest Territory	```lake % volume; esophageal contents```	Average percent volume \pm - SE (standard error).
Chabreck \& Takagi 1985	A		plant Echinochloa colonum Fimbristylis mileac Panicum dichotomifl Echinochloa frument other plant animal				$\begin{gathered} 50.4 \\ 40.3 \\ 4.7 \\ 3.4 \\ 0.7 \\ 0.5 \end{gathered}$	115	Louisiana, 4 years	```crayfish impoundment % dry weight; gullet and gizzard```	Plant matter made up 99% of the diet and was composed entirely of seeds.
Dirschl 1969	A	B	plant seeds total (Nuphar variegatum) (Ceratophyllum) (Myriophyllum) (Potamogeton) (Scirpus) (Sparganium) animal total (Amphipoda) (Diptera) (Eubranchiopoda/ Conchostraca) (Hirudinea) (Odonata) (Pelecypoda/ Spaeriidae) (Pisces/Cyprinidae) (Trichoptera) *Sample size*	$\begin{array}{r} 9.1 \\ (5.2) \\ (2.8) \\ (0.3) \\ (0.6) \\ (0.2) \\ 90.9 \\ (66.0) \\ - \\ - \\ (12.0) \\ (12.7) \\ (0.2 \end{array}$	$\begin{array}{r} 24.9 \\ (13.2) \\ (0.2) \\ (1.0) \\ (2.0) \\ (3.1) \\ (6.6) \\ 75.1 \\ (9.8) \\ (1.3) \\ (3.1) \\ (23.7) \\ (1.2) \\ (25.7) \\ (2.9) \\ (1.66) \\ \star 63^{*} \end{array}$	50.4 (42.8) (0.1) (1.3) (2.1) (2.0) (1.5) 49.6 (42.5) (0.1) (0.5) (1.6) - - - (1.9) *33*			Saskatchewan 1964-65	shallow lakes - \% dry weight; esophagus and proventriculus	All plant material was seeds. Diets determined monthly: for this summary, spring = May; summer = mean of values for June, July, and August; and fall = mean of values for September and October. Food types not comprising at least 1\% during any season not included here.

Reference	Age Se	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
$\begin{aligned} & \text { Gammonley } \\ & \text { Heitmeyer } \\ & \hline \end{aligned}$	A		```animal (Chironomidae) (Ostracoda) (Planoribidae) plant - seeds (Potamogeton pectinatus) (Polygonium lapathifolium) (Scirpus robustus)```	$\begin{array}{r} 82 \\ (50) \\ (28) \\ (3) \\ 18 \\ (7) \\ (5) \\ (3) \end{array}$				6	$\begin{aligned} & \text { s OR, n CA } \\ & 1986-87 \end{aligned}$	```palustrine wetlands % wet volume; esophageal and proventricular contents```	Migrating scaup on lower Klamath National Wildlife Refuge. Items comprising less than 2% not included here.
$\begin{array}{ll} \text { Gammonley } & \& \\ \text { Heitmeyer } & 1990 \end{array}$	A		animal (Chironomidae) (Ostracoda) (Planoribidae) (Copepoda) (Dytiscidae) (Physidae) (Daphnidae) plants - seeds (Scirpus robustus) (Potamogeton pectinatus) (Polygonum pectinatus) (Rumex spp.) (Scirpus acutus)	70 (34) (2) (14) (12) (4) (2) (2) 30 (6) (16) (4) (2) (2)				5	$\begin{aligned} & \text { s OR, n CA } \\ & 1986-87 \end{aligned}$	```palustrine wetlands % wet volume; esophageal and proventricular contents```	Migrating scaup on lower Klamath National Wildlife Refuge. Items comprising less than 2% not included here.
Hoppe et al. 1986	A	B	```(plants) unknown vegetation Eleocharis sp (animals) Diptera Chironomidae Gastropoda Physella sp Helisoma spp Pelecypoda Corbicula fluminea Anodonta umbecilli Anisoptera nymphs```				$\begin{array}{r} (12.0) \\ 11.9 \\ 0.1 \\ (88.0) \\ 2.7 \\ 8.0 \\ 16.8 \\ 45.8 \\ 14.2 \\ 0.5 \end{array}$	14	$\begin{aligned} & \text { Sw S Carolina } \\ & 1983-4 \end{aligned}$	reservoir - \% dry weight; esophagus and proventriculus	```Scaup collected from October - March; they consumed more animal matter in early winter than in late.```
Perry \& Uhler 198	32 A	B	Rangia cuneata Brachiodontes recurv Macoma balthica	$\begin{array}{r} 86 \\ 4 \\ 10 \end{array}$				4	$\begin{aligned} & \text { North Carolina } \\ & 1978 \end{aligned}$	```freshwater creek % wet volume; gullet and gizzard```	March 10.

Reference	Age	Se	F Food type	Spring	Summer	Fall	Winter		Location	Habitat - Measure	Notes
$\begin{aligned} & \text { Rogers \& K } \\ & 1966 \end{aligned}$	Korschgen		```gastropods (unident. snails) (freshwater snails) pelecypods (fingernail clams) (mussel) insects (mayflies) plant foods (pondweeds) (bulrushes)```			$\begin{array}{r} 70.1 \\ (28.0) \\ (42.0) \\ 14.9 \\ (11.9) \\ (2.9) \\ 8.0 \\ (7.8) \\ 6.5 \\ (3.3) \\ (2.9) \end{array}$		88	Illinois 1948	```pool on Mississippi % wet volume; gizzard contents```	Items comprising less than 1% not listed here; these include land snails and crayfish. Freshwater snails were from 6 genera - most were Campeloma spp. or Amnicola spp.
$\begin{aligned} & \text { Rogers \& K } \\ & 1966 \end{aligned}$	Korschgen		unident. fish parts sheepshead minnow crustaceans (crayfish) (freshwater shrimp) (sideswimmers) insects (water boatmen) (midges) snails plants (misc. fragments) (saw-grass) (bulrushes) (ditch grass) (other seeds) (filamentous algae)				$\begin{array}{r} 26.7 \\ 15.1 \\ 16.6 \\ (7.0) \\ (4.5) \\ (1.3) \\ (1.3) \\ (1.1) \\ 1.0 \\ 36.3 \\ (18.0) \\ (6.9) \\ (3.8) \\ (1.9) \\ (2.0) \\ (3.7) \end{array}$	37	$\begin{aligned} & \text { sw Louisiana } \\ & 1959-60 \end{aligned}$	```marshes % wet volume; esophagus, proventriculus, and gizzard contents```	Season = winter and early spring.
$\begin{aligned} & \text { Rogers \& K } \\ & 1966 \end{aligned}$	Korschgen		crustaceans (scuds) (water fleas) insects (midges) (caddis flies) (dragonflies) (water boatmen) annelids - leeches misc. animal foods plant foods (misc. fragments) (bulrushes) (pondweeds)		60.1 (51.9) (7.7) 22.9 (10.2) (7.4) (1.4) (1.3) 5.3 2.8 7.8 (2.6) (2.4) (1.3)			39	$\begin{aligned} & \text { Manitoba } \\ & \text { 1959-60 } \end{aligned}$	```lakes, potholes % wet volume; esophagus, proventriculus, and gizzard contents```	Season = spring and summer; items comprising less that 1\% not listed individually.

Vermeer 1968
24.8
days
NS
NS
As cited in Bellrose 1976.
age at fledging

N FLEDGE/ACTIVE NEST

Trauger 1971
2.3

N/act nest
636 NW Territ.
NS
n FLEDGE/SUCCESSFUL NEST
Bellrose 1976
6.98

N/suc nest

874 United
States/Canada

PERCENT NESTS SUCCESSFUL

Afton 1984

26.3	\% nest suc
22.2	\% nest suc
45.5	\% nest suc
41.7	\% nest suc

38 Manitoba
5 1977-80
24

PERCENT BROOD SURVIVAI

Afton 1984
67.5
$4.9 \mathrm{SE} \%$ to 20 d

39 Manitoba

 1977-80Age at first flight; as cited in Bellrose 1976.
Age when shafts of primaries (1) started to clear; (2) were completely clear (fledging).

Age at first flight; as cited in Bellrose 1976.

Count of downy ducklings (class 1) after this age number per brood is broods mingle and combine. As ine. As cited
in Bellrose 1976.

Summary of many studies; sources not presented. Number of ducklings successful nest. Represents a 16 decline from 8.33 eggs hatched per successful nest. After this age, broods mingle and combine so determination of numbers per nest is difficult.

Percent of nests in which at least one egg hatched; 90\% of
unsuccessful nests were due to predation. Age of female (years)

Percent of young in each brood surviving from hatching to 20 days (most mortality is in the first week).

Reference

PERCENT NESTS SUCCESSFUL

| Hines 1977 | - | - | - | 76 | $\%$ nest suc | 37 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Saskatchewan |
| :--- |
| 1972-73 | marsh islands

AGE AT SEXUAL MATURITY

Afton 1984	$-F-$
Palmer 1976,	$-B-\quad-$

Bellrose 1976
2
year
year

ANNUAL MORTALITY

Smith 1963	J	B	-	-	$68-71$
A	M	-	$38-52$	$\% /$ year	
	A	F	-	-	$49-60$

sw Manitoba 1977-80
prairie potholes
NS
NS

Percent of nests in which at least one egg hatched.
Percent nests hatching young; $\mathrm{N}=$ 50 or more nests. As cited in Bellrose 1976 .

Percent of nests hatching at least one young; $\mathrm{N}=50$ or more nests. As cited in Bellrose 1976.

Percent of nests hatching at least one young. As cited in Bellrose
29% of 1 year olds did not breed

Most first breed in their second year.

Juvenile value is based on recoveries of scaup banded at breeding areas; adult values are based on bandings made in winter and spring in eight states. As cited in Bellrose 1976.
** SEASONAL ACTIVITIES ***

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING/LAYING						
Afton 1984	earl Jun			$\begin{aligned} & \text { Manitoba } \\ & 1977-80 \end{aligned}$	prairie potholes	First clutches only.
Ellig 1955	earl May	earl Jun	earl Jul	Montana	Freezeout Lake	As cited in Bellrose 1976.
Hines 1977		earl/mid Jun		$\begin{aligned} & \text { Saskatchewan } \\ & 1972-73 \end{aligned}$	marsh	

Reference	Begin	Peak	End	Location	Habitat	Notes
 Anderson 1960	mid May	earl Jun	mid Jul	n California	Klamath Basin	As cited in Bellrose 1976.
Townsend 1966	mid May	earl Jun	late Jun	Saskatchewan	Saskatchewan Delta	As cited in Bellrose 1976.

hatching

Hines 1977

Toft et al. 1984
earl Jul
mid Jul
earl Aug

Saskatchewan $1972-73$	marsh
NW	wetland
Territories,	

CAN

Sept
late Aug

Dec
mid Nov
late Nov
mid Oc
mid Nov
Bellrose 1976
Gammonley
Heitmeyer 1990

Rutherford 1966
mid Oct

Afton 1984
mid Apr
Bellrose 1976
Gammonley \&
Heitmeyer 1990
earl Feb
Mar - Apr
late Jan

May
late Apr
sw Manitob
1977-80

United States	NS
s OR, n CA	Klamath Basin
$1986-87$	

Wing molt.

Wing molt; as cited in Bellrose 1976

United States NS

S OR, n CA	Klamath Basin
$1985-86$	

Arrival of wintering scaup.
Seasonal presence of scaup at a primary migration area in the Pacific Flyway
Migration through the central high plains. As cited in Ringelman et al. 1989.

Arrival at breeding grounds

Departure of wintering scaup.
Seasonal presence of scaup at a primary migration area in the

Reference	Begin	Peak	End	Location	Habitat	Notes
Rutherford 1966	mid Mar		late Apr	Colorado	high plains	Migration through the central high plains. As cited in Ringelman et al. 1989.
Siegfried 1974	mid Apr		late May	s Manitoba	Delta Marsh	Scaup migrate through; most breed elsewhere.

*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference	Age S	Sex	Cond	S Seas	Mean	SD/SE	Unit		Minimum	Maximum	N	Location	Habitat	Notes
BODY WEIGHT														
Brown \& Amadon 1968	A	M F			$\begin{aligned} & 1,403 \\ & 1,568 \end{aligned}$		${ }_{9}^{9}$		$1,220$	$\begin{aligned} & 1,600 \\ & 1,900 \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	NS	NS	Summarizing the work of others.
MacNamara 1977	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$			$\begin{aligned} & 1,437 \\ & 1,798 \end{aligned}$		$\begin{aligned} & g \\ & g \end{aligned}$				$\begin{array}{r} 7 \\ 10 \end{array}$	ne United States	NS	As cited in Henny et al. 1991.
McLean 1986	N N	$\begin{aligned} & M \\ & M \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & M \\ & \mathrm{~F} \end{aligned}$	- - - - - - - -	-	$\begin{array}{r} 250 \\ 280 \\ 700 \\ 800 \\ 1,150 \\ 1,420 \\ 1,200 \\ 1,620 \\ 1,210 \\ 1,510 \end{array}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$	day 10 day 10 day 20 day 20 day 30 day 30 day 30 day 40 day 40 day 50 day 50 day 50			5 5 5 5 5 5 5 5 5 5 5 5 5	Maryland, Virginia	Chesapeake Bay	Weights of nestlings (N) at several ages. As cited in Poole 1989a estimated from figure.
Poole 1983	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$		$\begin{aligned} & \mathrm{SP} \\ & \mathrm{SP} \end{aligned}$	$\begin{aligned} & 1,939 \\ & 1,975 \end{aligned}$	$\begin{aligned} & 59 \mathrm{SE} \\ & 39 \mathrm{SE} \end{aligned}$	$\begin{aligned} & g \\ & g \end{aligned}$				6	se MA 1981	estuary	(1) Upon arrival from migration; (2) after laying first egg.
Poole 1984	A A A A A A A A	$\begin{aligned} & \text { F } \\ & \text { F } \\ & F \\ & F \\ & M \\ & M \\ & M \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 1 \\ & 1 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 1,880 \\ & 1,925 \\ & 1,825 \\ & 1,725 \\ & 1,480 \\ & 1,470 \\ & 1,420 \end{aligned}$	20 SE 25 SE 15 SE 25 SE 15 SE 15 SE 15 SE	$\begin{aligned} & g \\ & g \\ & g \\ & 9 \\ & g \\ & g \\ & 9 \\ & g \end{aligned}$				$\begin{aligned} & 23 \\ & 23 \\ & 28 \\ & 23 \\ & 23 \\ & 28 \\ & 24 \end{aligned}$	se Massachusetts	estuary	Breeding season variations in weight: (1) courtship period; early incubation period; (3) early nestling period; and (4) late nestling period. For males, weight at (1) and (2) were basically the same. As cited in Poole 1989a; estimated from figure.
Wilcox 1944	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	- - - - - -			$\begin{array}{r} 54.1 \\ 216.4 \\ 595.1 \\ 1,001 \\ 1,298 \\ 1,433 \\ 1,433 \end{array}$		$\begin{aligned} & g \\ & g \end{aligned}$	day 1 day 7 day 14 day 21 day 35 day 42			1 1 1 1 1 1 1	NS	NS	As cited in Henny 1988b; the osprey fledged at 49 days and its two siblings fledged at 52 days.
FLEDGING WEIGHT														
Henny et al. 1991	J	B	-	-	1,611		9				69	Idaho 1987	river, lakes	Large nestlings, almost ready to fledge.

EGG WEIGHT

Poole 1989a	-	-	-	-	60-80		g				NS	NS
Wilcox 1944	-	-	-	-	71.1		9			3	NS	NS
Whittemore 1984 (carolinensis)	-	-	-	-	72.2	5.35 SD	9	66.0	81.3	6	North Carolina 1973-82	lake
metabolic rate (KCAL basis)												
Lind 1976	$\begin{aligned} & \text { A } \\ & \mathrm{J} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	1	-	$\begin{aligned} & 286 \\ & 254 \end{aligned}$		kcal/day kcal/day				NS	NS
FOOD INGESTION RATE												
Cramp 1980 (carolinensis)	-	-	-	-			g/day	200	400		NS	NS
Poole 1983	A	F	-	SP	0.21		g/g-day				se MA 1981	estuary
Poole 1989a	A	M	BR	SU	360		kcal/day				se MA 1981	estuary
Poole 1989a	A	M	NB	WI	200-250		kcal/day				Senegal, West Africa	

As cited in Henny 1988b.
Calculated from 6 years of data.
(1) Young at age of first flight. Body weights not reported. As cited in Henny 1988b.
*** DIET ***

Reference	Age Se	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Collopy 1984	B	B	```gizzard shad sunfish largemouth bass golden shiner```	$\begin{array}{r} 63.2 \\ 28.9 \\ 5.3 \\ 2.6 \end{array}$				38	$\begin{aligned} & \text { Florida } \\ & 1983 \end{aligned}$	```Newnan's Lake % of prey caught; identified at nests```	Season $=$ March through June. $\mathrm{N}=$ number of prey caught. Based on 139 hours of observations at four nests. Gizzard shad tended to be $15-20 \mathrm{~cm}$ in length; sunfish were usually 12-16 cm long.
French 1972			surf smelt \& night smelt		98			144	California	Usal Creek \% of fish caught; identified at time of capture	Breeding season. $N=$ number of dives; osprey had dive success rate of 69%. As cited in Swenson 1979 .

Reference	Age Se	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Garber 1972	A		Tui chub rainbow trout Tahoe sucker		$\begin{aligned} & 48 \\ & 34 \\ & 18 \end{aligned}$			36	California	Eagle Lake \% of fish caught; found in remains at nest/perch	Breeding season. $N=$ number of dives; dive success $=56 \%$. As cited in Swenson 1979.
Greene et al. 1983	3 -		alewife smelt pollock winter flounder		$\begin{array}{r} 32 \\ 5 \\ 53 \\ 10 \end{array}$				Nova Scotia, CAN 1981	```harbor, bay % wet weight; estimated from observed captures```	
Grubb 1977	A	B	mullet crappie		$\begin{aligned} & 52 \\ & 48 \end{aligned}$			283	Florida	```Lake George % Of fish caught; identified at time of capture```	Breeding season. $\mathrm{N}=$ number of dives; dive success $=36 \%$. As cited in Swenson 1979.
Hughes 1983	B	B	starry flounder cutthroat trout		$\begin{array}{r} 95 \\ 5 \end{array}$			1	$\begin{aligned} & \text { se Alaska } \\ & 1979-80 \end{aligned}$	habitat NS \% wet weight; estimated from observed captures and length of prey	Food brought to nest (i.e., food for male, female, and young) over a 9 day period.
Hughes 1983	B	B	carp crappie		$\begin{aligned} & 67 \\ & 33 \end{aligned}$			1	$\begin{aligned} & \text { w Oregon } \\ & 1981 \end{aligned}$	habitat NS \% wet weight; estimated from observed captures and length of prey	Food brought to nest (i.e., food for male, female, and young) over a 7 day period.
Lind 1976	A	B	Salmonidae Tui chub		$\begin{aligned} & 57 \\ & 43 \end{aligned}$			60	Oregon	```reservoir % of fish caught; identified at time of capture```	Breeding season. $\mathrm{N}=$ number of dives; dive success $=58 \%$. As cited in Swenson 1979.
MacCarter 1972	A	B	```largescale sucker whitefish other unidentified```		$\begin{array}{r} 59 \\ 21 \\ 9 \\ 11 \end{array}$			202	Montana	```Flathead Lake % of fish caught; identified at time of capture```	Breeding season. $N=$ number of dives; dive success $=65 \%$. As cited in Swenson 1979.
Nesbitt 1974	A	B	shad (gizzard \& threadfin) sunfish, black crappie \& large mouth bass unidentified fish		$\begin{aligned} & 73 \\ & 15 \\ & 12 \end{aligned}$			29	Florida	```Newnans Lake % of number; fish captured in dives```	Breeding season; $N=$ number of successful dives. Dive success was 91\%. As cited in Swenson 1979.

Reference	Age S	ex F	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Poole 1984			$\begin{aligned} & \text { winter flounder } \\ & \text { herring } \\ & \text { menhaden } \end{aligned}$		$\begin{aligned} & 50 \\ & 20 \\ & 20 \end{aligned}$			NS	s New England	NS measure NS	As cited in Poole 1989a.
Prevost 1977	A	B	winter flounder		$90+$			2,268	Nova Scotia, CAN	Antigonish Harbor \% of fish caught; identified at time of capture	Breeding season. $\mathrm{N}=$ number of dives; dive success $=69 \%$. As cited in Swenson 1979.
Swenson 1978	A		cutthroat trout longnose sucker unidentified		$\begin{array}{r} 88 \\ 7 \\ 5 \end{array}$			153	Wyoming	```Yellowstone Lake % of fish caught; remains at nest or perch```	Breeding season. $N=$ number of dives; dive success $=47 \%$. As cited in Swenson 1979.
Szaro 1978	B		```speckled trout striped mullet sea catfish other fish```		$\begin{array}{r} 64 \\ 27 \\ 8 \\ 1 \end{array}$			124	Florida	```Seahorse Key % of items; remains at nest/perch```	Breeding season. $\mathrm{N}=$ number of dives; dive success $=19 \%$. As cited in Swenson 1979.
Ueoka 1974	A	B	surfperch other unidentified		$\begin{array}{r} 64 \\ 9 \\ 27 \end{array}$			1,660	California	```Humboldt Bay % of fish caught; identified at time of capture```	Breeding season. $\mathrm{N}=$ number of dives; dive success $=58 \%$. As cited in Swenson 1979.
Van Daele \& Van Daele 1982	A	B	```brown bullhead salmonids northern squawfish yellow perch largescale sucker```	$\begin{aligned} & 37.7 \\ & 20.8 \\ & 19.3 \\ & 11.6 \\ & 10.6 \end{aligned}$				207	$\begin{aligned} & \text { Idaho } \\ & \text { 1978-80 } \end{aligned}$	```Cascade Reservoir % of fish caught; identified at time of capture```	Season = spring and summer. Authors suggest that the establishment of the reservoir has increased the available food supply and allowed populations to increase.
Van Daele \& Van Daele 1982			$\begin{aligned} & \text { SIZE OF FISH CAUGHT } \\ & <10 \mathrm{~cm} \\ & 11-20 \mathrm{~cm} \\ & 21-30 \mathrm{~cm} \\ & 31-40 \mathrm{~cm} \\ & 41+\mathrm{cm} \end{aligned}$		$\begin{array}{r} 3.3 \\ 42.1 \\ 46.7 \\ 6.6 \\ 1.3 \end{array}$			152	$\begin{aligned} & \text { Idaho } \\ & \text { 1978-80 } \end{aligned}$	```reservoir % of fish sizes caught; from remains at perch```	Shallow water fishery provided by Cascade reservoir considered by author to be an excellent food source.

FORAGING RADIUS

Dunstan 1973
A M - -
1.7
0.7
2.7

Greene et al. 1983 A B - SP
10

Hagan 1984
A
15

Koplin 1981
A B -
3-8

Van Daele \& Van
 A B - -
 Daele 1982

Minnesota 1971
lakes

Idaho

1978-80

Nova Scotia, coastal CAN 1981

North Carolina
swamps, coastal

Foraging radius based on longest fishing flight for 6 individuals (34 total observations). Author put and measured the distance the fish were carried by males to nests.

In late April and May, ospreys traveled up to 10 km inland to hun for alewives and smelt on their spawning grounds.
Foraging radius of osprey equipped with radiotransmitters; ospreys traveled from nest sites in swamps in Poole 1989b; Poole considers this a long commute.
Foraging radius; the majority ospreys that fished these habitats built nests $2-5$ miles inland. The built in inland areas to avoid high winds (spring) and heavy fog (summer).

Foraging radius of ospreys utilizing the reservoir; species composition of prey remains at nest showed that ospreys up to 10 km away were utlizing prey from the were not found in any of the other local water bodies).

45 Florida 1979
marsh \& swamp forest
Calculated from 45 nests over 4,000 acres.
Oregon 1899
lake

62 North Carolina 1974

One of the largest osprey colonies ever reported in the United States. Studied 31 pairs.

Reference A	e	ex	Con	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Henny \& Noltemeier } \\ & 1975 \end{aligned}$	A	B	-	SP	0.005		N/ha			76	$\begin{aligned} & \text { North Carolina } \\ & 1974 \end{aligned}$	lake	Studied 38 pairs.
```Stocek & Pearce 1 9 8 3```	A	B	-	-	0.0031		N/ha			206	New Brunswick, CAN 1974-77,80	coastal	Based on 1974 aerial survey (34 hours of flight) of a 0.4 km wide transect along coastal areas. 103 pairs observed in an area of 660 square kilometers.
Van Daele \& Van Daele 1982	A	B	-	-	0.009		N/ha			100	Idaho 1978-80	reservoir	```Population of ospreys (50 pairs) supported by a 11,452 ha reservoir containing an abundance of warmwater fish and some salmonids.```

## CLUTCH SIZE



2	4		NS	NS
1	4	49	$\begin{aligned} & \text { Idaho } \\ & \text { 1986-87 } \end{aligned}$	river, lakes
		43	$\begin{aligned} & \mathrm{ME}, \mathrm{NH}, \mathrm{VT} \\ & \text { pre-1947 } \end{aligned}$	NS
		685	$\begin{aligned} & \text { CT, MA, NY } \\ & \text { pre-1947 } \end{aligned}$	NS
		299	Atlantic   Seaboard	NS
		57	Georgia, Florida	NS
		76	$\begin{aligned} & \text { s Calif., n } \\ & \text { Mexico } \end{aligned}$	NS
		51	Baja Calif.,   Mexico 1977-78	coastal islands
		36	se MA 1980-81	NS

Data from museum specimens collected prior to 1947.
Data from museum specimens collected prior to 1947.

Data from museum specimens collected prior to 1947. States include Delaware, Maryland, Virginia, and North and South Carolina.
Data from museum specimens collected prior to 1947.

Data from museum specimens collected prior to 1947.

Non-migratory population.

Migratory populations; as cited in Poole 1989a.

Reference	Age S	Sex	Con	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Poole 1982	-	-	-	-	3.2					110	e US 1978-79	coastal	Migratory populations; as cited in Poole 1989a.
Poole 1982	-	-	-	-	2.7					48	$\begin{aligned} & \text { Florida } \\ & 1978-79 \end{aligned}$	coastal	Resident populations; as cited in Poole 1989a.
$\begin{aligned} & \text { Prevost et al. } \\ & 1978 \end{aligned}$	-	-	-	-	3.0					34	Nova Scotia, CAN 1975-76	NS	As cited in Stocek and Pearce 1983.
Reese 1977	-	-	-	-	2.9			2.8	3.0	513	$\begin{aligned} & \text { Maryland } \\ & 1972-74 \end{aligned}$	coastal Chesapeake	Three years of data; minimum and maximum are yearly means.
Spitzer 1980	-	-	-	-	3.23	0.09 SE					ne US 1968-71	coastal	As cited in Poole 1983.
Stocek \& Pearce 1983	-	-	-	-	2.24			2.1	2.8	34	New Brunswick, CAN 1974-80	NS	$\mathrm{N}=34$ nests with two or more eggs. Minimum and maximum are averages from different years.
Van Daele \& Van Daele 1982	-	-	-	-	2.58					140	$\begin{aligned} & \text { Idaho } \\ & \text { 1978-1980 } \end{aligned}$	lakes, pond	Average of 3 subpopulations over 3 years in Long Valley, Idaho. Clutch size did not change significantly between years or subpopulations.
Whittemore 1984 (carolinensis)	-	-	-	-	2.25	0.37 SD		1.6	2.84	332	$\begin{aligned} & \text { N Carolina } \\ & 1973-82 \end{aligned}$	lake	10 years of data; minimum and maximum are averages from different years.
CLUTCHES/YEAR													
Henny 1986	-	-	-	-	1		/year				NS	NS	Some ospreys lay replacement clutches if first clutch is lost/taken early in incubation period.
Poole 1989a	-	-	-	-	1		/year				NS	NS	Second clutch produced only if first is lost.

DAYS INCUBATION

| Judge 1983 | - | WI | $38.1 \quad 3.2$ SD day |
| :--- | :--- | :--- | :--- | :--- |

Poole 1989a
days
16 Baja Calif. Mexico 1977-78

## NESTLING GROWTH RATE

McLean 1986

N	M	1	-
N	F	1	-
N	M	2	-
N	F	2	-
N	M	3	-
N	F	3	-
N	M	4	-
N	M	4	-

20
26
51
55
42
63
24
38
g/day g/day g/day g/day g/day g/day g/day
g/day

## AGE AT FLEDGING

Henny et al. 1991	$-\quad-\quad-$	$50-55$	days	
Judge 1983	-	1	-	days


Stinson 1977	-	-	-	51	days	
Stotts \& Henny   1975	-	-	-	54	3 SD days	
Van Daele \& Van	-	-	-	$50-60$		days

Van Daele \& Van
0-60
Daele 1982

N FLEDGE/ACTIVE NES


## (carolinensis)

Henny 1977
N/act nest
N/act nest

$$
\begin{aligned}
& -1 \\
& - \\
& - \\
& - \\
& -
\end{aligned} 0_{1}^{1-1.3}
$$

5	Virginia,	Chesapeake Bay
5	Maryland	
5		
5		
5		
5		
5		

NS NS
6 Baja Calif.,

Virginia
Maryland 1956
144 Idaho 1978-80 reservoir, ponds, lake

## Florida 1983 lake

 2219

49
California
1971-72
0 New Jersey
1975
NS

Wisconsin
bay
coastal islands

## NS

coastal redwood \& conifer forest
coastal
NS

Growth for nestling ages (in days) (1) 4-11; (2) 12-19; (3) 20-27; and (4) 28-35. As cited in Poole 1989a; estimated from figure

Migratory osprey.
Time from hatching to first sustained flight. (1) Range in broods. Non-migratory population.

As cited in Henny 1988b.
Age at first flight

Habitats in Long Valley.

Location: (1) Newnan's lake; (2) Orange lake; (3) Santa Fe Lake

Estimate of the reproductive success required to maintain a stable population.
(1) Late 1970's; (2) 1960's - may have a DDT problem. As cited in Peakall 1988.

Reference Age		ex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Henny et al. 1977	-	-	-	-	1.09		N/act nest			24	Delaware 1975	coastal	
Henny \& Noltemeier   1975	-	-	-	-	1.34		N/act nest			60	$\begin{aligned} & \text { South Carolina } \\ & 1974 \end{aligned}$	lake	
Henny et al. 1978	-	-	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\begin{aligned} & 1.37 \\ & 1.11 \\ & 1.21 \end{aligned}$		N/act nest   N/act nest   N/act nest			$\begin{aligned} & 68 \\ & 47 \\ & 28 \end{aligned}$	Oregon 1973-77	reservoir and National Forest	Year: (1) 1973; (2) 1975; (3) 1977.
Judge 1983	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 0.9 \end{aligned}$		N/act nest N/act nest			$\begin{aligned} & 28 \\ & 24 \end{aligned}$	Baja Calif.,   Mexico 1977-78	coastal islands	Non-migratory population. Year: (1)   1977; (2) 1978.
Koplin 1981	-	-	-	-	1.02		N/act nest	0.5	1.7		$\begin{aligned} & \text { California } \\ & 1971-72 \end{aligned}$	coastal, river	Total of 63 nesting efforts over two years; minimum and maximum are one year means.
Parnell \& Walton 1977	-	-	-	-	1.21		N/act nest	1.03	1.50		$\begin{aligned} & \text { S Carolina } \\ & 1969-71 \end{aligned}$	reservoir	104 nests over 3 years; minimum and maximum are means for different years.
Poole 1984	-	-	-	-	1.92		N/act nest			94	e US 1979-83	coastal	Migratory populations; as cited in Poole 1989a.
Poole 1982	-	-	-	-	0.82		N/act nest			110	e US 1978-79	coastal	Migratory populations; as cited in Poole 1989a.
Poole 1982	-	-	-	-	0.52		N/act nest			48	$\begin{aligned} & \text { Florida } \\ & 1978-79 \end{aligned}$	coastal	Resident populations; as cited in Poole 1989a.
$\begin{aligned} & \text { Stocek \& Pearce } \\ & 1983 \end{aligned}$	-	-	-	-	1.1		N/act nest				$\begin{aligned} & \text { New Brunswick, } \\ & \text { CAN 1974-80 } \end{aligned}$	NS	
Van Daele \& Van Daele 1982	-	-	-	-	1.58		N/act nest	1.17	1.89	77	$\begin{aligned} & \text { Idaho } \\ & \text { 1978-80 } \end{aligned}$	Cascade Reservoir	Three years combined; minimum and maximum are yearly means.
Van Daele \& Van Daele 1982	-	-	-	-	1.13		N/act nest	1.00	1.50	24	$\begin{aligned} & \text { Idaho } \\ & \text { 1978-80 } \end{aligned}$	Warner Pond	Three years combined; minimum and maximum are yearly means.
Van Daele \& Van Daele 1982	-	-	-	-	1.10		N/act nest	1.00	1.13	39	$\begin{aligned} & \text { Idaho } \\ & \text { 1978-80 } \end{aligned}$	Payette Lakes	Three years combined; minimum and maximum are yearly means.
Whittemore 1984 (carolinensis)	-	-	-	-	1.16		N/act nest	0.79	1.47		$\begin{aligned} & \text { N Carolina } \\ & 1973-82 \end{aligned}$	shallow lake	A total of 332 nests observed over ten seasons. Minimum and maximum are means for years within the study.

Reference
Age Sex Cond Seas Mean SD/SE Units
Minimum Maximum $N$ Location
Habitat
Notes
N FLEDGE/SUCCESSFUL NEST
Collopy 1984
1.83
1.77
0.14 SE N/suc nest $0.20 \mathrm{SE} \mathrm{N} / \mathrm{suc}$ nest $0.15 \mathrm{SE} \mathrm{N} / \mathrm{suc}$ nest
Dunstan 1968
1.4-1.7

Fren
1977
1.84
(carolinensis)

Henny et al. 1977	-	-	-	-	1.79
Henny et al. 1991	-	-	-	-	2.14
Henny et al. 1991	-	-	-	-	1.93
Henny et al. 1991	-	-	-	-	2.05
Judge 1983	-	-	-	-	1.7
Reese 1977	-	-	1	-	1.95
	-	-	2	-	1.4
Van Daele \& Van Daele 1982	-	-	-	-	2.10

Van Daele \& Van
1.69

N/suc nest

N/suc nest

N/suc nest
N/suc nest
$\mathrm{N} /$ suc nest
N/suc nest
N/suc nest

N/suc nest
$\mathrm{N} /$ suc nest
N/suc nest

N/suc nest

N/suc nest
Van Daele \& Van
Daele 1982
1.96

24 Florida 1983 13
12
$132 \underset{\substack{\text { Minnesota } \\ 1961-68}}{\text { NS }}$

31 California 1971-72

14 Delaware 1975
58 Idaho 1986-87
42 Idaho 1986-87
Montana, 1985-86
35 Baja Calif., Mexico 1977-7

0.86	1.43
0.64	1.10
1.69	2.33

31
29
1972-74
58 Idaho 1978-80
coastal Chesapeake

Cascade Reservoir

Warner Pond
oastal redwood \& conifer forest
coastal, bay
river
lake
lake
coastal islands

Location: (1) Newnan's lake; (2) Orange lake; (3) Santa Fe Lake.

Successful nest is one that produces at least one young to late fledging stage. As cited in Dunstan 1973.

Non-migratory population.
(1) Accessible nests; innaccessible nests.

Mean for three years of data; minimum and maximum are yearly means. Productivity in 1978 was significantly lower than in 1979 or 1980.

Mean of three years of data;
minimum and maximum are yearly means. Productivity in 1978 was significantly lower than in 1979 or 1980.

Mean of three years of data; minimum and maximum are yearly significantly lower than in 1979 or 1980.

## PERCENT NESTS SUCCESSFUL

## Van Daele \& Va <br> Daele 1982 <br> Age at sexual maturity

68

Henny \& Wight $1969-B \quad-\quad-$	
Spitzer 1980	$-B \quad-\quad$


years		
years	3	5

North America
New York to
Boston
NS
NS

206 New York, New
NS
Henny \& Wight 1969 J B - -
57.3
18.5
$1.8 \mathrm{SE} \begin{gathered}\frac{\%}{\% / \mathrm{yr}} \% \\ \% / \mathrm{yr}\end{gathered}$

88 Jersey 1926-65

NS

397 North Carolina
397 1973-82

Spitzer 1980	J B	-	-	41	$\% / \mathrm{yr}$
	A	B	-	15	$\% / \mathrm{Yr}$
Whittemore 1984	J	-1	SU	16	$\%$ H to FL
(carolinensis)	J	-	2	SU	45

## AVERAGE LONGEVITY

Brown \& Amadon
1968

Spitzer 1980
A M - -
percent
years
$\circ \mathrm{H}$ to FL
$\% \mathrm{~L}$ to FL
ears
years

NS

25

Percent of eggs that developed into fledglings = 66\%.

As cited in Henny 1988b.

Based on recoveries of birds banded from 1926-1947, including birds found dead and birds shot. Juvenil - first year mortality of bird banded as fledglings. Adult through 18th year
As cited in Henny 1986.
(1) Percent mortality from hatching
(1) Percent mortality from hatchin mortality laying (L) till fledging (FL).

Average longevity $=4.8$ years for Average longevity $=4.8$ years for
osprey that reach sexual maturity (at 3 years).

Oldest known in the wild. As cited in Henny 1986.

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING/LAYING						
Bent 1937	late Apr	May	mid Jun	Delaware, New Jersey	NS	Based on 513 nest records.
Dunstan 1973		May		$\begin{aligned} & \text { Minnesota } \\ & 1963-73 \end{aligned}$		
Judge 1983	earl Jan		earl Mar	Baja Calif.,   Mexico 1977-78	coastal islands	Non-migratory population.
$\begin{aligned} & \text { Parnell \& Walton } \\ & 1977 \end{aligned}$	mid Mar			$\begin{aligned} & \text { N Carolina } \\ & 1969-72 \end{aligned}$	lake	
Poole 1989a	earl Dec		late Feb	Florida	NS	
hatching						
Bent 1937	mid Mar	earl May	late May	Maryland, Virginia	NS	Based on 90 nest records.
Bent 1937	late Apr	mid May	mid June	New York/New England	NS	Based on 48 nest records.
Bent 1937	late May	earl Jun	late Jun	Quebec, CAN	NS	Based on 35 nest records.
Dunstan 1973		mid June		$\begin{aligned} & \text { Minnesota } \\ & 1963-73 \end{aligned}$	lakes	
Judge 1983	Feb		late Apr	Baja Calif.,   Mexico 1977-78	coastal islands	Non-migratory population.
Ogden 1977	late Nov	Dec \& Jan	earl Mar	Florida	NS	Non-migratory population; as cited in Henny 1986.
Parnell \& Walton 1977	late Apr			$\begin{aligned} & \text { N Carolina } \\ & 1969-71 \end{aligned}$	lake	
Stotts \& Henny 1975		May 25		Maryland 1956	bay	


Reference	Begin	Peak	End	Location	Habitat	Notes
FLEDGING						
Dunstan 1973		mid Aug		$\begin{aligned} & \text { Minnesota } \\ & 1963-73 \end{aligned}$	lakes	
Judge 1983	earl Apr	May	earl Jun	Baja Calif.,   Mexico 1977-78	coastal islands	Non-migratory population.
$\begin{aligned} & \text { Parnell \& Walton } \\ & 1977 \end{aligned}$		earl July		$\begin{aligned} & \text { N Carolina } \\ & 1969-71 \end{aligned}$	lake	
Stotts \& Henny 1975		July 18		Maryland 1956	bay	
FALL MIGRATION						
Henny 1986	late Aug	Sep	Nov	United States	NS	
Kennedy 1973	late Aug			Virginia, Maryland	NS	As cited in Henny 1986; juvenile osprey.
$\begin{aligned} & \text { Melquist et al. } \\ & 1978 \end{aligned}$	Sep		earl Oct	$n$ Idaho	NS	As cited in Henny 1988b.
$\begin{aligned} & \text { Prevost et al. } \\ & 1978 \end{aligned}$	Sep			Nova Scotia, CAN	NS	As cited in Henny 1986; juvenile osprey.
SPRING MIGRATION						
Dunstan 1973	earl Apr			Minnesota 1963-1973	NS	
Garber 1972	late Mar			California	NS	As cited in Henny 1986.
Henny et al. 1991		late Mar		$\begin{aligned} & \text { n Idaho } \\ & \text { 1986-87 } \end{aligned}$	river, lakes	Arrive from southern Mexico and farther south.
$\begin{aligned} & \text { Parnell \& Walton } \\ & 1977 \end{aligned}$	earl Mar			$\begin{aligned} & \text { N Carolina } \\ & 1969-71 \end{aligned}$	lake	
$\begin{aligned} & \text { Prevost et al. } \\ & 1978 \end{aligned}$	mid Apr			Nova Scotia, CAN	NS	As cited in Henny 1986.

Page A-88 left blank.

## ***** RED-TAILED HAWK ****

## *** NORMALIZING AND CONTACT RATE FACTORS ***

Reference Ag	ge S	ex	Con	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
BODY WEIGHT													
Craighead \& Craighead 1956	A	M F	-	-	$\begin{aligned} & 1,028 \\ & 1,224 \end{aligned}$		$\begin{aligned} & g \\ & g \end{aligned}$			$\begin{aligned} & 108 \\ & 100 \end{aligned}$	Michigan, Pennsyl.	NS	Tabulated by author primarily from own data and unpublished data from the Pennsylvania Game Commission.
Poole 1938	A	F	-	-	1,307		9			2	NS	NS	
Springer \& Osborne 1983	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{array}{r} 963 \\ 1,147 \end{array}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			6	c Ohio 1975-77	NS	Asymptotic juvenile weight.
Springer \& Osborne 1983	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { M } \\ & \mathrm{F} \end{aligned}$	-	-	$\begin{aligned} & 1,024 \\ & 1,235 \end{aligned}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$				c Ohio 1975-77	NS	Estimated from juvenile asymptotic weight divided by juvenile to adult weight ratio reported by author. Source of adult weights used by author not identified.
Steenhof 1983	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{array}{r} 957 \\ 1,154 \end{array}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{array}{r} 90 \\ 113 \end{array}$	sw Idaho	Snake River Area	Collected by BLM research project personnel.
HATCHING WEIGHT													
Springer \& Osborne 1983	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 57 \\ & 58 \end{aligned}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			6 8	c Ohio 1975-77	NS	
NEStLING WEIGHT													
Springer \& Osborne 1983	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 58 \\ 209 \\ 436 \\ 714 \\ 875 \\ 980 \\ 1,147 \end{array}$		$\begin{aligned} & g \\ & g \end{aligned}$			6 6 6 6 6 6	c Ohio 1975-77	NS	Nestlings measured in the field. Fed by parents. Age in weeks from hatching (0) to 6 weeks.
Springer \& Osborne 1983	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 57 \\ 190 \\ 431 \\ 693 \\ 868 \\ 934 \\ 962 \end{array}$		$\begin{aligned} & g \\ & g \end{aligned}$			8 8 8 8 8 8 8	c Ohio 1975-77	NS	Nestlings measured in the field. Fed by parents. Age in weeks from hatching (0) to 6 weeks.

## NESTLING GROWTH RATE



Michigan 1986
Pakpahan et al A B SM SP
1989

METABOLIC RATE (KCAL)

Soltz 1984	A	M	BR	SU	109	kcal/kg-d
	A	F	BR	SU	102	kcal/kg-d

FOOD INGESTION RATE

Craighead \&	A	F	1	WI	0.112	g/g-day
Craighead 1956	A	M	2	WI	0.102	G/g-day
	A	M	3	SU	0.086	g/g-day

## Craighead 1956

$\begin{array}{llll}\text { A } & \text { M } & 2 & \text { WI } \\ \text { A } & \text { M } & 3 & \text { SU }\end{array}$
. 086

Duke et al. 1976 A _ - SU
0.055

Fitch et al. 1946 J - - WI
100
g/g-day
$\mathrm{kcal} / \mathrm{kg}-\mathrm{d}$
$\mathrm{kcal} / \mathrm{kg}-\mathrm{d}$
g/g-da
g/g-day
g/day

Utah

1940-41
68 s Michigan
106 1939-42

29
Michigan
.

California 1976 Santa Monica mnts.
captive outside
= number of days hawks fed hawk for each mean. Hawks techniques; fed mostly lean raw beef supplemented with natural prey. Weight of hawk and mean temperature during trial: (1) 1,218 g-3C; (2) $1,147 \mathrm{~g}-5 \mathrm{C}$; (3) 855 g-13C.
Weight of hawk $=1,320$ grams, diet $=$ mice, ambient temperature $=27 \mathrm{C}$

Juvenile followed 21 days during late fall/early winter; on man days hawk did not eat (with items).
*** DIET ***


Reference	Age Se	ex F	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Craighead \& Craighead 1956		B	```meadow vole white-footed mice short-tailed shrew rabbit small birds```				$\begin{array}{r} 86.6 \\ 6.5 \\ 1.4 \\ 1.2 \\ 2.7 \end{array}$	229	$\begin{aligned} & \text { s Michigan } \\ & 1942,48 \end{aligned}$	```fields, woodlots % frequency of occurrence; pellets```	Average of two years, pellets collected from a total of 13 hawks. Species comprising less than 1\% not presented. White-footed mice includes Peromyscus maniculatus and P. leucopus.
Craighead \& Craighead 1956			meadow vole   ground squirrel   pocket gopher   marmot   jack rabbit   red squirrel   small \& medium size   birds		$\begin{array}{r} 33.3 \\ 41.8 \\ 4.8 \\ 4.2 \\ 3.2 \\ 2.1 \\ 4.8 \end{array}$			189	Wyoming 1947	grasslands, forest   \% diet; number of food items in pellets, at nests, \& regurgitated by nestlings	Season = spring and summer. Items comprising less than $2 \%$ not included here.
Craighead \& Craighead 1956	B		```meadow vole rabbit fox squirrel muskrat ground squirrel pheasant crow small & medium sized birds garter snake```		$\begin{array}{r} 54.2 \\ 6.4 \\ 4.1 \\ 5.3 \\ 1.9 \\ 5.1 \\ 1.1 \\ 16.3 \\ 3.7 \end{array}$			211	$\begin{aligned} & \text { s Michigan } \\ & 1942,48 \end{aligned}$	woodlots, fields   \% diet; number of food items in pellets, at nests, \& regurgitated by nestlings	Diet of three hawk families; season = May - June. Items comprising less than 1\% not presented here.
Fitch et al. 1946	B	B	ground squirrel   rabbit   pocket gopher   other mammals   gopher snake   whiptail lizard   birds		$\begin{array}{r} 60.8 \\ 26.5 \\ 4.3 \\ 2.6 \\ 3.8 \\ 0.3 \\ 1.3 \end{array}$			625	$\begin{aligned} & \text { c California } \\ & \text { 1939-41 } \end{aligned}$	```foothills % wet weight; prey brought to nests```	$\mathrm{N}=$ number of food items. Season $=$ spring and summer. Prey identified by observation of items brought to nests and remains found at nests.
Fitch et al. 1946	B	B	ground squirrel   rabbit   pocket gopher   other mammals   gopher snake   rattlesnake   other reptiles   birds		$\begin{array}{r} 49.5 \\ 24.2 \\ 7.4 \\ 2.3 \\ 9.0 \\ 2.1 \\ 4.0 \\ 0.9 \end{array}$			2094	$\begin{aligned} & \text { c California } \\ & \text { 1939-41 } \end{aligned}$	```foothills % wet weight; pellets```	```N = number of pellets. Season = all year.```


Reference	Age Se	e	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Gates 1972	B		ring-necked pheasant red-winged blackbird domestic chicken European partridge crow   other/unident. birds meadow vole cottontail rabbit ground squirrel other mammals beetle crayfish		$\begin{array}{r} 22.7 \\ 8.0 \\ 5.1 \\ 2.8 \\ 2.8 \\ 16.4 \\ 16.5 \\ 10.8 \\ 4.5 \\ 5.7 \\ 1.7 \\ 2.8 \end{array}$			176	$\begin{aligned} & \text { ec Wisconsin } \\ & 1963-64 \end{aligned}$	```farm, wetlands % frequency of occurrence; prey remains at nest```	Author believes small mammals were under-represented in this sample.
Janes 1984	B	B	mammals   (Belding's ground squirrel)   (mtn. cottontail)   (pocket gopher)   (Townsend's ground squirrel)   birds   (Alectoris graeca) (western meadowlark snakes (gopher snake)	$\begin{array}{r} 78.5 \\ (52.8) \\ (13.1) \\ (7.3) \\ (2.9) \\ 8.5 \\ (3.5) \\ (1.8) \\ 13.1 \\ (6.1) \end{array}$					$\begin{aligned} & \text { nc Oregon } \\ & 1973-82 \end{aligned}$	pasture, wheat   \% wet weight; observed captures and remains found at nests	Mostly March to June.
$\begin{aligned} & \text { MacLaren et al. } \\ & 1988 \end{aligned}$			```rabbits ground squirrel prairie dog other mammals birds```		$\begin{array}{r} 64.4 \\ 14.3 \\ 18.5 \\ 0.5 \\ 2.3 \end{array}$			91	$\begin{aligned} & \text { se Wyoming } \\ & 1981-82 \end{aligned}$	$\begin{aligned} & \text { mixed sagebrush } \\ & \text { \% biomass; pellets } \end{aligned}$	Season = April to August.
Mader 1978	B	B	desert cottontail unidentified rabbit round-tailed ground squirrel   Harris gr. squirrel Bailey's pocket mice desert spiny lizard unid. horned lizard gopher snake unid. snakes	$\begin{array}{r} 3 \\ 16 \\ 7 \\ 2 \\ 2 \\ 4 \\ 2 \\ 2 \\ 12 \end{array}$				55	$\begin{aligned} & \text { Arizona } \\ & 1974-76 \end{aligned}$	```desert number of prey; remains at nest```	Prey found less than two times not presented here.
Preston 1990	B	B	mammals (see note)   unidentified mammals   reptiles, arthropods   birds   cottontail rabbit				82 10 3 3 2	102	Arkansas	```corn & old fields % frequency of occurrence; pellets```	Small mammals are likely to be under-represented in pellet analyses.


Reference			ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes   Breeding season; data collected during "normal" prey years at 7 nests with young.
$\begin{aligned} & \text { Steenhof } \\ & 1985 \end{aligned}$	\& Kochert	B	B	ground squirrel		27.7			148	$\begin{aligned} & \text { sw Idaho } \\ & \text { 1975-76 } \end{aligned}$	canyon, shrubsteppe community   \% frequency of occurrence; pellets and prey remains at nests	
				kangaroo rat		2.7						
				deer mouse		2.7						
				wood rat		2.7						
				mtn. cottontail		4.7						
				other mammals		6.2						
				birds   gopher snake		8.9 20.9						
				western whiptail		3.4						
				unident. snake		2.7						
				unident. lizard		2.0						
				other reptiles		4.2						
				scorpion		2.7						
				other invertebrates		2.7						
$\begin{aligned} & \text { Steenhof } \\ & 1985 \end{aligned}$	\& Kochert	B	B	ground squirrel		16.7			234	$\begin{aligned} & \text { Sw Idaho } \\ & 1977-78 \end{aligned}$	canyon, shrubsteppe community   \% frequency of occurrence; pellets, prey remains at nest	Breeding season, data collected at 7 nests during "low food" years. Low food abundance occurred during a year of severe drought, and the following year. Decreased populations of ground squirrels and snakes were found.
				kangaroo rat		17.9						
				jackrabbit		11.1						
				mtn. cottontail		10.7						
				unident. rabbits		2.6						
				other mammals		5.0						
				western meadowlark		2.6						
				other birds		8.6						
				gopher snake		13.2						
				striped whipsnake		2.1 4.7						
				other reptiles		3.7						
				scorpion		0.9						

*** POPULATION DYNAMICS ***
Minimum Maximum N

Andersen \& Rongstad 1989	A	B	-	FA	1,770	ha	957	2,465	4	Colorado 1986	upland shortgrass \& prairie \& pinyonjuniper woodlands	\& Radio-equipped hawks (2 of each sex), home range calculated by 95\% ellipse method.
  Rongstad 1989	A	B	-	FA	965	ha	418	1,747	4	Colorado 1986	upland shortgrass \& prairie \& pinyonjuniper woodlands	\& Radio-equipped hawks (2 of each sex), home range determined by minimum convex polygon method.
Craighead \& Craighead 1956	A	B	-	SU	229	114 SD ha	83	386	10	Wyoming 1947	grasslands, forest	Breeding season home range for pairs based on observations (plotted on maps).


Reference	Age S	ex	Cond	d Seas	Mean	SD/SE		Units	Minimum	Maximum		N	Location	Habitat	Notes
Craighead \& Craighead 1956	A	B	1	SU	377	146	SD	ha	130	557		6	s Michigan	fields, woodlots	Breeding season home range for: (1)
	I	B	1	SU	307			ha	171	443		2	1942,48		pairs; (2) unpaired birds. Based on
	I	-	2	SU	150			ha	70	230		2			observations (plotted on maps) from March - August. I = immature hawk.
Craighead \&	I	-	-	WI	187			ha	75	298		2	s Mich.	fields, woodlots	Seasonal home range from November -
Craighead 1956	A	B	-	WI	697	316	SD	ha	381	989		4	41-42,47-48		February based on observations (plotted on maps). I = immature hawk.
Fitch et al. 1946	A	B	-	SP	60-160			ha					$\begin{aligned} & \text { c California } \\ & \text { 1939-41 } \end{aligned}$	foothills	Breeding season home range (spring and summer).
Janes 1984	-	-	-	-	233	90		ha				33	$\begin{aligned} & \text { Oregon, } \\ & \text { 1973-82 } \end{aligned}$	pasture/wheat fields	Approximately 33 territories followed over 10 years.
Peterson 1979	A	B	-	WI	165			ha					Wisconsin	NS	As cited in Gatz and Hegdal 1987.
USDI 1979	A	B	-	SU	1,500			ha					sw Idaho	canyon, shrubsteppe community	Radio-equipped hawks during breeding season. As cited in Steenhof and Kochert 1985.
POPULATION DENSITY															
$\begin{aligned} & \text { Adamcik et al. } \\ & 1979 \end{aligned}$	-	B	-	SU	0.0012			pairs/ha	0.0010	0.0015	10	yr	Alberta, CAN 1966-75	farm \& woodland	16 to 24 breeding pairs followed for 10 years.
Baker \& Brooks 1981	-	-	-	$\begin{aligned} & \text { WI } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.017 \end{aligned}$			N/ha   N/ha				15 16	Toronto, CAN $1974-75$	mixed old fields	
	-	-	-	$\begin{aligned} & \text { SP } \\ & \mathrm{FA} \end{aligned}$	$\begin{aligned} & 0.017 \\ & 0.025 \end{aligned}$			$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \end{aligned}$				16			
Baker \& Brooks 1981	-	-	-	WI	0.002			N/ha				22	Toronto, CAN	mixed old fields	
	-	-	-	$\begin{aligned} & \text { SP } \\ & \mathrm{FA} \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$			N/ha   N/ha				$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	1975-76		
Bohm 1978b	A	B	-	-	0.0070			nests/ha				10	$\begin{aligned} & \text { Minnesota } \\ & 1976-77 \end{aligned}$	farm \& woodlands	
Craighead \&	A	B	1	SU	0.0004			pairs/ha	0.0002	0.0005			s Mich.	woodlands, fields	9,600 ha sampled at each of two
Craighead 1956	A	B	2	SU	0.0012			pairs/ha	0.0010	0.0013			1942,47-48		```sites (1) Superior Township; (2) Check area.```
Craighead \& Craighead 1956	A	B	-	SU	0.0039			pairs/ha					Wyoming 1947	grasslands, forest	3,100 ha sampled in the Jackson Hole area.




Reference	Age	Sex		Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Henny \& Wight 1970; 1972	-	-		-	-	2.29					17	$\begin{aligned} & \text { MD, DE, MA, } \\ & \text { WV, VA } \end{aligned}$	NS	Location also includes New York. Data collected from 1870 - 1963 (most prior to 1930); from museum collections and banding records.
Henny \& Wight 1970; 1972	-	-		-	-	2.96					26	$\begin{aligned} & \text { OR, WA. } \\ & 1870-1968 \end{aligned}$	NS	Most data colected prior to 1930; is from museum collections and banding records.
Luttich et al. 1971	-	-		-	-	2.0	0.1 SE				98	$\begin{aligned} & \text { Alberta, CAN } \\ & 1967-69 \end{aligned}$	farm, forest	
Mader 1978	-	-		-	-	2.32					59	$\begin{aligned} & \text { Arizona } \\ & 1974-76 \end{aligned}$	desert	Average of four yearly means: 2.12; 2.57; 2.36; and 2.29 eggs/nest.
CLUTCHES/YEAR														
Bent 1937	-	-		-	-	1		/year				```se Massachusetts```	forest, swamp	May replace if first one is lost.
Craighead \& Craighead 1956	-	-		-	-	1		/year				$\begin{aligned} & \text { s Michigan } \\ & 1942,48 \end{aligned}$	fields, woodlots	If first clutch is lost early in nesting cycle, it may be replaced.
days incubation														
$\begin{aligned} & \text { Adamcik et al. } \\ & 1979 \end{aligned}$	-	-			-	32					16-24	$\begin{aligned} & \text { Alberta, CAN } \\ & 1966-75 \end{aligned}$	farm \& woodland	16 to 24 breeding pairs studied over 10 years.
$\begin{aligned} & \text { Bent 1937; Hardy } \\ & 1939 \end{aligned}$	-	-		-	-	32		days			NS	NS	NS	As cited in Luttich et al. 1971.
Nice 1954	-	-		-	-	34		days				NS	NS	As cited in Steenhof 1987.
Age at fledging														
Craighead \& Craighead 1956	-	B		-	-	41		days				$\begin{aligned} & \text { s Michigan } \\ & 1942-48 \end{aligned}$	fields, woodlots	
Fitch et al. 1946	6	B		-	-	45-46		days				$\begin{aligned} & \text { c California } \\ & \text { 1939-41 } \end{aligned}$	foothills	
Luttich et al. 1971	-	B		-	-	44		days				Alberta, CAN 1966-69	farm, woodland	18 to 24 breeding pairs studied each of 4 years.


Reference A	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Land Management U.S. Bureau of (unpubl.)	- B	-	-	39		days				States   w United	NS	As cited in Steenhof 1987.
N FLEDGE/ACTIVE NEST												
$\begin{aligned} & \text { Adamcik et al. } \\ & 1979 \end{aligned}$	$\begin{array}{ll} - & - \\ - & - \\ - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	- - -	$\begin{aligned} & 1.90 \\ & 1.29 \\ & 0.28 \\ & 1.15 \end{aligned}$						$\begin{aligned} & \text { Alberta, CAN } \\ & 1966-75 \end{aligned}$	farm, woodland	16 to 24 breeding pairs followed for 10 years in area with strongly cyclical snowshoe hare population. Hare density (1) high - 1970 (2323/ha); (2) moderate - 1972 (990/ha); (3) low - 1975 (17/ha); (4) 10 year mean.
Bohm 1978b	- -	-	-	1.07		N/act nest			72	$\begin{aligned} & \text { Minnesota } \\ & 1976-77 \end{aligned}$	woodlots, farms	2 year mean.
Craighead \& Craighead 1956	-	-	-	0.9		N/act nest			22	$\begin{aligned} & \text { s Michigan } \\ & 1948 \end{aligned}$	woodlots, fields	Includes pairs that had nests but did not lay eggs.
Craighead \& Craighead 1956	- -	-	-	1.4		N/act nest			10	Wyoming 1947	grasslands, forest	Includes pairs that had nests but did not lay eggs.
Gates 1972	- -	-	-	1.1		N/act nest	0.9	1.4	31	$\begin{aligned} & \text { Wisconsin } \\ & 1962-64 \end{aligned}$	farm, wetlands	Minimum and maximum are yearly means.
Janes 1984	- -	-	-	1.47	0.25 SE	N/terr-yr			10 yr	Oregon 1973-82	grazing, low hills	23 territories observed for 10 years.
$\begin{aligned} & \text { Steenhof \& Kochert } \\ & 1985 \end{aligned}$	$\text { ct } \quad-\quad-$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 1.9 \\ & 1.2 \end{aligned}$		N/act nest   N/act nest			$\begin{aligned} & 20 \\ & 23 \end{aligned}$	$\begin{aligned} & \text { Sw Idaho } \\ & 1975-78 \end{aligned}$	canyon, shrubsteppe community	Prey abundance: (1) normal; (2) low. Low prey abundance recorded in 1977-78 due to a severe drought.
N FLEDGE/SUCCESSFUL NEST												
Bohm 1978b	- -	-	-	1.79		N/suc nest			44	$\begin{aligned} & \text { Minnesota } \\ & 1976-77 \end{aligned}$	woodlots, farms	2 year mean.
Gates 1972	- -	-	-	1.8		N/suc nest	1.6	1.9	20	$\begin{aligned} & \text { Wisconsin } \\ & 1962-64 \end{aligned}$	farm, wetlands	Minimum and maximum are yearly means.
Henny \& Wight 1970	$70 \text { - }$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 2.12 \\ & 1.85 \end{aligned}$		N/suc nest   N/suc nest				various	NS	```Summarizing data from various studies (prior to 1951). (1) north of 42 N latitude; (2) south of 42 N latitude.```
$\begin{aligned} & \text { Luttich et al. } \\ & 1971 \end{aligned}$	- -	-	-	1.4		N/suc nest			79	$\begin{aligned} & \text { Alberta, CAN } \\ & \text { 1967-69 } \end{aligned}$	farm \& forest	Number fledged/number of clutches that hatched.


Reference	Age Sex	Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Mader 1978	-	-	-	-	1.91	0.0100 SE	$\mathrm{N} /$ suc nest			34	$\begin{aligned} & \text { Arizona } \\ & 1974-76 \end{aligned}$	desert	Measured as still alive at 28 days.
age at sexual maturity													
Henny \& Wight 1970; 1972	-	B	-	-	2		years				North America	NS	Based on bandings and recoveries.
$\begin{aligned} & \text { Luttich et al. } \\ & 1971 \end{aligned}$	-	B	-	-	2		years	1			$\begin{aligned} & \text { Alberta, CAN } \\ & 1967-69 \end{aligned}$	NS	One yearling individual found to have successfully bred (sex not given); determined to be juvenile because lacked some characteristics of adult plumage.
Craighead \& Craighead 1956	$\begin{aligned} & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	-	-	$\begin{aligned} & 12 \\ & 88 \end{aligned}$		$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				$\begin{aligned} & \text { s MI, WY 1942, } \\ & 47-48 \end{aligned}$	open areas, woods	Estimate for all raptor species in both study areas. J = from fleging to the nest summer.
Henny \& Wight 1970; 1972	$\begin{aligned} & \text { J } \\ & \text { A } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & - \\ & 1 \\ & 2 \\ & - \end{aligned}$	- - -	$\begin{aligned} & 62.4 \\ & 20.6 \\ & 20.0 \\ & 35.3 \end{aligned}$	$\begin{aligned} & 1.3 \mathrm{SE} \\ & 1.2 \mathrm{SE} \\ & 1.6 \mathrm{SE} \end{aligned}$	$\begin{aligned} & \% / 1 s t y r \\ & \% / y r \\ & \% / y r \\ & \% / y r \end{aligned}$				$\begin{aligned} & \text { n N. America } \\ & 1926-50 \end{aligned}$	NS	Based on study of band recoveries recorded prior to 1951. Adults: (1) banded as nestlings; (2) banded as adults. Adult survival is for years 2-18; juveniles is from late nestling period until next year. Data for areas north of 42 degrees latitude.
Henny \& Wight 1970; 1972	$\begin{aligned} & \text { J } \\ & \text { A } \end{aligned}$	B	-	-	$\begin{aligned} & 65.4 \\ & 26.0 \end{aligned}$		$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				$\begin{aligned} & \text { US, CAN } \\ & 1958-64 \end{aligned}$	NS	
Henny \& Wight 1970; 1972	$\begin{aligned} & \text { J } \\ & \text { A } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & - \\ & 1 \\ & 2 \\ & - \end{aligned}$	- - -	$\begin{array}{r} 66 \\ 23.9 \\ 23.0 \\ 41.8 \end{array}$	$\begin{array}{ll} 2.2 & \mathrm{SE} \\ 1.8 & \mathrm{SE} \\ 2.5 & \mathrm{SE} \end{array}$	$\begin{aligned} & \circ / 1 \mathrm{st} \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				$\begin{aligned} & \text { s N. America } \\ & 1926-50 \end{aligned}$	NS	Based on study of band recoveries recorded prior to 1951. Adults: (1) banded as nestlings; (2) banded as adults. Adult survival is for years 2-18; juveniles is from late nestling period until next year. Data for areas south of 42 degrees latitude.
$\begin{aligned} & \text { Luttich et al. } \\ & 1971 \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	-	-	$\begin{aligned} & 54 \\ & 20 \end{aligned}$		$\begin{aligned} & \circ / 1 \mathrm{st} \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				$\begin{aligned} & \text { Alberta, CAN } \\ & 1966-69 \end{aligned}$	farm, forest	Juvenile mortality measured from fledging to first year.
LONGEVITY													
Henny \& Wight $\text { 1970; } 1972$	-	-	-	-			years		18		North America	NS	Oldest bird recovered in bird banding study.

*** SEASONAL ACTIVITIES ***

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING/LAYING						
Bent 1937	earl Apr	mid May	mid June	Alaska, Canada	NS	Presented as "egg dates"; 26 records.
Bent 1937	late Mar	earl Apr	late Apr	Maryland,   Virginia	NS	Presented as "egg dates"; 15 records.
Bent 1937	earl Mar	Apr	late Jun	Ohio to North Dakota	NS	Presented as "egg dates"; 85 records.
Bent 1937	late Mar	Apr, May	mid Jun	New England, NY	NS	Presented as "egg dates"; 148 records.
Bent 1937	late Feb	April	late Jun	Iowa to Colorado	NS	Presented as "egg dates"; 44 records.
Bent 1937	mid Feb	late Mar	late May	Washington to Calif.	NS	Presented as "egg dates"; 292 records.
Bent 1937	mid Feb	Mar	mid June	$A R \& T X$ to $F L$	NS	Presented as "egg dates"; 97 records.
Craighead \& Craighead 1956	mid Apr			Wyoming 1947	grasslands, forest	
  Craighead 1956	late Mar		earl Apr	$\begin{aligned} & \text { s Michigan } \\ & 1942,48 \end{aligned}$	fields, woodlots	
Fitch et al. 1946	mid Feb		earl Mar	$\begin{aligned} & \text { c California } \\ & 1939-40 \end{aligned}$	foothills	Based on eight observed copulations.
$\begin{aligned} & \text { Luttich et al. } \\ & 1971 \end{aligned}$	mid Apr	May 1	mid May	Alberta, CAN	farm \& forest	
Mader 1978	mid Feb		earl Apr	Arizona	desert	
HATCHING						
Craighead \& Craighead 1956	mid May		late May	Wyoming 1947	grasslands, forest	
Craighead \& Craighead 1956	late Apr		earl May	$\begin{aligned} & \text { s Michigan } \\ & 1942,48 \end{aligned}$	fields, woodlots	


Reference	Begin	Peak	End	Location	Habitat	Notes
$\begin{aligned} & \text { Luttich et al. } \\ & 1971 \end{aligned}$	mid May	earl June	mid June	Alberta, CAN	farm \& forest	
Mader 1978	late Mar		earl May	Arizona	desert	
FLEDGING						
Craighead \& Craighead 1956	mid June		earl Jul	Wyoming 1947	grasslands, forest	
Craighead \& Craighead 1956	earl Jun		mid Jun	$\begin{aligned} & \text { s Michigan } \\ & 1942,48 \end{aligned}$	fields, woodlots	
Mader 1978	late Apr	late May	earl Jun	Arizona	desert	
FALL MIGRATION						
Bent 1937	earl Sep			New England	NS	Early departure date.
Bent 1937			mid Oct	Montana	NS	Late dates of departure.
Bent 1937			late Oct	Saskatchewan, CAN	NS	Late dates of departure.
Bent 1937			late Nov	Minnesota	NS	Late dates of departure.
Bent 1937			late Oct	North Dakota	NS	Late dates of departure.
Luttich et al. 1971			mid Oct	Alberta, CAN 1966-69	farm, forest	
SPRING MIGRATION						
Bent 1937	mid Mar			Maine, Montana	NS	Early date of arrival.
Bent 1937	late Mar			New Brunswick, CAN	NS	Nova Scotia also; early date of arrival.
Bent 1937	late Mar			Wyoming, Idaho	NS	Early date of arrival.
Bohm 1978b	mid Mar			$\begin{aligned} & \text { Minnesota } \\ & 1976-77 \end{aligned}$	woodlots, farms	
Craighead \& Craighead 1956	mid Mar			Wyoming 1947	grasslands, forest	Arrival of hawks for breeding season.


Reference	Begin	Peak	End	Location	Habitat	Notes
  Craighead 1956	late Feb	earl Mar		$\begin{aligned} & \text { s Michigan } \\ & 1942.48 \end{aligned}$	fields, woodlots	Arrival of some hawks for breeding seaons; others wintered in same place.
$\begin{aligned} & \text { Luttich et al. } \\ & 1971 \end{aligned}$	earl Apr			Alberta, CAN 1966-69	farm \& forest	

## Page A-104 is left blank.

***** BALD EAGLE *****
*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference A	Age S	Sex	Cond	Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
BODY WEIGHT														
Bortolotti 1984a	$\begin{aligned} & \text { J } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \text { M } \\ & \mathrm{F} \end{aligned}$	-	-	$\begin{aligned} & 4,066 \\ & 5,172 \end{aligned}$	$\begin{aligned} & 35.08 \\ & 46.54 \end{aligned}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & 3,575 \\ & 4,800 \end{aligned}$	$\begin{aligned} & 4,500 \\ & 5,600 \end{aligned}$	$\begin{aligned} & 26 \\ & 21 \end{aligned}$	Saskatchewan CAN, 1980-82	lake	Age $=60$ days; growth not complete at this age or at age of fledging.
$\begin{aligned} & \text { Brown \& Amadon } \\ & 1968 \\ & \text { (alascensis) } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		-	6,300			$\begin{aligned} & g \\ & g \end{aligned}$	4,000	4,600		Alaska \& Canada	NS	
```Chura & Stewart 1967```	$\begin{aligned} & \text { A } \\ & \text { J } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & - \end{aligned}$	- - - - -	$\begin{aligned} & \text { WI } \\ & \text { WI } \\ & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 4,833 \\ & 5,642 \\ & 4,904 \\ & 4,677 \end{aligned}$			$\begin{aligned} & g \\ & g \\ & g \\ & g \end{aligned}$	$\begin{aligned} & 4,238 \\ & 4,706 \end{aligned}$	$\begin{aligned} & 5,642 \\ & 4,649 \end{aligned}$	$\begin{aligned} & 7 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	Alaska 1962	lab	Birds caught in November and December for DDT tests. Juveniles = immature eagles. Two juveniles were of unkown sex.
Imler \& Kalmbach 1955	$\begin{aligned} & \text { J } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 4,014 \\ & 5,089 \end{aligned}$			$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & 3,524 \\ & 4,359 \end{aligned}$	$\begin{aligned} & 4,568 \\ & 5,756 \end{aligned}$		Alaska	NS	Immature eagles (up to three years old). $\mathrm{N}=18$ for both sexes combined. As cited in Maestrelli and Wiemeyer 1975; Bartolotti 1984a.
$\begin{aligned} & \text { Snyder \& Wiley } \\ & 1976 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{M} \end{aligned}$		-	$\begin{aligned} & 5,244 \\ & 4,123 \end{aligned}$			$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 37 \\ & 35 \end{aligned}$	NS	NS	As cited in Dunning 1984.
Wiemeyer 1991 pers. comm.	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{M} \end{aligned}$		-	$\begin{aligned} & 4,500 \\ & 3,000 \end{aligned}$			$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$				Florida	NS	Approximate.
EGG WEIGHT														
Bortolotti 1984b	-	-		-	114.4	10.59	SD	g			17	Saskatchewan CAN, 1980-82	lake	
Krantz et al. 1970	0	-	-	-	120.6	8.2	SD	9	108	134	14	Wisconsin 1968	NS	Weight estimate calculated from egg volumes (in ml) presented by author using 1.0 as the assumed specific gravity (after Stickel et al. 1966).
Krantz et al. 1970	0 -	-		-	102.5	17.9	SD	9	71	125	6	Florida 1968	NS	Weight estimate calculated from egg volumes (in ml) presented by author using 1.0 as the assumed specific gravity (after Stickel et al. 1966).

Reference	Age S	ex	Cond	Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
HATCHING WEIGHT														
Bortolotti 1984b	-	B	-	-	91.5	5.17	SD	g			6	Saskatchewan CAN, 1980-82	lake	Nestlings weighed soon after hatching.
NESTLING WEIGHT														
Bortolotti 1984b	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	- - - - - - -		500 1,300 2,700 3,000 3,100 3,900 3,600 4,600			$\begin{array}{lll}g & 10 & \text { days } \\ g & 20 & \text { days } \\ g & 30 & \text { days } \\ g & 30 & \text { days } \\ g & 40 & \text { days } \\ g & 40 & \text { days } \\ g & 50 & \text { days } \\ 9 & 50 & \text { days }\end{array}$			$\begin{aligned} & 47 \\ & 47 \\ & 26 \\ & 21 \\ & 26 \\ & 21 \\ & 26 \\ & 21 \end{aligned}$	Saskatchewan CAN, 1980-82	lake	Number of days in units column is the age of nestlings. Values estimated from Figure 4.
FLEDGING WEIGHT														
 Wiemeyer 1975	-	-		-	$\begin{aligned} & 3,639 \\ & 4,671 \end{aligned}$			$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			1	Maryland	captive	Sample size too small.
NEStLING GROWTh RATE														
Bortolotti 1989	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$			$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.067 \\ & 0.070 \end{aligned}$	$\begin{aligned} & 0.0009 \\ & 0.0007 \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SE } \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$	Saskatchewan CAN, 1980-82	lake	Value is the mean growth curve parameter (K) for individual Grompertz growth equations. Nestlings from (1) East end of lake; (2) west end. West end was thought to have better food supplies.
metabolic rate (KCAL basis)														
Craig et al. 1988	$\begin{aligned} & A \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	-	$\begin{aligned} & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 448 \\ & 499 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \end{aligned}$	kcal/d kcal/d				$\begin{aligned} & \text { Connecticut } \\ & 1986 \end{aligned}$	river	Estimated daily energy budget.
$\begin{aligned} & \text { Gessaman et al. } \\ & 1991 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	-	1 2 3 4	- - - -	$\begin{aligned} & 41.1 \\ & 37.4 \\ & 42.1 \\ & 40.2 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 4.5 \\ & 2.1 \\ & 2.7 \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	$\begin{aligned} & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \end{aligned}$			2 2 2 2	Utah 1987	lab	Resting (perching) metabolism determined by oxygen consumption. Values are means for trials conducted on one adult (3.7 kg) and one immature (3.9 kg) eagle. Conditions: (1) day (08:00 20:00), 0 degrees C; (2) night (20:00 - 08:00), 0 degrees C; (3) day, $15 \mathrm{C} ;(4)$ night, 15 C.

Reference	Age Sex	ex	Cond	d Seas	S Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Stalmaster 1980	A	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{array}{r} 500 \\ 300-400 \end{array}$		g/day g/day				$\begin{aligned} & \text { Washington } \\ & 1974-80 \end{aligned}$	river	Foods: (1) spawned-out salmon; (2) all other foods. Author notes that gorging of up to 900 g of food may permit eagles to eat every other day.
Stalmaster \& Gessaman 1982	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\begin{array}{r} 0.092 \\ 0.0748 \\ 0.0651 \end{array}$	$\begin{aligned} & 0.0255 \text { SD } \\ & 0.0130 ~ S D \\ & 0.0115 ~ S D \end{aligned}$	$\begin{aligned} & \text { g/g-day } \\ & \text { g/g-day } \\ & \text { g/g-day } \end{aligned}$			$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	Utah 1980	lab	Winter-acclimatized eagles. Mean of 4 eagles tested at three temperatures ($-10,5$, \& 20 degrees C) and fed three types of food: (1) salmon; (2) black-tailed jackrabbit; (3) mallard duck. Authors provide model to predict food consumption with temperature for these three different diets.
Stalmaster \& Gessaman 1984	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~J} \\ & \mathrm{Y} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	WI WI WI WI			$\begin{aligned} & \text { g/g-day } \\ & \text { g/g-day } \\ & \text { g/g-day } \\ & \text { g/g-day } \end{aligned}$				$\begin{aligned} & \text { Washington } \\ & 1978-80 \end{aligned}$	river	Estimated from observed captures of pre-weighed fish provided at a feeding station; in each case the food was salmon and the eagles were free living. (1) Calculated minimum food requirement; (2) mass food consumed with assuming eagle mass of 4.5 kg .
Stalmaster \& Gessaman 1982	$\begin{aligned} & \text { B } \\ & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\begin{array}{r} 118.4 \\ 104.9 \\ 91.4 \end{array}$	$\begin{aligned} & 26 \\ & 28 \\ & 28 \\ & 15 \\ & 15 \end{aligned}$	kcal/kg-d kcal/kg-d kcal/kg-d	$\begin{aligned} & 74 \\ & 51 \\ & 53 \end{aligned}$	$\begin{aligned} & 170 \\ & 160 \\ & 117 \end{aligned}$		NS 1980	lab	Existence metabolism conditions; winter-acclimatized eagles. Gross energy intake (GEI) at temperature $=(1)-10 \mathrm{C}$; (2) 5 C ; (3) 20 C . Estimated by author from equations developed from empirical data: GEI $(\mathrm{kcal} / \mathrm{kg}-\mathrm{d})=109.4-0.90$ ambient temperature. Values were normalized to a 4.5 kg bird. Range and SD estimated from Figure 2.
Stalmaster \& Gessaman 1984	B	B	-	WI	110		kcal/kg-d			4	$\begin{aligned} & \text { Washington } \\ & 1978-80 \end{aligned}$	river	Flying metabolism; 4.5 kg eagle assumed. Total energy intake required.
Stalmaster \& Gessaman 1982	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\begin{aligned} & 0.0884 \\ & 0.0755 \\ & 0.0680 \end{aligned}$	$\begin{aligned} & 0.0239 \\ & 0.0186 \\ & 0.0145 \\ & 0.0144 \end{aligned}$	$\begin{aligned} & \text { g/g-day } \\ & \text { g/g-day } \\ & \text { g/g-day } \end{aligned}$			$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	Utah 1980	lab	Winter-acclimated eagles; 4 birds each fed 3 different diets at temperatures of (degrees C): (1) -10; (2) 5; (3) 20. Three diets were salmon, jackrabbit, and mallard.

*** DIET ***

Reference	Age Se	ex F	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Fielder 1982			mallard American widgeon American coot other waterfowl non-waterfowl birds brown bullhead other fish				$\begin{array}{r} 8 \\ 4.3 \\ 64.1 \\ 9.2 \\ 4.7 \\ 3.1 \\ 6.2 \end{array}$	485	$\begin{aligned} & \text { Washington } \\ & 1977-82 \end{aligned}$	```reservoir % frequency of occurrence; items found below perches```	Lake Pateros (reservoir); N = number of prey items found.
Fielder 1982	B		mallard American coot other waterfowl chukar other non-waterfowl sucker walleye unidentified fish				$\begin{array}{r} 11.8 \\ 11.8 \\ 12.9 \\ 45.9 \\ 9.4 \\ 3.5 \\ 2.4 \\ 2.4 \end{array}$	85	$\begin{aligned} & \text { Washington } \\ & 1978-82 \end{aligned}$	```reservoir % frequency of occurrence; prey remains below perches```	Rufus Woods Lake (reservoir); N = number of prey items found.
Fitzner \& Hanson 1979	B		mallard American widgeon American coot other birds Chinook salmon sucker European carp other fish unaccounted				$\begin{array}{r} 32 \\ 9 \\ 9 \\ 3 \\ 21 \\ 4 \\ 1 \\ 1 \\ 20 \end{array}$	72	$\begin{aligned} & \text { Washington } \\ & \text { 1975-76 } \end{aligned}$	```river % biomass; prey remains below communal roosts```	$\mathrm{N}=$ number of prey items.
$\begin{aligned} & \text { Frenzel \& Anthony } \\ & 1989 \end{aligned}$	B		snow goose mallard northern pintail american widgeon ruddy duck american coot other birds mammals reptiles				$\begin{array}{r} 7.6 \\ 25.3 \\ 14.8 \\ 23.3 \\ 9.4 \\ 4.1 \\ 14.9 \\ 0.5 \\ 0.1 \end{array}$	913	$\begin{aligned} & \text { n CA, s OR } \\ & 1979-82 \end{aligned}$	```lake % frequency of occurrence; prey remains from below hunting perches```	$\mathrm{N}=$ number of prey items. Eagles were frequently observed feeding on montane voles which they probably ate whole (no remains).
$\begin{aligned} & \text { Grubb \& Hensel } \\ & 1978 \end{aligned}$			```fish (humpback salmon) birds (ducks) (seabirds) (glauc. winged gull fox invertebrates```		$\begin{array}{r} 25 \\ (15) \\ 62 \\ (7.5) \\ (15) \\ (22.5) \\ 5 \\ 7.5 \end{array}$			36	$\begin{aligned} & \text { Alaska } \\ & 1963,67,68 \end{aligned}$	```coastal % frequency of occurrence; prey remains at nest```	Season not specified, but probably is spring/summer because eagles are nesting.

Reference	Age Se	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
$\begin{aligned} & \text { Grubb \& Hensel } \\ & 1978 \end{aligned}$			```fish (char) (sockeye salmon) birds (common goldeneye) (other ducks) (gulls) mammals (snowshoe hare) (tundra vole) (reindeer)```		$\begin{array}{r} 85 \\ (44.6) \\ (36.5) \\ 10 \\ (5.4) \\ (2.7) \\ (1.4) \\ 5 \\ (1.4) \\ (2.7) \\ (1.4) \end{array}$			36	$\begin{aligned} & \text { Alaska } \\ & 1963,67,68 \end{aligned}$	```inland % frequency of occurrence; prey remains at nest```	Season not specified, but is probably spring/summer because eagles are nesting.
$\begin{aligned} & \text { Haywood \& Ohmhart } \\ & 1983 \end{aligned}$	B		channel catfish carp Sonora sucker other fish American coot other birds cottontail rabbit jack rabbit other mammals		$\begin{array}{r} 27.9 \\ 16.1 \\ 11.8 \\ 7.3 \\ 5.9 \\ 10.3 \\ 4.4 \\ 4.4 \\ 11.8 \end{array}$			7	$\begin{aligned} & \text { Arizona } \\ & 1979-80 \end{aligned}$	desert scrub, riparian \% frequency of occurrence; prey items at and below nests	$\mathrm{N}=$ number of nests. Seasons are spring and summer.
$\begin{aligned} & \text { Haywood \& Ohmart } \\ & 1986 \end{aligned}$	B	B	```fish (channel catfish) (Sonora sucker) (carp) (flathead catfish) (desert sucker) (bass species) birds (American coot) (great blue heron) mammals (desert cottontail) (jackrabbit) (rock squirrel) reptiles```		$\begin{array}{r} 57.6 \\ (21.8) \\ (8.6) \\ (17.3) \\ (2.4) \\ (3.3) \\ (2.8) \\ 14.1 \\ (8.1) \\ (4.4) \\ 28.1 \\ (8.1) \\ (14.9) \\ (1.1) \\ 0.2 \end{array}$			481	$\begin{aligned} & \text { c Arizona } \\ & \text { 1979-82 } \end{aligned}$	desert scrub, riparian \% biomass; prey brought to or found at nests	Breeding season; 11 nests observed over a five year period. $\mathrm{N}=$ number of prey identified. Individual prey types comprising less than 1% of the total not listed here.
Kozie \& Anderson 1991		B	suckers burbot round whitefish other fish (fish subtotal) herring gull blue jay northern flicker other birds unidentified birds (bird subtotal)		27.6 13.5 3.8 5.1 (50.0) 21.8 6.4 3.2 14.4 2.6 (48.4)			156	$\begin{aligned} & \text { Wisconsin } \\ & 1983-88 \end{aligned}$	islands \& shoreline of Lake Superior \% frequency of occurrence; prey remains at nest	Found at 53 nests. To consolidate information, suckers were grouped together, and items with less than 2% occurrence were grouped as "other". Islands were the Apostle Islands National Lakeshore.

Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Sherrod et al. 1977 (continued)		Least Aukulet (A. pusilla) Smooth lumpsucker (Aptocuclus ventricosus) Rock greenling (Nexagrammus lagocephalus)		9 31 5						
$\begin{aligned} & \text { Sherrod et al. } \\ & 1977 \end{aligned}$	$-\quad-$	mammals birds fish invertebrates		$\begin{array}{r} 36.1 \\ 49.4 \\ 14.4 \\ 0.1 \end{array}$			78	Alaska 1971-72	```Amchitka Island average % of diet by biomass```	Season not specified. Author notes that carrion comprises a large part of eagles' diet and that eagles regularly scavenge carcases of the harbor seal (Phoca vitulina), the Stellar sea lion (Eumetopias jerbata), sea otters, and whales.
$\begin{aligned} & \text { Swenson et al. } \\ & 1986 \end{aligned}$		```birds (mallard) (coot) (eared grebe) (other aquatic bird fish (Utah sucker) (cutthroat trout) (Utah chub) (salmonids) mammals (muskrat)```		42.7 (5.4) (5.4) (2.4) (16.4) 43.5 (20.4) (8.2) (6.3) (3.3) 13.9 (3.3)				$\begin{aligned} & \text { Idaho, Wyoming } \\ & 76-82 \end{aligned}$	forested river, lake \% frequency of occurrence; pellets and remains in and under nests	40 species identified; species making up less than 2% of total not listed here.
Todd et al. 1982	B B	brown bullhead white sucker chain pickerel smallmouth bass white perch other fish black duck other birds mammals		$\begin{array}{r} 24.8 \\ 19.5 \\ 20.1 \\ 3.8 \\ 3.6 \\ 4.9 \\ 3.0 \\ 13.5 \\ 6.8 \end{array}$			133	Maine 1976-80	```inland % frequency of occurrence; pellets```	Season - includes all but winter. Summary of 32 food types presented in paper.
Todd et al. 1982	B B	black duck herring gull cormorant other gulls common eider other birds herring other fish mammals		$\begin{array}{r} 14.8 \\ 11.6 \\ 7.6 \\ 7.3 \\ 5.6 \\ 28.8 \\ 5.2 \\ 11.9 \\ 6.9 \end{array}$			269	Maine 1976-80	```coastal % frequency of occurrence; pellets```	All seasons. $N=$ number of pellets collected. Summary of 67 food types presented in paper.

Reference A	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Grubb 1980	A	B	-	-	7.2		km	1.4	24.5	24	$\begin{aligned} & \text { w Washington } \\ & 1975 \end{aligned}$	Puget Sound	Occupied breeding territory length determined by aerial surveys of coastline.
Grubb 1980	A	B	-	-	4.8		km	4.2	21.2	4	$\begin{aligned} & \text { w Washington } \\ & 1975 \end{aligned}$	Hood Canal	Occupied breeding territory length determined by aerial surveys of coastline.
Grubb 1980	A	B	-	-	15.8		km	11.1	26.6	6	$\begin{aligned} & \text { w Washington } \\ & 1975 \end{aligned}$	Grays Harbor	Occupied breeding territory length determined by aerial surveys of coastline.
Grubb 1980	A	B	-	-	6.4		km	12.6	13.0	3	w Washington 1975	inland lake, river	Occupied breeding territory length determined by aerial surveys of coastline.
Haywood \& Ohmhart 1983	A	B	-	SP	3,494	2,520 SD	ha	1,821	6,392	3	$\begin{aligned} & \text { Arizona } \\ & \text { 1980-81 } \end{aligned}$	desert, riparian river	Minimum home range.
$\begin{aligned} & \text { Keister et al. } \\ & 1985 \end{aligned}$	B	B	-	WI	6-20		km				$\begin{aligned} & \mathrm{sc} \text { OR, } \mathrm{n} \mathrm{CA} \\ & 1979-80 \end{aligned}$	Klamath Basin	Foraging radius; range of distances between communal roosts and the three main foraging areas used by the study population.
$\begin{aligned} & \text { Mahaffy \& Frenzel } \\ & 1987 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	B B B	$\begin{aligned} & \text { I } \\ & \text { EB } \\ & \text { LB } \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.55 \\ & 0.72 \end{aligned}$	$\begin{array}{ll} 0.18 & \mathrm{SE} \\ 0.17 & \mathrm{SE} \\ 0.21 & \mathrm{SE} \end{array}$	km radius km radius km radius			4 4 2	Minnesota 1979-80	lake, woods	```Radius of territory defended against decoy: (I) incubating; (EB) early brooding; (LB) late brooding. feeding.```
Mahaffy \& Frenzel 1987	$\begin{aligned} & A \\ & A \end{aligned}$	B	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.67 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.18 \mathrm{SE} \\ & 0.03 \mathrm{SE} \end{aligned}$	km radius km radius			$\begin{aligned} & 7 \\ & 3 \end{aligned}$	Minnesota 1979-80	lake, woods	During incubation and feeding. Radius of territory defended against decoy: (1) access to decoy across water or shoreline; (2) access to decoy across land.
Nash et al. 1980	A	B	-	SU			km		6		$\begin{aligned} & \text { w Washington } \\ & 1962-80 \end{aligned}$	San Juan Islands	Foraging radius.
Stalmaster \& Gessaman 1984	B	B	-	WI	6.1		km/day				$\begin{aligned} & \text { Washington } \\ & 1978-80 \end{aligned}$	river	Daily foraging radius from roosts for wintering eagles.
POPULATION DENSITY													
$\begin{aligned} & \text { Dzus \& Gerrard } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { J } \\ & \text { B } \end{aligned}$	B B B	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.104 \\ & 0.035 \\ & 0.139 \end{aligned}$		N/km shore N / km shore N / km shore	$\begin{aligned} & 0.026 \\ & 0.005 \\ & 0.031 \end{aligned}$	$\begin{aligned} & 0.179 \\ & 0.088 \\ & 0.242 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	Saskatchewan CAN, 1984-87	lakes	Based on aerial surveys in May-June and July-August.

Reference A	Age Sex	ex	Cond	d Seas	s Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Grier 1977	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	-	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.000084 \\ & 0.000057 \end{aligned}$		$\begin{aligned} & \text { N/ha } \\ & \text { br area/ha } \end{aligned}$				Ontario, Manitoba, CAN	NS	Total of 53100 square km quadrats sampled; br area = breeding area. Breeding area counts considered by author to be more reliable than bird counts.
Hansen 1987	A	B	-	SU	0.38		pair/km			89	$\begin{aligned} & \text { se Alaska } \\ & 1980-83 \end{aligned}$	riverine	Based on aerial surveys of 89 breeding territories located within the Chilkat Valley.
Hodges \& King 1979	9 A	B	-	SU	0.9		N / km shore				se Alaska	coastal	As cited in Hodges et al. 1987.
$\begin{aligned} & \text { Swenson et al. } \\ & 1986 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.0352 \\ & 0.0255 \\ & 0.0453 \end{aligned}$		$\begin{aligned} & \text { pair } / \mathrm{km} \\ & \text { pair } / \mathrm{km} \\ & \text { pair } / \mathrm{km} \end{aligned}$				$\begin{aligned} & \text { WY, ID, MT } \\ & 1972-79 \end{aligned}$	rivers, lakes	Breeding areas per kilometer of shoreline. Aerial surveys of three study areas in the Greater Yellowstone Ecosystem: (1) Yellowstone; (2) Continental; Snake.
Vermeer \& Morgan 1989	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & S P \\ & S P \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.07 \end{aligned}$		nest/km nest/km				```Br. Columbia CAN 1988```	Barkley Sound	Conservative estimate of nesting population along the edges of: (1) forested islands in the sound; Vancouver Island. A total of 54 nests were observed.
CLUTCH SIZE													
$\begin{aligned} & \text { Brown \& Amadon } \\ & 1968 \end{aligned}$	-	-	-	-	2		eggs	1	3		NS	NS	
Schmid 1966-67	-	-	-	-	2.28		eggs	1	4	50	$\begin{aligned} & \text { PA, DE, MD, NJ } \\ & 1935-42,46 \end{aligned}$	NS	Mean calculated from data presented in table. 19 of the 60 successful nestings observed had 3 young present.
Sherrod et al. 1977	-	-	-	-	1.9		eggs			46	Alaska 1969	Amchitka Island	
CLUTCHES/YEAR													
Sherrod et al. 1987	-	-	-	-	1		/year				NS	NS	Will often lay a second clutch if the first is lost early in incubation period.

Herrick 1932	-	-	-	-	34-35			days
Hulce 1886; 1887	-	-	-	-	35-37			days
 Wiemeyer 1975	-	-	-	-	35			days
Nicholson 1952	-	-	-	-	35-36			days
age at fledging								
Bortolotti 1989	-	M	1	-	79.9	1.08	SE	days
	-	F	1	-	83.0	0.94	SE	days
	-	M	2	-	76.1	1.03	SE	days
		F		-	81.2	1.58	SE	days
Brown \& Amadon 1968	-	-	-	-	70-77			days
Green 1985	-	B	-	-				days

14
6
NS
NS
$\mathrm{N} / \mathrm{terr}$
$\mathrm{N} / \mathrm{ter}$
$\mathrm{N} /$ terr
Henny \& Anthony
N/act terr
. 00
2.00

38 Colorado
Henny \& Anthony
1.01

Henny \& Anthony
1.10

1.26	$\mathrm{~N} / \operatorname{terr}$
0.46	$\mathrm{~N} / \operatorname{terr}$
1.12	$\mathrm{~N} / \operatorname{terr}$
1.01	$\mathrm{~N} /$ act terr

Ontario, CAN
. 01

N/act terr

NS
wild
captive
captive

NS

lake

NS
NS

NS

As cited in Maestrelli \& Wiemeyer 1975.

As cited in Maestrelli \& Wiemeyer 1975.

As cited in Maestrelli \& Wiemeyer 1975.
(1) East end of lake; (2) west end
West end thought to support larger fish populations.

Summary of available information.

Young per nesting territory. (1) 1966; (2) 1974; (3) 1981.

Mean of 10 years of data; minimum and maximum are yearly means. Number of nests surveyed per year $=$ 29-68.

Mean of 10 years of data; minimum and maximum are yearly means. Number of nests surveyed per year $=$ 2-10.

Mean of 8 years of data; minimum and maximum are yearly means. Nests
surveyed per year $=11-26$.

Reference A	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Henny \& Anthony 1989	- -	-	-	1.28		N/act terr	1.07	1.58	305	$\begin{aligned} & \text { Montana } \\ & 1978-86 \end{aligned}$	NS	Mean of 9 years of data; minimum and maximum are yearly means. Nests surveyed per year $=$ 9-55.
Henny \& Anthony 1989	- -	-	-	0.95		N/act terr	0.72	1.18	882	Oregon 1978-86	NS	Mean of 9 years of data; minimum and maximum are yearly means. Nests surveyed per year $=35-142$.
Henny \& Anthony 1989	- -	-	-	0.90		N/act terr	. 76	1.14	1207	$\begin{aligned} & \text { Washington } \\ & 1980-86 \end{aligned}$	NS	Mean of 7 years of data; minimum and maximum are yearly means. Nests surveyed per year $=$ 99-250.
Henny \& Anthony 1989	-	-	-	. 89		N/act terr	. 52	1.22	217	Wyoming $1978-86$	NS	Mean of 9 years of data; minimum and maximum are yearly means. Nests surveyed per year $=19-35$.
Kozie \& Anderson 1991	- -	-	-	1.30		N/act nest			1,469	$\begin{aligned} & \text { Wisconsin } \\ & 1983-88 \end{aligned}$	nests from inland areas	Data reflects young produced by active nest; does not indicate whether young fledged. Diet analysis suggests that nearby Lake Superior birds (not included in mean presented) may be suffering from effects of contaminants; they fledged 0.8 per active nest.
$\begin{aligned} & \text { McAllister et al. } \\ & 1986 \end{aligned}$	$\begin{array}{ll} - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 0.87 \\ & 0.59 \end{aligned}$		N / br terr N/br terr			301	$\begin{aligned} & \text { Washington } \\ & 1981-85 \end{aligned}$	coastal	```(1) direct count; (2) Mayfield - 40% model.```
$\begin{aligned} & \text { McEwan \& Hirth } \\ & 1979 \end{aligned}$	- -	-	-	1.14		N/act nest			109	$\begin{aligned} & \text { Florida } \\ & 1973-76 \end{aligned}$	lake	
Sherrod et al. 1977	- -	-	-	0.86		N/act nest			71	Alaska 1972	Amchitka Island	
Sprunt et al. 1973	$3-1$	-	-	1.00	0.06 SE	N/act nest	0	3	312	Alaska 1963-70	wildlife refuge, island	Seven years of data. At the time of the study, the authors felt that this population represented "as nearly a normal situation as currently exists for this species." Overall, 63\% of nests successful.
Grier 1982	- - - - -	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	- - - -	$\begin{aligned} & 1.6 \\ & 1.5 \\ & 1.7 \\ & 1.8 \end{aligned}$		N/suc nest $\mathrm{N} /$ suc nest N/suc nest N/suc nest			$\begin{aligned} & 184 \\ & 184 \\ & 324 \\ & 149 \end{aligned}$	Ontario, CAN	lake	Young counted at nestling stage. Years: (1) 1966-69; (2) 1970-74; (3) 1975-79; (4) 1980-81.

Reference Ag	ge Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Grubb et al. 1983	- -	-	-	1.65	0.26 SD	N/suc nest			22	$\begin{aligned} & \text { Arizona } \\ & \text { 1975-80 } \end{aligned}$	desert scrub, river	6 year mean; 3-4 nests per year.
Grubb et al. 1983	- -	-	-	1.35	0.11 SD	N/suc nest	1.22	1.48	170	$\begin{aligned} & \text { Washington } \\ & 1975-80 \end{aligned}$	San Juan Islands	6 year mean; minimum and maximum are yearly means of 23 and 29 nests, repsectively.
Grubb et al. 1983	-	-	-	1.47		N/suc nest			60	$\begin{aligned} & \text { Washington } \\ & 1980 \end{aligned}$	spruce \& hemlock, Olympic Penninsula	Study area includes the San Juan Islands, Olympic Peninsula, Puget Sound, and other areas.
Howard \& Van Daele 1980	- -	-	-	1.4		N/suc nest			7	Idaho 1979	NS	
Kozie \& Anderson 1991	-	-	-	1.69		N/suc nest			1,132	$\begin{aligned} & \text { Wisconsin } \\ & 1983-88 \end{aligned}$	nests from inland areas	Reflects young produced per succesful nest; data does not include whether young fledged.
$\begin{aligned} & \text { McAllister et al. } \\ & 1986 \end{aligned}$	- -	-	-	1.42		N/suc pair	1.35	1.51	45	$\begin{aligned} & \text { Washington } \\ & 1981-85 \end{aligned}$	coastal	4 year mean; minimum and maximum are yearly means.
McEwan \& Hirth 1979	- -	-	-	1.59		N/suc nest			78	$\begin{aligned} & \text { Florida } \\ & 1973-76 \end{aligned}$	lake	
Nash et al. 1980	-	-	-	1.3		N/suc terr	1.0	1.7		Washington 1970-79	coastal island	Ten years of study; minimums and maximums are yearly means of fledglings per successful territory.
Opp 1980	- -	-	-	1.53		N/suc ter			8	Oregon 1978-79	various	
Schmid 1966-67	- -	-	-	2.2		N/suc nest	1	3	47	$\begin{aligned} & \text { PA, DE, MD, NJ } \\ & 1936-42,46 \end{aligned}$	NS	Data reflects young seen in nests, not number that fledged.
Sherrod et al. 1977	- -	-	-	1.42		N/suc nest			71	Alaska 1972	Amchitka Island	
Sprunt et al. 1973	-	-	-	1.06	0.06 SE	N/suc nest	1	3	196	Alaska 1963-70	wildlife refuge, island	Mean of 7 years of data. Authors felt that at the time of the study, this population represented "as nearly a normal situation as currently exists for this species."
$\begin{aligned} & \text { Swenson et al. } \\ & 1986 \end{aligned}$	- -		-	1.64		N/suc nest			160	$\begin{aligned} & \text { ID, MT, WY } \\ & 1976-82 \end{aligned}$	forested river, lake	Study of three populations in the Greater Yellowstone ecosystem over six years.

age at sexual maturity

Nye 1983

- B

3
5
7 United States
NS

ANNUAL MORTALITY

Grier 1980
$\begin{array}{lll}A & B & - \\ J & B & -\end{array}$
$10-30$
$30-70$
$\% / y r$
\%/yr
$\% / \mathrm{yr}$
Sherrod et al.
1977
A $-1 \quad$ -
J
-
5.4
89.3
\%/yr
J - 2

Grier 1980	$\begin{aligned} & \text { A } \\ & \text { J } \end{aligned}$	B			$\begin{aligned} & 10-30 \\ & 30-70 \end{aligned}$	$\begin{aligned} & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$
Sherrod et al.	A	-	1	-	5.4	\%/yr
1977	J	-	2		89.3	\%/yr

Reference	Begin	Peak	End	Location	Habitat	Notes
Grubb 1976	Jan		earl Mar	Colorado	NS	As cited in Green 1985.
Grubb 1976	late Feb		thru Mar	Washington	NS	As cited in Green 1985.
Hansen 1987	earl May			se Alaska	river	
Howard \& van Daele 1980	mid Feb			w Idaho 1979	NS	
$\begin{aligned} & \text { LeFranc \& Cline } \\ & 1983 \end{aligned}$	Feb			MD, VA, DE	Chesapeake Bay	
Mager 1977	late Sep		thru Nov	Florida, Texas	NS	As cited in Green 1985.
Murphy 1965; Swenson 1975	earl Apr			nw Wyoming	NS	As cited in Howard \& van Daele 1980.
Peterson (unpub.)	Mar			e Idaho 1979	NS	As cited in Howard \& van Daele 1980.
Sherrod et al. 1977; Hensel \& Troyer 1964	Mar		Apr	Alaska	NS	As cited in Green 1985.
$\begin{aligned} & \text { Swenson et al. } \\ & 1986 \end{aligned}$	earl Mar	late Mar	late Apr	$\begin{aligned} & \text { WY, MT, ID } \\ & 1960-82 \end{aligned}$	rivers, lakes	Habitats in and near Yellowstone Park.
US FWS 1989	late Oct	late Dec	March	se United States	NS	
Weaver 1980	mid Mar			w Wyoming	NS	As cited in Howard \& van Daele 1980.
HATCHING						
```Howard & van Daele 1980```	late Mar		earl May	w Idaho 1979	NS	
Murphy 1965; Swenson 1975		late May		nw Wyoming	NS	As cited in Howard \& van Daele 1980.
Peterson (unpub.)		late Apr		e Idaho 1979	NS	As cited in Howard \& van Daele 1980.
$\begin{aligned} & \text { Swenson et al. } \\ & 1986 \end{aligned}$	earl Apr	late Apr	late May	$\begin{aligned} & \text { WY, MT, ID } \\ & 1960-82 \end{aligned}$	rivers, lakes	Habitats in and near Yellowstone Park.

## FLEDGING

Hansen 1987

Harris et al. 1987	April	May
Howard \& van Daele	mid Jun	mid

1980

Murphy 1965;
Swenson 1975
Peterson (unpubl.)

Swenson et al.
1986
Weaver 1980

FALL/BASIC MOLT
McCollough 1989

McCollough 1989
Nov - Dec

May
mid Jul
mid Jul
late Aug
mid Aug
earl Aug
fall

Apr - May
mid Dec

Craig et al. 1988	mid Dec		
  McClelland 1989	earl Oct	Nov	mid Dec

As cited in Howard \& van Daele 1980.

As cited in Howard \& van Daele 1980.

Habitats in and near Yellowstone Park.

As cited in Howard \& van Daele 1980.

Begins in late spring, continues until early fall.

Estimated timing for molt in southern populations; begins in late fall and continues until spring.

Arrival of wintering eagles
Passing through of eagles going to wintering grounds; eagles utilized communal roosts.

Arrival time of wintering eagles.

Reference	Begin	Peak	End	Location	Habitat	Notes
$\begin{aligned} & \text { Fitzner et al. } \\ & 1980 \end{aligned}$	mid Nov	Dec - Jan		$\begin{aligned} & \text { c Washington } \\ & 1979-80 \end{aligned}$	river	Arrival time of eagles wintering in Washington.
Grubb et al. 1983		July		nw Washington	coastal	Eagles leave breeding sites.
Grubb et al. 1983		June		c Arizona	desert scrub, river	Departure of eagles after breeding season.
Harris et al. 1987	Sept		Oct	$\begin{aligned} & \text { Louisiana } \\ & 1977-79 \end{aligned}$	various	Arrival of eagles prior to breeding season.
Hodges et al. 1987	Nov	Dec	Jan	$\begin{aligned} & \text { se Alaska } \\ & 1979-82 \end{aligned}$	river	Departure of 31 radiotagged eagles from the Chilkat River area.
$\begin{aligned} & \text { Keister et al. } \\ & 1987 \end{aligned}$	late Oct	Dec - Jan		$\begin{aligned} & \mathrm{sc} \text { OR, n CA } \\ & 1978-80 \end{aligned}$	Klamath Basin	Arrival of wintering eagles.
McClelland 1973	earl Oct			$\begin{aligned} & \text { Montana } \\ & 1965-70 \end{aligned}$	Glacier Nat'l Park	Arrival of wintering eagles; eagles are attracted to salmon runs.
Sabine 1981	late Oct	Jan \& Feb		$\begin{aligned} & \text { Illinois } \\ & \text { 1979-81 } \end{aligned}$	forest	Arrival of wintering eagles.
SPRING MIGRATION						
Craig et al. 1988			late Mar	$\begin{aligned} & \text { Connecticut } \\ & 1986 \end{aligned}$	river	Departure of wintering eagles.
$\begin{aligned} & \text { Fielder \& Starkey } \\ & 1980 \end{aligned}$		earl Apr	mid Apr	$\begin{aligned} & \text { e Washington } \\ & 1975-80 \end{aligned}$	river	Departure of wintering eagles.
$\begin{aligned} & \text { Fitzner et al. } \\ & 1980 \end{aligned}$		earl Feb	earl Mar	$\begin{aligned} & \text { c Washington } \\ & 1979-80 \end{aligned}$	river	Departure of wintering eagles.
Grubb et al. 1983		Dec		c Arizona	desert scrub, river	Arrival of eagles prior to breeding season.
$\begin{aligned} & \text { Keister et al. } \\ & 1987 \end{aligned}$		Apr		$\begin{aligned} & \mathrm{sc} \text { OR, n CA } \\ & 1978-80 \end{aligned}$	Klamath Basin	Departure of wintering eagles.
McClelland 1973			late Dec	$\begin{aligned} & \text { Montana } \\ & \text { 1965-70 } \end{aligned}$	Glacier Nat'l Park	Departure of wintering eagles; they leave when salmon are no longer available.


Reference	Begin	Peak	End	Location	Habitat	Notes
Sabine 1981	earl Mar			$\begin{aligned} & \text { Illinois } \\ & \text { 1979-81 } \end{aligned}$	forest	Departure of wintering eagles.
$\begin{aligned} & \text { Swenson et al. } \\ & 1986 \end{aligned}$	late Mar	earl Apr		$\begin{aligned} & \text { WY, MT, ID } \\ & 1960-74 \end{aligned}$	rivers, lakes	Movement from wintering to breeding grounds (both are within Yellowstone National Park and vicinity).

***** AMERICAN KESTREL *****
*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference	Age S	Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
BODY WEIGHT													
Bird \& Clark 1983	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		-	$\begin{aligned} & 113 \\ & 120 \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{SE} \\ & 5.3 \mathrm{SE} \end{aligned}$	$\begin{aligned} & g \\ & g \end{aligned}$			$\begin{aligned} & 25 \\ & 26 \end{aligned}$	Quebec, CAN	captive	
Bloom 1973	-	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { FA } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 103 \\ & 115 \end{aligned}$	$\begin{aligned} & 6.7 \mathrm{SD} \\ & 8.6 \mathrm{SD} \end{aligned}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 12 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { s California } \\ & 1970-73 \end{aligned}$	inland	Season: August through October. From largely migratory population; "U.S. 395 \& vicinity" site.
Bloom 1973	-	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 114 \\ & 132 \end{aligned}$	$\begin{array}{rl} 7.8 & \mathrm{SD} \\ 13.1 & \mathrm{SD} \end{array}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 14 \\ & 70 \end{aligned}$	$\begin{aligned} & \text { s California } \\ & 1970-73 \end{aligned}$	inland	Month: February. From largely migratory population; Imperial Valley site.
Bloom 1973	- - -	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	-   -   -   -   -	$\begin{aligned} & \text { WI } \\ & \text { SP } \\ & \text { SU } \\ & \text { FA } \\ & \text { YR } \end{aligned}$	$\begin{aligned} & 108 \\ & 110 \\ & 106 \\ & 112 \end{aligned}$	$\begin{array}{ll} 8.1 & \mathrm{SD} \\ 5.3 & \mathrm{SD} \\ 9.6 & \mathrm{SD} \\ 9.5 & \mathrm{SD} \\ 9.3 & \mathrm{SD} \end{array}$	$\begin{aligned} & g \\ & g \\ & g \\ & g \\ & g \end{aligned}$			$\begin{array}{r} 9 \\ 3 \\ 8 \\ 49 \\ 69 \end{array}$	$\begin{aligned} & \text { s California } \\ & 1970-73 \end{aligned}$	coastal	Sample thought to represent resident population of kestrels.
Bloom 1973	-	$\begin{aligned} & F \\ & F \end{aligned}$	- - - - - -	$\begin{aligned} & \text { WI } \\ & \text { SP } \\ & \text { SU } \\ & \text { FA } \\ & \text { YR } \end{aligned}$	$\begin{aligned} & 124 \\ & 117 \\ & 112 \\ & 119 \\ & 120 \end{aligned}$	$\begin{array}{r} 8.9 \mathrm{SD} \\ 11.6 \\ 10.3 \mathrm{SD} \\ 8.8 \mathrm{SD} \\ 9.2 \mathrm{SD} \end{array}$	$\begin{aligned} & g \\ & g \\ & g \\ & g \\ & g \end{aligned}$			$\begin{array}{r} 24 \\ 3 \\ 11 \\ 73 \\ 111 \end{array}$	$\begin{aligned} & \text { s California } \\ & 1970-73 \end{aligned}$	coastal	Sample thought to represent resident population of kestrels.
Craighead \& Craighead 1956	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { M } \\ & \mathrm{F} \end{aligned}$		-	$\begin{aligned} & 109 \\ & 119 \end{aligned}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 50 \\ & 67 \end{aligned}$	Michigan, Pennsylvania	NS	Tabulated by authors primarily from own data and unpublished data from the Pennsylvania Game Commission, but may include data from some other sources.
$\begin{aligned} & \text { Gessaman \& Haggas } \\ & 1987 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	$\overline{\text { LI }}$	$\begin{aligned} & \text { WI } \\ & \text { SP } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 138 \\ & 124 \\ & 127 \end{aligned}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$			9 9 9	Utah	open agricultural	(LI) = laying, incubating.
Gessaman \& Haggas 1987	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { SP } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 119 \\ & 108 \\ & 111 \end{aligned}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$			9 9 9	Utah	open agricultural	(I) = incubating.
Porter \& Wiemeyer 1972	-	F	-	FA	142		9	125	159	13	northeastern   US 1964	captive	Captive kestrels caught in the northeastern U.S.


Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE		its	Minimum	Maximum	N	Location	Habitat
Porter \& Wiemeyer 1972	A	F	-	WI	138		9		130	142	5	$\begin{aligned} & \text { Florida } \\ & 1965-66 \end{aligned}$	captive
NESTLING WEIGHT													
Bird \& Clark 1983	N	F	-	-	10	$\begin{array}{ll} 0.31 & \mathrm{SE} \\ 0.12 & \mathrm{SE} \end{array}$		1 day			8	Quebec, CAN	captive
	N	M	-	-	11		g	1 day			11		
	N	F	-	-	36		9	7 day			8		
	N	M	-	-	40			7 day			11		
	N	F	-	-	96		g	13 day			8		
	N	M	-	-	100			13 day			11		
	N	F	-	-	123			19 day			8		
	N				117			19 day			11		
	N	F		-	131			25 day			8		
	N	M	-	-	127			25 day			11		
	F	F	-	-	118			31 day			8		
	F	M	-	-	114		9	31 day			11		

## BODY FAT

Gessaman 1979

A	F	-	SP	8
A	M	-	SP	4.3
A	F	-	SU	4
A	M	-	SU	4
A	F	FA	FA	5.5
A	M	1	FA	3.5
A	F	2	FA	12
A	M	2	FA	8

Utah 1973-7
NS
body wt
\% body wt
\% body wt
\% body wt
\% body wt

## metabolic rate (KCAL basis)

Gessaman \& Haggas 1987
$\begin{array}{llll}\text { A } & \text { F } & \text { N } & \text { WI } \\ \text { A } & \text { F } & \text { LI } & \text { SP } \\ \text { A } & \text { F } & & \end{array}$
327.2
14.4
5.72 SE kcal/kg-d
$9.84 \mathrm{SE} \mathrm{kcal} / \mathrm{kg}-\mathrm{d}$

Utah
9
9 thought to be wintering sparverius subspecies rather than resident paulus subspecies

Number of days presented in the unit column is age of
nestling/fledgling birds. Birds were parent-reared in captivity; mass at day 31 was approximate mean adult weight for these birds. Values estimated from figure for days 7 through 31 .

Birds captured in: Spring = May; Summer = August; Fall (1) = early September; and Fall (2) = late
September. (It appears that the figure upon which this information is based is mislabelled in the original; based on the text, we interpreted the dashed line to represent males, and the solid line to represent females.

NS
open agricultural
(N) Nonbreeding; (LI) laying and incubating. Estimated from activity budgets of kestrels in the field with various activities measured in the lab.

Reference Age	S	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Gessaman \& Haggas } \\ & 1987 \end{aligned}$		M $M$ $M$		$\begin{aligned} & \text { WI } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 386.4 \\ & 337.6 \\ & 364.9 \end{aligned}$	$\begin{array}{ll} 9.41 & \mathrm{SE} \\ 16.8 & \mathrm{SE} \\ 26.9 & \mathrm{SE} \end{array}$	kcal/kg-d kcal/kg-d kcal/kg-d			9 9 9	Utah	open agriculture	(N) Nonbreeding; (I) incubating. Estimated as for the females (previous record).
Koplin et al. 1980		$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{array}{r} 50.6 \\ 420 \end{array}$		kcal/day   kcal/kg-d	$\begin{array}{r} 42.0 \\ 353 \end{array}$	$\begin{array}{r} 61.0 \\ 512 \end{array}$		nw California	agricultural areas	Predicted on the basis of a metabolic model, measures of energy expended in various activities, and time-activity budgets observed in the field. (1) Estimated assuming body weight of 119 g .
Koplin et al. 1980		$\begin{aligned} & F \\ & F \end{aligned}$	$\begin{aligned} & \text { FL } \\ & \text { FL } \end{aligned}$	$\begin{aligned} & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{array}{r} 42.9 \\ 360 \end{array}$		kcal/day   kcal/kg-d			$\begin{aligned} & 317 \mathrm{hr} \\ & 317 \mathrm{hr} \end{aligned}$	nw California	coastal	Estimated on the basis of observed food intake and assuming a body weight of 119 g .
Rudolph 1982		$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{BR} \\ & \mathrm{BR} \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 354 \\ & 287 \end{aligned}$	$\begin{aligned} & 26.4 \text { SD } \\ & 19.1 \text { SD } \end{aligned}$	$\begin{aligned} & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \end{aligned}$			4	$\begin{aligned} & \text { California } \\ & 1979 \end{aligned}$	agricultural areas	Estimated daily energy expenditures during laying, incubation, and brooding using observed time budgets and multiples of basal metabolic rate (BMR) as recommended by King (1974). BMR was estimated from Zar (1968, 1969) equation for Falconifornes assuming 110 g for both males and females. Males performed most of the foraging.
Toland 1987	A	B	-	-	60		kcal/day				$\begin{aligned} & \text { Missouri } \\ & \text { 1981-84 } \end{aligned}$	grassland, agricultural	Metabolic rate estimated from daily activity budget and multiples of basal metabolic rate. Time of year unspecified, however.
FOOD INGESTION RAte													
$\begin{aligned} & \text { Barrett \& Mackey } \\ & 1975 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$		$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{array}{r} 0.31 \\ 420 \end{array}$		$\begin{aligned} & \text { g/g-day } \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \end{aligned}$			2	Ohio 1970	semi-natural enclosure	Two kestrels kept in vegetated enclosure and preyed on a marked group of deer mice and meadow voles for 13 days. Mean weight of kestrels $=100.8 \mathrm{~g}$; mean temperature during study $=24 \mathrm{C}$. Ingestion of food in $\mathrm{g} / \mathrm{g}$-day calculated from the kcal values presented using the caloric equivalent of $1.37 \mathrm{kcal} / \mathrm{g}$ for small mammals (given by author).


Reference A	Age S	ex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Craighead \& Craighead 1956	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	M F		$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.223 \\ & 0.196 \end{aligned}$		$\begin{aligned} & \text { g/g-day } \\ & \text { g/g-day } \end{aligned}$	0.169	0.223	$\begin{aligned} & 40 \\ & 28 \end{aligned}$	$\begin{aligned} & \text { s Michigan } \\ & 1939-42 \end{aligned}$	captive outside	$\mathrm{N}=$ number of days each bird was fed; one male bird (weight $=91 \mathrm{~g}$ ) and two female birds (weights $=107$ g and 112 g$)$. Kestrels maintained using falconer techniques and fed lean raw beef supplemented with rodents, birds, and other natural prey. Mean outdoor temperature for males $=16 \mathrm{C}$; females $=22 \mathrm{C}$.
Duke et al. 1976	A	-	-	-	0.14		g/g-day				Utah	captive outside	Kestrels fed mice; body weight was 105 g . Ambient temperature was 27 degrees C. As cited in Duke et al. 1987.
Koplin et al. 1980	$\begin{array}{ll} 30 & \text { A } \\ & \text { A } \\ & \text { A } \end{array}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.11 \\ & 0.29 \end{aligned}$		$\begin{aligned} & \text { g/g-day } \\ & \text { g/g-day } \\ & \text { g/g-day } \end{aligned}$				nw California	coastal, agricultural lands	(1) Biomass of vertebrates; (2) biomass of invertebrates; (3) total biomass (assuming kestrel body weight of 119 g$)$. Estimated food intake by observing prey captured and by estimating prey weight on the basis of measured or reported values for identified prey (e.g., for shrews, mice) and by estimating weights from apparent size for unidentified prey (usually invertebrates).
Sparrowe 1972	A	-	-	-	15-20		g/day			15	$\begin{aligned} & \text { Michigan } \\ & 1968-69 \end{aligned}$	captive	Amount of venison fed to captive kestrels that were kept at about 88-90\% of their normal body weight during a prey-catching behavior study. Body weights not provided. Kestrels could also obtain up to 2 g a day of venison as a training
Wing \& Wing 1939	A	-	-	-	0.22	0.05 SD	g/g-day	0.14	0.35	26	Tennessee 1937-38	captive in enclosed porch	Kestrel kept in 3 m by 4.5 m porch and fed lean beef. $N=$ number of days bird was fed; months of study were December - March. Mean weight of kestrel was 113.8 g .

*** DIET ***

Reference	Age S	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Bohall-Wood \& Collopy 1987	A	B	$\begin{aligned} & \text { vertebrates } \\ & \text { (primarily lizards) } \\ & \text { invertebrates } \end{aligned}$	49 51				3 PR	Florida 1983	```dry pine/oak woodlands (sandhill) % wet weight of prey; observed captured```	More prey captured per unit time than in agricultural/mixed hardwood areas. $P R=$ pair.
Bohall-Wood \& Collopy 1987	A	B	vertebrates   invertebrates	$\begin{aligned} & 24 \\ & 76 \end{aligned}$				3 PR	Florida 1983	agricultural/mixed hardwoods   \% wet weight of prey	
$\begin{aligned} & \text { Collopy \& Koplin } \\ & 1983 \end{aligned}$			Coleoptera other invertebrates frog (Rana aurora) other herpetofauna Microtus calif. Sorex vagrans other mammals				$\begin{array}{r} 10.75 \\ 14.15 \\ 7.95 \\ 12.20 \\ 30.15 \\ 9.35 \\ 11.45 \end{array}$	7	California	hayfields, pasture   \% wet weight of prey observed captured	Two winters of data. Mean weights of prey species determined from a variety of sources, including literature. Prey captured identified with binoculars. 500 observation hours.
  Craighead 1956		B	meadow vole   white-footed mice   short-tailed shrew   small birds   insects				$\begin{array}{r} 59.5 \\ 29.5 \\ 1.3 \\ 10.9 \\ \text { see note } \end{array}$	84	$\begin{aligned} & \text { s Michigan } \\ & 1942,48 \end{aligned}$	```fields, woodlots % frequency of occurrence; pellet analysis```	Average of two years of study; pellets collected from a total of 4 kestrels. White-footed mice icludes Peromyscus maniculatus and $P$. leucopus. Kestrels also consumed insects when available, but number of insects could not be determined from pellets.
$\begin{aligned} & \text { Craighead \& } \\ & \text { Craighead } 1956 \end{aligned}$	B	B	meadow vole   white-footed mice   shrews   pocket gopher   ground squirrel   least chipmunk   jumping mice   small \& medium sized   birds   insects		57.3 12.7 1.4 2.7 4.5 1.8 0.5 19.1 ee note			220	Wyoming 1947	grasslands, forest   \% of diet; from number of items in pellets, food at nest, regurgitated by nestlings	Season = spring and summer; data from 8 nests. Insects not included here because the number could not be determined, but of 299 pellets, $60 \%$ contained insects, and in $19 \%$ of the pellets insects comprised the majority of the food. White footed mice includes Peromyscus maniculatus and P. leucopus.
Koplin et al. 198 (continued)	80 A	B	Lepidoptera Orthoptera Coleoptera Lumbricidae unidentified invertebrates				$\begin{array}{r} 0.5 \\ 1.0 \\ 17.4 \\ 7.1 \\ 10.9 \end{array}$	1533	nw California	```agricultural areas % wet weight of prey observed captured```	Sample size $=$ number of prey observed captured. (1) California vole; (2) western harvest mouse; (3) vagrant shrew.


Reference A	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
$\begin{align*} & \text { Koplin et al. } 1980 \\ & \text { (continued) } \tag{1} \end{align*}$		Microtus   californicus   Reithodontomys   megalotis (2)   Sorex vagrans (3)   Fringillid birds   snakes   Rana aurora   Hyla regilla				$\begin{array}{r} 26.5 \\ 1.9 \\ 8.5 \\ 2.9 \\ 4.1 \\ 10.2 \\ 9.2 \end{array}$				
Meyer \& Balgooyen 1987	- -	```invertebrates mammals birds reptiles other```				$\begin{array}{r} 32.6 \\ 31.7 \\ 30.3 \\ 1.9 \\ 3.5 \end{array}$	10	California	```open areas, woods % wet weight of prey observed captured```	Mean weights of prey species determined from a variety of sources, including literature. Prey captured identified with binoculars.
Toland 1987	A B	$\begin{aligned} & \text { vertebrates } \\ & \text { (mostly voles) } \\ & \text { invertebrates } \end{aligned}$		$\begin{aligned} & 81.5 \\ & 18.5 \end{aligned}$			429	Missouri	```disturbed grassland % by capture```	Over the entire year, vertebrates comprised 67\% of prey captured. Most studies report higher percentages of invertebrates than vertebrates in the diet of kestrels. ( $\mathrm{N}=$ number of captures observed; number of different birds cannot be determined.)

## *** POPULATION DYNAMICS ***

Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
TERRITORY SIZE													
Craighead \& Craighead 1956	A	B	-	SU	202	131 SD	ha	41	500	11	Wyoming 1947	grasslands, forest	Home range of breeding pairs. Based on records of observed movements plotted on maps.
Craighead \&	A	M	-	WI	466	109 SD	ha	300	601	6	s MI 1941-42,	fields, woodlots	Seasonal home range estimates based
Craighead 1956	A	F	-	WI	272		ha	168	376	2	1947-48		on observations plotted on maps.
  Craighead 1956	A	B		SU	131	100 SD	ha	21	215	5	$\begin{aligned} & \text { s Michigan } \\ & 1942,48 \end{aligned}$	woodlots, fields	Home range of breeding pairs. Based on records of observed movements plotted on maps.
Enderson 1960	-	-		WI	452		ha				Illinois	NS	As cited in Mills 1975.
Haggas unpubl.	A	B	-	-	73		ha			18	n Utah	open agricultural	Home range estimate for all seasons based on observations; calculated from an average maximum diameter of 0.97 km . As cited in Gessaman and Haggas 1987.


Reference A	Age S	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Meyer \& Balgooyen 1987	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	F	-	$\begin{aligned} & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 31.6 \\ & 13.1 \end{aligned}$	$\begin{array}{rl} 10.7 & \mathrm{SD} \\ 2.0 & \mathrm{SD} \end{array}$	$\begin{aligned} & \text { ha } \\ & \text { ha } \end{aligned}$	$\begin{array}{r} 18.7 \\ 9.7 \end{array}$	$\begin{aligned} & 42.0 \\ & 14.8 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { California } \\ & 1976-78 \end{aligned}$	open areas, woods	Territory size.
Mills 1975	A	B	NB	WI	154		ha		452	16	$\begin{aligned} & \text { Illinois } \\ & 1970-72 \end{aligned}$	agricultural area; scattered trees	Territory size for birds seen at least 5 times was determined by connecting the extreme points of observation.
POPULATION DENSITY													
Craighead \& Craighead 1956	A	B	BR	SU	0.0003		pairs/ha	0.0002	0.0004	2	$\begin{aligned} & \text { s Michigan } \\ & 1942,48 \end{aligned}$	fields, woodlots	Breeding pairs in a 9,600 ha township. $\mathrm{N}=$ number of years of data.
Craighead 1956	-	B	-	FA	0.0007	0.0004 SD	N/ha	0.0005	0.0012	3	S MI 1941-42,	fields, woodlots	$\mathrm{N}=$ number of years of data. Counts
	-	B	-	WI	0.0005	0.0001 SD	N/ha	0.0005	0.0006	4	1946-49		include adult and immature birds
	-	B	1	SP	0.0008		N/ha	0.0005	0.0010	2			(not nestlings or fledglings) on a
	-	B	-	SP	0.0010	0.0002 SD	N/ha	0.0008	0.0011	3			9,300 ha township. Spring (1) =
	-	B	-	SU	0.0018		N/ha	0.0016	0.0020	2			transition period when some wintering birds leave, others remain, and new birds arrive for the breeding season.
$\begin{aligned} & \text { Craighead \& } \\ & \text { Craighead } 1956 \end{aligned}$	A	B	BR	SU	0.0035		pairs/ha			1	Wyoming 1947	grasslands, forest	Breeding pairs in a 3,100 ha portion of Jackson Hole. $\mathrm{N}=$ number of years of data.
$\begin{aligned} & \text { Toland \& Elder } \\ & 1987 \end{aligned}$	-	-	-	-	0.0026		nests/ha	0.0023	0.0031		$\begin{aligned} & \text { Missouri } \\ & \text { 1981-84 } \end{aligned}$	urban	26 square km sampled.
$\begin{aligned} & \text { Toland \& Elder } \\ & 1987 \end{aligned}$	-	-	-	-	0.0004		nests/ha	0.0003	0.0006		$\begin{aligned} & \text { Missouri } \\ & 1981-84 \end{aligned}$	rural	90 square km sampled.

## CLUTCH SIZE

Bloom \& Hawks 1983	-	-	-	-	4.3	eggs			38	$\begin{aligned} & \text { California } \\ & 1977-80 \end{aligned}$	juniper, sagebrush
Brown \& Amadon 1968	-	-	-	-	4-5	eggs	3	7		NS	NS
$\begin{aligned} & \text { Carpenter et al. } \\ & 1987 \end{aligned}$	-	-	-	-	4-5	eggs				Quebec, CAN	captive
Craighead \& Craighead 1956	-	-	-	-	4.4	eggs		5	17	$\begin{aligned} & \text { s MI, WY 1942, } \\ & 1947-48 \end{aligned}$	open areas, woods


Reference Age	Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
CLUTCHES/YEAR												
$\begin{aligned} & \text { Carpenter et al. } \\ & 1987 \end{aligned}$	-	-	-	1		/year				Quebec, CAN	captive	Kestrels raise one brood per year, but will replace a lost clutch of eggs; sometimes third or fourth clutches can be induced by clutch removal.
Craighead \& Craighead 1956		-	-	1		/year				$\begin{aligned} & \text { S MI, WY 1942, } \\ & 1947-48 \end{aligned}$	open areas, woods	May replace clutch if lost early in the nesting cycle.
DAYS INCUBATION												
Brown \& Amadon $1968$	- -	-	-	29-30		days				NS	NS	
$\begin{aligned} & \text { Porter \& Wiemeyer } \\ & 1972 \end{aligned}$	-	-	-	33.7	0.33 SE	days	33	35	6	Maryland	captive	
Age at fledging												
Bird \& Clark 1983	B	-	-	25		days			19	Quebec, CAN	captive	
Bloom \& Hawks 1983	- B		-	28-30		days			30	$\begin{aligned} & \text { California } \\ & 1977-80 \end{aligned}$	juniper, sagebrush	From parents nesting in artificial nest boxes. $N=$ number of successful nests.
$\begin{aligned} & \text { Craighead \& } \\ & \text { Craighead } 1956 \end{aligned}$	- B	-	-	31		days				$\begin{aligned} & \text { s Michigan } \\ & 1942,48 \end{aligned}$	fields, woodlots	
$\begin{aligned} & \text { Craighead \& } \\ & \text { Craighead } 1956 \end{aligned}$	- B	-	-	29		days				Wyoming 1947	grasslands, forest	
Porter \& Wiemeyer 1972			-	29.3		days	27	32	6	Maryland 1967	captive	Florida caught parents.
Porter \& Wiemeyer 1972	- B	-	-	27.4		days	26	30	10	Maryland 1967	captive	Northeastern caught parents.
n FLEDGE/ACTIVE NEST												
Bloom \& Hawks 1983	- -	-	-	3.1		N/act			36	$\begin{aligned} & \text { California } \\ & 1977-80 \end{aligned}$	juniper, sagebrush	Counted in nest boxes.
$\begin{aligned} & \text { Craighead \& } \\ & \text { Craighead } 1956 \end{aligned}$	- -	-	-	3.2		N/act			6	$\begin{aligned} & \text { s Michigan } \\ & 1942,48 \end{aligned}$	woodlots, fields	


Reference A	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Craighead \&	- -	-	-	3.8		N/act nest			11	Wyoming 1947	grasslands, forest	
Craighead 1956												
N FLEDGE/SUCCESSFU	UL NEST											
Bloom \& Hawks 1983	3 - -	-	-	3.7		N/suc nest			30	$\begin{aligned} & \text { California } \\ & 1977-80 \end{aligned}$	juniper, sagebrush	Counted in nest boxes.

## AGE AT SEXUAL MATURITY

1987

- B
1
year

Quebec, CAN
captive

ANNUAL MORTALITY

Craighead	A	B	-	-	12			\%/year
Craighead 1956	J	B	-	-	88			\%/year
Henny 1972	A	B	-	-	46.0	4.6	SE	\%/year
	J	B	-	-	60.7			\%/year

LONGEVITY
Carpenter
1987
years
9
Quebec, CAN
captive
s MI, WY 1942
SMI,
$1947-48$

North America
1946-65 <br> \section*{*** SEASONAL ACTIVITIES **} <br> \section*{*** SEASONAL ACTIVITIES **}

Reference
MATING/LAYING
Bloom \& Hawks 1983 May 6 May 22
Jun 26
earl Jun

Location
Habitat
Estimate for all raptor species in
the two study areas. Juvenile = from fledging until next summer.

Mortality rates for kestrels banded as nestlings during years
indicated. Estimates based on band returns using the composite dynamic fledging to the next breeding season.

Number of years that birds have bred in captivity; many live longe successfully.
Brown \& Amadon mid Mar
1968

1968

Reference	Begin	Peak	End	Location	Habitat	Notes
$\begin{aligned} & \text { Brown \& Amadon } \\ & 1968 \end{aligned}$	mid Apr		earl Jun	central US	NS	
Craighead \& Craighead 1956	mid Apr			$\begin{aligned} & \text { s Michigan } \\ & 1942 \end{aligned}$	woodlots, fields	
Craighead \& Craighead 1956	mid May			Wyoming 1947	grasslands, forest	
Gessaman \& Haggas 1987	earl Apr		mid May	n Utah	open agricultural	
$\begin{aligned} & \text { Toland \& Elder } \\ & 1987 \end{aligned}$		earl Apr		$\begin{aligned} & \text { c Missouri } \\ & 1982 \end{aligned}$	farmland	Occurred 2 weeks later in 1984, probably due to heavy spring rains.
hatching						
Bloom \& Hawks 1983	Jun 7	Jun 21	Jul 26	$\begin{aligned} & \text { California } \\ & \text { 1977-80 } \end{aligned}$	juniper, sagebrush	
Craighead \& Craighead 1956	mid May			$\begin{aligned} & \text { s Michigan } \\ & 1942,48 \end{aligned}$	woodlots, fields	
Craighead \& Craighead 1956		mid June		Wyoming 1947	grassland, forest	
Gessaman \& Haggas 1987	earl May		mid June	n Utah	open agricultural	Estimated from Figure 1.
Toland \& Elder 1987		earl May		$\begin{aligned} & \text { c Missouri } \\ & 1982 \end{aligned}$	farmland	Occurred 2 weeks later in 1984, probably due to heavy spring rains during mating season.
FLEDGING						
Craighead \& Craighead 1956	mid Jun			$\begin{aligned} & \text { s Michigan } \\ & 1942-48 \end{aligned}$	woodlots, fields	
Craighead \& Craighead 1956		mid Jul		Wyoming 1947	grasslands, forest	
Gessaman \& Haggas 1987	earl Jun		mid Jul	n Utah	open agricultural	Estimated from Figure 1.
Toland \& Elder 1987		earl June		$\begin{aligned} & \text { C Missouri } \\ & 1982 \end{aligned}$	farmland	Occurred 2 weeks later in 1984, probably due to heavy spring rains during mating season.


Reference	Begin	Peak	End	Location	Habitat	Notes
FALL/BASIC MOLT						
Gessaman \& Haggas 1987	mid May		mid Sept	n Utah	open agricultural	
FALL MIGRATION						
Gessaman \& Haggas 1987	earl Sep		earl Nov	n Utah	open agricultural	
SPRING MIGRATION						
  Craighead 1956	earl Mar			$\begin{aligned} & \text { s Michigan } \\ & 1942-48 \end{aligned}$	woodlots, fields	Arrival of migratory birds for breeding season; many (especially males) wintered and nested in the same area.
$\begin{aligned} & \text { Craighead \& } \\ & \text { Craighead } 1956 \end{aligned}$	mid Apr			Wyoming 1947	grasslands, forest	Arrival of kestrels for breeding season.
Gessaman \& Haggas 1987	mid Mar		mid Apr	$n$ Utah	open agricultural	

Page A-136 is left blank.
***** NORTHERN BOBWHITE *****
*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference	Age	Sex	Cond	d Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
BODY WEIGHT														
$\begin{aligned} & \text { Brenner \& Reeder } \\ & 1985 \end{aligned}$	A	B	-	-	308	2.8	SE	g			10	Wisconsin	lab	Commercial breeding stock "Wisconsin strain."
$\begin{aligned} & \text { Brenner \& Reeder } \\ & 1985 \end{aligned}$	A	B	-	-	198	1.8	SE	$g$			10	Georgia	lab	Commercial breeding stock "Georgia strain."
$\begin{aligned} & \text { Brenner \& Reeder } \\ & 1985 \end{aligned}$	A	B	-	-	197	2.7	SE	g			10	Pennsylvania	lab	Commercial breeding stock "Pennsylvania strain."
Buss et al. 1947	B	B		FA	203.0			9			845	Wisconsin	NS	During fall and winter. As cited in Tomlinson 1975.
Case 1982	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \end{aligned}$		-	$\begin{aligned} & 194.2 \\ & 214.8 \end{aligned}$			$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 24 \\ & 24 \end{aligned}$	Nebraska	lab	Weight: (1) seven weeks prior to egg laying; (2) while laying. 15 hr light/9 hr dark photoperiod.
$\begin{aligned} & \text { Gutherey et al. } \\ & 1988 \end{aligned}$	-	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	- - - - - - -	$\begin{aligned} & \text { SP } \\ & \text { SU } \\ & \text { FA } \\ & \text { WI } \\ & \text { SP } \\ & \text { SU } \\ & \text { FA } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 158 \\ & 154 \\ & 156 \\ & 160 \\ & 170 \\ & 169 \\ & 158 \\ & 162 \end{aligned}$			$\begin{aligned} & g \\ & g \end{aligned}$				$\begin{aligned} & \text { se Texas } \\ & 1981-83 \end{aligned}$	e Rio Grande Plains	Mean sex-specific sample sizes by region ranged between 6 and 81 birds. Estimated from graph of body weight by month.
$\begin{aligned} & \text { Gutherey et al. } \\ & 1988 \end{aligned}$	A   A   -   A   A   A   A	$\begin{aligned} & M \\ & F \end{aligned}$	- - - - - - -	$\begin{aligned} & \text { SP } \\ & \text { SU } \\ & \text { FA } \\ & \text { WI } \\ & \text { SP } \\ & \text { SU } \\ & \text { FA } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 156 \\ & 154 \\ & 156 \\ & 161 \\ & 165 \\ & 157 \\ & 157 \\ & 157 \end{aligned}$			$\begin{aligned} & g \\ & g \end{aligned}$				$\begin{aligned} & \text { Sw Texas } \\ & 1981-83 \end{aligned}$	w Rio Grande Plains	Mean sex-specific sample sizes by region ranged between 6 and 81 birds. Estimated from graph of body weight by month.
Hamilton 1957	A A A A A A A	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	- - - - -	$\begin{aligned} & \text { WI } \\ & \text { SP } \\ & \text { SU } \\ & \text { SU } \\ & \text { WI } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 189.2 \\ & 178.7 \\ & 173.7 \\ & 178.4 \\ & 198.0 \\ & 180.7 \end{aligned}$			$\begin{aligned} & g \\ & g \end{aligned}$			16 7 14 7 11 7	$\begin{aligned} & \text { c Missouri } \\ & 1953-54 \end{aligned}$	Ashland Wildlife Research Area	Adults are 18 months old or older.



Reference	Age S	Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Simpson 1976	A	M		FA	161.6		g	142.6	178.9		sw Georgia	pine woods, farms	
	A	M		WI	180.6		9	154.0	221.0		1967-71		
	A	M		SP	170.1		g	130.5	210.0				
	J	M		WI	176.8		9	130.4	203.0				
	J	M		SP	165.6		9	97.1	203.0				
Simpson 1976	A	F		FA	160.2		9	135.5	182.5		sw Georgia	pine woods, farms	
	A	F		WI	177.9		g	142.0	220.0		1967-71		
	A	F		SP	169.3		9	139.0	197.3				
	J	F		WI	176.5		g	143.0	218.9				
	J	F		SP	164.5		9	129.0	195.0				
Stoddard 1931	B	M		WI	164.8		9			397	n FL, s GA	farm, woods, thicket	
	B	F	-	WI	165.5		g			342	1925-28		
Stoddard 1931	B	M	-	WI	177.2		g	148.8	212.7	138	S Carolina	island	
	B	F		WI	173.2		9	148.8	202.1	106	1927-28		
Tomlinson 1975	A	M	-	FA	168.6	3.04 SE	g	149	181	26	Sonora, MEX	mesquite, grasslands	Population of the endangered masked
	A	F	-	FA	162.8	6.10 SE	9	146	195	19	1968-72		bobwhite; measured from October January.
BODY FAT													
```Koerth & Guthery 1 9 8 7```	A	F	-	WI	10.6	0.8 SE	\% dry wt	8.3	19.9	29	s Texas	plains	
	A	F		SP	9.7	0.3 SE	\% dry wt	7.7	11.2	108	1982-83		
	A	F		SU	11.4	0.3 SE	\% dry wt	9.0	12.8	98			
	A	F		FA	9.8	0.4 SE	\% dry wt	7.1	14.0	50			
$\begin{aligned} & \text { Koerth \& Guthery } \\ & 1987 \end{aligned}$	A	M	-	WI	10.2	0.6 SE	\% dry wt	9.0	11.9	34	s Texas	plains	
	A	M	-	SP	7.9	0.2 SE	\% dry wt	6.5	10.0	134	1982-83		
	A	M		SU	9.9	0.3 SE	\% dry wt	7.2	13.9	153			
	A	M		FA	9.8	0.4 SE	\% dry wt	7.7	12.1	67			
$\begin{aligned} & \text { McRae \& Dimmick } \\ & 1982 \end{aligned}$	A	F	NB	WI	13.8	2.7 SD	\% dry wt			11	Tennessee 1978	forest \& farmland	Pre-breeding birds collected from
	A	F	BR	SP	12.7	2.4 SD	\% dry wt			5			Jan. 10 to March 10; breeding birds
	A	M	NB	WI	15.5	2.8 SD	\% dry wt			25			collected from April 10 through May
	A	M	BR	SP	8.8	3.2 SD	\% dry wt			21			
EGG weight													
Blem \& Zara 1980	-	-	-	-	10.9	0.2 SE	9			22	Virginia	captive	Eggs obtained from local breeder.
Case 1982	-	-	-	-	8.7		9			367	Nebraska	captive	Produced by farm-raised birds.
Johnsgard 1988	-	-	-	-	10.7		9				NS	NS	

Reference	Age S	Sex	Cond	S Seas	Mean	SD/SE		its	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Koerth \& Guthery } \\ & 1991 \end{aligned}$	-	-	-	-	9.3	0.3 SE	9					Texas 1988	captive	No difference was found between eggs from wild-caught and domestic birds although domestic birds were significantly heavier.
Stoddard 1931	-	-	-	-	8.6		9		8.0	10.2	845	$\begin{aligned} & \text { sw Georgia } \\ & 1926-28 \end{aligned}$	captive	Weight at laying.
Stoddard 1931	-	-	-	-	9.3		g				761	Virginia 1927	captive	Weight at laying.
CHICK WEIGHT														
Andrews et al. 1973	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$			$\begin{array}{r} 31.7 \\ 92.6 \\ 137.1 \end{array}$			3 weeks 6 weeks 9 weeks			$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	Florida	lab	Number of weeks in units column is age of chicks. Average of values for chicks fed from 20-30\% protein in feed and 20-28\% protein thereafter in weight gain maximization study.
Blem \& Zara 1980	$\begin{aligned} & \mathrm{H} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	- - - -		$\begin{array}{r} 8.0 \\ 40 \\ 100 \\ 170 \\ 200 \end{array}$	$0.3 \mathrm{SE}$		$\begin{array}{ll} \text { day } & 0 \\ \text { day } & 20 \\ \text { day } & 40 \\ \text { day } & 60 \\ \text { day } & 80 \end{array}$				Virginia	lab	Number of days in the units column is the age of juvenile birds; domestic quail.
Jones \& Hughes 1978	$\begin{aligned} & \text { H } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 9 \\ 47 \\ 117 \\ 143 \\ 175 \end{array}$			day 0 3 weeks 6 weeks 9 weeks 16 weeks				South Carolina	lab	Day or week in unit column is age of young birds.
Stoddard 1931	H C C B C C C C C	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	- - - - - - - - -		$\begin{array}{r} 6.26 \\ 9-10 \\ 10-13 \\ 20-25 \\ 35-45 \\ 55-65 \\ 75-85 \\ 110-120 \\ 125-150 \\ 140-160 \end{array}$			day 1 day 6 day 10 day 19 day 32 day 43 day 55 day 71 day 88 day 106			47	sw Georgia 1924-29	captive and wild (farms, woods, thickets)	"Approximate normal weight"; ages presented in the units column.

CHICK GROWTH RATE

$\begin{aligned} & \text { Jones \& Hughes } \\ & 1978 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { C } \\ & \text { C } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	1 2 3 4	-	$\begin{array}{r} 1.8 \\ 3.2 \\ 1.3 \\ 0.65 \end{array}$	g/day g/day g/day g/day		South Carolina	lab
 Klimstra 1971	C	B	1	-	$\begin{aligned} & 1.9 \\ & 0.42 \end{aligned}$	g/day g/day		$\begin{aligned} & \text { s Illinois } \\ & 1948-69 \end{aligned}$	agricultural
METABOLIC RATE (KCAL BASIS)									
Blem \& Zara 1980	$\begin{aligned} & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	-	-	$\begin{aligned} & 206.8 \\ & 262.9 \end{aligned}$	$\begin{aligned} & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \end{aligned}$		Virginia	captivity
Case 1982	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 183.3 \\ & 243.9 \end{aligned}$	$\begin{aligned} & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	Nebraska	lab
Case \& Robel 1974	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	1 2 1 2	$\begin{aligned} & \text { WI } \\ & \text { WI } \\ & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 261 \\ & 125 \\ & 348 \\ & 155 \end{aligned}$	kcal/kg-d kcal/kg-d kcal/kg-d kcal/kg-d	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	Kansas 1969	lab
Case 1973	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \end{aligned}$	1	-	$\begin{aligned} & 147 \\ & 127 \end{aligned}$	$\begin{aligned} & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \end{aligned}$		Kansas	lab

Ages: (1) hatching to 3 weeks; (2) 3 to 6 weeks; (3) 6 to 9 weeks; (4 9 to 16 weeks.

Growth rate from ages: (1) 1-74 days; (2) 75-138 days. Approximate weig 74 days $=150 \mathrm{gi}$ at 138 days $=178 \mathrm{~g}$.

Metabolized energy for game birds in cages. For juveniles, metabolized energy/bird-day (in kcal) $=37.3(\mathrm{wt}) * * 0.20-0.013$ (age Adult weight $=205 \mathrm{~g}$; juvenile weight (at 65 days) $=175 \mathrm{~g}$. Asymptotic weight (used for adults was reached at 84 days.
Metabolized (existence) energy requirements of farm-raised birds: wt. $=194.2 \mathrm{~g}$) : (2) during laying (mean wt. $=214.8 \mathrm{~g}$)

Existence energy based
Existence energy based on male values; females require additional "productive energy" when laying. Temperature: (1) $0 \mathrm{C} ;(2) 30 \mathrm{C}$. Photoperiod: winter (WI) $=10 \mathrm{~L}: 14 \mathrm{D}$; summer $=$ (SU) 15L:9D. Mean weight of birds $=188.6 \mathrm{~g}$.

Existence metabolism at (1) 20 C and (2) 35 C . Values are for individually caged birds; values for caged coveys (8 individuals) were slightly higher. Mean weight of birds: for 20 C trials $=172$ g ; for 35 C trials $=189.7 \mathrm{~g}$ Photoperiod = 10L:14D.

Reference	Age Se	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Case 1973	A A A A A A	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	- - - -	$\begin{aligned} & 45 \\ & 37 \\ & 28 \\ & 29 \\ & 22 \end{aligned}$		kcal/day kcal/day kcal/day kcal/day				Kansas	lab	Existence metabolism for individually caged quail at temperature of: (1) 5 C ; (2) 15 C ; (3) 20 C ; (4) 25 C ; (5) 35 C . Regression equation for individually caged quail: Y (kcal/day) $=49.498-0.872(\mathrm{C})$. Values for coveys (8 individuals) were slightly higher for all temperatures from $15-35 \mathrm{C}$; at 5 C the covey value was lower. Mean body weights during trials ranged from 173 - 190 g .
$\begin{aligned} & \text { Robel et al. } \\ & 1979 \mathrm{~b} \end{aligned}$	A	B	FL	WI	74		kcal/day				Kansas	NS (wild)	Energy of free living (FL) at 2 C with a photoperiod of 10L:14D. Estimate based on doubling the 49 kcal/day requirement of caged birds and incorporating an estimate of the metabolic advantage of covey behavior.
FOOD INGEStion rate													
Blem \& Zara 1980	$\begin{aligned} & \text { A } \\ & J \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	-	-	$\begin{aligned} & 370 \\ & 460 \end{aligned}$		$\begin{aligned} & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \end{aligned}$				Virginia	lab	Gross energy intake estimates for adults (mean weight of 205 g) and 65 day old juveniles (mean weight $175 \mathrm{~g})$.
Koerth \& Guthery 1990	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	- - -	$\begin{aligned} & \text { WI } \\ & \text { SP } \\ & \text { SU } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 0.093 \\ & 0.067 \\ & 0.079 \\ & 0.072 \end{aligned}$	$\begin{aligned} & 0.0032 \mathrm{SE} \\ & 0.0021 \mathrm{SE} \\ & 0.0061 \mathrm{SE} \\ & 0.0017 \mathrm{SE} \end{aligned}$	$\begin{aligned} & \text { g/g-day } \\ & \text { g/g-day } \\ & g / g-d a y \\ & g / g-d a y \end{aligned}$			$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 12 \end{aligned}$	s Texas 1988	lab	Food intake (water and food provided ad libitum) of domestic and wild-caught birds exposed to conditions typical of s Texas. Fed commercial game bird food - 0 dry commercial game bird food - 0 dry matter: winter $=90.5$; spring $=$ matter: winter $=90.5$; spring $=$ 92.1 ; summer $=95.7$; and fall $=$ 90.2. Temperature and relative humidity for each season: WI $=13$ $\mathrm{C}, 72 \% ; \mathrm{SP}=23 \mathrm{C}, 69 \% ; \mathrm{SU}=30 \mathrm{C}$, 49%; and $F A=22 \mathrm{C}, 66 \%$. The protein content of the food was adjusted seasonally to reflect the average crude protein of the native diet.

Reference A	Age Se	ex	Cond	Seas	Mean	SD / SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Nice 1910	A	B	-	FA	0.09		g/g-day	0.07	0.12		Massachusetts	captive	Captive raised; mean weight of birds was 170 g. Fed weed seeds. Consumption measured from October through February. As cited in Handley 1931.
Robel et al. 1974	A	-	-	WI	17		g/day				Kansas	NS (wild)	As cited in Robel et al. 1979b.
Robel et al. 1979a	$\begin{array}{ll} a & \text { A } \\ & \text { A } \end{array}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{array}{r} 0.10 \\ 409.7 \end{array}$	$\begin{array}{r} 0.002 \mathrm{SD} \\ 9.2 \mathrm{SD} \end{array}$	$\begin{aligned} & \text { g/g-day } \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \end{aligned}$			$\begin{aligned} & 3 \\ & 3 \end{aligned}$	Kansas	lab	Game farm birds fed laboratory mash (P-18). Lab conditions simulated midwinter in Kansas; Temp. $=1 \mathrm{C}$, photoperiod $=10 \mathrm{~L}: 14 \mathrm{D}$. Mean weight of birds $=192 \mathrm{~g}$.
Robel et al. 1979a	$\begin{array}{ll} a & A \\ A \end{array}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{array}{r} 0.089 \\ 373 \end{array}$		$\begin{aligned} & \mathrm{g} / \mathrm{g}-\mathrm{day} \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \end{aligned}$			$\begin{aligned} & 12 \\ & 12 \end{aligned}$	Kansas	lab	Same conditions as above except value is mean for diets of corn and sorghum. Mean weight at beginning of trial was 178.3 g .
Robel 1969	$\begin{aligned} & \text { A } \\ & \text { J } \\ & \text { A } \\ & \text { J } \\ & \text { A } \\ & \text { } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	- - - - - -	$\begin{aligned} & \text { WI } \\ & \text { WI } \\ & \text { FA } \\ & \text { FA } \\ & \text { SP } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 587 \\ & 571 \\ & 657 \\ & 598 \\ & 519 \\ & 327 \end{aligned}$		kcal/kg-d kcal/kg-d kcal/kg-d kcal/kg-d kcal/kg-d kcal/kg-d				Kansas 1961-67	farms, prairie	Gross energy intake calculated from the average volume of the crop contents in shot birds (using 2.30 kcal/cc for energy estimates) and multiplying this by the number of 1.5 hour (daylight) feeding periods possible during that time of year.
WATER INGESTION RATE													
$\begin{aligned} & \text { Koerth \& Guthery } \\ & 1990 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	- - - - - - - - -	$\begin{aligned} & \text { WI } \\ & \text { WI } \\ & \text { SP } \\ & \text { SP } \\ & \text { SU } \\ & \text { SU } \\ & \text { FA } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 0.115 \\ & 0.106 \\ & 0.093 \\ & 0.086 \\ & 0.100 \\ & 0.131 \\ & 0.101 \\ & 0.102 \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.010 \\ & \text { SD } \\ & 0.012 \\ & \text { SD } \\ & 0.013 \end{aligned} \text { SD }$	g/g-day g/g-day				s Texas 1988	lab	Water intake (from free water and food - both provided ad libitum) of domestic and wild-caught birds exposed to conditions typical of s Texas. Fed commercial game bird food - \% dry matter: winter $=90.5$; spring $=92.1$; summer $=95.7$; and fall $=90.2$. Temperature and relative humidity for each season: $\mathrm{WI}=13 \mathrm{C}, 72 \%$; $\mathrm{SP}=23 \mathrm{C}, 69 \%$; SU $=30 \mathrm{C}, 49 \%$; and $\mathrm{FA}=22 \mathrm{C}, 66 \%$. Values estimated from figure; $\mathrm{N}=$ approximately 12 for each trial. For food ingestion rate of the same birds see authors' data under "food ingestion rate."

Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Baldwin \& Handley 1946 (continued)		fruits forage grasses Orthoptera misc. animal				$\begin{aligned} & 6.2 \\ & 1.5 \\ & 0.8 \\ & 1.4 \\ & 0.4 \end{aligned}$				
$\begin{aligned} & \text { Baldwin \& Handley } \\ & 1946 \end{aligned}$	B B	native \& naturalized legumes ragweed cultivated legumes cultivated grains mast misc. seeds fruits forage grasses Orthoptera misc. animal				$\begin{array}{r} 17.9 \\ 27.5 \\ 3.4 \\ 24.9 \\ 12.9 \\ 8.4 \\ 2.2 \\ 1.1 \\ 0.2 \\ 0.6 \\ 0.9 \end{array}$		$\begin{aligned} & \text { w Virginia } \\ & \text { 1929-31 } \end{aligned}$	```mountain section - agricultural % dry volume; crop contents```	Collected from hunters from November through January. Major types of farms in this area $=$ general and livestock.
$\begin{aligned} & \text { Campbell-Kissock } \\ & \text { et al. } 1985 \end{aligned}$	B B	seeds of forbs seeds of bulblets of grass \& grasslike seeds and fruits of woody plants unident. seeds green vegetation animals *sample size*		$\begin{array}{r} 3.45 \\ 51.66 \\ 9.73 \\ 4.55 \\ 4.81 \\ 25.80 \\ * 12 * \end{array}$	$\begin{array}{r} 19.01 \\ 42.93 \\ - \\ 0.03 \\ 1.81 \\ 36.23 \\ \star 9 * \end{array}$	$\begin{array}{r} 11.97 \\ 4.85 \\ 1.37 \\ 2.26 \\ 72.38 \\ 6.48 \\ * 91 * \end{array}$		$\begin{aligned} & \text { Sw Texas } \\ & 1979-80 \end{aligned}$	```grasslands - drought conditions aggregate % wet volume; crop contents```	```Collection times: summer = June 1980; fall = September 1980; winter = late October 1979 - early February 1980.```
Handley 1931	A B	```total plant foods (miscell. seeds) (legumes) (senna) (cultivated plants) (grasses) (sedges) (mast) (spurges) (fruits) (forage plants) animal foods (Orthoptera) (Hemiptera) (Coleoptera) *sample size*```	$\begin{array}{r} 87.16 \\ (21.24) \\ (15.19) \\ (7.21) \\ (2.12) \\ (3.08) \\ (1.08) \\ (14.12) \\ (0.08) \\ (11.07) \\ (11.52) \\ 12.84 \\ (3.15) \\ (2.83) \\ (4.63) \\ \star 86 * \end{array}$	$\begin{array}{r} 78.67 \\ (6.04) \\ (3.93) \\ (0.42) \\ (2.07) \\ (11.28) \\ (1.22) \\ (0.17) \\ (1.21) \\ (45.76) \\ (0.27) \\ 19.64 \\ (7.50) \\ (4.35) \\ (6.29) \\ * 92 * \end{array}$	79.71 (11.07) (10.08) (0.17) (5.34) (25.95) (2.36) (0.49) (5.47) (11.33) (0.29) 20.29 (16.62) (0.58) (0.81) $* 129 *$	$\begin{array}{r} 96.80 \\ (2.61) \\ (31.47) \\ (12.78) \\ (2.61) \\ (2.29) \\ (1.08) \\ (27.99) \\ (0.36) \\ (9.49) \\ (5.17) \\ 3.20 \\ (2.43) \\ (0.08) \\ (0.19) \\ * 1,352 \star \end{array}$		se US 1924-29	NS \% volume; crop and gizzard contents	Items that shrink from normal size when dried were measured wet (e.g., fruit) ; those that swell when wet were measured dry (e.g., seeds). Items comprising a mean of less than 2\% in all seasons not included here. Each seasonal value is the mean of three monthly values.

Reference	Age Se	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Handley 1931	J		```total animals (grasshoppers and their allies) (beetles) (bugs) (lepidopterans) total plants (fruit) (grasses) (legumes) (spurges) (cult. plants - non legumes) (sedges) (misc. seeds)```		$\begin{array}{r} 25.91 \\ (8.18) \\ (5.76) \\ (4.68) \\ (3.85) \\ 74.09 \\ (16.78) \\ (36.12) \\ (4.97) \\ (4.47) \\ (1.88) \\ (2.21) \\ (7.60) \end{array}$			34	GA, FL 1924-29	```NS % volume; crops and gizzards```	Young birds 2 weeks to three months old. Items that shrink when dry were measured wet; those that swell when wet were measured dry. Season $=$ May 1 to November 1. Items comprising less than 1\% not listed here.
Handley 1931	J		total animals (grasshoppers and their allies) (beetles) (spiders) (lepidopterans) (bugs) (misc. insects) (slugs and snails) plant foods (blackberries) (seeds of grasses and sedges) (seeds of spurge) (misc. seeds, bits of vegetation)		83.7 (26.7) (31.7) (8.0) (7.9) (7.1) (1.8) (0.5) 16.3 (9.6) (4.4) (1.1) (0.9)			20	GA, FL 1924-29	```NS % volume; crops and gizzards```	Young birds $0-2$ weeks old. Items that shrink when dry were measured wet; those that swell when wet were measured dry.
Heitmeyer 1980	B	B	```soybeans weed seeds (nodding foxtail) (common ragweed) corn milo animal matter```				$\begin{array}{r} 51.1 \\ 6.5 \\ (2.2) \\ (1.4) \\ 24.8 \\ 15.7 \\ 1.4 \end{array}$	137	$\begin{aligned} & \text { ne Missouri } \\ & 1977 \end{aligned}$	```farms, woodlands - % volume; crop contents```	Collected from hunters from November through January. Items comprising less than 1\% not included here.
Hurst 1972	J	B	beetle true bug leaf-hopper spider grasshopper ant fly		$\begin{aligned} & 3.6 \\ & 2.2 \\ & 1.7 \\ & 1.2 \\ & 1.2 \\ & 3.6 \\ & 0.7 \end{aligned}$			126	$\begin{aligned} & \text { Mississippi } \\ & 1968-71 \end{aligned}$	dense sedges, forbs and grasses number of insects per chick; gizzard and crop contents	Insect foods only; listed in decreasing order of importance (based primarily on estimated weights). Chicks aged 2-15 days released on previously burned plots.

Reference	Age Se	ex F	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Hurst 1972	J		```beetle leaf-hopper ant larval forms -mostly lepidopterans spider true bug grasshopper fly```		$\begin{aligned} & 3.2 \\ & 4.2 \\ & 6.4 \\ & 2.0 \\ & 5.2 \\ & 1.9 \\ & 2.5 \\ & 1.9 \end{aligned}$			38	$\begin{aligned} & \text { Mississippi } \\ & 1968-71 \end{aligned}$	```pine forest number of insects per chick; gizzard and crop contents```	Insect foods only; listed in decreasing order of importance (based primarily on estimated weights). Chicks aged 1-20 days (mostly 6 days).
Judd 1905	A		```plant matter (grain) (seeds) (fruit) animal matter (beetles) (grasshoppers) (bugs) (caterpillars) (other)```				$\begin{array}{r} 83.59 \\ (17.38) \\ (52.83) \\ (9.57) \\ 16.41 \\ (6.92) \\ (3.71) \\ (2.77) \\ (0.95) \\ (2.06) \end{array}$	918	US, CAN, MEX	```NS % (measure not specified); stomach contents```	All seasons, but mostly fall and winter. Also contained unspecified amounts of sand and gravel. As cited in Bent 1932.
Korschgen 1948	B	B	```Korean lespedeza corn common ragweed sorghum cane oaks sassafras soybean croton cowpea```				$\begin{array}{r} 5.9 \\ 27.4 \\ 3.3 \\ 3.8 \\ 18.1 \\ 4.9 \\ 12.1 \\ 1.8 \\ 7.5 \end{array}$	201	$\begin{aligned} & \text { Missouri } \\ & 1941-42 \end{aligned}$	```lowland region - croplands % dry volume; crop contents```	Collected from hunters in November and December. Items comprising < 1.5\% not included here.
Korschgen 1948	B	B	Korean lespedeza corn common ragweed sorghum cane oaks sassafras beggars ticks croton small wild bean ashes				$\begin{array}{r} 25.9 \\ 7.4 \\ 12.2 \\ 6.5 \\ 7.9 \\ 4.0 \\ 3.1 \\ 2.4 \\ 2.0 \\ 2.1 \end{array}$	2,722	$\begin{aligned} & \text { Missouri } \\ & 1941-42 \end{aligned}$	```ozark region - crops forest, pasture % dry volume; crop contents```	Collected from hunters in November and December. Volumes are means for three Ozark sites. Items comprising < 2\% not included here.
Korschgen 1948 (continued)	B	B	Korean lespedeza corn common ragweed sorghum cane oaks soybeans				$\begin{array}{r} 6.3 \\ 31.6 \\ 12.7 \\ 21.8 \\ 3.4 \\ 3.5 \end{array}$	2,549	$\begin{aligned} & \text { Missouri } \\ & 1941-42 \end{aligned}$	```prairie region - cropland, pasture - % dry volume; crop contents```	Collected from hunters in November and December. Volumes are means for four Prairie sites. Items comprising < 1\% not included here.

Reference	Age Se		Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Korschgen 1948 (continued)			Japanese clover trailing wild bean small wild bean horseweed hemp				$\begin{aligned} & 1.4 \\ & 1.3 \\ & 1.3 \\ & 1.1 \\ & 1.2 \end{aligned}$				
Lehmann 1984	B		```total seeds (weeds) (woody plants) (grasses) greens insects cultivated grain and miscellaneous *sample size*```	$\begin{array}{r} 60.88 \\ (43.64) \\ (4.03) \\ (13.21) \\ 27.39 \\ 8.03 \\ 3.70 \\ \star 51 * \end{array}$	79.04 (33.71) (20.51) (24.82) 4.90 14.20 1.86 $* 39 *$	$\begin{array}{r} 70.45 \\ (29.97) \\ (39.74) \\ (0.74) \\ 3.44 \\ 17.85 \\ 8.26 \\ * 27 * \end{array}$	$\begin{array}{r} 50.99 \\ (34.29) \\ (9.49) \\ (7.21) \\ 10.31 \\ 23.33 \\ 15.37 \\ \star 83 * \end{array}$		$\begin{aligned} & \text { s Texas } \\ & 1949-51 \end{aligned}$	```semi-prairie, brushland % dry volume; crop contents```	Greens = leaves, stems, buds and flowers. Data is provided in great detail in original paper. Age of quail; $80=1+$ years, 114 = full grown in first year; $6=5$ days to 3 weeks old.
Martin et al. 1951	1 A		```ragweed corn smartweed bristlegrass wheat grape hogpeanut blackberry ash poison ivy sumac oak```				$\begin{array}{r} 25-50 \\ 10-25 \\ 10-25 \\ 5-10 \\ 5-10 \\ 2-5 \\ 2-5 \\ 2-5 \\ 2-5 \\ 2-5 \\ 2-5 \\ 2-5 \end{array}$		ne United States	NS approx. \% diet; stomach contents	```Caught year-round, N=: winter = 124; spring = 2; summer = 25; fall = 24.```
Martin et al. 1951	1 A		Lespedeza beggarweed oak partridge pea cowpea ragweed pine milkpea paspalum soybean				$\begin{array}{r} 25-50 \\ 5-10 \\ 5-10 \\ 5-10 \\ 5-10 \\ 2-5 \\ 2-5 \\ 2-5 \\ 2-5 \\ 2-5 \end{array}$	7668	se United States	NS approx. \% diet; stomach contents	All caught in winter except 29 caught in summer.
Martin et al. 1951	1 A	B	```ragweed corn bristlegrass sunflower wheat sorghum knotweed panicgrass poison ivy```				$\begin{array}{r} 25-50 \\ 25-50 \\ 10-25 \\ 5-10 \\ 2-5 \\ 2-5 \\ 2-5 \\ 2-5 \\ 2-5 \end{array}$	105	ne prairies, US	NS approx. \% diet; stomach contents	```From three seasons, N =: winter = 53; summer = 10; fall = 42.```

Reference A			Food type	Spring	Summer	Fall	Winter		Location	Habitat - Measure	Notes
Martin et al. 1951	A	B	```sorghum doveweed oak panicgrass ragweed corn sunflower milkpea, downy Lespedeza wildbean sumac```				$\begin{array}{r} 10-25 \\ 5-10 \\ 5-10 \\ 5-10 \\ 5-10 \\ 5-10 \\ 5-10 \\ 2-5 \\ 2-5 \\ 2-5 \\ 2-5 \end{array}$	699	Texas, Oklahoma	NS approx. \% diet; stomach contents	
Robel 1969	B	B	sorghum sunflower western ragweed sumac corn acorn meat giant ragweed osage orange dogwood black locust riverbank grape native grasses other plants animal matter debris (SAMPLE SIZE)	$\begin{array}{r} 19.7 \\ 0.1 \\ 0.1 \\ 9.2 \\ 28.7 \\ 4.2 \\ 0.8 \\ 6.8 \\ 5.5 \\ 5 . \\ 3.0 \\ 5.2 \\ 9.8 \\ 4.2 \\ (106) \end{array}$		$\begin{array}{r} 10.7 \\ 21.1 \\ 10.0 \\ 0.3 \\ 0.1 \\ 4.7 \\ 2.1 \\ 3.5 \\ 0.0 \\ 1.2 \\ 19.1 \\ 6.5 \\ 14.0 \\ 0.4 \\ (266) \end{array}$	$\begin{array}{r} 27.5 \\ 9.1 \\ 4.6 \\ 13.5 \\ 4.9 \\ 2.4 \\ 3.0 \\ 2.9 \\ 0.7 \\ 2.7 \\ 0.8 \\ 3.9 \\ 13.0 \\ 1.3 \\ 3.7 \\ (219) \end{array}$		Kansas 1961-67	```farms, prairie % dry volume; crop contents```	Habitat planted with corn, sorghum. and wheat to improve food supply. Data provided by month: spring $=$ mean of March and April; fall and winter $=$ mean of three monthly values. Plants comprising less than 3% in all seasons combined into "other plants".
Rosene 1969	B	B	sesbania partridge peas trailing wild bean beggar weeds lespedezas loblolly pine green leaves butterfly pea corn milk pea other items				$\begin{array}{r} 17.1 \\ 16.6 \\ 11.0 \\ 9.0 \\ 9.7 \\ 5.5 \\ 5.2 \\ 2.4 \\ 2.2 \\ 1.8 \\ 19.5 \end{array}$	$1,400$	$\begin{aligned} & \text { SC Alabama } \\ & 1950-62 \end{aligned}$	```plantation managed for quail % volume; crop contents```	All items were seeds except green leaves. Collected during the hunting season.
Wood et al. 1986 (continued)	B	B	```croton species grasses (bristlegrass) (dicanthelium) (thin paspalum) legumes (leavenworth vetch) (hoary milkpea) (roundleaf scurfpea```	$\begin{array}{r} 6.5 \\ 15.7 \\ (2.1) \\ (7.8) \\ (3.8) \\ 17.5 \\ (11.4) \\ (2.0) \\ (4.1) \end{array}$	$\begin{array}{r} 46.4 \\ 8.8 \\ (4.5) \\ - \\ 7.9 \\ (1.1) \\ (3.4) \end{array}$				$\begin{aligned} & \text { s Texas } \\ & 1982-83 \end{aligned}$	```plains % dry weight; crop contents```	Summarized from original.

Reference	Age Sex	Sex	Cond	Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
Urban 1972	A	M	1	SU	7.6	5.0	SD	ha			11	s Illinois	idle farms, woods,	Monthly ranges from May -
	A	M	2	SU	16.7	9.5	SD	ha			9	1969	brush, cornfields	September; radiotagged individuals.
	A	F	1	SU	6.4	4.0	SD	ha			5			Breeding status: males (1) mated,
	A	F	2	SU	15.6	9.1	SD	ha			4			and (2) unmated; females (1) nesting, and (2) postnesting.
Urban 1972	B	B	-	SU	8.5	6.0	SD	ha/covey			4	s Illinois	idle farms, woods,	Radiotagged coveys. Monthly ranges
	B	B	1	FA	9.3	6.8	SD	ha/covey			7	1969	brush, cornfields	in fall: (1) September; (2)
	B	B	2	FA	16.6	7.1	SD	ha/covey			11			October; (3) November.
	B	B	3	FA	9.1	1.7	SD	ha/covey			7			
Wiseman \& Lewis 1981	B	B	1	-	3.6	1.0	SE	ha/covey				Oklahoma	pasture, shrubs,	Size did not vary from fall through
	B	B	2	-	5.1	0.7		ha/covey				1975-76	woodlands, stream channel	spring but did seem to vary with population density. Density at study sites (in fall - winter):
$\begin{aligned} & \text { Yoho \& Dimmick } \\ & 1972 \end{aligned}$	B	B	-	WI	6.8	2.9		ha/covey	4.0	11.7	5	Tennessee 1970	woods, old fields, cultivated fields	Radiotagged 2-3 birds per covey, located coveys from 69-134 times each from January through March.
POPULATION DENSITY														
Brennan (unpubl.)	B	B	-	-	2			N/ha				s Mississippi	NS	Areas utilizing "good quail habitat management." As cited in Brennan 1991.
 Craighead 1956	B	B	1	WI	0.061			N/ha			2,073	sc Michigan	farms, woodlots	Year: (1) 1942; (2) 1948. Authors
	B	B	1	SP	0.046			N/ha			2,073	1942, 48		thought that severe winter weather
	B	B	2	WI	0.015			N/ha			2,073			led to the local disappearance of
	B	B	2	SP	0			N/ha			2,073			bobwhites in spring of 1948. $\mathrm{N}=$ number of hectares sampled.
Guthery 1988	B	B	1	FA	4.78	0.407	SE	N/ha			82	s Texas	mixed brush	Hidalgo study site (1) 1984; (2)
	B	B	2	SP	1.62	0.062		N/ha			82	1984-86	rangeland	1985; (3) 1986. $\mathrm{N}=$ number of km of
	B ${ }^{\text {B }}$	B ${ }^{\text {B }}$	2 3	FA SP	5.00 2.18	0.300 0.205	SE	N/ha N/ha			$\begin{aligned} & 82 \\ & 82 \end{aligned}$			transect sampled.
Guthery 1988	B	B	-	SP	0.102	0.0003	SE	N/ha			382	s Texas	upland rangeland	Dickens, King study site. $\mathrm{N}=$
	B	B	-	SU	0.352	0.0038	SE	N/ha			573	1981-83		number of km of transect sampled.
	B	B	-	FA	0.208	0.0031	SE	N/ha			382			
	B	B	-	WI	0.164	0.0013	SE	N/ha			282			
$\begin{aligned} & \text { Kellogg et al. } \\ & 1970 \end{aligned}$	B	B	1	FA	4.6			N/ha			453	Florida	fields, woodlands	Method for estimate: (1) walking
	B	B	2	WI	3.0			N/ha			453	1968-69		census; (2) released banded birds, then shot a random sample and estimated density from ratio of banded to unbanded in shot group. N = size of site in ha.

Reference	Age Se	ex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Lehmann 1984	-	B	-	WI	2.5		N/ha				s Texas 1949	tasjillo-running mesquite brush	Maximum density observed in study (natural conditions); determined by car census.
Lehmann 1984	-	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.73 \\ & 0.39 \end{aligned}$		N/ha N/ha			$\begin{aligned} & 2,053 \\ & 1,038 \end{aligned}$	s Texas 1950	medium grass prairie	$\mathrm{N}=$ number of hectares censused (by car). Winter = February; summer = August.
Lehmann 1984		$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { SU } \end{aligned}$	$\begin{array}{r} 0.21 \\ 0.094 \end{array}$		N/ha N/ha			$\begin{aligned} & 3,387 \\ & 3,387 \end{aligned}$	s Texas 1950	open mesquite brushland	$\mathrm{N}=$ number of hectares censused (by car). Winter = February; summer = August.
Lehmann 1984		$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.44 \end{aligned}$		$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \end{aligned}$			$\begin{aligned} & 1,000 \\ & 1,000 \end{aligned}$	s Texas 1950	tasjillo-running mesquite brush	$\mathrm{N}=$ number of hectares censused (by car). Winter = February; summer = August.
Lehmann 1984		$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.63 \end{aligned}$		N/ha N/ha			$\begin{aligned} & 1,055 \\ & 2,098 \end{aligned}$	s Texas 1950	tall grass prairie	$\mathrm{N}=$ number of hectares censused (by car). Winter = February; summer = August.
Lehmann 1984		$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.43 \\ & 0.21 \end{aligned}$		$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \end{aligned}$			$\begin{aligned} & 1,698 \\ & 1,670 \end{aligned}$	s Texas 1950	short-grass prairie	$\mathrm{N}=$ number of hectares censused (by car). Winter = February; summer = August.
Lehmann 1984	-	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { SU } \end{aligned}$	$\begin{array}{r} 0.25 \\ 0.057 \end{array}$		N/ha N/ha			$\begin{aligned} & 1,821 \\ & 1,821 \end{aligned}$	s Texas 1950	bulldozed brushland	$\mathrm{N}=$ number of hectares censused (by car). Winter = February; summer = August.
$\begin{aligned} & \text { McRae \& Dimmick } \\ & 1982 \end{aligned}$	B	B	-	WI	1		N/ha				Tennessee 1978	forest \& farmland	Rough estimate.
Roseberry \& Klimstra 1984	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$		FA SP	0.62 0.21	0.21 $0.061 ~ S D$	N/ha N/ha	$\begin{aligned} & 0.28 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.34 \end{aligned}$		$\begin{aligned} & \text { s Illinois } \\ & 1953-80 \end{aligned}$	agricultural	```27 years of data on hunted population at the Carbondale research area; censused in November and March.```
$\begin{aligned} & \text { Roseberry et al. } \\ & 1979 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	-	$\begin{aligned} & \text { FA } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 0.63 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.24 \mathrm{SD} \\ & 0.05 \mathrm{SD} \end{aligned}$	$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \end{aligned}$	$\begin{aligned} & 0.28 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 0.33 \end{aligned}$	8 9	$\begin{aligned} & \text { s Illinois } \\ & 1964-73 \end{aligned}$	agricultural	Carbondale research area - hunted population. $N=$ number of seasonal estimates. Censused in November and March.
$\begin{aligned} & \text { Roseberry et al. } \\ & 1979 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { FA } \\ & \text { SP } \\ & \text { FA } \\ & \text { SP } \\ & \text { FA } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 1.36 \\ & 0.85 \\ & 0.61 \\ & 0.22 \\ & 0.23 \\ & 0.11 \end{aligned}$		N/ha N/ha N/ha N/ha N/ha N/ha				$\begin{aligned} & \text { s Illinois } \\ & 1965-73 \end{aligned}$	agricultural	SIU Farms site - nonhunted population. Years: (1) 1965-66; 1968-69; (3) 1972-73. Fall = November, spring = March. Population decline thought to be due to a rapid deterioration of habitat due to changes in farming practices.

Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
Rosene 1969	B	B	-	WI	1.63	0.49	SD	N/ha	0.93	2.28	4,830	$\begin{aligned} & \text { S Carolina } \\ & 1957-67 \end{aligned}$	farms, woods	Groton plantation pre-hunting season density. Area managed for quail and hunted from December February. $N=$ number of ha censused. Value is mean of ten years of data.
Rosene 1969	B	B	-	WI	0.63	0.18	SD	N/ha	0.37	0.88	707	$\begin{aligned} & \text { S Carolina } \\ & 1952-57 \end{aligned}$	farms, woods	Oakland Club pre-hunting season density. Area managed for quail and hunted from December - February. N $=$ number of ha censused. Value is mean of six years of data.
Simpson 1976	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { FA } \\ & \text { FA } \end{aligned}$	$\begin{array}{r} 5 \\ 0.6 \end{array}$			$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \end{aligned}$				$\begin{aligned} & \text { sw Georgia } \\ & 1967-71 \end{aligned}$	pine woods, farms	(1) Intensively managed area; (2) areas with little or no management.
Smith et al. 1982	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 3.65 \\ & 2.25 \end{aligned}$	$\begin{aligned} & 2.22 \\ & 1.16 \end{aligned}$		$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \end{aligned}$	$\begin{aligned} & 1.7 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 3.9 \end{aligned}$		$\begin{aligned} & \text { Florida } \\ & 1970-79 \end{aligned}$	pine woods	```Ten years of data; minimum and maximum are yearly means. (1) Northern study site; (2) southern study site.```
CLUTCH SIZE														
Lehmann 1984	-	-	-	-	12.9				4	33	317	$\begin{aligned} & \mathrm{s} \text { Texas } \\ & 1942-52 \end{aligned}$	prairie, brushland	
Lehmann 1984	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { SU } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 14.8 \\ & 11.4 \\ & 10.5 \end{aligned}$				$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 24 \\ & 18 \end{aligned}$	$\begin{aligned} & 48 \\ & 47 \\ & 40 \end{aligned}$	s Texas 1943	prairie, brushland	(1) May 11-22; (2) June 12 - July 6; (3) August 10-25. King Ranch site.
$\begin{aligned} & \text { Roseberry et al. } \\ & 1979 \end{aligned}$	-	-	-	-	13.3				12.6	14.4		$\begin{aligned} & \text { s Illinois } \\ & 1965-68 \end{aligned}$	agricultural	Minimum and maximum are yearly means.
 Klimstra 1984	-	-	-	-	13.73	3.28	SD		6	28	347	$\begin{aligned} & \text { s Illinois } \\ & 1953-66 \end{aligned}$	agricultural	Carbondale research area.
Simpson 1976	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \\ & \text { - } \\ & \text { - } \end{aligned}$	- - - - -	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 25.0 \\ 16.0 \\ 13.9 \\ 11.6 \\ 10.2 \\ 9.4 \end{array}$			March April May June July August			$\begin{array}{r} 2 \\ 22 \\ 51 \\ 80 \\ 97 \\ 44 \end{array}$	$\begin{aligned} & \text { sw Georgia } \\ & 1968-71 \end{aligned}$	pine woods, farms	Month in units column is the month when the first egg of the clutch was laid.
Stoddard 1931	-	-	-	-	14.4				7	28	394	GA, FL 1924-29	farm, woods, thicket	

Reference Age Sex Cond Seas Mean SD/SE Units Minimum Maximum N \qquad Habitat Notes

CLUTCHES/YEAR

CKWRI 1991

Stanford 1972b

DAYS INCUBATION

Bent 1932	-	-	-	-	$23-24$
Lehmann 1984	-	-	-	-	23

23
n hatch/SUCCESSFUL NEST
Simpson 1976
20.0
13.4
12.4
9.8
9.3
8.4

Lehmann 1984
 12.2

PERCENT NESTS SUCCESSFUL

Lehmann (unpubl.)	-	-	-	-	40
Lehmann 1984	-	-	-	-	45
 Klimstra 1984	-	-	-	32.6	

Klimstra 1984
32.6
)
\% nest suc
8.1 SD \% nest suc

N/suc nest	MARCH
N/suc nest	APRII
N/suc nest	MAY
N/suc nest	JUNE
N/suc nest	JULY
N/suc nest	AUGUST

N/suc nest
/year
/year
days
days
days
21
25
5 Texas
SC, AL 1947-58
NS

2	Sw Georgia
5	$1968-71$
23	
58	
85	
33	

217 s Texas
1942-52

40 e Texas

532 s Texas
1936-52
S Illinois
$1952-66$

NS

NS

Missouri

1950-71

Notes that double broods in wild birds have been documented in Iowa Texas, and Georgia, and that one female in Iowa had three broods.

May replace clutches if lost before hatching; may also produce second broods.
emi-prairie, brush
coastal prairies
Rio Grande Plains
agricultural

Number hatching per successful nest (success defined as hatching at least one egg). Month in "min"
column is the month when the first egg of the clutch was laid.

Successful nest defined as nest hatching young; data from eight breeding seasons.

Percent of nests hatching young. As cited in Lehmann 1984
Percent of nests hatching young.

Percent hatching young; minimum and maximum are yearly means out of 13 years
area.

Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Roseberry et al. } \\ & 1979 \end{aligned}$	-	-	-	-	50.5		\% nest suc	42.9	66.6		$\begin{aligned} & \text { s Illinois } \\ & 1965-68 \end{aligned}$	agricultural	Percent of nests hatching young. Minimum and maximum are yearly means from four years of data. Carbondale study area.
Simpson 1976	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 17.5 \\ & 20.8 \end{aligned}$		$\begin{aligned} & \circ \text { nest suc } \\ & \% \text { nest suc } \end{aligned}$	$\begin{aligned} & 15.4 \\ & 17.8 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 25.0 \end{aligned}$	$\begin{aligned} & 412 \\ & 313 \end{aligned}$	sw Georgia $1968-71$	pine woods, farms	Percent of nests hatching young. Study area: (1) Nilo; (2) Silver Lake. Minimum and maximum are yearly means.
Stoddard 1931	-	-	-	-	36		\% nest suc	28	41	602	FL, GA 1924-27	farm, woods, thicket	Percent of nests hatching at least one egg; minimum and maximum are yearly means.
Age at sexual maturity													
Johnsgard 1988	-	B	-	-	8-9		months				NS	NS (wild)	Notes that captive birds can be stimulated into reproductive activity by increased photoperiods at about 5 months of age.
Jones \& Hughes 1978	-	B	-	-	16		weeks				South Carolina	lab	
ANNUAL MORTALITY													
Brownie et al. 1985	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	- - -	- - - -	$\begin{aligned} & 78.8 \\ & 85.3 \\ & 81.8 \\ & 87.2 \end{aligned}$	$\begin{aligned} & 2.47 \mathrm{SE} \\ & 2.72 \mathrm{SE} \\ & 2.46 \\ & 1.68 \\ & \mathrm{SE} \end{aligned}$	$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \frac{1}{\circ} \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$	$\begin{aligned} & 64.7 \\ & 68.4 \\ & 73.0 \\ & 67.9 \end{aligned}$	$\begin{aligned} & 94.8 \\ & 98.6 \\ & 93.7 \\ & 95.8 \end{aligned}$	$\begin{aligned} & 3,150 \\ & 3,150 \\ & 1,050 \\ & 1,050 \end{aligned}$	Florida	open woods	
Lay 1954	-	-	-	-	80						Texas	NS	As cited in Lehmann 1984.
Lehmann 1984	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	- - -	$\begin{aligned} & 70 \\ & 56 \\ & 26 \end{aligned}$		$\begin{aligned} & \text { \%/yr } \\ & \% \text { Feb-Oct } \\ & \% \text { Oct-Feb } \end{aligned}$	38	87		$\begin{aligned} & s \text { Texas } \\ & 1940-76 \end{aligned}$	semi-prairie, brush	Based on age ratio in autumn of non-hunted population. Includes juveniles surviving until fall and older birds.
Marsden \& Baskett 1958	-	B	-	-	82		\%/yr			1,546	$\begin{aligned} & \text { c Missouri } \\ & 1950-57 \end{aligned}$	NS	Based on age ratio data from capture-recapture study of non-hunted population. Habitat described as "submarginal" with adequate cover but possibly limited winter food.
Pollock et al. 1989	$\begin{aligned} & B \\ & B \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 81.3 \\ & 85.7 \end{aligned}$	$\begin{aligned} & 1.2 \mathrm{SE} \\ & 1.2 \mathrm{SE} \end{aligned}$	$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$	$\begin{aligned} & 70.4 \\ & 74.7 \end{aligned}$	$\begin{aligned} & 90.1 \\ & 93.7 \end{aligned}$		$\begin{aligned} & \text { Florida } \\ & 1970-85 \end{aligned}$	pine woods	Mortality including hunting losses; based on band recovery data.

Reference	Age Sex	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Pollock et al. } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 52 \\ & 56 \end{aligned}$		$\begin{aligned} & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				$\begin{aligned} & \text { Florida } \\ & \text { 1970-85 } \end{aligned}$	pine woods	Natural mortality rate (excluding hunting losses); estimated based on above value and hunting losses. Authors suggest the experimental hunting had additive effect to natural mortality - possibly because harvest was in February, which is later than traditional hunting.
$\begin{aligned} & \text { Reid \& Goodrum } \\ & 1960 \end{aligned}$	-	-	-	-			\%/yr	60	83		sw Louisiana	NS	As cited in Lehmann 1984.
$\begin{aligned} & \text { Roseberry et al. } \\ & 1979 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	B	-	$\begin{aligned} & \text { SU } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 59 \\ & 50 \end{aligned}$	12 SD	\%/summer \%/Nov-Mar	$\begin{aligned} & 53 \\ & 23 \end{aligned}$	$\begin{aligned} & 80 \\ & 66 \end{aligned}$	$\begin{aligned} & 5 \text { yrs } \\ & 8 \text { yrs } \end{aligned}$	$\begin{aligned} & \text { s Illinois } \\ & 1965-72 \end{aligned}$	agricultural	Unhunted population; SIU farms site.
 Klimstra 1984	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 81 \\ 70 \\ 37 \\ 25-47 \end{array}$		$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{FA}-\mathrm{SP} \\ & \% / \mathrm{SP}-\mathrm{FA} \\ & \% / 0-16 \mathrm{wks} \end{aligned}$				$\begin{aligned} & \text { s Illinois } \\ & 1954-70 \end{aligned}$	agricultural	Hunted population. Yearly value estimated from November to November. Abbreviations in units column: FA = fall; $\mathrm{SP}=$ spring. Juvenile rate is from hatching to 16 weeks old.
Rosene 1969	A	B	-	-	71.7	5.7 SD	\%/yr	48.7	75.7		AL, SC 1947-58	farms, forest	Spring to spring mortality. Average of mean values from hunted populations on four plantations. Years of study at each plantation ranged from 3 to 9. Populations from 4 plantations.
Simpson 1976	$\begin{aligned} & \text { J } \\ & \text { J } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	- - - -	$\begin{aligned} & 68 \\ & 74 \\ & 54 \\ & 85 \end{aligned}$		$\begin{aligned} & \circ / \mathrm{yr} \\ & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				$\begin{aligned} & \text { sw Georgia } \\ & 1967-71 \end{aligned}$	pine woods, farms	Annual survival based on capture-recapture data from Oct. 15 to Oct. 15. Juvenile survival is from first to second fall.
Stempel 1960	-	-	-	-	80-90		\%/yr				s Iowa	NS	As cited in Lehmann 1984.
LONGEVITY													
Lehmann 1984	-	-	-	-	10.6		months			484	Texas 1942	semi-prairie, brush	Expected remaining longevity for quail surviving from hatching to November.

Reference	Age	Sex	Cond	d Seas	s Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Marsden \& Baskett } \\ & 1958 \end{aligned}$	-	B	-	-	8.5		months			1,546	$\begin{aligned} & \text { c Missouri } \\ & 1950-57 \end{aligned}$	NS	Expected remaining longevity for quail surviving from hatching to October. Based on age ratio data from capture-recapture study of non-hunted population. Habitat described as "submarginal" with adequate cover but possibly limited winter food.
$\begin{aligned} & \text { Marsden \& Baskett } \\ & 1958 \end{aligned}$		-	-	-			years		5		$\begin{aligned} & \text { c Missouri } \\ & \text { 1950-57 } \end{aligned}$	NS	Greatest longevity found in capture-recapture study.
Rosene 1969	-		-	9	$9.1-11.7$		months				AL, SC 1947-58	farms, forest	Range of mean longevity estimates for hunted populations. Values apply to individuals surviving from hatching to November from four plantations.
Smith et al. 1982	2 -		-	-			years		5		$\begin{aligned} & \text { Florida } \\ & 1970-79 \end{aligned}$	pine woodlands	Greatest longevity found in study.

*** SEASONAL ACTIVITIES ***

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING/LAYING						
Bent 1932	Mar	May - Jun	Aug	Florida	NS	
$\begin{aligned} & \text { Guthery et al. } \\ & 1988 \end{aligned}$	mid Mar	Apr-Aug	late Aug	$\begin{aligned} & \text { s Texas } \\ & 1981-83 \end{aligned}$	plains	
Lehmann 1984	mid Apr		mid Aug	$\begin{aligned} & \text { s Texas } \\ & 1941-52 \end{aligned}$	prairie, brushland	
Roseberry \& Klimstra 1984	Apr	mid May-Jul	Sep	$\begin{aligned} & \text { s Illinois } \\ & 1953-80 \end{aligned}$	agricultural	
Simpson 1976	late Mar	May - Jul	late Aug	sw Georgia 1968-71	pine woods, farms	

HATCHING

Case \& Robel 1974	Jun-earl Jul	Kansas	NS
Lehmann 1984	mid Mar	May - Jun	mid Sep

Reference	Begin	Peak	End	Location	Habitat	Notes
Roseberry \& Klimstra 1984	mid May	Jun - Aug	earl Oct	$\begin{aligned} & \text { s Illinois } \\ & 1953-80 \end{aligned}$	agricultural	
Rosene 1969	May	Jul-Aug	late Sep	S Carolina, Alabama	farm, woods	
$\begin{aligned} & \text { Sermons \& Speake } \\ & 1987 \end{aligned}$		Jul	Sep	Alabama 1984-85	NS	
Simpson 1976	late May	Jul - Aug	earl Oct	$\begin{aligned} & \text { sw Georgia } \\ & 1968-71 \end{aligned}$	pine woods, farms	
Stanford 1972a	earl May	mid June	Oct	$\begin{aligned} & \text { Missouri } \\ & 1948-71 \end{aligned}$	NS	A second smaller peak occurs in mid August.
Stoddard 1931	late Apr	May-Aug	Oct	$\begin{aligned} & \text { SW GA, n FL } \\ & 1924-29 \end{aligned}$	farm, thicket, woods	
FALL/BASIC MOLT						
Bent 1932	Aug	Sep	Oct	NS	NS	Adults undergo a complete molt.
Bent 1932	Aug		Nov	NS	NS	First fall molt (juveniles); timing depends on when bird hatched.
Stanford 1972a	May	June-Sept	Oct	$\begin{aligned} & \text { Missouri } \\ & 1948-71 \end{aligned}$	NS	Onset of molt in adult females; most delay wing molt until after young hatch.
Stoddard 1931	Aug-Sep		Oct-Nov	$\begin{aligned} & \text { SW GA, n FL } \\ & 1924-29 \end{aligned}$	farm, thicket, woods	Complete molt.
SPRING/ALTERNATE MOLT						
Stoddard 1931	earl Feb	Mar-Apr	earl Jun	$\begin{aligned} & \text { SW GA, n FL } \\ & 1924-29 \end{aligned}$	farm, thicket, woods	Renewal of feathers on throat, sides of head, and forehead.

***** AMERICAN WOODCOCK *****

*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference

EGG WEIGHT

Gregg 1984	-	-	1	-	$\begin{aligned} & 18-19 \\ & 14-16 \end{aligned}$	g 9
Rabe et al. 1983b	-	-	-	-	17	g
Wetherbee \&	-	-	-	-	15.5	g

44 Wisconsin
 1967-80

NS
3 NS
42 Wisconsin 1967-80

197-80
forest, open areas brush

NS
NS

Notes

H - -
13.0

9
9
16
wild (forest, open
areas, brush) and areas, brush) and captive

Maine 1977-80
mixed forests, field
ficks recaptured in the field (total of 338 chicks with 22 to 43 recapture rate over 4 year study). From 5 days (40 g both sexes) to 17 days of age (females 115 g , male $105 \mathrm{~g})$.

METABOLIC RATE (KCAL BASIS)

Rabe et al. 1983b A F B -
$\begin{array}{llll}\text { A } & \text { F } & \text { BL } & - \\ \text { A } & \text { F } & \text { BR } & \text { SU } \\ & & & \end{array}$
115
315
kcal/kg-d
kcal/kg-d
kcal/kg-d

FOOD INGESTION RATE

Sheldon 1967 A B - SU 1.0 g/g-day
s Michigan
1965-80
generic

CHICK GROWTH RATE

Dwyer et al. 1982	C	M	-	5.1	g/day
	C	F	-	6.2	g/day

Weight at: (1) laying; (2) hatching.
G. A. Ammann pers. comm

Egg weight just prior to hatching. As cited in Sheldon 1967.

Reference	Age Se	ex	Cond	d Seas	Mean	SD / SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Gregg 1984	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { SP } \\ & \text { SP } \end{aligned}$	$\begin{array}{r} 0.067 \\ 0.11 \end{array}$		$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \end{aligned}$				$\begin{aligned} & \text { Wisconsin } \\ & 1967-80 \end{aligned}$	aspen forest, open areas, brush, alder	Includes singing and non-singing males (estimated by multiplying the number of singing males by 1.3). Female value was estimated from the male value assuming an adult sex ratio of $0.61 \mathrm{M} / \mathrm{F}$. Habitat described as "good."
Gregg 1984	-	-	-	SP	0.11		nests/ha		0.75		$\begin{aligned} & \text { Wisconsin } \\ & 1967-80 \end{aligned}$	aspen forest, open areas, brush, alder	Mean is a rough estimate based on female density (described above). Maximum is density found in a 12 ha area described as the "best available breeding habitat" in the study area.
Mendall \& Aldous 1943; Pettingill 1936	-	-	-	-			days	19	21		NS	NS	As cited in Trippensee 1948.
Age at fledging													
Gregg 1984	-	-	-	-	18-19		days				$\begin{aligned} & \text { Wisconsin } \\ & 1967-80 \end{aligned}$	forest, open areas, brush	Fledging defined as able to sustain flight for at least 100 m .
n FLEDGE/SUCCESS	FUL NES												
Gregg 1984	-	-	-	-	3.5		N/suc nest			104	$\begin{aligned} & \text { Wisconsin } \\ & 1967-80 \end{aligned}$	forest, open areas, brush	Successful nest = nest hatching young.
PERCENT NESTS SUCCESSFUL													
Gregg 1984	-	-	-	-	48.5	11.6 SD	\% nest suc	29	67	220	$\begin{aligned} & \text { Wisconsin } \\ & 1967-80 \end{aligned}$	forest, open areas, brush	Success defined as hatching at least one egg. Mean of 12 yearly values. $\mathrm{N}=$ total number of nests (all years).
McAuley et al. 1990	-	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 50 \\ & 75 \end{aligned}$		\% nest suc \% female suc				Maine 1977-80	mixed	(1) Percent nests initiated that hatched; (2) percent females that hatched one nest (reflects renesting attempts).

Age at sexual maturity
$\begin{array}{llllll}\text { Sheldon } 1967 & \text { A } \mathrm{M}-\mathrm{SP} & <1 & \text { yr } \\ & \text { A } \mathrm{F}-\mathrm{SP} & 1 & \text { yr }\end{array}$
NS
NS

ANNUAL MORTALITY

Reference	Begin	Peak	End	Location	Habitat	Notes
Rabe et al. 1983a		end Mar		Michigan	NS	
Whiting \& Boggus 1982	earl Feb		mid Mar	Texas 1979-80	pine plantation	
HATCHING						
Dwyer et al. 1982		mid May		Maine 1977-80	conifer and hardwood forests mixed with open fields	
Pettingill 1936	earl Feb			Louisiana	NS	As cited in Sheldon 1967.
Pettingill 1936	earl Feb			Georgia	NS	As cited in Sheldon 1967.
Pettingill 1936	late Feb			Virginia	NS	As cited in Sheldon 1967.
Pettingill 1936	earl Mar			New Jersey	NS	As cited in Sheldon 1967.
Pettingill 1936	late Mar			Connecticut	NS	As cited in Sheldon 1967.
Pettingill 1936	mid Apr			Maine	NS	As cited in Sheldon 1967.
Rabe et al. 1983a		earl May		Michigan	NS	
Sheldon 1967	mid Apr	earl May	earl Jun	$\begin{aligned} & \text { Massachusetts } \\ & 1950-61 \end{aligned}$	NS	
Wright (unpubl.)	late Apr	earl May		```New Brunswick, CAN```	NS	As cited in Sheldon 1967.
FALL/BASIC MOLT						
Owen \& Krohn 1973		Aug-earl Sep		NS	NS	Both adults and juveniles undergo extensive molts. Cited in Owen et al. 1977.
FALL MIGRATION						
Owen et al. 1977	late Sep		mid Dec	from Canada	NS	By mid-December, most birds have reached the southern wintering grounds.
Sheldon 1967	Oct		Dec	arrive N Carolina	NS	Summarizing other studies.
Sheldon 1967		oct		leave New York	NS	Summarizing other studies.

Reference	Begin	Peak	End	Location	Habitat	Notes
Sheldon 1967		earl Oct		leave Pennsylvania	NS	Summarizing other studies.
Sheldon 1967		earl Nov		leave Ohio	NS	Summarizing other studies.
Sheldon 1967		late Nov	earl Dec	arrive Louisiana	NS	
Sheldon 1967		late Nov		leave Kentucky	NS	Summarizing other studies.
SPRING MIGRATION						
$\begin{aligned} & \text { Connors \& Doerr } \\ & 1982 \end{aligned}$	mid Feb		earl Mar	leave N Carolina	farm, woods, thicket	
Gregg 1984	Mar	Apr		arrive Wisconsin	forest, open, brush	
Owen et al. 1977	Jan	Feb		s part winter range	NS	Beginning spring migration.
Owen et al. 1977		Mar	Apr	northern range	NS	Arrival in northerly breeding grounds.
Sheldon 1967		Feb		leave Louisiana	NS	
Sheldon 1967		Mar		through Kentucky	NS	Summarizing other studies.
Sheldon 1967		earl Mar		arrive c Illinois	NS	Summarizing other studies.
Sheldon 1967		Apr		arrive Michigan	NS	Summarizing other studies.
Sheldon 1967		Mar		arrive Pennsylvania	NS	Summarizing other studies.
Sheldon 1967		Mar		arrive New		Summarizing other studies.

***** SPOTTED SANDPIPER *****
*** NORMALIZING AND CONTACT RATE FACTORS ***

| Oring et al. 1984 A F - SU | clutch/yr |
| :--- | :--- | :--- |
| Oring et al. 1991b $-\mathrm{M}-\mathrm{F}^{2}$ | clutch/yr |

DAYS INCUBATION

Oring (unpubl.)		$18-24$	days	
Oring et al. 1991a				

AGE AT FLEDGING

Oring et al. 1991a

N FLEDGE/ACTIVE NEST

Oring 1982

-	-	1
-	-	
-	-	-
-	-	4

1.2	chcks/F-yr
2.6	chcks $/ \mathrm{F}-\mathrm{yr}$
2.9	Chcks $/ \mathrm{F}-\mathrm{yr}$
1.0	chcks $/ \mathrm{F}-\mathrm{yr}$

```
Minnesota
1975-81
```


1975-81

15
2

N FLEDGE/SUCCESSFUL NEST
15
chcks/F-yr
chcks/F-yr
chcks/F-yr
chcks/F-yr

N/nst hatc N/suc nest

4-6
1
Minnesota
Minnesota
1975-89

Minnesota
Minnesot
island in lake
island in lake
island in lake
Value is for number of successfu clutches/year per male; in this case successful clutch assumed to mean one that fledged young.

Number of clutches laid by female; each clutch could involve a different mate, but a male will his first is destroyed.

Minnesota	island in lake
Minnesota	island in lake

Oring pers. comm.

1974-90

Minnesota
1974-90
island in lak
Number of chicks fledged per femal per year for: (1) monogamous, (2) bigamous, (3) trigamous, and (4) may be excluded from breeding.
1.83 fledged out of nests at which at least one egg hatched. 2.58 fledged out of nests where at least one nest with eggs hatching (140 nests).
Reference Age Sex Cond Seas Mean SD/SE Units \quad Minimum Maximum N Location \quad N \quad Nabitat

Age at sexual maturity

Oring et al. 1983		$\begin{aligned} & \mathrm{F} \\ & \mathrm{M} \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & \text { year } \\ & \text { year } \end{aligned}$	Minnesota 1974-82	island in lake
LONGEVITY									
Oring et al. 1983	A	F	-	-	3.7		years	$\begin{aligned} & \text { Minnesota } \\ & 1974-82 \end{aligned}$	island in lake
Oring et al. 1991a	A	$\begin{aligned} & M \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 2.8 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{SD} \\ & 1.9 \mathrm{SD} \end{aligned}$	years years	$\begin{aligned} & \text { Minnesota } \\ & 1974-90 \end{aligned}$	island in lake

Number of years breeding on the island; presumed very similar to longevity.

*** SEASONAL ACtivities ***						
Reference	Begin	Peak	End	Location	Habitat	Notes
MATING/LAYING						
Lank et al. 1985	earl May	May-June		$\begin{aligned} & \text { Minnesota } \\ & 1973-82 \end{aligned}$	island in lake	The peak of the mating season is from late May to early June.

hatching

Lank et al. 1985 earl Jun late Jun

1973-82
island in lake

FALL/BASIC MOLT
Bent 1929
Aug
Oct
NS
NS

SPRING/ALTERNATE MOLT
Bent 1929
Mar - Apr
NS
NS
Partial prenuptial molt.

FALL MIGRATION

Lank et al. 1985	late Jun	ear-mid July
Lank et al. 1985	earl Jul	mid July

Minnesota	island in lake	Adult females.
1973-82		
Minnesota	island in lake	Adult males.

***** HERRING GULL *****

*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference	Age	Sex	Cond	d Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
BODY WEIGHT														
Belopolskii 1957	A	F	BR	-	1,044			g	717	1,385	139	Barents Sea	coastal	As cited in Dunning 1984.
	A	M	BR	-	1,226			g	755	1,495	220	(Arctic)		
$\begin{aligned} & \text { Coulson et al. } \\ & 1982 \end{aligned}$	A	M	1	-	1,009	77.3 S	SD	9			84	Scotland	Isle of May	Data from birds culled during the breeding season. Between 1972 and 1981 large numbers of birds were culled each year; the breeding density of gulls in 1981 was about one fourth the breeding density in 1972. Year gulls culled: (1) 1972; (2) 1976; (3) 1981.
	A	F	1	-	849	69.1 SD	SD	9			72			
	A	M	2	-	1,042	68.7 S	SD	9			68			
	A	F	2	-	862	61.6 SD	SD	9			70			
	A	M	3	-	1,054	93.4 SD	SD	g			129			
	A	F	3	-	888	65.9 S	SD	g			159			
Harris 1964	A	M	-	-	980			9				Wales 1962	Skomer Island cliffs	
	A	F	-	-	815			g						
$\begin{aligned} & \text { Morris \& Black } \\ & 1980 \end{aligned}$	A	F	BR	-	973			9	910	1,010	3	Ontario, CAN	n shore Lake Erie	Birds with active nests; used in radiotelemetry study.
	A	M	BR	-	1,280			g	1,260	1,300	2	1978		
$\begin{aligned} & \text { Norstrom et al. } \\ & 1986 \end{aligned}$	A	F	1	SP	920	57 S	SD	g			10	Lake Huron	island	Collection dates: (1) April 1; (2) May 15; (3) June 19-25; (4) July 30.
	A	F	2	SP	951	88 S	SD	9			10	1980		
	A	F	3	SU	863	72 S	SD	9			10			
	A	F	4	SU	918		SD	9			10			
$\begin{aligned} & \text { Norstrom et al. } \\ & 1986 \end{aligned}$	A	M	1	SP	1,047	58 SD	SD	9			7	Lake Huron	island	Collection dates: (1) May 5, 1981; (2) May 15, 1980; (3) May 18-23, 1980.
	A	M		SP	1,184	116 SD	SD	9			9	1980-81		
	A	M	3	SP	1,180	69 S	SD	9			6			
Poole 1938	-	-	-	-	850			g			1	NS	NS	
Threlfall \& Jewer 1978	A	M	-	SU	1,232	106.6 SD	SD	9	1,014	1,618	180	Newfoundland,	bay	Years: 1962-64 and 1966-68.
	A	F		SU	999	89.7 S	SD	9	832	1,274	78	CAN		
BODY FAT														
$\begin{aligned} & \text { Norstrom et al. } \\ & 1986 \end{aligned}$	A	M	1	SP	7.5	1.9 S	SD	\% lipid			$\begin{aligned} & 7 \\ & 9 \\ & 6 \end{aligned}$	Lake Huron1980-81	island	Collection dates: (1) May 5, 1981; (2) May 15, 1980; (3) May 18-23, 1980.
	A	M		SP	10.0	2.2 S	SD	\% lipid						
	A	M			11.3	3.0 S		\% lipid						

Reference	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Norstrom et al. } \\ & 1986 \end{aligned}$	A F	1	SP	18.3	5.4 SD	\% lipid			10	Lake Huron	island	Collection dates: (1) April 1; (2)
	A F	2	SP	8.2	2.0 SD	\% lipid			10	1980		May 15; (3) June 19-25; (4) July
	A F	3	SU	8.7	2.3 SD	\% lipid			10			30.
	A F	4	SU	7.7	2.1 SD	\% lipid			10			

EGG WEIGHT

Wales 1962

138 New

Lake Superior, island
CAN
Lake Superior, islands
Lake
CAN
Newfoundland,
CAN 1977

Newfoundlan
CAN 1978
127
102
AN slope slope slope

Great Island, grassy
Skomer Island cliffs

Total of 100 eggs measured: (1) first-laid egg; (2) second-laid egg; (3) third-laid egg. Weight wa calculated by author from a calculated egg volume (in cubic centimeters) using a specific gravity value of 1.11 .
Weighted mean egg weight for eggs from (1) three egg clutches and (2) two egg clutches.

Egg lipids measured in two years: (1) 1983, (2) 1984.

Egg energy content (kcal/egg) measured in two years: (1) 1983, (2) 1984.

Egg water content ($g / e g g$) measured Egg water content (g/egg) measured
in two years: (1) 1983, (2) 1984. Year: (1) 1983, (2) 1984.

Laying order of eggs: (1) first; (2) second; (3) third

Laying order of eggs:
(2) second; (3) third

Hatchlings from: (1) 1st laid egg; (2) 2nd laid egg; (3) 3rd egg laid

Reference Age	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Pierotti 1982	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 68.9 \\ & 61.7 \end{aligned}$	$\begin{array}{ll} 6.2 & S D \\ 7.2 & S D \end{array}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 85 \\ & 50 \end{aligned}$	Newfoundland, CAN 1977	Great Island, rocky	Masses of chicks from: (1) first-laid eggs; (2) third-laid eggs.
Pierotti 1982	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 66.3 \\ & 57.9 \end{aligned}$	$\begin{array}{ll} 6.8 & \mathrm{SD} \\ 5.5 \mathrm{SD} \end{array}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 85 \\ & 51 \end{aligned}$	Newfoundland, CAN 1977	Great island, grassy slope	Masses of chicks from: (1) first-laid eggs; (2) third-laid eggs.
Pierotti 1982	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 65.5 \\ & 57.1 \end{aligned}$	$\begin{array}{ll} 6.3 & S D \\ 6.3 & S D \end{array}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 63 \\ & 34 \end{aligned}$	Newfoundland, CAN 1977	Great Island, meadow	Masses of chicks from: (1) first-laid eggs; (2) third-laid eggs.
Pierotti 1982	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 70.0 \\ & 63.9 \end{aligned}$	$\begin{array}{ll} 5.9 & S D \\ 5.1 & S D \end{array}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 82 \\ & 56 \end{aligned}$	Newfoundland, CAN 1978	Great Island, rocky	Masses of chicks from: (1) first-laid eggs; (2) third-laid eggs.
Pierotti 1982	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 66.0 \\ & 60.0 \end{aligned}$	$\begin{array}{ll} 6.0 & \mathrm{SD} \\ 5.8 \mathrm{SD} \end{array}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 92 \\ & 49 \end{aligned}$	Newfoundland, CAN 1978	Great Island, grassy slope	Masses of chicks from: (1) first-laid eggs; (2) third-laid eggs.
Pierotti 1982	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 66.1 \\ & 59.6 \end{aligned}$	$\begin{array}{ll} 7.3 & \text { SD } \\ 7.1 & \text { SD } \end{array}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 58 \\ & 33 \end{aligned}$	Newfoundland, CAN 1978	Great Island, meadow	Masses of chicks from: (1) first-laid eggs; (2) third-laid eggs.
CHICK WEIGHT													
$\begin{aligned} & \text { Dunn \& Brisbin } \\ & 1980 \end{aligned}$	C C C C	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \\ & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{array}{r} 65 \\ 230 \\ 590 \\ 810 \end{array}$		$\begin{aligned} & g \\ & g \\ & g \\ & g \end{aligned}$	$\begin{array}{r} 50 \\ 120 \\ 420 \\ 610 \end{array}$	$\begin{array}{r} 80 \\ 380 \\ 800 \\ 1,000 \end{array}$		Maine 1972-73	coastal island	Ages of chicks (C): (1) at hatching; (2) 10 days; (3) 20 days; (4) 30 days. Estimated from Figure 1 in Dunn \& Brisbin 1980.
Chick growth rate													
$\begin{aligned} & \text { Haycock \& } \\ & \text { Threlfall } 1975 \end{aligned}$	c	-	-	-			g/day		40		Newfoundland, CAN 1969-71	Gull Island	Maximum weight growth of the chicks occurred at about 18 days of age.
$\begin{aligned} & \text { Hebert \& Barclay } \\ & 1986 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \text { AV } \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \\ & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 1.08 \\ & 1.07 \\ & 1.02 \\ & 1.06 \end{aligned}$	$\begin{aligned} & 1.01 \mathrm{SE} \\ & 1.01 \mathrm{SE} \\ & 1.02 \mathrm{SE} \\ & 1.01 \mathrm{SE} \end{aligned}$	$\begin{aligned} & \text { g/day } \\ & \text { g/day } \\ & \text { g/day } \\ & \text { g/day } \end{aligned}$			13 13 5 31	New Brunswick, CAN	island	Up to 5 days of age only. (1) 1st hatched; (2) 2nd hatched; (3) 3rd hatched. SD can't be estimated from SE because SE appears to be too high given the available data.
Hunt 1972	C	B	-	SU	30.18	1.75 SD	g/day	26.7	31.4	136	Maine 1968-70	coastal islands	Between 5 and 25 days of age.
Kadlec et al. 1969	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 28.8 \\ & 10.3 \end{aligned}$		g/day g/day			$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { Massachusetts } \\ & 1964 \end{aligned}$	Gray's Rock (island)	Growth rate from (1) day 5 to day 30; (2) day 30 to day 50. Only six of the original twenty presumed to have lived to fledging.

Reference	Age S	ex	Cond	Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
Pierotti 1982	-		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 32.11 \\ & 33.39 \end{aligned}$	$\begin{array}{ll} 3.98 & S \\ 4.72 & S \end{array}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \end{aligned}$	g/day g/day			$\begin{aligned} & 93 \\ & 89 \end{aligned}$	Newfoundland, CAN	Great Island, rocky	Growth rate from day 5 to day 30 . Year: (1) 1977; (2) 1978.
Pierotti 1982	-		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 28.99 \\ & 31.38 \end{aligned}$	$\begin{aligned} & 7.03 \\ & 4.57 \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \end{aligned}$	g/day g/day			$\begin{aligned} & 111 \\ & 119 \end{aligned}$	Newfoundland, CAN	grassy slope	Habitat is on Great Island. Growth rate from day 5 to day 30. Year: (1) 1977; (2) 1978.
Pierotti 1982	-		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 26.27 \\ & 31.68 \end{aligned}$	$\begin{aligned} & 6.53 \\ & 5.43 \end{aligned}$	$\begin{aligned} & S D \\ & S D \end{aligned}$	g/day g/day			$\begin{aligned} & 79 \\ & 80 \end{aligned}$	Newfoundland, CAN	Great Island, meadow	Growth rate from day 5 to day 30 . Year: (1) 1977; (2) 1978.
Pierotti 1982	-		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{array}{r} 8.8 \\ 13.1 \end{array}$			g/day g/day			$\begin{array}{r} 115 \\ 85 \end{array}$	Newfoundland, CAN	Great Island, rocky	Estimates of growth rate from day 0 - day 5 based on Tables $6,7 \& 8$ (all chicks combined). $\mathrm{N}=$ number of chicks weighed on day 5. Year: (1) 1977; (2) 1978.
Pierotti 1982	-		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 11.7 \\ & 13.1 \end{aligned}$			g/day g/day			$\begin{aligned} & 125 \\ & 146 \end{aligned}$	Newfoundland, CAN	grassy slope	Habitat is on Great Island. Estimates of growth rate from day 0 - day 5 based on Tables 6,7 \& 8 (all chicks combined). $\mathrm{N}=$ number of chicks weighed on day 5. Year: (1) 1977; (2) 1978.
Pierotti 1982	-		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{array}{r} 9.4 \\ 11.2 \end{array}$			g/day g/day			$\begin{aligned} & 98 \\ & 88 \end{aligned}$	Newfoundland, CAN	Great Island, meadow	Estimates of growth rate from day 0 - day 5 based on Tables 6,7 \& 8 (all chicks combined). $\mathrm{N}=$ number of chicks weighed on day 5. Year: (1) 1977; (2) 1978.
FLEDGING WEIGHT														
Pierotti 1982	$\begin{aligned} & F \\ & F \\ & F \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\begin{aligned} & 912.2 \\ & 887.4 \\ & 853.4 \end{aligned}$	$\begin{array}{r} 100.1 \\ 93.4 \\ 90.2 \end{array}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	$\begin{aligned} & g \\ & g \\ & g \end{aligned}$			$\begin{aligned} & 29 \\ & 22 \\ & 14 \end{aligned}$	Newfoundland, CAN 1977	Great Island, rocky	```Masses of 30-day old chicks from: (1) first-laid eggs; (2) second-laid eggs; (3) third-laid eggs.```
Pierotti 1982	$\begin{aligned} & F \\ & F \\ & F \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\begin{aligned} & 818.0 \\ & 825.3 \\ & 776.3 \end{aligned}$	$\begin{aligned} & 99.2 \\ & 99.1 \\ & 83.6 \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	$\begin{aligned} & g \\ & g \\ & g \end{aligned}$			$\begin{aligned} & 27 \\ & 28 \\ & 13 \end{aligned}$	Newfoundland, CAN 1977	Great Island, grassy slope	Masses of 30 -day old chicks from: (1) first-laid eggs; (2) second-laid eggs; (3) third-laid eggs.
Pierotti 1982	$\begin{aligned} & F \\ & F \\ & F \end{aligned}$	-	1 2 3	-	$\begin{aligned} & 832.9 \\ & 842.2 \\ & 759.4 \end{aligned}$	$\begin{aligned} & 90.7 \\ & 90.6 \\ & 75.3 \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	$\begin{aligned} & g \\ & g \\ & g \end{aligned}$			$\begin{aligned} & 16 \\ & 22 \\ & 10 \end{aligned}$	Newfoundland, CAN 1977	Great Island, meadow	```Masses of 30-day old chicks from: (1) first-laid eggs; (2) second-laid eggs; (3) third-laid eggs.```

Reference A	Age S	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
present study	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & M \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & I \\ & I \\ & \hline \end{aligned}$	-	$\begin{aligned} & 97.1 \\ & 70.2 \end{aligned}$		$\begin{aligned} & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \end{aligned}$				NS	NS	Estimated using the metabolic rate data of Sibly and McCleery (1983) and the body weights reported by Belopolskii (1957).
FOOD Ingestion rate													
```Pierotti & Annett 1991```	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.21 \end{aligned}$		$\begin{aligned} & \text { g/g-day } \\ & \text { g/g-day } \end{aligned}$				Newfoundland	NS	Diet of mussels. Estimated using 11.2 meals of mussel consumed per day per pair, weight of 80 g per mussel meal of which half is shell and not included in ingestion rate, assuming that the female accounts for $46 \%$ of pair's energy requirement and the male accounts for $54 \%$, and using the body weights of Threfall and Jewer 1978.
$\begin{aligned} & \text { Pierotti \& Annett } \\ & 1991 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{BR} \\ & \mathrm{BR} \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.18 \end{aligned}$		$\begin{aligned} & \text { g/g-day } \\ & \text { g/g-day } \end{aligned}$				Newfoundland	NS	Diet of garbage. Estimated using 4.2 meals of garbage consumed per day per pair, weight of 100 g per garbage meal, assuming that the female accounts for $46 \%$ of pair's energy requirement and the male accounts for $54 \%$, and using body weights of Threfall and Jewer 1978.

## THERMONEUTRAL ZONE

$\begin{aligned} & \text { Lustick et al. } \\ & 1979 \end{aligned}$	J B - -	degrees C		17.5	30		Ohio, Michigan	lab	Oxygen consumption increased above and below these temperatures.
					*** DI	***			
Reference	Age Sex Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Burger 1988	- - $\begin{aligned} & \text { snails } \\ & \text { crabs } \\ & \\ & \text { garbage } \\ & \text { Offal } \\ & \text { worms } \\ & \\ & \text { other inverts. } \\ & \\ & \text { fish }\end{aligned}$		3			21	CA, FL, NY, NJ, TX	```terrest., coastal, open water % of gulls feeding on the items```	Birds feeding offshore not evaluated.
			14						
			27						
			5 23						
			23 28						
			2						


Reference	Age S	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Ewins et al. (unpubl. manuscript)			```fish mammal bird invertebrate plant garbage```				$\begin{array}{r} 76 \\ 5 \\ 1 \\ 1 \\ 16 \\ - \end{array}$	231	Lake Erie   1978-91	```Middle Island % of total diet items; regurgitated pellets and faeces```	Fish were comprised of more than 90 \% Aplodinotus grunniens (freshwater drum) and a few percent Perca flavescens (yellow perch).
Ewins et al. (unpubl. manuscript)			```fish mammal bird invertebrate plant garbage```				$\begin{array}{r} 50 \\ 1 \\ 16 \\ 30 \\ 15 \\ 45 \end{array}$	151	Niagara River 1978-91	```river % frequency; regurgitated pellets and faeces```	Fish were comprised mostly of Osmerus mordax (rainbow smelt), Ictalurus nebulosus (brown bullhead), Nuturus flavus (stonecat), Alosa pseudoharengus (alewife); mammals consisted of voles and mice.
Ewins et al. (unpubl. manuscript)	A		```fish mammal bird invertebrate plant garbage```				$\begin{array}{r} 5 \\ 78 \\ 10 \\ 2 \\ 1 \\ 3 \end{array}$	167	Lake Huron 1978-91	```Chantry Island % of total diet items; regurgitated pellets and faeces```	The fish were largely unidentified to species.
Ewins et al. (unpubl. manuscript)	A	B	```fish mammal bird invertebrate plant garbage```				$\begin{array}{r} 98 \\ 4 \\ 18 \\ 5 \\ 21 \\ 7 \end{array}$	224	Lake Ontario 1978-91	```Scotch Bonnet Island % of total diet items; regurgitated pellets and faeces```	Fish consisted predominantly of Alosa pseudoharengus (alewife) and Osmerus mordax (rainbow smelt).
Ewins et al. (unpubl. manuscript)	A	B	```fish mammal bird invertebrate plant garbage```				$\begin{array}{r} 76 \\ 23 \\ 5 \\ 13 \\ 33 \\ 15 \end{array}$	211	Lake Ontario 1978-91	```Snake Island % of total diet items; regurgitated pellets and faeces```	Fish consisted primarily of Alosa pseudoharengus (alewife), Amploplites rupestris (rock bass), and Perca flavescens (yellow perch).
Ewins et al. (unpubl. manuscript)	A	B	```alewife freshwater drum rainbow smelt sunfishes perch```				$\begin{aligned} & 35 \\ & 23 \\ & 13 \\ & 11 \\ & 11 \end{aligned}$	1477	$\begin{aligned} & \text { Great Lakes } \\ & \text { 1978-91 } \end{aligned}$	```various % frequency; regurgitated pellets and faeces```	Summary of findings for all locations; sample size $=1298$ pellets and 179 faeces examined.
Fox et al. 1990	A	B	Year:   American smelt   alewife   other fish   birds   voles   insects \& refuse   (N)	$\begin{array}{r} 1978 \\ 46.1 \\ 23.1 \\ 20.5 \\ 2.6 \\ 2.6 \\ 12.8 \\ (31) \end{array}$	$\begin{array}{r} 1979 \\ 18.4 \\ 73.7 \\ 0.0 \\ 2.6 \\ 2.6 \\ 0 \\ (23) \end{array}$	$\begin{array}{r} 1980 \\ 61.2 \\ 16.7 \\ 3.4 \\ 13.8 \\ 3.4 \\ 3.4 \\ (15) \end{array}$	$\begin{array}{r} 1981 \\ 57.8 \\ 23.4 \\ 3.1 \\ 6.2 \\ 9.4 \\ 0 \\ (26) \end{array}$		Lake Ontario 1978-81	```Gull Island % of items; incubating adult regurgitation```	All collections made during the summer. Other fish included yellow perch, sunfish, carp, smallmouth bass, and unidentified cyprinids. Shows annual variation in composition of diet.





Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Pierotti 1982	-	-	-	SU	74.7		nests/ha			1083	Newfoundland 1976-78	grassy slope	Habitat is on Great Island. $\mathrm{N}=$ number of nesting pairs. Total of 14.5 ha of grassy slope habitat available.
Pierotti 1982	-	-	-	SU	92.6		nests/ha			585	Newfoundland 1976-78	Great Island, meadow	$\mathrm{N}=$ number of nesting pairs. Total of 6.08 ha of meadow habitat available.
Pierotti 1982	-	-	-	SU	217.4		nests/ha			476	Newfoundland 1976-78	Great Island, rocky	$\mathrm{N}=$ number of nesting pairs. Total of 2.19 ha of meadow habitat available.
$\begin{aligned} & \text { Schoen \& Morris } \\ & 1984 \end{aligned}$	A	B	-	SU	20-25		pairs/ha				Ontario, CAN 1981	n shore Lake Erie, mainland	
$\begin{aligned} & \text { Schoen \& Morris } \\ & 1984 \end{aligned}$	A	B	-	SU	160-200		pairs/ha				Ontario, CAN 1981	n shore Lake Erie, insular rocky area	
Weseloh 1989	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \\ & \text { SU } \\ & \text { SU } \end{aligned}$	0.0001		pairs/ha pairs/ha pairs/ha pairs/ha	$\begin{aligned} & 0.0002 \\ & 0.0011 \\ & 0.0101 \end{aligned}$	$\begin{aligned} & 0.0010 \\ & 0.0100 \\ & 0.1000 \end{aligned}$		$\begin{aligned} & \text { s Ontario, CAN } \\ & 1980 \mathrm{~s} \end{aligned}$	NS	Total of 30710 km squares sampled for breeding pairs in inland and lakeshore regions. Percent of squares with given density of pairs: (1) 10\%;   (2) $50 \%$;   (3) $28 \%$; (4) $13 \%$.
CLUTCH SIZE													
Brown 1967	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	- - -	$\begin{aligned} & 2.77 \\ & 2.50 \\ & 2.51 \\ & 2.40 \end{aligned}$				$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & \text { England } \\ & 1962-65 \end{aligned}$	low, gravelly island (Walney Island)	Laying date of clutch: (1) to May 2; (2) May 3-7; (3) May 8-12; (4) after May 13.
Burger \& Shisler   1980	-	-	-	-	2.72		eggs	2.61	2.87	330	New Jersey 1976-77	coastal	Five study areas; min and max are means from different study sites.
Burger 1979b	-	-	-	-	2.78		eggs	2.51	2.90	1031	$\begin{aligned} & \text { New Jersey } \\ & 1977 \end{aligned}$	salt marsh islands	Weighted average clutch size for 8 study sites and the minimum and maximum values from the 8 sites.
Burger 1980a	-	-	-	-	2.64		eggs	2.6	2.7	163	New Jersey   1976, 78	coastal	Weighted average of two years (listed in the minimum and maximum columns).
Burger 1977	- - - -	- - -	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	- - - -	$\begin{aligned} & 2.83 \\ & 2.71 \\ & 2.66 \\ & 2.38 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.40 \\ & 0.6 D \\ & 0.64 \\ & 0.79 \end{aligned}$	$\begin{aligned} & \text { eggs } \\ & \text { eggs } \\ & \text { eggs } \\ & \text { eggs } \end{aligned}$			15 42 42 25	New Jersey $1974-75$	marsh	Average of clutch sizes in (1) dry, $(2,3)$ wet-dry, and (4) wet habitats.



Reference	Age	Sex		Cond	S Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
CLUTCHES/YEAR															
Burger 1979a,   Bourget 1973	-	- -	-	-	-	1			clutch/yr	1	2*		NS	NS	* If first clutch lost.
DAYS Incubation															
$\begin{aligned} & \text { Haycock \& } \\ & \text { Threlfall } 1975 \end{aligned}$		-	-	-	-	29.4	1	SE	days			24	Newfoundland, CAN 1969-71	Gull Island	Average egg volume $=79 \mathrm{cc}$.
Niebuhr 1983		-	-	-	-				days	25	28		Cumbria, England 1980	Walney Island	
Parsons 1972			$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\begin{aligned} & 29.1 \\ & 27.7 \\ & 26.7 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.12 \\ & 0.14 \end{aligned}$	$\begin{aligned} & \mathrm{SE} \\ & \mathrm{SE} \\ & \mathrm{SE} \end{aligned}$	$\begin{aligned} & \text { days } \\ & \text { days } \\ & \text { days } \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \\ & 75 \end{aligned}$	Scotland 1968	Isle of May	Incubation period for "late"-laid eggs (after May 24): (1) first-laid egg (mean volume $=77.1 \mathrm{cc}+/-0.58$ S.E.); (2) second-laid egg (mean volume = 74.7cc +/- 0.57); (3) third-laid egg (mean volume = 67.8cc +/- 0.56).
Parsons 1972			$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 30.0 \\ & 28.4 \\ & 27.5 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.19 \\ & 0.18 \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SE } \\ & \text { SE } \end{aligned}$	$\begin{aligned} & \text { days } \\ & \text { days } \\ & \text { days } \end{aligned}$			$\begin{aligned} & 28 \\ & 28 \\ & 28 \end{aligned}$	Scotland 1968	Isle of May	Incubation period for "early"-laid eggs (before May 10): (1) first-laid egg (mean volume = $80.2 \mathrm{cc}+/-0.98$ S.E.); (2) second-laid egg (mean volume $=$ 78.3cc +/- 1.07); (3) third-laid egg (mean volume $=71.0 c c+/-$ 1.11).
Parsons 1972			-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 29.98 \\ & 29.31 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.11 \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SE } \end{aligned}$	$\begin{aligned} & \text { days } \\ & \text { days } \end{aligned}$			$\begin{aligned} & 67 \\ & 67 \end{aligned}$	$\begin{aligned} & \text { Scotland } \\ & 1967-69 \end{aligned}$	Isle of May	Incubation period of first-laid eggs. Egg size: (1) greater than 76 cc (mean $=82 \mathrm{cc}$ ); (2) less than 76 cc (mean $=71 \mathrm{cc}$ ). All eggs laid during peak of laying season.
Pierotti 1982			$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 29 \\ & 27 \\ & 26 \end{aligned}$			$\begin{aligned} & \text { days } \\ & \text { days } \\ & \text { days } \end{aligned}$			351	Newfoundland, CAN 1978	Great Island	Incubation period for: (1)   first-laid egg; (2) second-laid egg; (3) third-laid egg. $\mathrm{N}=$ number of nests; not all pairs incubated three eggs.
Tinbergen 1960		-	-	-	-	30.5			days	28	33		Holland	coastal	

## age at fledging

Haycock \&
Threlfall 1975
45.2
days
$\begin{array}{llllll}\text { Holley } 1982 & - & - & 1 & - & 45 \\ & - & - & 2 & - & 48\end{array}$
Kadlec et al. 1969 - - - 51

Paynter 1949
43
n fledge/active nest
Burger \& Shis 1980
1.42

Davis 1975
0.65

days   days		
days	$35-44$	$56-61$
days	31	52

12 CAN 1970

16 England
1977-80
6 Massachusetts 1964

New Brunswick, CAN 1947

New Jersey
1976-77

England
$1970-71$

Massachusetts
1964-69

233	Rhode Island	Block Island
33	1966	
216	Rhode Island,	Block Island
42	1965	
51	Massachusetts	Marblehead Rock
159	1965	
52		
128	Rhode Island	Block Island
122	1966	
8		
	Michigan,	
	early 1960s	

Average, minimum, and maximum of three colonies (with a total of 688 active nests)

Minimum reflects a subgroup of clutches laid in a "later" time period than average; max is a subgroup with "earlier" hatch dates.

Average, minimum, and maximum
values over 6 years with between values over 6 years with between
1,400 to 1,900 nests/year. Not specified whether per active or successful nest; we assume per active
Clutch size of nest: (1) 3 eggs; (2) 2 eggs.

Clutch size of nests: (1) 3 eggs; (2) 2 eggs.

Hatch date: (1) before June 11; (2) June 11 to June 24; (3) after June 24.

Hatch date: (1) before June 11; (2) June 11 to 24; (3) after June 24

As cited in Peakall 1988. Low fledging success might have resulted from effects of DDE/DDT.

Reference Ag	e S	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Mineau et al. 1984	-	-	-	-	1.65		N/act nest	1.40	2.13	6	Lake Ontario 1979-81	lakeshore	$\mathrm{N}=6$ colony years. Min and max represent min and max average values of the 6 colony-years. The low reproductive success (< 1 fledge per nest) of these colonies in the early 1970's, attributed to organochlorine contaminants, was no longer apparent.
Mineau et al. 1984	-	-	-	-	1.78		N/act nest	1.62	2.10	3	Lake Erie   1979-81	lakeshore	$\mathrm{N}=3$ colony years. Min and max represent min and max average values of the 3 colony-years.
Mineau et al. 1984	-	-	-	-	2.19		N/act nest	2.16	2.25	6	Lake Huron 1979-81	lakeshore	$\mathrm{N}=6$ colony years. Min and max represent min and max average values of the 6 colony-years.
Morris \& Haymes 1977			$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 0.48 \\ & 0.32 \end{aligned}$	$\begin{array}{ll} 0.18 & \mathrm{SE} \\ 0.10 & \mathrm{SE} \end{array}$	N/act nest   N/act nest			$\begin{aligned} & 21 \\ & 37 \end{aligned}$	$\begin{aligned} & \text { Ontario, CAN } \\ & 1973-74 \end{aligned}$	n shore Lake Erie, grassy near shore	Hatchlings considered to have fledged at 30 days of age. Year: (1) 1973; (2) 1974. Less than half of the eggs laid hatched; many were predated or addled -- authors suggest the low hatch rate may be due in part to the effects of pesticide related contaminants.
Morris \& Haymes 1977	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.45 \\ & 0.79 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.13 \\ & \mathrm{SE} \\ & 0.13 \\ & \mathrm{SE} \end{aligned}$	N/act nest   N/act nest   N/act nest			$\begin{aligned} & 62 \\ & 38 \\ & 42 \end{aligned}$	$\begin{aligned} & \text { Ontario, CAN } \\ & 1974-76 \end{aligned}$	n shore Lake Erie, rocky shore	Hatchlings considered to have fledged at 30 days of age. Year: (1) 1974; (2) 1975; (3) 1976. Less than half of the eggs laid hatched; many were predated or addled -authors suggest the low hatch rate may be due in part to the effects of pesticide related contaminants.
Parsons 1976b	-	-	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	- - -	$\begin{aligned} & 0.58 \\ & 0.72 \\ & 0.88 \\ & 0.52 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.06 \\ & \mathrm{SE} \\ & 0.05 \\ & \mathrm{SE} \\ & 0.08 \\ & \mathrm{SE} \end{aligned}$	N/act nest   N/act nest   $\mathrm{N} /$ act nest   N/act nest			$\begin{aligned} & 155 \\ & 254 \\ & 259 \\ & 103 \end{aligned}$	Scotland 1968	Isle of May	(1) number of nests within 2.3 meters (NN) = 0; (2) NN = 1; (3) NN $=2$; (4) $\mathrm{NN}=3$. Nesting success appears unusually low; reason unknown.
Pierotti 1982	-	-	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\begin{aligned} & 1.32 \\ & 1.77 \\ & 1.84 \end{aligned}$	$\begin{array}{ll} 0.81 & \mathrm{SD} \\ 0.98 & \mathrm{SD} \\ 0.96 & \mathrm{SD} \end{array}$	N/act nest   N/act nest   N/act nest			$\begin{array}{r} 59 \\ 106 \\ 114 \end{array}$	Newfoundland, CAN	Great Island, rocky	Year: (1) 1976; (2) 1977; (3) 1978.
Pierotti 1982	-		$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\begin{aligned} & 1.58 \\ & 1.87 \\ & 1.81 \end{aligned}$	$\begin{aligned} & 0.81 \\ & 1.01 \\ & \text { SD } \\ & 0.92 \end{aligned} \text { SD }$	N/act nest N/act nest N/act nest			$\begin{array}{r} 59 \\ 110 \\ 133 \end{array}$	Newfoundland, CAN	grassy slope	Habitat is located on Great Island. Year: (1) 1976; (2) 1977; (3) 1978.


Reference	Age Sex	Cond	Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
Pierotti 1982	$\begin{array}{ll} - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\begin{aligned} & 1.03 \\ & 1.19 \\ & 1.28 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	N/act nest   N/act nest   N/act nest			$\begin{aligned} & 91 \\ & 98 \\ & 99 \end{aligned}$	Newfoundland, CAN	Great Island, meadow	Year: (1) 1976; (2) 1977; (3) 1978.
$\begin{aligned} & \text { Pierotti \& Annett } \\ & 1987 \end{aligned}$	$\begin{array}{ll} - & - \\ - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\begin{aligned} & 2.14 \\ & 1.36 \\ & 0.68 \end{aligned}$			N/act nest N/act nest N/act nest			$\begin{array}{r} 167 \\ 47 \\ 58 \end{array}$	Newfoundland, CAN 1978	Great Island	$\mathrm{N}=$ number of nests for gulls with dietary focus of: (1) mussels, (2) petrels, and (3) garbage.
$\begin{aligned} & \text { Schoen \& Morris } \\ & 1984 \end{aligned}$	- -	1	-	1.57	0.97	SD	N/pair				Ontario, CAN 1981	n shore Lake Erie, insular rocks	
$\begin{aligned} & \text { Schoen \& Morris } \\ & 1984 \end{aligned}$	- -	-	-	1.41	1.08	SD	N/pair				Ontario, CAN 1981	n shore Lake Erie, mainland	
Weseloh et al. $1990$			- - - - - -	$\begin{aligned} & 1.53 \\ & 1.67 \\ & 1.74 \\ & 1.70 \\ & 1.38 \\ & 1.45 \end{aligned}$			N/pair   N/pair   N/pair   N/pair   N/pair N/pair	$\begin{array}{r} \mathrm{U} 95 \% \mathrm{CL} \\ 1.67 \\ 2.17 \\ 1.92 \\ 1.82 \\ 1.43 \\ 1.64 \end{array}$	$\begin{array}{r} \text { L 95\% CL } \\ 1.39 \\ 1.16 \\ 1.55 \\ 1.59 \\ 1.34 \\ 1.26 \end{array}$		Lake Erie 1978	lakeshore	Numbers in max column are lower 95\% confidence limits; numbers in min column are upper 95\% confidence limits. Each entry reflects a different colony on Lake Erie and adjacent waters. Values are thought to represent a return to "normal" after a period of low reproductive success in this area from early 1970's to 1976.
n FLEDGE/SUCCESSFUL NEST													
Burger \& Shisler   1980	- -	-	-	1.8			N/act nest	1.79	1.80		New Jersey 1976-77	coastal	Averaged over three colonies (total of 550 nests at which at least one egg hatched).
PERCENT EGGS HATCHING													
$\begin{aligned} & \text { Haycock \& } \\ & \text { Threlfall } 1975 \end{aligned}$	$\begin{array}{ll} - & - \\ - & \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 72.9 \\ & 62.5 \end{aligned}$			$\begin{aligned} & \circ \text { hatch } \\ & \% \text { hatch } \end{aligned}$			$\begin{array}{r} 273 \\ 88 \end{array}$	Newfoundland, CAN 1969-71	Gull Island	Average of first through third clutches. $\mathrm{N}=$ number of eggs laid. Location and year: (1) The Point, 1971; (2)predation nest area, 1969. Causes of hatching failure were identified as predation, disappearance without trace, death (no embryo), death while pipping.
$\begin{aligned} & \text { Pierotti \& Annett } \\ & 1987 \end{aligned}$	$\begin{array}{ll}- & - \\ - & - \\ - & - \\ - & -\end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	- - -	$\begin{aligned} & 86.2 \\ & 62.9 \\ & 42.4 \\ & 81.5 \end{aligned}$			\% hatch   \% hatch   \% hatch   \% hatch			$\begin{array}{r} 376 \\ 62 \\ 158 \\ 168 \end{array}$	Newfoundland, CAN 1977	Great Island	$\mathrm{N}=$ number of eggs laid by gulls with dietary focus of: (1) mussels, (2) petrels, (3) garbage, and (4) generalist feeding.

AGE AT SEXUAL MATURITY

Coulson et al.	-	B	1	-
1982	-	B	-	
	-	B	-	
	-	B	4	-

years
years
years
years
years
comm.

ANNUAL MORTALITY

Brown 1967	A	B	-	-	10	\%/year
Chabrzyk \& Coulson	J	B	-	-	22	\%/1st yr
1976	A	B	-	-	7.3	\%/2nd yr
$\begin{aligned} & \text { Kadlec \& Drury } \\ & 1968 \end{aligned}$	J	B	1	-	27	\%/fled-Sep
	J	B	2	-	25	\%/Sep-Mar
	J	B	3	-	20	\%/year
	J	B	4	-	9	\%/year
	J	B	5	-	8	\%/year
	A	B	6	-	8	\%/year

Kadlec 1976
A
B - -
15-20

New England

CAN

Scotland
1972-81 334
448

Age at recruitment into the breeding population, based on study of culled banded gulls. Breeding gulls were culled from 1972-81; this resulted in a 75\% reduction of the 1972 breeding density by 1981. Prior to the star of third year birds breeding at this location. Hatch year of gulls (1) 1969; (2) 1970; (3) 1972; (4) 1973-75.
Not true mean; common value.
coastal/islands

NS

## England <br> 1962-65

Scotland

New England
1920-64

## Massachusetts

 1967-74ow, gravelly island Adults four years and older. (Walney Island) coastal
oastal/islands
Based on age-class counts from banding data and assuming 4.7\% population growth per year, $80 \%$ of
adults breed per year, and production of one young per production of one young per year by 1 st September; (2) 1st Sept. to 1 st March; (3) 1st March to 2nd March; (4) 2nd March to 3rd March; (5) 3rd March to 4 rth March; (6) yearly adult mortality for 4 year-olds and up.

Overestimate of mortality rate.
Authors report that the age
Authors report that of the population is inconsistent with a mortality rate as high as 15 to 20 percent.


Reference	Begin	Peak	End	Location	Habitat	Notes
```Meathrel et al. 1987```	May 11		May 25	Lake Superior, CAN	islands	In 1984.
Morris \& Haymes 1977	late Apr	earl May	earl Jun	Ontario, CAN 1973-76	n shore Lake Erie	
Morris \& Black 1980	21 Apr	26-27 Apr	17 May	Ontario, CAN 1978	n shore Lake Erie	Timing of initiation of clutches.
Pierotti 1982	earl May	late May	end May	Newfoundland, CAN 1977-78	Great Island	In general, first and second eggs are laid about two days apart; the third is laid one or two days after the second.
$\begin{aligned} & \text { Schoen \& Morris } \\ & 1984 \end{aligned}$		late Apr		$\begin{aligned} & \text { Ontario, CAN } \\ & 1981 \end{aligned}$	n shore Lake Erie,	

Bourget 1973	mid Jun	late Jun	mid Jul
Fox et al. 1990		mid-late May	
Kadlec 1971	May	Jun	Jul
Paynter 1949	Jun 19	late Jun	Jul 14
Pierotti 1982; 1987	earl Jun	mid June	end June

Maine 1969	bay
Great Lakes 1977-83	islands
$\begin{aligned} & \text { Massachusetts } \\ & 1964 \end{aligned}$	coastal islands
New Brunswick, CAN 1947	Kent Island
Newfoundland, CAN 1977-78	Great Island

FALL MIGRATION

Burger 1982 Aug Sept
nw Atlantic
populations
Great Lakes
1929-11
various
Juveniles and one-year olds only. Adults and two-year olds are
year-round residents. Determined
nw Atlantic populations

SPRING MIGRATION
Burger 1982
Feb

Page A-192 is left blank.
***** BELTED KINGFISHER *****

*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference

Age Sex Cond Seas Mean SD/SE Units
Minimum Maximum
Habitat

Notes

BODY WEIGHT

NESTLING WEIGHT

98 nc lower Michigan

5 nc PA 1982
11 sw OH 1979
Minnesota
2 NS
29 Pennsylvania

Michigan
rivers, lakes
lakes, streams,
river
streams
lake
NS

F B - -
121

State: (1) Pennsylvania; (2) Ohio. Ohio stream found to have more available food resources.

As cited in Dunning 1984.

Converted from ounces; females average slightly more, males slightly less

Number of days in unit column is age of nestlings. Values for day 2 - 28 estimated from figure; fledged at 28 days
NS As cited in Dunning 1984
-

1987

5 nc PA 1982,

Weight at fledging; $\mathrm{N}=$ number of nests sampled. State: (1) Pennsylvania; (2) Ohio. Ohio stream found to have more available food resources.

Lost weight after day 18 when reached 165 g .

Reference	Age Sex	ex F	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Davis 1982	J	B	```crayfish cyprinids (minnows) (stonerollers) (unidentified) other fish```		$\begin{array}{r} 13.3 \\ 76.4 \\ (12.7) \\ (37.6) \\ (26.1) \\ 10.2 \end{array}$			165	sw Ohio 1979	```creek % of number of prey; brought to nestlings```	Season = May through June. All prey were between $4-14 \mathrm{~cm}$; 88\% were between $6-12 \mathrm{~cm}$ in length. Author feels crayfish may be over-represented due to conditions of high water and high turbity during part of sampling time.
Gould unpubl.	-		```Pomolobus sp. Salmo trutta fario Catostomus c. commersonnii Cyprinidae Semotilus a. atromaculatus Rhinichthys a. atratulus```		$\begin{array}{r} 5 \\ 9 \\ 14 \\ 12 \\ 15 \\ 7 \end{array}$			25	sc New York	streams, lakes number of prey; stomach contents	Fish species found two or fewer times not listed here; all types of insects were combined. As cited in Salyer and Lagler 1946.
Gould upubl. (continued)			Notropis sp. Ameiurus sp. Beleosoma nigrum Micopturus salmoides Lepomis sp. frogs snakes insects crayfish		$\begin{array}{r} 13 \\ 4 \\ 4 \\ 5 \\ 6 \\ 6 \\ 2 \\ 10 \\ 19 \end{array}$						
Salyer \& Lagler 1946			```game and pan fish (mostly perch) forage fish (minnows sticklebacks, sculpins, etc.) other fish fish remains frogs crayfish insects```		$\begin{array}{r} 17.5 \\ 49.1 \\ \\ 2.0 \\ 0.9 \\ 2.3 \\ 7.4 \\ 21.0 \end{array}$			45	Michigan	lakes \% wet volume; stomach contents	More detailed identification and enumeration (but not \% volume) of food items provided in report; season not specified but probably mostly summer.
Salyer \& Lagler 1946		B	game and pan fish (perch, centrachids) forage fish (minnows sticklebacks, etc.) other fish fish remains crayfish insects		$\begin{array}{r} 10.15 \\ 31.3 \\ 16.2 \\ 0.1 \\ 39.6 \\ 2.2 \end{array}$			22	Michigan	```non-trout streams % wet volume; stomach contents```	More detailed identification and enumeration (but not \% volume) of food items provided in report; season not specified but probably mostly summer.

Reference	Age Se	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Salyer \& Lagler 1946	B	B	```trout other game and pan fish (perch and centrarchids) forage fish (minnow, sticklebacks, etc.) fish remains crayfish insects```		$\begin{array}{r} 29.8 \\ 13.0 \\ \\ 15.0 \\ 0.9 \\ 40.7 \\ 0.6 \end{array}$			92	Michigan	```trout streams % wet volume; stomach contents```	More detailed identification and enumeration (but not \% volume) of food items in paper; season not specified but probably mostly summer.
White 1936	B		```salmon (1 year) salmon (fry) trout stickleback suckers```		$\begin{array}{r} 7 \\ 58 \\ 4 \\ 47 \\ 4 \end{array}$			15	Nova Scotia, CAN 1935	```river % of number of prey; stomach contents```	
White 1936	B	B	```salmon fry salmon (1 year) salmon (2 years) trout sticklebacks killifish suckers```		$\begin{array}{r} 11 \\ 42 \\ 1 \\ 15 \\ 30 \\ <1 \\ <1 \end{array}$			170	Nova Scotia, CAN 1935	```riparian % of number of prey; pellets```	
White 1938	N		```salmon (1 year old) salmon (2 year old) trout```		$\begin{array}{r} 26 \\ 7 \\ 6 \end{array}$			33	Nova Scotia, CAN 1937	```river number of prey; stomach contents```	Nestlings between 12 days and 4 weeks old; collected in June and July. Not fed sticklebacks, which were common in the diet of the adults.
White 1938	A	B	```salmon trout sticklebacks water shrew```		$\begin{array}{r} 450 \\ 214 \\ 19 \\ 1 \end{array}$			115	Nova Scotia, CAN 1937	```river number of prey; pellets and stomach contents```	53 disgorged stomach pellets and 62 stomachs collected from May - Sept. The ratio of trout to salmon increased as water levels increased.
White 1953	B	B	smelt trout killifish sticklebacks		$\begin{array}{r} 13 \\ 1 \\ 2 \\ 18 \end{array}$			15	Prince Edward Island, CAN 1948	```trout streams number of prey; pellets```	
White 1953	B	B	salmon trout suckers sculpins minnows sticklebacks		$\begin{array}{r} 8 \\ 54 \\ 5 \\ 101 \\ 29 \\ 90 \end{array}$			61	```Maritime Provinces, CAN```	```streams number of prey; pellets```	Year = 1948; provinces include New Brunswick, Nova Scotia, and Prince Edward Island, Canada.

Reference	Age Sex	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
White 1953	B	B	salmon trout suckers killifish minnows sticklebacks eels		$\begin{array}{r} 10 \\ 4 \\ 8 \\ 24 \\ 23 \\ 10 \\ 6 \end{array}$			44	Maritime Provinces, CAN	```Moser River number of prey; pellets```	Years $=1940-42$.
White 1953	B	B	salmon trout suckers minnows sticklebacks other fish insects		$\begin{array}{r} 20.1 \\ 6.0 \\ 9.7 \\ 40.4 \\ 12.7 \\ 9.7 \\ 1.3 \end{array}$			81	Maritime Provinces, CAN	```small salmon streams % of number of prey; pellets```	Years $=1948$.
White 1953	B	B	```salmon trout suckers minnows sticklebacks insects```		$\begin{array}{r} 24 \\ 7 \\ 20 \\ 24 \\ 8 \\ 4 \end{array}$			29	Maritime Provinces, CAN	```large salmon rivers % of number of prey; pellets```	Years $=1946,1948$.
White 1953	B	B	```alewife 9-spine stickleback killifish white perch yellow perch```		$\begin{array}{r} 47 \\ 139 \\ 33 \\ 19 \\ 50 \end{array}$			36	Nova Scotia, CAN 1948	```Gasperau Lake number of prey; pellets```	
White 1953	B	B	```9-spine stickleback killifish white perch yellow perch dragonfly nymphs```		$\begin{array}{r} 94 \\ 4 \\ 2 \\ 6 \\ 2 \end{array}$			36	c Nova Scotia, CAN 1948	```ponds and lakes number of prey; pellets```	
White 1953	B	B	sticklebacks killifish other fish		$\begin{aligned} & 32 \\ & 74 \\ & 12 \end{aligned}$			46	Nova Scotia, CAN 1948	```Northumberland Str. number of prey; pellets```	Location also includes Prince Edward Island.
White 1953	B	B	$\begin{aligned} & \text { sticklebacks } \\ & \text { killifish } \\ & \text { other fish } \end{aligned}$		$\begin{aligned} & 81 \\ & 26 \\ & 26 \end{aligned}$			27	New Brunswick, CAN 1948	```Northumberland Str. number of prey; pellets```	

*** POPULATION DYNAMICS ***

Reference	Age S	Sex	Cond	d Seas	S Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
TERRITORY SIZE													
Brooks \& Davis 1987	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 2.185 \\ & 1.028 \end{aligned}$	$\begin{array}{ll} 0.561 & \mathrm{SE} \\ 0.280 & \mathrm{SE} \end{array}$	$\begin{aligned} & \mathrm{km} \\ & \mathrm{~km} \end{aligned}$			8	nc PA 1982, sw OH 1979	streams	State: (1) Pennsylvania; (2) Ohio. Ohio stream found to have more available food resources. Breeding territory sizes measured by "herding" adults to the ends of their territorial boundaries.
Cornwell 1963	A	B	BR	SU	1.6		km	0.8	8.0		Minnesota 1958	lake, forest	Foraging radius; most flights were within 1.6 km but flights of 3.2 km were not uncommon.
Davis 1980	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \mathrm{BR} \\ & \mathrm{NB} \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 1.03 \\ & 0.39 \end{aligned}$	$\begin{array}{r} 0.22 \mathrm{SE} \\ 0.093 \mathrm{SE} \end{array}$	$\begin{aligned} & \mathrm{km} \\ & \mathrm{~km} \end{aligned}$			$\begin{array}{r} 6 \\ 21 \end{array}$	sw Ohio 1979	stream	Length of breeding territories (occupied by pairs) and non breeding territories (occupied by individuals in the late summer and fall).
${ }_{1946}$ Salyer \& Lagler 1946	A	B	BR	SU	0.80		km		2.4		Michigan 1931	lakes	Breeding territory of pairs along lake shore.
Salyer \& Lagler 1946	A	B	BR	SU	2.4-4.8		km				Michigan 1931	rivers	Larger than along lakes because of limitation in feeding areas (faster, deeper water).
Salyer \& Lagler 1946	A	B	BR	SU	14.2		ha			1	Michigan 1931	ponds and marsh	
POPULATION DENSITY													
Brooks \& Davis 1987	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.19 \end{aligned}$		$\begin{aligned} & \text { pairs/km } \\ & \text { pairs/km } \end{aligned}$			$\begin{aligned} & 45.8 \\ & 16.1 \end{aligned}$	$\begin{aligned} & \text { nc } \\ & \text { Pennsylvania } \\ & 1982 \end{aligned}$	streams	Density of breeding pairs; (1) Sandy Lick Creek, (2) Bennett Branch. $\mathrm{N}=\mathrm{km}$ of stream sampled.

Reference	Age Se	ex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Brooks \& Davis } \\ & 1987 \end{aligned}$	A	B	BR	SU	0.54		pairs/km			16.8	sw Ohio 1979	stream	Density of breeding pairs; the Ohio stream was found to have more available food than the Pennsylvania streams above. $\mathrm{N}=\mathrm{km}$ of stream sampled.
Cornwell 1963	A	B	BR	SU	0.0022		pairs/ha			14	Minnesota 1958	lake, forest	6,475 ha censused.
White 1936	A	B	BR	SU	0.6		pairs/km			30	Nova Scotia, CAN 1935	streams	50 km surveyed.
White 1953	B	B	-	SU			N / km		6		Maritime Provinces, CAN	stream valleys	Population of young and adults in agricultural district often reaches this density.

CLUTCH SIZE

Brooks \& Davis 1987	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 5.8 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~S} \\ & 0.4 \mathrm{~S} \end{aligned}$				$\begin{array}{ll} \text { nc PA } & 1982, \\ \text { sw OH } 1979 \end{array}$	streams	State: (1) Pennsylvania; (2) Ohio. Ohio stream found to have more available food resources.
Hamas 1975	-	-	-	-	6.58			5	7	Minnesota	lake	
White 1953	-	-	-	-	7			5	7	Maritime Provinces, CAN	streams	Seven is the "usual" number of eggs laid.
CLUTCHES/YEAR												
Bent 1940	-	-	-	-	1		/yr			NS	NS	Known to renest up to three times if clutch is lost.
Brooks \& Davis 1987	-	-	-	-	1		/yr			$\begin{aligned} & \text { nc PA 1982, OH } \\ & 1979 \end{aligned}$	streams	May renest if clutch lost early in breeding season.
Hamas 1975	-	-	-	-	1		/yr			Minnesota	lake	Will renest if nest is destroyed.
DAYS INCUBATION												
Hamas 1975	-	-	-	-	22		days			Minnesota	lake	
AGE At fledging												
Bent 1940	-	-	-	-	28		days			NS	NS	
Hamas 1975, 1981	-	-	-	-	28		days	27	29	Minnesota	lake	

Age Sex Cond Seas Mean SD/SE Units

N FLEDGE/ACTIVE NEST

| Brooks \& Davis | - | 1 | - | 4.5 | 1.9 | SE N/act nest | nc PA 1982, | streams |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1987 | - | 2.2 | - | 5.3 | N/act nest | sw OH 1979 | | |

State: (1) Pennsylvania; (2) Ohio. vailableam found to have more avallable food resources.
age at sexual maturity

| Bent 1940 | B | year | throughout |
| :--- | :--- | :--- | :--- | :--- |
| range | | | |

*** SEASONAL ACTIVITIES ***

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING/LAYING SEASON						
Hamas 1975	Apr	Apr-May	earl Jul	Minnesota	lake	
HATCHING						
Hamas 1975	May	June	late Jul	Minnesota	lake	
White 1936		earl Jun		Nova Scotia, CAN 1935	river	
FLEDGING						
White 1936			late Jul	Nova Scotia, CAN 1935	river	

FALL/BASIC MOLT

Bent 1940	Aug		Oct	NS	NS	Complete molt.
Hamas unpubl.	June	July	Aug	Minnesota	lake	Personal communication.
SPRING/ALTERNATE MOLT						
Bent 1940	Feb		Apr	NS	NS	First complete molt for young birds.

Reference	Begin	Peak	End	Location	Habitat	Notes
FALL MIGRATION						
Bent 1940			mid Oct	Maine	NS	Departures.
Bent 1940			late Oct	Alberta, CAN, MT, ND	NS	Departures.
Bent 1940			mid Nov	SD, NE, WI, NY	NS	Departures.
Bent 1940			late Nov	Kansas	NS	Departures; sometimes overwinters.
Bent 1940			mid Dec	$\begin{aligned} & \text { Mass., New } \\ & \text { Jersey } \end{aligned}$	NS	Departures.
Bent 1940			late Dec	Connecticut	NS	Departures.
Salyer \& Lagler 1946	Sept	Oct	Nov	Michigan	several	
White 1953		mid Sep	late Oct	Maritime Provinces, CAN	streams	
SPRING MIGRATION						
Bent 1940	late Feb			PA, RI, MO	NS	Beginning of arrivals.
Bent 1940	earl Mar			$\begin{aligned} & \text { s MI, IA, } \\ & \text { Ontario, CAN } \end{aligned}$	NS	Beginning of arrivals.
Bent 1940	mid Mar			NY, CT, IL, WI	NS	Beginning of arrivals.
Bent 1940	late Mar			VT, NH, MT	NS	Beginning of arrivals.
Bent 1940	earl Apr			Maine, Nova Scotia, CAN	NS	Beginning of arrivals.
Bent 1940	mid Apr			Quebec, CAN	NS	Beginning of arrivals.
Bent 1940	late Apr			Alberta, CAN	NS	Beginning of arrivals.
Hamas 1975	Mar	Apr	May	Minnesota	lake	
White 1953	earl Apr	late Apr		Maritime Provinces, CAN	streams	
White 1938	late Apr		earl May	Nova Scotia, CAN 1937	river	

Page A-202 is left blank.

Reference

bODY WEIGHT

Kale 1965	A	M	-	-	10.61	0.7	SD g
	A	F	-	-	9.41	1.1 SD	SD g
	J	B	-	-	9.44	1.6	SD 9
Kale 1965	A	M	-	WI	10.0	0.5	SD g
	A	M	-	SP	10.9	1.0 S	SD g
	A	F		WI	8.8	0.4 SD	SD g
	A	F		SP	9.2	0.3	SD g
Tintle (unpubl)	A	F	BR	-	10.6	0.99 S	SD
	A	M	BR	-	11.9	0.72 S	SD

BODY FAT

Kale 1965	A	M	-	-	1.03	0.23	SD	g
(griseus)	A	F	-	-	1.04	0.26	SD	g
	J	B	-	-	1.04	0.21	SD	g

egg weight
Kale 1965

Welter 1935
E - -
1.48
1.41
1.56
127 e Georgia
1958-61
New York 1931
salt marsh
freshwater marsh
Eggs weighed from two complete clutches.

NESTLING WEIGHT

Welter 1935

N	B	-	-	1.1	g	day	
N	B	-	-	2.1	g	day	3
N	B	-	-	4.7	g	day	5
N	B	-	-	6.8	9	day	7
N	B	-	-	10.0	9	day	9
N	B	-	-	10.6	g	day	11
N	B	-	-	11.3	g	day	

New York,
fresh marshes
Notes
Habitat
salt marsh
captive
Georgia
$1962-63$

New York

NS

e Georgia
salt marsh
34

e Georgia 1958-61	salt marsh
Georgia	
1962-63	captive
New York	NS
e Georgia $1962-63$	salt marsh

Resident population only.

Average of mean weights of the same captive adults in winter (September to March) and spring (March to September). Field collections also followed this trend

As cited in Dunning 1984.

Estimated percent of total body weight: adult males $=10 \%$; adult females and immatures $=11 \%$. Author non-migratory and does not t accumulate large amounts of fat

FLEDGING WEIGHT

Kale 1965	F	B	-	-	8.84	0.70	SD	g	
Leonard \& Picman	F	B	1	-	9.5	0.5	SD	g	day
1988	F	B	2	-	8.1	1.3	SD	g	day

1958-61
$\begin{array}{rl}8 & \text { Manitoba, CAN } \\ 29 & 1983-85\end{array}$
rackish marsh

LEAN (DRY) BODY WEIGHT

Kale 1965	A	M	-	-	2.60	0.2
	A	S	-	-	2.22	0.3
	SD					
	J	B	-	2.20	0.3	SD

METABOLIC RATE (OXYGEN)

Kale 1965	A	B	BA -	91.2	$102 / \mathrm{kg}-\mathrm{d}$
	A	B	NB -	112.8	$102 / \mathrm{kg}-\mathrm{d}$
	A	B	AC	169	$102 / \mathrm{kg}-\mathrm{d}$

metabolic rate (KCAL basis)

Kale 1965
A B FL -

880
90 SD kcal/kg-d

10 Georgia
 Georgia

lab

Kale 1965
$\begin{array}{lll}\mathrm{A} & \mathrm{B} & \mathrm{BA}- \\ \mathrm{A} & \text { B } & \text { NB }- \\ \text { A } & \text { B } & \text { AC }-\end{array}$
kcal/kg-d
$\mathrm{kcal} / \mathrm{kg}-\mathrm{d}$

7 Georgia
30 1962-63
lab
(1) Fed by males and females; (2 fed by females only. Nestling occur as early 11 days

Estimate of percent of total body weight: adult males $=25 \%$; adult females $=24 \%$; and juveniles $=23 \%$
(BA) basal; (NB) near basal; and (AC) light activity metabolism. Calculated by oxygen respirometry.
"Free-living": Determined by measuring daily food intake, excretory
respiration for active birds in small cages (173 weekly
determinations total). Daily intake $=1,155 \mathrm{kcal} / \mathrm{kg}-\mathrm{d}$ and excretory losses $=270 \mathrm{kcal} / \mathrm{kg}$-day.
(BA) basal; (NB) near basal; (AC) and light activity. Estimated from oxygen respirometry values.

FOOD INGESTION RATE

Kale 1965
A B FL -
1,155

130 SD kcal/kg-d
10 Georgia captive 1962-63

Georgia
$1962-63$
this study
A B FL -
0.67
g/g-day
this study
A $\quad \mathrm{F} \quad \mathrm{FL}-$
0.99
g/g-day
NS
NS
Measured food ingestion in the lab and caloric value of food; diet was live mealworms and a moist mixture of liver, fish, game bird food and Pablum. "Free-living"; see metabolic rate record for FL .
"Free-living"; estimated from "free-living" caloric intake rate measured by Kale 1965 (1,155 $\mathrm{kcal} / \mathrm{kg}-\mathrm{d})$. Assumed $5.62 \mathrm{kcal} / \mathrm{gram}$ insect diet (dry wt), a diet assimilation efficiency of 70%, and

Free-living; estimated from free-living metabolic rate estimate free-living metabolic rate estimate equation, which predicts 1,209 and $1,174 \mathrm{kcal} / \mathrm{kg}$-day for a 9.4 g female and a 10.6 g male marsh wren, respectively. Assumed 5.26 kcal/gram insect (dry wt), assimilation efficiency of 70%, and a 67\% water content for insects.

THERMONEUTRAL ZONE

Kale 1965	A -		degrees C		23	35		$\begin{aligned} & \text { Georgia } \\ & \text { 1962-63 } \end{aligned}$	lab	Calculated using an oxygen respirometer.
						*** DI	***			
Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Kale 1965	B B	Hymenoptera		17.3		12.4	195	e Georgia	salt marsh	Summer column = breeding season
		(Formicidae)		(10.2)		(7.4)		1958-61		(April - August) and winter column
		(Braconidae)		(3.7)		(1.2)			\% wet volume;	$=$ non-breeding season (September -
		Homoptera		13.0		40.1			stomach contents	March) . Fulgoridae $=$ Prokelisia
		(Fulgoridae)		(11.9)		(39.8)				marginata; Hemiptera = Ischnodemus
		Coleoptera		11.6		12.6				badius; Orthoptera = Orchelimum
		(Curculionidae)		(3.6)		(8.2)				fidicinum. Families with less than
		(Cleridae)		(3.5)		(8.9)				2% in both season not reported
		Lepidoptera (larvae and eggs)		$\begin{array}{r} 14.6 \\ (10.4) \end{array}$		$\begin{array}{r} 2.9 \\ (2.9) \end{array}$				here. Combination of fall and winter data.

Reference

CLUTCH SIZE

Kale 1965	-	-	-	-	4.5		
$\begin{aligned} & \text { Leonard \& Picman } \\ & 1987 \end{aligned}$	-	-	-	-	5.8	0.8	SE
```Leonard & Picman 1 9 8 7```	-	-	-	-	5.6	0.8	SE
Verner 1965		-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 5.2 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.14 \end{aligned}$	SD
Verner 1965	-	-	-	-	6.0	0.19	SD
Welter 1935	-	-	-	-	5		

## CLUTCHES/YEAR

Kale 1965	-	-	-	$1-2$	broods/yr
Verner 1965	-	-	-	$2-3$	broods $/ \mathrm{yr}$   $\mathrm{broods} / \mathrm{yr}$
Welter 1935	-	2	-	2	broods/yr

DAYS INCUBATION

Kale 1965	-	-	-	-	13.1	days
Verner 1965	-	-	-	-	15.1	days

35
e Georgia
$1958-59$
w Washington 1961-62
New York,
Minn. 1931
resh marsh

192	$\begin{aligned} & \text { e Georgia } \\ & 1958-61 \end{aligned}$	salt marsh	Completed clutches.
79	Manitoba, CAN 1983-84	homogenous cattail marsh	
96	$\begin{aligned} & \text { Manitoba, CAN } \\ & 1983-84 \end{aligned}$	cattail, bulrush, and phragmites marsh	
$\begin{aligned} & 32 \\ & 22 \end{aligned}$	$\begin{aligned} & \text { w Washington } \\ & 1961-62 \end{aligned}$	shallow mixed marsh	```Seattle sites. Year: (1) 1961; (2) 1962.```
25	$\begin{aligned} & \text { e Washington } \\ & 1962 \end{aligned}$	pond-margin marsh	Turnbull sites.
40	New York, Minn. 1931	fresh marsh	5 = "most frequent" number of eggs.
	$\begin{aligned} & \text { e Georgia } \\ & \text { 1958-61 } \end{aligned}$	salt marsh	Broods raised per year.
	$\begin{aligned} & \text { Washington } \\ & \text { 1961-62 } \end{aligned}$	fresh marshes	Number of broods raised per season at the: (1) Seattle study areas (western WA), and; (2) the Turnbull study areas (eastern WA).
	New York,   Minn. 1931	fresh marsh	Broods per year.
35	$\begin{aligned} & \text { e Georgia } \\ & 1958-59 \end{aligned}$	salt marsh	Days from last egg laid to last egg hatched.
	$\begin{aligned} & \text { w Washington } \\ & 1961-62 \end{aligned}$	shallow mixed marsh	Minimum in July; maximum in April.
	New York, Minn. 1931	fresh marsh	

## AGE AT FLEDGING

Kale 1965	-	B	-	-	12-13		days
Verner 1965	-	B	-	-	14		days
n fledge/active nest							
Kale 1965	-	-	-	-	1.9	1.2 SD	N/pair
Leonard \& Picman 1987	-	-	-	-	2.3	2.6 SD	N/act nest
Leonard \& Picman	-	-	-	-	3.4	3.4 SD	N/act nest

## n FLEDGE/SUCCESSFUL NEST

Leonard \& Picman	-	-	-	5.1	$1.2 \mathrm{SD} \mathrm{N} / \mathrm{suc}$ nest
1987					

## PERCENT NESTS SUCCESSFUL

Kale 1965	-	-	21	15
SD	$\%$	eggs suc		
Leonard \& Picman	-	-	-	60

Leonard \& Picman
60
\% nests su

10-11	13-15	e Georgia   $1958-61$	salt marsh
		Washington	fresh marshes
11-12	$15-16$	Wri-62	

From age of oldest nestlings
1961-62
fresh marshes

N FLEDGE/ACTIVE NEST
ard \& Picman

Leonard \& Picman
Males in this population are almost all monogamous; includes both firs and second broods. Minimum and maximum are yearly means. Sample size $=$ number of fledglings.

## 81 Manitoba, CAN homogeneous cattail

 1983-84marsh
95 Manitoba, CAN cattail, bulrush, 1983-84 and phragmites marsh

This site had denser vegetation and deeper water than the one above; this was thought to reduce losse due to predation.

37 Manitoba, CAN 1983-84

10 Manitoba, CAN
45 1983-85
71 Manitoba, CAN 1983-84
homogeneous cattail
marsh
fresh marsh
cattail, bulrush,
and phragmites marsh
salt marsh
fresh marshes

Percent of eggs laid that fledged young; $\mathrm{N}=$ number of eggs laid.
Percent fledging at least one young.

## Age at sexual maturity



ANNUAL MORTALITY

Kale 1965	N	B	-	-	79	\% lost/yr	785	$\begin{aligned} & \text { Georgia } \\ & \text { 1958-61 } \end{aligned}$	salt marsh
Kale 1965	$\begin{aligned} & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$			$\begin{aligned} & 32 \\ & 70 \end{aligned}$	$\begin{aligned} & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$		$\begin{aligned} & \text { e Georgia } \\ & \text { 1958-61 } \end{aligned}$	salt marsh
Verner 1971   (platensis)	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~J} \end{aligned}$	B	-	-	$\begin{aligned} & 81.6 \\ & 87.9 \end{aligned}$	$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$	$\begin{array}{r} 173 \\ 91 \end{array}$	$\begin{aligned} & \text { w Washington } \\ & 1967-68 \end{aligned}$	fresh marsh

## *** SEASONAL ACTIVITIES ***

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING/LAYING						
Kale 1965	Apr		mid Aug	$\begin{aligned} & \text { e Georgia } \\ & \text { 1958-61 } \end{aligned}$	salt marsh	Breeding starts when daily mean temperatures exceed 15 C . Includes first and second broods and renesting attempts (replacing lost nests).
Verner 1965	late Mar	Apr - May	mid Jul	$\begin{aligned} & \text { w Washington } \\ & 1961-62 \end{aligned}$	shallow mixed marsh	Seattle sites; up to three broods raised per season.
Verner 1965	mid Apr	May - Jun	earl Jul	$\begin{aligned} & \text { e Washington } \\ & 1962 \end{aligned}$	pond-margin marsh	Turnbull sites; up to two broods raised per season.
Welter 1935	late May	earl June		New York 1931	fresh marsh	First brood.
Welter 1935	late Jul		earl Aug	New York 1931	fresh marsh	Second brood.


Reference	Begin	Peak	End
HATCHING	mid Apr		earl Aug
Verner 1965	earl May	mid Jul	
Verner 1965			
FLEDGING	mid May	Jun - Jul	late Aug
Verner 1965	earl Jun	Jun - Jul	earl Aug

## FALL/BASIC MOLT

Welter 1935
earl Sep
Oct

## FALL MIGRATION

Welter 1935
Sept
late Oct

## SPRING MIGRATION

Verner 1965

Welter 1935

## mid Mar

Welter 1935
Apr
May 10
June

Apr
May 20-28
June
Tocation
Habita
Notes

## New York, Minn. 1931

fresh marsh
w Washington
$1961-62$
e Washington
1962

w Washington
$1961-62$
e Washington
1962
shallow mixed marsh
pond-margin marsh raised per season. Turnbull sites; up to two broods raised per season.
shallow mixed marsh
pond-margin marsh raised per season

Turnbull sites; up to two broods raised per season

Seattle sites; up to three broods

Adults molt the earliest, followed by juveniles from the first brood, and then juveniles from the second brood.

Departure from breeding grounds Most adults are gone by mid September; juveniles leave later.
e Washington 1961-62

New York,
Minn. 1931 Minn. 1931

New York,
Minn. 1931
fresh marsh
New York,
Minn. 1931
Minn. 1931
pond-margin marsh
fresh marsh
fresh marsh

Turnbull sites; Seattle sites had non-migratory populations.

Arrival of males; males tend to arrive before females.

Arrival of females.

Page A-212 is left blank.
***** AMERICAN ROBIN *****

## *** NORMALIZING AND CONTACT RATE FACTORS ***

## Reference

## BODY WEIGHT

Clench \& Leberman 1978	A	B	-	-	77.3	0.36 SE g
$\begin{aligned} & \text { Hazelton et al. } \\ & 1984 \end{aligned}$	-	-	-	SU	55	
Howell 1942	A	B	-	-	80.8	9

Jung 1992

A	M	-	SU	77.2	4.0	SD
A	F	SU	79.5	7.4	SD	9
J	B	SU	74.6	3.8	SD	g


72.0	84.5	9
70.0	93.0	7
70.0	84.0	19


63.5

401 Pennsylvania


6 Kansas 1981 NS
sc New York forest
$1937-38$
Wisconsin 1990
NS
19

10 Wisconsin NS

C New Jersey garden

California	vineyards
1982	
New York	woodlands

NESTLING WEIGHT
Howell 1942

			5.5
$N$	$B$	-	12.6
$N$	$B$	-	24.3
$N$	$B$	-	39.4
$N$	$B$	-	50.9
$N$	$B$	-	55.2
$N$	$B$	-	55.0

$\begin{array}{lll}g & \text { day } & 0 \\ \text { g } & \text { day } & 2 \\ \text { g } & \text { day } & 4 \\ \text { g } & \text { day } & 6 \\ \text { g } & \text { day } & 8 \\ \text { g } & \text { day } & 10 \\ \text { g } & \text { day } & 14\end{array}$
4.1
8.4
17.9
32.5
42.0
49.0
51.8
6.7
17.5
32.3
45.9
59.3
63.2
58.2

3	sc New York
5	$1937-38$
3	
3	
1	
9	
7	

forest

As cited in Dunning 1984 (collected in all seasons)

Age of birds not specified

Collected in late June through July. For 2 of the 7 adult females, weight at release rather than capture was used to determine the
mean - for one it was unavailable and for a second the value appeared to be a misprint (35.9 g).

Weight of post-breeding robins captured in June - November for radiotagging study.

Collected in August and September.
$\mathrm{NB}=$ during the non-breeding season; $B R=$ during the breeding season.

Day in units column is age of nestling; day 0 is hatch day. Most fledge by 13-14 days. Juveniles weeks of age.

Reference
Age Sex Cond Seas Mean SD/SE Units
N Location
Habitat
Notes

## EGG WEIGHT

Howell 1942
E
6.26

9
4.6
8.4

60 s
sc New York
1937-38
forest
18 n Maine 1971
forest
MEtABOLIC RATE (KCAL BASIS)
Hazelton et al.
344

- B EX -

1984
kcal/kg-d

## FOOD INGESTION RATE

Hazelton et al. - B - -
1984
$\begin{array}{lll}- & B-\quad- \\ - & B & -\end{array}$
$1.52 \quad 0.25 \mathrm{SD}$ g/g-day
.25 SD g/g-day
220 SD kcal/kg-
$1.22 \quad 1.96$
1,330
6 Kansas 1981
captive

Skorupa \& Hothem 1985
$\begin{array}{llll}\text { B } & \text { B } & 1 & \text { FA } \\ \text { B } & \text { B } & 2 & \text { FA }\end{array}$
0.75
0.89
0.62 SD g/g-day
$0.73 \mathrm{SD} \mathrm{g/g-day}$
45
45
$45 \quad 1982$

Kansas 1981
captive
0.89

## SURFACE AREA

1978
198.0

NS
(EX) Existence energy requirement based on Kendeigh's (1969) equation with robin weight of 55 g . Age not specified.

Fruit consumption during two day feeding trials. Average of means determined in tests of various pitted cherries, green grapes, purple grapes); 12 trials conducted on each pairing. Mean weight of robins $=55 \mathrm{~g}$, mean temperature during trials = 26 C. Water was provided ad libitum.

Season = Aug. and Sept.; (1)
consumption of grapes only; determined from assumption that gizzard samples contain 2 hours worth of foraging effort and foraging is possible 13 hours/day. Grapes comprised a mean of 85 aggregate \% wet weight of food. (2) food consumed was calculated from the grape only value. The aggregate \% of the rest of the diet was 11.5 \% animal and 4.5 \% other plants Mean weight of birds $=82.3 \mathrm{~g}$.

Beak surface area 3.1 cm 2 ; leg surface area 14.0 cm 2
*** DIET ***

Reference	Age Se	ex F	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Hamilton 1943			```plants (barberry) (sumac) (coral berry) animals (beetles) (millipedes) (ants) (cutworms) (sowbugs) (wireworms) (flies) (cockroaches)```	81.5 $(61.0)$ $(29.0$ $(4.5)$ 93.5 $(82.5)$ $(38.5)$ $(27.0)$ $(9.5)$ $(6.5)$ $(4.0)$ $(3.0)$ $(1.5)$				200	$\begin{aligned} & \text { c New York } \\ & 1942 \end{aligned}$	```lawns, hedges frequency of occurrence; fecal analyses```	Droppings collected from May 1 to June 12.
Hamilton 1940	B		plants   (choke cherry)   (blackberry)   (raspberry)   (pin cherry)   (rum cherry)   (Lonicera sp.)   (blue nightshade)   (shadberry)   Arthropoda   (Arachnida)   (Orthoptera)   (Coleoptera)   (Lepidoptera)   (Hymenoptera)   Mollusca   (Cochlicopidae)		$\begin{array}{r} 73.14 \\ (58.29) \\ (40.09) \\ (21.10) \\ (17.00) \\ (11.71) \\ (8.28) \\ (5.86) \\ (2.43) \\ 78.86 \\ (3.43) \\ (5.57) \\ (11.300) \\ (6.86) \\ (38.43) \\ 3.28 \\ (2.57) \end{array}$			700	$\begin{aligned} & \text { c New York } \\ & 1939 \end{aligned}$	```yard, hedgerow frequency of occurrence; fecal analyses```	Droppings collected from June 24-August 11. Lepidoptera found were chiefly cutworm larvae. Items found in less than $2 \%$ of the samples not included here.
Howell 1942	J	B	```earthworms sowbugs spiders millipedes short-horned grass- hoppers beetles lepidopteran larvae ants unident. animal grass (blades, stem, roots) mulberries honeysuckle family seeds unident. plants```		$\begin{array}{r} 15.0 \\ 1.7 \\ 2.3 \\ 3.1 \\ 4.9 \end{array}$   $11.6+$ 24.7 3.2 5.2 19.5 3.2 2.4 4.2			15	$\begin{aligned} & \text { sc New York } \\ & 1937 \end{aligned}$	```forest % wet weight; stomach contents```	Age of robins ranged from 3-35 days; collected from May 12 to July 10, 1937. Suggests that the presence of grass is accidental; it is carried along with prey. Items comprising less than $1 \%$ not included here.



Reference Age Sex Food type				Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Martin et al. 1951			```cedar - FW hackberry - F Russianolive - W sumac - W currant - Su serviceberry - Su```		$\begin{array}{r} 10-25 \\ 5-10 \\ 5-10 \\ 2-5 \\ 2-5 \\ 2-5 \end{array}$			113	$\begin{aligned} & \text { w US (excl. } \\ & \text { Pacific) } \end{aligned}$	NS   rough estimate of percent diet; stomach contents and observations	Plant foods only. All seasons together, but abbreviation following plant name notes what season that plant is important. Samples from: winter $=5$; spring $=$ 50; summer $=53$; fall $=5$. Location is western US, not including California, western Oregon, or western Washington. Species comprising less than $2 \%$ not included here.
Martin et al. 1951	B		```peppertree (CA) -WSp grape (cult.) - FW prune - FW cherry (cult. and wild) - SuF raspberry - Su apple - W```		$\begin{array}{r} 10-25 \\ 10-25 \\ 5-10 \\ 5-10 \\ 2-5 \\ 2-5 \end{array}$			114	CA, w OR, w WA	NS   rough estimate of percent diet; stomach contents and observations	Plant foods only. All seasons together, but abbreviation following plant name notes what season that plant is important. Samples from: winter $=41$; spring $=$ 41; summer $=13 ;$ fall $=19$. Species comprising less than $2 \%$ not included here.
Skorupa \& Hothem 1985	B	B	grapes   animal   other plants		$\begin{array}{r} 85 \\ 12 \\ 5 \end{array}$			45	$\begin{aligned} & \text { California } \\ & 1982 \end{aligned}$	vineyards   aggregate \% wet weight; gizzard contents	Mean of values from two vineyards. Aggregate \% wet weight $=$ the mean of the percent (by wet weight) that each food item was in stomach contents of each bird.
Wheelwright 1986	B	B	fruit invertebrates	$\begin{array}{r} 7 \\ 93 \end{array}$	$\begin{aligned} & 68 \\ & 32 \end{aligned}$	$\begin{array}{r} 92 \\ 8 \end{array}$	$\begin{aligned} & 83 \\ & 17 \end{aligned}$	1,260	$\begin{aligned} & \text { eastern US } \\ & 1885-1950 \end{aligned}$	```NS % by volume; stomach contents```	Based on data from the U.S. Biological Survey and U.S. Fish and Wildlife Service collected from 1885-1950. Percentage of diet that is soft-bodied invertebrates (e.g., earthworms) are underestimated by an unknown amount.
Wheelwright 1986	B	B	$\begin{aligned} & \text { fruit } \\ & \text { invertebrates } \end{aligned}$	$\begin{array}{r} 8 \\ 92 \end{array}$	$\begin{aligned} & 41 \\ & 59 \end{aligned}$	$\begin{aligned} & 76 \\ & 24 \end{aligned}$	$\begin{aligned} & 73 \\ & 27 \end{aligned}$	240	$\begin{aligned} & \text { central US } \\ & 1885-1950 \end{aligned}$	```NS % volume; stomach contents```	Based on data collected by the U.S. Biological Survey and the U.S. Fish and Wildlife Service from 1885-1950. Percentage of diet that is soft-bodied invertebrates (e.g., earthworms) are underestimated by an unknown amount.


Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Wheelwright 1986	B B	$\begin{aligned} & \text { fruit } \\ & \text { invertebrates } \end{aligned}$	$\begin{aligned} & 17 \\ & 83 \end{aligned}$	$\begin{aligned} & 29 \\ & 71 \end{aligned}$	$\begin{aligned} & 63 \\ & 37 \end{aligned}$	$\begin{aligned} & 70 \\ & 30 \end{aligned}$	436	$\begin{aligned} & \text { western US } \\ & 1885-1950 \end{aligned}$	```NS % volume; stomach contents```	Based on data collected by the U.S. Biological Survey and the U.S. Fish and Wildlife Service from 1855-1950. Percentage of diet that is soft-bodied invertebrates (e.g., earthworms) are underestimated by an unknown amount.
Wheelwright 1986	B B	Prunus   Cornus   Rhus   Rubus   Smilax   Vaccinium   Ilex   Morus   Celtis   Juniperus		23 7 7 6 6 4 4 4 3 3			1,260	$\begin{aligned} & \text { eastern US } \\ & 1885-1950 \end{aligned}$	```NS % frequency of occurrence (fruit only); stomach contents```	Ten most common fruit genera found in stomach contents (all seasons) based on data collected by the U.S. Biological Survey and U.S. Fish and Wildlife Service; see above record for eastern U.S. for distribution of \% of fruit eaten across seasons. Total of 50 genera found.
Wheelwright 1986	B B	Lepidoptera-unident.   Carabidae   Curculionidae   Scarabaeidae   Formicidae   Elateridae   Coleoptera-unident.   Arachnida   Pentatomidae		12 10 8 8 7 5 4 4 3			1,260	$\begin{aligned} & \text { eastern US } \\ & 1885-1950 \end{aligned}$	NS \% frequency of occurrence (invertebrates only); stomach contents	Ten most common invertebrate taxa found (all seasons) based on data collected by the U.S. Biological Survey and Fish and Wildlife Service; see above record for eastern U.S. for distribution of \% of invertebrates eaten across seasons. Soft bodied invertebrates (e.g. earthworms, caterpillars) are likely to be under-represented in this sample. Total of 91   invertebrate families found.

*** POPULATION DYNAMICS ***

Reference	Age S	Sex	Con	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
TERRITORY SIZE													
Butts 1927	A	B	-	SP	0.21		ha				NS	NS	As cited in Armstrong 1965.
Howell 1942	A	B	1	SU	0.11		ha				sc New York	forest	Nesting territory; some used
	A	B	2	SU	0.21		ha				1937-38		additional areas for feeding. (1)
													Dense population in coniferous
													forest; (2) sparse population in unspecified forested area.
Pitts 1984	A	B	-	SP	0.42		ha	0.12	0.84	62	$\begin{aligned} & \text { Tennessee } \\ & 1971-80 \end{aligned}$	suburban (campus)	"Territories" (occasionally left territory to feed).
Young 1951	A	B	-	SP	0.12		ha	0.04	0.24		$\begin{aligned} & \text { Wisconsin } \\ & 1947-49 \end{aligned}$	park-like	Breeding season territory; robins occasionally left to feed.

## FORAGING HOME RANGE

Howell 1942	A	B	-	SU	0.4		kn
Weatherhead \&	A	B	1	SU	0.15	0.021	SE ha
McRae 1990	A	B	2	SU	0.81	0.13	SE ha

POPULATION DENSITY

Howell 1942	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	2	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 8.6 \\ & 4.9 \end{aligned}$			pair/ha pair/ha
Knupp et al. 1977	A	B	-	SU	0.106	0.0078	SE	pair/ha
Pitts 1984	A	B	-	SP	1.98	0.48	SD	pair/ha
Young 1951	A	B	-	SP	5.51	0.75	SD	pair/ha

$41 \quad 0.61 \mathrm{SD}$

Howell 1942	-	-	-	-	3.41	0.61 SD	1	5	127	$\begin{aligned} & \text { sc New York } \\ & 1937-38 \end{aligned}$	forest
Klimstra \& Stieglitz 1957	-	-	-	-	3.17		1	5	29	Illinois 1955	suburban
Klimstra \& Stieglitz 1957	-	-	-	-	3.44		2	4	81	Iowa 1946-48	suburban \& rural
Knupp et al. 1977	-	-	-	-	3.16				38	n Maine 1971	forest
Young 1955	-	-	-	-	3.45	0.59 SD	1	5	146	$\begin{aligned} & \text { Wisconsin } \\ & 1947-49 \end{aligned}$	park

CLUTCHES/YEAR
Brackbill 1952
1.91
/yr
3
11 Maryland 1942-51

Foraging radius; robins found to travel "at least" this far "in search of food.
Foraging home range of adult: (1) feeding nestlings; (2) feeding fledglings.
(1) dense coniferous forest - 1 . ha total area; (2) unspecified forest type - 3.7 ha .

Conservative estimate of breeding density; mean of four study areas.

Size of habitat $=2.1 \mathrm{ha}$.

CLUTCH SIZE

-     -         - 

Clutch size per completed (i.e., incubated) nest.
Clutch size per completed (i.e., incubated) nest.

One pair attempted 3 broods, 2 attempted one and 9 pairs attempted 2. As cited in Henny 1972.

Reference	Age Sex	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Howell 1942	-	-	-	-	2		/yr	1	3		$\begin{aligned} & \text { sc New York } \\ & 1937-38 \end{aligned}$	forest	
Knupp et al. 1977	7 -	-	-	-			/yr		2		n Maine 1971	forest	Maximum possible due to the short breeding season in northern Maine.

## DAYS INCUBATION

Howell 1942	-	-	-	$12-14$	
Young 1955	-	-	-	12.5	0.14 SE days
AGE AT FLEDGING					

McRae 1990
13.4
. 13 SE days
n FLEDGE/BREEDING PAIR
Howell 1942
3.9

N/breed pr

Weatherhead \&
McRae 1990

-     - $\quad 1 \quad$ -
1.42
1.50

Young 1955
5.6

Young 1955
$0.35 \mathrm{SE} \mathrm{N/breed} \mathrm{pr}$

N/breed pr
$0.45 \mathrm{SE} \mathrm{N} / \mathrm{breed} \mathrm{pr}$

N/breed pr
$16 \begin{aligned} & \text { sc New York forest } \\ & 1937-39\end{aligned}$
57 Wisconsin park
1947-49
breeding season in northern Maine.

Also included data from Howell 1942 (Ithaca, NY) in calculations.

15
33 sc New York 1937-38

43 e Ontario deciduous fores
From hatching of first egg.

89 Wisconsin park

78 sc New York forest
1937-38

19 e Ontari
18 1987-88

Wisconsin
1957-49
deciduous forest
park

Estimate of young produced per pair over entire breeding season; pairs attempted to raise up to three broods. $N=$ number of nests.

Year (1) 1987 - a total of 32 nests found, but no second nest fledged young; (2) $1988-28$ nests found,
of 10 second nests fledged young.

Estimate of young produced per pair over entire breeding season.
n FLEDGE/SUCCESSFUL NEST

Howell 1942	-	-	-	-	2.4			N/suc nest
Knupp et al. 1977	-	-	-	-	2.5	0.15		N/suc nest
Weatherhead \&	-	-	1	-	2.5			N/suc nest
McRae 1990	-	-	2	-	3.0			N/suc nest
Young 1955	-	-	-	-	2.9			N/suc nest

\% nest suc
\% nest suc
124 sc New York
forest

31 Illinois 1955 suburban
Stieglitz 1957
93.5

Klimstra \&
Stieglitz 1957
Weatherhead \&
McRae 1990
$\begin{array}{lll}- & - \\ - & - \\ -\end{array}$
78
64
Young 1955
$\begin{array}{lll}-\quad-1 & - \\ - & -\end{array}$
58
49
\% hatc suc
\% hatc suc
42
51
81 Iowa 1946-48
uburban \& rura

32 e Ontario
28 1987-88
Wisconsin 1947-49
park, cemetery
hatching at least one egg; (2) fledging at least one young.
Year (1) 1987; (2) 1988.

Minimum and maximum of five study areas. $\mathrm{N}=$ number fledged.

Percent fledging at least one young from (1) first brood (1937-38); (2) second brood (1937).

Nest success defined as one or more eggs hatched.
Nest success defined as one or more eggs hatched. Mean of three years.
Year (1) 1987; (2) 1988.

Assumption used in population modeling study.

## ANNUAL MORTALITY

Farner 1949

53
\%/yr
1920-1940

N America
Henny 1972

0.5
$\% \mathrm{yr}$
$\% / \mathrm{yr}$
1946-65
NS

## LONGEVITY

Farner 1949

Farner 1945
years
9
US, Canada
1920-40

Calculated from band returns of birds banded as fledglings in 1920-40 in ne, nw, and central U.S and sw Canada. Annual mortality from Jan. 1 to next Jan. 1; (period from fledging to first Jan. 1 not included).

Adult value estimated by composite dynamic method based on birds banded from 1946-65. Juvenile value is from fledge to next breeding season based on assumption of stable populations with (1) the adult value; (2) 1 year olds try to breed; and (3) annual recruitment rate of 4.58-5.76 per pair.

Calculated (from Jan 1. of first year) as $1 / m-(1-p)$ where $m=$ mean annual mortality rate and $p=$ the mean period lived during the year in which death occurs.

Oldest robin recovered in banding study; estimates potential natural longevity to be at least 9 or 10 years.
*** SEASONAL ACTIVITIES ***

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING/LAYING						
Howell 1942	late Apr		earl May	$\begin{aligned} & \text { sc New York } \\ & 1937-39 \end{aligned}$	forest	First brood.
Howell 1942	late May		earl Jun	$\begin{aligned} & \text { sc New York } \\ & 1937-39 \end{aligned}$	forest	Second brood.
Howell 1942	earl Jun		mid Jul	$\begin{aligned} & \text { sc New York } \\ & 1937-39 \end{aligned}$	forest	Third brood.


Reference	Begin	Peak	End	Location	Habitat	Notes
Klimstra \& Stieglitz 1957	Apr 1	mid Apr	Apr 23	Illinois 1955	suburban	
Klimstra \& Stieglitz 1957	earl Apr	mid+ Apr		Iowa 1946-48	suburban \& rural	
Knupp et al. 1977	May 10	May 21-25	July 6	n Maine 1971	forest	
Pitts 1984		earl April		$\begin{aligned} & \text { Tennessee, } \\ & 1971-76 \end{aligned}$	suburban (campus)	
Young 1955	mid Apr		late Jul	$\begin{aligned} & \text { Wisconsin } \\ & 1947-49 \end{aligned}$	park-like area	Laying of up to three clutches.
HATCHING						
$\begin{aligned} & \text { James \& Shugart } \\ & 1974 \end{aligned}$	earl May			California, New Mex.	NS	
James \& Shugart 1974	late Apr			Ohio,   Missouri	NS	
$\begin{aligned} & \text { James \& Shugart } \\ & 1974 \end{aligned}$	earl May			VA, WV, NY, Wash. DC	NS	
$\begin{aligned} & \text { James \& Shugart } \\ & 1974 \end{aligned}$	mid May			VT, NH, CT	NS	
$\begin{aligned} & \text { James \& Shugart } \\ & 1974 \end{aligned}$	mid May			Montana	NS	
$\begin{aligned} & \text { James \& Shugart } \\ & 1974 \end{aligned}$	earl Jun			Colorado	NS	
$\begin{aligned} & \text { James \& Shugart } \\ & 1974 \end{aligned}$	mid Apr			Kentucky	NS	
  Stieglitz 1957	Apr 20	late Apr		Illinois 1955	suburban	
  Stieglitz 1957	Apr	earl May		Iowa 1946-48	suburban \& rural	
FLEDGING						
James \& Shugart   1974			earl Jul	California, New Mex.	NS	


Reference	Begin	Peak	End	Location	Habitat	Notes
James \& Shugart 1974			earl Aug	Kentucky	ns	
James \& Shugart   1974			earl Jul	VA, WV, Wash.   DC	NS	
James \& Shugart   1974			late Jul	мо, он, мт, Со	NS	
James \& Shugart 1974			mid Jul	vt, nh, Ст, nY	ns	
Knupp et al. 1977			earl Aug	n Maine 1971	forest	
Young 1951	mid May	earl Jun	mid Aug	$\begin{aligned} & \text { Wisconsin } \\ & 1947-49 \end{aligned}$	park, cemetery	Fledging of up to three broods per season.
FALL/bASIC Molt						
Bovitz 1990	Aug		Sept	New Jersey	ns	As cited in Morrison and Caccamise 1990.
Wheelwright 1986		Jul \& Aug		North America	NS	Robins undergo a complete molt.
fall migration						
Fuller 1977	mid Sept	mid Oct	earl Nov	Minnesota 1971-76	NS	Robins migrating through Minnesota.
Howell 1942			earl Nov	$\begin{aligned} & \text { sc New York } \\ & 1937-39 \end{aligned}$	forest	Last dates robins found in area.
SPring migration						
Howell 1942	Feb		Mar	$\begin{aligned} & \text { sc New York } \\ & 1937-39 \end{aligned}$	forest	Arrival of breeding robins.
Knupp et al. 1977		earl Apr		$n$ Maine 1971	forest	Arrival of breeding robins.
Young 1951	Mar 11		mid Apr	$\begin{aligned} & \text { Wisconsin } \\ & 1947-49 \end{aligned}$	park-like area	Arrival of males.
Young 1951	Mar 26		mid Apr	$\begin{aligned} & \text { Wisconsin } \\ & 1947-49 \end{aligned}$	park-like area	Arrival of females.

## A-4. TABLES FOR MAMMALS

Page A-226 is left blank.
***** SHORT-TAILED SHREW *****

## *** NORMALIZING AND CONTACT RATE FACTORS ***



## METABOLIC RATE (OXYGEN)

Buckner 1964	A	B	ST	-	110.4
Deavers \& Hudson 1981	A	-	BA	-	77.3
Martinsen 1969	A	-	BA	-	52.3
Morrison 1948	A	-	AD	-	127
Neal \& Lustick   1973	A	-	BA	-	76.3
Pearson 1947	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	-	$\begin{aligned} & \text { BA } \\ & \text { AD } \end{aligned}$	-	$\begin{array}{r} 82 \\ 125 \end{array}$
Platt 1974	A	-	BA	-	62.4
Randolph 1973	- - - - -	-   -   -   -   -	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	WI WI WI SU SU SU	$\begin{aligned} & 124.8 \\ & 147.8 \\ & 202.3 \\ & 126.5 \\ & 151.2 \\ & 207.1 \end{aligned}$

19.2 SD 102/kg-day
100.8
129.6

11 Ottawa, CAN
$1 a b$
7 New York
lab

NS
lab

102/kg-day
NS

02/kg-day
80
84
150
Pennsylvania

## METABOLIC RATE (KCAL BASIS)

Buckner 1964
482 +/- 48 SD kcal/kg-d
11 Ottawa, CAN
lab

9-14 C below the thermoneutral zone (TNZ).

Temperature $=38.3$ degrees C ; mean body weight $=20.5 \mathrm{~g} . \mathrm{N}=$ number 0 animals tested (total test runs $=$ 14).

As cited in Deavers and Hudson 1981. Mean body weight $=19.0 \mathrm{~g}$.
(AD) = average daily metabolic rate. Eight runs for 4 animals (avg weight 219). Room temp. ranged between 15-25 C.

As cited in Deavers and Hudson 1981. Temperature $=38.0$ degrees C; mean body weight $=20.3 \mathrm{~g}$.

Mean weight of shrews $=21.2 \mathrm{~g}$ Test conditions: basal - food withheld for 15 hours previous to test, temperature $=27$ degrees C ; at 25-30 degrees C, food and water both available. As

As cited in Deavers and Hudson 1981. Temperature $=37.0$ degrees $C$ mean body weight $=21.0 \mathrm{~g}$.

Subject to different thermal radiation (in cal/cm2-min): (1) Equivalent temperatures: (1) + 20C (2) 0 C ; (3) -20 C .
"Standard" metabolism"; however measured at 9 to 14 degrees C, thermoneutral zone. Value labelled SD is a 95\% confidence interval.

Reference	Age S	Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habit
$\begin{aligned} & \text { Morrison et al. } \\ & 1957 \end{aligned}$	A	B	AD	-	680		kcal/kg-d				Wisconsin 1952	lab
Pearson 1947	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	-	$\begin{aligned} & \mathrm{BA} \\ & \text { AD } \end{aligned}$	-	$\begin{aligned} & 390 \\ & 600 \end{aligned}$		$\begin{aligned} & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \end{aligned}$			$\begin{aligned} & 2 \\ & 5 \end{aligned}$	Pennsylvania	lab
FOOD INGESTION RATE												
Barrett \& Stuek $1976$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { AD } \\ & \text { AD } \\ & \text { AD } \\ & \text { AD } \end{aligned}$	$\begin{aligned} & \text { FA } \\ & \text { FA } \\ & \text { FA } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 0.49 \\ & 10.9 \\ & 7.95 \\ & 18.5 \end{aligned}$	$\begin{array}{rl} 0.13 & \mathrm{SD} \\ 0.17 & \mathrm{SD} \\ 3.8 & \mathrm{SD} \end{array}$	$\begin{aligned} & \text { g/g-day } \\ & \mathrm{kcal/g} \text {-day } \\ & \mathrm{g} / \mathrm{day} \\ & \mathrm{kcal} / \mathrm{day} \end{aligned}$			$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	Oxford, Ohio 1972	lab
```Morrison et al. 1 9 5 7```	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 0.43 \\ & 0.62 \end{aligned}$		$\begin{aligned} & \text { g/g-day } \\ & \text { g/g-day } \end{aligned}$			$\begin{aligned} & 22 \\ & 94 \end{aligned}$	Wisconsin 1952	lab
```Morrison et al. 1957```	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 0.52 \\ & 0.77 \end{aligned}$		$\begin{aligned} & g / g-d a y \\ & g / g-\text { day } \end{aligned}$			$\begin{array}{r} 3 \\ 11 \end{array}$	Wisconsin 1952	lab
$\begin{aligned} & \text { Morrison et al. } \\ & 1957 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 0.55 \\ & 0.96 \end{aligned}$		$\begin{aligned} & g / g-d a y \\ & g / g-\text { day } \end{aligned}$			$\begin{array}{r} 2 \\ 17 \end{array}$	Wisconsin 1952	lab
Randolph 1973	-	-	-	-	4.493	0.036 SE	kcal/12 hr				Ontario, CAN	lab
Richardson 1973	A	M	-	-	0.541		g/g-day			10	Virginia	lab

AD = average daily metabolic rate. Based on average consumption rate of liver at 25 degrees C 10.56 g/g-day) and $1.22 \mathrm{kcal} / \mathrm{g}$ wet weigh for liver.
Calculated based on oxygen
consumption. Mean weight of shrews $=21.2 \mathrm{~g}$. Test conditions: basal food withheld for 15 hours previous C; average daily (AD) - 24 hour tests at 25-30 degrees $C$, food and water both available.

Diet of mealworms, equivalent to $2.33 \mathrm{kcal} / \mathrm{g}$ live weight. Shrew assimilation efficiency for mealworm

Animals fed beef liver; temperatur $=25$ degrees C. Weight of tested seven animals averaging $21 \mathrm{~g} . \mathrm{N}=$ number of trials.

Animals fed beef liver; temperature $=5$ degrees C. Weight of tested animals (1) one animal at 28 g ; (2) seven animals averaging $21 \mathrm{~g} . \mathrm{N}=$ number of trials.

Animals fed newborn rats;
temperature $=25$ degrees $C$. Weight of tested animals (1) one animal at 28 g ; (2) seven animals averaging $21 \mathrm{~g} . \mathrm{N}=$ number of trials.
Measured in units of kcal/12 hrs Minimum estimate.

In aquaria with tunnels; food type not described.

Reference
Age Sex Cond Seas Mean SD/SE Units
Minimum Maximum
N Location
Habitat
Notes

## WATER INGESTION RATE

Chew 1951
A B - - 0.223
g/g-day
5 Illinois
lab
Studied at 19 degrees C, 54.5\% relative humidity. Shrews fed raw ground horsemeat.

## SURFACE AREA

Pearson 1947	A B	-	54	cm2
Randolph 1973	-	-	70	cm2

cm2

Pennsylvania	lab
Ontario, CAN	NS

Estimate for 21.2 g shrew.
Assumed value; source not identified.

## THERMONEUTRAL ZONE



Habitat - Measure Notes

Reference A	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Hamilton 1941	A B	insects		77.6			460	$\begin{aligned} & \text { e US, mostly } \\ & \text { NY } \end{aligned}$	```NS % frequency of occurrence; stomach contents```	All seasons combined.
		annelids		41.8						
		vegetable matter		17.1						
		centipedes		7.4						
		snails		5.4						
		small mammals		5.2						
		crustacea		3.7						
		undetermined		2.4						
Whitaker \& Ferraro	- B B	earthworms		31.4			221	New York	NS	Season June through October.
1963		slugs and snails		27.1				1960-61		
		misc animals		8.1					\% volume;	
		Endogone (fungi)		7.7					stomach contents	
		beetles		5.9						
		misc vegetation		5.4						
		lepidopteran larvae chilopoda		4.3 1.8						
		other								



Reference	Age Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Getz 1989		$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { WI } \\ & \text { SP } \\ & \text { SU } \\ & \text { FA } \end{aligned}$	$\begin{array}{r} 2.3 \\ 5.9 \\ 11.4 \\ 10.0 \end{array}$		$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \\ & \text { N/ha } \\ & \text { N/ha } \end{aligned}$				$\begin{aligned} & \text { ec Illinois } \\ & 1972-85 \end{aligned}$	alfalfa	Generalized annual population cycle for alfalfa habitat (estimated from figure). Average for (1) Jan. Feb., Mar.; (2) Apr., May, June; (3) July, Aug., Sept., and; (4) Oct., Nov., Dec.
Jackson 1961;   Williams 1936	- -	-	-			N/ha	1.6	121		Wisconsin	beech-maple	As cited in George et al. 1986.
LItter SIze												
Blus 1971	- -	-	-	4.7	0.2 SE		1	8	80	$\begin{aligned} & \text { Maryland } \\ & 1966-68 \end{aligned}$	lab	Count of young; considered minimal as some young may have been lost before they were counted.
Buckner 1966	- -	-	-	6.3			5	8	8	$\begin{aligned} & \text { Manitoba } \\ & 1952-57 \end{aligned}$	tamarack bog	Season is spring/summer; based on embryo count.
French 1984	- -	-	-	5.4			2	8	18	$\begin{aligned} & \text { Indiana } \\ & 1976-79 \end{aligned}$	NS	Season was February to September; based on embryo count.
Hamilton 1929	- -	-	-	6-7						NS	NS	As cited in George et al. 1986.
Pearson 1944	- -	-	-	4.5						NS	NS	As cited in George et al. 1986.
days gestation												
Blus 1971	- -	-	-	21-22		days				Maryland 1966-68	lab	Average period from pairing to parturition; includes a 2-3 day period during which ovulation is induced.
Hamilton 1929; Pearson 1944	- -	-	-	21-22		days				NS	NS	As cited in George et al. 1986.
Age at weaning												
Blus 1971	-	-	-	25-30		days				$\begin{aligned} & \text { Maryland } \\ & 1966-68 \end{aligned}$	lab	
Age at sexual maturity												
Blus 1971	$\begin{aligned} & -\quad M \\ & -\quad F \end{aligned}$	-	-			days days	$\begin{aligned} & 65 \\ & 45 \end{aligned}$			$\begin{aligned} & \text { Maryland } \\ & 1966-68 \end{aligned}$	lab	```Approximate youngest ages of successful breeding. Female gave birth to a litter at the age of 65 days.```


Reference	Age S	Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Buckner 1966	-	-	-	-	10		months				$\begin{aligned} & \text { Manitoba CAN } \\ & 1952-57 \end{aligned}$	tamarack bog	Age at which breeding began.
Dapson 1968	-	$\begin{aligned} & F \\ & \mathrm{M} \end{aligned}$	-	-			months months	$\begin{aligned} & 1-2 \\ & 1-2 \end{aligned}$			$\begin{aligned} & \text { c New York } \\ & 1960^{\prime} \mathrm{s} \end{aligned}$	woods, field	
French 1984	-	F	-	-	$<1$		yr				Indiana	NS	
French 1984	-	F	-	-			months	$<4$			$\begin{aligned} & \text { Indiana } \\ & 1976-79 \end{aligned}$	NS	Evidence of sexual maturity found in individuals in age class 1 (approx. $0-4$ months), and in age class 2 (4 to 8 months).
Pearson 1944	-	M	-	-			days	83			NS	NS	As cited in George et al. 1986.
ANNUAL MORTALITY													
Barbehenn 1958; Gottschang 1965; and Jackson 1961	-	-	-	WI			\%/yr		90		Sw OH, WI		As cited in George et al. 1986.
Blus 1971	- - - -	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$		- - - -	$\begin{aligned} & 27.4 \\ & 40.5 \\ & 54.2 \\ & 74.1 \\ & 91.3 \end{aligned}$		\%/weaning   $\% / 3$ months   \%/6 months   \%/9 months   \%/year			$\begin{array}{r} 383 \\ 321 \\ 203 \\ 112 \\ 46 \end{array}$	$\begin{aligned} & \text { Maryland } \\ & 1966-68 \end{aligned}$	lab	Mortality of captive-born shrews from birth. Weaning takes place at 25-30 days.
Pearson 1945	B	B	-	-	93		\%/yr				MD, PA, NY, MA	various	
LONGEVITY													
Blus 1971	-	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 4.6 \\ & 4.4 \end{aligned}$		months months				$\begin{aligned} & \text { Maryland } \\ & 1966-68 \end{aligned}$	lab	Mean longevity of animals that survived to weaning (born and weaned in captivity); considered a "minimal" estimate by the author.
Dapson 1968	-	B	-	-			months		20		$\begin{aligned} & \text { c New York } \\ & 1960 \text { 's } \end{aligned}$	woods, field	Approximate maximum age for wild Blarina sp.; few survive second winter.
Pearson 1945	-	B	-	-			years		2		MD, PA, NY, MA	various	Author notes that by two years a wild shrew would probably wear out its teeth and be unable to feed (only a small fraction survive long enough to have badly worn teeth).
Pearson 1945	-	$\begin{aligned} & \mathrm{F} \\ & \mathrm{M} \end{aligned}$	-	-			months months		$\begin{aligned} & 30 \\ & 33 \end{aligned}$	1	MD, PA, NY, MA	lab	Female was wild-caught, male was captive-born.

*** SEASONAL ACTIVITIES ***

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING						
Blair 1940		spring; fall		$\begin{aligned} & \text { s Michigan } \\ & 1938 \end{aligned}$	bluegrass	Author suggests two peaks; one in spring and the other in early fall Based on own data and review of papers from 1920 - late 1930's.
Buckner 1966	earl May		mid Aug	$\begin{aligned} & \text { se Manitoba } \\ & 1952-57 \end{aligned}$	tamarack bog	
French 1984	Feb 29	Apr-May	Sept 11	$\begin{aligned} & \text { Indiana } \\ & 1976-79 \end{aligned}$	NS	Latest and earliest dates of pregnancy in wild trapped shrews.
PARTURITION						
Dapson 1968		May-June		$\begin{aligned} & \text { c New York } \\ & 1960^{\prime} \mathrm{s} \end{aligned}$	woods, field	Based on an investigation of tooth wear; some also born in March and January - December.
FALL/BASIC MOLT						
$\begin{aligned} & \text { Findley \& Jones } \\ & 1956 \end{aligned}$	Oct		Nov	NS	NS	As cited in George et al. 1986.
SPRING/ALTERNATE MOLT						
$\begin{aligned} & \text { Findley \& Jones } \\ & 1956 \end{aligned}$	Feb		July	NS	NS	As cited in George et al. 1986.

***** RED FOX *****
*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference Ag	Age S	Sex	Con	d Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
BODY WEIGHT														
Allen \& Gulke 1981	1 J	M	1	-	5,006	608	SD	9			317	e N Dakota	NS	Age: (1) 0.5 years; (2) 1.5 years;
	A	M	2	-	5,361	521	SD	9			30	1970-78		(3) 2.5 years; (4) 3.5 years; (5) >
	A	M	3	-	5,357	579	SD	9			48			3.5 years. Estimated from skinned
	A	M	4	-	5,597	649	SD	9			20			carcass weights and average ratio
	A	M	5	-	5,716	1,067	SD	9			18			of skinned to unskinned weights of 0.87 .
Allen \& Gulke 1981	1 J	F	1	-	4,256	549	SD	9			250	e N Dakota	NS	Age: (1) 0.5 years; (2) 1.5 years;
	A	F	2	-	4,263	566	SD	9			45	1970-78		(3) 2.5 years; (4) 3.5 years; (5) >
	A	F	3	-	4,529	457	SD	9			36			3.5 years. Estimated from skinned
	A	F	4	-	4,611	647	SD	9			15			carcass weights and average ratio
	A	F	5	-	4,769	678	SD	9			16			of skinned to unskinned weights of 0.87 .
Hoffman \&Kirkpatrick 1954	A	F	-	WI	4,213		SE	9	3,360	5,680	52	Indiana	various	Weights of animals collected at
	A	M	-	WI	5,253		SE	9	3,980	6,090	47	1947-49		bounty stations.
$\begin{aligned} & \text { Samuel \& Nelson } \\ & 1982 \end{aligned}$	A	-	-	-				g	3,000	7,000		NS	NS	Summary of literature reviewed.
Sargeant 1978	A	M	-	SP	4,750	410	SD	g	4,370	5,430	5	e N Dakota	lab	
	A	F	-	SP	4,680	167	SD	g	4,430	4,850	5	1970-74		
Storm et al. 1976	A	M	-	FA	4,822	81		9	4,131	5,675	19	nw Iowa	farm and woods	Juveniles approximately 8 to 9
	J	M		FA	4,646			9	3,632	5,811	87	1968-69		months old.
	$\stackrel{\text { A }}{ }$	F		FA FA	3,938 3,724	79 39	$\begin{aligned} & \text { SE } \\ & \text { SE } \end{aligned}$	9 9	2,951 2,951	4,585 4,540	22 68			
Storm et al. 1976	A	M	-	SP	5,250	179	SE	9	4,540	7,037	14	nw Illinois	farm and woods	Juveniles approximately 8 to 9
	J	M	-	SP	4,818	93	SE	9	3,859	6,129	32	1962, 67		months old.
	A	F	-	SP	4,128	111	SE	g	3,269	4,722	13			
	J	F	-	SP	3,986	52	SE	9	3,632	4,494	24			
  Barrett 1973	J	B	-	-	4,200			9			4	Ohio	captive	Age 23 weeks.
Voigt 1987	A	M	-	FA	4,100			g			37	s Ontario, CAN	NS	
	A	F	-	FA	3,400	70	SE	9			37			
	J	M	-	FA	3,900	30	SE	9			162			
	J	F		FA	3,300	30	SE	9			139			


Reference Age		ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
NEONATE WEIGHT													
Sheldon 1949	N	B	-	-	100		9				New York	NS	Approximate. As cited in Hoffman and Kirkpatrick 1954.
Storm et al. 1976	N	B	-	-			9	71	120		Illinois, Iowa 1966-70	farm and woods	
Storm \& Ables 1966	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 110.6 \\ & 101.5 \end{aligned}$	$\begin{array}{r} 8.9 \mathrm{SD} \\ 12 \mathrm{SD} \end{array}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & 94 \\ & 71 \end{aligned}$	$\begin{aligned} & 120 \\ & 109 \end{aligned}$	7 9	Illinois, Wisconsin	NS (wild)	(1) One litter from Illinois; (2) one litter from Wisconsin.
PUP GROWTH RATE													
Sargeant 1978	P	B	-	-	15.9		g/day			10	$\begin{aligned} & \text { e N Dakota } \\ & 1970-74 \end{aligned}$	lab	From birth to weaning at 4.5 weeks of age. Estimated from unimpeded growth curve.
Storm et al. 1976	P	B	-	-	23		g/day			392	$\begin{aligned} & \text { nw Illinois } \\ & 1962,67 \end{aligned}$	farm and woods	From weaning to approximately 7 months of age.
  Barrett 1973	P	B	-	-	25		g/day			4	NS	lab	From approximately 14 to 22 weeks of age.
WEANING WEIGHT													
Sargeant 1978	-	-	-	-	700		9				North Dakota	NS	Value is approximate.
METABOLIC RATE (KCAL BASIS)													
  Barrett 1973	J	B	-	SU	193	56 SD	kcal/kg-d			4	Ohio 1971	lab	
FOOD INGEStIon Rate													
Sargeant 1978	J	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\begin{aligned} & 0.16 \\ & 0.12 \\ & 0.11 \end{aligned}$		$\begin{aligned} & \text { g/g-day } \\ & \text { g/g-day } \\ & \text { g/g-day } \end{aligned}$			4 4 4	e N Dakota	lab	Ages (1) 5-8 weeks;   (2) 9-12 weeks;   (3) 13-24 weeks.
Sargeant 1978	A	B	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.14 \end{aligned}$		g/g-day   g/g-day			$\begin{aligned} & 10 \\ & 10 \end{aligned}$	e N Dakota	captive	(1) Pair before whelping; (2) pair after whelping.
Sargeant 1978	A	B	NB	-	0.069		g/g-day			10	e N Dakota	captive	Nonbreeding.
  Barrett 1973	J	B		SU	223	71 SD	kcal/kg-d				NS	lab	Units are in kcal ingested (not assimilated or metabolized) /kg body weight-day.

*** DIET ***


Reference	Age Sex	Sex	Food type	Spring	Summer	Fall	Winter		Location	Habitat - Measure	Notes
$\begin{aligned} & \text { Green \& Flinders } \\ & 1981 \end{aligned}$	A	B	rabbit   rodent   sheep   birds   insects   plants   (sample size)		$\begin{array}{r} 32 \\ 82 \\ 17 \\ 10 \\ 21 \\ 34 \\ (87) \end{array}$		$\begin{array}{r} 32 \\ 71 \\ 34 \\ 13 \\ 18 \\ 34 \\ (38) \end{array}$	38-37	$\begin{aligned} & \text { se Idaho } \\ & 1976-77 \end{aligned}$	```sagebrush % occurrence in scats```	
  Bissonette 1983		B	snowshoe hare deer   small mammals   birds   vegetation				$\begin{array}{r} 82.2 \\ 17.7 \\ 9.6 \\ 11.3 \\ 3.2 \end{array}$		$\begin{aligned} & \text { e Maine } \\ & \text { 1982-83 } \end{aligned}$	```deep snow cover/90cm % occurrence in scats```	
Halpin \& Bissonette 1983	B	B	snowshoe hare deer   small mammals   birds   vegetation				$\begin{array}{r} 56.0 \\ 9.1 \\ 36.3 \\ 11.3 \\ 7.8 \end{array}$		$\begin{aligned} & \text { e Maine } \\ & \text { 1982-88 } \end{aligned}$	```shallow snow/31 cm % occurrence in scats```	
Hamilton 1935	B	B	meadow vole \& mice cottontail rabbit grasses   dirt, sticks   carrion   fruit   insects   poultry   squirrels   porcupine   game birds   small birds   shrews   worms   grains and nuts				$\begin{array}{r} 29.3 \\ 22.1 \\ 13.9 \\ 6.2 \\ 8.1 \\ 5.3 \\ 3.4 \\ 3.1 \\ 2.9 \\ 1.8 \\ 1.4 \\ 0.5 \\ 0.8 \\ 0.8 \\ 0.4 \end{array}$	206	$\begin{aligned} & \text { New York } \\ & 1927-34 \end{aligned}$	```NS % bulk; stomach contents```	Most of the rodents consumed were meadow voles. Carrion included dead cattle, horse, or sheep from slaughter houses. Apple was the most frequent fruit consumed. Insects included grasshoppers, crickets, and beetles. Foxes collected in late fall and early winter.
Hamilton 1935	B	B	```meadow voles & mice fruit (apple & wild cherries) grasses rabbits poultry carrion corn other```			33 32 14 8 6 5 4 $<4$		66	$\begin{aligned} & \text { VT, NH, MA } \\ & 1913-32 \end{aligned}$	NS   Number of times   present; stomach   contents	Data from Elton Clark, presented by Hamilton. Season is fall and winter.


Reference	Age Sex F	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Hamilton 1935	B B	```woodchuck rabbits poultry game birds moles \& shrews muskrat crow small birds squirrels insects reptiles other```		$\begin{array}{r} 33+ \\ 22+ \\ 13 \\ 6 \\ 5 \\ 5+ \\ 3+ \\ 8 \\ 4 \\ \operatorname{man} y \\ 5 \\ <\quad 3 \end{array}$			31	NY \& New England	NS   Number of items   found in fox dens	
Hockman \& Chapman 1983	$n \quad B \quad B$	meadow vole   eastern cottontail   white-footed mice   unclassified mammal   raccoon   gray squirrel   norway rat   white-tailed deer   domestic cow   striped skunk   oppossum   unclassified bird   domestic chicken   ring-necked pheasant   pigeon   blackbird   starling   mallard duck   persimmon   corn   apple   black cherry   grasshopper/cricket   butterfly/moth larva   other/unspecified				$\begin{array}{r} 11.3 \\ 30.7 \\ 1.3 \\ 4.8 \\ 4.9 \\ 2.8 \\ 2.2 \\ 2.5 \\ 4.8 \\ 1.5 \\ 1.4 \\ 0.8 \\ 6.6 \\ 0.8 \\ 1.4 \\ 1.2 \\ 0.7 \\ 0.5 \\ 11.4 \\ 1.3 \\ 0.7 \\ 0.7 \\ 0.5 \\ 0.4 \\ 4.2 \end{array}$	128	$\begin{aligned} & \text { Maryland } \\ & 1977-78 \end{aligned}$	Piedmont and   Appalachian Province   \% wet weight;   stomach contents	Data from fall and winter and both Provinces combined.
Hockman \& Chapman 1983	$\text { B } \quad \text { B }$	```mammal bird plant insect other/unspecified```				$\begin{array}{r} 81.4 \\ 4.8 \\ 7.0 \\ 2.8 \\ 4.0 \end{array}$		$\begin{aligned} & \text { Maryland } \\ & \text { 1977-78 } \end{aligned}$	```Appalachian Province % wet weight; stomach contents```	Data from fall and winter combined. Summary for Province.
Hockman \& Chapman 1983	$\text { B } \quad \text { B }$	```mammal bird plant insect other/unspecified```				$\begin{array}{r} 67.0 \\ 9.8 \\ 15.6 \\ 0.1 \\ 7.5 \end{array}$		$\begin{aligned} & \text { Maryland } \\ & 1977-78 \end{aligned}$	Piedmont Province   \% wet weight;   stomach contents	Data from fall and winter combined. Summary for Province.




Referenc	ce Ag	e Sex	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Pils \& M	Martin 1978			small mammals cottontails   unknown mammals   pig   domestic fowl   pheasant   unknown birds   plants (e.g. grass \& corn)				$\begin{array}{r} 2 \\ 66 \\ 10 \\ 1 \\ 9 \\ 8 \\ 4 \\ \mathrm{TR} \end{array}$	85	$\begin{aligned} & \text { s Wisconsin } \\ & 1972-75 \end{aligned}$	```various estimated % wet weight; stomach contents```	Season not specified. 17 of samples were empty stomachs. Foxes collected off the Waterloo Study Area. Most collected in winter. In the Pils and Martin (1978) study, data are reported as \% biomass; we assume this is equivalent to \% wet weight. $T R=$ trace.
Pils \& M	Martin 1978	B	B	small mammals   cottontails   opossums   skunk   domestic fowl   pheasant   unknown birds   plants (e.g. grass, corn)   other/unspecified				$\begin{array}{r} 4 \\ 49 \\ 11 \\ 7 \\ 15 \\ 3 \\ 8 \\ \mathrm{TR} \\ \\ \hline \end{array}$	47	$\begin{aligned} & \text { s Wisconsin } \\ & 1972-75 \end{aligned}$	```various estimated % wet weight; stomach contents```	Season not specified. 13 of sampled stomachs were empty. Foxes collected on the Waterloo Study Area. Most collected in winter. TR = trace.
Pils \& M	Martin 1978	B	B	```cottontail muskrat fox squirrel unknown mammal domestic rabbit opossum raccoon pig ring-necked pheasant mallard duck domestic fowl chicken duck goose other/unspecified```	$\begin{array}{r} 34.6 \\ 5.3 \\ 2.1 \\ 2.1 \\ 5.4 \\ 3.1 \\ 6.9 \\ 1.4 \\ 17.2 \\ 1.0 \\ 11.3 \\ 3.2 \\ 1.4 \\ 5.0 \end{array}$				58	$\begin{aligned} & \text { s Wisconsin } \\ & 1972-75 \end{aligned}$	```various estimated % wet weight of prey found in dens```	Data from March to July.
Pils \& M	Martin 1978	B	B	small mammals   cottontail   pheasant   unknown passerine   great horned owl   mourning dove				$\begin{array}{r} 4.5 \\ 80.8 \\ 6.5 \\ 0.8 \\ 6.7 \\ 0.7 \end{array}$	47	$\begin{aligned} & \text { s Wisconsin } \\ & 1972-75 \end{aligned}$	```farm, pasture, woods - estimated % wet weight; winter kills```	Percent biomass based on winter tracking of red foxes--frequency of kills.


Reference Age Sex Food type				Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Pils \& Martin 1978	B	B	cottontail	37	21	72	57.5	-	$\begin{aligned} & \text { s Wisconsin } \\ & 1972-75 \end{aligned}$	various $-$ estimated \% wet weight; summary of den, scat, stomach content and winter tracking data	Sample sizes: 132 stomachs; 1,020 scat samples; 58 dens; and 182.6 km of tracking.
			skunk	-			3.5				
			opossum	-	-	-	3.5				
			raccoon	5	-	-	7.5				
			unknown mammal	16	44	12	7				
			ring-necked pheasant	10	2	4	3				
			domestic fowl	12	5	4	5				
			unknown small mammal	-	2	1	2				
			muskrat	3	-	-	-				
			other birds	11	-	-	-				
			other	6	26	7	11				
Powell \& Case 1982	B	B	rabbits				44.4	188	$\begin{aligned} & \text { Nebraska } \\ & 1978-79 \end{aligned}$	```statewide % wet volume; stomach contents```	Summary of study below.
			small mammals pheasant				33 8.4				
			other birds				11.2				
			misc.				2.0				
			not accounted for				1.0				
Powell \& Case 1982	B	B	eastern cottontail				44.0	188	$\begin{aligned} & \text { Nebraska } \\ & 1978-79 \end{aligned}$	```statewide % wet volume; stomach contents```	Measured by water displacement method.
			white-footed mouse vole (Microtus sp.)				7.4 5.9				
			harvest mouse				3.0				
			jack rabbit(Lepus sp				5.2				
			unident. mammal				1.6				
			house mouse				1.3				
			Norway rat				2.5				
			striped skunk				2.6				
			grasshopper mouse				0.6				
			fox squirrel				2.2				
			raccoon				0.7				
			muskrat				0.7				
			unident. bird				6.3				
			ring-necked pheasant				8.4				
			meadowlark				2.0				
			domestic poultry				0.9				
			bobwhite				0.8				
			horned lark				0.5				
			mallard				0.5				
			powdery meal				1.2				
			apple other/unspecified				0.5 1				


Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
$\begin{aligned} & \text { Richards \& Hine } \\ & 1953 \end{aligned}$	B B	pheasant   cottontail rabbit   muskrat   voles   mice   skunk   domestic cat   chicken   flicker   unident. bird   corn   deer   rat   woodchuck				2 45 2 50 14 3 2 27 2 2 7 2 2 3	63	sw Wisconsin	```various % occurrence; stomach contents```	Sample includes 4 gray fox; trapped animals. Voles include prairie, meadow, and other Microtus spp.; mice include deer, other Peromyscus spp., harvest, and jumping.
Richards \& Hine 1953	$\text { B } \quad \text { B }$	upland game birds cottontail rabbit woodchuck   squirrels   muskrat   skunk   opossum   weasel   rodents   pig   chicken   misc. birds	$\begin{array}{r} 18 \\ 42 \\ 39 \\ 48 \\ 12 \\ 6 \\ 6 \\ 15 \\ 15 \\ 9 \\ 88 \\ 66 \end{array}$				33	$\begin{aligned} & \text { sw Wisconsin } \\ & 1948 \end{aligned}$	```various % frequency of occurrence; prey remains at dens```	Season is April to July. $\mathrm{N}=$ the number of dens. Upland game birds include pheasant, quail, and ruffed grouse; squirrels includes fox and gray; rodents include spermophile, chipmunk, deer mouse and Norway rat; and misc. birds include redwing, cardinal, flicker, meadowlark, catbird, crow, and unident. songbirds.
$\begin{aligned} & \text { Sargeant et al. } \\ & 1986 \end{aligned}$	B B	```plants (sunflower seeds) mammals (Leporidae) (Sciuridae) (Cricetidae) (Cervidae) birds refuse (carrion) other```				$\begin{array}{r} 49 \\ (47.5) \\ 41 \\ (10.5) \\ (3) \\ (20) \\ (5) \\ 3 \\ 5.5 \\ 1.5 \end{array}$	70	$\begin{aligned} & \text { ec N Dakota } \\ & 1982-83 \end{aligned}$	```prairie farmland % wet volume; stomach contents```	Data from mean of two years. Foods making up less than $2 \%$ not included. Author notes that sunflowers have recently become one of the principal crops of $N$ Dakota and waste seeds are often available in fall and winter.
Scott 1943   (regalis)	$\text { B } \quad \text { B }$	mammals   birds   invertebrates   plants		$\begin{aligned} & 43.5 \\ & 14.7 \\ & 23.2 \\ & 17.6 \end{aligned}$			1,454	Iowa 1938-41	```various % frequency of occurrence in scats```	Season = year round. Calculated from means of the three years of the study. A detailed breakdown of number of occurrences for 110 food types by month available in the Appendix of the original article.


Reference A	Age S	Sex	Con	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
HOME RANGE SIZE													
Ables 1969	A	M	-	-	512		ha			1	Wisconsin	diverse farmland	As cited in Samuel and Nelson 1982, and Maurel 1980.
Ables 1969	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { J } \\ & \text { Y } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	- - - -	$\begin{array}{r} 717 \\ 96 \\ 78 \\ 167 \end{array}$		ha   ha   ha   ha	57 142	170 191	$\begin{aligned} & 1 \\ & 3 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Wisconsin } \\ & 1964-65 \end{aligned}$	mixed: marsh, forest, prairie, shrubs, savannah	Foxes tracked by radiotelemetry for 13 consecutive months. Home range size estimated from fixes using modified minimum area method.
Johnson, Siniff, \& Warner (unpubl)	$\therefore \quad \text { - }$	-	-	-			$\begin{aligned} & \text { ha } \\ & \text { ha } \end{aligned}$		$\begin{aligned} & 1,040 \\ & 1,300 \end{aligned}$		NS	prairie pothole	As cited in Johnson and Sargeant 1977.
$\begin{aligned} & \text { Jones \& Theberge } \\ & 1982 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { SU } \\ & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 1,611 \\ & 1,967 \\ & 1,137 \end{aligned}$		$\begin{aligned} & \text { ha } \\ & \text { ha } \\ & \text { ha } \end{aligned}$	$\begin{aligned} & 277 \\ & 514 \\ & 277 \end{aligned}$	$\begin{aligned} & 3,420 \\ & 3,420 \\ & 1,870 \end{aligned}$	7 4 3	nw British Columbia	alpine and subalpine	Number of radiotracking fixes for each animal was between 41 and 100 .
$\begin{aligned} & \text { Jones \& Theberge } \\ & 1982 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 1,967 \\ & 1,137 \end{aligned}$		$\begin{aligned} & \text { ha } \\ & \text { ha } \end{aligned}$				$\begin{aligned} & 59.8 \mathrm{~N} \\ & \text { latitude } \end{aligned}$	NS	
Kuehn \& Berg 1981	$\begin{aligned} & \text { J } \\ & \mathrm{J} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & M \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { WI } \\ & W I \\ & W I \end{aligned}$	$\begin{aligned} & 335 \\ & 220 \\ & 620 \end{aligned}$		$\begin{aligned} & \text { ha } \\ & \text { ha } \\ & \text { ha } \end{aligned}$	90 330	580 980	$\begin{aligned} & 2 \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { nc Minnesota } \\ & 1970-79 \end{aligned}$	NS	Foxes fit with radiocollars; home ranges determined using the minimum area technique of Dalke and Sime (1938).
Major \& Sherburne 1987	B	B	-	-	1,990		ha			4	$\begin{aligned} & \text { w Maine } \\ & \text { 1979-82 } \end{aligned}$	forest and bogs	
Pils et al. 1981	-	-	-	-	1,037		ha				Wisconsin	NS	Supporting data not presented.
Sargeant 1972	A	F	-	SP	699	137 SD	ha	596	855	3	$\begin{aligned} & \text { e c Minnesota } \\ & 1964 \end{aligned}$	woods, fields, swamp	May-June.
$\begin{aligned} & \text { Sargeant et al. } \\ & 1987 \end{aligned}$	A	B	-	-	1,190	550 SD	ha/family	330	2,140	12	N Dakota	prairie farmland	Season = spring and summer. Some overlap found between the edges of fox and coyote territories.
Storm et al. 1976	-	-	-	-	960		ha/family				NS	NS	
```Tullar & Berchielli 1980```	J	B		SU	72.5		ha			137	sw New York	farm \& woods	Estimated home range of pups during their first summer.
Voigt \& Tinline 1980	-	-	-	-	900		ha	500	2,000		Ontario, CAN	farmland	As cited in Voigt 1987.

Reference
Age Sex Cond Seas Mean SD/SE Units
Minimum Maximum N Location
Habitat
Notes

POPULATION DENSITY

Ables 1974	B	B	-	-		N/ha
$\begin{aligned} & \text { Sargeant et al. } \\ & 1975 \end{aligned}$	B	B	BR	-	0.0010	family/
Tullar \& Berchielli 1980	B	B	BR	SP	0.0010	family/
Voigt 1987	B	B		SP	0.001	N/ha
Voigt 1987	B	B		SP	0.01	N/ha

LITTER SIZE
Allen 1984

Allen 1984	-	-	4.96	2.94	SD
	-	-	4.07	2.05	SD
	-	-	2.80	1.91	SD
	-	-	3.50	2.62	SD
	-	-	4.86	2.13	SD
	-	-	4.29	2.06	SD
	-	-	4.08		
Allen 1984	-	-	3.13	2.31	SD
	-	-	4.73	2.25	SD
	-	-	4.85	2.19	SD
	-	-	5.58	1.89	SD
	-	-	4.75	1.28	SD
	-	-	5.33	2.80	SD
	-	-	6.50	0.71	SD
	-	-	6.5	0.71	SD
Dekker 1983	-	-	5		

24	North Dakota	prairie potholes
29		
20		
14		
42		
7		
136		
60	North Dakota	
26		
13		
19		
8		
6		
2		
2		
10	Alberta, CAN	agricultural fields
	1972-81	

Summarizing maximum densities found in the United States.
Min and max are means for one of the five years of the study. Based on aerial censuses (1969 only), May and June of each year.

Min and max are means from one of the five years of the study. Abou one third of the families were found to have ranges that overlapped those of other families.

Summarizing his own unpublished data.

Summarizing his own unpublished data.

Different years of the study: (1) Different years of the study: (1)
1972; (2) 1973; (3) 1974; (4) 1975; (5) 1976; (6) 1977; (7) mean across all years. Litter size determined by embryo count. Data averaged for all age females each year.

Litter size determined by embryo counts. Females were divided into age groups; (1) 1 year old, and so on; (8) 8 years old.

Reference	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Storm et al. 1976		$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & S P \\ & S P \\ & S P \\ & S P \\ & S P \end{aligned}$	$\begin{aligned} & 7.1 \\ & 6.8 \\ & 4.2 \\ & 3.8 \\ & 3.5 \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 175 \\ & 384 \end{aligned}$	Illinois, Iowa	farms and woods	(1) Placental scars; (2) embryos; (3) live postpartum juveniles; (4) Illinois, pups in den; (5) Iowa, pups in den.
Storm et al. 1976	6 - -	-	-	6.8			2	9	34	Illinois	farm and woods	Embryo count.
Storm et al. 1976	6	-	-	6.7			3	12	48	Iowa	farm and woods	Embryo count.
Switzenberg 1950	$\begin{array}{ll} - & - \\ - & \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 4.2 \\ & 5.4 \end{aligned}$						Michigan	NS	Live pups: (1) upper Michigan; (2) lower Michigan. As cited in Samuel and Nelson 1982.
days gestation												
Asdell 1946	- -	-	-	51-53		days				NS	NS	As cited in Voigt 1987.
Scott 1943	- -	-	-	51		days				Iowa	NS	Approximate value.
Sheldon 1949	- -	-	-	51-54		days				New York	NS	As cited in Samuel and Nelson 1982.
Storm et al. 1976	6	-	-	52		days				Illinois, Iowa	farm and woods	
AGE AT WEANING												
Ables 1974	- -	-	-	8-10		weeks				NS	NS	Pups appear outside the den at about one month, and are weaned four to six weeks later.
Sargeant 1978	-	-	-	28-35		days				North Dakota	NS	Age leave the den; values approximate.
age at sexual maturity												
Asdell 1946	- F	-	-	10		months				NS	NS	As cited in Samuel and Nelson 1982.
Storm et al. 1976	$6-\mathrm{F}$	-	-	10		months				Illinois, Iowa	farm and woods	
anNuAL MORTALITY												
$\begin{aligned} & \text { Harris \& Smith } \\ & 1987 \end{aligned}$	$\begin{array}{ll} \mathrm{J} & \mathrm{M} \\ \mathrm{~J} & \mathrm{~F} \\ \mathrm{~A} & \mathrm{M} \\ \mathrm{~A} & \mathrm{~F} \end{array}$	$\begin{aligned} & - \\ & \text { - } \\ & \text { - } \end{aligned}$	- - -	$\begin{aligned} & 57.3 \\ & 54.4 \\ & 50.0 \\ & 49.8 \end{aligned}$		\% as cubs \% as cubs \%/year \%/year				$\begin{aligned} & \text { Bristol, UK } \\ & \text { 1971-77 } \end{aligned}$	urban	

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING						
Allen 1984	Jan 22	Feb 3-12	Feb 21	N Dakota	prairie	
Layne \& McKeon 1956		Jan, Feb		New York	NS	As cited in Samuel and Nelson 1982.
Pils \& Martin 1978	Dec 27	Jan 14	Feb 3	Wisconsin	various; Waterloo	Data reflects the conception date found in the study.
Scott 1943	late Dec		earl Jan	Iowa	fields \& woods	
Sheldon 1949	late Dec		March	New York	NS	As cited in Samuel and Nelson 1982.
Storm et al. 1976	earl Dec	mid Jan	mid Feb	nw Illinois	farm, woods	
Storm et al. 1976	earl Dec	late Jan	late Feb	Iowa	farm, woods	
Storm et al. 1976		Jan-earl Feb		N Dakota	farm, woods	Cites N Dakota Game and Fish Department.
Voigt 1987	late Jan		earl Feb	s Ontario, CAN	NS	Summary of other studies (latitude 40-45 N).
Voigt 1987	Feb		March	n Ontario, CAN	NS	Summary of other studies (latitude $60-80 \mathrm{~N}$).

PARTURITION

\(\left.\begin{array}{llll}Pils \& Martin 1978 \& Feb 16 \& Mar 8 \& Mar 28

\begin{array}{ll}Sargeant 1972;

Sargent et al.

1975\end{array} \& \& late Mar/Apr\end{array}\right]\)| late Apr |
| :--- |
| Sargeant et al.
 1981 |
| Voigt 1987 |
| Voigt 1987 |

FALL MOLT

Voigt 1987
Apr
Jun

Wisconsin	various; Waterloo
e N Dakota	prairie
N Dakota	prairie
southern CAN	NS
northern CAN	arctic

NS
NS

Reference	Begin	Peak	End	Location	Habitat	Notes
DISPERSAL						
Phillips \& et al. 1972	late Sep			nw Illinois, ne Iowa	farm \& woodlands	
Pils \& Martin 1978	Oct		Mar	Wisconsin	various; Waterloo	Dates are for subadult animals.
Storm et al. 1976	late Sep		Mar	Illinois, Iowa	farm, woods	Males dispersed earlier than females.
 Berchielli 1980	Oct			New York	farm \& woodlots	

Page A-252 is left blank.

Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
BODY WEIGHT													
$\begin{aligned} & \text { Fritzell et al. } \\ & 1985 \end{aligned}$	Y	F	P	-	6,640	930 SD	g			115	n Illinois	NS	```P = parous female, NP = nulliparous female.```
	Y	F	NP	-	6,800	1,070 SD	g			59			
	A	F	P	-	7,090	1,060 SD	9			149			
	A	F	NP	-	7,140	750 SD	g			7			
Johnson 1970 (various)	A	M	-	-	4,309		9		8,800	277	Alabama	NS	Summary of the four Johnson 1970 records below.
	A	F	-	-	3,674		9		5,900	174			
Johnson 1970 (various)	A	M	-	WI	4,850		9			69	ec Alabama	NS	Values estimated from graphs.
	A	F	-	WI	3,860		9			37			
	A	M	-	SP	3,450		g			10			
	A	F	-	SP	3,180		9			8			
$\begin{aligned} & \text { Johnson } 1970 \\ & \text { (various) } \end{aligned}$	A	M	-	SU	5,171		9			1	ec Alabama	NS	Values estimated from graphs.
	A	F		SU	3,720		g			2			
	A	M		FA	5,350		9			12			
	A	F		FA	4,360		9			17			
Johnson 1970 (various)	A	M	-	FA	3,770		9			30	sw Alabama	NS	Values estimated from graphs.
	A	F		FA	3,770		9			30			
	A	M		WI	4,310		9			56			
	A	F		WI	3,360		9			30			
Johnson 1970 (various)	A	M	-	SP	3,540		9			32	sw Alabama	NS	Values estimated from graphs.
	A	F	-	SP	3,270		9			15			
	A	M	-	SU	4,220		9			7			
	A	F		SU	3,540		9			9			
Kaufmann 1982	A	B	-	-			9	3,600	9,000		United States	NS	Males outweigh females by 10 to 15%. Northern specimens are heavier than those in the south.
Kaufmann 1982	J	-		FA			9	2,700	$\begin{aligned} & 3,200 \\ & 7,000 \end{aligned}$		Alabama	NS	
Kaufmann 1982	J	-	-	FA			9				Missouri	NS	
```Moore & Kennedy 1985```	A	F	-	WI	4,300		9				Tennessee	NS	Total sample size (males and females) $=98$ raccoons captured 256 times.
	A	F	-	SP	3,330		9						
	A	F F	-	SU	3,700 3,700		g						



NEONATE WEIGHT

Ewer 1973	N	-	-	-	62-98	9
Hamilton 1936	N	-	-	-	75	9
Stuewer 1943b	N	-	-	-	61.7	g


w New York	captive
Michigan	riparian

As cited in Eisenberg 1981.

Reference

## PUP WEIGHT

Hamilton 1936	N	-	-	-	75		born	SD	
	P	-	-	-	200	7	days	SD	
	P	-	-	-	450	19	days	SD	
	P	-	-	-	570	30	days	SD	
	P	-	-	-	680		days	SD	
	P	-	-	-	910		days	SD	

PUP GROWTH RATE

Hamilton 1936	P	B	1	-	17	g/day
	P	B	2	-	21	g/day
	P	B	3	-	11	g/day
	P	B	4	-	12	g/day
	P	B	5	-	23	g/day
Montgomery 1969	P	-	1	-	17.8	g/day
	P	-	2	-	3.9	g/day
	P	-	3	-	29.5	g/day
Stuewer 1943b	P	F	-	SU	24.9	g/day
	P	M	-	SU	26.4	g/day
	P	B	-	SU	25.9	g/day

w New York

1962-63

Michigan
2
3
washington DC
National Zoo
$1.68 \mathrm{SD} 102 / \mathrm{kg}-\mathrm{day}$
$1.68 \mathrm{SD} \mathrm{lo2} / \mathrm{kg}-\mathrm{day}$
$1.68 \mathrm{SD} 102 / \mathrm{kg}$-day $102 / \mathrm{kg}$-day
$102 / \mathrm{kg}$-day

## metabolic rate (KCAL basis)

## Teubner \& Barrett J B - - $\quad 303.8$ 1983 <br> 02.1 <br> $\mathrm{kcal} / \mathrm{kg}-\mathrm{d}$ <br> kcal/kg-d

$\begin{array}{ll}4 & \text { Ohio } \\ 1 & \end{array}$
lab

4 Ohio
FOOD INGESTION RATE
1983
57.0
0.2 SD kcal/kg-a
10 SD kcal/kg-d

1

Average growth rate for age classes: (1) 0-7 days; (2) 8-19 days; (3) 20-30 days; (4) 31-40 days; (5) 41-50 days.

Different ages: (1) birth to 6
weeks; (2) approx. 6-9 weeks; (3) weeks;
$10-16$ weeks of age. All values combine two years of data.

Up to 14 weeks after birth.

Probably resting; conditions of experiment not described in abstract. Temperature ranges: (1) 15-35 C; (2) 5-10 C; (3) 25-35 C (4) 20 C . Equations relating temperature provided.

Kcal ingested minus non-assimilated
and growth energy.

*** DIET ***

Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Alexander 1977	B B	```trout non-trout fish crustaceans molluscs insects amphibians birds and mammals vegetation unidentified```	$\begin{array}{r} 19 \\ 4 \\ 14 \\ 3 \\ 3 \\ 12 \\ 19 \\ 17 \\ 9 \end{array}$				30	n. lower Michigan	```aquatic % wet weight; stomach contents```	Year round.
Dorney 1954	A B	```muskrat kits muskrat adult crayfish fish snails corn grapes plums other (sample size)```	$\begin{array}{r} 12 \\ 31 \\ 9 \\ 2 \\ 35 \\ \\ 11 \\ (41) \end{array}$	$\begin{array}{r} 34 \\ 1 \\ 31 \\ 2 \\ 3 \\ 1 \\ 3 \\ 9 \\ 16 \\ (98) \end{array}$	$\begin{array}{r} 9 \\ 1 \\ 16 \\ 13 \\ 10 \\ 3 \\ 35 \\ 2 \\ 11 \\ 11 \end{array}$			$\begin{aligned} & \text { Wisconsin } \\ & 1949-50 \end{aligned}$	$\begin{aligned} & \text { marsh } \\ & \text { \% dry volume; scats } \end{aligned}$	Age and sex not specified.
Hamilton 1951	A B	```fruits insects mammals grains (e.g. corn) earthworms amphibians vegetation reptiles molluscs birds carrion unspecified```		$\begin{array}{r} 37.9 \\ 8.2 \\ 14.3 \\ 14.7 \\ 7.2 \\ 4.4 \\ 6.1 \\ 3.0 \\ 1.9 \\ 1.5 \\ 1.5 \\ 0.2 \end{array}$			94	$\begin{aligned} & \text { New York } \\ & 1947-50 \end{aligned}$	NS   \% wet volume; stomach contents	Season = April through October.
Hamilton 1940	$\text { B } \quad \text { B }$	```wild cherry silky cornel corn insects muskrat grapes mice turtle other```		$\begin{array}{r} 38.15 \\ 26.56 \\ 6.65 \\ 4.26 \\ 4.07 \\ 3.70 \\ 3.06 \\ 2.23 \\ 11.32 \end{array}$			163	New York 1939	```marsh % dry volume; dry scats```	Scats collected in July \& September 1939.




Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Stuewer 1943a (continued)		buds	4.08	0	0	0				
		fish	12.24	0	4.34	0				
		moths	2.04	0	0	0				
		other mammals	4.08	0	0	0				
		frogs	10.20	0	0	0				
		snakes	4.08	0	0	0				
		birds	8.16	0	2.17	0				
		elderberry (Sambucus	0	0	10.87	0				
		other berries	0	40.00	0	0				
		caterpillars	2.04	6.66	0	0				
		amphipods	0	0	6.52	0				
		ragweed seeds	0	0	2.17	0				
		bark, wood, hair	0	0	0	18.18				
		(sample size)	(11)	(49)	(15)	(46)				
Tabatabai \& Kennedy 1988	A B	frogs	8.1	TR	0	0		Tennessee	NS	Volume varied across regions:
		fish	1.2	0	0	0		1976-82		highest volume for western (across
		birds	TR	0	TR	8.4			\% wet volume;	all seasons) = persimmon; for
		mammals	1.7	0	1.4	0			digestive tract	central $=$ persimmon, corn, and
		other/unspecified	7.8	6.7	1.8	7.2				sugar hackberry, and; eastern =
		persimmon	0	35.8	57.3	27.4				persimmon and corn.
		corn	57.6	0	10.0	25.9				
		grapes	0	TR	10.2	0				
		pokeberry	0	20.5	4.5	0				
		acorns	0	0	5.4	4.2				
		sugar hackberry	0	0	5.5	18.4				
		cherry	0	29.5	0	0				
		insects	22.0	3.5	2.4	TR				
		crayfish	$1.6$	$4.0$	$1.5$	$1.4$				
		(sample size)	(11)	(18)	(104)	(74)				
Tabatabai \& Kennedy 1988	A M	persimmon		42.8			111	Tennessee	NS	Data reflect all seasons; combined
		corn		15.7				1976-82		from eastern, central, and western
		sugar hackberry		11.1					\% wet volume;	Tennessee.
		summer grape		6.7					digestive tract	
		acorns		1.9						
		pokeberry		2.1						
		peppervine		4.2						
		birds		3.9						
		Alabama supplejack		2.8						
		Virginia creeper		1.5						
		bread		1.5						
		crayfish		1.3						
		frogs		2.4						
		beetles		0.7						
		wood		1.0						
		grasshoppers		0.5						
		voles		1.6						




## *** POPULATION DYNAMICS ***

Reference

## home range size



Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Sherfy \& Chapman 1980	B	B	-	-	433.7		ha			2	$\begin{aligned} & \text { Maryland } \\ & 1976-77 \end{aligned}$	coastal plain	Based on radiotracking data.   Includes data from summer and fall.
Sherfy \& Chapman 1980	B	B	-	SP	231		ha			4	$\begin{aligned} & \text { Maryland } \\ & 1976-77 \end{aligned}$	Piedmont	Based on radiotracking data.
Sherfy \& Chapman 1980	B	B	-	SP	275		ha			4	$\begin{aligned} & \text { Maryland } \\ & 1976-77 \end{aligned}$	Appalachian	Based on radiotracking data.
Sherfy \& Chapman 1980	B	B	-	-	37.4		ha			4	$\begin{aligned} & \text { Maryland } \\ & 1976-77 \end{aligned}$	urban	Based on radiotracking data. Includes data from winter, spring, and summer.
Stuewer 1943a	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { J } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	-	$\begin{array}{r} 204 \\ 108 \\ 108 \\ 45 \end{array}$		ha   ha   ha   ha	$\begin{array}{r} 18.2 \\ 5.3 \\ 2.0 \\ 2.0 \end{array}$	$\begin{aligned} & 814 \\ & 376 \\ & 719 \\ & 323 \end{aligned}$	$\begin{aligned} & 19 \\ & 17 \\ & 27 \\ & 24 \end{aligned}$	$\begin{aligned} & \text { Michigan } \\ & 1939-40 \end{aligned}$	riparian	Calculated based on live trapping data; traps located primarily along water bodies. Juvenile data reflects first year of life when animals tend to remain with their mothers. Season = May to December in 1939 and May to October in 1940.
Urban 1970	-	-	-	-	48.4		ha			9	Lake Erie, Ohio	Sandusky Bay/marsh	
POPULATION DENSITY													
Cowan 1973	-	-	-	-			N/ha	0.015	0.032		Manitoba, CAN	prairie	As cited in Kaufmann 1982.
Dorney 1954	B	-	-	SP	0.022		N/ha				Wisconsin 1950	marsh	
Fritzell 1978	B	B	-	SP			N/ha	0.005	0.01		e N Dakota	prairie potholes	Supporting data not provided.
Hoffman \& Gottschang 1977	-	-	-	-	1.46		N/ha				Ohio 1973-74	residential, woods	Study area $=234.1$ ha.
$\begin{aligned} & \text { Johnson } 1970 \\ & \text { (various) } \end{aligned}$	-	-	-	WI	0.12		N/ha			4	$\begin{aligned} & \text { Alabama } \\ & 1962-63 \end{aligned}$		
Kaufmann 1982	-	-	-	-			N/ha		0.20		nw \& e US	bottomlands, marshes	```Summary of studies by Yeager & Rennels 1943; Butterfield 1944; Dorney 1954, Urban 1970, Van Druff 1971.```
Slate 1980	-	-	-	-	0.13		N/ha				New Jersey		As cited in Sanderson 1987.
Sonenshine and	-	-	-	-	0.17		N/ha				Virginia		As cited in Sanderson 1987.


Reference A	Age S	Sex	Con	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Stuewer 1943a	-	B	-	SU	0.025		N/ha				Michigan 1939	marsh, riparian	Considered a maximum estimate (just after birth of young).
Urban 1970	- - -	-	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { SP } \\ & \text { SP } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.21 \\ & 0.14 \\ & 0.17 \end{aligned}$		N/ha   N/ha   N/ha   N/ha				Lake Erie, Ohio 1967-68	Sandusky Bay/marsh	Calculation method: (1)   Schumacher-Eschmeyer Formula; (2)   Lincoln Index; (3) Hayne's method;   (4) Average of the three methods.
```Yeager & Rennels 1943```	-	-	-	-	0.07		N/ha	0.04	0.16	881	$\begin{aligned} & \text { Illinois } \\ & 1940-41 \end{aligned}$	NS	Value $=$ number of raccoons captured; not representative population estimate. Sample size = 881 hectares. As cited in Sanderson 1987.
LITtER SIZE													
Asdell 1964	-	-	-	-				2	5		NS	NS	
Clark et al. 1989	$\begin{aligned} & \text { A } \\ & \mathrm{J} \end{aligned}$	-	-	$\begin{aligned} & \text { FA } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.1 \\ & 3.6 \end{aligned}$	0.1 SE		$\begin{aligned} & 3.6 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 3.4 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 189 \\ & 131 \\ & 320 \end{aligned}$	sw Iowa	agricultural	Minimum and maximum reflect lowest and highest average litter sizes in five years of data.
Dew 1978	-	-	-	-	2.6						w Tennessee	NS	As cited in Moore and Kennedy 1985.
$\begin{aligned} & \text { Fritzell et al. } \\ & 1985 \end{aligned}$	$\begin{aligned} & \text { Y } \\ & \text { A } \end{aligned}$	- - - - -	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	- - - - -	$\begin{aligned} & 3.2 \\ & 3.4 \\ & 3.9 \\ & 3.8 \\ & 4.4 \\ & 3.1 \end{aligned}$					$\begin{array}{r} 136 \\ 163 \\ 24 \\ 21 \\ 25 \\ 12 \end{array}$	$\begin{aligned} & \text { c Missouri } \\ & 1979-81 \end{aligned}$	NS	Age class (in years): (1) 1; (2) 2-3; (3) 4; (4) 5; (5) 6-7; (6) $8-12$. Based on count of uterine scars.
$\begin{aligned} & \text { Fritzell et al. } \\ & 1985 \end{aligned}$	A-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 3.4 \\ & 3.8 \end{aligned}$					$\begin{array}{r} 297 \\ 61 \end{array}$	$\begin{aligned} & \mathrm{n} \text { Illinois } \\ & \text { 1979-81 } \end{aligned}$	NS	Age class (in years): (1) 1-3; (2) 4 and older. Based on count of uterine scars.
Johnson 1970 (various)	-	-	-	-	2.43					76	Alabama	bottomlands, marsh	Based on count of placental scars.
Johnson 1970 (various)	-	-	-	-	2.48					101	Alabama	various	Live litters.
McKeever 1958	-	-	-	-	3.2	0.18 SE		2	5		sw Georgia, nw Florida	NS	Embryo count.
$\begin{aligned} & \text { Sanderson \& Hubert } \\ & 1981 \end{aligned}$	t -	-	-	-	3.62	0.11 SE				122	nc Illinois	NS	
$\begin{aligned} & \text { Sanderson \& Hubert } \\ & 1981 \end{aligned}$	t -	-	-	-	3.51	0.08 SE				182	wc Illinois	NS	

Reference A	Age Se	x	Cond	S Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Sanderson \& Hubert } \\ & 1981 \end{aligned}$	-	-	-	-	2.92	0.09	SE				135	se Illinois	NS	
Stuewer 1943b	-	-	-	-	4				3	7	10	Michigan	riparian	Live litters.
LItters/year														
Sanderson 1987	-	-	-	-	1			/year				most of range	NS	
Stuewer 1943b	-	-	-	-	1			/year				Michigan	riparian	
DAYS GeStation														
Brown 1936	-	-	-	-	69			days				NS	lab	As cited in Goldman 1950.
Goldman 1950	-	-	-	-	63-70			days				NS	NS	
Hamilton 1936	-	-	-	-	63			days				w New York	NS	
Kaufmann 1982	-	-	-	-	64			days	54	70		NS	NS	Summary of several studies.
Lotze \& Anderson 1979	-	-	-	-	63			days				NS	NS	
Sanderson 1987	-	-	-	-	63			days				Illinois	NS	Value is approximate.
Stuewer 1943b	-	-	-	-	63			days				Michigan	riparian	Value is approximate.
age at weaning														
Ewer 1973	-	-	-	-	70			days				NS	NS	As cited in Eisenberg 1981.
Montgomery 1969	-	-	-	-	84			days	63	112		NS	lab	Complete functional weaning usually by this time.
Stuewer 1943b	-	-	-	-	98			days				Michigan	riparian	Approximate value.
age at sexual maturity														
$\begin{aligned} & \text { Fritzell et al. } \\ & 1985 \end{aligned}$	-	F	-	-	1			year				Illinois, Missouri	NS	Pregnancy rates for yearlings ranged from 38 to 77%.

Reference	Age S	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Johnson 1970 (various)	-	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	15		months year	1			Alabama	riparian, marsh	Juvenile males mature after the regular breeding season. About 10 percent of females thought to reproduce as yearlings in this study.
Sanderson 1951	-	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		-	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & \text { year } \\ & \text { year } \end{aligned}$				$\begin{aligned} & \text { Missouri } \\ & 1947-49 \end{aligned}$	NS	Most males are mature as yearlings, but probably do not breed successfully in their first year because they mature after most females are already pregnant.
Stuewer 1943b	-	$\begin{aligned} & \mathrm{F} \\ & \mathrm{M} \end{aligned}$		-	$\begin{array}{r} 10 \\ 2 \end{array}$		months years			28	Michigan	riparian	At least 53\% of yearling females produced young.
ANNUAL MORTALITY													
Clark et al. 1989	$\begin{aligned} & \text { A } \\ & \text { J } \end{aligned}$	-		-	$\begin{aligned} & 38 \\ & 42 \end{aligned}$		$\begin{aligned} & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				sw Iowa	agricultural	
Cowan 1973	$\begin{gathered} \text { A } \\ \mathrm{Y} \end{gathered}$	-	-	-	$\begin{array}{r} >50 \\ 60 \end{array}$		$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				Manitoba, CAN	NS	As cited in Kaufmann 1982.
Sanderson 1951	A	B	-	-	56		\%/yr				Missouri 1948	NS	Hunted population; estimated based on the percent of first year animals in late winter within the population (assuming stable population numbers).
LONGEVITY													
Eisenberg 1981	-	-	-	-	49		months		165		NS	captive	
Flower 1931	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	m		-			years years		$\begin{array}{r} 9.5 \\ 13.5 \end{array}$		London zoo	captive	As cited in Goldman 1950.
Johnson 1970	A	B	-	-	3.1		years		16		Alabama	NS	Mean calculated following the methodology of Sanderson 1951.
Lowery 1936	A	-	-	-			years		14		United Kingdom	captive	As cited in Goldman 1950.
Sanderson 1951	A	B	-	-	1.8		years				Missouri 1948	NS	Hunted population; based on estimate of 56% annual mortality and a population turnover time of 7.4 years.

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING						
Bailey 1936		Jan-Mar		Oregon	NS	As cited in Stuewer 1943a.
Cagle 1949		Mar		Louisiana	NS	As cited in Sanderson 1987.
Cunningham 1962		Mar		S Carolina	NS	As cited in Johnson 1970.
Hamilton 1936		Jan-Feb		w New York	NS	The peak occurs between late January and early February.
Johnson 1970	Jan	Feb	Mar	n United States	NS	
Johnson 1970 (various)	Mar 8	late Apr	Jun 26	Alabama	NS	Conception calculated from fetal growth curves or assuming a gestation period of 63 days.
McKeever 1958	Feb	Mar	Aug	Sw Georgia, nw Florida	NS	
Sanderson \& Nalbandov 1973	Dec	Feb	Apr	Illinois	NS	As cited in Sanderson 1987.
Sanderson 1987	Feb		Jun	ND, MN, Manitoba CAN	NS	Summary of several studies.
Seton 1929		Jan-Feb		Ohio	NS	As cited in Stuewer 1943a.
Stains 1956	Dec	Feb	Jun	Kansas	NS	As cited in Lotze and Anderson 1979.
Stuewer 1943b	Feb	Feb-earl Mar	Mar	Michigan	riparian	
Whitney and Underwood 1952		March		ec Minnesota	forest, wetland	As cited in Schneider et al. 1971.
PARTURITION						
Arthur 1928	Feb		Apr	Louisiana	NS	As cited in Johnson 1970.
$\begin{aligned} & \text { Johnson } 1970 \\ & \text { (varius) } \end{aligned}$	May 4	June 18	Aug 27	Alabama	NS	
McKeever 1958	Apr	May	Oct	sw Georgia, nw Florida	NS	

Reference	Begin	Peak	End	Location	Habitat	Notes
Sanderson 1987		Apr		Illinois	NS	
Stuewer 1943b	Apr	earl Apr	May	Michigan	riparian	
Urban 1970	Mar 15		June 1	L. Erie, Ohio 67-68	Sandusky Bay	
Whitney and Underwood 1952		earl May		ec Minnesota	forest, wetland	As cited in Schneider et al. 1971.
FALL MOLT						
Goldman 1950		summer		northern range	NS	
hibernation						
Whitney and Underwood 1952	lat Nov		Mar/Apr	ec Minnesota	forest, wetland	As cited in Schneider et al. 1971.
DISPERSAL						
Stuewer 1943a		Fall	Winter	Michigan	riparian	Represents males and females in their first year; not all disperse.
Urban 1970		Fall		L. Erie, Ohio 67-68	Sandusky Bay	Data represents juvenile males.

Page A-268 is left blank.
***** MINK *****
*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
BODY WEIGHT													
Arnold 1986	A	M	-	-	1,420		9				NS	NS	As cited in Arnold and Fritzell 1987.
Birks \& Dunstone 1985	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		-	$\begin{array}{r} 1,195.3 \\ 688.2 \end{array}$	$\begin{array}{r} 175.3 \mathrm{SD} \\ 64.7 \mathrm{SD} \end{array}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & 930 \\ & 560 \end{aligned}$	$\begin{array}{r} 1530 \\ 770 \end{array}$	$\begin{aligned} & 15 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Scotland } \\ & 1981-83 \end{aligned}$	coastal	Live trapped feral American mink; pregnant females excluded from calculation of female mean.
Bleavins \&	A	M	-	-	1,822	95.2 SE	g			6	Michigan 1979	farm-raised	
Aulerich 1981	A	F	-	-	873	35.5 SE	9			6			
Harding 1934	A	M		-			9		2,300		western races	NS	As cited in Linscombe et al 1982.
Harding 1934	A	M	-	-			g		1,400		eastern races	NS	As cited in Linscombe et al 1982.
$\begin{aligned} & \text { Hornshaw et al. } \\ & 1983 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \mathrm{SP} \\ & \mathrm{SP} \end{aligned}$	$\begin{array}{r} 1,734 \\ 974 \end{array}$	$\begin{aligned} & 349.7 \text { SD } \\ & 202.2 \text { SD } \end{aligned}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{array}{r} 4 \\ 12 \end{array}$	$\begin{aligned} & \text { Michigan } \\ & 1979-80 \end{aligned}$	farm-raised	Mink 13-15 weeks old on Aug 15, fed controlled diet and weighed March 15.
Mitchell 1961	A J A J A J J	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	- - - - - -	$\begin{aligned} & \text { SU } \\ & \text { SU } \\ & \text { FA } \\ & \text { FA } \\ & \text { SP } \\ & \text { SP } \\ & \text { WI } \end{aligned}$	$\begin{array}{r} 1,040 \\ 777 \\ 1,233 \\ 952 \\ 1,267 \\ 1,189 \\ 1,175 \end{array}$		$\begin{aligned} & g \\ & g \end{aligned}$			$\begin{array}{r} 5 \\ 46 \\ 6 \\ 35 \\ 7 \\ 21 \\ 2 \end{array}$	$\begin{aligned} & \text { Montana } \\ & \text { 1955-58 } \end{aligned}$	river	
Mitchell 1961	J A J A J A A J A	$\begin{aligned} & F \\ & F \end{aligned}$	- - - - - - - -	$\begin{aligned} & \text { SU } \\ & \text { SU } \\ & \text { FA } \\ & \text { FA } \\ & \text { WI } \\ & \text { WI } \\ & \text { SP } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 533 \\ & 550 \\ & 582 \\ & 586 \\ & 600 \\ & 625 \\ & 617 \\ & 622 \end{aligned}$		$\begin{aligned} & g \\ & g \end{aligned}$			54 25 27 14 1 3 3 9	$\begin{aligned} & \text { Montana } \\ & \text { 1955-58 } \end{aligned}$	river	

NEONATE WEIGHT

Eagle \& Whitman N - - -
g
6
10
NS
NS
Summarizing unidentified data.

METABOLIC RATE (OXYGEN)

Harper et al.
$\begin{array}{llll}\mathrm{J} & \mathrm{M} & 1 & - \\ \mathrm{J} & \mathrm{M} & 2 & \end{array}$
124
kcal/kg-d
$\mathrm{kcal} / \mathrm{kg}-\mathrm{d}$
farm-raised

Resting metabolic rates for mink floating in still water; male = 1,236 grams; female = 969 grams; temperature $=20$ degrees C .

Based on 34 trials on 3 sleeping
Based on 34 trials on 3 sleeping mink. Range Of body weight of
$=640-795 \mathrm{~g}$. Value expressed relative to body weight raised to 0.73 .

Average digestible energy intake for maintenance for one set of non-breeding test animals in: (1) small "metabolism" cages; and (2) Approximate range of body 690-920 g. Mean temperature was 10.7 degrees C; the temperature did not go below 7 degrees C.
As cited in NRC 1982; based on a conversion of Harper et al.'s requirement for growing male mink with weight of: (1) 500 gi (2) 2,000 g.

Reference	Age Sex	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
NRC 1982	A	B	-	-	140		kcal/kg-d				NS	farm-raised	Based on a review of studies; recommended for the maintenance of mature mink in captivity.
$\begin{aligned} & \text { Perel'dik et al. } \\ & 1972 \end{aligned}$	-	-	-	-	200		kcal/kg-d				NS	farm-raised	As cited in NRC 1982. Estimate of daily maintenance requirement, year-round.
Williams 1980	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { SW } \\ & \text { RU } \end{aligned}$	-			$\begin{aligned} & \mathrm{kcal} / \mathrm{kg}-\mathrm{km} \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{km} \end{aligned}$	$\begin{array}{r} 12.4 \\ 3.9 \end{array}$			NS	NS	Abstract only. Minimum cost of swimming and running (water temperature not specified). Swimming speed of 0.90 to 2.51 $\mathrm{km} / \mathrm{hr}$ and running speeds of 0.90 to $7.0 \mathrm{~km} / \mathrm{hr}$.
FOOD Ingestion rate													
$\begin{aligned} & \text { Arnold \& Fritzell } \\ & 1987 \end{aligned}$	A	M	-	-	0.13		g/g-day				Manitoba, CAN	prairie potholes	Estimated for period from April-July based on an average male body weight of $1,420 \mathrm{~g}$ and Cowan et al.'s 1957 measured prey requirements for captive mink.
Bleavins \& Aulerich 1981	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & M \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	WI WI WI WI	$\begin{aligned} & 0.1194 \\ & 0.1553 \\ & 0.0405 \\ & 0.0525 \end{aligned}$	$\begin{aligned} & 0.00476 \\ & 0.00747 \mathrm{SE} \\ & 0.00161 \\ & \mathrm{SE} \\ & 0.00252 \end{aligned}$	$\begin{aligned} & \text { g/g-day } \\ & \text { g/g-day } \\ & \text { g/g-day } \\ & \text { g/g-day } \end{aligned}$			$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	Michigan 1979	farm-raised/lab	(1) Using wet weight of feed; using dry weight of feed. Diet consisted of chicken (20\%), commercial mink cereal (17\%), ocean fish scraps (13\%), beef parts, cooked eggs, powdered milk, and added water. Moisture content as fed $=66.2 \%$.
WATER INGESTION RATE													
Farrell \& Wood 1968c	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	F F	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 0.133 \\ & 0.028 \end{aligned}$		$\begin{aligned} & \text { g/g-day } \\ & \text { g/g-day } \end{aligned}$			5	NS	farm-raised	(1) Water intake from food and free water combined. Water was provided ad libitum from water bottle; food was 65\% moisture. (2) Estimate of free water consumption only, based on diet of 65% moisture. This was calculated based on the following conclusion by Farrell \& Wood 1968c: the average female mink (780 g) received 66\% of its water from food, 14\% from fluid water, and 20\% from metabolic water.

Reference A	S	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Birks \& Dunstone 1985 (continued)			```mammals (20.2% lagomorphs) birds (7.9% shorebirds)```		$\begin{aligned} & 27.7 \\ & 18.6 \end{aligned}$					\% dry bulk; scats	
Burgess \& Bider 1980			```crayfish frogs aquatic insects fish small mammals red squirrels birds large mammals other```		$\begin{array}{r} 20 \\ 12.0 \\ 6.3 \\ 7.6 \\ 29.6 \\ 10.0 \\ 5.0 \\ 9.3 \\ 0.2 \end{array}$			40	Quebec, CAN	stream/riparian area \% volume; scats	Season not specified.
Chanin \& Linn 1980	B		Salmonids eels other fish Lagomorphs other mammals total birds other		$\begin{array}{r} 34.2 \\ 16.8 \\ 2.9 \\ 6.3 \\ 22.9 \\ 10.8 \\ 6.1 \end{array}$			475	$\begin{aligned} & \text { England } \\ & 1972-73 \end{aligned}$	```river - % frequency of occurrence; scats```	Data from all seasons combined. Analysis of 475 scats.
Chanin \& Linn 1980	B	B	eels other fish Ralliforms other birds Lagomorphs other mammals other		$\begin{array}{r} 26.4 \\ 26.4 \\ 15.3 \\ 13.9 \\ 9.7 \\ 5.6 \\ 2.7 \end{array}$			57	England $1972-73$	```eutrophic lake % frequency of occurrence; scats```	Data from all seasons combined.
Chanin \& Linn 1980	B	B	total fish Ralliform other birds common rat voles other mammals earthworm other		$\begin{array}{r} 34.4 \\ 16.4 \\ 7.1 \\ 7.7 \\ 15.8 \\ 7.1 \\ 7.7 \\ 3.8 \end{array}$			153	$\begin{aligned} & \text { England } \\ & \text { 1972-7 } \end{aligned}$	```Chalk stream % frequency of occurrence; scats```	Data from all seasons combined.
$\begin{aligned} & \text { Cowan \& Reilly } \\ & 1973 \end{aligned}$			muskrats meadow voles other mammals bird eggs passerines waterfowl herpetofauna invertebrates (insects \& crayfish) vegetation		$\begin{array}{r} 18 \\ 36 \\ 9 \\ 0.5 \\ 12 \\ 15 \\ 0.5 \\ 6.5 \\ 1.5 \end{array}$			281	North Dakota 1956-66	```river % dry volume; scats```	Data is from both summer and fall. Scat sample collected 6 years and results averaged.

Reference	Age S	Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Eberhardt 1974	B		birds mammals amphibians/reptiles	$\begin{array}{r} 78 \\ 19 \\ 3 \end{array}$				NS	NS	```NS % of prey remains near den, and in scats```	As cited in Pendleton 1982.
Gilbert \& Nancekivell 1982	B		total fish (northern pike) (brook stickleback) (white sucker) total mammals (Soricidae) (Lepus americanus) (Synaptomys borealis) (Clethrionomys gapperi) (Microtus sp.) (Microtinae) (Ondantra zibethicus (mustela vison) total birds (Gaviformes or Anseriformes) (Gruiformes) total invertebrates (Insecta)		$\begin{array}{r} 31.4 \\ (21.0) \\ (27.9) \\ (2.1) \\ 63.6 \\ (11.4) \\ (19.3) \\ (2.9) \\ (3.6) \\ \\ (4.3) \\ (5.0) \\ (21.4) \\ (8.6) \\ 32.9 \\ (16.5) \\ (7.1) \\ 35.0 \\ 11.4 \end{array}$			140	ne Alberta, CAN 1978	```lakes % frequency of occurrence; scats```	Scats collected from April through November. Totals include prey not identified to species. Values given above include all prey species with \% frequency of occurrence greater than 2.
Gilbert \& Nancekivell 1982	B	B	total fish (brook stickleback) total mammals (Soricidae) (Lepus americanus) (Clethrionomys gapperi) (Microtus sp.) (Microtinae) (Ondatra zibethicus) (Mustela vison) total birds (Gaviformes or Anseriformes) (Gruiformes) total invertebrates Insecta		6.6 (3.3) 83.6 (13.1) (42.6) (3.3) (2.9) (31.2) (8.2) (3.3) 16.4 (9.9) (4.9) 32.9 (3.3)			61	ne Alberta, CAN 1978	```streams % frequency of occurrence; scats```	Scats collected from April through November. Totals include prey not identified to species. Values given above include all prey species with \% frequency of occurrence greater than 2.

Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Guilday 1949		mammals crayfish insects spiders fish birds carrion other				$\begin{array}{r} 41.4 \\ 14.1 \\ 9.4 \\ 8.6 \\ 19.5 \\ 3.1 \\ 3.1 \\ 0.8 \end{array}$	NS	SW Pennsylvania	```NS % frequency of occurrence; NS```	As cited in Pendleton 1982.
Hamilton 1959	A B	fish mammals amphibians crayfish insects birds earthworms molluscs reptiles		$\begin{array}{r} 32.4 \\ 44.0 \\ 18.9 \\ 12.7 \\ 29.2 \\ 9.3 \\ - \\ 0.7 \\ 4.1 \end{array}$		$\begin{array}{r} 34.1 \\ 33.2 \\ 21.9 \\ 14.4 \\ 6.8 \\ 2.7 \\ 2.4 \\ 1.6 \\ 1.4 \end{array}$	NS	New York	```NS % frequency of occurrence; (summer: scats; winter: stomach & intestine)```	Collected from trappers.
Hamilton 1936		```Mice (mostly microtu Fish Muskrat Rabbits Insects Frogs Mole Grasses```			$\begin{array}{r} 32.94 \\ 18.82 \\ 16.47 \\ 4.71 \\ 7.06 \\ 2.36 \\ 2.36 \\ 1.18 \end{array}$		70	$\begin{aligned} & \text { New York } \\ & 1927-34 \end{aligned}$	```Various (assumed near water) "Frequency indices"```	Reliability questionable due to lack of methods description.
Hamilton 1940	B B	```muskrat fish aquatic beetles birds frogs mice snakes rabbits other```		$\begin{array}{r} 37.95 \\ 27.25 \\ 13.85 \\ 9.05 \\ 3.35 \\ 3.00 \\ 2.70 \\ 1.00 \\ 1.85 \end{array}$			300	New York 1939	```Montezuma marsh - % bulk; scats```	
Korschgen 1958	A B	```frogs mice & rats fish rabbits crayfish birds fox squirrels muskrats other```				$\begin{array}{r} 24.9 \\ 23.9 \\ 19.9 \\ 10.2 \\ 9.3 \\ 5.6 \\ 2.2 \\ 1.3 \\ 2.7 \end{array}$	372	$\begin{aligned} & \text { Missouri } \\ & 1951-53 \end{aligned}$	```statewide % dry volume; stomach contents```	All caught in December (obtained from hunters). Nearly two thirds of the 1,028 stomachs examined were empty.

Reference A	Age Sex For	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
 Gilbert 1981	- -	Microtus pennsylvan.		13.2			164	$\begin{aligned} & \text { Ontario, CAN } \\ & 1978 \end{aligned}$	```marsh % volume; scats```	Scats collected in summer and fall. Volume measured by water displacement method.
		Ondatra zibethicus		35.0						
		Blarina brevicauda		3.1						
		Anseriformes		15.9						
		Gruiformes		4.3						
		Charadriformes \& 1.4 Passeriformes								
		frog		6.9						
		crayfish		8.8						
		insect		4.6						
		snails or bivalves		0.6						
		vegetation		2.0						
		eggshell		0.3						
		other		2.3						
$\begin{aligned} & \text { Melquist et al. } \\ & 1981 \end{aligned}$	- -	fish (mottled sculpin)		$\begin{array}{r} 59 \\ (7) \end{array}$			659	$\begin{aligned} & \text { wC Idaho } \\ & 1976-79 \end{aligned}$	```river drainage % frequency of occurrence; scats```	Season = all. Food items with \% frequency of occurrence less than or equal to 2 were not included.
		(unident. cyprinid)		(29)						
		(kokanee salmon)		(3)						
		(unident. salmonid)		(7)						
		(kokanee salmon and unident. salmonid)		(9)						
		(unident. fish)		(12)						
		```mammals (meadow mouse) (deer mouse) (muskrat) birds (unident. waterfowl (other birds) invertebrates (terrestrial beetle (aquatic beetele)```		43						
				(37)						
				(24)						
				(5)						
				19 $(9)$						
				(10)						
				24						
				(12)						
				(7)						
Proulx et al. 1987	B B	meadow voles		15.5	10.8			Ontario, CAN 1978	marsh\% volume; scats	Luther Marsh.
		muskrats		32.7	39.0					
		ducks		17.4	10.8					
		frogs		1.3	16.1					
		crayfish		12.1	4.5					
		insects		3.7	6.3					
		fish		-	1.1					
		vegetation		0.6	4.5					
		unspecified		16.7	6.9					
		(sample size)		(93)	(61)					


*** POPULATION DYNAMICS ***
inum Maximum N Tocat
home Range size
1987
5 Manitoba, CAN
prairie potholes

Reference Ag	S	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Arnold 1986	A	M		SU			ha	316	1,626		Manitoba, CAN	prairie potholes	Based on radiotracking data. Home ranges of males in breeding season; males may travel well beyond normal home ranges in search of females. As cited in Eagle and Whitman 1987.
Birks \& Linn 1982	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		-	$\begin{aligned} & 2.5 \\ & 2.2 \end{aligned}$		km river   km river	$\begin{aligned} & 1.9 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	England	riverine	Feral American mink; based on radiotracking data.
Eagle (unpublished)	-	-	-	-			ha	259	380		North Dakota	prairie potholes	As cited in Allen 1986.
Gerell 1970	$\begin{aligned} & \text { A } \\ & \text { J } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		-	$\begin{array}{r} 2.63 \\ 1.23 \\ 1.850 \end{array}$		$\begin{aligned} & \mathrm{km} \text { stream } \\ & \mathrm{km} \\ & \mathrm{~km} \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.1 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 1.4 \\ & 2.8 \end{aligned}$		Sweden	stream	As cited in Linscombe et al. 1982.
Linn \& Birks 1981	A	B	-	-			km river	2.8	5.9	8	England	riverine	Feral American mink; based on radiotracking data.
Mitchell 1961	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \end{aligned}$		-			ha ha	$\begin{array}{r} 7.8 \\ 20.4 \end{array}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Montana } \\ & 1955-58 \end{aligned}$	heavy veg. riverine sparse veg. riverine	
POPULATION DENSITY													
Marshall 1936	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{array}{r} 0.006 \\ 0.6 \end{array}$		N/ha   N/km river				Michigan	river	As cited in Eagle and Whitman 1987.
McCabe 1949	A	-	-	-	0.05		N/ha				Wisconsin	NS	As cited in Eagle and Whitman 1987.
Mitchell 1961	-	-	-	-	0.085		N/ha				Montana, 1957	river	
Mitchell 1961	-	-	-	-	0.03		N/ha				Montana, 1958	river	
LITTER SIZE													
Enders 1952	-	-	-	-	4.5				17		United States	farm-raised	Averaged from several successful ranches; kit counts. Author notes that litters of over 10 are rare.
Hall \& Kelson 1959	-	-		-				4	10		North America	NS	
$\begin{aligned} & \text { Hornshaw et al. } \\ & 1983 \end{aligned}$	-	-		-	4.2					9	$\begin{aligned} & \text { Michigan } \\ & \text { 1979-80 } \end{aligned}$	farm-raised	
Mitchell 1961	-	-	-	-	4			2	8	8	$\begin{aligned} & \text { Montana } \\ & \text { 1955-58 } \end{aligned}$	riverine	


Reference A	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
LItters/yEAR												
Ewer 1973	- -	-	-	1						NS	captive - zoo	As cited in Eisenberg 1981.
Hall \& Kelson 1959	9 -	-	-	1						North America	NS	
DAYS GEStation												
Enders 1952	- -	-	-	51		days	40	75		United States	farm-raised	```Pendleton (1982) notes that the wide range is due to variation in the duration of the pre-implantation period.```
Ewer 1973	- -	-	-	28-30		days				NS	NS	As cited in Eisenberg 1981. Corrected to account for delayed implantation; actual time from conception to birth is much longer.
Hall \& Kelson 1959	9 - -	-	-			days	39	76		North America	NS	
Age at weaning												
```Kostron & Kukla 1970```	-	1	-	7		weeks				NS	NS	(1) Age fully homeothermic. Cited in Eagle and Whitman 1987.
Svilha 1931	- -	1	-	37		days				Louisiana	NS	(1) Age observed eating meat. Cited in Eagle and Whitman 1987.
Age at sexual maturity												
Enders 1952	- B	-	-	10		months				United States	farm-raised	Usually reach this age by February or March.
Ewer 1973	- B	-	-	1		year				NS	NS	As cited in Eisenberg 1981.
LONGEVITY												
Eisenberg 1981	- -	-	-			years		10		NS	captive - zoo	
Enders 1952	- F	-	-	7		years		11		United States	farm-raised	Number of years females are able to breed in captivity.

*** SEASONAL ACTIVITIES ***

***** RIVER OTTER *****

*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference

Age Sex Cond Seas Mean SD/SE Units
Minimum Maximum
Habitat
Notes

BODY WEIGHT

Harris 1968	A	-	-	-				9	5,000	13,700		NS
Lauhachinda 1978	A	M	-	-	8,130	1,150	SD	g	5,840	10,420	153	Alabama,
	A	F	-	-	6,730	1,000	SD	g	4,740	8,720	71	Georgia
	Y	M	-	-	6,360	980	SD	g	4,410	8,310	26	
	Y	F	-	-	5,830	1,820	SD	g	3,750	7,010	30	

Dronkert 1987

$\begin{aligned} & \text { Melquist \& } \\ & \text { Hornocker } 1983 \end{aligned}$	A	M	-	-	9,200	60	SE
	A	F	-	-	7,900	20	SE
	Y	M	-	-	7,900	40	SE
	Y	F	-	-	7,200	10	SE
Wilson 1959	A	M	-	-	8,250		
	A	F	-	-	7,002		

NEONATE WEIGHT

Hamilton \& Eadie	N	-	-	132	9
1964					

Melquist \&

PUP GROWTH RATE

P - - $\quad 26.7$

9
5,000
15,000
NS
wc Idaho
1976-81

6
3

38 N Carolina
00

NS
NS

NS
mountain streams and lakes
coastal

2 New York

4 Alabama, Georgia
NS
NS
-
Liers 1951a
g/day

As cited in Toweill and Tabor 1982.
Live weight. Years of data collection were trapping seasons from 1972-73 to 1976-77. The 2 x
values given by the author were divided by 2 to produce the values shown in the table. SE values are too large relative to the mean and range, however. We assume that these really are standard deviations instead.

Summary of studies by Hall and Kelson 1959; Hall 1981; Woolington 1984.

Age $\mathrm{Y}=$ yearling.

Season for data $=$ fall and winter. As cited in Tumlison and Shalaway 1985.

Near-term fetuses from wild-trapped females.

Near-term fetuses from wild-trapped females.

Age 10 to 20 days. As cited in Toweill and Tabor 1982.
*** DIET ***

Reference	Age Se	ex F	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Alexander 1977		B	trout non-trout fish unidentified fish crustaceans unidentified	$\begin{array}{r} 42 \\ 32 \\ 9 \\ 2 \\ 15 \end{array}$				4	n lower Michigan	```aquatic % wet weight; stomach contents```	Year round.
$\begin{aligned} & \text { Anderson \& Woolf } \\ & \text { 1987b } \end{aligned}$		B	```fish (sunfish) (minnow/carp) (herring) (bass) frogs crayfish dragonfly nymph birds (unidentified) (sample size)```	$\begin{array}{r} 97 \\ (31) \\ (52) \\ (49) \\ (26) \\ 3 \\ 12 \\ 2 \\ 4 \\ (277) \end{array}$	$\begin{array}{r} 69 \\ (31) \\ (38) \\ - \\ 6 \\ 50 \\ 13 \\ (16) \end{array}$	$\begin{array}{r} 98 \\ (80) \\ (17) \\ (10) \\ (5) \\ 11 \\ 8 \\ 6 \\ 3 \\ 3 \\ (167) \end{array}$	99 (52) (44) (40) (14) 16 7 2 1 (362)	822	$\begin{aligned} & \text { nw Illinois } \\ & \text { 1981-83 } \end{aligned}$	```Mississippi River % frequency of occurrence; scats```	Spring = March-May; summer = June; fall = October-November; and winter $=$ December- February.
$\begin{aligned} & \text { Chabreck et al. } \\ & 1982 \end{aligned}$			```fish (longear sunfish) (killifishes) (striped mullet) (bowfin) (largemouth bass) blue crabs crayfish mammals birds snakes molluscs```				$\begin{array}{r} 83.0 \\ (9.4) \\ (15.1) \\ (11.3) \\ (18.9) \\ (11.3) \\ 3.8 \\ 34 \\ 7.5 \\ 0 \\ 5.7 \\ 3.8 \end{array}$	53	Louisiana $1976-80$	```freshwater swamps % frequency of occurrence; digestive tracts```	
$\begin{aligned} & \text { Chabreck et al. } \\ & 1982 \end{aligned}$	A	B	```fish (sheepshead minnow) (diamond killifish) (gulf killifish) (top minnow) (flounder) (mullet) (sailfin molly) blue crabs crayfish mammals birds molluscs shrimp```				83.3 (57.9) (37.3) (15.9) (15.9) (13.5) (11.9) (10.3) 19.8 1.6 7.9 2.4 1.6	126	Louisiana 1976-80	```saltmarsh % frequency of occurrence; digestive tracts```	

Reference	Age Se	ex	Food type	Spring	Summer	Fall	Winter		Location	Habitat - Measure	Notes
```Gilbert & Nancekivell }198```	B		```fish (northern pike) (brook stickleback) (white sucker) mammals (Microtus sp.) (muskrat) (river otter) birds (Gaviformes or Anseriformes) (Gruiformes) (Charadiformes) invertebrates (Insecta) (Mollusca)```		$\begin{array}{r} 78.9 \\ (8.4) \\ (72.1) \\ (6.0) \\ 15.9 \\ (2.0) \\ (8.0) \\ (5.2) \\ 21.5 \\ (16.4) \\ (2.8) \\ (2.0) \\ 59.4 \\ (21.1) \\ (3.2) \end{array}$			251	$\begin{aligned} & \text { ne Alberta CAN } \\ & 77-78 \end{aligned}$	```lakes % frequency of occurrence; scats```	Season = year round. Species with percentages of less than $2 \%$ not included in this summary. Evidence of otter fur in scats believed to be due to grooming.
```Gilbert & Nancekivell 1982```	B		```fish (northern pike) (brook stickleback) (white sucker) (arctic grayling) mammals (Lepus americanus) birds (Gaviformes or Anseriformes) invertebrates Insecta Mollusca```		$\begin{array}{r} 91.1 \\ (13.4) \\ (63.6) \\ (23.9) \\ (2.4) \\ 3.2 \\ (2.0) \\ 9.3 \\ (7.6) \\ 45.8 \\ (18.6) \\ (3.2) \end{array}$			247	$\begin{aligned} & \text { ne Alberta CAN } \\ & 77-78 \end{aligned}$	```streams % frequency of occurrence; scats```	Season = year round. Species with percentages of less than $2 \%$ not included in this summary.
Greer 1956	A	B	$\begin{aligned} & \text { fish } \\ & \text { invertebrates } \end{aligned}$		$\begin{aligned} & 99.9 \\ & 45.1 \end{aligned}$				Montana	```river % frequency of occurrence; scats```	Season not specified. As cited in Tumlison and Shalaway 1985.
Greer 1955	A	B	```invertebrates (aquatic insects) (fr water shrimp) fishes (trout) (sculpin) (sunfish) (suckers) salamanders snakes frogs mammals birds (sample size)```	41.6 (19.6) (14.3) 91.4 (23.7) (20.5) (47.1) (39.8) 0.3 0.2 19.6 8.1 6.7 (596)	$\begin{array}{r} 44.2 \\ (19.2) \\ (8.9) \\ 92.9 \\ (9.8) \\ (20.9) \\ (72.8) \\ (21.0) \\ 0.7 \\ 0.7 \\ 19.2 \\ 5.3 \\ 4.1 \\ (604) \end{array}$	$\begin{array}{r} 33.3 \\ (10.7) \\ (10.7) \\ 100 \\ (33.3) \\ (21.3) \\ (60.0) \\ (45.3) \\ 1.3 \\ 10.7 \\ 2.7 \\ 1.3 \\ (75) \end{array}$	26.3 (4.0) (4.0) 100 (29.3) (25.3) (33.3) (59.6) - 9.1 4.0 1.0 (99)	596	$\begin{aligned} & \text { nw Montana } \\ & 1952-53 \end{aligned}$	```lakes and streams % frequency of occurrence; scats```	Winter = January-March; spring = April- June; summer = July-September; fall = October-December.

Reference	Age Se	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Grenfell 1974	B	B	crayfish		98			118	c California	```marsh % frequency of occurrence; scats```	Year round. As cited in Tumlison and Shalaway 1985.
Hamilton 1961	A		```fish crayfish frogs aquatic insects mammals```				$\begin{array}{r} 70.0 \\ 34.7 \\ 24.8 \\ 13.5 \\ 4.3 \end{array}$	141	New York	Adirondacks \% frequency of occurrence; digestive tract	As cited in Tumlison \& Shalaway 1985.
$\begin{aligned} & \text { Knudsen \& Hale } \\ & 1968 \end{aligned}$	A		fish only fish and crayfish crayfish only	$\begin{array}{r} 91 \\ 9 \\ 0 \end{array}$	$\begin{aligned} & 63 \\ & 12 \\ & 24 \end{aligned}$	$\begin{aligned} & 72 \\ & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 67 \\ & 20 \\ & 13 \end{aligned}$	184	$\begin{aligned} & \text { WI, MI, MN, } \\ & 1951-54 \end{aligned}$	```NS % frequency of occurrence; scats```	Trace amounts of other items (e.g., insects \& duck) also found.
$\begin{aligned} & \text { Lagler \& Ostenson } \\ & 1942 \end{aligned}$	A	B	game \& pan fish forage fish unidentified fish amphibians other vertebrates insects crayfish	$\begin{array}{r} 22.7 \\ 35.9 \\ 3.9 \\ 25.2 \\ 4.5 \\ 0.4 \\ 7.4 \end{array}$				95	$\begin{aligned} & \text { Michigan } \\ & 1940-41 \end{aligned}$	```trout waters % wet volume; stomach contents```	Animals collected in March and April. Game and pan fish includes trout, bullheads, northern pike, perch, bass, and sunfish. Forage fish includes suckers, minnows, mudminnows, darters, muddlers, and sticklebacks.
Lagler \& Ostenson 1942	A	B	game \& pan fish forage fish unidentified fish amphibians other vertebrates insects crayfish	$\begin{array}{r} 65.3 \\ 11.2 \\ 2.0 \\ 14.4 \\ 0.5 \\ 2.9 \\ 3.7 \end{array}$				40	$\begin{aligned} & \text { Michigan } \\ & 1940-41 \end{aligned}$	```non-trout waters % wet volume; stomach contents```	Animals collected in March and April. Game and pan fish includes bullheads, northern pike, perch, bass, and sunfish. Forage fish includes suckers, minnows, mudminnows, darters, muddlers, and sticklebacks.
Larsen 1984	A	B	fish (sculpins) (greenlings) (rockfish) invertebrates birds mammals plants		$\begin{array}{r} 96 \\ (65) \\ (14) \\ (17) \\ 30 \\ 1 \\ <1 \\ <1 \end{array}$			272	se Alaska	```coastal % frequency of occurrence; scats```	Year round data.
Lauhachinda 1978	B	B	fish crayfish birds				$\begin{array}{r} 91.7 \\ 58.3 \\ 8.3 \end{array}$	12	$\begin{aligned} & \text { c Alabama } \\ & 1975-77 \end{aligned}$	```riverine % frequency of occurrence; scats```	Data from trapping seasons.

Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Lauhachinda 1978		fish (Centrarchidae) (Catostomidae) (Ictaluridae) (Cyprinidae) amphibians crayfish other arthropods molluscs (snail) birds plant material				$\begin{array}{r} 83.2 \\ (53.6) \\ (12.1) \\ (10.5) \\ (6.3) \\ 5.4 \\ 62.5 \\ 10.8 \\ 0.9 \\ 0.3 \\ 3.8 \end{array}$	315	$\begin{aligned} & \text { Alabama, GA } \\ & 1972-77 \end{aligned}$	```NS % frequency of occurrence; digestive tracts```	Data from trapping seasons.
Loranger 1981	- B	Ictaluridae Centrarchidae Salmonidae Percidae Esocidae Castostomidae Cyprinidae Cyprinodontidae unidentified fish bullfrogs crayfish vegetative matter unidentified			$\begin{array}{r} 28.2 \\ 20.3 \\ 5.2 \\ 3.5 \\ 0.2 \\ 5.5 \\ 3.2 \\ 0.6 \\ 9.9 \\ 14.0 \\ 0.4 \\ 0.1 \\ 8.9 \end{array}$		56	$\begin{aligned} & \text { Massachusetts } \\ & 76-78 \end{aligned}$	```NS % dry volume; stomach contents```	Season = late fall - early winter. Food material was air-dried for a 24-48 hour period prior to examination; \% volume measured by water displacement. Carcasses supplied by trappers from eight counties following the 1976-77 and 1977-78 trapping seasons.
Melquist \& Hornocker 1983	A B	```fish (sucker) (sculpin) (squawfish) (perch) (whitefish) invertebrates birds mammals reptiles (sample size)```	$\begin{array}{r} 100 \\ (52) \\ (40) \\ (5) \\ (22) \\ (21) \\ 2 \\ <1 \\ 1 \\ 0 \end{array}$	$\begin{array}{r} 93 \\ (47) \\ (31) \\ (4) \\ (3) \\ (10) \\ 7 \\ 12 \\ 4 \\ 1 \end{array}$		$\begin{array}{r} 99 \\ (30) \\ (42) \\ (6) \\ (9) \\ (66) \\ 12 \\ <1 \\ 1 \\ 0 \\ (258) \end{array}$		$\begin{aligned} & \text { wC Idaho } \\ & 1976-81 \end{aligned}$	```mountain streams and lakes % frequency of occurrence; scats```	Most of the fish taken were greater than 30 cm in length.
Melquist et al. 1981 (continued)	A B	fish (largescale sucker) (mottled sculpin) (north. squawfish) (unident. cyprinid) (brown bullhead) (yellow perch) (mountain whitefish) (kokanee salmon) (unident. salmon) (kokanee \& unident. salmon)		97 (29) (38) (3) (24) (1) (9) (27) (9) (34) (43)			1,902	$\begin{aligned} & \text { wC Idaho } \\ & 1976-79 \end{aligned}$	```river drainage % frequency of occurrence; scats```	Season = all.

Reference	Age S	ex F	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Shirley 1985		B	```crayfish fish parts birds, crabs, snakes alligators, mammals```	$\begin{aligned} & 89 \\ & 25 \\ & \text { TR } \\ & \text { TR } \end{aligned}$				1048	sw Louisiana 1982	```brackish marsh % frequency of occurrence; scats```	Trace prey considered unimportant dietary components by author.
$\begin{aligned} & \text { Stenson et al. } \\ & 1984 \end{aligned}$	A	B	```fish (Embiotocidae) (Cottidae) (Pleuronectiformes) (Blennoidea) (Scorpaenidae) (Hexagrammidae) crustaceans birds```		99.4 (42.2) (40.5) (40.0) (33.3) (30.1) (13.1) 7.2 4.2			69	British Columbia	```coastal marine - % frequency of occurrence; scats```	Season is year round.
$\begin{aligned} & \text { Stenson et al. } \\ & 1984 \end{aligned}$			$\begin{aligned} & \text { fish } \\ & \text { birds } \\ & \text { crustaceans } \end{aligned}$				$\begin{array}{r} 86.9 \\ 13.0 \\ 2.9 \end{array}$	69	British Columbia	```coastal marine - % frequency of occurrence; stomachs```	Stomachs collected during the trapping season (December-February).
Toll 1961	A		```fish invertebrates vegetable matter mammals birds```		$\begin{array}{r} 92 \\ 56 \\ 13 \\ 3 \\ 1 \end{array}$			517	$\begin{aligned} & \text { c Mass. } \\ & 1955-57 \end{aligned}$	```wildlife reservation % frequency of occurrence; scats```	Data from year round. As cited in Tumlison and Shalaway 1985.
Toweill 1974	A	B	```fish (Cottidae) (Salmanidae) (Cypriidae) (Ictaluridae) crustacea amphibians birds molluscs```				80 (31) (24) (24) (7) 33 12 8 11	75	$\begin{aligned} & \text { w Oregon } \\ & 1970-72 \end{aligned}$	```NS % frequency of occurrence; digestive tracts```	
Wilson 1985	A	B	```fish (carp) (suckers) (killifish) (minnows) (eels) (sunfish) (catfish) (white perch) (pickerel) crustacea insects birds```				91 (11) (11) (9) (7) (7) (15) (11) (7) (7) 39 6 3	30	North Carolina	```swamps & marshes % frequency of occurrence; scats and digestive tracts```	Combined sample of 10 digestive tracts and 20 scats.

Reference	Age S	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
HOME RANGE SIZE													
$\begin{aligned} & \text { Erickson et al. } \\ & 1984 \end{aligned}$	A	B	-	-			ha	400	1,900		Missouri	inland marsh/streams	As cited in Melquist and Dronkert 1987. Habitat is in the Swan Lake National Wildife Refuge.
$\begin{aligned} & \text { Erickson et al. } \\ & 1984 \end{aligned}$	A	-	-	-			km	11	78		Missouri	inland marsh/streams	As cited in Melquist and Dronkert 1987. Habitat is in the Lamine River Wildlife Area.
Foy 1984	-	$\begin{aligned} & \text { M } \\ & \mathrm{F} \end{aligned}$	-	-	$\begin{aligned} & 400 \\ & 295 \end{aligned}$		$\begin{aligned} & \text { ha } \\ & \text { ha } \end{aligned}$				$\begin{aligned} & \text { se Texas } \\ & 1981-83 \end{aligned}$	coastal marsh	As cited in Tumlison and Shalaway 1985. Total range (includes both sexes) = $184-461 \mathrm{ha}$.
Larsen 1983	-	-	-	-			ha	900	2,500		se Alaska	coastal	As cited in Melquist and Dronkert 1987. Author also provides home ranges in km of shore; 19 - 40 km .
Mack 1985	-	-	-	-			ha	2,900	5,700		Colorado	mountain valley	As cited in Melquist and Dronkert 1987. In this study, home ranges tended to be largest in the spring.
Melquist \&	J	B	1	-	22	7.8 SD	km	8	29	7	wc Idaho	shorelines of lakes	Seasonal home range based on
Hornocker 1983	Y	F	2	-	32	6.2 SD	km	25	40	4	1978-81	and streams	radiotracking. Due to lack of
	Y	M	2	-	43	20 SD	km	10	78	7			obvious trends, data combined
	A	F	2	-	31	9.2 SD	km	23	50	7			across seasons: (1) solitary
	B	B	3	-	28	7.5 SD	km	15	39	11			```juveniles (fall and winter); (2) solitary animals (all seasons); (3) adult females and juveniles of both sexes in family groups (all seasons).```
Woolington 1984	-	-	-	-			km	1.0	23		se Alaska	coastal	As cited in Melquist and Dronkert 1987.
POPULATION DENSITY													
$\begin{aligned} & \text { Erickson et al. } \\ & 1984 \end{aligned}$	A	B	-	-	0.0025		N/ha				Missouri	inland marsh/streams	Swan Lake National Wildlife Refuge. As cited in Melquist and Dronkert 1987.
$\begin{aligned} & \text { Erickson et al. } \\ & 1984 \end{aligned}$	A	B	-	-	0.13		N / km				Missouri	inland marsh/streams	Lamine River Wildlife Area. As cited in Melquist and Dronkert 1987.
Foy 1984	-	-	-	-			N/ha	0.0094	0.014		se Texas	coastal marsh	As cited in Melquist and Dronkert 1987.

Reference A	Age	Sex	Cond	d Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
Larsen 1983	-	-	-	-				N / km	0.48	0.53		se Alaska	coastal	As cited in Melquist and Dronkert 1987.
Melquist \& Hornocker 1983	$\begin{aligned} & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { Y } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \mathrm{F} \\ & \mathrm{M} \\ & \mathrm{~B} \end{aligned}$	BR BR	- - -	$\begin{array}{r} 0.26 \\ 0.05 \\ 0.019 \\ 0.071 \end{array}$			N / km N / km N / km N / km	0.17	0.37		$\begin{aligned} & \text { wc Idaho } \\ & 1976-81 \end{aligned}$	mountain streams	Density along length of mountain streams.
Reid 1984	-	-	-	-				N/km	0.06	0.1		Alberta CAN	lake	Habitat = lake in northwestern boreal forest. As cited in Melquist and Dronkert 1987.
Trippensee 1953	-	-	-	-	0.0001			N/ha				Oregon/Washing ton	National Forest	Habitat described as approximately 109,000 square km of "nearly primitive otter range."
Woolington 1984	-	-	-	-	0.85			N/km				se Alaska	coastal - island	As cited in Melquist and Dronkert 1987.
LITtER SIZE														
Anderson \& Scanlon 1981	n	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} 2.75 \\ 2.5 \end{array}$	$\begin{aligned} & 0.177 \\ & 0.089 \end{aligned}$	$\begin{aligned} & \mathrm{SE} \\ & \mathrm{SE} \end{aligned}$				$\begin{array}{r} 8 \\ 24 \end{array}$	$\begin{aligned} & \text { e Virginia } \\ & 1979-80 \end{aligned}$	NS	Measure: (1) embryo counts; (2) corpora lutea counts.
Docktor et al. 1987	- - - - -		$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.87 \\ & 1.60 \\ & 2.29 \\ & 2.67 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 0.91 \\ & 0.96 \\ & 1.42 \\ & 1.25 \\ & 1.40 \\ & 1.29 \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 6 \end{aligned}$	$\begin{array}{r} 15 \\ 16 \\ 10 \\ 7 \\ 15 \\ 114 \end{array}$	Maine 1982-83	NS	```Corpora lutea counts; Age classes: (1) 1 year; (2) 2 years; (3) 3 years; (4) 4 years; (5) 5 to 12 years; (6) all ages combined.```
$\begin{aligned} & \text { Hamilton \& Eadie } \\ & 1964 \end{aligned}$	-	-	-	-	2.1	0.7	SD				9	New York	NS	Implanted embryo count conducted in March and April.
Hill \& Lauhachinda 1981	a	-	-	-	2.68	0.71	SD		1	4	57	$\begin{aligned} & \text { Alabama, GA } \\ & 1972-77 \end{aligned}$	NS	Embryo count; animals collected from trappers from 1972-77. Reproductive tracts of 56 of 116 females (all 2 years or older) contained embryos or blastocysts.
Hooper \& Ostenson 1949	-	-	-	-	2-3				1	6		California	NS	As cited in Melquist \& Dronkert 1987; measure not specified.
Johnstone 1978	-	-	-	-	2.3							NS	captive	As cited in Eisenberg 1981; measure not specified.
Lauhachinda 1978	-	-	-	-	2.6				1	4	48	$\begin{aligned} & \text { Alabama, GA } \\ & 1972-77 \end{aligned}$	NS	Number of fetuses per pregnant female. Data from 1972-73 through 1976-77 trapping seasons.

Reference A	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Liers 1966	-	-	-	-	3-4				5		Canada	lab	As cited in Tumlison and Shalaway 1985; measure not specified.
McDaniel 1963	-	-	-	-	3.0	1.0 SD					Florida	NS	As cited in Melquist and Dronkert 1987; measure not specified.
Melquist \& Hornocker 1983	-	-	-	-	2.4						Idaho	NS	Number of pups per female that survived from birth until fall/early winter.
Mowbray et al. 1979	-	-	-	-	2.73	0.77 SD		1	4	22	$\begin{aligned} & \text { Maryland } \\ & 1975-77 \end{aligned}$	wetlands	Implanted embryos.
Tabor \& Wight 1977		$\begin{aligned} & - \\ & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 2.73 \\ & 2.80 \\ & 2.86 \\ & 2.80 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.20 \\ & 0.20 \\ & 0.21 \\ & \mathrm{SE} \\ & 0.12 \end{aligned} \mathrm{SE}$		$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 11 \\ & 10 \\ & 14 \\ & 35 \end{aligned}$	$\begin{aligned} & \text { w Oregon } \\ & \text { 1970-71 } \end{aligned}$	NS	```Age classes: (1) 2 years; (2) 3 years; (3) 4 to 11 years; (4) all ages combined. Measured blastocysts.```
Tabor \& Wight 1977	$\begin{aligned} 7 & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 2.5 \\ 3.0 \\ 3.0 \\ 2.75 \end{array}$			2 2	3 3	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 4 \end{aligned}$	w Oregon	NS	Age classes: (1) 2 years; (2) 3 years; (3) 4 to 11 years; (4) all ages combined. Measured implanted embryos.
LITTERS/YEAR													
Trippensee 1953	-	-	-	-	1						NS	NS	
days gestation													
Hamilton \& Eadie 1964	-	-	-	-	365		days				New York	NS	Entire period from copulation to birth of young; active gestation period is about two months.
Johnstone 1978	-	-	-	-	56		days				NS	captive	Active gestation (postimplantation). As cited in Eisenberg 1981.
Lancia \& Hair 1983	3	-	-	-	60-63		days				NS	NS	Active gestation (post-implantation). As cited in Melquist and Dronkert 1987.
Liers 1951b	-	-	-	-			days	290	380		Wisconsin	captive	Entire period from copulation to birth of young.

age at weaning

Johnstone 1978
Harris 1968
days
years
Hamilton \& Eadie -

Hamilton \& Eadie	$-F-D-$	2	years	
1964	$-M-$	2	years	
Harris 1969	$-M-$	2	years	
(canadensis)	$-F$	-	2	years

Liers 1951b
years
New York

Canada

Minnesota
captive
NS
NS
age at sexual maturity

ANNUAL MORTALITY

Lauhachinda 1978	A	M	-	-	17.8	\%/year
	A	F	-	-	20.3	\%/year
Mowbray et al.	J	F	-	-	17	\%/year
1979	A	F	-	-	31	\%/year

A F - -
-
$\% /$ year
$\% /$ year

$\% /$ year $\% /$ year

\%/year

LONGEVITY

Eisenberg 1981	-	-	-	years
Grinnell et al. 1937	-	-	-	$10-15$

Alabama,
1972-77
23 Maryland
1974-77

Oregon

1 NS
California

439 Alabama,
1972-77
1 NS

1 Washington
captive/zoo
captive
iverine

NS

NS
captive-zoo
NS
riverine
captivity
captive/zoo

As cited in Eisenberg 1981.
Otters still nursing at 91 days. Otters still nursing at 91 days.
Eating solid foods by 9 th week.

Wild-trapped animals.

As cited in Tumlison and Shalaway 1985.

In general, males cannot be counted on as successful breeders until
they reach $5-7$ years of age.

Adjusted mortality; estimated on
Adjusted mortality; estimated on
the basis of age classes. Juveniles the basis of age classes. Juveniles
$=<1$ year old; adult value applies to ages 1 through 9.

Age classes: (1) birth to 1 year; (2) yearling; (3) 2-11 years.

As cited in Melquist and Dronkert 1987.

As cited in Tumlison and Shalaway 1985.

As cited in Tumlison and Shalaway
1985. 1985

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING						
$\begin{aligned} & \text { Hamilton \& Eadie } \\ & 1964 \end{aligned}$	Mar		Apr	New York	NS	
Harris 1969	mid Feb		mid Apr	NS	captive/zoo	As cited in Tumlison and Shalaway 1985.
$\begin{aligned} & \text { Hooper \& Ostenson } \\ & 1949 \end{aligned}$	Jan	Mar-Apr	May	Michigan	NS	As cited by Toweill and Tabor 1982.
$\begin{aligned} & \text { Humphrey and Zinn } \\ & 1982 \end{aligned}$		Fall		Florida	cypress swamp	
Lauhachinda 1978	winter	late winter	spring	$\begin{aligned} & \text { AL, FL, GA } \\ & 1972-77 \end{aligned}$	NS	
Liers 1951b	Dec		earl Apr	Minnesota	captive	
MacFarlane 1905	Mar	Apr	May	Mackenzie River, CAN	NS	As cited in Toweill and Tabor 1982.
Melquist \& Dronkert 1987		earl spring		temperate regions	NS	Summary of several studies.
Trippensee 1953	Feb/Mar			NS	NS	Mating may continue through summer in favorable locations.
PARTURITION						
Anderson 1981	Feb 25		Mar 31	$\begin{aligned} & \text { Virginia } \\ & \text { 1979-81 } \end{aligned}$	NS	As cited in Tumlison and Shalaway 1985.
Hamilton \& Eadie 1964	Mar		Apr	New York	NS	
Hill and Lauhachinda 1981	earl Jan		earl Mar	AL, GA 1972-77	NS	
Lauhachinda 1978	late Jan		May	Alabama, Georgia	NS	Animals collected from trappers during the 1972-73 and the 1976-77 trapping seasons.
Liers 1966	Dec 25		Mar 25	Canada	lab	As cited in Tumlison and Shalaway 1985.

Reference	Begin	Peak	End	Location	Habitat	Notes
Melquist \& Hornocker 1983	late Mar		earl Apr	$\begin{aligned} & \text { wc Idaho } \\ & 1976-81 \end{aligned}$	mountain streams	
Mowbray et al. 1979	Mar 10		May 20	$\begin{aligned} & \text { Maryland } \\ & 1974-77 \end{aligned}$	Chesapeake Bay area	
Tabor and Wight 1977	earl Apr			w Oregon	NS	As cited in Mowbray et al. 1979.
Toweill \& Tabor 1982	Nov	Mar-Apr	May	NS	NS	Summary of several studies.
dispersal						
Melquist \& Hornocker 1983		Apr - May		wc Idaho 1976-81	mountain streams	Dispersal at age 12-13 months.

Page A-294 is left blank.

Reference
Age Sex Cond Seas Mean SD/SE Unit

Minimum Maximum
Location
Habitat
Notes
BODY WEIGHT

Ashwell-Erickson \&	J	F	-	-	40		kg	2 yr
Elsner 1981	J	F	-	-	56		kg	4 yr
(richardsi)	J	F	-	-	67		kg	6 yr
	A	F	-	-	76		kg	8 yr
	A	F	-	-	82		kg	10 yr
	A	F	-	-	90		kg	12 yr
	A	F	-	-	101		kg	16 yr
	A	F	-	-	112		kg	24 yr
	J	M	-	-	49		kg	2 yr
	J	M	-	-	70		kg	4 yr
	J	M	-	-	84		kg	6 yr
	A	M	-	-	95		kg	8 yr
	A	M	-	-	102		kg	10 yr
	A	M	-	-	110		kg	12 yr
	A	M	-	-	120		kg	16 yr
	A	M	-	-	124		kg	24 yr
Boulva \& McLaren	A	M	-	-	90.0		kg	
$\begin{aligned} & 1979 \\ & \text { (concolor) } \end{aligned}$	A	F	-	-	70.0		kg	
FAO Adv. Comm.	A	M	-	-	87.6		kg	
1976	A	F	-	-	64.8		kg	
Irving 1972	A	F	-	-	89.0		kg	
Pitcher \& Calkins	A	M	-	-	84.6	11.3 SD	kg	
1979	A	F	-	-	76.5	17.7 SD	kg	

BODY FAT

Ashwell-Erickson	J	-	1	SP	27	O body wt
et al. 1979	J	2	FA	24	\vdots body wt	
(richardsi)	J	3	SP	29	\% body wt	

(richardsi)
$J-15$
$J-2$
$J-3$
$J P A$
\% body wt
\% body wt

Bering Sea, coastal
Alaska
Canada marine

NS
NS

Arctic
112 Gulf of Alaska
$\begin{array}{ll}112 & \text { Gulf of } \\ 134 & 1975-78\end{array}$

coastal/marine

Amount of years in units column is
age of seals. Total of 155 seals
from the Aleutian Ridge and from the Aleutian Ridge and
Pribilof Islands. Values estimated from the calculated growth curve presented in paper.
weights.

Male length - 1.6 meters; female length 1.5 meters. As cited in Ronald et al. 1982.
As cited in Ronald et al. 1982.
Average length ($+/-95 \% \mathrm{CL}$): Males 155.4 (+/- 1.4) cm; females 144. seven years of age or older.

Data from one seal from April of first year year, September of year. Weight of seal (kg); (1) 39; (2) $47 \mathrm{~kg} ; ~(3) 49 \mathrm{~kg}$. Determined using the titrated water method.

Reference	Age S	ex	Cond	Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
NEONATE WEIGHT														
Bigg 1969a (richardsi)	N	B	-	-	10.2	0.77	SE	kg				British Columbia	coastal/marine	```SE estimated from 95% CL of 1.5; average length of neonates was 81.6 (+/- 6.2 95% CL) cm. As cited in Pitcher and Calkins 1979.```
Bryden 1972	N	-	-	-	10.0			kg				NS	NS	As cited in Ronald et al. 1982.
FAO Adv. Comm. 1976	N	-	-	-				kg	9.0			NS	NS	Length 0.75 m . As cited in Ronald et al. 1982.
Klinkhart 1967 (richardsi)	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	M F		-	$\begin{aligned} & 12.8 \\ & 13.3 \end{aligned}$			$\begin{aligned} & \mathrm{kg} \\ & \mathrm{~kg} \end{aligned}$			$\begin{aligned} & 34 \\ & 34 \end{aligned}$	Alaska	marine	As cited in Newby 1973.
Newby 1973 (richardsi)	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		-	$\begin{aligned} & 14.8 \\ & 10.7 \end{aligned}$	$\begin{aligned} & 2.74 \\ & 2.76 \end{aligned}$		$\begin{aligned} & \mathrm{kg} \\ & \mathrm{~kg} \end{aligned}$			$\begin{array}{r} 5 \\ 13 \end{array}$	$\begin{aligned} & \text { Washington } \\ & 1969-72 \end{aligned}$	marine	Mean male weight listed as $15,270 \mathrm{~g}$ in Table 1 but $14,810 \mathrm{~g}$ on page 543. We believe the lower value is more likely to be correct.
Newby 1978 P. largha)	N	-	-	-				kg	9.1	11.8	2	Pacific coast	coastal/marine	Data is for richardsi subspecies and P. largha.
```Pitcher & Calkins 1979 (richardsi)```	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 12.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.31 \end{aligned}$		$\begin{aligned} & \mathrm{kg} \\ & \mathrm{~kg} \end{aligned}$				$\begin{aligned} & \text { Tugidak } \\ & \text { Island, Alaska } \\ & \text { 1975-78 } \end{aligned}$	coastal/marine	Male mean standard length (+/- 95\% CL) was 78.6 (+/- 2.7) cm; female length was $76.5(+/-1.9) \mathrm{cm}$. Total of 23 animals measured; SE estimated from 95\% CL.
Rosen 1989   (concolor)	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{M} \end{aligned}$	-	-	$\begin{array}{r} 8.5 \\ 10.1 \end{array}$			$\begin{aligned} & \mathrm{kg} \\ & \mathrm{~kg} \end{aligned}$				Gulf of St. Lawrence	coastal/marine	Location is Miquelon Islands; male birth weight is significantly greater than female birth weight.
PUP GROWTH RATE														
Rosen 1989   (concolor)	$\begin{aligned} & \mathrm{P} \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{M} \end{aligned}$	-	-	$\begin{aligned} & 790 \\ & 520 \end{aligned}$			g/day   g/day				Gulf of St. Lawrence	island/marine	Pre-weaning growth rate on Island of Miquelon; birth weight: male = $10,100 \mathrm{~g} ;$ female $=8,500 \mathrm{~g}$.
WEANING WEIGHT														
Bigg 1969a   (richardsi)	-	B	-	-	24,000			9				British   Columbia	marine	As cited in Boulva and McLaren 1979. Weight doubled from birth.
Bryden 1972	-	B	-	-	24,000			g				NS	marine	As cited in Ronald et al. 1972.

## METABOLIC RATE (OXYGEN)



Davis et al. $1985 \begin{array}{llll}\text { J } & \text { B } & \text { R } & - \\ \text { A } & F & \text { R } & -\end{array}$
7.3
6.6
metabolic rate (KCAL basis)
$\begin{array}{lllllll}\text { Ashwell-Erickson \& } & \text { J } & \text { B } & 1 & - & 85.5 & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ \text { Elsner 1981 } & \text { J } & \text { B } & 2 & - & 59.5 & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ \text { (richardsi) } & \text { J } & \text { B } & 3 & - & 57.5 & \mathrm{kcal} / \mathrm{kg}-\mathrm{d}\end{array}$

## FOOD INGESTION RATE

Ashwell-Erickson \&	-	B	1	-	0.13	g/g-day
Elsner 1981	-	B	2	-	0.08	g/g-day
(P. largha)	-	B	3	-	0.05	g/g-day
	-	B	4	-	0.04	g/g-day
	-	B	5	-	0.03	g/g-day
Ashwell-Erickson \&	J	B	1	-	0.04	g/g-day
Elsner 1981	J	B	2	-	0.08	g/g-day

Elsner 1981
P. largha)

Ashwell-Erickson \&
(richardsi)

J	B	1	-
J	B	2	-
J	B	3	-
J	B	4	-
A	B	5	-
A	B	6	-
A	B	7	-
A	B	8	-
A	B	9	-

121.6
89.0
63.6
50.0
41.5
35.3
35.3
32.2
32.2
28.5
26.4
$1 \mathrm{O}_{2} / \mathrm{kg}$-day
$10_{2} / \mathrm{kg}$-day
kcal/kg-d $\mathrm{kcal} / \mathrm{kg}-\mathrm{d}$ $\mathrm{kcal} / \mathrm{kg}-\mathrm{d}$ $\mathrm{kcal} / \mathrm{kg}-\mathrm{d}$
$\mathrm{kcal} / \mathrm{kg}-\mathrm{d}$ kcal/kg-d kcal/kg-d kcal/kg-d kcal/kg-d

Bering Sea,
$1 \mathrm{O}_{2} / \mathrm{kg}-\mathrm{d}$
$1 \mathrm{O}_{2} / \mathrm{kg}-\mathrm{d}$
$1 \mathrm{O}_{2} / \mathrm{kg}-\mathrm{d}$

## Alaska

California
1982-83

Bering Sea,
Alaska

```
from Bering Sea
```

NS
captives from Bering Sea

Basal metabolic rate for harbor and spotted (P. largha) seals at rest in air and water at temperatures ranging from -20 to +20 C (air) and -1.8 to 16 C (water). Trials did not indicate a difference in rates seals (years): (1) $0.2-0.7$; (2) 1; (3) 3; (4) 4; and (5) 9. Values for ages 4 and 9 were estimated from Figure 53.5.

Juvenile is a yearling; weight $=33$ kg . Adult female weight $=63 \mathrm{~kg}$.

Basal metabolic rate used in energy flow modeling. Age of seals; (1) birth to weaning; (2) weaning to one year; (3) 1 to 4 years. For
ages 16 and under, authors present ages 16 and under, authors present
equation $\operatorname{BMR}=70 \times$ (weight to the equation $B M R ~$
0.75 power) 70 x (

Mean food consumption of Atlantic mackerel by 1 male and 1 female largha (spotted) seal during: (1) first year; (2) second year; (3) third year; (4) fourth year; and (5) fifth through ninth years.

Approximate consumption in: (1) March-August; (2) winter. Based on consumption of subadult harbor and largha (spotted) seals.

Model results based on food ingestion and gross energy content of food. Age of seals (years) and mean weight (kg): (1) 1-38.7; (2)

$2-44.9 ;(3) 4-60.7 ; ~(4) 6-$
$75.2 ; ~(5) ~ 8-88.3 ; ~(6) ~$

(7) 12 - 103.8; (8) $14-108.2$; and
(9) $20-115.0$.


## WATER INGESTION RATE

Depocas et al.	A	F	1	-	0.0013	g/g-day	0.0009	0.0016	2	British	captive
1971	A	B	2	-	0.0048	g/g-day	0.0028	0.0091	5	Columbia	

## INHALATION RATE

Angell-James et al. 1981	J	B	R	-	21.3	8.2	SD	breath/min
Craig \& Pasche	J	M	SW	-	36.6	1.4	SE	breath/min
1980	J	F	SW	-	39.7	2.0	SE	breath/min
	J	M	R	-	36.2			breath/min
	J	F	R	-	28.2			breath/min
INHALATION VOLUME								
Angell-James et	J	B	R	-	5.9	2.02	SD	m3/day
al. 1981	J	B	R	-	0.374	0.173	SD	m3/kg-day
Craig \& Pasche	J	M	SW	-	47.9	3.0	SE	m3/day
1980	J	F	SW	-	57.5	2.9	SE	m3/day
	J	M	R	-	47.7			m3/day
	J	F	R	-	47.7			m3/day


8	from Bering   Sea	lab
1	Oslo, Norway	
1	lab	
1	1975	

Os10, Norway lab
1
1
fro
Sea

Oslo, Norway 1975

Seawater ingestion by: (1) Starved seals; (2) fed seals. Values are increased with food intake and is suggested to be coincidental to feeding rather than intentional.

3-4 months old, weighted 13.2-21. kg (mean=16.9 kg) ; anesthetized.

Two years old (frequency during surface time).

Control value; anesthetized $w t .=16.9 \mathrm{~kg}$ (range $13.2-21.4 \mathrm{~kg}$ ) ; 3-4 months old.

Two years old. Volume while at surface; provides an overestimate of average daily breathing rate on
*** DIET ***


Reference	Age Sex	ex F	Food type	Spring	Summer	Fall	Winter		Location	Habitat - Measure	Notes
$\begin{aligned} & \text { Payne \& Selzer } \\ & 1989 \\ & \text { (concolor) } \end{aligned}$		B	American sandlance Gadidae (cod-like) flounder spp. Atlantic herring Atlantic mackerel skate (Raja spp.) squid (short finned or long finned)		74 8 5 5 1 2 5			234	$\begin{aligned} & \text { S New England } \\ & \text { 1983-87 } \end{aligned}$	```haul-out sites % frequency of occurrence; scat analysis```	Season is year-round. Scats collected at three haul-out sites on Cape Cod; otoliths and other parts (e.g., diagnostic bones) used to identify prey.
Perez 1990 (concolor)	A		```Pacific herring salmon capelin euchalon \& smelts walleye pollock Pacific cod saffron cod Arctic cod rockfishes Atka mackerel greenlings sculpins Pacific sandlance eelpouts flatfishes other fish (fish subtotal) squid octopus shrimp crab other (invert. subtotal)```		5 1 5 4 12 8 3 $<1$ 1 9 8 9 4 1 3 2				Bering   Sea/Aleutians	coastal/marine \% wet weight; measure not specified	All seasons. Estimated from data contained in six other studies.
Pitcher 1980   (richardsi)	A	B	```squid, octopus shrimp, crabs herring salmonids osmerids cod, tomcod, walleye pollock other```		$\begin{array}{r} 20 \\ 3.7 \\ 6.4 \\ 4.4 \\ 22.5 \\ 26.0 \\ 14.1 \end{array}$			269	$\begin{aligned} & \text { Gulf of Alaska } \\ & \text { 1973-78 } \end{aligned}$	```coastal/marine % wet volume; stomach contents```	All seasons combined (i.e., not only summer).
$\begin{aligned} & \text { Pitcher \& Calkins } \\ & 1979 \\ & \text { (richardsi) } \end{aligned}$			```walleye pollock octopus capelin herring Pacific cod flatfishes shrimp```		$\begin{array}{r} 23.3 \\ 19.9 \\ 11.3 \\ 7.0 \\ 3.4 \\ 2.8 \\ 3.6 \end{array}$			255	$\begin{aligned} & \text { Gulf of Alaska } \\ & 1975-78 \end{aligned}$	coastal/marine \% of volume; based on wet weight of stomach contents	All areas, all seasons combined.




HOME RANGE SIZE/FORAGING RADIUS

Beach et al. 1985 - - - - 30-55

km
km

Washington

5 Oregon

Alaska
24-194
km
Pitcher \&
MCAllister 1981
*** POPULATION DYNAMICS ***


## POPULATION DENSITY

$\begin{aligned} & \text { Richardson } 1981 \\ & \text { (concolor) } \end{aligned}$	B	B	-	SU	0.0305	N/ha	0.00394	0.0611	Maine 1973	coastal/marine	Data on both harbor and gray seals   from seven census flights.
LITTER SIZE											
Hoover 1988	-	-	-	-	1				throughout range	NS	
LITTERS/YEAR											
Hoover 1988	-	-	-	-	1	/yr			throughout range	NS	
days gestation											
FAO Adv. Comm. 1976	-	-	-	-	10.5-11	months			NS	NS	As cited in Ronald et al. 1982.
Newby 1978	-	-	-	-	11	months			```e Pacific coast```	coastal/marine	
Age at weaning											
```Boulva & McLaren 1979 (concolor)```	-	B	-	-	30	days			$\begin{aligned} & \text { e Canada } \\ & 1968-73 \end{aligned}$	marine	The weaning process takes about one week.
Lawson \& Renouf 1987	-	-	-	-	4	weeks			Newfoundland 1982	tidal bay	
```Slater & Markowitz 1 9 8 3```	-	B	-	-	35	days			$\begin{aligned} & \text { c California } \\ & 1978-79 \end{aligned}$	coastal/marine	Approximate value.

(richardsi)

## Age at sexual maturity

Ashwell-Erickson \& Elsner 1981	-	F	2	-	$\begin{array}{r} 5 \\ 5.5 \end{array}$		years   years			NS	NS
Bigg 1969a   (richardsi)	-	F F M	1	-	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 0.26 \mathrm{SE} \\ & 0.31 \mathrm{SE} \end{aligned}$	years   years   years	3	6	British Columbia	coastal/marine
```Boulva & McLaren 1979 (concolor)```	-	M F	-	-	$\begin{array}{r} 6 \\ 3-4 \end{array}$		years   years			$\begin{aligned} & \text { e Canada } \\ & 1968-73 \end{aligned}$	marine
FAO Adv.Comm. 1976 (richardsi)	-	F	-	-			years years	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	NS	NS
Newby 1978 (richardsi \&) P. largha	-	M F	-	-	$\begin{aligned} & 4-5 \\ & 3-4 \end{aligned}$		years years			Pacific coast	coastal/marine
Pitcher 1977 (richardsi)	-	F F M	1 2 -	-	$\begin{aligned} & 3.7 \\ & 4.4 \end{aligned}$		years years years	3	7	Prince William Sound	coastal/marine
$\begin{aligned} & \text { Pitcher \& Calkins } \\ & 1979 \\ & \text { (richardsi) } \end{aligned}$	-	F	-	-	4.96	0.22 SE	years	3	7	Gulf of Alaska 1975-78	coastal/marine
```Pitcher & Calkins 1 9 7 9 (richardsi)```	-	F	-	-	5.51	0.23 SE	years	4	9	$\begin{aligned} & \text { Gulf of Alaska } \\ & 1975-78 \end{aligned}$	coastal/marine
```Pitcher & Calkins 1 9 7 9```		M	-	-			years	5	7	$\begin{aligned} & \text { Gulf of Alaska } \\ & 1975-78 \end{aligned}$	coastal/marine

1979

ANNUAL MORTALITY

Boulva \& McLaren
1979
\%/yr
(concolor)

Pitcher \& Calkins	J	B	1	-	77	$\% / 4-\mathrm{yrs}$
1979	J	B	2	-	11	$\% / \mathrm{yr}$
(richardsi)	A	B	3	-	$8-9$	$\% / \mathrm{yr}$
	A	B	4	-	14	$\%$

e Canada

 1968-73Gulf of Alaska
1975-78

Age: (1) at first ovulation; (2) at first successful pregnancy.
(1) Age at first ovulation; (2) age at first pregnancy. SE estimated from 95\% CL. As cited in Pitcher and Calkins 1979.

Only 50\% of 4-year old females mature; 95\% of 7+ year-olds are mature
As cited in Ronald et al. 1982

Data is for both the richardi subspecies and P. largha.

Age: (1) at first ovulation; (2) at first pregnancy. As cited in Pitcher and Calkins 1979.
Age at first ovulation. SE calculated from 95\% CL of +/- 0.43

For females age is at first pregnancy; SE calculated from 95\% CL of +/- 0.46.

Post-weaning mortality.

Estimated cumulative mortality: (1) from birth to 4 years old; (2) for olds; and (4) for 20 year olds.

Reference

 Age Sex Cond Seas Mean SD/SE UnitsMinimum Maximum N Location
Habitat
Notes

LONGEVITY

FAO Adv. Comm.	-	-	-	years	40
1976					

*** SEASONAL ACTIVITIES ***

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING						
Bigg 1969b		Feb		Mexico	NS	As cited in Hoover 1988.
Bigg 1969b		July		Bering Sea	NS	As cited in Hoover 1988.
Boulva \& McLaren 1979	earl Apr		Jul	Nova Scotia, CAN 1968-73	coastal island	

Allen et al. 1989	late Mar			California	Gulf of Farallones	
$\begin{aligned} & \text { Boulva and McLaren } \\ & 1979 \\ & \text { (concolor) } \end{aligned}$		May 21-27		Nova Scotia, CAN 1968-73	coastal island	
FAO Adv. Comm. 1976	Mar		May	Washington		As cited in Ronald et al. 1982.
FAO Adv. Comm. 1976	Feb		Mar	Mexico		As cited in Ronald et al. 1982.
FAO Adv. Comm. 1976	Mar		Jun	w Atlantic		As cited in Ronald et al. 1982.
FAO Adv. Comm.	Mar		Apr	Alaska		As cited in Ronald et al. 1982.

Reference	Begin	Peak	End	Location	Habitat	Notes
$\begin{aligned} & \text { Johnson \& Jeffries } \\ & 1983 \\ & \text { (richardsi) } \end{aligned}$	May	1st week June	Jun	$\begin{aligned} & \text { Washington } \\ & \text { 1975-77 } \end{aligned}$	marine/coastal	Along the coast and outer coast.
$\begin{aligned} & \text { Johnson \& Jeffries } \\ & 1983 \\ & \text { (richardsi) } \end{aligned}$	Aug		Sep	$\begin{aligned} & \text { Washington } \\ & \text { 1975-77 } \end{aligned}$	s Puget Sound	Pupping occurred later in southern Puget Sound (i.e., Aug and Sept) than the outer coastal areas of Washington (i.e., May and June).
Pitcher 1977	mid May	earl Jun	earl Jul	Prince William Sound	coastal/marine	As cited in Hoover 1988.
```Pitcher & Calkins 1 9 7 9 (richardsi)```	mid May	mid Jun	late Jun	Tugidak Isl.,   Alaska 1975-78	island/marine	
Riedman 1990   (richardsi)	Jun		mid Jul	Bristol Bay, Alaska	coastal/marine	
Riedman 1990   (richardsi)	mid May		late Jun	Gulf of Alaska	coastal/marine	
Riedman 1990   (richardsi)	late Jun		Sep	w Canada	coastal/marine	
Riedman 1990   (richardsi)	earl May		late May	Washington	coastal/marine	
Riedman 1990   (richardsi)	late Mar		late May	n California	coastal/marine	
Riedman 1990   (richardsi)	late Apr		earl May	c California	coastal/marine	
Riedman 1990   (richardsi)	Mar		Apr	s California	coastal/marine	
Riedman 1990   (richardsi)	earl Feb			Mexico	coastal/marine	
$\begin{aligned} & \text { Slater \& Markowitz } \\ & 1983 \\ & \text { (richardsi) } \end{aligned}$	mid Apr	late Apr		$\begin{aligned} & \text { c California } \\ & 1978-79 \end{aligned}$	coastal/marine	Pups weaned on average by the end of May.
Wilson 1978/   Richardson 1973 (concolor)	mid May		mid June	New England	coastal/marine	As cited in Payne and Schneider 1984.


Reference	Begin	Peak	End	Location	Habitat	Notes
FALL MOLT						
Stutz 1966		none		NS	NS	As cited in Ling 1970.
SPRING MOLT						
$\begin{aligned} & \text { Boulva \& McLaren } \\ & 1979 \\ & \text { (concolor) } \end{aligned}$		Jul		Nova Scotia, CAN 1968-73	coastal/island	Molting timing may vary locally.
```Pitcher & Calkins 1 9 7 9 (richardsi)```	late Jun	late Jul	Sep/Oct	$\begin{aligned} & \text { Gulf of Alaska } \\ & \text { 1975-78 } \end{aligned}$	coastal/marine	
Stutz 1966		spring		NS	NS	As cited in Ling 1970.
Thompson \& Rothery 1987	7 Jun		6 Sep	Scotland 1985	coastal/marine	19-33 days to complete molt.
Thompson \& Rothery 1987			Aug 15	Scotland 1985	coastal/marine	19-33 days to complete molt; data for a female on an island.
Thompson \& Rothery 1987			Aug 16	Scotland 1985	coastal/marine	19-33 days to molt; data for a female on the mainland.
Thompson \& Rothery 1987			Sep 3	Scotland 1985	coastal/marine	19-33 days to molt; data for a mature male.
Thompson \& Rothery 1987			Aug 22	Scotland 1985	coastal/marine	19-33 days to complete molt; data for an immature male.
MIGRATION						
$\begin{aligned} & \text { Schneider \& Payne } \\ & 1983 \\ & \text { (concolor) } \end{aligned}$	earl May			New England 1978-80	coastal/marine	Population leaves Stage Point, MA, prior to pupping season and travels north.
$\begin{aligned} & \text { Schneider \& Payne } \\ & 1983 \\ & \text { (concolor) } \end{aligned}$	late Oct			New England 1978-80	coastal/marine	Study population leaves Maine following the pupping season and returns to Stage Point, MA.

Page A-308 is left blank.

***** DEER MOUSE *****
*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference Ag	ge S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
BODY WEIGHT													
Abbott 1974 (cooledgei)	A	B	-	-	20.8		9				$\begin{aligned} & 28.9 \mathrm{~N} \\ & \text { latitude } \end{aligned}$	NS	As cited in MacMillen and Garland 1989.
Brower \& Cade 1966 (gracilis)	A	B	-	-	17.0		g				44.4 N latitude	NS	As cited in MacMillen and Garland 1989.
$\begin{aligned} & \text { Dewsbury et al. } \\ & 1980 \\ & \text { (bairdii) } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 16.2 \\ & 15.2 \end{aligned}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$				NS	lab reared	As cited in Montgomery 1989.
$\begin{aligned} & \text { Dewsbury et al. } \\ & 1980 \\ & \text { (blandus) } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 22.3 \\ & 21.1 \end{aligned}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$				NS	lab reared	As cited in Montgomery 1989.
 Bernstein 1972	A	F	-	-	19		g			25	Nebraska	North Platte Valley	As cited in Millar 1989.
Fairbairn 1978	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	$\begin{aligned} & \text { SP } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 17.8 \\ & 16.1 \end{aligned}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$				NS	NS	As cited in Montgomery 1989.
Fairbairn 1977	S	B	-	-	15		g				Vancouver, CAN	2nd-growth coastal rain forest	Weight at which mouse assumed to be sexually mature.
Fordham 1971 (austerus)	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	$\begin{aligned} & \mathrm{SP} \\ & \mathrm{SP} \end{aligned}$	$\begin{aligned} & 15.7 \\ & 14.8 \end{aligned}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$				NS	NS	As cited in Montgomery 1989.
Glazier 1979	A	F	-	-	14		9			10	Maine	Bar Harbor area	As cited in Millar 1989.
Halfpenny 1980	A	F	BR	-	21		9				Colorado	NS	As cited in Millar 1989.
Hayward 1965 (nebrascensis)	A	B	-	-	18.9		9			20	45.2 N lat., Wyoming	alpine	Latitude identified by MacMillen and Garland 1989.
Hayward 1965 (artemisiae)	A	B	-	-	23.2		g			20	$\begin{aligned} & 49.2 \mathrm{~N} \text { lat., } \\ & \text { British } \\ & \text { Columbia, CAN } \end{aligned}$	arid valley	Latitude identified by MacMillen and Garland 1989.
Hayward 1965 (austerus)	A	B	-	-	19.5		9			20	British Columbia, CAN	mesic coast	
Hayward 1965 (sonoriensis)	A	B	-	-	20.4		9			20	Nevada	high altitude desert	

Reference Ag	Age S	ex	Cond	Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
Hayward 1965 (oreas)	A	B	-	-	24.6			9			20	British Columbia, CAN	subalpine	
Linzey 1970	A	F	-	-	18			g				Tennessee	Smoky Mountains	As cited in Millar 1989.
```McCabe & Blanchard 1950```	d A	F	-	-	19			9				California	NS	As cited in Millar 1989.
```McNab & Morrison 1963 (gambelii)```	A	B	-	-	19.1	0.13 S		g			29	$\begin{aligned} & 37.9 \mathrm{~N} \text { lat., } \\ & \mathrm{CA} 1957 \end{aligned}$	chaparral near stream	
```McNab & Morrison 1963 (sonoriensis)```	A	B	-	-	24.2	0.18 S		g			29	$\begin{aligned} & 38.0 \mathrm{~N} \text { lat., } \\ & \text { Nevada } \end{aligned}$	chaparral	Found at altitude of 6 to 7 thousand feet.
Millar 1989	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{M} \end{aligned}$	-	$-$	$\begin{aligned} & 20 \\ & 22 \end{aligned}$			$\begin{aligned} & g \\ & g \end{aligned}$				N America, average	NS	
Millar \& Innes 1983 (borealis)	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & F \\ & F \\ & F \end{aligned}$	$\begin{aligned} & \mathrm{NB} \\ & \mathrm{G} \\ & \mathrm{~L} \end{aligned}$	-	$\begin{aligned} & 20.3 \\ & 31.5 \\ & 24.5 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.43 \\ & 0.37 \end{aligned}$	$\begin{aligned} & \mathrm{SE} \\ & \mathrm{SE} \\ & \mathrm{SE} \end{aligned}$	$\begin{aligned} & g \\ & g \\ & g \end{aligned}$			$\begin{aligned} & 40 \\ & 44 \\ & 37 \end{aligned}$	NS	lab	
Millar 1989	A	F	-	-	20			9				US average	NS	
Millar 1982 (borealis)	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { NB } \\ & \text { L } \end{aligned}$	-	$\begin{aligned} & 19.2 \\ & 24.4 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{SE} \\ & \mathrm{SE} \end{aligned}$	$\begin{aligned} & g \\ & g \end{aligned}$			$\begin{array}{r} 103 \\ 42 \end{array}$	NW Terr., CAN	near lake	Body weight during lactation represents an increase of $27 \%$ over nonbreeding body weight.
Millar 1982 (maniculatus)	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$	$\begin{aligned} & \text { NB } \\ & \text { L } \end{aligned}$	-	$\begin{array}{r} 17.0 \\ 22-25 \end{array}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SE } \end{aligned}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 42 \\ & 42 \end{aligned}$	NW Terr., CAN	near lake	Mean weight increased from 21.9 to 25.4 g during the lactation (L) period.
Murie 1961   (sonoriensis)	A	B	-	-	20.8			9				$\begin{aligned} & 37.3 \mathrm{~N} \\ & \text { latitude } \end{aligned}$	NS	As cited in MacMillen and Garland 1989.
$\begin{aligned} & \text { Myers \& Master } \\ & 1983 \end{aligned}$	A	F	BR	-	21			g				Michigan	NS	As cited in Millar 1989.
Sadleir 1970	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	$\begin{aligned} & \text { SP } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 16.0 \\ & 14.0 \end{aligned}$			$\begin{aligned} & g \\ & g \end{aligned}$				NS	NS	As cited in Montgomery 1989.
  Potter 1974	A	B	-	-	19.6	0.71 S	SE	9			24	New Hampshire	forest	



## LEAN (DRY) BODY WEIGHT



8	Virginia	lab
8		
8		
8		beach
17	Vancouver BC,	
27	CAN 1986	
48		grassland
8	Illinois 1972	
8		forest
24	New Hampshire	

Nonbreeding: (1) reproductively proven; (2) reproductively inhibited.
(1) One island off Vancouver;
(2) a second island off Vancouver;
(3) mainland Vancouver

As cited in Millar 1989
As cited in Eisenberg 1981.
As cited in Eisenberg 1981.

As cited in Eisenberg 1981.

As cited in Eisenberg 1981
As cited in Millar 1989
As cited in Millar 1989.

Reference Ag	ge S		Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Myers \& Master 1983	N	B	-	-	1.7		9				Michigan	NS	As cited in Millar 1989.
Myers et al. 1985	N	B	-	FA	1.53		9			55	$\begin{aligned} & \text { Michigan } \\ & 1976-80 \end{aligned}$	field	Average fall temperatures experienced.
Myers et al. 1985	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	-		$\begin{aligned} & \mathrm{SP} \\ & \mathrm{FA} \end{aligned}$	$\begin{aligned} & 1.64 \\ & 1.53 \end{aligned}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$			$\begin{aligned} & 63 \\ & 55 \end{aligned}$	$\begin{aligned} & \text { Michigan } \\ & 1976-82 \end{aligned}$	captive and wild	
$\begin{aligned} & \text { Myers \& Master } \\ & 1983 \end{aligned}$	N	-	-	-	1.7		9				Michigan	NS	As cited in Millar 1989.
Svendsen 1964	N	B	-	-	1.8		9				Kansas	NS	As cited in Millar 1989.
Svendsen 1964	N	-	-	-	1.8		9				Kansas	NS	As cited in Millar 1989.
Svihla 1932, 1935	N	B	-	-	1.6		9				MI, ND, IO	NS	As cited in Millar 1989.
Svihla 1932	N	-	-	-	1.7		9				CA, NM	NS	As cited in Millar 1989.
Svihla 1932	N	-	-	-	1.7		9				Washington	NS	As cited in Millar 1989.
Svihla 1932, 1934	N	-	-	-	1.67		9				MI, ND, IA	NS	As cited in Millar 1989.
Svihla 1932	N	-	-	-	1.67		9				Colorado, New Mexico	NS	As cited in Millar 1989.
GROWTH RATE													
Drickamer \& Bernstein 1972 (nebrascensis)	P	-	-	-	0.34		g/day				NS	NS	As cited in Millar 1982.
  Bernstein 1972   (labecula)	P	-	-	-	0.45		g/day				NS	NS	As cited in Millar 1982.
Linzey 1970 (nubiterrae)	P	-	-	-	0.35		g/day				NS	NS	As cited in Millar 1982.
```McCabe & Blanchard 1950 (gambelii)```	P	-	-	-	0.34		g/day				NS	NS	As cited in Millar 1982.
Millar 1982 (borealis)	P	-	-	-	0.36	0.01 SE	g/day			57	NW Terr. CAN 1978-79	lab	$\mathrm{N}=57$ litters.
Millar 1979 (borealis)	P	-	-	-	0.35		g/day				Manitoba, CAN	lab	

Reference Age	S		Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Millar et al. 1979 (maniculatus)	P	-	-	-	0.32		g/day				NS	NS	As cited in Millar 1982.
$\begin{aligned} & \text { Millar \& Innes } \\ & 1983 \\ & \text { (borealis) } \end{aligned}$	P	-	-	-	0.34		g/day			150	$\begin{aligned} & \text { Alberta, CAN } \\ & \text { 1978-81 } \end{aligned}$	various alpine	Average nestling growth rate.
$\begin{aligned} & \text { Millar \& Innes } \\ & 1983 \\ & \text { (borealis) } \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{P} \\ & \mathrm{P} \end{aligned}$	M F B	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.22 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.06 \mathrm{SE} \\ & 0.05 \mathrm{SE} \\ & 0.03 \mathrm{SE} \end{aligned}$	g/day g/day g/day			$\begin{aligned} & 31 \\ & 30 \\ & 61 \end{aligned}$	Alberta, CAN	wild (not lab)	Growth rate of newly "emerged" pups.
$\begin{aligned} & \text { Millar and Innes } \\ & 1983 \\ & \text { (borealis) } \end{aligned}$	J	-	-	-	0.2	0.05 SE	g/day				Alberta, CAN	lab	From weaning (approximately 3 weeks) to 40 days of age.
```Millar 1985 (nebrascensis)```	P	B	-	-	0.38	0.01 SE	g/day	0.30	0.95	156	Alberta, CAN	NS	Growth rate varies with age.
$\begin{aligned} & \text { Morrison et al. } \\ & 1977 \\ & \text { (bairdii) } \end{aligned}$	P	-	-	-	0.35		g/day				NS	NS	As cited in Millar 1982.
WEANING WEIGHT													
Halfpenny 1980	-	B	-	-	8.0		9				Colorado	NS	As cited in Millar 1989.
King et al. 1963	-	B	-	-	9.5		9				Michigan	NS	As cited in Millar 1989.
Millar 1979	-	B	-	-	9.26	0.10 SE	9			232	NW Terr., CAN 1978-79	lab	
Millar 1979	-	B	-	-	8.40	0.06 SE	$g$			201	Manitoba, CAN	lab	
$\begin{aligned} & \text { Millar \& Innes } \\ & 1983 \\ & \text { (borealis) } \end{aligned}$	-	B	-	-	9.9	0.1 SE	$g$			151	Alberta, CAN 1978-81	various alpine	
Millar 1989	-	B	-	-	8.8		g	7.7	11.2		N American average	NS	
METABOLIC RATE (OXYGEN)													
Abbott 1974   (cooledgei)	A	-	B	-	43.68		102/kg-day				$\begin{aligned} & 28.9 \mathrm{~N} \\ & \text { latitude } \end{aligned}$	NS	As cited in MacMillen and Garland 1989.
Brower \& Cade 1966 (gracilis)	A	-	B	-	43.2		L02/kg-day				$\begin{aligned} & 44.4 \mathrm{~N} \\ & \text { latitude } \end{aligned}$	woodlands	Temp: 37.5 C ; body wt 17.0 g . As cited in Deavers and Hudson 1981 and MacMillen and Garland 1989.


Reference	Age Sex	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Hayward 1965	A	-	B	-	45.6		102/kg-day				NS	NS	Temp: 36.3 C ; body wt. 22.5 g . As cited in Deavers and Hudson 1981.
$\begin{aligned} & \text { Hock \& Roberts } \\ & 1966 \end{aligned}$	A	-	B	-	48.0		102/kg-day				NS	NS	Temp: $36.6 \mathrm{C} ;$ body wt. NS. As cited in Deavers and Hudson 1981.
MacMillen and Garland 1989 (various)	A	F	BA	-	50		L02/kg-day	40	61		N American average	NS	Data from seven studies.
```McNab & Morrison 1963 (gambelii)```	A	-	B	-	48.96		102/kg-day				$\begin{aligned} & 37.9 \mathrm{~N} \\ & \text { latitude } \end{aligned}$	arid and mesic	Temp: $36.8 \mathrm{C} ;$ body wt. 19.1 g . As cited in Deavers and Hudson 1981 and MacMillen and Garland 1989.
```McNab & Morrison 1963 (sonoriensis)```	A	-	B	-	40.08		102/kg-day				$\begin{aligned} & 38.0 \mathrm{~N} \\ & \text { latitude } \end{aligned}$	NS	Temp: $36.3 \mathrm{C} ;$ body wt. 24.2 g . As cited in Deavers and Hudson 1981 and MacMillen and Garland 1989.
Morrison 1948	A	-	AD	-	74.4	2.2 SD	102/kg-day	53	101	3	NS	lab	(AD) ADMR = average daily metabolic rate. Three runs with two animals (average weight 19 g ). Room temperature ranged between 15 and 25 C .
Murie 1961 (sonoriensis)	A	-	B	-	54.72		102/kg-day				$\begin{aligned} & 37.3 \mathrm{~N} \\ & \text { latitude } \end{aligned}$	NS	Temp: $36.8 \mathrm{C} ;$ body wt. 20.8 g . As cited in Deavers and Hudson 1981 and MacMillen and Garland 1989.
$\begin{aligned} & \text { Stebbins et al. } \\ & 1980 \end{aligned}$	A	M	AD	WI	138	5.3 SE	102/kg-day			4	Alberta, CAN	lab, poplar grove	(AD) = average daily metabolic rate; (R) = resting metabolism. Temperatures for winter averaged -17.7 C (-6 to $-22 \mathrm{C})$; for spring averaged $14.5 \mathrm{C}(8$ to 22 C$)$; for summer averaged 20.6 C (14 to 32 C) .
	A	M	AD	SP	102	7.2 SE	102/kg-day			4			
	A	M	AD	SU	74.9	3.4 SE	102/kg-day			4			
	A	M	R	WI	112	2.9 SE	102/kg-day			4			
	A	M	R	SP	77.0	2.4 SE	102/kg-day			4			
	A	M	R	SU	63.8	1.9 SE	102/kg-day			,			
Tomasi 1985	A	B	R1		142	7.0 SE				6	Utah	lab	Resting (R) metabolism at different temperatures: (1) 10 deg $C$; (2) 18 deg C; (3) $26 \mathrm{deg} \mathrm{C} ;(4) 30 \mathrm{deg} \mathrm{C}$; and (5) 36 deg $C$.
	A	B	R2	-	103	6.5 SE				6			
	A	B	R3	-	63.6	4.3 SE				6			
	A	B	R4	-	58.8	4.3 SE				6			
	A	B	R5	-	78.0	8.4 SE				6			
Zegers \& Merritt	A	B	R	WI			L02/kg-day	31	60		Pennsylvania	mature beech-poplar	
1988	A	B	R	SU			LO2/kg-day	43	60		1984-85	forest	

## metabolic rate (KCAL BASIS)



Free-living metabolism. Estimated from lab-derived model assuming no reproduction, molt, or weight change and assuming summer temps avg. 17.5 C above ground and 20.2 in burrows and winter temps avg. -3

Average energy consumed daily; WI = Nov, Dec, Jan; $S P=F e b$, Mar.
(AD) = average daily metabolic rate; (R) = resting metabolism. Temperatures for winter averaged
$-17.7 \mathrm{C}(-6$ to $-22 \mathrm{C})$; for averaged $14.5 \mathrm{C}(8$ to 22 C$)$ spring summer averaged 20.6 C (14 to 32 C) .

Animals were reproductively proven Diet of lab chow.
$\mathrm{N}=$ number of animal-days. Diet of wheat and peanut kernals. Conditions: (1) 21 deg C, dry air; (2) 32 to 34 deg C , dry air; and (3) 32 to 34 deg C , wet air.

Conditions: (1) 21 deg C, dry air; (2) 28 deg C, dry air. Diet (peanut intake restricted). Whe was $10.6 \%$ water with 3.33 cal/gram Peanuts were $9.2 \%$ water with 5.48 cal/gram. Weights of mice not reported, appears to be about 15 g
Conditions 21 deg C , dry air. Female gestating (G) and then Female gestatin
lactating (L).


Reference	Age S	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Millar 1985 (nebrascensis)	A	F	N	-	0.17		g/g-day			49	Alberta, CAN	lab	Mean daily food intake over 3-6 days is related to body weight as $Y($ intake in $\mathrm{g} /$ day $)=1.09+0.12$ X (mean body weight in g ). The mean body weight of the tested females was 20.1 +/- 0.6 g .
```Nelson & Desjardins 1987```	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	M	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 0.21 \\ & 0.17 \end{aligned}$	0.01 SE	$\begin{aligned} & \text { g/g-day } \\ & \text { g/g-day } \end{aligned}$			$\begin{aligned} & 18 \\ & 62 \end{aligned}$	parents from   S Dakota	lab	Conditions: (1) provided with unlimited water supply; (2) water supply limited to $50 \%$ of consumption when provided with unlimited supply. Diet of lab chow with 8 to $10 \%$ water content.
WATER INGESTION RATE													
Dice 1922 (bairdii)	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0.126 \\ & 0.146 \\ & 0.192 \end{aligned}$		g/g-day g/g-day g/g-day	$\begin{aligned} & 0.082 \\ & 0.132 \\ & 0.123 \end{aligned}$	$\begin{aligned} & 0.177 \\ & 0.168 \\ & 0.287 \end{aligned}$	$\begin{aligned} & 79 \\ & 35 \\ & 11 \end{aligned}$	Illinois	lab	$\mathrm{N}=$ number of animal-days. Diet of wheat and peanut kernals. Conditions, all dry air: (1) 21 deg C; (2) 28 deg C ; and (3) 32-34 deg C.
Dice 1922 (bairdii)	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { F } \\ & \text { B } \\ & \mathrm{F} \\ & \mathrm{~F} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \text { G1 } \\ & \text { L1 } \\ & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 1.98 \\ & 1.66 \\ & 1.7 \\ & 3.78 \\ & 2.98 \\ & 2.31 \\ & 1.14 \end{aligned}$		cc/day cc/day cc/day cc/day cc/day cc/day cc/day	$\begin{aligned} & 1.24 \\ & 1.12 \\ & 1.12 \\ & \\ & 1.55 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 2.72 \\ & 2.39 \\ & 2.72 \\ & \\ & 3.37 \\ & 1.23 \end{aligned}$	$\begin{array}{r} 20 \\ 59 \\ 79 \\ \\ 11 \\ 7 \end{array}$	Illinois	lab	$\mathrm{N}=$ number of animal-days. Diet of wheat and peanut kernals. Conditions: (1) 21 deg C, dry air; (2) 32 to 34 deg C, dry air; and (3) 32 to 34 deg C, wet air.
Nelson \& Desjardins 1987	J	M	-	-	0.34	0.02 SE	g/g-day			80	$\begin{aligned} & \text { parents from } \\ & \text { S Dakota } \end{aligned}$	lab	Animals 50-70 days old; temperature $=20+/-2$ deg C. Diet with 8 to 10% water content.
Ross 1930 (sonoriensis)	A	B	-	-	0.19			0.071	0.60	8	NS	lab	Diet of dry ground wheat, powdered milk, casein, etc. Moisture content probably < 10\%. Temperature 21 to 24 deg C .
Ross 1930 (gambelii)	A	B	-	-	0.16			0.061	0.29	4	NS	lab	Diet of dry ground wheat, powdered milk, casein, etc. Moisture content probably < 10\%. Temperature 21 to 24 deg C .

*** DIET ***

Reference A	Age S	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes```Spring = Mar - Apr.; summer = May Aug; fall = Sept - Dec; winter = Jan - Feb.```
Flake 1973	B	B	coleopterans	14.6	23.8	9.4	4.9	565	$\begin{aligned} & \text { Colorado } \\ & 1969-70 \end{aligned}$	```short/mixed grass prairie % volume by a ranking method; stomach contents```	
			grasshoppers	6.4	4.2	6.4	2.5				
			leafhoppers	13.3	1.8	1.9	2.5				
			lepidopterans	21.7	12.7	1.5	1.8				
			spiders	2.6	2.7	2.5	0.3				
			seeds	22.5	25.9	56.8	65.4				
			forbs	4.7	10.0	5.6	4.3				
			grasses and sedges	4.0	2.6	2.8	4.8				
			shrubs	3.8	1.4	0.8	2.6				
			(sample size)	(108)	(215)	(236)	(97)				
Hamilton 1941	A	B	insects		71.4		72.8	180	$\begin{aligned} & \text { e US, mostly } \\ & \text { NY } \end{aligned}$	```habitat NS % occurrence; stomach contents```	Beechnuts, acorns, and ripening seeds of all sorts are stored for winter use.
			seeds, other starch		20.8		43.9				
			greens		0		20.5				
			small mammals		4.3		4.4				
			snails		1.2		3.9				
			birds		3.7		1.7				
			annelids		0		1.7				
			fruit		52.3		0				
			fungi		3.7		0				
Harris 1986	B	B	arthropods	81	84	$\begin{array}{r} 72 \\ 3 \\ 25 \\ (24) \end{array}$		95	California	```semi-stabilized dune % relative frequency in fecal samples```	Elevation 2,000 meters.
			vegetation	19	0						
			seeds		16						
			(sample size)	(40)	(31)						
$\begin{aligned} & \text { Martell \& MacAuley } \\ & 1981 \end{aligned}$	y B	B	nuts and seeds		22.9 47.2			712	Ontario, CAN	```habitat NS % diet; measure NS```	As cited in Wolff et al. 1985.
			fruit		16.6						
			fungi		9.3						
			green plants		1.7						
			Achlorophyllon plant		2.6						
Sieg et al. 1986		B	arthropods		63.6			192	$\begin{aligned} & \text { Montana } \\ & \text { 1979-80 } \end{aligned}$	```betonite mine spoils & sagebrush grass lands; % relative density in scats```	Two years averaged.
	B		seeds		21.8						
			grasses		1.4						
			forbs		7.6						
			shrubs		2.3						
			algae		1.3						
			fungi		2.3						
Vaughn 1974		B	seeds		58.8			242	$\begin{aligned} & \text { Colorado } \\ & 1965-66 \end{aligned}$	```habitat NS % frequency of occurrence; stomach contents```	Data from 1965 and 1966 averaged together.
	A		arthropods		17.4						
			cut worms		11.3						
			flowers		2.8						
			leaves		5.1						
			fungus		2.7						
			fruit		0.5						

Reference A	Age S		Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Bowers \& Smith 1979	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$			$\begin{aligned} & \text { ha } \\ & \text { ha } \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 50 \\ & 43 \end{aligned}$	Utah, Oregon, Idaho	all habitats combined	Mark recapture 2 x per day over a 7-day period. Home ranges estimated for individuals captured more than 4 times using Calhoun and Casby method.
Cranford 1984	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & M \\ & \mathrm{~F} \\ & - \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 0.0189 \\ & 0.0137 \\ & 0.0252 \end{aligned}$	$\begin{aligned} & 0.0065 \\ & 0.0050 \\ & 0.005 \\ & 0.0135 \end{aligned} \text { SD }$	$\begin{aligned} & \text { ha } \\ & \text { ha } \\ & \text { ha } \end{aligned}$			$\begin{array}{r} 14 \\ 9 \\ 8 \end{array}$	Utah 1974-76	subalpine meadow	Snowbound; calculated using boundary strip method.
Cranford 1984	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \\ & - \end{aligned}$		$\begin{aligned} & \text { SU } \\ & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.0390 \\ & 0.0265 \\ & 0.0446 \end{aligned}$	$\begin{aligned} & 0.0054 \mathrm{SD} \\ & 0.0047 \mathrm{SD} \\ & 0.0095 \mathrm{SD} \end{aligned}$	$\begin{aligned} & \text { ha } \\ & \text { ha } \\ & \text { ha } \end{aligned}$			$\begin{aligned} & 21 \\ & 22 \\ & 16 \end{aligned}$	Utah 1974-76	subalpine meadow	Snow free.
Cranford 1984	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{SP} \\ & \mathrm{SP} \\ & \mathrm{SP} \end{aligned}$	$\begin{aligned} & 0.0276 \\ & 0.0246 \\ & 0.0075 \end{aligned}$	$\begin{aligned} & 0.0082 \mathrm{SD} \\ & 0.0035 \mathrm{SD} \\ & 0.0064 \mathrm{SD} \end{aligned}$	$\begin{aligned} & \text { ha } \\ & \text { ha } \\ & \text { ha } \end{aligned}$			$\begin{array}{r} 23 \\ 18 \\ 3 \end{array}$	Utah 1974-76	subalpine meadow	Snowbound - calculated by boundary strip method.
Metzgar 1973a,b	-	-	-	-			ha		0.30		NS	NS	As cited in Wolff 1989.
Wolff et al. 1983	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.0421 \\ & 0.0332 \end{aligned}$		ha ha			$\begin{aligned} & 4 \\ & 6 \end{aligned}$	Virginia 1981	mature oak maple forest	Minimum home range based on recapture in grid of traps; spring and summer.
Wolff 1985a (nubiterrae)	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	- - -	$\begin{aligned} & 0.0596 \\ & 0.0583 \\ & 0.0611 \\ & 0.0610 \end{aligned}$	$\begin{aligned} & 0.0040 \mathrm{SE} \\ & 0.0061 \mathrm{SE} \\ & 0.0053 \mathrm{SE} \\ & 0.0062 \mathrm{SE} \end{aligned}$	ha ha ha ha	$\begin{aligned} & 0.0537 \\ & 0.0535 \\ & 0.0539 \\ & 0.0588 \end{aligned}$	$\begin{aligned} & 0.0678 \\ & 0.0645 \\ & 0.0715 \\ & 0.0655 \end{aligned}$	$\begin{aligned} & 76 \\ & 39 \\ & 37 \\ & 27 \end{aligned}$	$\begin{aligned} & \text { Virginia } \\ & 1981-83 \end{aligned}$	mixed deciduous forest	Combined across control plots and low and high density experimental plots.
Wolff 1985a (nubiterrae)	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { J } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { F } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0.0515 \\ & 0.0534 \\ & 0.0514 \\ & 0.0560 \end{aligned}$	$\begin{aligned} & 0.0072 \\ & 0.0060 \\ & \mathrm{SE} \\ & 0.0060 \\ & 0.0033 \end{aligned} \mathrm{SE}$	ha ha ha ha			$\begin{aligned} & 25 \\ & 23 \\ & 13 \\ & 61 \end{aligned}$	$\begin{aligned} & \text { sw Virginia } \\ & 1981-83 \end{aligned}$	oak, maple, hickory forest	Control plots. Estimated by trapping year-round except winter.
POPULATION DENSITY													
Brown \& Zeng 1989	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 0.28 \\ & 0.19 \end{aligned}$		$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \end{aligned}$			74	$\begin{aligned} & \text { Arizona } \\ & 1977-85 \end{aligned}$	desert	(1) All study plots; (2) mean value for two control plots surveyed year round.
Cranford 1984	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$		$\begin{aligned} & \text { SP } \\ & \text { SU } \\ & \text { WI } \end{aligned}$			N/ha N/ha N/ha	$\begin{array}{r} 2.2 \\ 12.8 \\ 3.4 \end{array}$	$\begin{array}{r} 14.5 \\ 22.4 \\ 8.4 \end{array}$		Utah 1974-76	subalpine meadow with clumps of fir and spruce	Determined by minimum number known alive.
Halford 1987	B	B	-	-	10.2		N/ha			57	Idaho	dry pond basin	Near radioactive waste disposal site.

Reference	Age 5		C	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Metzgar 1980	$\begin{aligned} & \text { A } \\ & A \end{aligned}$	$\begin{aligned} & \text { B } \\ & { }_{B} \end{aligned}$	$\frac{1}{2}$	-	$\begin{array}{r} 5-6 \\ 20 \end{array}$		$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \end{aligned}$				w Montana	mixed conifer, cottonwood river, bottom forest	```Season: (1) Through July 2; (2) August.```
Metzgar 1979	B	B	-	-	12	6.7 SD	N/ha	3.9	28	16	Montana	thick understory near river	$\mathrm{N}=16$ months sampled over a three-year period.
Sullivan 1979	A	B	-	-			N/ha	12.7	45.5	4	Brit. Col., CAN 1977-78	burnt slash	Seasons = July through October and March through April. Minimum number alive on the plot.
Vaughn 1974	A	B	-	su	2.8		N/ha				$\begin{aligned} & \text { Colorado } \\ & 1965-67 \end{aligned}$	subalpine meadow	
$\begin{aligned} & \text { Wolff 1985a } \\ & \text { (two) } \end{aligned}$	$\begin{aligned} & \text { B } \\ & { }_{B} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\frac{1}{2}$	$\begin{aligned} & \mathrm{FA} \\ & \mathrm{FA} \end{aligned}$	$\begin{aligned} & 33.2 \\ & 13.6 \end{aligned}$	$\begin{aligned} & 4.32 \mathrm{SE} \\ & 1.11 \mathrm{SE} \end{aligned}$	$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 57 \\ & 57 \end{aligned}$		$\begin{aligned} & \text { Virginia } \\ & 1981-83 \end{aligned}$	mixed deciduous forest	Data are for joint densities of P . leucopus and P. maniculatus: (1) from April- Nov. 1981; (2) from April-Nov. 1982-83.
Wolff \& Durr 1986	$\begin{aligned} & \text { A } \\ & \text { J } \\ & \text { A } \\ & \text { J } \end{aligned}$	B B B B	-	$\begin{aligned} & \text { FA } \\ & \text { FA } \\ & \text { SP } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 15 \\ & 4 \\ & 14 \\ & 4 \end{aligned}$		N/ha N/ha N/ha N/ha				sw Virginia	mountain forest	
van Horne 1982	$\begin{aligned} & \text { A } \\ & \text { J } \\ & \text { A } \\ & \text { J } \\ & \text { A } \\ & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \text { B } \\ & { }^{B} \\ & B \end{aligned}$	1 1 2 2 3 3 4		$\begin{aligned} & 21 \\ & 19 \\ & 27 \\ & 15 \\ & 49 \\ & 12 \\ & 16 \\ & 20 \end{aligned}$		N/ha N/ha	$\begin{array}{r} 6 \\ 6 \\ 15 \\ 7 \\ 32 \\ 10 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & 33 \\ & 47 \\ & 41 \\ & 24 \\ & 58 \\ & 13 \\ & 23 \\ & 43 \end{aligned}$		Alaska 1977-79	forest spruce/hemlock	Estimated densities in 4 seral stages of spruce/hemlock forest following clearcut: (1) 2 years later; (3) 7 years later; (3) 23 years later; (4) never clear-cut. Minimum and maximum values are from one of the three study years that were averaged to get the mean value. Category 3 considered most favorable on basis of overwintering survival.
Litter Size													
Blair 1958	-	-	-	-	5.0					31	Texas	NS	As cited in Millar 1989.
$\begin{aligned} & \text { Drickamer } \\ & \text { Bernstein } \\ & 1972 \end{aligned}$	-	-	-	-	3.7						Nebraska	North Platte Valley	As cited in Millar 1989.
Glazier 1979	-	-	-	-	4.3					10	Maine	Bar Habor area	As cited in Millar 1989.
Halfpenny 1980	-	-	-	-	6.4					7	Colorado	NS	As cited in Millar 1989.
Linzey 1970	-	-	-	-	4.1						Tennessee	Smoky Mountains	As cited in Millar 1989.

Reference A	Age S		Con	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
May 1979; Gyug 1979	-	-	-	-	1.8						NW Terr., CAN	NS	As cited in Millar 1989.
McLaren \& Kirkland 1979	d -	-	-	-	4.3					195	Pennsylvania	NS	As cited in Millar 1989.
Meyers et al. 1985	$\begin{aligned} 35 & - \\ & - \\ & \text { A } \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { SP } \\ & \text { FA } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.0 \\ & 4.9 \\ & 5.6 \end{aligned}$					$\begin{array}{r} 52 \\ 150 \\ 29 \\ 98 \end{array}$	$\begin{aligned} & \text { Michigan } \\ & 1976-82 \end{aligned}$	NS	Temperature: (1) warmer than normal; (2) normal.
Meyers et al. 1985	5 -	-	-	$\begin{gathered} \text { SP } \\ \text { RA } \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.6 \end{aligned}$			$\begin{aligned} & 4.9 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.3 \end{aligned}$	$\begin{array}{r} 150 \\ 98 \end{array}$	$\begin{aligned} & \text { Michigan } \\ & 1976-82 \end{aligned}$	captive and wild	
Millar 1982	-	-	-	-	5.0	0.18 SE		1	9	98	NW Terr., CAN 1978-79	$\begin{aligned} & \text { lab } \\ & \text { lab } \end{aligned}$	
$\begin{aligned} & \text { Millar \& Innes } \\ & \text { 1983 } \\ & \text { (borealis) } \end{aligned}$	-	-	-	-	5.3	0.1 SE				102	Alberta, CAN	various alpine	
Millar 1989	-	-	-	-	4.4			3.0	6.4		N America	NS	Minimum average and maximum average of 23 populations in North America.
Millar 1985 (nebrascensis)	-	-	-	-	5.1	0.14 SE		1	8	104	Alberta, CAN	NS	Minimum average and maximum average of 7 years of data.
Millar 1982	-	-	-	-	5.0						$\begin{aligned} & \text { NW Terr., } \\ & \text { CAN } \end{aligned}$	NS	
```Morrison et al. 1977```	-	-	-	-	4.4						midwest US	NS	As cited in Millar 1989.
Myers \& Master $1983$	-	-	-	-	6.0						Michigan	NS	As cited in Millar 1989.
Rood 1966	-	-	-	-	4.7						n Michigan	NS	As cited in Millar 1989.
Svendsen 1964	-	-	-	-	3.8						Kansas	NS	As cited in Millar 1989.
Svihla 1932	-	-	-	-	4.3						California, New Mexico	NS	As cited in Millar 1989.
Svihla 1932	-	-	-	-	4.5						Washington	NS	As cited in Millar 1989.
Svihla 1932, 1934	-	-	-	-	3.0					21	MI, ND, IA	NS	As cited in Millar 1989.
Wolff 1985b (nubiterrae)	-	-	-	-	3.4					52	Virginia	NS	As cited in Millar 1989.


Reference A	Age S	Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
LItTERS/YEAR													
Layne 1968   (several)	-	-	- -	-	$2-4$						NS	NS	For subspecies artemesiae, bairdii, blandus, gambelii. As cited in Eisenberg 1981.
McCabe \& Blanchard 1950	d -	-		-	4.0		/year				California	NS	As cited in Millar 1989.
$\begin{aligned} & \text { Millar \& Innes } \\ & \text { 1983 } \\ & \text { (borealis) } \end{aligned}$	-	-		-	1.9	0.1 SE	/year			38	Alberta, CAN	various alpine	
Millar 1989	-	-	-	-	2.4		/year				N American average	NS	Average of 10 populations from Costa Rica to Canada.
Wolff 1985b (nubiterrae)	-	-	-	-	1.8		/year				Virginia	NS	As cited in Millar 1989.
days gestation													
Layne 1968   (artemesiae)	-	-		-				22	26		NS	NS	As cited in Eisenberg 1981
Layne 1968   (bairdii)	-	-		-	25						NS	NS	As cited in Eisenberg 1981
Layne 1968   (blandus)	-	-		-				22	25		NS	NS	As cited in Eisenberg 1981
Layne 1968   (gambelii)	-	-		-	23.5						NS	NS	As cited in Eisenberg 1981
Millar 1982   (borealis)	-	-	-	-	26.3	0.8 SE	days	23	31		NW Terr., CAN 1978-79	$\begin{aligned} & l a b \\ & l a b \end{aligned}$	For postpartum litters.
Millar 1989	-	-	$\begin{aligned} & \mathrm{L} \\ & \mathrm{NL} \end{aligned}$	-	$\begin{aligned} & 26.9 \\ & 23.6 \end{aligned}$		days days				US average	NS	(NL) Not lactating; (L) lactating.
Millar 1985   (nebrascensis)	-	-	$\begin{aligned} & \text { NL } \\ & \mathrm{L} \end{aligned}$	-	$\begin{array}{r} 25.5 \\ 29.5 \end{array}$	$\begin{aligned} & 0.3 \mathrm{SE} \\ & 1.4 \mathrm{SE} \end{aligned}$	days   days	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 26 \\ & 35 \end{aligned}$	$\begin{array}{r} 10 \\ 8 \end{array}$	Alberta, CAN	lab	(NL) Not lactating; (L) lactating.
Millar 1989	-	-	$\begin{aligned} & \text { NL } \\ & \text { L } \end{aligned}$	-			days   days	$\begin{aligned} & 22.4 \\ & 24.1 \end{aligned}$	$\begin{aligned} & 25.5 \\ & 30.6 \end{aligned}$		NS	NS	Range in average gestation period for different populations, presumably in North America.
$\begin{aligned} & \text { Myers \& Master } \\ & 1983 \end{aligned}$	-	-	$\begin{aligned} & \text { NL } \\ & \mathrm{L} \end{aligned}$	-	$\begin{aligned} & 23 \\ & 27 \end{aligned}$		days   days				Michigan	NS	As cited in Millar 1989.



AGE AT WEANING

Halfpenny 1980	-	B	-	-	17.5	days				Colorado	NS	As cited in Millar 1989.
King et al. 1963	-	B	-	-	21.0	days				Michigan	NS	As cited in Millar 1989.
Millar 1982	-	B	-	-	21.4	days				NW Terr., CAN 1978-79	$\begin{aligned} & \text { lab } \\ & \text { lab } \end{aligned}$	
Millar et al. 1979 (maniculatus)	-	B	-	-	22.2	days			63	NS	lab	As cited in Millar 1979.
$\begin{aligned} & \text { Millar \& Innes } \\ & 1983 \\ & \text { (borealis) } \end{aligned}$	-	B	-	-	24.9	days				$\begin{aligned} & \text { Alberta, CAN } \\ & 1978-81 \end{aligned}$	various alpine	
Millar 1989	-	B	-	-	20.2	days	16	25		N American average	NS	

age at sexual maturity

Millar 1985   (nebrascensis)	-	M	-	35
Millar 1985   (nebrascensis)	-F	-		days

ANNUAL MORTALITY

Fairbairn 1977	B	M	-	19	$\% / 2$	wks
	B	F	-	-	18	$\% / 2$
	wks					

Vancover, CAN

2nd-growth coasta rain forest

2-week mortality rate averaged over the year. Mortality was highest (about 30 to $35 \%$ ) during spring as to breed.

***** PRAIRTE VOLE *****
*** NORMALIZING AND CONTACT RATE FACTORS ***


## BODY FAT

Fleherty et al.
\% dry wt
14.59
16.08

Kansas 1969-70
NS

## NEONATE WEIGHT

Fitch 1957
Kruckenberg et al. - - -

Martin 1956
$2.9 \quad 0.1 \mathrm{SD}$ g

NS
NS
NS NS
As cited in Nadeau 1985
As cited in Nadeau 1985.


## METABOLIC RATE (OXYGEN)

Bradley 1976

- BA -
28.3
$102 / \mathrm{kg}-\mathrm{d}$
New York
lab

Wunder et al. 1977 - -1 WI
51.8
41.8
8.2 SD $102 / \mathrm{kg}-\mathrm{d}$

NS
lab
$\begin{array}{rlllllll}\text { Wunder et al. } 1977 & - & - & 1 & \text { WI } & 65.3 & 9.6 \mathrm{SD} 102 / \mathrm{kg}-\mathrm{d} \\ & - & - & 2 & \mathrm{WI} & 52.6 & 6.0 \mathrm{SD} 102 / \mathrm{kg}-\mathrm{d} \\ & - & - & 1 & \mathrm{SU} & 42.2 & 9.5 \mathrm{SD} 102 / \mathrm{kg}-\mathrm{d} \\ & - & - & 2 & \mathrm{SU} & 33.6 & 3.6 \mathrm{SD} 102 / \mathrm{kg}-\mathrm{d}\end{array}$

-	-	1	WI	65.3	$9.6 \mathrm{SD} 102 / \mathrm{kg}-\mathrm{d}$
-	-	WI	52.6	$6.0 \mathrm{SD} 102 / \mathrm{kg}-\mathrm{d}$	
-	-	SU	42.2	$9.5 \mathrm{SD} 102 / \mathrm{kg}-\mathrm{d}$	
-	-	SU	33.6	$3.6 \mathrm{SD} 102 / \mathrm{kg}-\mathrm{d}$	

10
11

## metabolic rate (KCAL basis)

Bradley 1976

| A | - | WI | 21.52 | $\mathrm{kcal} / \mathrm{day}$ |
| :--- | :--- | :--- | :--- | ---: | :--- |
| A | F | BR SU | 20.13 | $\mathrm{kcal} / \mathrm{day}$ |
| A | F | NB SU | 8.22 | $\mathrm{kcal} / \mathrm{day}$ |


$A$		
$F$	NB SU	8.22


3.31	g oats	2.08	4.80
0.94	g grass	-	-
4.25	g total	-	-
2.35	g oats	1.94	2.68
0.83	g grass	-	-
3.18	g total	-	-
0.561	cal/g-d	0.530	0.592
0.476	cal/g-d	0.424	0.622
0.195	cal/g-d	0.160	0.223
0.284	cal/g-d	0.214	0.509

FOOD INGESTION RATE

A	B	1	-	3.31
A	B	1	-	0.3


A	B	1
A	B	1
A	B	1
A	B	2
A	B	2
A	B	2

g/g-day
g/g-day
Dice 1922

## $\begin{array}{lll}\text { A } & \text { B } \\ \text { A } & \text { B } & 0.13-0.14\end{array}$

Chew 1951 $\begin{array}{llll}\text { A } & \text { B } & 1 & - \\ \text { A } & \text { B } & 2 & -\end{array}$
0.37
g/g-day
g/g-day

A	B	1	-	0.211	g/g-day	0.152	0.255	71	Illinois
A	B	2	-	0.190	g/g-day	0.125	0.292	11	
A	B	3	-	0.158	$g / g-d a y$	0.096	0.210	31	
A	B	4	-	0.132	$g / g-d a y$	0.130	0.132	9	

NS
lab
NS

592
0.509

Illinois
lab
Illinois
b g/g-day

NS
lab
lab

Dice 1922
1922

## -

0.292
0.210
0.132

WATER INGESTION RATE A B 2 -
0.43


Reference	Age Sex Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Zimmerman 1965	Poa compressa	15.8				47	Indiana	mixed	Season = year round. Percent
	unidentified roots	10.0					1964-65		volumes less than 1\% of total were
	Trifolium pratense	9.7						\% volume; stomach	combined as "other".
	Hespedeza sp.	6.7						contents	
	```Setaria faberii seed```	1.4							
	misc. vegetation	13.1							
	Panicum capillare	6.4							
	Trifolium pratense roots	5.2							
	Erigeron sp.	5.0							
	Microtus flesh	1.0							
	Plantago lanceolata	4.6							
	Festuca elatior	4							
	Medicago sativa	3.6							
	unidentified seeds	2.2							
	Lepidopteran larvae	1.9							
	Chenopodium sp.	1.8							
	Oxalis sp.	1.5							
	unidentified insects	1.4							
	misc. Coleoptera	1.4							
	Rumex crispus	1.1							
	other	2.6							

*** POPULATION DYNAMICS ***

Reference	Age Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Martin 1956	A M	-	-	0.0567		ha	0.0081	0.146		ne Kansas	grassland	Method: inclusive boundary strip. Data pooled for all seasons.
	A F	-	-	0.0486		ha	0.0081	0.166		1951-52		
	J	-	-	0.0041		ha						
Meserve 1971	- M		SU	0.08		ha				w Nebraska	xeric prairie (mid and short grass)	Three or more captures; inclusive boundary method; interior stations only.
	$-\quad \mathrm{F}$ $-\quad \mathrm{B}$			0.09 0.09		ha			39	1968		
Meserve 1971	- M	-	SU	0.02		ha				w Nebraska	xeric prairie (mid	Three or more captures; minimum area method; interior stations only.
	- F	-	SU	0.02		ha				1968	and short grass)	
	- B	-	SU	0.02		ha			39			
Meserve 1971	- M	-	SU	0.016		ha			39	$\begin{aligned} & \text { w Nebraska } \\ & 1968 \end{aligned}$	xeric prairie (mid and short grass)	Three or more captures; minimum area method; all stations.
	- F	-	SU	0.028		ha						
	- B	-	SU	0.024		ha						
Meserve 1971	- M	-	SU	0.073		ha			39	$\begin{aligned} & \text { w Nebraska } \\ & 1968 \end{aligned}$	xeric prairie (mid and short grass)	Three or more captures; inclusive boundary strip method; all stations.
	- F	-	SU	0.093		ha						
	- B	-	SU	0.089		ha						
Swihart \& Slade 1989	A M	1	-	0.0367	0.0029 SE	ha			183	Kansas	NS	```(1) Year-round estimates. Estimates based on a small number of recaptures per animal, i.e., as few as four.```
	A F	1	-	0.0236	0.0018 SE	ha			118			
	A M	BR	SU	0.0306	0.0034 SE	ha			32			
	A F	BR	SU	0.0232	0.0032 SE	ha			19			

POPULATION DENSITY

$\begin{aligned} & \text { Carroll \& Getz } \\ & 1976 \end{aligned}$	-	-	1	SP	78
	-	-	2	SP	118
	-	-	3	SU	96
	-	-	4	SU	104
	-	-	5	SU	81
$\begin{aligned} & \text { Carroll \& Getz } \\ & 1976 \end{aligned}$	-	-	1	SP	29
	-	-	2	SP	33
	-	-	3	SU	63
	-	-	4	SU	73
	-	-	5	SU	67

N/ha			Illinois 1972	alfalfa field	Months: (1) April, (2) May,
N/ha					(3) June, (4) July, and (5) August.
N/ha					
N/ha					
N/ha					
N/ha			Illinois 1972	bluegrass pasture	Month: (1) March, (2) April, (3)
N/ha					May, (4) June, and (5) July.
N/ha					
N/ha					
N/ha					
N/ha	0	115	e Kansas	old field	Live trapping; data reported as
N/ha	0	91	1970-73		minimum number alive for 0.8 ha
N/ha	0	94			grids. Population density in grid:
N/ha	0	64			(1) A; (2) B; (3) C; (4) D. Peaks
					generally occurred in June ' 72 and
					were followed by a decline in
					numbers, a recovery, and a
					population crash in spring ' 73.

Reference A	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Martin 1956	$\begin{array}{ll} - & - \\ - & - \\ - & - \end{array}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { WI } \\ & \text { SP } \\ & \text { FA } \end{aligned}$	$\begin{array}{r} 168-234 \\ 160-197 \\ 203-247 \\ 94-123 \end{array}$		$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \\ & \text { N/ha } \\ & \text { N/ha } \end{aligned}$				ne Kansas 1951	grassland	Live trapping, Hayne method; maximum move between captures. Data reflect range of monthly means for given season.
Martin 1956			$\begin{aligned} & \text { SU } \\ & \text { WI } \\ & \text { SP } \end{aligned}$	$\begin{array}{r} 67-151 \\ 116-136 \\ 136-160 \end{array}$		$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \\ & \text { N/ha } \end{aligned}$				ne Kansas 1952	grassland	Live trapping, Hayne method; maximum move between captures. Data reflect range of monthly means for given seasons.
Martin 1960	- -	-	-	17		N/ha		54		wc Kansas	mesic mixed prairie	As cited in Meserve 1971; assumed Hayne method and maximum move between captures.
Meserve 1971	$\begin{array}{ll} - & - \\ - & - \end{array}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { WI } \\ & \text { SP } \end{aligned}$	$\begin{array}{r} 25-35 \\ 12 \\ 10 \end{array}$		N/ha N/ha N/ha				$\begin{aligned} & \text { w Nebraska } \\ & 1968-69 \end{aligned}$	xeric prairie (mid and short grasses)	Hayne method; average move between captures.
Myers \& Krebs 1971	$\begin{array}{llll} 1 & - & - \\ & - & - \\ & - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-			$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \\ & \text { N/ha } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 95 \\ & 44 \\ & 14 \end{aligned}$		$\begin{aligned} & \text { s Indiana } \\ & 1967-70 \end{aligned}$	grasslands	Live trapping; data reported as minimum number alive on 0.8 ha grids. Values estimated from authors' figures. Control grid: A; (2) F; (3) I. Authors note that during the study period, populations never reached high densities on these study areas.
Wooster 1939	-	-	-	95		N/ha				Kansas	mixed prairie	As cited in Meserve 1971.
LITtER SIZE												
Cole \& Batzli 1978	8 -	-	-	4.25					28	Illinois	NS	As cited in Keller 1985. Placental scars or embryos count; spring and summer.
Cole \& Batzli 1978	8 - -	-	-	5.11					19	Illinois	NS	As cited in Keller 1985. Placental scars or embryos count. Food provided to population; spring and summer.
$\begin{aligned} & \text { Colvin \& Colvin } \\ & 1970 \end{aligned}$	- -	-	-	3.9			1	7	28	NS	1 ab	As cited in Keller 1985. Embryo or pup count.
Corthum 1967	- -	-	-	3.89			2	7	134	Indiana	NS	As cited in Keller 1985. Embryo or pup count.
Fitch 1957	- -	-	-	3.37			2	5	82	Kansas	NS	As cited in Keller 1985. Embryo or pup count; pooled yearly values.

Reference $\quad \mathrm{Ag}$	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Jameson 1947	- -	-	-	3.4			1	7	58	Kansas	NS	As cited in Keller 1985. Embryo or pup count.
Keller \& Krebs 1970	- -	-	-	3.27			1	6	160	Indiana	NS	As cited in Keller 1985. Embryo or pup count.
Martin 1956	- -	-	-	3.18	0.24 SD		1	6	65	$\begin{aligned} & \text { ne Kansas } \\ & 1950-52 \end{aligned}$	grassland	Pup count.
Nadeau 1985	- -	-	-	3.9	0.4 SD					NS	lab	Pup count. Calculated by author based on four studies (raw data not provided).
Nadeau 1985	- -	-	-	3.5	0.4 SD					NS	field-caught	Pup count. Calculated by author based on four studies (raw data not provided).
Quick 1970	- -	-	-	3.35			1	6	31	Kentucky	NS	As cited in Keller 1985. Embryo or pup count.
Richmond 1967	- -	-	-	3.17			1	8	280	NS	lab	As cited in Keller 1985. Embryo or pup count.
Rolan \& Gier 1967	- -	-	-	4.19					198	Kansas	NS	As cited in Keller 1985. Embryo or pup count; winter and spring.
Rose \& Gaines 1978	8 - -	-	-	3.43					181	Kansas	NS	As cited in Keller 1985. Embryo or pup count; data pooled from several years.
days gestation												
Fitch 1957	- -	-	-	< 20		days				NS	NS	As cited in Nadeau 1985.
Johnson \& Johnson 1982	- -	-	-	20-23		days				NS	NS	General value for all Microtus species.
Keller 1985	- -	-	-	21		days				NS	NS	
Kenney et al. 1977	7 - -	-	-	22.8		days				NS	NS	As cited in Nadeau 1985.
Martin 1956	- -	-	-	21		days				$\begin{aligned} & \text { ne Kansas } \\ & 1950-52 \end{aligned}$	grassland	
$\begin{aligned} & \text { Morrison et al. } \\ & 1976 \end{aligned}$	- -	-	-	21		days				NS	NS	As cited in Nadeau 1985.
Richmond \& Conaway 1969	y - -	-	-	21		days				NS	NS	As cited in Nadeau 1985.

Reference Age Sex Cond Seas Mean SD/SE Units Minimum Maximum N Location Nabitat

Age at weaning

1979
21
days
NS
$1 a b$
\& Birney
age at sexual maturity

Gier \& Cooksey 1967	-	F	-	$\begin{aligned} & - \\ & - \end{aligned}$	35	days days	42	45		NS	NS	As cited in Stalling 1990.
$\begin{aligned} & \text { Johnson \& Johnson } \\ & 1982 \end{aligned}$	-	F	-	$\begin{aligned} & - \\ & - \end{aligned}$		weeks weeks	$\begin{array}{r} 3 \\ 6-8 \end{array}$			NS	NS	General value for all Microtus species.
Martin 1956	-	F	1	$\begin{aligned} & - \\ & - \end{aligned}$		days weeks	$\begin{array}{r} 26 \\ 6 \end{array}$		1	$\begin{aligned} & \text { ne Kansas } \\ & 1950-52 \end{aligned}$	grasslands	Female weighed 28 g .
ANNUAL MORTALITY												
Abramsky \& Tracy 1980	-	B B B B B	- - - -	Su FA WI SP	$\begin{aligned} & 93 \\ & 28 \\ & 15 \\ & 15 \\ & 22 \end{aligned}$	\%/year \%/month $\% / m o n t h$ \%/month \%/month			$\begin{array}{r} 150 \\ 150 \mathrm{~A} \\ 148 \\ 150 \\ 150 \mathrm{~A} \end{array}$	ne Colorado	short-grass prairie	Seasonal mortality rates based on mean disappearance rate per month.
LONGEVITY												
Martin 1956	-	-	-	-	1.0	years		1.8		ne Kansas 1950-52	grassland	Maximum is an estimate of the age of the oldest individual found, based on recapture of animal tagged as a juvenile.

*** SEASONAL ACTIVITIES ***

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING						
Keller 1985; Martin 1956		May to Oct		NS	$\begin{aligned} & \text { NS } \\ & \text { NS } \end{aligned}$	
PARTURITION						
Keller 1985; Martin 1956		May to Oct		NS	NS	
FALL MOLT						
Jameson 1947		any time		NS	NS	Cited in Stalling 1990.

***** MEADOW VOLE *****
*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference A	Age S	Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
BODY WEIGHT													
$\begin{aligned} & \text { Anderson et al. } \\ & 1984 \end{aligned}$	B	B	-	SP	26.0		9			40	Manitoba	marsh	Estimated from graph on page 309.
	B	B	-	SU	24.3		g			34	1976-77		
	B	B	-	FA	17.0		g			21			
	B	B	-	WI	17.5		g			7			
Boonstra \& Rodd 1983	A	M	-	SP	52.4		9				Ontario, CAN	grassland	
	A	F	-	SP	43.5		9						
$\begin{aligned} & \text { Boonstra \& Rodd } \\ & 1983 \end{aligned}$	A	-	-	-			9	33			Toronto, CAN	NS	
Brochu et al. 1988	8 A	M	-	SU	40.0	8.3 SE	9			33	Quebec, CAN	old field	
	A	F	-	SU	33.4	8.2 SE	9			55			
$\begin{aligned} & \text { Brooks \& Webster } \\ & 1984 \end{aligned}$	B	B	1	SU	32.6	11.8 SD	9			152	Ontario, CAN	grassland	Trap period: (1) 7/7-8/31; (2)
	B	B	2	FA	31.3	10.0 SD	9			57	1977-78		9/1-10/19; (3) $10 / 20-12 / 15 ; ~(4)$
	B	B	3	FA	32.6	7.9 SD	9			158			1/5-2/20; (6) 2/21-4/15.
	B	B	4	WI	34.2	5.2 SD	9			41			
	B	B	5	WI	33.3	6.4 SD	g			45			
Dark \& Zucker 1986	6 A	M	1	-	54		9			14	NS	lab	(1) Group 1 - baseline - 14L:10D
	A	M	2	-	58		g			14			photoperiod; (2) Group 1 ten weeks
	A	M	3	-	57		g			17			later, same photoperiod; (3) Group
	A	M	4	-	45		g			17			2 - baseline 14L:10D photoperiod; (4) Group 2 after 10 weeks on short
													photoperiod (i.e., 10L:14D).
Dueser et al. 1981	1	-	-	-			9	30			NS	NS	Cutoff weight between residents and dispersers. As cited in Tamarin 1984.
Golley 1961	N	-	-	-	2-10		9				s Michigan	old field	$\mathrm{N}=$ neonate (0-10 days old); $\mathrm{J}=$
	J	-	-	-	11-20		9				1956-57		post-nestling juvenile (11-21 days
	Y	-	-	-	21-30		g						old); Y = young adult, Adults: (1)
	A	-	1	-	31-40		9						34-54 days old; (2) 55-103 days
	A	-	2	-	41-50		9						old; (3) 104+ days old.
	A	-	3	-	> 51		g						

Reference Age	ge S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Mihok 1984	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { F } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{BR} \\ & \mathrm{BR} \\ & 1 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \\ & \hline \end{aligned}$	$\begin{aligned} & 23.6 \\ & 18.8 \end{aligned}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & 20.2 \\ & 17.7 \end{aligned}$	$\begin{aligned} & 27.4 \\ & 20.1 \end{aligned}$	1076	Manitoba, CAN	boreal	(1) Total sample size, both sexes. Factor is weight at sexual maturity. Min and Max values are actually 95\% fiducial limits.
Millar 1987	A	B	-	SU	28.1		9				Alberta, CAN 1980-83	NS	
Myers \& Krebs 1971	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 32.9 \\ & 39.1 \\ & 35.5 \\ & 39.0 \end{aligned}$	$\begin{array}{rl} 0.2 & \mathrm{SE} \\ 0.25 & \mathrm{SE} \\ 0.1 & \mathrm{SE} \\ 0.3 & \mathrm{SE} \end{array}$	$\begin{aligned} & g \\ & g \\ & g \\ & g \end{aligned}$				$\begin{aligned} & \text { s Indiana } \\ & 1967-69 \end{aligned}$	grasslands	Mean weights of resident voles in: (1) study grid F; (2) study grid I. Data pooled over complete study period (all seasons). 2 SE given by authors (to one significant digit) divided by 2 to give SE shown here.
Reich 1981	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 44.2 \\ & 44.0 \end{aligned}$	$\begin{array}{r} 6.29 \text { SD } \\ 10.25 \text { SD } \end{array}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$				NS	NS	
Tamarin 1977b	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { WI } \\ & \text { WI } \\ & \text { SU } \\ & \text { SU } \\ & \text { WI } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 33 \\ & 34 \\ & 42 \\ & 39 \\ & 42 \\ & 41 \end{aligned}$		$\begin{aligned} & g \\ & g \\ & 9 \\ & g \\ & g \\ & g \\ & g \end{aligned}$				$\begin{aligned} & \text { Massachusetts } \\ & 1972-75 \end{aligned}$	coastal field	Dispersing voles; values estimated from figure. Year: (1) 1972; (2) 1973.
Tamarin 1977b	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & M \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { WI } \\ & \text { WI } \\ & \text { SU } \\ & \text { SU } \\ & \text { WI } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 36 \\ & 41 \\ & 40 \\ & 39 \\ & 43 \\ & 38 \end{aligned}$		$\begin{aligned} & g \\ & g \end{aligned}$				$\begin{aligned} & \text { Massachusetts } \\ & 1972-75 \end{aligned}$	coastal field	Resident voles; values estimated from figure. Year: (1) 1972; (2) 1973.
NEONATE WEIGHT													
Hamilton 1941	N	-	-	-	2.1		9	1.6	3.0		NS	NS	As cited in Reich 1981 and Johnson and Johnson 1982.
$\begin{aligned} & \text { Innes \& Millar } \\ & 1981 \end{aligned}$	N	-	-	-	2.3	0.1 SD	g				NS	NS	As cited in Nadeau 1985.
Lee \& Horvath 1969	N	-	-	-	2.0-3.0		9				NS	NS	As cited in Nadeau 1985.
McShea \& Madison 1989	N	-	-	-	3		9				Pennsylvania	NS	As cited in McShea 1989.

Reference

GROWTH RATE

Barbehenn 1955	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 0.40 \\ & 0.20 \end{aligned}$	$\begin{aligned} & \text { g/day } \\ & \text { g/day } \end{aligned}$	0.2	0.5	NS	field study
Golley 1961	-	-	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.81 \\ & 0.45 \\ & 0.19 \end{aligned}$	$\begin{aligned} & \text { g/day } \\ & \text { g/day } \\ & \text { g/day } \\ & \text { g/day } \end{aligned}$			$\begin{aligned} & \text { s Michigan } \\ & 1956-57 \end{aligned}$	old field
Hamilton 1941	-	-	-	-	1.0	g/day			NS	NS
Hamilton 1937	-	-	-	-	0.80	g/day			NS	lab
$\begin{aligned} & \text { Innes \& Millar } \\ & 1979 \end{aligned}$	-	-	-	-	0.67	g/day			NS	lab
McShea \& Madison 1989	-	-	-	-	0.44	g/day			Pennsylvania	NS
$\begin{aligned} & \text { Morrison et al. } \\ & 1977 \end{aligned}$	-	-	-	-	0.65	g/day			NS	lab

BODY FAT

Mihok et al. 1985	B	B	1	SP	1.34	0.125		g	17	Manitoba,	CAN	old fields	
	B	B	2	SP	1.09	0.078	SE	g	26	1971, 197			
Millar 1987	J	F	-	SU	0.37	0.04	SE	9	10	$\begin{aligned} & \text { Alberta, } \\ & \text { 1980-83 } \end{aligned}$	CAN	NS	
	A	F	G	SU	1.20	0.15	SE	g	$\begin{aligned} & 10 \\ & 10 \end{aligned}$				
	A	F	L	SU	0.60	0.09	SE	9					
Millar 1987	J	M	NB	SU	0.47	0.05	SE	9	10	Alberta,	CAN	NS	
	A	M	-	SU	0.93	0.15		g	10	1980-83			
Schwartz \& Mihok	B	-	BR	-	1.17			9		Manitoba,	CAN	NS	
1983	B	-	NB	-	0.908			9		1973-78			

LEAN (DRY) BODY WEIGHT

Mihok et al. 1985	B	B	1	SP	5.7	0.1		g
	B	B	2	SP	5.2	0.1	SE	9
Millar 1987	J	F	-	SU	2.91	0.28	SE	g
	A	F	G	SU	5.40	0.40	SE	g
	A	F	L	SU	5.58	0.21	SE	g
Millar 1987	J	M	-	SU	3.93	0.18	SE	g
	A	M	-	SU	6.58	0.36	SE	9
Schwartz \& Mihok 1983	-	-	BR	-	6.5			9
	-	-	${ }^{\text {NB }}$	-	5.1			9

METABOLIC RATE (OXYGEN)
Bradley 1976
A - BA - 46.3
$102 / \mathrm{kg}$-day
12 SD LO2/kg-day
43.2

146
New York
lab

4 ne United lab States

Pearson 1947
$\mathrm{A}-\mathrm{BA}-$
$\mathrm{A}-\mathrm{AD}-$
53
80
$102 / \mathrm{kg}-\mathrm{day}$
$102 / \mathrm{kg}$-day
58

4 Pennsylvania

Manitoba, CAN 1971, 1975
10 Alberta, CAN 1980-83
10

$$
10
$$ 1980-83

Manitoba, CAN
NS
1313
old fields

NS

NS

1973-78都

Two different years: (1) 1971; (2) 1975.
(1) Total sample size for both breeding and nonbreeding adults.

Body weight of vole $=39.0 \mathrm{~g}$. As cited in Wunder 1985.

AD = average daily metabolic rate in captivity. Two runs with two individuals each. Temperature 15 to 25 C . Weight of animals $=26.3$ to 32.0 g.

Mean body weight of voles $=31.2 \mathrm{~g}$ AD = average daily. Test conditions: 24 hour runs at 25-30 degrees C, food and water
available. Basal estimate is lowest value from the 24 hour run - basal test produced higher value. Low end high end is for 26 g vole. vole

Body weight $=35.6$ g. As cited in Deavers and Hudson 1981.

METABOLIC RATE (KCAL BASIS)

$\begin{array}{lll}\text { A }- \text { BA - } & 295 & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ \mathrm{A}-\mathrm{AD}- & 395 & \mathrm{kcal} / \mathrm{kg}-\mathrm{d}\end{array}$

4
4
ennsylvania
lab

12 NS

Russia

Mean body weight of voles $=31.2 \mathrm{~g}$ AD = average daily. Calculated from oxygen consumption. Test
conditions: 24 hour runs at 25-30 degrees C, food and water available. Basal estimate based on lowest oxygen consumption value

FOOD INGESTION RATE

Dark et al. 1983	A	M	1	-	$\begin{aligned} & 410 \\ & 370 \end{aligned}$	$\begin{aligned} & 10 \mathrm{SI} \\ & 20 \mathrm{SI} \end{aligned}$	SE kcal/kg-d SE kcal/kg-d	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	NS	lab
Ognev 1950	-	-	-	-	$0.30-$		g/g-day		Russia	NS
					0.35		g/g-day		Russia	

WATER INGESTION RATE

Ernst 1968
0.2
$0.02 \mathrm{SE} \mathrm{g} / \mathrm{g}$-day
NS

NS
produced higher value.

Daily food intake during 10th week exposed to photoperiod (1) long day
14L:10D; (2) short day 10L:14D.
values are the low and high ends of a range. As cited in Johnson and Johnson 1982.

THERMONEUTRAL ZONE
degrees C
25
29
NS
As cited in Reich 1981.
** DIET ***

Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
$\begin{aligned} & \text { Lindroth \& } \\ & 1984 \end{aligned}$	Batzli - -	dicot shoots	41	60	66	12		Illinois	bluegrass	
		monocot shoots	50	26	9	40		1980-83	-	
		seeds	1	9	1	13			\% wet volume;	
		roots	0	1	12	34			stomach contents	
		fungi	6	4	10	0				
		insects (sample size)	(11) ${ }^{2}$	(15) ${ }^{0}$	(13) ${ }^{2}$	(11) ${ }^{1}$				

Reference	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
home Range size												
Ambrose 1973	- -	-	SU			ha	0.0089	0.027		New York	NS	
Douglass 1976	$\begin{array}{ll} - & - \\ - & - \end{array}$	-	$\begin{aligned} & \mathrm{SU} \\ & \mathrm{WI} \end{aligned}$	$\begin{array}{r} 0.014 \\ 0.0002 \end{array}$		ha			$\begin{array}{r} 14 \\ 8 \end{array}$	Montana	alluvial bench	
Getz 1961b	$\begin{array}{ll} & \\ \text { - } & M \\ - & F \\ - & M \\ - & F \\ - & M \\ - & F \\ - & M \\ - & F\end{array}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & \text { FA } \\ & \text { FA } \\ & \text { WI } \\ & \text { WI } \\ & \text { SP } \\ & \text { SP } \\ & \text { SU } \\ & \text { SU } \end{aligned}$			ha ha	$\begin{aligned} & 0.043 \\ & 0.019 \\ & 0.013 \\ & 0.012 \\ & 0.043 \\ & 0.023 \\ & 0.051 \\ & 0.058 \end{aligned}$	$\begin{aligned} & 0.097 \\ & 0.041 \\ & 0.033 \\ & 0.013 \\ & 0.057 \\ & 0.032 \\ & 0.078 \\ & 0.061 \end{aligned}$		$\begin{aligned} & \text { Michigan } \\ & 1957-58 \end{aligned}$	old field	Values estimated from figure; home ranges calculated using the exclusive boundary method. Population density ranges (N / ha): fall 6-10; winter 7-13; spring 15-17; summer 16-18.
Getz 1961b	$\begin{array}{ll} & \\ \text { - } & M \\ - & F \\ - & M \\ - & F \\ - & M \\ - & F \\ - & M \\ - & F\end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \text { FA } \\ & \text { FA } \\ & \text { WI } \\ & \text { WI } \\ & \text { SP } \\ & \text { SP } \\ & \text { SU } \\ & \text { SU } \end{aligned}$			ha ha	$\begin{aligned} & 0.041 \\ & 0.041 \\ & 0.042 \\ & 0.040 \\ & 0.068 \\ & 0.043 \\ & 0.042 \\ & 0.038 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.044 \\ & 0.078 \\ & 0.085 \\ & 0.070 \\ & 0.046 \\ & 0.059 \\ & 0.049 \end{aligned}$		$\begin{aligned} & \text { Michigan } \\ & 1957-58 \end{aligned}$	marsh	Values estimated from figure; home ranges calculated using the exclusive boundary method. Population density ranges (N / ha): fall 28-50; winter 15-35; spring 22-48; summer 38-62.
Madison 1980	$\begin{array}{ll} \text { A } & \text { M } \\ \text { A } & \mathrm{F} \end{array}$	$\begin{aligned} & \mathrm{BR} \\ & \mathrm{BR} \end{aligned}$	$\begin{aligned} & \text { SU } \end{aligned}$	$\begin{aligned} & 0.01923 \\ & 0.006886 \end{aligned}$	$\begin{aligned} & 0.01097 \text { SD } \\ & 0.00394 \end{aligned}$	ha ha			$\begin{aligned} & 16 \\ & 15 \end{aligned}$	Virginia 1975	old field	Based on radiotelemetry; positions recorded hourly for 24 hr periods 2 times a week from June-Aug. Total of 77 daily ranges for males and 72 for females. Population density increased during study from 111 voles/ha to 198 voles/ha (direct enumeration method).
$\begin{aligned} & \text { Ostfeld et al. } \\ & 1988 \end{aligned}$	$\begin{array}{ll} \text { A } & \text { F } \\ \text { A } & \text { F } \\ \text { A } & \text { F } \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.00966 \\ & 0.04977 \\ & 0.03734 \end{aligned}$	$\begin{aligned} & 0.00458 \text { SD } \\ & 0.03465 \\ & 0.01982 \\ & \text { SD } \end{aligned}$	ha ha ha			$\begin{aligned} & 13 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Massachusetts } \\ & 1986 \end{aligned}$	grassy meadow	Home range of voles radiocollared from Aug 20-Sept 1. Calculation method: (1) 50\% - represents core area of range; (2) 95% represents core area and peripheral areas; (3) minimum polygon method.
$\begin{aligned} & \text { Ostfeld et al. } \\ & 1988 \end{aligned}$	$\begin{array}{ll} \mathrm{A} & \mathrm{M} \\ \mathrm{~A} & \mathrm{M} \\ \mathrm{~A} & \mathrm{M} \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.01955 \\ & 0.11836 \\ & 0.08328 \end{aligned}$	$\begin{aligned} & 0.00918 \\ & 0.05331 \\ & 0 . \\ & 0.03745 \\ & \text { SD } \end{aligned}$	$\begin{aligned} & \text { ha } \\ & \text { ha } \\ & \text { ha } \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Massachusetts } \\ & 1986 \end{aligned}$	grassy meadow	Home range of voles radiocollared from Aug 20-Sept 1. Calculation method: (1) 50\% - represents core area of range; (2) $95 \%-$ represents core area and peripheral areas; (3) minimum polygon method.

Reference	Age Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Tamarin 1977b	A F	-	-			ha	0.001			$\begin{aligned} & \text { Massachusetts } \\ & 1972-75 \end{aligned}$	coastal field	As cited in McShea 1989; McShea appears to have calculated this value from movement data provided in Tamarin 1977b.
Van Vleck 1969	$\begin{array}{ll} - & M \\ - & F \\ - & M \\ - & F \\ - & M \\ - & F \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.0502 \\ & 0.0405 \\ & 0.1283 \\ & 0.1145 \\ & 0.1554 \\ & 0.1299 \end{aligned}$		ha ha ha ha ha ha			$\begin{array}{r} 102 \\ 38 \\ 102 \\ 38 \\ 102 \\ 38 \end{array}$	$\begin{aligned} & \text { w New York } \\ & 1962 \end{aligned}$	old fields	Live trapping; population densities described as high (32-119 voles/ha). Ranges determined based on the number of stations at which vole was trapped; data shown here based on voles trapped at a minimum of 5 stations. Calculation method: (1) minimum area; (2) exclusive strip; (3) inclusive strip.
Van Vleck 1969	$\begin{array}{ll} - & M \\ - & F \\ - & M \\ - & F \\ - & M \\ - & F \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.0652 \\ & 0.0469 \\ & 0.1550 \\ & 0.1246 \\ & 0.1866 \\ & 0.1433 \end{aligned}$		ha ha ha ha ha ha			$\begin{array}{r} 28 \\ 8 \\ 28 \\ 8 \\ 28 \\ 8 \end{array}$	$\begin{aligned} & \text { w New York } \\ & 1961 \end{aligned}$	old fields	Live trapping; population densities described as moderate (10-86 voles/ha). Ranges determined based on the number of stations at which vole was trapped; data shown here based on voles trapped at a minimum of 5 stations. Calculation method: (1) minimum area; (2) exclusive strip; (3) inclusive strip.
POPULATION DENSITY												
Boonstra \& Rodd 1983	- B	-	-			N/ha	96	549		Ontario, CAN	grassland	
Getz et al. 1987	$\begin{array}{ll} - & - \\ - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$			N/ha N/ha N/ha	$\begin{array}{r} 25 \\ 7 \end{array}$	$\begin{array}{r} 131 \\ 100 \\ 46 \end{array}$		$\begin{aligned} & \text { c Illinois } \\ & 1972-86 \end{aligned}$	tallgrass	Values estimated from figures. Population showed a gradual increase after entering habitat in 1973: (1) peak for study period; (2) range found from summer 1977 1983; (3) population increased from the min shown to the max from Sept ' 84 to Nov ' 85 following a burn.
Getz et al. 1987	$\begin{array}{ll} - & - \\ - \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-			$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \end{aligned}$	$\begin{aligned} & 83 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { c Illinois } \\ & \text { 1972-86 } \end{aligned}$	bluegrass	Values estimated from figures. Population showed essentially annual fluctuations from 1975-82, and after ' 82 remained low through end of study. Period from (1) 1975-82; (2) 1982-85.

Reference A	Age Sex	Cond	S Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Getz et al. 1987	- -	-	-			N/ha	0	70		$\begin{aligned} & \text { c Illinois } \\ & 1972-86 \end{aligned}$	alfalfa	Values estimated from figures. Only occurred in this habitat from Oct. 1976 - October 1980; during this period populations showed annual fluctuations in density.
Getz 1961a	$\begin{array}{ll} - & - \\ - & - \\ - & - \\ - & \end{array}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & \text { FA } \\ & \text { WI } \\ & \text { SP } \\ & \text { SU } \end{aligned}$			N/ha N/ha N/ha N/ha	$\begin{array}{r} 7 \\ 6 \\ 13 \\ 17 \end{array}$	$\begin{aligned} & 11 \\ & 13 \\ & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { Michigan } \\ & 1957-58 \end{aligned}$	old field	Estimated from figure.
Getz 1961a	$\begin{array}{ll} - & - \\ - & - \\ - & - \\ - & - \end{array}$	$\begin{aligned} & - \\ & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & \text { FA } \\ & \text { WI } \\ & \text { SP } \\ & \text { SU } \end{aligned}$			N/ha N/ha N/ha N/ha	$\begin{aligned} & 28 \\ & 20 \\ & 22 \\ & 38 \end{aligned}$	$\begin{aligned} & 51 \\ & 51 \\ & 53 \\ & 64 \end{aligned}$		$\begin{aligned} & \text { Michigan } \\ & 1957-58 \end{aligned}$	grass-sedge marsh	Estimated from figure.
Getz 1961a	$\begin{array}{ll} - & - \\ - & - \\ - & - \end{array}$	$\begin{aligned} & - \\ & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & \text { FA } \\ & \text { WI } \\ & \text { SP } \\ & \text { SU } \end{aligned}$	0		N/ha N/ha N/ha N/ha	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 6 \\ 7 \\ 10 \end{array}$		$\begin{aligned} & \text { Michigan } \\ & 1957-58 \end{aligned}$	Potentilla marsh	Estimated from figure.
Krebs 1977	$\begin{array}{ll} - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{SP} \\ & \mathrm{SP} \\ & \mathrm{SP} \end{aligned}$			N/ha N/ha N/ha		$\begin{aligned} & 143 \\ & 119 \\ & 135 \end{aligned}$		$\begin{aligned} & \text { Indiana } \\ & 1966,68,70 \end{aligned}$	grassland	Live trapping; reported as peak density of number known alive on 0.8 ha grid during three years. Year: (1) 1966 (peak density of M. ochrogaster also present during this peak); (2) 1968; (3) 1970.
$\begin{aligned} & \text { Lindroth \& Batzli } \\ & 1984 \end{aligned}$	- -	-	-			N/ha	2	28		$\begin{aligned} & \text { Illinois } \\ & 1980-83 \end{aligned}$	bluegrass field	
$\begin{aligned} & \text { Lindroth \& Batzli } \\ & 1984 \end{aligned}$	- -	-	-			N/ha	26	128		$\begin{aligned} & \text { Illinois } \\ & 1980-83 \end{aligned}$	tallgrass prairie	
Myers \& Krebs 1971	$\begin{array}{cccc} 11 & - & - \\ & - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$			N/ha N/ha N/ha	$\begin{array}{r} 25 \\ 0 \\ 6 \end{array}$	$\begin{array}{r} 163 \\ 50 \\ 95 \end{array}$		$\begin{aligned} & \text { s Indiana } \\ & 1967-70 \end{aligned}$	grasslands	Live trapping; data reported as minimum number alive on 0.8 ha grids. Values estimated from figures for control grid: (1) A; (2) F ; (3) I.
$\begin{aligned} & \text { Ostfeld et al. } \\ & 1988 \end{aligned}$	$\begin{array}{ll} - & - \\ - & - \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { SU } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 28 \\ & 85 \\ & 33 \end{aligned}$		$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \\ & \text { N/ha } \end{aligned}$				Massachusetts	grassy meadow	
Tamarin 1977a	$\begin{array}{ll} - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-			$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \end{aligned}$		$\begin{aligned} & 160 \\ & 181 \end{aligned}$		se Mass. $1972-75$	grassy field	$(1,2)$ Two different study plots.
Van Vleck 1969	$\begin{array}{ll} - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$			N/ha N/ha	$\begin{aligned} & 10 \\ & 32 \end{aligned}$	$\begin{array}{r} 86 \\ 119 \end{array}$		$\begin{aligned} & \text { w New York } \\ & 1961-62 \end{aligned}$	old field	Density in: (1) 1961 (described as moderate); (2) 1962 (described as high).

Reference A	Age	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
LIt ${ }^{\text {cer }}$ SIZE													
Beer \& MacLeod 1961 1961	-	-	-	-	5.72			1	11	251	Minnesota	NS	As cited in Keller 1985. All months, embryo or pup count.
Corthum 1967	-	-	-	-	4.46			1	9	153	Indiana	NS	As cited in Keller 1985. Samples from 11 months; pup or embryo count.
Goin 1943	-	-	-	-	6.05			1	8	24	Pennsylvania	NS	As cited in Keller 1985. Embryo or pup count.
Harris 1953	-	-	-	-	3.65					16	Maryland	NS	As cited in Keller 1985. Embryo or pup count.
Iverson \& Turner 1976	-	-	-	-	3.82			1	11	312	Manitoba, CAN	NS	As cited in Keller 1985. Six years of data, months variable between years. Embryo or pup count.
$\begin{aligned} & \text { Kott \& Robinson } \\ & 1963 \end{aligned}$	-	-	-	-	5.5			1	8	124	Toronto, Ont. CAN	NS	As cited in Keller 1985. Summer samples; embryo or pup count.
Millar 1987	-	-	-	-	6.0						$\begin{aligned} & \text { Alberta, CAN } \\ & 1980-83 \end{aligned}$	NS	
Townsend 1935	-	-	-	-	5.07			2	9	41	New York	NS	As cited in Keller 1985. Embryo or pup count.
LITTERS/YEAR													
Bailey 1924	-	-		-			litters/yr		17		NS	captive	As cited in Johnson and Johnson 1982.
days gestation													
 Preston 1977	-	-	-	-	21		days				NS	NS	As cited in Reich 1981.
Innes \& Millar 1981	-	-		-	20		days				NS	NS	As cited in Nadeau 1985.
Johnson \& Johnson 1982	-	-		-	20-23		days				NS	NS	Value refers to all Microtus species.
Kenney et al. 1977	7 -	-	-	-	21.0	0.2 SD	days				NS	NS	As cited in Nadeau 1985.
Lee \& Horvath 1969	9	-	-	-	21		days				NS	NS	As cited in Nadeau 1985.

age at weaning

Benton 1955	-	-	-	21
Golley 1961	-	-	-	21
Hamilton 1941	-	-	-	
McShea 1989	-	-		21

days
days
days
NS
s Michigan
NS
NS

age at sexual maturity

Johnson \& Johnson
$-\mathrm{F}-\quad-$
-M
weeks
3
$6-8$
NS

ANNUAL MORTALITY
Golley 1961

Mihok 1984

50\%
58\%
53%
81.2\%
0 to 10 g
11 to 20 g
$\begin{array}{ll}21 & \text { to } 30 \mathrm{~g} \\ 31 \text { to } 50 \mathrm{~g}\end{array}$
31 to 50
$>$
50
1st 28 d

s Michigan 1956-57	old field
se Manitoba, CAN 1968-78	old field

LONGEVITY

| Beer \& MacLeod | - | - | - | $2-3$ | months |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1961 | | | | | |

NS
NS
NS
NS

As cited in Johnson and Johnson 1982.

As cited in Reich 1981.
Study notes that Madison (1978), and Innes and Millar (1981) suggest the age at weaning may be less than 21 days.

Values refer to all Microtus species.

Age classes for which mortality wa estimated: (1) nestlings; (2) post-nestling juveniles; (3) young adults; (4) adults; and (5) large (old) adults.

Juvenile mortality during first 28 days; based on juvenile survival rate (from birth to recruitment) of 18.8\%.

As cited in Reich 1981.

As cited in Reich 1981.

Average longevity of adult voles
Average after time of first capture (>32 grams = adult).
*** SEASONAL ACTIVITIES ***

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING						
Boonstra \& Rodd 1983	Apr		Dec	Ontario, CAN 1979	grassland	
Boonstra \& Rodd 1983	Apr		mid Sep	Ontario, CAN 1980	grassland	
Getz 1960		Oct - Nov		$\begin{aligned} & \text { Michigan } \\ & 1957-58 \end{aligned}$	marsh	Fall - winter peak; as cited in Getz 1961b.
Getz 1960		Apr-June		$\begin{aligned} & \text { Michigan } \\ & 1957-58 \end{aligned}$	marsh	Spring - summer peak; as cited in Getz 1961b.
Mihok 1984	Apr 3		Oct 13	Manitoba, CAN	boreal	Begin $=>50 \%$ reproductively active; End= >50\% reproductively inactive; males.
Mihok 1984	Apr 26		Oct 12	Manitoba, CAN	boreal	Begin $=>50 \%$ reproductively active; End= >50\% reproductively inactive; females.
Mihok 1984	Apr		Oct	Manitoba, CAN	boreal	Both sexes.
DISPERSAL						
Myers \& Krebs 1971		fall/winter		Indiana	grassland	Peaks of dispersal in fall and winter.
Tamarin 1977b		summer		$\begin{aligned} & \text { Massachusetts } \\ & 1972-75 \end{aligned}$	coastal field	Peak for females.
Tamarin 1977b		winter		$\begin{aligned} & \text { Massachusetts } \\ & 1972-75 \end{aligned}$	coastal field	Peak for males.

***** MUSKRAT *****
*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference	Age Sex	ex	Cond	d Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
 Gilbert 1981	A	F	-	SU	1,300	130 S	SD	9			37	Ontario, CAN	marsh	Captured in summer and fall.
	J	F	1	SU	510	170 SD	SD	9			65	1978		Juveniles: (1) from first litter of
	J	F	2	SU	270	90 S	SD	9			5			the year; (2) from second litter of
	A	M	-	SU	1,200	170 S	SD	9			37			the year.
	J	M	1	SU	530	190 S	SD	9			69			
	J	M	2	SU	290		SD	9			12			
Neal 1968	J	M	-	-	510			g			112	Iowa 1967	marsh	Caught during summer and fall.
	J	F	-	-	510			g			91			
	A	M	-	-	1,190			g			21			
	A	F	-	-	1,219			9			18			
O'Neil 1949 (rivalicius)	A	B	1	-	820			9			20	Louisiana	marsh	(1) LaFouche Parish - 12 males, 8
	A	B	2	-	910			g			20	1940-45		females; (2) Vermilion Parish - 12
	A	B	3	-	1,040			g			20			males, 8 females; (3) w Cameron Parish - 12 males, 8 females.
$\begin{aligned} & \text { Parker \& Maxwell } \\ & 1984 \end{aligned}$	J	B	-	FA				9	500	1,400		New Brunswick,	woods, upland, marsh	Spring 1978 to fall 1980.
	J	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	FA	$\begin{aligned} & 1,092 \\ & 1,073 \end{aligned}$			g				CAN		
$\begin{aligned} & \text { Parker \& Maxwell } \\ & 1984 \end{aligned}$	A	M	-	FA	1,511			9				New Brunswick,	woods, upland, marsh	Spring 1978 to fall 1980.
	A	F	-	FA	1,523			g				CAN	woods, upland, marsh	Spring 1978 to fall 1980.
	A	M	-	SP	1,483			9						
	A	F	-	SP	1,433			9						
$\begin{aligned} & \text { Parker \& Maxwell } \\ & 1980 \end{aligned}$	A	F	1	SP	1,234	152 S	SD	9			100	New Brunswick,	marsh	Year: (1) 1976; (2) 1977.
	A	F	2	SP	1,241	154 S	SD	g			143	CAN		
	A	F	1	FA	1,450	179 S	SD	9			7			
	A	F	2	FA	1,403	149 S	SD	g			4			
	J	F	1	FA	1,057	85 S	SD	9			17			
	J	F	2	FA	954	184 S		9			28			
$\begin{aligned} & \text { Parker \& Maxwell } \\ & 1980 \end{aligned}$	A	M	1	SP	1,367	136 SD	SD	9			134	New Brunswick,	marsh	Year: (1) 1976; (2) 1977.
	A	M	2	SP	1,366	172 S	SD	9			141	CAN		
	A	M	1	FA	1,497	167 S	SD	9			4			
	A	M	2	FA	1,469	119 S	SD	g			11			
	J	M	1	FA	1,083	20 S	SD	9			22			
	J	M	2	FA	985	169 S		9			43			
$\begin{aligned} & \text { Reeves \& Williams } \\ & 1956 \\ & \text { (osoyoosensis) } \end{aligned}$	S A	M	1	SP	909			9			315	Idaho	marsh	(1) Gray's Lake, 1950; (2) Dingle
	A	F	1	SP	837			9			267			Swamp, 1953.
	A	M	2	SP	843			g			1020			
	A	F	2	SP	830			9			573			
Sather 1958	B	M	-	WI	1,180			g	730	1,550	198	Nebraska, nc	marsh	Weighed between December and March.
	B	F	-	WI	1,090			g	770	1,450	215	Kansas		
$\begin{aligned} & \text { Schacher \& Pelton } \\ & 1978 \end{aligned}$	A	F	G	SP	1,443	74.9 S	SE	g			8	e Tennessee	Holston River	Pregnant females.
	A	F	G	SU	1,460	67.8 S	SE	9			5	1972-73		

NEONATE WEIGHT

Errington 1939

Svihla \& Svihla
N
N B - -
g
20
25
44
c New York
41 Iowa 1934
1936-38
Louisiana
1925-27
marsh
marsh
marsh
(rivalicia)

GROWTH RATE

Dean 1957	J	B	-	-	5.3	g/day				c New York	marsh	From birth to 30 days (approximate age at weaning).
Errington 1939a	J	B	-	-	5.4	g/day	4.3	5.6		$\begin{aligned} & \text { Iowa 1934, } \\ & 1936-38 \end{aligned}$	marsh	From birth to 30 days. Mean is estimated from the "median" growth curve; min and max are estimated from the minimum and maximum growth curves.
Parker \& Maxwell	J	M	-	-	10.7	g/day				se New	marsh	Growth rate for first summer (from
1980	J	F	-	-	6.7	g/day				Brunswick CAN		approximately 0 to 90 days).
Parker \& Maxwell	J	M	-	-	7.5	g/day			54	New Brunswick,	woods,	Based on growth rate after weaning
1984	J	F	-	-	7.1	g/day			38	CAN		until first fall; duration of study = spring 1978 - fall 1980 .

Reference	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
WEANING WEIGHT												
Errington 1939a	- B	-	-			9	112	184		$\begin{aligned} & \text { Iowa 1934, } \\ & 1936-38 \end{aligned}$	marsh	Estimated from median growth curve for days 21 (early weaning) and 30 (late weaning).
$\begin{aligned} & \text { Parker \& Maxwell } \\ & 1980 \end{aligned}$	$-\quad B$		-	200		9			92	New Brunswick, CAN	woods, upland, marsh	Approximate weight of juveniles when they first leave the nest (at about 30 days of age).
metabolic rate (OXyGEn)												
Fish 1982	$\begin{array}{ll} \text { A } & \text { B } \\ \text { A } & \text { B } \end{array}$		-	$\begin{aligned} & 38 \\ & 21 \end{aligned}$	7.9 SE	$\begin{aligned} & 102 / \mathrm{kg}-\mathrm{d} \\ & 102 / \mathrm{kg}-\mathrm{d} \end{aligned}$			87	Michigan	lab	Water temperature $=25 \mathrm{C}$; mean weight of muskrats $=649 \mathrm{~g}$. Swimming (at surface) metabolic rate extrapolated from Figure 2, for swimming speed of $0.58 \mathrm{~m} / \mathrm{s}$ (mean of swimming speeds measured). Resting rate measured with muskrat floating in water. Reference provides a regression equation for muskrat metabolic rate as a function of swimming speed.
Fish 1983	A M		-	20.6	0.96 SE	102/kg-d			48	Michigan	lab	Muskrats floating in water; water temperature 25 C , mean body mass = 614 grams.
Fish 1983	$\begin{array}{ll} \text { A } & \mathrm{M} \\ \text { A } & \mathrm{M} \end{array}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{SW} \end{aligned}$	-	$\begin{aligned} & 18.5 \\ & 46.6 \end{aligned}$	0.96 SE	$\begin{aligned} & 102 / \mathrm{kg}-\mathrm{d} \\ & 102 / \mathrm{kg}-\mathrm{d} \end{aligned}$			48	Michigan	lab	Water temperature $=30 \mathrm{C}$; mean body mass $=614$ grams. Resting $=$ animals floating in water, swimming = animals swimming at surface at 0.58 m / s.
MacArthur \& Krause 1989	$\begin{array}{ll} \text { e } & - \\ - & - \end{array}$		-	$\begin{aligned} & 18.7 \\ & 53.3 \end{aligned}$		$\begin{aligned} & 102 / \mathrm{kg}-\mathrm{d} \\ & 102 / \mathrm{kg}-\mathrm{d} \end{aligned}$				Manitoba, CAN	lab	```Water temperature = 30 C. Resting = mean thermoneutral rate in air. Swimming = underwater swimming (voluntary dives).```
metabolic rate (KCAL basis)												
Fish 1982	$\begin{array}{ll} \text { A } & \text { B } \\ \text { A } & \text { B } \end{array}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{SW} \end{aligned}$	-	$\begin{aligned} & 101 \\ & 182 \end{aligned}$		$\begin{aligned} & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \\ & \mathrm{kcal} / \mathrm{kg}-\mathrm{d} \end{aligned}$			87	Michigan	lab	```Water temperature = 25 C, mean weight of muskrats = 649 g. Resting = floating in water; swimming = swimming at surface at a speed of 0.58 m/s.```

N Location
Habitat

FOOD INGESTION RATE

Svihla 1931 (rivalicius)	-	-	-	-	0.33	g/g-day		Louisiana	island
Svihla \& Svihla	-	-	1	-	0.34	g/g-day	7		e
1931	-	-	2	-	0.26	g/g-day		1925-27	

THERMONEUTRAL ZONE

Reference	Age Sex	Food type		Sprin		Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
$\begin{aligned} & \text { Willner et al. } \\ & 1975 \end{aligned}$	- -	cattail rush millet algae grass cord gras seeds other				$\begin{array}{r} 59 \\ 17 \\ 8 \\ 5 \\ 4 \\ 4 \\ 2 \\ 3 \end{array}$			NS	$\begin{aligned} & \text { Somerset Co., } \\ & \text { MD } \end{aligned}$	```brackish marsh % diet; stomach contents```	Each plant fragment was identified and the number of fragments of each plant species/total number of fragments determined to yield \% species in diet.
$\begin{aligned} & \text { Willner et al. } \\ & 1975 \end{aligned}$		green alg 3-square switch gr soft rush water wil grass (Gr other	ush ss ow minae)			$\begin{array}{r} 77 \\ 8 \\ 8 \\ 4 \\ 2 \\ 1 \\ <1 \end{array}$			NS	Montgomery Co., MD	```freshwater % of diet; stomach contents```	Each plant fragment was identified and the number of fragments of each plant species/total number of fragments determined to yield \% species in diet.
$\begin{aligned} & \text { Willner et al. } \\ & 1975 \end{aligned}$	- -	green alg switch gr sedge rush rice cut smartweed other	ss rass			$\begin{array}{r} 81 \\ 4 \\ 3 \\ 3 \\ 2 \\ 1 \\ 6 \end{array}$			NS	Washington Co., MD	```freshwater % of diet; stomach contents```	Each plant fragment was identified and the number of fragments of each plant species/total number of fragments determined to yield \% species in diet.
$\begin{aligned} & \text { Willner et al. } \\ & 1975 \end{aligned}$	$-\quad-$	$\begin{aligned} & \text { green alg } \\ & \text { sedge } \\ & \text { switch gr } \\ & \text { manna-gra } \\ & \text { 3-square } \\ & \text { soft rush } \\ & \text { rice cut- } \\ & \text { corn } \\ & \text { other } \end{aligned}$	ss S ush rass			$\begin{array}{r} 36 \\ 16 \\ 11 \\ 8 \\ 7 \\ 7 \\ 4 \\ 3 \\ 8 \end{array}$			NS	$\begin{aligned} & \text { Garrett Co., } \\ & \text { MD } \end{aligned}$	```freshwater % of diet; stomach contents```	Each plant fragment was identified and the number of fragments of each plant species/total number of fragments determined to yield \% species in diet.
*** POPULATION DYNAMICS ***												
Reference	Age Sex	Cond Seas	Mean	SD/SE	Units		Minimum	Maximum	N	Location	Habitat	Notes
HOME RANGE SIZE												
Neal 1968	$\begin{array}{ll} \text { B } & \text { M } \\ \text { B } & \text { F } \end{array}$	$\begin{array}{ll} - & - \\ - \end{array}$	$\begin{aligned} & 0.17 \\ & 0.17 \end{aligned}$		ha ha				$\begin{array}{r} 10 \\ 7 \end{array}$	Iowa 1966-67	marsh	Mark and recapture study; only animals captured more than 7 times listed here. Author found little further increase in home range size estimates after 5 recaptures.

Reference	Age S	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Neal 1968	$\begin{aligned} & \text { J } \\ & \text { A } \\ & \text { J } \\ & \text { A } \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.17 \\ & 0.16 \\ & 0.12 \end{aligned}$		ha ha ha ha			$\begin{array}{r} 6 \\ 1 \\ 20 \\ 2 \end{array}$	Iowa 1966-67	marsh	Mark and recapture study; only animals captured more than 5 times listed here. Author found little further increase in home range size estimates after 5 recaptures. (1) Round Lake; (2) Rush Lake.
$\begin{aligned} & \text { Proulx \& Gilbert } \\ & 1983 \end{aligned}$	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.17 \end{aligned}$	$\begin{array}{rr} 0.082 & \text { SD } \\ 0.0078 & \text { SD } \end{array}$	ha ha				Ontario, CAN	marsh	Estimate of minimum home range size (i.e., area intensively used); (1) 1979, (2) 1980.
$\begin{aligned} & \text { Proulx \& Gilbert } \\ & 1983 \end{aligned}$	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.32 \end{aligned}$		$\begin{aligned} & \text { ha } \\ & \text { ha } \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Ontario, CAN	pond	Estimate of minimum home range size (i.e., area intensively used); (1) Pond 1; (2) Pond 2.
$\begin{aligned} & \text { Proux \& Gilbert } \\ & 1983 \end{aligned}$	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.0484 \\ & 0.1112 \end{aligned}$	$\begin{aligned} & 0.0238 \text { SD } \\ & 0.0843 \text { SD } \end{aligned}$	ha ha				Ontario, CAN 1979	east bay	Estimate of minimum home range size (i.e., area intensively used); (1) early summer, (2) late summer.
POPULATION DENSITY													
Beshears 1951	-	-	-	-	2.8		N/ha				Alabama	NS	As cited in Perry 1982.
$\begin{aligned} & \text { Brooks \& Dodge } \\ & 1986 \end{aligned}$	B	B	-	SU	23		N / km river			2673	Pennsylvania	riverine little vegetation	Sandy Lick study area; unglaciated river.
Brooks \& Dodge 1986	B	B	-	SU	48		N / km river			5425	Massachusetts	wetland/river/sedges	Ware River study area; glaciated river.
Butler 1940	-	-	-	-	7.4		N/ha				Manitoba, CAN	sedges	As cited in Perry 1982.
Butler 1940	-	-	-	-	64.2		N/ha				Manitoba, CAN	common reeds	As cited in Perry 1982.
Clay \& Clark 1985	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { FA } \\ & \text { SU } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 1.3 \\ & 2.4 \\ & 0.6 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{SE} \\ & 0.1 \mathrm{SE} \end{aligned}$	N/ha N/ha N/ha N/ha			$\begin{aligned} & 7 \\ & 4 \\ & 3 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { ne Iowa } \\ & \text { 1981-82 } \end{aligned}$	backwater riverine	Based on 5-night mark and recapture experiments in upper Mississippi sand sloughs. Dates for estimates: (1) late April 1981; (2) early September 1981; (3) late June 1982; (3) early October 1982.
Clay \& Clark 1985	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { FA } \\ & \text { SU } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 9.3 \\ & 6.3 \\ & 2.6 \\ & 4.4 \end{aligned}$	$\begin{array}{ll} 1.3 & \mathrm{SE} \\ 1.1 & \mathrm{SE} \\ 0.3 & \mathrm{SE} \\ 0.5 & \mathrm{SE} \end{array}$	N/ha N/ha N/ha N/ha			$\begin{aligned} & 28 \\ & 24 \\ & 11 \\ & 14 \end{aligned}$	ne Iowa 1981-82	open water riverine	Based on 5-night mark and recapture experiments in upper Mississippi capoli sloughs. Dates for estimates: (1) mid May 1981; (2) late September 1981; (3) mid June 1982; (3) early October 1982.
Errington 1948	-	-	-	-	49		N/ha				Iowa	cattail marsh	As cited in Perry 1982.

Reference	Age S	Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Errington 1948	-	-	-	-	25		N/ha				Iowa	Scirpus spp. marsh	As cited in Perry 1982.
Errington 1939b	A	B	-	SU	1.8		pairs/ha			30	Iowa 1935	marsh	Breeding pairs. Early summer. Low quality habitat; over the course of the summer as the water level decreased many animals left this area to go to areas with deeper water.
Gashwiler 1948	-	-	-	-	0.3-1.8		N/ha				Maine	marsh	As cited in Perry 1982.
Halbrook 1990	B	M	-	-	18.7		N/ha				Virginia	fringe marsh	Habitat is along the lower region of the Elizabeth River (75\% Spartina sp.).
Halbrook 1990	B	M	-	-	2.1		N/ha				Virginia	marsh	Habitat is along the lower region of the Elizabeth River (75\% Spartina sp.).
O'Neil 1949	-	-	-	-	28.3		N/ha	1	74		$\begin{aligned} & \text { Louisiana } \\ & 1942-45 \end{aligned}$	Scirpus olneyi marsh	Min and max are extremes in yearly means from one of the six sites. Each site was studied for four years.

LITTER SIZE

Arthur 1931	-	-	-	-	3.8	
Beshears \& Haugen 1953	-	-	-	-	4.0	
Chamberlain 1951	-	-	-	-	5.0	
Clay \& Clark 1985	-	-	-	-	7.1	0.2 SE
Dean 1957	-	-	-	-	3.8	1.8 SD
Dibblee 1971	-	-	-	-	6.7	
Dilworth 1966	-	-	-	-	5.8	
Erickson 1963	-	-	-	-	6.3	
Errington 1939a	-	-	-	-	8.2	

1058 Louisiana

	Alabama	NS
	Massachusetts	marsh
19	$\begin{aligned} & \text { ne Iowa } \\ & 1981-82 \end{aligned}$	riverine
31	c New York	marsh
	Prince Edward Island	NS
	s New Brunswick, CAN	NS
	c New York	ponds
6	$\begin{aligned} & \text { Iowa 1934; } \\ & 1936-38 \end{aligned}$	marsh

As cited in Gashwiler 1950; based on embryo counts.

Based on embryo counts; as cited in Parker \& Maxwell 1984.
As cited in Perry 1982.
Based on embryo counts.

Live litter counts.
As cited in Parker \& Maxwell 1984, based on embryo counts.
Based on embryo counts; as cited in Parker \& Maxwell 1984

As cited in Perry 1982.
Based on embryo counts.

Reference A	Age S			ond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Errington 1939a	-	-		-	-	6.5			1	11	158	$\begin{aligned} & \text { Iowa 1934, } \\ & 1936-38 \end{aligned}$	marsh	Liver litter counts.
Gashwiler 1950	-	-		-	-	7.1					494	Maine 1945-48	statewide trapping	Based on embryo counts.
Gashwiler 1950	-	-		-	-	5.4			2	9	62	Maine	Moosehorn NWR	Based on count of live litters.
Halbrook 1990	-	-		-	-	4.65			3	6		Virginia	marsh (75\% Spartina)	Habitat is near the Elizabeth River.
Hall 1981	-	-		-	-	6.5			1	11		North America	NS	Summarizing many studies.
Harris 1952	-	-		-	-	3.9						Maryland	NS	As cited in Boutin and Birkenholz 1987.
Mathiak 1966	-	-		-	-	7.3			1	12	460	$\begin{aligned} & \text { Wisconsin } \\ & 1947-57 \end{aligned}$	marsh	Live litter counts.
Neal 1968	-	-			- - -	$\begin{aligned} & 2.8 \\ & 4.2 \\ & 4.0 \\ & 7.5 \end{aligned}$			2 2	$\begin{aligned} & 4 \\ & 7 \end{aligned}$		Iowa	marsh	(1) Mapping groups with similar birth dates (Round Lake); (2) Mapping groups with similar birth dates (Rush Lake); (3) Litters found by opening lodges (Round Lake); (4) Litters found by opening lodges (Rush Lake).
$\begin{aligned} & \text { O' Neil } 1949_{\text {(rivalicius) }} \end{aligned}$	-	-			-	3.46					103	Louisiana	NS	Embryo count.
O^{\prime} Neil 1949 (rivalicius)	- - - -	- - - -		$\begin{aligned} & - \\ & - \\ & - \\ & 1 \end{aligned}$	$\begin{aligned} & \text { WI } \\ & \text { SP } \\ & \text { SU } \\ & \text { FA } \end{aligned}$	$\begin{array}{r} 3.7 \\ 3.5 \\ 2.3 \\ 3.5 \\ 3.22 \end{array}$						Louisiana 1943	marsh	Live litter counts: (1) Mean for whole year.
O'Neil \& Linscombe 1976	e -	-			-	3-4						Louisiana	NS	As cited in Perry 1982.
$\begin{aligned} & \text { Parker \& Maxwell } \\ & 1980 \end{aligned}$	-	-		-	-	6.8						New Brunswick, CAN	marsh	Year $=1976-77$. Based on counts of placental scars using an estimate of 2.5 litters/year.
$\begin{aligned} & \text { Parker \& Maxwell } \\ & 1984 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \mathrm{Y} \end{aligned}$	-			-	$\begin{aligned} & 8.4 \\ & 7.5 \end{aligned}$					$\begin{array}{r} 36 \\ 8 \end{array}$	New Brunswick, CAN	woods, upland, marsh	Based on counts of placental scars.
$\begin{aligned} & \text { Proulx \& Gilbert } \\ & 1983 \end{aligned}$	-	-		-	-	6.3						Ontario, CAN	marsh	Embyro count.

Reference	Age S	ex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Gashwiler 1950	-	-	-	-	2.1		/yr				Maine 1945-48	NS	In wildife refuge.
Halbrook 1990	-	-	-	-	1.84		/yr				Virginia	marsh	Habitat is along the Elizabeth River.
Neal 1968	$\begin{aligned} & - \\ & \text { - } \\ & \text { - } \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 1.2 \\ & 3.4 \\ & 2.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \mathrm{lyr} \\ & / \mathrm{yr} \\ & \mathrm{lyr} \\ & / \mathrm{yr} \end{aligned}$				Iowa	marsh	(1) Mapping groups of similar birth dates (Round Lake); (2) mapping groups of similar birth dates (Rush Lake); (3) placental scars (Round Lake); (4) placental scars (Rush Lake). Rush Lake is the superior habitat.
O'Neil 1949 (rivalicius)	-	-	-	-	5-6		/yr		7-8		Louisiana	NS	Statewide data, general information.
$\begin{aligned} & \text { Parker \& Maxwell } \\ & 1984 \end{aligned}$	-	-	-	-	2.36		/yr			36	New Brunswick, CAN	woods, upland, marsh	Years from 1978-80.
$\begin{aligned} & \text { Proulx \& Gilbert } \\ & 1983 \end{aligned}$	-	-	-	-	2		/yr				Ontario, CAN	NS	
$\begin{aligned} & \text { Reeves \& Williams } \\ & \text { (os6 } \\ & \text { (osoyoosensis) } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\begin{aligned} & 1.6 \\ & 1.7 \\ & 2.4 \end{aligned}$		$\begin{aligned} & \text { /yr } \\ & / \mathrm{yr} \\ & / \mathrm{yr} \end{aligned}$			$\begin{aligned} & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { Idaho } \\ & 1949-50,52-53 \end{aligned}$	marsh	(1) Placental scars/ avg. size (Gray's Lake); (2) uterus scars from fall trapped animals (Gray's Lake); (3) placental scars per breeding female/ avg. litter size (counted at less than one week of age)--(Dingle Swamp).
$\begin{aligned} & \text { Schacher \& Pelton } \\ & 1975 \end{aligned}$	-	-	-	-	2.3		/yr				e Tennessee	riverine	Calculated by dividing placental scars by mean litter size.
Smith 1938	-	-	-	-	3		/yr				Maryland	NS	
$\begin{aligned} & \text { Smith \& Jordan } \\ & 1976 \end{aligned}$	-	-	-	-	3.0		/yr				Connecticut	marsh	As cited in Parker and Maxwell 1984.
Smith et al. 1981	-	-	-	-	2.8		/yr	2	5		$\begin{aligned} & \text { Connecticut } \\ & 1976 \end{aligned}$	marsh	
$\begin{aligned} & \text { Stewart \& Bider } \\ & 1974 \end{aligned}$	-	-	-	-	2		/yr				$\begin{aligned} & \text { Ontario, CAN } \\ & 1973 \end{aligned}$	drainage ditch	
Wilson 1954	-	-	-	-	3		/yr				North Carolina	NS	As cited in Perry 1982.
days gestation													
Asdell 1964	-	-	-	-	29-30		days				NS	NS	As cited in Wilson 1955.

Reference	Age Se	x	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Beer 1950	-	-	-	-	22-25		days				Wisconsin	NS	Considered by author to be "true gestation period"; longer periods are due to delayed implantation.
Erickson 1963; McLeod \& Bondar 1952	-	-	-	-	25-30		days				NS	NS	As cited in Willner et al. 1980.
Errington 1937a	-	-	-	-	29-30		days	22-23			nw Iowa	marsh	Based on data from F.G. Ashbrook of U.S. Biological Survey.
Errington 1963	-	-	-	-	30		days				Iowa	marsh	
Gashwiler 1950	-	-	-	-	29-30		days				Maine 1945-48	NS	In wildife refuge.
O'Neil 1949 (rivalicius)	-	-	-	-	26-28		days				Louisiana	marsh	"Hearsay".
$\begin{aligned} & \text { Reeves \& Williams } \\ & 1956 \\ & \text { (osoyoosensis) } \end{aligned}$	-	-	-	-	30		days				Idaho	marsh	
Wilson 1955	-	-	-	-	28-30		days				NS	NS	As cited in Perry 1982.
Age at weaning													
Dozier 1953	-	B	-	-	28		days				United States	NS	
Errington 1939a	-	B	-	-	28		days	21	30		$\begin{aligned} & \text { Iowa 1934; } \\ & 1936-38 \end{aligned}$	marsh	
Errington 1963	-	B	-	-	22-24		days		30		Iowa	marsh	
age at sexual maturity													
$\begin{aligned} & \text { Svihla \& Svihla } \\ & \text { 1931 } \\ & \text { (rivalicia) } \end{aligned}$				-	6		months				$\begin{aligned} & \text { Louisiana } \\ & 1925-27 \end{aligned}$	marsh	

Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
annual mortality													
Chamberlain 1951	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 61 \\ & 73 \end{aligned}$		$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				Massachusetts	NS	(1) 1949; (2) 1950. As cited in Perry 1982.
Clay \& Clark 1985	$\begin{aligned} & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\overline{1}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 87 \\ & 90 \end{aligned}$		$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				$\begin{aligned} & \text { ne Iowa } \\ & 1981-82 \end{aligned}$	riverine	(1) Juvenile survival = survival from birth to the start of the next breeding season. Juvenile mortality from birth to October was 66\% in 1981 and 45\% in 1982. (Breeding season = March - September.)
Clay \& Clark 1985	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 66 \\ & 78 \end{aligned}$		\%/Mar-Sept \%/Mar-Sept				$\begin{aligned} & \text { ne Iowa } \\ & 1981-82 \end{aligned}$	open water riverine	Adult mortality over the breeding season; (1) 1981 data, (2) 1982 data.
Clay \& Clark 1985	5 B	B	-	WI	63		\%/winter				$\begin{aligned} & \text { ne Iowa } \\ & 1981-82 \end{aligned}$	riverine	
Clay \& Clark 1985	5 A	B	-	WI	87		\%/yr				$\begin{aligned} & \text { ne Iowa } \\ & 1981-82 \end{aligned}$	riverine	
Dorney \& Rusch 1953	J	-	-	-	18		\% to fall				Wisconsin	NS	From birth to fall. As cited in Boutin and Birkenholz 1987.
Errington unpublished	A	B	-	SU	10		\%/summer				NS	NS	In Olsen 1959 as cited in Proulx and Gilbert 1983.
Mathiak 1966	$\begin{aligned} & \text { J } \\ & \text { J } \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 22 \\ & 87 \end{aligned}$		$\begin{aligned} & \circ \text { to fall } \\ & \% / \mathrm{yr} \end{aligned}$	10	36		$\begin{aligned} & \text { Wisconsin } \\ & 1947-57 \end{aligned}$	marsh	Mortality from: (1) birth to fall; (2) from birth to end of first year. Data from tag returns in a heavily trapped population. Author suggests that there is complete population turnover every 2 years. 1987.
Mathiak 1966	-	-	-	-			years		4	1	$\begin{aligned} & \text { Wisconsin } \\ & 1947-57 \end{aligned}$	marsh	One muskrat in heavily trapped population found to have survived 3 winters.
$\begin{aligned} & \text { Proulx \& Gilbert } \\ & 1983 \end{aligned}$	J	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { FA } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 33.6 \\ & 68.2 \end{aligned}$		\%/ fall \%/ winter				Ontario, CAN	marsh	(1) \% mortality of juveniles during the fall trapping season; (2) same during first winter.
Schwartz \&	J	-	-	-	67		\%/yr				Missouri	NS	As cited in Perry 1982.

Reference	Begin	Peak	End	Location	Habitat	Notes
$\begin{aligned} & \text { Svihla \& Svihla } \\ & \text { 1931 } \\ & \text { (rivalicia) } \end{aligned}$	yr round	Nov-Apr		Louisiana	marsh	Breeding occurs at all times of year.
Wilson 1955		year-round		North Carolina	NS	Breed year-round except during very cold winters.
PARTURITION						
Beer 1950	late Apr	late May	July	Wisconsin	NS	Most born during this range, but some born as early as March and as late as September.
Clay \& Clark 1985	Feb/Mar	May	Aug/Sept	Iowa 1981-82	river sloughs	Habitat is on the upper Mississippi River.
Errington 1937a	late Apr	June	late Aug	$\begin{aligned} & \text { nw Iowa } \\ & 1934-36 \end{aligned}$	marsh	
Gashwiler 1950	earl May		late Aug	Maine 1945-48	NS	Moosehorn National Wildife Refuge.
Mathiak 1966	late Apr	mid May		Wisconsin	marsh	
Neal 1968	Apr 20	May 10-Jun 8		Iowa 1967	marsh	Round Lake.
Neal 1968	May 1		June 30	Iowa 1966	marsh	Round Lake.
Neal 1968	Mar 31	Mar31-Apr19		Iowa 1967	marsh	Rush Lake.
$\begin{aligned} & \text { Reeves \& Williams } \\ & 1956 \\ & \text { (osoyoosensis) } \end{aligned}$	late May	earl July	mid Aug	Idaho 1949	marsh	$\mathrm{N}=69$.
$\begin{aligned} & \text { Reeves \& Williams } \\ & 1956 \\ & \text { (osoyoosensis) } \end{aligned}$	earl May	May	late Aug	Idaho 1953	marsh	$\mathrm{N}=70$.
Stewart \& Bider 1974 (zibethicus)	Apr	May		Quebec, CAN 1973	drainage ditch	A second peak occurred in June/July.
DISPERSAL						
Errington 1963		spring		Iowa	marsh	
McDonnell \&		fall		Ontario, CAN	marsh	

***** EASTERN COTTONTAIL *****

*** NORMALIZING AND CONTACT RATE FACTORS ***

metabolic rate (OXYGEN)

Hinds 1973	-	-	SU	15.6	$102 / \mathrm{kg}$
(for similar	-	-	WI	19.0	$102 / \mathrm{kg}$

species: S.
audubonii)
$102 / \mathrm{kg}-\mathrm{d}$
$102 / \mathrm{kg}-\mathrm{d}$

NS NS
*** DIET ***

Reference A	Age Sex Food type					Spring Summer			Fall	Winter	N	Location	Habitat - Measure	Notes
Spencer \& Chapman 1986	A	B	```woody plants forbs grasses (sample size)```			$\begin{array}{r} 17 \\ 19 \\ 64 \\ (2) \end{array}$		$\begin{array}{r} 23 \\ 30 \\ 47 \\ (5) \end{array}$	$\begin{array}{r} 20 \\ 46 \\ 34 \\ (4) \end{array}$	100	12	w Maryland	```forest % frequency of occurrence; stomach contents```	
									***	POPULATIO	DYNAM	ICS ***		
Reference	Age S	Sex	Cond	S Seas	Mean	SD/SE U	Units		Minimum	Maximum	N	Location	Habitat	Notes
HOME RANGE SIZE														
Allen 1939	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		$\begin{aligned} & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{array}{r} 1.5 \\ 0.89 \end{array}$		ha ha		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{array}{r} 41.7 \\ 3.1 \end{array}$		Michigan	NS	As cited in Trent and Rongstad 1974; based on tag and recapture experiments.
Althoff and Storm 1989	$\begin{array}{ll} \text { m } & \text { A } \\ & \text { A } \\ \text { A } \\ \text { A } \end{array}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	- - - -	$\begin{aligned} & \text { WI } \\ & \text { SP } \\ & \text { SU } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 3.2 \\ & 7.2 \\ & 7.8 \\ & 3.1 \end{aligned}$		ha ha ha ha					c Pennsylvania	mixed	
Althoff and Storm 1989	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & F \\ & F \\ & F \\ & F \\ & F \end{aligned}$	- - - - -	$\begin{aligned} & \text { WI } \\ & \text { SP } \\ & \text { SU } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.8 \\ & 2.4 \\ & 1.5 \end{aligned}$		ha ha ha ha					c Pennsylvania	mixed	
Dixon et al. 1981	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{~B} \end{aligned}$	-	$\begin{aligned} & \text { WI } \\ & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 3.05 \\ & 2.99 \\ & 3.01 \end{aligned}$	$\begin{aligned} & 0.72 \mathrm{SE} \mathrm{~h} \\ & 0.28 \\ & \mathrm{SE} \mathrm{~h} \\ & 0.25 \mathrm{SE} \mathrm{~h} \end{aligned}$	$\begin{aligned} & \text { ha } \\ & \text { ha } \\ & \text { ha } \end{aligned}$				$\begin{aligned} & 2 \\ & 5 \\ & 7 \end{aligned}$	Wisconsin	woodlot	
Haugen 1942	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{BR} \\ & \mathrm{BR} \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	9.12		$\begin{aligned} & \text { ha } \\ & \text { ha } \end{aligned}$		$\begin{aligned} & 9.8 \\ & 6.1 \end{aligned}$	$\begin{array}{r} 41.7 \\ 12 \end{array}$		Michigan	NS	As cited in Trent and Rongstad 1974; based on tag and recapture data.
Haugen 1942	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { NB } \\ & \text { NB } \end{aligned}$	$\begin{aligned} & \text { WI } \\ & \text { WI } \end{aligned}$	5.7		ha ha		$\begin{aligned} & 5.06 \\ & 5.06 \end{aligned}$	$\begin{array}{r} 16 \\ 7.08 \end{array}$		Michigan	NS	As cited in Trent and Rongstad 1974; based on tag and recapture data.
Heard 1963	-	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		-			ha ha		$\begin{aligned} & 1.6 \\ & 1.2 \end{aligned}$			sw MS 1959-63	forest, old field, bottom areas	
Janes 1959 (floridanus)	-	-	-	-	2		ha					Kansas	NS	As cited in Trent and Rongstad 1974; based on tag and recapture data.
$\begin{aligned} & \text { Jurewicz et al. } \\ & 1981 \end{aligned}$	A A A A	F F F F	1 2 1 1 2	$\begin{aligned} & \text { SP } \\ & \text { SP } \\ & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 0.7 \\ & 2.5 \\ & 1.2 \\ & 3.7 \end{aligned}$		ha ha ha ha		$\begin{aligned} & 0.4 \\ & 2.1 \\ & 0.6 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 3.2 \\ & 2.6 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 7 \\ & 7 \end{aligned}$	Wisconsin	woodlot, farm	Home range: (1) diurnal; (2) nocturnal. Based on movements of radiotagged females.

LITTER SIZE

Allen 1939	-	-	-	-	5.1	
Barkalow 1962	-	-	-	-	3.2	
Beule 1940	-	-	-	-	5.42	
Bittner \& Chapman 1981	-	-	-	-	3.57	1.32 SD
Bothma \& Teer 1977	J	-	-	-	3.10	
	A	-	-	-	3.38	
	A	-	1	-	3.56	
	-	-	2	-	3.33	
$\begin{aligned} & \text { Chapman et al. } \\ & 1977 \end{aligned}$	-	-	-	-	4.8-5.3	
$\begin{aligned} & \text { Conaway et al. } \\ & 1963 \end{aligned}$	-	-	2	-	6.2	0.28 SD
	-	-	3	-	6.24	0.21 SD
	-	-	4	-	5.5	0.39 SD
	-	-	A	-	6.0	

11	Michigan	NS	As cited in Chapman et al. 1982.
	Alabama	NS	As cited in Bothma and Teer 1977.
26	Pennsylvania	NS	As cited in Chapman et al. 1982.
21	Maryland 1976-1977	island	Measured as viable fetuses.
$\begin{array}{r} 80 \\ 138 \\ 52 \\ 270 \end{array}$	Texas 1965-68	grassland	(1) Older adults; (2) all ages. All seasons.
	$\begin{aligned} & \text { w Maryland } \\ & 1971-72 \end{aligned}$	NS	
$\begin{aligned} & 15 \\ & 14 \\ & 14 \\ & 43 \end{aligned}$	Missouri	J Reed Wildlife Area	(2) 2nd litter; (3) 3rd litter; (4) 4th litter; (A) average of 2-4. Embryo count.

Reference	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Conaway et al. } \\ & 1974 \end{aligned}$	$\begin{array}{ll} - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{SP} \\ & \mathrm{SP} \end{aligned}$	$\begin{aligned} & 3.4 \\ & 4.0 \end{aligned}$					$\begin{aligned} & 50 \\ & 71 \end{aligned}$	$\begin{aligned} & \text { midwest, } 30-35 \\ & \mathrm{~N} \text { lat, } 1964 \end{aligned}$	NS	Size of (1) first litter and (2) second litter.
$\begin{aligned} & \text { Conaway et al. } \\ & 1974 \end{aligned}$	$\begin{array}{ll} - & - \\ - & \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 4.2 \\ & 5.5 \end{aligned}$					$\begin{array}{r} 158 \\ 86 \end{array}$		NS	Size of (1) first litter and (2) second litter.
$\begin{aligned} & \text { Conaway et al. } \\ & 1974 \end{aligned}$	$\begin{array}{ll} - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$					21	North Dakota 1964	NS	Size of (1) first litter and (2) second litter.
$\begin{aligned} & \text { Conaway et al. } \\ & 1974 \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 5.1 \\ & 7.0 \end{aligned}$					$\begin{array}{r} 36 \\ 4 \end{array}$	$\begin{aligned} & \text { midwest, } \\ & \mathrm{N} \text { lat, } 1964 \end{aligned}$	NS	Size of (1) first litter and (2) second litter.
$\begin{aligned} & \text { Conaway et al. } \\ & 1974 \end{aligned}$	$\begin{array}{ll} - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { WI } \\ & \text { WI } \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.4 \end{aligned}$					$\begin{aligned} & 27 \\ & 55 \end{aligned}$	FL, TX, 25-30 N lat 1965	NS	
Ecke 1955		$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 4.7 \\ & 6.5 \\ & 4.9 \\ & 5.6 \end{aligned}$			3	9	$\begin{array}{r} 5 \\ 13 \\ 13 \\ 31 \end{array}$	$\begin{aligned} & \text { c Illinois } \\ & 1947-48 \end{aligned}$	NS	(1) Placental scar counts; (2) embryo counts; (3) average number of young in nests; (4) mean of estimates 1,2 \& 3 . Note: wide variation due to seasonal differences in collecting.
Hamilton 1940	- -	-	-	4.5			2	7	22	$\begin{aligned} & \text { wc New York } \\ & 1932-38 \end{aligned}$	NS	
Haugen 1942	-	-	-	5.4						Michigan	NS	As cited in Bothma and Teer 1977.
Heard 1963	-	-	-	3.50	1.02 SE		5	2	55	$\begin{aligned} & \text { Mississippi } \\ & \text { 1959-63 } \end{aligned}$	forest, old field, bottom areas	
Hill 1972a	-	-	-	3.47					611	Alabama	NS	As cited in Chapman et al. 1982.
Hill 1972c		$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 3.2 \\ & 3.3 \\ & 3.3 \\ & 3.6 \\ & 4.1 \end{aligned}$	0.0416 SE				$\begin{array}{r} 611 \\ 178 \\ 57 \\ 128 \\ 175 \\ 73 \end{array}$	Alabama $1953-67$	see footnotes	Habitat: (1) all habitats combined; (2) lower coastal plains; (3) piedmont plateau; (4) upper coastal plains; (5) Tennessee valley; (6) black belt. Embryo count.
Lord 1961	- -	-	-	5.3						Illinois	NS	As cited in Bothma and Teer 1977.
Lord 1963		$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$		$\begin{aligned} & 5.95 \\ & 5.06 \\ & 5.31 \\ & 5.31 \end{aligned}$					$\begin{aligned} & 109 \\ & 165 \\ & 195 \\ & 469 \end{aligned}$	$\begin{aligned} & \text { Illinois } \\ & 1957-59 \end{aligned}$	NS	(1) 1957; (2) 1958; (3) 1959; (4) total. Embryo count.
Lord 1963	$\begin{array}{ll} - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 4.77 \\ & 6.17 \end{aligned}$					$\begin{aligned} & 34 \\ & 29 \end{aligned}$	$\begin{aligned} & \text { Illinois } \\ & 1957-59 \end{aligned}$	NS	(1) s and e Illinois; (2) c Illinois. Embryo count.

LITTERS/YEAR

Bittner \& Chapman 1981	-	-	4.81	/year
Chapman et al. 1977	$-\quad-\quad-\quad-$	4.6	/year	
Chapman et al. 1980	$-\quad-\quad-$		/year	

DAYS GESTATION

Bothma \& Teer 1977	-	-	-	-	28
Chapman et al. - - - 1982		28			
Conaway et al. 1963	-	-	-		27
Ecke 1955		-	-	-	30

Peterson 1966
days
days
days
days
days

16
days

AGE AT WEANING

Allen 1938

Maryland	island
1976-1977	
W Maryland	NS
$1971-72$	
several	several

Summary of several studies (i.e.', Sheffer 1957; Conaway et al. 1963; Evans et al. 1965; Tretheway \& Verts 1971).
s Texas
$1965-68$
NS
Missouri 1961

US

NS
grassland

NS
J. Reed Wildlife

Area
NS

NS
throughout range. As cited in Bittner and Chapman 1981

Summary of several other studies.
Summarizing Hendrickson 1943; Marsden and Conaway 1963

Summarizing data from: Seton 1929; Prouty 1937; Gerstell 1937; Dalke 1942; Haugen 1942.

As cited in de Poorter and van der Loo 1981

As cited in Ecke 1955; determined
by length of time spent in nest.

Reference	Age Se	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Dalke 1942	-	B	-	-			days	14	16		NS	captive	As cited in Ecke 1955; determined by length of time spent in nest.
Ecke 1955	-	-	-	-	20-25		days				Illinois	NS	Author notes that it appears that many young are nursed for at least $4-5$ days after leaving the nest.
Peterson 1966	-	-	-	-			days	28	35		NS	NS	As cited in de Poorter and van der Loo 1981.

AGE AT SEXUAL MATURItY

Bothma \& Teer 1977 - $\mathrm{F}-$

Conaway \& Wight
1963

Lord 1961; Negus
1959b

months 5

Missouri
grassland
onths

NS
NS
Cited in Conaway \& Wight 1963.

ANNUAL MORTALITY

Eberhardt et al. 1963

Eberhardt et al. 1963

Heard 1963

Lord 1963

Lord 1963

A	F	-	-
J	F	-	-
A	F	1	-
A	F	2	-
A	F	3	-
J	F	1	-
J	F	2	-
J	F	3	-

$\% / \mathrm{yr}$
$\% / \mathrm{yr}$
\circ / yr
$\% / \mathrm{yr}$
$\% / y r$
$\% / y r$

\circ / yr
$\% / \mathrm{yr}$
$/ \mathrm{yr}$

$\frac{2}{\circ} / \mathrm{yr}$
$\% / \mathrm{yr}$
$\% / \mathrm{yr}$
\%/yr
$\% / y r$
$\% / y r$
$\% / y r$
$\circ / y r$
$\% / y r$
$\% / y r$
\circ / yr
$\% / \mathrm{yr}$
\circ / yr
14 SD \%/y
$\% /$ year
$\% /$ year
$\% /$ year
7 SD \%/year
sc Michigan
1938-55
sc Michigan
1938-55

46	Sw MS 1959
333	Illinois
259	$1957-60$
324	
239	
238	Illinois
120	$1957-60$
171	
125	
654	

woods/marsh/fields
woods/marsh/fields
(1) 1938.
$1951-55$.
forest, old field bottom area

4-H study area
sanctuary study area
study area
-

Winter mortality, methods questionable.
(1) Winter with food supplied for rabbits; (2) no food supplied; (3)
average over 4 years. Area was average
(1), (2), (3) area hunted; (4) closed to hunting; (5) average of 4 years.

Reference	Begin	Peak	End	Location	Habitat	Notes
$\begin{aligned} & \text { Conaway et al. } \\ & 1974 \end{aligned}$		late Jan		Texas 1965	NS	Mean date of first conception.
Dalke 1942	mid Mar		mid Sep	Connecticut	NS	As cited in Chapman et al. 1982.
$\begin{aligned} & \text { Eberhardt et al. } \\ & 1963 \end{aligned}$	mid Mar			$\begin{aligned} & \text { sc Michigan } \\ & 1951-57 \end{aligned}$	woods/marsh/field	Breeding date changes depending on ratio of juvenile to adult.
Ecke 1955	late Feb	early Mar	Sept	Illinois	NS	
Hamilton 1940	late Feb			$\begin{aligned} & \text { wC New York } \\ & 1932-38 \end{aligned}$	NS	
Haugen 1942	Mar		Aug	Michigan	NS	As cited in Bothma and Teer 1977.
Heard 1963	Feb.			sw MS 1959-63	forest, old field, bottom areas	
Hill 1972a	Dec			Alabama	NS	As cited in Bittner and Chapman 1981.
Lord 1961	Mar		Sept	Illinois	NS	As cited in Bothma and Teer 1977.
$\begin{aligned} & \text { Pelton \& Provost } \\ & 1972 \end{aligned}$		9 months		Georgia	NS	As cited in Chapman et al. 1982.
$\begin{aligned} & \text { Pelton \& Jenkins } \\ & 1971 \end{aligned}$			Oct	Georgia	NS	As cited in Bittner and Chapman 1981.
Rongstad 1966	late Mar			s Wisconsin	NS	As cited in Chapman et al. 1980.
Schierbaum 1967	Feb		Sep	New York	NS	As cited in Chapman et al. 1982.
PARTURITION						
Hamilton 1940	Apr	May-July	Aug	$\begin{aligned} & \text { WC New York } \\ & 1938 \end{aligned}$	NS	
FALL MOLT						
Bothma \& Teer 1982	Aug	Oct	Dec	$\begin{aligned} & \text { s Texas } \\ & 1967-68 \end{aligned}$	brush/grass	
Negus 1959a		Sept-Oct		Connecticut	NS	As cited in Bothma and Teer 1982.
Spinner 1940	Sept	Sept-Oct	Nov	$\begin{aligned} & \text { Connecticut } \\ & 1936-38 \end{aligned}$	NS	

Reference	Begin	Peak	Location	Habitat	Notes
Spinner 1940	Sept	Sept-Oct	Nov	Connecticut $1936-38$	NS
SPRING MOLT					
Bothma \& Teer 1982	Feb	April	July	Sexas	Brush/grass
Spinner 1940	late Mar	May-June	Aug	1967-68	Connecticut

Page A-380 is left blank.

A-5. TABLES FOR REPTILES AND AMPHIBIANS

Page A-382 is left blank.
***** SNAPPING TURTLE *****

*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference Age Sex Cond Seas Mean
SD/SE Units

Reference

EGG WEIGHT

Congdon et al. 1983	-	-	-	-	9.6	9			52	Michigan	NS	Wet mass. As cited in Congdon et al. 1986.
$\begin{aligned} & \text { Congdon et al. } \\ & 1986 \end{aligned}$	-	-	-	-	9.6	9			16	S Carolina	bay, marsh	Wet mass.
Congdon \& Gibbons 1985	-	-	-	-	$\begin{aligned} & 237 \\ & 9.6 \end{aligned}$	g/clutch g/egg			$\begin{array}{r} 4 \\ 73 \end{array}$	N Carolina	NS	Mean clutch size $=23.6$ ($6.6=2$ SE) eggs. Mean width of eggs $=25.8$ (0.15 = 2 SE).
$\begin{aligned} & \text { Ernst \& Barbour } \\ & 1972 \end{aligned}$	-	-	-	-		9	7	15		NS	NS	Summarizing other work.
Ewert 1979	-	-	-	-	12.5	9					NS	
$\begin{aligned} & \text { Hotaling et al. } \\ & 1985 \end{aligned}$	-	-	-	-	9.32	g	5.73	13.76	58	New Jersey 1980-83	Great Swamp National Wildiffe Refuge	$\mathrm{N}=$ number of nests; min and max are means for nests. Weights at time of oviposition.
 Alexander 1980	-	-	-	-	$\begin{array}{r} 11.1 \\ 308.0 \end{array}$	$\begin{aligned} & \text { g/egg } \\ & \text { g/clutch } \end{aligned}$	142.0	468.0	$\begin{array}{r} 380 \\ 12 \end{array}$	$\begin{aligned} & \text { n New York } \\ & 1977 \end{aligned}$	Cranberry Creek Marsh	
Punzo 1975 (osceola)	-	-	-	-		g	5	13		Florida 1970	stream, pond, swamp	
Yntema 1970, Vogt (unpubl.) (serpentina)	-	-	-	-		9	7	17.3		NS	NS	As cited in Ewert 1979.
hatching weight (AND LENGTH)												
Ewert 1979 (serpentina)	H	-	-	-	8.9	9			140	Minnesota	NS	Taken from seven clutches.
```Hotaling et al. 1985```	-	-	-	-	7.54	9	5.16	11.08	90	$\begin{aligned} & \text { New Jersey } \\ & 1980-83 \end{aligned}$	Great Swamp National Wildiffe Refuge	$\mathrm{N}=$ number of nests; min and max are means for nests.
Ernst \& Barbour 1972	H H	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	-	-	$\begin{gathered} 5.7 \\ (26-31) \end{gathered}$	g body wt (mm carapace)				NS	NS	Weight of turtle and length of carapace at hatching.

## GROWTH RATE

Gibbons 1968
J B - -
32


Reference Age Sex Cond Seas Mean SD/SE Units $\quad$ Minimum Maximum N Location

## home range size

$\begin{aligned} & \text { Budhabhatti \& Moll } \\ & 1988 \end{aligned}$	-	-	-	SU			ha
Ernst 1968	-	-	-	-	1.8		ha
Ernst 1971	A	-	-	-	1.8		ha
$\begin{aligned} & \text { Galbraith et al. } \\ & 1987 \end{aligned}$	A	M	-	SU	1.03		ha
$\begin{aligned} & \text { Galbraith et al. } \\ & 1987 \end{aligned}$	A	M	-	SU	0.7	0.29 S	ha
Kiviat 1980	J	B	-	-	3.3		ha
	A	M	-	-	8.9		ha
	A	F	NB	-	7.2		ha
Lonke \& Obbard	A	F	-	-	4.5		km


Obbard \& Brooks	A	F	-	SU	3.79	1.46
SD ha						
1981	A	M	-	SU	3.21	2.67
SD ha						
	A	B	-	SU	3.44	2.18
	SD ha					


2.5	5.19	4
0.95	8.38	6
		10

Illinois 1986
$0.28 \quad 15.2$

		Pennsylvania   Parsh	mansylvania   pond
0.445	1.76	4	Ontario, CAN

fresh tidal wetland

Lake Sasajewun
Ontario, CAN
1972-74

Ontario, CAN
10

S Carolina	bay, marsh
S Carolina	pond
Michigan	marsh
Michigan	bay, marsh, pond

As cited in DeGraaf and Rudis 1983
As cited in Bury 1979.
Estimated using quadrat summation area (QSA) method.
Estimated using the modified minimum area (MMA) method.

Distance from Lake Sasajewun.
Overall, 91.9\% of 47 turtles were seen at the nesting site in a year subsequent to their tagging. Sand and gravel fill for a dam created nesting site which mature female visited annually in June.

Estimated using modified minimum area (MMA) method.

## POPULATION DENSITY

$\begin{aligned} & \text { Congdon et al. } \\ & 1986 \end{aligned}$	B	B	-	-	8	N/ha
$\begin{aligned} & \text { Congdon et al. } \\ & 1986 \end{aligned}$	B	B	-	-	7.3	N/ha
Congdon et al. 1986	B	B	-	-	12.8	N/ha
Congdon et al.	B	B	-	-	13.3	N/ha


Reference Ag	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Congdon et al. } \\ & 1986 \end{aligned}$	B	B	-	-	6.8		N/ha				Michigan	pond	
$\begin{aligned} & \text { Froese \& Burghardt } \\ & 1975 \end{aligned}$	A	B	-	SU	59		N/ha			48	Tennessee	pond	
$\begin{aligned} & \text { Galbraith et al. } \\ & 1987 \end{aligned}$	A	M	-	SU	1.46		N/ha			4	Ontario, CAN	Oligotrophic lake	
$\begin{aligned} & \text { Galbraith et al. } \\ & 1988 \\ & \text { (serpentina) } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	-	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 1.67 \\ & 2.03 \end{aligned}$		$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \end{aligned}$	$\begin{aligned} & 1.19 \\ & 1.35 \end{aligned}$	$\begin{aligned} & 2.41 \\ & 3.39 \end{aligned}$		$\begin{aligned} & \text { Ontario, CAN } \\ & 1984-85 \end{aligned}$	$\begin{aligned} & \text { large oligotrophic } \\ & \text { lake } \end{aligned}$	Density is based on modified Peterson estimate.
```Galbraith et al. 1988 (serpentina)```	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	B	-	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.73 \end{aligned}$		$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \end{aligned}$	$\begin{array}{r} .88 \\ 0.97 \end{array}$	$\begin{aligned} & 4.91 \\ & 5.45 \end{aligned}$		$\begin{aligned} & \text { Ontario, CAN } \\ & 1984-85 \end{aligned}$	small oligotrophic lake	Density is based on modified Peterson estimate.
```Galbraith et al. 1988 (serpentina)```	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	-	$\begin{aligned} & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 57.8 \\ & 60.4 \end{aligned}$		N/ha   N/ha	$\begin{aligned} & 38.5 \\ & 40.3 \end{aligned}$	$\begin{aligned} & 90.8 \\ & 95.0 \end{aligned}$		$\begin{aligned} & \text { Ontario, CAN } \\ & 1984-85 \end{aligned}$	eutrophic pond	Density is based on modified Peterson estimate.
```Galbraith et al. 1988 (serpentina)```	B	B	-	SU	2.31	1.45 SD	N/ha	1.0	4.9	6	Ontario, CAN 1984-85	$\begin{aligned} & \text { oligotrophic } \\ & \text { lakes and ponds } \end{aligned}$	Summary of six field studies, including the author's.
$\begin{aligned} & \text { Galbraith et al. } \\ & 1988 \\ & \text { (serpentina) } \end{aligned}$	B	B	-	SU	29.3	27.6 SD	N/ha	4.4	65.9	11	Ontario, CAN	eutrophic ponds	Summary of data from various authors for 11 eutrophic ponds.
Hammer 1969 (serpentina)	A	F	-	SU	1.2		N/ha				S Dakota	marsh	Estimate of population obtained by doubling the number of females (which were censused) to include males.
Kiviat 1980	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$-$	$\begin{array}{r} 4 \\ 16 \end{array}$		N/ha N/ha			600	$\begin{aligned} & \text { New York } \\ & 1972-75 \end{aligned}$	fresh tidal wetland	Measure of (1) Crude density; ecological density. Ecological density uses land area of pools and creeks only, which is less than or equal to 25% of the bay, as these are areas actually used by turtles.
Lagler 1943	-	-	-	-	5		N/ha				Illinois	lake	As cited in Bury 1979.
Major 1975	-	B	-	SU	62.5		N/ha				w West Virginia 1972	ponds	Two 0.40 ha ponds with 1.37 m maximum depth. Trapping from May 1972 - October 1972.

Reference	Age S	ex	Cond	S Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Obbard 1983	A	-	-	SU	1.65		N/ha			6	Ontario, CAN	lake	As cited in Galbraith et al. 1987.
Pearse 1923	-	-	-	-	1.7		N/ha				Wisconsin	lake	As cited in Bury 1979.
CLUTCH SIZE													
$\begin{aligned} & \text { Congdon et al. } \\ & 1987 \end{aligned}$	-	-	-	-	27.9	0.76 SE	eggs	12	41	68	se Michigan	aquatic	
$\begin{aligned} & \text { Congdon et al. } \\ & 1986 \end{aligned}$	A	F	-	-	28.0		eggs			52	Michigan	pond, swamp, marsh	
Congdon and Gibbons 1985	-	-	-	-	23.6	3.3 SE	eggs			4	N Carolina	NS	
$\begin{aligned} & \text { Ernst \& Barbour } \\ & 1972 \end{aligned}$	-	-	-	-			eggs	11	83		NS	NS	Summarizing other work. Author states that the number of eggs in a clutch is usually 20-30.
Hammer 1969	-	-	-	-	49.0		eggs	31	87	102	$\begin{aligned} & \text { S Dakota } \\ & 1964-67 \end{aligned}$	marsh	
Iverson 1977	-	-	-	-	16.6	1.6 SD	eggs	14	20	8	Florida	NS	As cited in Petokas \& Alexander 1980.
Kiviat 1980	A	F	BR	SU	29.6	1.8 SE	eggs	16	54	27	New York 1974	fresh tidal wetland	
Lonke \& Obbard 1977	-	-	-	-	33.9	10.03 SE	eggs	18	66	46	$\begin{aligned} & \text { Ontario, CAN } \\ & 1972-74 \end{aligned}$	Lake Sasajewun	
Macnamara 1919	-	-	-	-			eggs	39	51	5	Ontario, CAN	NS	Author states that clutches containing 24 eggs or fewer had never been observed. As cited in Petokas \& Alexander 1980.
 Alexander 1980	-	-	-	-	30.9	10.87 SD	eggs	16.0	59.0	16.0	$\begin{aligned} & \text { n New York } \\ & 1977 \end{aligned}$	riverine marsh shore	Clutch sizes of 20 to 40 eggs most common (75\% of all complete nests), with 36 eggs being the most frequently encountered (3 nests). Predators destroyed 94% of all nests under study.
Punzo 1975	A	F	L	SU			eggs	6	21		Florida 1970	stream, pond, swamp	
White \& Murphy 1973	-	-	-	-	19.9		eggs	12.0	42.0	20.0	Tennessee	NS	As cited in Petokas \& Alexander 1980.

CLUTCHES/YEAR

Cahn 1937	-	-	-	-	2	/year				southern range	NS	As cited in DeGraaf and Rudis 1983.
Ernst \& Barbour 1972	-	-	-	-	>1	/year				NS	NS	Summarizing other work.
Ewert (unpubl.)	A	F	BR	-		/year		3		Florida	NS	As cited in Moll 1979.
Minton 1972	-	-	-	-		/year	1	2		Indiana	NS	As cited in Graves and Anderson 1987.
White and Murphy 1973	A	F	BR	-		/year		1		Tennessee	NS	As cited in Moll 1979.
DAYS INCUBATION												
Breckenridge 1944	-	-	-	-		days	83	105		c Minnesota	natural	Days to pipping (101 days to emergence). As cited in Ewert 1979.
$\begin{aligned} & \text { DeGraaf \& Rudis } \\ & 1983 \end{aligned}$	-	-	-	-	80-91	days				NS	NS	Summarizing other studies.
Ewert 1979	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} 82 \\ 66.7 \end{array}$	days days			$\begin{aligned} & 24 \\ & 20 \end{aligned}$	Missouri	Lab	$\begin{aligned} & \text { Temperature (1)25-25.5 C; } \\ & \text { (2) } 29.5-30 \mathrm{C} . \end{aligned}$
Ewert 1979	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 90.8 \\ & 73.0 \end{aligned}$	days days			$\begin{aligned} & 5 \\ & 5 \end{aligned}$	Arkansas	artificial	Temperature (1)25-25.5 C; $\text { (2) } 29.5-30 \mathrm{C} \text {. }$
Ewert 1979	-	-	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 97.5 \\ & 80.0 \\ & 77.6 \end{aligned}$	days days days			$\begin{aligned} & 22 \\ & 13 \\ & 18 \end{aligned}$	Florida	artificial	$\begin{aligned} & \text { Temperature (1) } 25-25.5 \mathrm{C} \text {; (2) } 26-30 \\ & \mathrm{C} \text {; (3) } 29.5-30 \mathrm{C} . \end{aligned}$
Ewert 1979	-	-	-	SU		days	67	73		se Wisconsin	natural	Days to pipping.
Hammer 1971	-	-	-	-		days	70	120				As cited in Graves and Anderson 1987.
Hammer 1969	-	-	-	-		days	91	125		NS	NS	Duration of incubation depends on environmental conditions.
$\begin{aligned} & \text { Lynn and Von Brand } \\ & 1945 \end{aligned}$	-	-		$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} 72-75.1 \\ 60.0 \end{array}$	$\begin{aligned} & \text { days } \\ & \text { days } \end{aligned}$			$\begin{aligned} & 34 \\ & 34 \end{aligned}$	Wisconsin	artificial	Temperature (1) 25-25.5 C; (2) 29.5-30 C. As cited in Ewert 1979.
Obbard \& Brooks	-	-	-	-	105	days	90	119	3	Ontario, CAN	lake	

Reference	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Punzo 1975 (osceola) (osceola)	- -	-	-			days	48	118		Florida 1970	stream, pond, swamp	
Yntema 1968	$\begin{array}{ll} - & - \\ - & \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{array}{r} 140 \\ 63.3 \end{array}$		$\begin{aligned} & \text { days } \\ & \text { days } \end{aligned}$				New York	artificial	Temperature (1) 20 C ; (2) 29.5-30 As cited in Ewert 1979.

AGE AT SEXUAL MATURITY

Christiansen \&	-	F	-	-	6-7	years		38	Iowa 1969-77	NS
Burken 1979	-	M	-	-	4-5	years		25		
Christiansen \& Burken 1979	-	F	-	-	9-10	years			Iowa 1969-77	NS
$\begin{aligned} & \text { Galbraith et al. } \\ & 1989 \end{aligned}$	-	F	-	-	17-19	years	14-15	174	Ontario, CAN	ri
Hammer 1969	-	F	-	-	9	years			S Dakota	NS
Pell 1941	-	F	-	-	6-8	years			New York	NS

Length at sexual maturity

Ernst \& Barbour 1972	-	B	-	-	200	mm carapace				NS	NS	Summarizing other information.
Mosimann \& Bider 1960	-	B	-	-	200	mm carapace				Quebec, CAN	NS	
White \& Murphy 1973	-	B	-	-	145	mm plastron				Tennessee	NS	As cited in Bury 1979.
MORTALITY												
$\begin{aligned} & \text { Galbraith \& Brooks } \\ & 1987 \end{aligned}$	A	B	-	-		\%/yr	3	7		NS	NS	As cited in Frazer et al. 1991.
LONGEVITY												
Gibbons 1987	-	-	-	-		years		24	2	Michigan	Sherriff's Marsh	Two turtles known to be between 15-24 years old from mark and recapture.

*** SEASONAL ACTIVITIES ***

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING						
$\begin{aligned} & \text { Ernst \& Barbour } \\ & 1972 \end{aligned}$	Apr	Jun	Nov	NS	NS	Mating season depends on latitude. (May be discussing the observations of Smith 1956).
Kiviat 1980	earl Jun	mid Jun	end Jun	New York 1974	fresh tidal wetland	Hammer 1969 reported nesting stimulated by rain.
Punzo 1975	mid June			Florida 1970	stream, pond, swamp	Nesting behavior between 6 am to 8 am; Temperature from 60-70 F

NESTING

Congdon et al. 1987	late May		mid Jun
Ernst \& Barbour 1972	May	Jun	Sep
Hammer 1969	earl Jun	mid Jun	end Jun
Lonke \& Obbard 1977		Jun 19-20	
Lonke \& Obbard 1977	Jun 26-28		
Lonke \& Obbard 1977	Jun 13-14	late Jun	

se Michigan	aquatic
NS	NS
S Dakota 1964-67 Ontario, CAN 1972,73	Lake Sasajewun
Ontario, CAN 1974	Lake Sasajewun
Ontario, CAN 1975 Ontario, CAN	Lake Sasajewun

Nesting season depends on latitude (May be discussing the observations of Smith 1956).

Reference	Begin	Peak	End	Location	Habitat	Notes
 Alexander 1980	late May	earl-mid Jun	late Jun	$\begin{aligned} & \text { n New York } \\ & 1977 \end{aligned}$	Cranberry Creek Marsh	Two separate nesting periods observed: (1) May 28-June 6 ($\mathrm{N}=17$) (2) June 10-21 $(\mathrm{N}=35)$. Peaks: (1) June 1 ($\mathrm{N}=9$); (2) June 12 ($\mathrm{N}=10$).
$\begin{aligned} & \text { Wilhoft et al. } \\ & 1979 \end{aligned}$	May 21		Jun 6	New Jersey	swamp	Nesting season; from daily field observations.

HATCHING

Congdon et al. 1987	late Aug	Sep	earl Oct
Ernst \& Barbour 1972	Aug	Oct	se Michigan
Obbard \& Brooks 1981	Sep	earl Oct	NS

Depends on latitude. (May be discussing the observations of Smith 1956).

Based on earliest and latest observed turtle activity.

Depends on latitude. (May be discussing the observations of Smith 1956).
***** PAINTED TURTLE *****

*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference Age Sex Cond Seas Mean
SD/SE Units

Minimum Maximum
Habitat

BODY WEIGHT (AND LENGTH)

Related lengths not provided.

Carapace length is approximate.

As cited in Iverson 1982.

Ages: (1) hatchling (H); (2) one year old (Y); (3) two years; (4) three years; (5) four years.

Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Congdon et al. 1982 (continued)	A	F	8	-	1,041		cal/day						14\% of total energy budget for ages
	A	F	9	-	1,115		cal/day						7 to 14. In reality, each year
	A	F	10	-	1,192		cal/day						approximately 30 to 50% of the
	A	F	11	-	1,230		cal/day						Michigan population of adult
	A	F	12	-	1,250		cal/day						females do not lay eggs. Age in
	A	F	13	-	1,282		cal/day						years listed under condition
	A	F	14	-	1,307		cal/day						column.
WATER INGEStIon rate													
Ernst 1972	A	B	NB	SU	0.02		g/g-day	0.016	0.022	6	Pennsylvania	lab	Measured as evaporative water loss.
```Trobec & Stanley 1 9 7 1 (bellii)```	A	B	-	-	-		g/g-day		0.025	11	Wisconsin	lab	Uptake of water by turtles held in artificial tap water at 23 +/- 2 ${ }^{\circ} \mathrm{C}$.

INHALATION VOLUME
Milsom \& Chan 1986 A B R - 0.002460 .00052 SE m3/kg-day NS N



Reference	Age S	Sex	Food	d type		Spring			Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Lagler 1943   (marginata)			$\begin{aligned} & \text { ins } \\ & \text { aqu } \end{aligned}$	sects   uatic	plants				$\begin{aligned} & 20 \\ & 60 \end{aligned}$				Michigan	habitat NS measure NS	As cited in DeGraaf and Rudis 1983.
Cahn 1937   (marginata)	-	-	pla	ants					100			25	NS	habitat NS \% volume	As cited in Smith 1961.
										***	POPULATIO	DYNAM	CS ***		
Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE		its		Minimum	Maximum	N	Location	Habitat	Notes
HOME RANGE SIZE															
```McAuliffe 1978 (bellii)```	-	$\begin{aligned} & \mathrm{F} \\ & \mathrm{M} \end{aligned}$	-	$\begin{aligned} & S P \\ & S P \end{aligned}$	$\begin{aligned} & 174 \\ & 121 \end{aligned}$		m m					$\begin{aligned} & 25 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { e Nebraska } \\ & 1974-75 \end{aligned}$	oxbow lake complex	Measured mean straight-line distance between recaptures. Movements between overwintering areas and other locations in Beaver Slough.
Sexton 1959 (marginata)	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { SU } \\ & \text { FA } \end{aligned}$	$\begin{array}{r} 63-144 \\ 86-91 \\ 88-130 \end{array}$			mov mov mov	vement vement vement		$\begin{aligned} & 301 \\ & 300 \\ & 336 \end{aligned}$		$\begin{aligned} & \text { Michigan } \\ & 1953-57 \end{aligned}$	NS	Seasonal movements from: (1) hibernation ponds to other ponds w/floating vegetation; (2) spring ponds back to hibernation ponds; (3) hibernation ponds to deepwater areas.
POPULATION DENSITY															
Bayless 1975	-	-	-	-	24.7			/ha		22.2	27.2	3	$\begin{aligned} & \text { New York } \\ & 1970-72 \end{aligned}$	pond	
$\begin{aligned} & \text { Congdon et al. } \\ & 1986 \end{aligned}$	B	B	-	-	41.6			/ha					Michigan	ponds	
$\begin{aligned} & \text { Congdon et al. } \\ & 1986 \end{aligned}$	B	B	-	-	39.9			/ha					Michigan	pond, marsh, swamp	
$\begin{aligned} & \text { Congdon et al. } \\ & 1986 \end{aligned}$	B	B	-	-	89.5			/ha					Michigan	marsh	
Ernst 1971c	B	B	-	-	590			/ha		240	941		$\begin{aligned} & \text { Pennsylvania } \\ & 1965-67 \end{aligned}$	pond, marsh	$\text { Range }=95 \% \text { confidence limit (i.e., }$ $\text { mean +/- } 2 \text { SEs). }$
Frazer et al. 1991	1 B	B	-	-	827.7			/ha					$\begin{aligned} & \text { Michigan } \\ & 1980-89 \end{aligned}$	lake, marsh	

Reference A	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Gibbons 1968b	-	-	-	-	576		N/ha				$\begin{aligned} & \text { Michigan } \\ & 1964-66 \end{aligned}$	marsh	
$\begin{aligned} & \text { MacCulloch \& Secoy } \\ & 1983 \end{aligned}$	Y B	B	-	SU	11.1		N/ha			167	Saskatchewan, CAN 1978-81	river	
(bellii)													
Pearse 1923	-	-	-	-			N/ha	12	49		Wisconsin	lake	As cited in Bury 1979.
Sexton 1959 (marginata)	B	B	-	-			N/ha	98	410		$\begin{aligned} & \text { Michigan } \\ & 1953-57 \end{aligned}$	ponds, marsh	
CLUTCH SIZE													
Blanchard 1923	-	-	-	-	8.8		eggs	5	13		Iowa	NS	As cited in Christiansen \& Moll 1973.
Cagle 1954 (marginata, dorsalis)	-	-	-	-	6.3		eggs	3	8	48	Illinois	NS	
Cagle 1954 (marginata, dorsalis)	-	-	-	-	4.7		eggs	2	7		n Michigan	NS	
Cahn 1937 (marginata)	-	-	-	-	6.5		eggs	4	10		NS	NS	As cited in Smith 1961.
Christiansen \&	-	-	1	-	8.8		eggs	2	15	46	New Mexico	pond (captive)	Estimated by: (1) enlarged
Moll 1973 (bellii)	-	-	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	-	$\begin{aligned} & 9.0 \\ & 8.9 \end{aligned}$		$\begin{aligned} & \text { eggs } \\ & \text { eggs } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 46 \\ & 46 \end{aligned}$	1964-70		follicles; (2) eggs; (3) corpora lutea.
Christiansen \&	-	-	1	-	9.6		eggs	1	22	28	Wisconsin	varied	Estimated by: (1) enlarged
Moll 1973 (bellii)	-	-	$\begin{aligned} & 2 \\ & 3 \\ & 3 \end{aligned}$	-	$\begin{array}{r} 10.2 \\ 9.8 \end{array}$		$\begin{aligned} & \text { eggs } \\ & \text { eggs } \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	1969-70		follicles, (2) eggs, (3) corpora lutea.
$\begin{aligned} & \text { Christens \& Bider } \\ & 1986 \\ & \text { (bellii) } \end{aligned}$	-	-	-	-	9.2	0.20 SD	eggs	5	12		$\begin{aligned} & \text { Quebec, CAN } \\ & 1983-85 \end{aligned}$	freshwater	No significant relationship between clutch \& body size, or egg size \& age.
```Congdon & Tinkle 1982 (marginata)```	-	-	-	-	7.6		eggs	2	11		$\begin{aligned} & \text { Michigan } \\ & 1978-81 \end{aligned}$	NS	
Congdon \& Gibbons			-	-	5.0		eggs			1	Georgia	NS	


Reference A	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
```DeGraaf & Rudis 1983 (marginata)```	-	-	-	-	6.5		eggs	3	10		NS	NS	
$\begin{aligned} & \text { Ernst \& Barbour } \\ & 1972 \\ & \text { (bellii) } \end{aligned}$	-	-	-	-			eggs	4	20		NS	NS	
$\begin{aligned} & \text { Ernst \& Barbour } \\ & 1972 \\ & \text { (picta) } \end{aligned}$	-	-	-	-			eggs	2	11		NS	NS	
```Ernst & Barbour 1972 (marginata)```	-	-	-	-			eggs	3	10		NS	NS	
$\begin{aligned} & \text { Ernst \& Barbour } \\ & 1972 \\ & \text { (dorsalis) } \end{aligned}$	-	-	-	-			eggs	2	7		NS	NS	
```Ernst & Barbour 1972 (marginata)```	-	-	-	-	4.73		eggs	4	6		Pennsylvania	NS	
Ernst 1971c	-	-	-	-	4.73		eggs	4	6		$\begin{aligned} & \text { Pennsylvania } \\ & 1965-67 \end{aligned}$	NS	With the infertility and prehatching mortality rates measured in the lab, only 2.5 eggs on average are likely to hatch young.
Gibbons 1968a	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 6.6 \\ & 6.1 \end{aligned}$		$\begin{aligned} & \text { eggs } \\ & \text { eggs } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		$\begin{aligned} & \text { Michigan } \\ & 1964-66 \end{aligned}$	marsh, lake	Year: (1) 1965; (2) 1966. Only two of 41 individuals had less than five eggs and only two had more than eight.
```MacCulloch & Secoy 1983 (bellii)```	y -	-	-	-	19.8		eggs	17	23	5	Saskatchewan, CAN 1981	creek bank	
Mitchell 1985 (picta)	-	-	-	-	4.16	1.13 SD	eggs	1	7	38	$\begin{aligned} & \text { c Virginia } \\ & 1980-81 \end{aligned}$	Grassy Swamp Lake	
Moll 1973   (bellii)	-	-	-	-	10.7		eggs	4	16	12	$\begin{aligned} & \text { Wisconsin } \\ & 1969-72 \end{aligned}$	NS	Based on counts of enlarged follicles, corpora lutea, and oviducal eggs.
Moll 1973   (bellii x   marginata)	-	-	-	-	8.7		eggs	6	14	24	$\begin{aligned} & \text { Illinois } \\ & 1969-72 \end{aligned}$	NS	Based on counts of enlarged follicles, corpora lutea, and oviducal eggs.


Reference Ag	Age	Sex		Cond	Seas	Mean	SD/SE		Units	Minimum	Maximum	N	Location	Habitat	Notes
Moll 1973 (dorsalis x marginata	-	-		-	-	4.8			eggs	2	9	15	Tennessee $1969-72$	NS	Based on counts of enlarged follicles, corpora lutea, and oviducal eggs.
Moll 1973 (dorsalis)	-	-		-	-	4.1			eggs	1	6	20	Louisiana, Arkansas 1969-72	NS	Based on counts of enlarged follicles, corpora lutea, and oviducal eggs.
Powell 1967 (picta)	-	-		-	-	-			eggs	5	11		NS	NS	As cited in Christens \& Bider 1986.
  Ackerman 1989	-	-		-	-	11.8	2.4	SD	eggs			29	Iowa 1985-86	NS	
  Brooks 1986	-	-		-	-	7.3			eggs			74	Ontario, CAN 1983-85	pond	Females that layed clutches in successive years.
Tinkle et al. 1981 (marginata)	1 -			-	-	7.55	0.35	SE	eggs	6.86	7.86	82	$\begin{aligned} & \text { Michigan } \\ & 1977-79 \end{aligned}$	pond	```Eggs per cm of plastron length = 0.578 (SE 0.013).```
CLUTCHES/YEAR															
Christiansen \& Moll 1973 (bellii)	-	-		-	-	14.8			eggs/yr				New Mexico 1964-70	varied	Average annual female reproductive capacity; animals yearly laid between 1 \& 3 clutches.
Christiansen \& Moll 1973 (bellii)	-	-		-	-	2			clutches/yr				$\begin{aligned} & \text { New Mexico } \\ & 1964-70 \end{aligned}$	varied	67\% of females (estimated).
```Christiansen & Moll }197 (bellii)```	-	-		-	-				clutches/yr	1	3		$\begin{aligned} & \text { Wisconsin } \\ & 1969-70 \end{aligned}$	NS	
Ernst 1971b (picta x marginata)	a)	-		-	-	1			clutches/yr				$\begin{aligned} & \text { Pennsylvania } \\ & 1966-67 \end{aligned}$	NS	
Gibbons 1968a	-	-		-	-	2.0			clutches/yr				$\begin{aligned} & \text { Michigan } \\ & 1964-66 \end{aligned}$	lake, marsh	
Legler 1954; Gemmell 1970	-	-		-	-	1			clutches/yr				NS	NS	As cited in Christens and Bider 1986.
Moll 1973 (dorsalis)	-	-		-	-				clutches/yr		4		Louisiana	NS	The maximum is 4 or 5 .
Moll 1973 (bellii)	-			-	-	>1			clutches/yr		2		$\begin{aligned} & \text { Wisconsin } \\ & 1969-72 \end{aligned}$	NS	61.5% of females produced two clutches (total of 17.28 eggs per female per year).

Reference A	Age S	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Moll 1973 (bellii x marginata)	-	-	-	-	>2		clutches/yr		3		$\begin{aligned} & \text { Illinois } \\ & \text { 1969-72 } \end{aligned}$	NS	96.0\% of females produced two clutches and 37.5% of females produced three clutches (total of 20.31 eggs per female per year).
Moll 1973 (dorsalis x marginata)	-	-	-	-	>3		clutches/yr		5		$\begin{aligned} & \text { Tennessee } \\ & 1969-72 \end{aligned}$	NS	93.0\% of females produced two clutches, 60\% produced three clutches, 47\% produced four clutches, and 7\% produced five clutches (total of 14.74 eggs per female per year).
Moll 1973 (dorsalis)	-	-	-	-	> 3		clutches/yr		5		$\begin{aligned} & \text { Louisiana } \\ & 1969-72 \end{aligned}$	NS	100 \% of females produced two clutches, 80% produced three clutches, 30% produced four clutches, and 5 \% produced five clutches (total of 12.92 eggs per female per year).
 Brooks 1986	$\begin{aligned} & - \\ & - \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$		clutches/yr clutches/yr clutches/yr			$\begin{array}{r} 73 \% \\ 27 \% \\ 12.5 \% \end{array}$	Ontario, CAN 1983, 85	NS	(1) Nesting both years; (2) nesting either year.
Snow 1980 (bellii x marginata)	-	-	-	-	1-2		clutches/yr	0	2		Michigan	kettle ponds	A minimum of 33% of females laide second clutches. The total number of eggs produced in two clutches by three females was 16, 14, and 12.
Tinkle et al. 1981 (marginata)	1	-	-	-	0.60		clutches/yr	0.43	0.71	216	$\begin{aligned} & \text { Michigan } \\ & 1977-79 \end{aligned}$	NS	$3.9 \%(5 / 129)$ of females produced two clutches in one year.
Wilbur 1975a (marginata)	-	-	-	-	2		clutches/yr				$\begin{aligned} & \text { MI 1953-57, } \\ & 1968-73 \end{aligned}$	pond	No evidence presented.
DAYS INCUBATION													
Breckenridge 1944	-	-	-	-	79		days	75	81		c Minnesota	natural	As cited in Ewert 1979. Days to pipping.
```Ernst & Barbour 1972 (picta)```	-	-	-	-	76		days	72	80		Pennsylvania	NS	
Ernst 1971c	-	-	-	-	65-80		days				$\begin{aligned} & \text { se } \\ & \text { Pennsylvania } \end{aligned}$	NS	


Reference	Age Sex	Cond	S Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Ewert 1979	$\begin{array}{ll} - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 77.4 \\ & 62.0 \\ & 56.3 \end{aligned}$		$\begin{aligned} & \text { days } \\ & \text { days } \\ & \text { days } \end{aligned}$			$\begin{array}{r} 20 \\ 5 \\ 17 \end{array}$	Tennessee	lab	Temperature: (1) 25-25.5 C; (2) 27.4 C ; (3) 29.5-30 C. Eggs from local Tennessee populations.   Incubation defined as days from laying to pipping.
Ewert 1979	$\begin{array}{ll} - & - \\ - \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 72.0 \\ & 48.7 \end{aligned}$		days days			$\begin{array}{r} 3 \\ 20 \end{array}$	Connecticut	lab	Temperature: (1) $25-25.5 \mathrm{C}$; $\qquad$ (2) 30-32 C. Eggs from local Connecticut populations. Incubation defined as period from laying to pipping.
Ewert 1979	- -	-	-			days	60	65		se Wisconsin	NS (natural)	Days to pipping.
Ewert 1979	- -	-	-			days	72	99		nw Minnesota	NS (natural)	Days to pipping.
Ewert 1979	-	-	-	$\begin{aligned} & 66.2 \\ & 47.5 \end{aligned}$		$\begin{aligned} & \text { days } \\ & \text { days } \end{aligned}$			$\begin{aligned} & 20 \\ & 13 \end{aligned}$	n Michigan	lab	Eggs from northern Michigan.   Incubation period defined as days   from laying to pipping. Sample size is in eggs.
$\begin{aligned} & \text { Mitchell } 1985 \\ & \text { (picta) } \end{aligned}$	- -	-	-	71-76		days			2	$\begin{aligned} & \text { C Virginia } \\ & 1980-81 \end{aligned}$	Grassy Swamp Lake	
$\begin{aligned} & \text { Packard et al. } \\ & 1983 \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 49.2 \\ & 47.3 \\ & 51.9 \\ & 49.3 \end{aligned}$		$\begin{aligned} & \text { days } \\ & \text { days } \\ & \text { days } \\ & \text { days } \end{aligned}$			$\begin{aligned} & 80 \\ & 81 \\ & 84 \\ & 77 \end{aligned}$	Nebraska 1981	lab	Incubation conditions: (1) above wet substrate (2) above dry substrate (3) on wet substrate (4) on dry substrate substrate; Water potential $=-130 \mathrm{kPa}$ (wet), -750 kPa (dry).
  Ackerman 1989	- -	-	-	84.2		days	71	104	29	Iowa 1985-86	NS	
Ream 1967	$\begin{array}{ll} - & - \\ - & - \\ - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 95 \\ & 74 \\ & 71 \\ & 51 \end{aligned}$		$\begin{aligned} & \text { days } \\ & \text { days } \\ & \text { days } \\ & \text { days } \end{aligned}$			$\begin{aligned} & 69 \\ & 69 \\ & 18 \end{aligned}$	Wisconsin	artificial	Temperature: (1) 21-23 C; (2)   25-25.5 C; (3) 25-25.5 C; (4)   29.5-30 C. Sample size is in eggs.   As cited in Ewert 1979.
PERCENT NESTS SUCCESSFUL												
Breitenbach et 1984	1. - -	-	WI	81.4		\% nests/yr	20	100	43	$\begin{aligned} & \text { Michigan } \\ & 1977-82 \end{aligned}$	terrestrial nests	Nest failures (18.6\%) due to winter-kill; threshold temp. appears to be -3.3 C .
Snow 1982	- -	-	-	59		\% nests/yr			81	Michigan 1978	pond	Portion of nests lost to predation $=41$ percent. Not all of the remaining necessarily hatched.


Reference A	Age Sex	Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Tinkle et al. } 1981 \\ & \text { (marginata) } \end{aligned}$	$1 \text { - }$				67		\% nests/yr			43	$\begin{aligned} & \text { Michigan } \\ & 1977-79 \end{aligned}$	pond	Of the nests laid, predation caused failures of 21\% per year (minimum of 10 and maximum of $27 \%$ ). All causes resulted in $33 \%$ nests lost.
Age at sexual maturity													
Cagle 1954 (marginata, dorsal		$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{array}{r} 1 \\ 2-3 \end{array}$		year years				United States	NS	```(1) Southern U.S.; (2) northern U.S.```
```Christens & Bider 1986 (marginata)```		F	-	-			years		12		$\begin{aligned} & \text { Quebec, CAN } \\ & 1983-85 \end{aligned}$	pond	All females greater than 11 yrs of age reproduced in all 3 years.
```Christens & Bider 1986 (marginata)```	-	F	-	-	6		years				$\begin{aligned} & \text { Quebec, CAN } \\ & 1983-85 \end{aligned}$	pond	
```Christiansen & Moll }197 (bellii)```	-	$\begin{aligned} & \mathrm{F} \\ & \mathrm{M} \end{aligned}$	-	-	$\begin{array}{r} 5-6 \\ 3 \end{array}$		years				New Mexico	NS	
```Christiansen & Moll }197 (bellii)```	-	$\begin{aligned} & \mathrm{F} \\ & \mathrm{M} \end{aligned}$	-	-	$\begin{aligned} & 8 \\ & 4 \end{aligned}$		years   years				Wisconsin	NS	
$\begin{aligned} & \text { Ernst \& Barbour } \\ & 1972 \\ & \text { (picta) } \end{aligned}$	-	$\begin{aligned} & \text { M } \\ & \mathrm{F} \end{aligned}$	-	-	$\begin{aligned} & 5 \\ & 6 \end{aligned}$		years   years				Pennsylvania	NS	Plastron length $=80-90 \mathrm{~mm}$.
Ernst 1971a, c		$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{array}{r} 4 \\ 4-6 \end{array}$		years   years				Pennsylvania	NS	Mean plastron length: (1) $80-90 \mathrm{~mm}$ for males; (2) 100 mm for females.
Mitchell 1985 (picta)	-	F	-	-	6-8		years				$\begin{aligned} & \text { C Virginia } \\ & 1980-81 \end{aligned}$	Grassy Swamp Lake	
Moll 1973 (bellii)	-	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{array}{r} 2-3 \\ 4 \end{array}$		years   years				Louisiana,   Arkansas   1969-72	NS	
Moll 1973 (dorsalis x marginata)	-	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 2-3 \\ & 4-5 \end{aligned}$		years   years				$\begin{aligned} & \text { Tennessee } \\ & 1969-72 \end{aligned}$	NS	
Moll 1973 (bellii x marginata)	-	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 3-4 \\ & 4-6 \end{aligned}$		years   years				$\begin{aligned} & \text { c Illinois } \\ & 1969-72 \end{aligned}$	NS	


Reference	Age Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Moll 1973	- M	1	-	4-5		years				Wisconsin	NS	
(bellii)	- F	2	-	7-8		years						
Pope 1939   (marginata)	$\begin{array}{ll} - & M \\ - & F \end{array}$	-	-	$\begin{array}{r} 5 \\ 6-7 \end{array}$		years   years				New England	NS	As cited in DeGraaf \& Rudis 1983.
Wilbur 1975a (marginata)	$\begin{array}{ll} - & M \\ - & F \end{array}$	-	-	$\begin{aligned} & 5 \\ & 7 \end{aligned}$		years   years				$\begin{aligned} & \text { MI 1953-57, } \\ & 1968-73 \end{aligned}$	pond	

## Length at sexual maturity

Cagle 1954 (marginata, dorsalis)	-	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		-	$\begin{array}{r} 90 \\ 120-130 \end{array}$		mm plastron mm plastron				n Michigan	NS	
Cagle 1954 (marginata, dorsalis)	-	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$		-	$\begin{array}{r} 70 \\ 120-125 \end{array}$		mm plastron mm plastron				$s$ Illinois	NS	
$\begin{aligned} & \text { Christens \& Bider } \\ & 1986 \\ & \text { (marginata) } \end{aligned}$	-	$\begin{aligned} & F \\ & F \end{aligned}$	$\begin{aligned} & \mathrm{BR} \\ & \mathrm{NB} \end{aligned}$	-	$\begin{aligned} & 143 \\ & 135 \end{aligned}$	$\begin{array}{ll} 1.6 & \mathrm{SD} \mathrm{~m} \\ 1.7 & \mathrm{SD} \mathrm{~m} \end{array}$	mm plastron mm plastron	$\begin{aligned} & 124 \\ & 114 \end{aligned}$	$\begin{aligned} & 158 \\ & 147 \end{aligned}$		$\begin{aligned} & \text { Quebec, CAN } \\ & 1983-85 \end{aligned}$	pond	Significant difference in plastron length between reproductive and non-reproductive turtles > 6 yrs old.
Christiansen \& Moll 1973 (bellii)	-	F		-	$\begin{aligned} & 150 \\ & 123 \end{aligned}$		mm plastron mm plastron	$\begin{array}{r} 132 \\ 88 \end{array}$	$\begin{aligned} & 205 \\ & 170 \end{aligned}$	$\begin{aligned} & 54 \\ & 55 \end{aligned}$	New Mexico   1964-70	NS	Minimum breeding age in (1) females - 5 to 6 years; (2) males - 3 years.
Christiansen \& Moll 1973 (bellii)	-	F	1 2	-	$\begin{aligned} & 154 \\ & 132 \end{aligned}$		mm plastron mm plastron	$\begin{array}{r} 136 \\ 96 \end{array}$	$\begin{aligned} & 185 \\ & 155 \end{aligned}$	$\begin{aligned} & 23 \\ & 32 \end{aligned}$	Wisconsin	NS	Minimum breeding age in (1) females   - 8 years; (2) males - 4 years.
Gibbons 1968a	-	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-			mm plastron mm plastron	$\begin{array}{r} 81 \\ 110 \end{array}$	120		Michigan 1964-66	lake, marsh	Growth rates vary in different habitats: male turtles from the marsh reach greater than 80 mm in about three to five years, while those in the lake habitat reach 80 mm in their sixth or seventh year. Females are thought to become mature between 110 and 120 mm in plastron length.
Gibbons 1968b	-	F	-	-			mm plastron	113	115		Michigan 1964-66	marsh	
$\begin{aligned} & \text { MacCulloch \& Secoy } \\ & 1983 \\ & \text { (bellii) } \end{aligned}$			2	-			mm plastron mm plastron	$\begin{aligned} & 129 \\ & 115 \end{aligned}$		$\begin{aligned} & 64 \\ & 12 \end{aligned}$	Saskatchewan, CAN	river, pond	Study from 1977 to 1979. Study locations: (1) Qu'Appelle (2) Rinfret. Measure $=$ minimum plastron length at sexual maturity.


Reference Ag		ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Tinkle et al. } 1981 \\ & \text { (marginata) } \end{aligned}$							mm plastro	112	155	107	se Michigan	near ponds	Plastron length at sexual maturity.
MORTALITY													
```Ernst & Barbour 1972 (picta)```	B	B	-	-	51		\%/yr				Pennsylvania	NS	
Frazer et al. 1991	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{M} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	-			$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$	$\begin{aligned} & 50 \\ & 17 \\ & 49 \end{aligned}$	$\begin{aligned} & 71 \\ & 36 \\ & 79 \end{aligned}$		$\begin{aligned} & \text { Michigan } \\ & 1980-89 \end{aligned}$	lake, marsh	Methodology may have underestimated survival rates.
Mitchell 1988	$\begin{aligned} & \text { A } \\ & \text { J } \end{aligned}$	B B	-	-	54.0		$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$	4	6		Virginia	NS	As cited in Frazer et al. 1991.
$\begin{aligned} & \text { Tinkle et al. } 1981 \\ & \text { (marginata) } \end{aligned}$	B	B	-	-	24		\%/yr				$\begin{aligned} & \text { Michigan } \\ & 1977-79 \end{aligned}$	pond	
Wilbur 1975a (marginata)	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	B M F	$\begin{aligned} & 1 \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 92 \\ & 15 \\ & 18 \end{aligned}$		$\begin{aligned} & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$				$\begin{aligned} & \text { MI 1953-57, } \\ & 1968-73 \end{aligned}$	pond	(1) \% mortality from laying to arrival of hatchlings at pond.
Zweifel 1989 CAN	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	F M	-	-			$\begin{aligned} & \circ / \mathrm{yr} \\ & \% / \mathrm{yr} \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 14 \\ & 46 \end{aligned}$		MI, NY, NE, Saskatchewan,	NS	As cited in Frazer et al. 1991.

LONGEVITY

*** SEASONAL ACTIVITIES ***

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING						
Ernst 1971c	late Apr		mid Jun	$\begin{aligned} & \text { se } \\ & \text { Pennsylvania } \\ & 1965-67 \end{aligned}$	pond, marsh	

Reference	Begin	Peak	End	Location	Habitat	Notes
$\begin{aligned} & \text { Ernst \& Barbour } \\ & 1972 \\ & \text { (picta) } \end{aligned}$	Mar		mid Jun	NS	NS	
Gibbons 1968a	Mar	Apr-earl May	May	$\begin{aligned} & \text { Michigan } \\ & 1964-66 \end{aligned}$	marsh, lake	Author suggests that a second ovulation (leading to second clutches), probably occurs in mid-June.
Gist et al. 1990		Oct		Ohio	ponds	Based on examination of oviducts for presence of sperm, and electroejaculation of males to detect presence of sperm.
Smith 1961 (marginata)		earl spring		Illinois	NS	
NESting						
Cagle 1954 (marginata, dorsalis)	mid May		late Jul	$\begin{aligned} & \text { Illinois } \\ & \text { 1937-43 } \end{aligned}$	creek	
Cagle 1954 (marginata, dorsalis)	earl Apr		late Jul	Louisiana $1946-51$	NS	
$\begin{aligned} & \text { Congdon \& Gatten } \\ & 1989 \end{aligned}$	mid May	late May	earl Jul	$\begin{aligned} & \text { Michigan } \\ & 1976-86 \end{aligned}$	marsh	
$\begin{aligned} & \text { Ernst \& Barbour } \\ & 1972 \\ & \text { (picta) } \end{aligned}$	late May	late Jun	mid Jul	NS	NS	
Ernst 1971c	Jun		Jul	$\begin{aligned} & \text { se } \\ & \text { Pennsylvania } \\ & 1965-67 \end{aligned}$	pond, marsh	
Moll 1973 (bellii)		Jun-earl Jul		$\begin{aligned} & \text { Wisconsin } \\ & 1969-72 \end{aligned}$	NS	Nesting season.
Moll 1973 (bellii x marginata)		late May-Jun		$\begin{aligned} & \text { Illinois } \\ & 1969-72 \end{aligned}$	NS	Nesting season.
Moll 1973 (dorsalis)	late May		late Jul	$\begin{aligned} & \text { Louisiana } \\ & 1969-72 \end{aligned}$	NS	Nesting season.

Reference	Begin	Peak	End	Location	Habitat	Notes
Smith 1961 (marginata)	Jun		Jul	Illinois	NS	Mating in early spring.
Smith 1956 (bellii)	Jun		Jul	Kansas	terrestrial	Mating occurs in fall or spring with laying coming some time later.
```Tinkle et al. 1981 (marginata)```	late May	Jun	late Jun	$\begin{aligned} & \text { se Michigan } \\ & 1977-79 \end{aligned}$	near ponds	
hatching						
Cahn 1937 (marginata)	Sep		spring	Illinois	NS	As cited in Smith 1961.
$\begin{aligned} & \text { Ernst \& Barbour } \\ & 1972 \end{aligned}$		Aug		NS	NS	Hatchlings from eggs laid in August may overwinter in the nest.
Smith 1956 (bellii)	Aug		Sep	Kansas	terrestrial	
```Tinkle et al. 1981 (marginata)```		late summer		$\begin{aligned} & \text { se Michigan } \\ & 1977-79 \end{aligned}$	near ponds	
HIbERNATION						
```Congdon et al. 1982 (marginata)```	late Oct		late Mar	se Michigan	near ponds	End of hibernation ranges from late March to early April.
Ernst 1971c	late Oct		Mar	$\begin{aligned} & \text { se } \\ & \text { Pennsylvania } \\ & 1965-67 \end{aligned}$	NS	
Smith 1956 (bellii)	late Oct		Apr	Kansas	mud underwater	

## Page A-412 is left blank.

***** EASTERN BOX TURTLE *****

## *** NORMALIZING AND CONTACT RATE FACTORS ***

Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat
BODY WEIGHT												
Allard 1948	H	B	1	SU	11		g			22	Tennessee	NS
	J	B	2	FA	21		g			-		
	J	B	3	FA	40		g			-		
	J	B	4	SP	39		g			-		
	J	B		FA	54		g			-		
$\begin{aligned} & \text { Brisbin } 1972 \\ & \text { (carolina) } \end{aligned}$	A	M		FA	397.8	46.8 SE	9			13	Georgia	captive
	A	F		FA	381.1	28.8 SE	9			13	1965-67	
$\begin{aligned} & \text { Brisbin } 1972 \\ & \text { (carolina) } \end{aligned}$	A	M		SP	387.6	47.0 SE	9			13	Georgia	captive
	A	F		SP	369.1	29.4 SE	g			13	1965-67	
	A	M		SU	394.0	42.7 SE	g			14		
	A	F		SU	372.0	26.7 SE	9			15		
$\begin{aligned} & \text { Congdon \& Gibbons } \\ & 1985 \end{aligned}$	S A	F		-	372.0 $(129.0)$		${ }_{(0)}^{9}$			8	S Carolina	NS
		F			(129.0)		(mm p			8		

## BODY LENGTH

Oliver 1955
$\begin{array}{lll}\mathrm{H}-{ }^{-} \\ \mathrm{A} & - \\ -\end{array}$
28
mm carapace
198
NS

## BODY FAT

Brisbin 1972
(carolina)

Georgia

EGG WEIGHT

Congdon \& Gibbons 1985	-	-	-	-	30.7	2.9	SE g/clutch			8	S	Carolina	NS
Congdon \& Gibbons 1985	-	-	-	-	9.02	0.17	SE g/egg			25	S	Carolina	NS
Ernst \& Barbour 1972	-	-	-	-			g/egg	6	11		NS		NS



WATER INGESTION RATE
 Evaporative water loss (which might need to be made up by drinking) at
10 to 29 C , relative humidity 45 to 10 to 29 C, relative humidity 45 to 95\%.

## *** DIET ***




## POPULATION DENSITY


(carolina)
B
N/ha
Schwartz et al

## CLUTCH SIZE

Cahn 1937	-	-	-	-			
Congdon \& Gibbons 1985	-	-	-	-	3.4	0.3 S	
Ernst \& Barbour 1972	-	-	-	-	4.5		
Smith 1956	-	-	-	-	4		
CLUTCHES/YEAR							
Oliver 1955	-	-	-	-			
Smith 1961	-	-	-	-	1		

## dAys incubation

Allard 1948	-	-	
Allard 1935 cited	-	-	-
in Carr 1952			


days	64	136
days		
days	69	136
days		
days   days   days		


270	Tennessee   Maryland   $1965-83$	woo
245	Maryland   $1944-47$	woo
	NS	NS
8	S Carolina	NS
	NS	NS
	Washington DC	NS

woodland
forest
wooded bottomlands
Lincoln Index population estimate
based on mark-recapture.
Juveniles comprise less than $10 \%$ of the total population.

As cited in Smith 1961.

Summarizing other studies.

As cited in Moll 1979.
Florida
NS
Illinois
NS

NS
NS
NS NS

Maryland NS
s Florida natural
Iowa
lab

NS

As cited in Ernst and Barbour 1972.
As cited in DeGraaf and Rudis 1983.

Days to emergence. As cited in Ewert 1979.
As cited in Ewert 1979.
(1) At 24 C ; (2) at 30 C .

Summarizing other studies

Reference	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Ewert 1979	- -	-	-			days	78	102		nw Minnesota	natural	Days to pipping.
Ewing 1933	- -	-	-	99		days	69	161		Washington DC	natural	As cited in Ewert 1979.
$\begin{aligned} & \text { Lynn \& Von Brand } \\ & 1945 \end{aligned}$	$\begin{array}{ll} - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\begin{array}{r} 63 \\ 76.0 \\ 50 \end{array}$		$\begin{aligned} & \text { days } \\ & \text { days } \\ & \text { days } \end{aligned}$			$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	Maryland	artificial	Temperature:   (1) $25.0-25.5 \mathrm{C}$; (2)   $25.0-25.5 \mathrm{C}$; (3) $30.0-32.0 \mathrm{C} . \mathrm{N}=$ number of eggs. As cited in Ewert 1979.
Rosenberger 1972	- -	-	-			days	74	99		Pennsylvania	natural	Days to emergence. As cited in Ewert 1979.
age at sexual maturity												
Ernst \& Barbour $1972$	- -	-	-	4-5		years				NS	NS	Summarizing other studies.
Minton 1972	- -	-	-	5-10		years				NS	NS	As cited in DeGraaf and Rudis 1983.
Length at sexual maturity												
Oliver 1955	A B	-	-			mm carapace	100	130		NS	NS	As cited in Auffenberg and Iverson 1979.
LONGEVITY												
Nichols 1939a	- -	-	-	20		years		80		NS	NS	
Oliver 1955	- -	-	-			years		138		NS	captive	As cited in Auffenberg and Iverson 1979.

*** SEASONAL ACTIVITIES ***


## MATING/LAYING

$\begin{aligned} & \text { DeGraaf \& Rudis } \\ & 1983 \end{aligned}$	Jun		Jul	ne Carolinas	NS
Ernst \& Barbour 1972		spring		northern range	NS
Smith 1956	Jun		Jul	Washington DC	NS


Reference	Begin	Peak	End	Location	Habitat	Notes
HATCHING						
$\begin{aligned} & \text { DeGraaf \& Rudis } \\ & 1983 \end{aligned}$	Aug		Sep	ne Carolinas	NS	
Ernst \& Barbour 1972	Sep		Oct	northern range	NS	
Smith 1956		Sept		Washington DC		
HIBERNATION						
Ernst \& Barbour 1972	Nov		Apr	northern range	NS	
  Schwartz 1974   (triunguis)	Oct		Apr	Missouri	mixed woods, fields	

***** RACER *****
*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference Age Sex cond Seas Mean SD/SE Units Minimum Maximum

## BODY WEIGHT (AND LENGTH)



Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE		its	Minimum	Maximum	N	Location	Habitat	Notes
Fitch 1963   (flaviventris)	2	F	-	FA	83.5		$g$	( 644 mmSVL )	52	127		Kansas 1949-62	woodland, grassland	Number in age column is age in years. Sampling occurred in both May and October. Length measured from snout to vent (SVL).
	2	F	-	SP	135.2		9	( 743 mmSVL )	73	200				
	3	F	-	FA	149.4		9	(810mmSVL)	98	219				
	3	F	-	SP	181.2		9	(836mmSVL)	120	268				
	4	F	-	FA	212.3		g	(866mmSVL)	175	243				
	4	F	-	SP	191.2		g	(883mmSVL)	143	300				
	5	F	-	FA	209.6		g	(914mmSVL)	136	275				
	5	F	-	SP	250.4		g	(932mmSVL)	195	336				
	6	F	-	FA	245.9		g	(965mmSVL)	218	283				
	6	F	-	SP	271.0		g	(970mmSVL)	243	336				
	7	F	-	FA	251.3		9	(974mmSVL)	150	330				
	7	F	-	SP	295.6		g	(1000mmSVL)	235	375				
BODY LENGTH														
Corn \& Bury 1986	A	M	-	-	632.4	66.74 SD	mm	n SVL			10	e Colorado	foothills	Snout to vent length (SVL). Only adult snakes ( $>395 \mathrm{~mm}$ SVL) used in analysis.
	A	F	-	-	739.5	77.29 SD	mm	SVL			10			
Corn \& Bury 1986	A	M	-	-	640.6	76.23 SD	mm	SVL			11	w CO, ne VT	mountains	Snout to vent length (SVL). Only adult snakes ( $>395 \mathrm{~mm}$ SVL) used in analysis.
	A	F		-	699.0	58.36 SD	mm	SVL						
Corn \& Bury 1986	A	M	-	-	602.2	166.5 SD	mm	n SVL			13	w Utah	foothills	Snout to vent length (SVL). Only adult snakes ( $>395 \mathrm{~mm}$ SVL) used in analysis.
	A	F	-	-	682.5		mm	n SVL			2			
Fitch 1963   (flaviventris)	1	M	-	SP	539		mm	n SVL	432	609		Kansas 1949-62	woodland, grassland	Number in age column is age in years. Sampling occurred in both May and October. Length measured from snout to vent (SVL).
	2	M	-	FA	615		mm	n SVL	560	674				
	2	M	-	SP	668		mm	n SVL	620	710				
	3	M	-	FA	706		mm	n SVL	648	755				
	3	M	-	SP	740		mm	n SVL	667	780				
	4	M		FA	757		mm	, SVL	725	809				
	4	M		SP	785		mm	n SVL	720	850				
	5	M		FA	806		mm	n SVL	743	855				
	5	M	-	SP	810		mm	n SVL	773	858				
	6	M	-	FA	827		mm	, SVL	765	883				
	7	M	-	FA	845		mm	, SVL	788	900				
	8	M	-	FA	868		mm	SVL		890				
	8	M	-	SP	870		mm	n SVL	740					
Fitch 1963	1	F	-	SP	581		mm	$\ldots$ SVL	415	658		Kansas 1949-62	woodland, grassland	Number in age column is age in years. Sampling occurred in both May and October. Length measured from snout to vent (SVL).
(flaviventris)	2	F	-	FA	644		mm	SVL	580	738				
	2	F	-	SP	743		mm	$\ldots$ SVL	670	826				
	3	F	-	FA	810		mm	m SVL	730	880				
	3	F	-	SP	836		mm	n SVL	736	915				
	4	F	-	FA	866		mm	- SVL	791	920				
(continued)	4	F	-	SP	883		mm	SVL	810	952				



## HATCHING LENGTH

Martof et al. 1980 H - - - 290
290
mm
mm total
305
NS
NS
Verme
Texas
NS
(flaviventris)

## GROWTH RATE

Fitch 1963
J B
B - SU
0.116
g/day
(flaviventris)
metabolic rate (OXYGen)
Ruben 1976
$\begin{array}{lll}\mathrm{A} & -\mathrm{ST}- \\ \mathrm{A} & - \\ & \end{array}$
2.4
24.5
$102 / \mathrm{kg}$-day
$\begin{array}{lll}6 & \text { NS } & 1974 \\ 6\end{array}$

25 Kansas 1953-59
woodland, grassland

Total length or snout-to-vent length (SVL) not specified.
$102 / \mathrm{kg}$-day
Standard (ST) metabolic rate at
body temperature of 35 C . Number in condition column is (1) metabolic rate of active (electrically stimulated) snakes at 35 C body temperature. Mean weight of snakes was 262 g ; includes data from a masticophis sp. which was found to show similar results.

FOOD INGESTION RATE
Fitch 1982
B B - -
0.02
g/g-day
(flaviventris)

Kansas 1948-77
woodlands, grassy areas

Rough estimate of food consumed from spring through fall based on author's calculation that these snakes eat approximately four times their body species in the study area, $C$. constrictor thought to eat the most relative to its body weight.

## BODY TEMPERATURE

Brown 1973
(mormon)
31.8
0.20 SE degrees C
18.6
37.7

Body temperature of active snakes under natural conditions; elevation Parker 1982 .



Reference $\quad \mathrm{Ag}$	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
POPULATION DENSITY													
$\begin{aligned} & \text { Brown \& Parker } \\ & 1984 \\ & \text { (mormon) } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0.79 \\ & 0.32 \end{aligned}$		N/ha   N/ha			$\begin{aligned} & 528 \\ & 271 \end{aligned}$	Utah 1971	desert shrub	Density of snakes at least one year old in: (1) area M; and (2) area S. Density estimated from mark-recapture using the Jolly-Seber method.
Fitch 1963   (flaviventris)	A	B	-	SU	4.7		N/ha			75	Kansas 1955-61	bottomland pastures, old fields	Number of adults present at annual population low (early summer). $\mathrm{N}=$ estimated population size. Amount of first year young present thought to be equal to number of adults; young of year have not hatched yet.
Fitch 1963   (flaviventris)	A	B	-	SU	2.7		N/ha			153	Kansas 1958-62	$\begin{aligned} & \text { prairie grasses, } \\ & \text { hilltop } \end{aligned}$	Number of adults present at annual population low (early summer). $\mathrm{N}=$ estimated population size. Amount of first year young present thought to be equal to number of adults; young of year have not hatched yet.
Fitch 1963   (flaviventris)	A	B	-	SU	7.0		N/ha			135	Kansas 1958-62	upland prairie, weeds, grasses	Number of adults present at annual population low (early summer). $\mathrm{N}=$ estimated population size. Amount of first year young present thought to be equal to number of adults; young of year have not hatched yet.
Turner 1977   (flaviventris)	-	-	-	-	5.0		N/ha				Kansas	NS	As cited in Brown and Parker 1984.
CLUTCH SIZE													
Behler \& King 1979	9	-	-	-			eggs	5	28		NS		
$\begin{aligned} & \text { Brown \& Parker } \\ & 1984 \\ & \text { (mormon) } \end{aligned}$	-	-	-	-	5.28	0.24 SE	eggs	4	8	43	Utah	desert shrub	Clutch size increases with increasing female body size. Clutch size $=-0.56+.10$ SVL (cm).
Corn \& Bury 1986	-	-	-	-	7.4		eggs	4	10	5	w Utah	foothills	
Corn \& Bury 1986	-	-	-	-	12		eggs	9	14	6	e Colorado	foothills	


Reference	Age S	Sex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat		Notes
Fitch 1963   (flaviventris)	-	F	2	SU	9.2		eggs	6	12	10	Kansas 1949-62	woodland,	grassland	Age and snout-to-vent length (SVL) of females (mm): (2) $2 \mathrm{yrs}-688 \mathrm{~mm}$ (589-748); (3) 3 yrs - 789 mm (756-840); (4)4 yrs - 856 mm (850-861); (5)5 yrs - 907 mm (392-933); and (6) 6+ yrs - 1005 mm (955-1088).
	-	F	3	SU	9.9		eggs	5	14	19				
	-	F	4	SU	10.8		eggs	8	12	7				
	-	F	5	SU	13.0		eggs	8	17	6				
	-	F	6	SU	15.7		eggs	11	19	10				
Fitch 1963 (constrictor)	-	-	-	-	16.8		eggs	7	31	14	NS	NS		From own data and unspecified other studies.
Fitch 1963   (priapus)	-	-	-	-	12.6		eggs	7	21	11	NS	NS		From own data and unspecified other studies.
Fitch 1963 (mormon)	-	-	-	-	5.79		eggs	2	13	43	NS	NS		From own data and unspecified other studies.
Martof et al. 1980	0	-	-	-			eggs	4	25		Virginia, Carolinas	NS		
Pope 1944   (flaviventris)	-	-	-	-			eggs	19	25		Illinois	NS		As cited in Smith 1961.
Smith 1956	-	-	-	-			eggs	8	25		Kansas	NS		
Vermersch   \& Kuntz 1986   (flaviventris)	-	-	-	-			eggs	3	23		Texas	NS		
CLUTCHES/YEAR														
Fitch 1963   (flaviventris)	-	-	-	-	0.5		/yr	0	1		Kansas 1949-62	woodland,	grassland	Only about $50 \%$ of adult females produce offspring each year, suggesting that an individual female might reproduce only in alternate years.

## DAYS INCUBATION

Behler \& King 1979	-	-	-	-	42-63	days	NS						
Brown \& Parker	-	-	1	SU	42.6	days	41	44	3	Utah 1971-72		lab, desert	
1984	-	-	2	SU	44-45	days			3				
(mormon)	-	-	3	SU	45-50	days			2				
Fitch 1963   (flaviventris)	-	-	-	SU	51	days	43	63	12	Kansas	1949-62	lab	

(1) Lab 1971; (2) lab 1972; (3)
field. Lab temperature was 29 C.

Temperature range not specified.

Reference	Age Sex	Cond Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Smith 1956 (constrictor)	- -	- -	65		days	61	70		NS	NS	

## age at sexual maturity

Behler \& King 1979	-	-	-	-	2-3	years
Brown \& Parker	-	F	-	-	3	years
$\begin{aligned} & 1984 \\ & \text { (mormon) } \end{aligned}$	-	M	-	-	13.5	months
Fitch 1963	-	F	-	-	2-3	years
(flaviventris)	-	M	-	-	13-14	months

## MORTALITY



## LONGEVITY

Brown \& Parker
(mormon)

19	38	3	yrs	Utah 1970-72	desert shrub
21	45	3	yrs		
73	77	3	yrs		
45	days		Utah 1969-72	desert shrub	
45	days				
345	days				
450 days					

Utah 1969-73

Kansas 1949-62 woodland, grassland Age-specific annual mortality with age measured in years.

Number is age in years.
Adults defined as snakes one year of or older

Percent mortality for various life-stage intervals variou juvenile, yrlng $=$ yearling). Days indicate the duration of the period over which the mortality estimate was made.
cold desert shrub

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING						
```DeGraaf & Rudis 1983 (constrictor)```	May		earl Jun	NS	NS	
Fitch 1963 (flaviventris)	Apr	May	Jun	Kansas 1949-62	woodland, grassland	
Vermersch \& Kuntz	Apr		May	Texas	NS	

Brown \& Parker 1984 (mormon)	Jun	Jul		Utah 1969-73	desert shrub
```DeGraaf & Rudis 1983 (constrictor)```	Jun		earl Jul	NS	NS
Fitch 1963   (flaviventris)	Jun 13		Jul 16	Kansas 1949-62	woodland, grassland
Martof et al. $1980$	Jun		Jul	Virginia, Carolinas	NS
Smith 1956	Jun		Jul	Kansas	NS
Vermersch \& Kuntz 1986   (flaviventris)	Jun		earl Aug	Texas	NS
hatching					
Brown \& Parker 1984   (mormon)		mid-late Aug		Utah 1969-73	desert shrub
```DeGraaf & Rudis 1 9 8 3 (constrictor)```	late Aug		Sept	NS	NS
Fitch 1963 (flaviventris)	late Aug		earl Sep	Kansas 1949-62	woodland, grassland

Fitch 1963
(flaviventris)
late Aug

Reference	Begin	Peak	End	Location	Habitat	Notes
Smith 1956	Aug		Sept	Kansas	NS	Based on laying season and incubation period.
Vermersch 1986 (flaviventris)	Aug		Sept	Texas	NS	
HIBERNATION						
$\begin{aligned} & \text { Brown \& Parker } \\ & 1982 \\ & \text { (mormon) } \end{aligned}$	earl Oct		earl May	Utah 1969-73	cold desert shrub	
Fitch 1963 (flaviventris)	late Nov		earl Apr	Kansas 1949-62	woodland, grassland	Earliest and latest time active racers were found.

Page A-430 is left blank.

***** NORTHERN WATER SNAKE *****
*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference	Age S	ex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
```Raney & Roecker 1947 (sipedon)```	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { F } \\ & \text { M } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & - \\ & - \end{aligned}$		$\begin{aligned} & 200-250 \\ & 360-400 \end{aligned}$		mm total   mm total   mm total   mm total		$\begin{aligned} & 980 \\ & 780 \end{aligned}$	$\begin{aligned} & 59 \\ & 59 \end{aligned}$	$\begin{aligned} & \text { New York 1942, } \\ & 1946 \end{aligned}$	creeks	Measure reflects total length of snakes. Juveniles in their (0) first fall and spring; (1) second fall and spring. Collected from May-Sept. Maximum values are the largest snakes found in a collection of 59 .
Wright \& Wright 1957	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-			mm total   mm total	$\begin{aligned} & 635 \\ & 650 \end{aligned}$	$\begin{aligned} & 1,148 \\ & 1,295 \end{aligned}$		NS	NS	Measure reflects total length of snakes. As cited in DeGraaf and Rudis 1983.
neonate weight													
Feaver 1977   (sipedon)	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	-	-	$(188)^{5}$		$\left.\stackrel{l}{(m m}_{\mathrm{m}}^{\mathrm{SVL}}\right)$			$\begin{aligned} & \text { NS } \\ & \text { NS } \end{aligned}$	Michigan	pond, marshes	Length measured from snout to vent (SVL). As cited in King 1986.
Fitch 1982	N	B	-	-	5.0		9	3.6	6.8	57	Kansas 1948-77	ponds, streams	Length of snakes not specified.
King 1986   (insularum)	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	-	-	$\begin{array}{r} 4.8 \\ (181) \end{array}$		$\left.\stackrel{l}{(m m}_{\mathrm{m}}^{\mathrm{mVL}}\right)$	$\begin{aligned} & 3.6 \\ & 125 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 210 \end{aligned}$	$\begin{aligned} & 893 \\ & 893 \end{aligned}$	Ohio, Ontario CAN 1980-84	Lake Erie islands	Length measured from snout to vent (SVL).
Martof et al. 1980	0 N	B	-	-	200		mm SVL				NS	NS	Length measured from snout to vent (SVL) of young.

## NEONATE LENGTH

N B - -
mm SVL
135
220
63 Kansas 1972
stream
(sipedon)
$\begin{array}{llll}\text { J } & \text { B } & 1 & \text { SU } \\ \text { J } & \text { B } & 2 & \text { SU } \\ \text { J } & \text { M } & 3 & \text { SU } \\ \text { A } & \text { B } & 4 & \text { SU }\end{array}$

Brown 1958   (sipedon)	J	B	1	SU	1.0	0.43	SD	mm/day   mm/day   mm/day	$\begin{aligned} & 0.46 \\ & 0.77 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 1 \\ & 4 \end{aligned}$	New York 1938			captive
	J	B	2	SU	0.77										
	J	M	3	SU	0.42										
	A	B	4	SU	1.0	0.31	SD		0.71	1.4					
Brown 1958	J	B	1	SU	0.18	0.08	SD	g/day	0.13	0.27	4	New	York	1938	captive
(sipedon)	J	B	2	SU	0.42			g/day	0.40	0.45	2				
	J	M	3	SU	0.80			g/day			1				
	A	B	4	SU	2.59	0.58	SD	g/day	1.74	3.02	4				


Brown 1958   (sipedon)	J	B	1	SU	1.0	0.43	SD	mm/day   mm/day   mm/day	$\begin{aligned} & 0.46 \\ & 0.77 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 1 \\ & 4 \end{aligned}$	New York 1938			captive
	J	B	2	SU	0.77										
	J	M	3	SU	0.42										
	A	B	4	SU	1.0	0.31	SD		0.71	1.4					
Brown 1958	J	B	1	SU	0.18	0.08	SD	g/day	0.13	0.27	4	New	York	1938	captive
(sipedon)	J	B	2	SU	0.42			g/day	0.40	0.45	2				
	J	M	3	SU	0.80			g/day			1				
	A	B	4	SU	2.59	0.58	SD	g/day	1.74	3.02	4				


Brown 1958   (sipedon)	J	B	1	SU	1.0	0.43	SD	mm/day   mm/day   mm/day	$\begin{aligned} & 0.46 \\ & 0.77 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 1 \\ & 4 \end{aligned}$	New York 1938			captive
	J	B	2	SU	0.77										
	J	M	3	SU	0.42										
	A	B	4	SU	1.0	0.31	SD		0.71	1.4					
Brown 1958	J	B	1	SU	0.18	0.08	SD	g/day	0.13	0.27	4	New	York	1938	captive
(sipedon)	J	B	2	SU	0.42			g/day	0.40	0.45	2				
	J	M	3	SU	0.80			g/day			1				
	A	B	4	SU	2.59	0.58	SD	g/day	1.74	3.02	4				


Reference	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat
King 1986	B F	1	-	0.12		mm SVL/day			56	Ohio 1980-84	Lake Erie islands
	B M	1	-	0.14		mm SVL/day			42		
	Y B	2	-	0.33		mm SVL/day			364		

Annual growth rate for: (1) juveniles (1-3 years old) and adults; (2) young-of-the year. Length measured from snout to vent (SVL). Measured from May-Sept (most growth occurs during this period) and then adjusted to represent an annual rate. Highest growth rate for young-or-the year oc

## METABOLIC RATE (OXYGEN)

Gratz \& Hutchinson $\quad$ B $\quad$ B 1 -
1977
(Nerodia
a similar
species)
$\begin{array}{llll}\mathrm{B} & \mathrm{B} & 1 & - \\ \mathrm{B} & \mathrm{B} & 2 & - \\ \mathrm{B} & \mathrm{B} & 3 & -\end{array}$

0.607	0.0348	SE $102 / \mathrm{kg}$-day	0.389	0.938	219	Oklahoma
3.29	0.101	SE l02/kg-day	2.81	4.44	240	
7.33	0.226	SE lo2/kg-day	5.70	9.99	235	

$\begin{array}{llllll}3.29 & 0.101 & \text { SE } 102 / \mathrm{kg} \text {-day } & 2.81 & 4.44 & 240 \\ 7.33 & 0.226 & \text { SE lo2/kg-day } & 5.70 & 9.99 & 235\end{array}$
 35

## SURFACE AREA



Length measured from snout to vent (SVL). This species (N. rhombifera) is not $N$. sipedon, but is a simila species

Mean internal temperature selected by snake when exposed to thermal gradient from 12-45 C in a: (1) lighted cage-morning; (2) lighted cage-afternoon; (3) dark cage-afternoon.

## *** DIET ***

Reference	Age Se	x	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Alexander 1977	B	B	trout   non-trout fish   unidentified fish   crustaceans   amphibians   birds and mammals   unidentified		$\begin{array}{r} 64 \\ 7 \\ 1 \\ 1 \\ 14 \\ 12 \\ 1 \end{array}$			28	n lower Michigan	streams   -   \% wet weight;   stomach contents	Collected whenever they were found; thought to be active in area from May-Sept.
Alexander 1977	B		trout   non-trout fish   crustaceans   birds and mammals   amphibians   unidentified		$\begin{array}{r} 4 \\ 8 \\ 15 \\ 2 \\ 68 \\ 3 \end{array}$			9	n lower Michigan	```lake % wet weight; stomach contents```	Collected whenever they were found; thought to be active in area from May-Sept.
Barbour 1950 (sipedon)			unidentified fish   Rana sp. tadpoles Cambarus sp. unidentified detritus		$\begin{aligned} & 50.0 \\ & 12.5 \\ & 12.5 \\ & 25.0 \end{aligned}$			8	$\begin{aligned} & \text { se KY } \\ & 1939,1948 \end{aligned}$	```fork of a river % volume; stomach contents```	Collected in June, July. Presumed that the unidentified detritus was from the intestines of the fish. A specimen from a small woodland stream at 2450 ft . elevation contained the remains of two large Desmosnathus fuscus.


Reference	Age Se	e	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Brown 1958   (sipedon)	B	B	```minnows darters suckers (Catostomus) sculpin (Cottus) catfish lamprey game fishes unidentified fish amphibians```		$\begin{array}{r} 7.7 \\ 3.1 \\ 35.4 \\ 1.4 \\ 9.3 \\ 23.0 \\ 1.2 \\ 1.6 \\ 17.3 \end{array}$			120	$\begin{aligned} & \text { c New York } \\ & 1933-38 \end{aligned}$	```rocky streams % volume; stomach contents```	Months of collection and size of snakes not specified.
Brown 1958   (sipedon)	B	B	minnows   darters amphibians sculpin (Cottus) trout perch (Percops game fishes (Perca) burbot (Lota) catfish			$\begin{array}{r} 9.1 \\ 1.4 \\ 52.8 \\ 2.2 \\ 2.8 \\ 14.1 \\ 17.4 \\ 0.3 \end{array}$		48	$\begin{aligned} & \mathrm{n} \text { lower MI } \\ & 1933-38 \end{aligned}$	```lakes % volume; stomach contents```	Months of collection and size of snakes not specified.
Brown 1958   (sipedon)	J	B	minnows darters amphibians sculpin (Cottus) suckers (Catostomus) catfish troutperch (Percopsi game fish (Micropter unidentified fish		$\begin{array}{r} 26.0 \\ 27.0 \\ 18.0 \\ 10.0 \\ 7.0 \\ 1.7 \\ 5.6 \\ 5.0 \\ 0.3 \end{array}$			73	NY, MI 1933-38	```streams, lakes, bog % volume; stomach contents```	Snakes estimated to be in their first year of life (207-380 mm total length). Months of capture not specified.
Bush 1959   (sipedon)	-		```Cyprinidae Centrarchidae Rana c.melanota Eurycea b. rivicola```		$\begin{aligned} & 42.8 \\ & 28.5 \\ & 14.3 \\ & 14.3 \end{aligned}$			7	$\begin{aligned} & \text { Kentucky } \\ & 1955-56 \end{aligned}$	```fork of river % wet volume; stomach contents```	
```Camp et al. 1980 (pleuralis)```	-		Esocidae Catostomidae Percidae Proteidae Cyprinidae Centrarchidae crawfish		$\begin{array}{r} 7.0 \\ 22.5 \\ 15.7 \\ 51.9 \\ 1.5 \\ 0.3 \\ 1.5 \end{array}$			14	$\begin{aligned} & \text { Georgia } \\ & 1977-79 \end{aligned}$	```aquatic (NS) % wet volume; stomach contents```	Percent volume measured by water displacement. Age, sex, size class, and season not specified.
```Lagler & Salyer 1945 (sipedon)```		B	trout   lampreys   forage fishes   fish remains   burbot   frogs   misc. invertebrates		$\begin{array}{r} 19.0 \\ 3.3 \\ 55.8 \\ 0.2 \\ 7.3 \\ 12.8 \\ 1.6 \end{array}$			106	$\begin{aligned} & \text { lower Michigan } \\ & 1944 \end{aligned}$	```trout streams % volume; stomach contents```	Mean length for entire study $(\mathrm{N}=287)=620 \mathrm{~mm}$ total length. Most fish were between $3.8-12.5 \mathrm{~cm}$ in length. Number and size of prey (but not \% volume) are listed in the reference.


Reference	Age Se	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
$\begin{aligned} & \text { Lagler \& Salyer } \\ & 1945 \\ & \text { (sipedon) } \end{aligned}$			game and pan fishes   forage fishes   other fishes   fish remains   frogs and salamander   rodents		$\begin{array}{r} 19.3 \\ 23.4 \\ 2.9 \\ 1.8 \\ 52.6 \\ \mathrm{TR} \end{array}$			18	lower Michigan 1944	```inland lakes % volume; stomach contents```	Mean length for entire study $(\mathrm{N}=287)=620 \mathrm{~mm}$ total length. Collected from May-Sept.; mostly in July-August. Most fish were between $2.5-10.0 \mathrm{~cm}$ in length. Number and size of prey found (but not \% volume) are listed in the reference. $T R=$ trace.
$\begin{aligned} & \text { Lagler \& Salyer } \\ & 1945 \\ & \text { (sipedon) } \end{aligned}$			trout   bass or sunfish   forage fishes   other fishes   fish remains   Amphibia   Insecta   misc. invertebrates		$\begin{array}{r} 48.9 \\ \mathrm{TR} \\ 44.0 \\ 3.8 \\ 1.4 \\ 1.1 \\ 0.5 \\ 0.3 \end{array}$			64	lower Michigan 1944	```trout-rearing stations % volume; stomach contents```	Mean length for entire study $(\mathrm{N}=287)=620 \mathrm{~mm}$ total length (range 210-970 mm total length). Collected from May-Sept.; mostly during July \& August. Mean size of trout $=4.8 \mathrm{~cm}$ (range $21.6-2.5 \mathrm{~cm}$ ); greatest number eaten by one snake was 26; mean for all snakes collected was 2.5. Reference lists the number of each species caught but does not give volume estimates based on the species breakdown. TR = trace.
```Raney & Roecker 1947 (sipedon)```			suckers   minnows   catfish   mudminnows   darters   fish remains   Rana sp. tadpoles		$\begin{array}{r} 39.9 \\ 29.0 \\ 3.7 \\ 2.7 \\ 5.3 \\ 15.2 \\ 4.2 \end{array}$			59	$\begin{aligned} & \text { w New York } \\ & 1942,1946 \end{aligned}$	```creeks % volume; stomach contents```	All size classes; 20-98 cm total length. Most eating fish had only one specimen in their stomach.
```Uhler et al. 1939 (sipedon)```			fish   frogs \& toads salamanders insects other		$\begin{array}{r} 61 \\ 21 \\ 12 \\ 2.5 \\ 3.5 \end{array}$			30	Virginia	habitat NS \% by volume	Season, age, and sex not specified. As cited in Raney and Roecker 1947.

## *** POPULATION DYNAMICS ***

Reference Age Sex Cond Seas Mean SD/SE Units Minimum Maximum N Location

## POPULATION DENSITY


(sipedon)
B
197 Kansas 1972
stream

Reference A	Age S	ex	Cond	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Fitch 1982	B	B	-	-	0.131		N/ha				Kansas 1957-61	forest, streams, shrubs, prairies	Count excludes young of the year. Rough estimate based on comparison with more commonly found associated species censused by capture-recapture ratios.
$\begin{aligned} & \text { King } 1986 \\ & \text { (insularum) } \end{aligned}$	A	B	-	-	138		N/km	22	381	5	Ohio, Ontario CAN 1980-84	Lake Erie islands	Density per km of shoreline of snakes from five islands.
$\begin{aligned} & \text { Lagler \& Salyer } \\ & 1945 \\ & \text { (sipedon) } \end{aligned}$	B	B		SU	160		$\mathrm{N} / \mathrm{km}$				lower Michigan 1944	streams	Estimate of number of snakes per km of stream based on observations of 32 snakes and authors assumption that this is only a fraction of the total population.
LITTER SIZE (young born live)													
Aldridge 1982	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 17 \\ & 23 \end{aligned}$	$\begin{array}{ll} 5 & \mathrm{SD} \\ 7 & \mathrm{SD} \end{array}$		$\begin{array}{r} 9 \\ 15 \end{array}$	$\begin{aligned} & 42 \\ & 63 \end{aligned}$	$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { e c Missouri } \\ & 1976-79 \end{aligned}$	streams	Size of females: (1) 570-700 mm SVL; (2) $>700 \mathrm{~mm}$ SVL. Estimated based on figure 4.
$\begin{aligned} & \text { Bauman \& Metter } \\ & 1977 \\ & \text { (sipedon) } \end{aligned}$	-	-		-				15	63	55	Missouri	NS	
Beatson 1976   (sipedon)	-	-		-	18.8					14	Kansas 1972	stream	
$\begin{aligned} & \text { Behler and King } \\ & 1979 \end{aligned}$	-	-		-	15-30			8	99		NS	NS	
$\begin{aligned} & \text { Camin \& Erlich } \\ & 1958 \\ & \text { (insularum) } \end{aligned}$	-	-		-	20.8	8.2 SD		6	34	14	Ohio, Ontario   CAN 1980-84	Lake Erie islands	
```DeGraaf & Rudis 1983 (sipedon)```	-	-		-	30			10	76		NS	NS	
Feaver 1977 (sipedon)	-	-		-	11.8			4	24	43	Michigan	pond, marshes	As cited in King 1986.
$\begin{aligned} & \text { King } 1986 \\ & \text { (insularum) } \end{aligned}$	-	-		-	22.9			9	50	39	Ohio, Ontario CAN 1980-84	Lake Erie islands	Litter size (because viviparous) increases with increasing female size.
```Martof et al. 1980 (sipedon)```	$30 \text { - }$	-						8	50		Carolinas, Virginia	NS	


Reference	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Smith 1961   (sipedon)	- -	-	-	18			8	51	6	Illinois	captive	Text notes average brood size is smaller than that noted for N.s. pleuralis.
Smith 1961   (pleuralis)	-	-	-	33			13	52	3	Illinois	NS	Author notes the average brood size is "much smaller" than this sample suggests.
Smith 1956   (sipedon)	- -	-	-				10	76		Kansas	NS	Clutch size positively correlated with female body size.
LITtERS/YEAR												
$\begin{aligned} & \text { Bauman \& Metter } \\ & 1977 \\ & \text { (sipedon) } \end{aligned}$	- -	-	-	1		/yr				$\begin{aligned} & \text { c Missouri } \\ & 1973 \end{aligned}$	fish hatchery	
Beatson 1976   (sipedon)	- -	-	-	1		/yr				Kansas 1972	stream	
days gestation												
$\begin{aligned} & \text { Bauman \& Metter } \\ & 1977 \\ & \text { (sipedon) } \end{aligned}$	-	-	-	58		days				c Missouri	fish hatchery	The rate of development is temperature dependent and is likely to vary somewhat from year to year and by location.
age at sexual maturity												
```Bauman & Metter 1977 (sipedon)```	$\begin{array}{ll} - & F \\ - & M \end{array}$	-	-	$\begin{array}{r} 2-3 \\ 21 \end{array}$		years   months				$\begin{aligned} & \text { c Missouri } \\ & 1973 \end{aligned}$	fish hatchery	
Feaver 1977 (sipedon)	$\begin{array}{ll} - & F \\ - & M \end{array}$	-	-	$\begin{array}{r} 34 \\ 23-24 \end{array}$		months months				Michigan	pond, marshes	As cited in King 1986.
King 1986 (insularum)	$\begin{array}{ll} - & F \\ - & M \end{array}$	-	-	$\begin{aligned} & 3 \\ & 2 \\ & \hline \end{aligned}$		years years				Ohio, Ontario CAN 1980-84	Lake Erie islands	Growth of multiply recaptured individuals.
LENGTH At Sexual maturity												
Aldridge 1982	- F	-	-	600		mm SVL	570		31	$\begin{aligned} & \text { e C Missouri } \\ & 1976-79 \end{aligned}$	streams	Length measured from snout to vent (SVL). Largest immature female found was 680 mm SVL.

Smith 1961 (sipedon)	late Aug	Sep	Illinois	NS	
Smith 1961 (pleuralis)	Aug	Sep	Illinois	NS	
Smith 1956 (sipedon)	Aug	Oct	Kansas	NS	
HIBERNATION					
Feaver 1977 (sipedon)	Nov	late Mar	Michigan	pond, marsh	Hibernation determined from earliest and latest capture dates. As cited in King 1986.
King 1986 (insularum)	mid Oct	mid Apr	Ohio, Ontario CAN 1980-84	Lake Erie islands	Hibernation based on earliest and latest capture dates.

***** EASTERN NEWT *****
*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference A	Age S	Sex	Con	d Seas	Mean	SD/SE		Unit			inimum	Maximum	N	Location	Habitat	Notes
BODY WEIGHT (AND LENGTH)																
Burton 1977 (viridescens)	E	B	-	-	1.45			9					36	New Hampshire 1970-72	beech/maple/birch forest	Length of efts (E) was not specified.
Gill 1979	A	F	1	SU	2.51	0.04 S	SE 9	,					121	Virginia	mountain ponds	Post breeding newts in control years for the Lower Feedstone pond. Year: (1) 1975; (2) 1976. Sampled in July.
	A	F	2	SU	2.27	0.04 S	SE 9	g					99	1975-76		
	A	M	1	SU	2.82	0.04 S	SE 9	g					124			
	A	M	2	SU	2.63	0.03 S	SE 9	g					170			
$\begin{aligned} & \text { Gillis \& Breuer } \\ & 1984 \end{aligned}$	A	B	-	-	2.24	0.71 S	SD	g (9	91 mm	total)) 1.12	3.52	20	New York	NS	Length measure is total length of eft (E).
	E	B	-	-	1.10	0.40 SD	SD 9	917	71 mm	total)) 0.42	1.82	36			
Gill 1979	A	M	1	SP	2.21	0.30 SD	SD 9	9					86	Virginia 1977	mountain ponds	Age of adults: (1) first year as adult; (2) second year as adult; and (3) third or fourth year as adult. Sampled on April 9.
	A	M	2	SP	2.27	0.39 SD	SD 9	9					62 203			
	A	M	3	SP	2.50 2.43	0.34 0.32 SD	SD 9	g 9					203 60			
	A	F	2	SP	2.60	0.43 SD	SD 9	g					30			
	A	F	3	SP	2.70	0.42 S	SD						52			
Gill 1979	A	F	1	SP	3.05	0.06 S	SE						45	Virginia 1975	mountain ponds	Weights of (1) pre-breeding (March 27-April 3); and (2) post-breeding (July 22) adult newts in Upper Feedstone Pond.
	A	F	2	SU	2.49	0.06 S	SE	9					48			
	A	M	1	SP	2.49	0.03 S	SE 9	9					89			
	A	M	2	SU	2.76	0.03 S	SE 9	9					138			
Morin 1986 (viridescens)	A	B	-	SP	2.91			g (4	44 mm	SVL)				New Jersey 1984	ponds	Length measured was from snout to vent (SVL).
Pitkin 1983	A	B	-	SU	2.13	0.44 S	SD 9	g (4	44 mm	SVL)			27	Massachusetts	shallow pond	Data from mid-July, mid-January, mid-March, and the end of November. Length measured was from snout to vent (SVL).
	A	B	-	WI	1.94	0.33 SD	SD 9	g (4	42 mm	SVL)			20	1980		
	A	B	-	SP	1.71	0.43 SD	SD 9	g (4	43 mm	SVL)			21			
	A	B	-	FA	1.63	0.28 SD	SD 9	g (4	42 mm	SVL)			21			
$\begin{aligned} & \text { Stefanski et al. } \\ & 1989 \end{aligned}$	E	B	-	SU	1.23			g			0.63	2.17	27	New York 1986	NS	Age (E) = eft.
Taylor et al. 1988	8 L	B	-	SU	0.044	0.025 SD	SD	g (1	13 mm	SVL)			22	S Carolina	pond, wetlands	```Age (E) = eft. Length of larvae (L) measured from snout to vent (SVL). Data are from June and early September.```
	L	B	-	FA	0.54	0.17 S	SD	g (2	22 mm	SVL)			12	1984		

Reference
Age Sex Cond Seas Mean SD/SE Units
N Location
Habitat
Notes

BODY LENGTH

Behler \& King 1979	A	-	-	-	65-104			mm t	total				NS	NS
Behler \& King 1979	H	-	-	-	8			mm t	total				NS	NS
Behler \& King 1979	E	-	-	-	35-86				total				NS	NS
Brophy 1980	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	-	$\begin{aligned} & \mathrm{SP} \\ & \mathrm{FA} \end{aligned}$	$\begin{aligned} & 12.3 \\ & 19.2 \end{aligned}$			$\begin{array}{ll} \mathrm{mm} & \mathrm{~S} \\ \mathrm{~mm} & \mathrm{~S} \end{array}$	SVL SVL				$\begin{aligned} & \text { s Illinois } \\ & 1976 \end{aligned}$	shallow pond
Harris 1989 (dorsalis)	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{E} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{P} \\ & \mathrm{P} \end{aligned}$	B B B M F M F	- - - - -	-	$\begin{array}{r} 4.8 \\ 13.0 \\ 23.0 \\ 30.7 \\ 31.90 \\ 33.0 \\ 34.0 \end{array}$	$\begin{array}{ll} 0.04 & \mathrm{SE} \\ 0.41 & \mathrm{SE} \\ 0.18 & \mathrm{SE} \\ 0.77 & \mathrm{SE} \\ 1.52 & \mathrm{SE} \\ 0.44 & \mathrm{SE} \\ 0.44 & \mathrm{SE} \end{array}$			SVL SVL SVL SVL SVL SVL SVL			$\begin{array}{r} 25 \\ 124 \\ 58 \\ 24 \\ 8 \\ 18 \\ 31 \end{array}$	$\begin{aligned} & \text { N Carolina } \\ & 1988 \end{aligned}$	lab
$\begin{aligned} & \text { Harris et al. } 1988 \\ & \text { (dorsalis) } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	M	-	-	$\begin{array}{r} 35 \\ 35.0 \end{array}$				$\begin{aligned} & \text { SVL } \\ & \text { SVL } \end{aligned}$	$\begin{aligned} & 24 \\ & 20 \end{aligned}$	$\begin{aligned} & 44 \\ & 42 \end{aligned}$		$\begin{aligned} & \text { N Carolina } \\ & 1983-84 \end{aligned}$	shallow pond
$\begin{aligned} & \text { Harris et al. } 1988 \\ & \text { (dorsalis) } \end{aligned}$	E	B	-	-	50.4	0.5 S	SE m	mm t	total			73	$\begin{aligned} & \text { N Carolina } \\ & 1984 \end{aligned}$	edge of shall
$\begin{aligned} & \text { Harris et al. } 1988 \\ & \text { (dorsalis) } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	B B B B B	1 2 3 4 5	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 10.0 \\ & 26.0 \\ & 32.0 \\ & 37.3 \\ & 47.8 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 6.1 \\ & 61 \end{aligned}$	$\begin{array}{r} \mathrm{mI} \\ \\ \\ \mathrm{mI} \\ \mathrm{mI} \\ \mathrm{mI} \\ \mathrm{mI} \\ \mathrm{SE} \end{array}$		total total total total total			$\begin{array}{r} 156 \\ 25 \end{array}$	$\begin{aligned} & \text { N Carolina } \\ & 1983-84 \end{aligned}$	shallow pond
Healy 1973 (viridescens)	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~J} \\ & \mathrm{~J} \\ & \mathrm{~J} \end{aligned}$	B B B B B B	1 2 3 4 5 6	$\begin{aligned} & \text { SP } \\ & \text { SP } \\ & \text { SU } \end{aligned}$	$\begin{array}{r} 26.1 \\ 26.5 \\ 31.0 \\ 30.4 \\ 33.6 \\ 33.20 \end{array}$	$\begin{array}{ll} 0.35 & \mathrm{SH} \\ 0.17 & \mathrm{SE} \\ 0.32 & \mathrm{SH} \\ 0.45 & \mathrm{SH} \\ 0.20 & \mathrm{SE} \\ 0.41 & \mathrm{SE} \end{array}$			SVL SVL SVL SVL SVL SVL	$\begin{aligned} & 20 \\ & 22 \\ & 26 \\ & 26 \\ & 27 \\ & 29 \end{aligned}$	32 31 36 33 38 36	$\begin{array}{r} 50 \\ 109 \\ 56 \\ 20 \\ 116 \\ 25 \end{array}$	$\begin{aligned} & \text { Massachusetts } \\ & 1961-65 \end{aligned}$	coastal pond

*** DIET ***

Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Brophy 1980		Cypridae (Ostracoda) Physa sp. (Gastropoda) Chironomidae (Diptera) Aphididae (Homoptera) Chaoborus sp. (Diptera) Macrocyclops albidus (Copepoda)		$\begin{array}{r} 61.3 \\ 22.4 \\ 1.7 \\ 0.9 \\ 0.8 \\ 0.8 \end{array}$			68	$\begin{aligned} & \text { s Illinois } \\ & 1976 \end{aligned}$	```shallow pond % dry weight; gut contents 12-21 mm SVL```	Larval (L) diet: items comprising $<0.5 \%$ not listed here. Plant matter found in guts was though to have been incidentally ingested and was not included in \% dry weight determinations.
Burton 1977 (viridescens)	A B	Ephemeroptera Odonata Lepidoptera Diptera other insects Cladocerans Amphipoda Pelycepoda N. viridiscens larva other (sample size)		$\begin{array}{r} 7.5 \\ 31.9 \\ 13.7 \\ 5.8 \\ 9.9 \\ 5.1 \\ 5.6 \\ 6.2 \\ 11.4 \\ 3.2 \\ (40) \end{array}$	$\begin{array}{r} 7.5 \\ 1.9 \\ 0.9 \\ 0.3 \\ 0.6 \\ 84.1 \\ 3.1 \\ 1.5 \\ 0 \\ 0.1 \\ (35) \end{array}$			New Hampshire $1970-71$	```small oligotrophic lake % wet weight; stomach and gut contents```	Diet of aquatic adults. Wet weight estimated from linear measurements, calculated volume and specific gravity of 1.05 . Summer data were collected on two days in July 1970; fall data were collected on October 3, 1971.
Burton 1976	E B	mites Collembola Homoptera Coleoptera Diptera Lepidoptera larva Araneida Gastropoda Thysanoptera Hemiptera unidentified insects other		$\begin{array}{r} 3.4 \\ 9.1 \\ 4.0 \\ 4.6 \\ 10.5 \\ 2.3 \\ 2.3 \\ 59.7 \\ 0.6 \\ 0.8 \\ 1.4 \\ 0.4 \end{array}$			35	New Hampshire $1970-72$	```beech/maple/birch forest % wet weight; stomach and gut contents```	Diet of terrestrial eft (E). Wet weight estimated from linear measurements, calculated volume and specific gravity of 1.05 .
Burton 1977 (viridescens) (continued)	L B	Zygoptera (Odonata) Chironomidae (Diptera) Cladocera Ostracoda Hyallela azteca (Amphipoda)		$\begin{array}{r} 0.8 \\ 16.2 \\ \\ 12.7 \\ 5.3 \\ 55.1 \end{array}$			20	New Hampshire 1970	```small oligotrophic lake % wet weight; stomach and gut contents```	Diet of larvae (L). Wet weight estimated from linear measurements, calculated volume, and specific gravity of 1.05 . Collected in August.

Burton 1977
(continued)
MacNamara 1977
路

Planorbidae
(Gastropoda)
Rhizopoda (Protozoa)
A B Basommatophora Stylommatophora Acari
Collembola
Thysamoptera
Coleoptera (adu
and larvae)
Lepidoptera larvae
Diptera adult
Diptera larvae
Hymenoptera adult
MacNamara 1977
E B Basommatophora
Stylommatophora
Acari
Collembola
Thysanoptera
Homoptera
Coleoptera adult
Coleoptera larvae
Lepidoptera larvae
Diptera larvae
Hymenoptera adult

Sphaeriidae (Pelecypoda)	4	4
Enchytraeidae (Oligochaeta)	1	-
Crustacea Pionidae (Arachnoidae)	2	5
Ephemeridae (Ephereroptera)	2	-
Odonata Hemiptera		1
Trichoptera	2	3
Coleoptera	<1	6
Culicidae (Diptera)	29	6
Simuliidae (Diptera) Tendipedidae (Diptera)	12	21
Ceratopogonidae (Diptera)	1	2
(sample size)		6

79 New York 1973

> leaf litter surface in forest
> $-\bar{o}$ dry weight; stomach contents

92 New York 1973
leaf litter surface in forest
\% dry weight;
stomach contents

c Pennsylvania	shallow pond
1963	-
	$\%$ of total number
	of prey items;
	stomach contents

Adult migrants (aquatic adults using terrestrial habitat). Mean snout to vent length (SVL) was 38. it (range 33 to 48 mm SVL) (rmprising <1.5 \% not listed here.

Eft (E) diet. Mean snout to vent length (SVL) of efts was 32.7 mm
SVL (range 18-41 mm SVL). Items comprising $<1.5 \%$ not listed here.

Spring newts collected in April and May; summer collected in June. $\mathrm{N}=$ number of prey items; total number of newts was 179 in spring and 89 in summer. Items comprising $<1 \%$ in both seasons not listed here.

Reference	Age S		Co		Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Logier 1952 (viridescens)	-	-	-		-	21-35		days				NS	NS	As cited in DeGraaf and Rudis 1983.
Smith 1961	-	-	-		-	14-21		days				Illinois	NS	
Smith 1956 (viridescens)	-	-	-		-	20-35		days				e Kansas	NS	This information is likely to be based on Bishop 1941.
TIME TO METAMORPHOSIS														
Gibbons \& Semlitsch 1991	E	-	-		-	1-3		years				S Carolina	ponds	Estimated duration of the eft (E) stage.
Healy 1974 (viridescens)	L	-	-		-	6		months				$\begin{aligned} & \text { Massachusetts } \\ & 1960-71 \end{aligned}$	inland ponds	Larval (L) period (from hatching until metamorphosis to eft).
Hurlbert 1970	L	-	-		-	2		months				$\begin{aligned} & \text { New York } \\ & 1963-65 \end{aligned}$	shallow ponds	Larval (L) period (from hatching until metamorphosis to eft).
Smith 1961 (louisianensis)	L	-	-		-	2-3		months				Illinois	NS	Larval (L) period until metamorphosis to eft.
Smith 1956 (viridescens)	L	-	-		-	3-4		months				e Kansas	NS	```Larval (L) period until metamorphosis to eft; this information is likely to be based on Bishop 1941.```
Smith 1961 (louisianensis)	E	-	-		-	2-3		years				Illinois	NS	Eft (E) period until metamorphosis to sexually mature adult.
Smith 1956 (viridescens)	E	-	-		- 2	2.5-3.5		years				e Kansas	NS	Eft (E) period after transformation to sexually mature adult. This information is likely to be based on Bishop 1941.

AGE AT SEXUAL MATURITY

| Healy 1974
 (viridescens) | E | B | - | - | $5-6$ |
| :--- | :--- | :--- | :--- | :--- | :--- | years

Massachusetts 1968-71
Massachusetts 1960-65
inland ponds, forests
coastal ponds

Three to seven years in the eft stage.

Age at sexual maturity in (1) Swampscott population (1961-65) and (2) Cape Cod population (1960-64). No eft stage.

Length at sexual maturity

(dorsalis)
28.4
1.3 SE mm SVL

11 N Carolina
1982-84
pine/oak forest
者

Efts (E) that were transforming into breeding adults; (1) estimate of size at first reproduction. Efts in this stage were usually found in fall or winter.

MORTALITY

Gill 1978a	A	M	-	-	45.8
	A	F	-	54.1	$\% / \mathrm{yr}$
					$\% / \mathrm{yr}$
Gill 1978a	A	M			
	A	F	-	53.1	59.5

LONGEVITY

Reference	Begin	Peak	End	Location	Habitat	Notes
Harris et al. 1988	winter		spring	$\begin{aligned} & \text { N Carolina } \\ & 1982-84 \end{aligned}$	shallow pond	Courtship season.
Harris et al. 1988	Apr		Jun	$\begin{aligned} & \text { N Carolina } \\ & 1982-84 \end{aligned}$	shallow pond	Egg laying season.
Massey 1990	lat Mar		lat Jun	$\begin{aligned} & \text { Virginia } \\ & \text { 1984-85 } \end{aligned}$	woodland pond	
Morin et al. 1983	Apr			$\begin{aligned} & \text { N Carolina } \\ & 1981 \end{aligned}$	tanks	Beginning of oviposition.
Taylor et al. 1988		winter		$\begin{aligned} & \text { S Carolina } \\ & 1984 \end{aligned}$	pond, wetlands	Egg laying season.
hatching						
Behler \& King 1979		spring		NS	NS	
Gill 1978a	Jun			$\begin{aligned} & \text { Virginia } \\ & 1974-76 \end{aligned}$	mountain ponds	
Harris et al. 1988	lat Apr			$\begin{aligned} & \text { N Carolina } \\ & 1982-84 \end{aligned}$	shallow pond	
$\begin{aligned} & \text { Morin et al. } 1983 \\ & \text { (dorsalis) } \end{aligned}$	May			$\begin{aligned} & \text { N Carolina } \\ & 1981 \end{aligned}$	tanks	
METAMORPHOSIS TO EFT						
Behler \& King 1979	lat summer	earl fall		NS	NS	
Brophy 1980		mid Sep		$\begin{aligned} & \text { s Illinois } \\ & 1976 \end{aligned}$	shallow pond	
Gibbons \& Semlitsch 1991	Jun		Sep	S Carolina	ponds	
Gill 1978a	mid Aug		lat Nov	$\begin{aligned} & \text { Virginia } \\ & 1974-76 \end{aligned}$	mountain ponds	
Hurlbert 1970	mid Jul	Aug - Sep	earl Nov	New York 1963-65	ponds	The metamorphosis and migration of efts showed two more or less distinct "waves".
Taylor et al. 1988	Jul - Aug	Sep		$\begin{aligned} & \text { S Carolina } \\ & 1984 \end{aligned}$	pond, wetlands	

Reference	Begin	Peak	End	Location	Habitat	Notes
FALL MIGRATION						
Gill 1978a	Aug - Sep		Nov	$\begin{aligned} & \text { Virginia } \\ & 1974-76 \end{aligned}$	mountain ponds	Hibernation by adults begins with mass migration to hibernacula (terrestrial).
Hurlbert 1969	lat Aug	Sep - Oct	mid Nov	$\begin{aligned} & \text { sc New York } \\ & 1963-65 \end{aligned}$	ponds, woods	One of two periods of breeding migrations of efts; coming from terrestrial habitats to aquatic.
Massey 1990	Aug			$\begin{aligned} & \text { Virginia } \\ & \text { 1984-85 } \end{aligned}$	mountain ponds	Migration from ponds to terrestrial hibernacula.
Taylor et al. 1988		lat fall		$\begin{aligned} & \text { S Carolina } \\ & 1984 \end{aligned}$	pond, wetlands	Return to the pond prior to breeding (pond dried in September).
SPRING MIGRATION						
Gill 1978a	Mar			$\begin{aligned} & \text { Virginia } \\ & 1974-76 \end{aligned}$	mountain ponds	Arrival of adults at breeding ponds.
Hurlbert 1969	Mar	Apr - earl May	lat May	$\begin{aligned} & \text { s c New York } \\ & 1963-65 \end{aligned}$	ponds, woods	One of two periods of breeding migrations of efts; coming from terrestrial habitats to aquatic.
Massey 1990	lat Mar		lat Apr	$\begin{aligned} & \text { Virginia } \\ & 1984-85 \end{aligned}$	mountain ponds	Arrival of adults at breeding ponds.

Page A-452 is left blank.
***** GREEN FROG *****
*** NORMALIZING AND CONTACT RATE FACTORS ***

BODY WEIGHT (AND LENGTH)

Length measured from snout to vent (SVL); range was from 59-87 mm SVL

Represents full grown adult; data not presented. Accuracy of value unknown.

Breeding (or attempting to breed) males captured in June. Lengths no provided. Estimated from Figure 6.

Length measured from snout to vent (SVL).
Length measured from snout to vent (SVL).

Length measured from snout to vent (SVL).

Length measured from snout to vent (SVL).
Mean size of all adults on study area. Length measured from snout to vent (SVL).

Length measured from snout to vent (SVL).
Length measured from snout to vent (SVL) .

Sexually mature adults from museum collections. Length measured from snout to vent (SVL).

Reference
Age Sex Cond Seas Mean SD/SE Units
Minimum Maximum
N Location
Habitat
Notes
GROWTH RATE

streams, ponds
Annual growth for transformed frog in size classes: (1) 30-40; (2) 40-50; (3) 50-60; (4) 60-70; (5) 70-80; (6) 80-90; and (7) 90-100. Most growth occurs between mid May and mid September. Length measured from snout to vent (SVL).

WEIGHT AT METAMORPHOSIS
Pough \& Kamel 1984

9
New York
NS
Weight at metamorphosis can vary by 2 to 4 times between the smallest and largest individuals.

LENGTH AT METAMORPHOSIS

Martof 1956b	- B	- - 32.6	mm	SVL	28.4	36.3		$\begin{aligned} & \text { s Michigan } \\ & 1948-49 \end{aligned}$	streams, ponds	Length measured from snout to vent (SVL).
Ryan 1953	- -	- - 26-38	mm	SVL				New York 1949-50	streams, ponds	Length measured from snout to vent (SVL) .
Ryan 1953	- B	- -	mm	SVL	26	38		New York1949-50	streams, ponds	Length measured from snout to vent (SVL) .
						*** DIET ***				
Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
Bush 1959 (melanota)	A B	carabidae		20.6			20	$\begin{aligned} & \text { Kentucky } \\ & 1955-56 \end{aligned}$	stream \% wet volume; stomach contents	Items comprising less than 2% not listed here.
		brentidae		5.1						
		coccinellidae		5.1						
		cerambycidae		3.9						
		platypodidae		2.8						
		zontidae		30.0						
		unident. pulmonata		5.1						
		lepidoptera		5.1						
		hemiptera		3.9						
		astacidae		3.4						
		chilopoda		2.2						
		sand, rocks, gravel		4.4						
		unident., leaves		3.9						

Reference	Age Sex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes
$\begin{aligned} & \text { Stewart \& } \\ & 1973 \end{aligned}$	Sandison A B	plant material		10.8			24	New York 1968	lake	Total $=103.3 \%$. Season of
		araneae		12.1					-	collection not specified.
		coleoptera		32.8					\% total volume;	
		hemiptera		12.9					stomach contents	
		hymenoptera		14.4						
		diptera		6.8 5.6						
		mollusca		5.4						
		lepidoptera		2.5						

*** POPULATION DYNAMICS ***
Reference Age Sex Cond Seas Mean SD/SE Units Minimum Maximum N Location

HOME RANGE SIZE

Martof 1953b (melanota)	$\begin{aligned} & \text { A } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { NB } \\ & \text { NB } \end{aligned}$	-	$\begin{aligned} & 0.0065 \\ & 0.0053 \end{aligned}$	$\begin{aligned} & 0.0036 \mathrm{~S} \\ & 0.0024 \mathrm{~S} \end{aligned}$	SD ha SD ha	$\begin{aligned} & 0.0020 \\ & 0.0020 \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.011 \end{aligned}$	$\begin{aligned} & 29 \\ & 14 \end{aligned}$	$\begin{aligned} & \text { s Michigan } \\ & 1948-49 \end{aligned}$	stream banks, stream	Daily activity range of non-breeding frogs. Juveniles $=$ subadults. Captured from May through October; adults left range for breeding.
Wells 1977 (melanota)	A	M	BR	SU	4.0-6.0		m shore				New York $1973-75$	open nearshore areas	Defended breeding territory in open areas near the shores of shallow ponds.
Wells 1977 (melanota)	A	M	BR	SU	1.0-1.5		m shore				New York 1973-75	densely vegetated nearshore areas	Defended breeding territory in stands of dense bulrushes near the shores of shallow ponds.
POPULATION DENSITY													
Wells 1978 (melanota)	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 476 \\ & 567 \end{aligned}$		N/ha N/ha			$\begin{aligned} & 21 \\ & 25 \end{aligned}$	New York 1973-77	artificial pond	Frogs initially hand-captured and placed in pond; the numbers given are for those frogs that stayed.

CLUTCH SIZE

Martof 1956a (melanota)	-	-	-	-	4,100	eggs	3,800	4,300	3	$\begin{aligned} & \text { s Michigan } \\ & 1948-49 \end{aligned}$	pond	
Pope 1947 (melanota)	-	-	-	-		eggs	3,500	5,000		Illinois	shallow water	As cited in Martof 1956a.
Wells 1976 (melanota)	-	-	-	-		eggs	1,000	7,000		New York 1973-74	shallow ponds	Estimated from field counts and photographs.

Reference	Age Se	ex	Con	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Wright 1914 (melanota)	-	-	-	-			eggs	3,500	4,000		New York	shallow water	As cited in DeGraaf and Rudis 1983.
CLUTCHES/YEAR													
Wells 1976 (melanota)	-	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 2 \\ & 1 \end{aligned}$		N/year N/year			$\begin{aligned} & 10 \\ & 12 \end{aligned}$	New York 1973-74	shallow ponds	(1) If the marked female was caught laying first clutch prior to July 21; (2) if caught laying clutch for the first time after July 21. Females caught for the first time after July 21 may have deposited a clutch at an earlier time in a different pond.
DAYS INCUBATION													
Babbitt 1937 (melanota)	-	-	-	-	3-6		days				Connecticut	shallow water	As cited in DeGraaf and Rudis 1983.
Martof 1956a (melanota)	-	-	-	-	3-5		days				$\begin{aligned} & \text { s Michigan } \\ & 1948-49 \end{aligned}$	shallow ponds	
Ryan 1953	-	-	-	-	3-5		days				$\begin{aligned} & \text { New York } \\ & 1949-50 \end{aligned}$	ponds, pools	Duration depends on water temperature.
TIME TO METAMORPHOSIS													
$\begin{aligned} & \text { DeGraaf \& Rudis } \\ & 1983 \\ & \text { (melanota) } \end{aligned}$		-	-	-			years	1	2		New England	shallow water	
Martof et al. 1980	$80 \quad \text { - }$	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{array}{r} 3 \\ 10-12 \end{array}$		months months				Virginia, Carolinas	shallow ponds	(1) Most tadpoles transform in a few months, (2) some overwinter.

Reference	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Martof 1956a,b (melanota)	$\begin{array}{ll} - & - \\ - & - \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 2.5-3 \\ & 11-12 \end{aligned}$		months months				$\begin{aligned} & \text { s Michigan } \\ & 1948-49 \end{aligned}$	shallow ponds	(1) Eggs laid prior to June; (2) eggs deposited later in the season.
Wright 1914	- -	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { SU } \end{aligned}$	$\begin{array}{r} 3 \\ 10-12 \end{array}$		months months				New York	shallow ponds	(1) Eggs laid in spring; (2) eggs laid in summer. As cited in Pough and Kamel 1984.

age at sexual maturity

Martof 1956a,b (melanota)	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 1-2 \\ & 1-2 \end{aligned}$	years years		$\begin{aligned} & \text { s Michigan } \\ & 1948-49 \end{aligned}$	shallow ponds	Years after transformation. Individuals may reach maturity at the end of their first year but generally do not attempt to breed until the following year.
Ryan 1953	-	B	-	-	1-2	years		$\begin{aligned} & \text { New York } \\ & 1949-50 \end{aligned}$	ponds, streams	Years after transformation. Transformation size and date influence when individuals attain adulthood.
Wells 1977 (melanota)	-	B	-	-	1	year		$\begin{aligned} & \text { New York } \\ & 1973-77 \end{aligned}$	pond	Sexual maturity reached usually in one year after transformation, although some may not breed until the second year.
Length at sexual maturity										
Martof 1956b	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 60-65 \\ & 65-75 \end{aligned}$	mm SVL mm SVL		$\begin{aligned} & \text { s Michigan } \\ & 1948-49 \end{aligned}$	streams, ponds	Length measured from snout to vent (SVL) .
Ryan 1953	-	$\begin{aligned} & F \\ & F \end{aligned}$	-	-	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	mm SVL mm SVL		New York $1949-50$	streams, ponds	Length measured from snout to vent (SVL) .
LONGEVITY										
Martof 1956b	A	-	-	-		years	5	$\begin{aligned} & \text { s Michigan } \\ & 1948-49 \end{aligned}$	streams, ponds	Approximate longevity in natural populations.

*** SEASONAL ACTIVITIES **

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING/LAYING						
Martof 1956a (melanota)	May	earl Jul	mid Aug	$\begin{aligned} & \text { s Michigan } \\ & 1948-49 \end{aligned}$	streams, ponds	

Reference	Begin	Peak	End	Location	Habitat	Notes
Mele 1980	lat May	June	mid Aug	New Jersey $1974-76$	swamp	
Pough \& Kamel 1984	lat spr		summer	New York	shallow ponds	
Ryan 1953	May	earl Jun	mid Aug	$\begin{aligned} & \text { New York } \\ & 1949-50 \end{aligned}$	streams, ponds	
Smith 1961 (melanota)	May		Sep	Illinois	NS	
Wells 1976	earl Jun		mid Aug	$\begin{aligned} & \text { New York } \\ & 1973-74 \end{aligned}$	shallow ponds	
METAMORPHOSIS TO ADULT						
Martof 1956a (melanota)	earl Aug	lat Aug	earl Oct	$\begin{aligned} & \text { s Michigan } \\ & 1948-49 \end{aligned}$	streams, ponds	
Martof 1956b (melanota)	earl Aug		lat Sep	$\begin{aligned} & \text { s Michigan } \\ & 1948-49 \end{aligned}$	streams, ponds	Eggs laid early in the season metamorphosed in same year.
Martof 1956b (melanota)	earl Jun		mid Jul	$\begin{aligned} & \text { s Michigan } \\ & 1948-49 \end{aligned}$	streams, ponds	Eggs laid late in the season metamorphosed the following year.
Pough \& Kamel 1984		Aug, Sep		New York	shallow ponds	For eggs laid in late spring.
Pough \& Kamel 1984		next spring		New York	shallow ponds	For eggs laid in the summer.
Ryan 1953	May	Jun-Jul	lat Sep	$\begin{aligned} & \text { New York } \\ & 1949-50 \end{aligned}$	streams, ponds	
HIBERNATION						
Martof 1956a (melanota)	Oct-Nov		Mar-Apr	$\begin{aligned} & \text { s Michigan } \\ & 1948-49 \end{aligned}$	streams, ponds	
Ryan 1953	Oct		lat Mar	$\begin{aligned} & \text { New York } \\ & 1949-50 \end{aligned}$	streams, ponds	
Smith 1961 (melanota)			Apr	NS	NS	

***** BULLFROG *****
*** NORMALIZING AND CONTACT RATE FACTORS ***

Reference A	Age Sex	Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
George 1940	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { FA } \end{aligned}$	40			$\begin{array}{r} 44 \\ 101 \\ 101 \end{array}$	$\begin{array}{r} 82 \\ 120 \\ 133 \end{array}$		Louisiana	NS	(0) = length at metamorphosis. (1)(2) are size class limits for frogs aged from 1 to 2 years after transformation. Measured during the "growing season" - spring to early fall. Length measured from snout to vent (SVL). As cited in Turner 1960.
George 1940	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-			$\begin{aligned} & \mathrm{mm} \text { SVL } \\ & \mathrm{mm} \end{aligned}$		$\begin{aligned} & 171 \\ & 184 \end{aligned}$		Louisiana	NS	As cited in Turner 1960.
Howard 1981a	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { SU } \\ & \text { SU } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & 131.72 \\ & 142.63 \\ & 114.73 \\ & 124.22 \end{aligned}$	$\begin{array}{rr} 8.92 & \mathrm{SD} \\ 11.91 & \mathrm{SD} \\ 12.15 & \mathrm{SD} \\ 12.79 & \mathrm{SD} \end{array}$			$\begin{aligned} & 151 \\ & 172 \\ & 140 \\ & 154 \end{aligned}$	$\begin{aligned} & 58 \\ & 55 \\ & 30 \\ & 23 \end{aligned}$	$\begin{aligned} & \text { Michigan } \\ & 1975,78 \end{aligned}$	pond	Year: (1) 1975; (2) 1978.
Martof et al. 1980	0 A	-	-	-			mm SVL	85	200		Carolinas, Virginia	aquatic	
Martof et al. 1980	0 T	-	-	-			mm total	125	150		$\begin{aligned} & \text { Carolinas, } \\ & \text { Virginia } \end{aligned}$	NS	Total length.
$\begin{aligned} & \text { Raney \& Ingram } \\ & 1941 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { F } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & - \end{aligned}$		45		mm SVL mm SVL mm SVL mm SVL mm SVL	$\begin{array}{r} 67 \\ 82 \\ 113 \\ 125 \end{array}$	$\begin{array}{r} 90 \\ 110 \\ 126 \\ 139 \\ 155 \end{array}$		New York	NS	(0) = length at transformation. - (4) are size class limits for frogs aged from 1 to 4 years after transformation. Measured during the "growing season" - spring to early fall. Length measured from snout to vent. As cited in Turner 1960.
BODY FAT													
Farrar \& Dupre 1983	$\begin{aligned} & \text { J } \\ & \text { J } \\ & \text { J } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { SU } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 7.6 \\ & 3.0 \\ & 1.1 \\ & 1.2 \\ & 2.4 \end{aligned}$	$\begin{array}{ll} 3.1 & \mathrm{SE} \\ 0.6 & \mathrm{SE} \\ 0.3 & \mathrm{SE} \\ 0.3 & \mathrm{SE} \\ 0.8 & \mathrm{SE} \end{array}$	mg / g mg / g mg / g mg / g mg / g			$\begin{array}{r} 13 \\ 12 \\ 8 \\ 9 \\ 11 \end{array}$	Iowa	lake	Juvenile bullfrogs in the summer/fall following transformation. (1) July 30; (2) Sept 4; (3) Sept 17; (4) Oct 2; (5) Oct 15. Fat body weight as mg fat per gram body weight.
GROWTH RATE													
George 1940	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{array}{r} 4 \\ 1.5-2 \end{array}$		$\begin{aligned} & \text { yrs to } 120 \\ & \text { yrs to } 120 \end{aligned}$				NS	NS	Years required to reach 120 mm (SVL) in length in: (1) northern US, (2) southern US. As cited in Bury and Whelan 1984.

METABOLIC RATE (OXYGEN)

FOOD INGESTION RATE

Farrar \& Dupre	J	B	-	SU	. 027	0.008	SE ml/g			13	Iowa	pond
1983	J	B	-	FA	0.00628	0.00183 S	SE ml/g			40		
Frost 1935	A	-	-	SU	0.04	0.03 S	SD g/g-day	0.005	0.10	48	NS	capt

0.005

48 NS
lab
$1 a b$

NS

Restrained and cannulated tadpoles at (1) 15 C ; (2) 25 C ; and (3) 33 C. Mean weight $=5.7 \mathrm{~g}$.

Resting (R) metabolism at: (1) $\mathrm{T}=$ 260 g in both cases.
Resting metabolism: (1) at 5 C ; (2) at 15 C . Mean weight of frogs was 74.8 g.

All frogs weighed approximately 605-620 g. Acclimated for 2 weeks 12 C ; (3) 20 C ; for 5 days fasting
All frogs weighed approximately 615-650 g. Acclimated for two weeks 12.5 C ; and (3) 20 C for 5 days fasting.

Volume of food found in
gastrointestinal tracts of recently transformed frogs.

Rough estimate based on the weight of frogs, nestling birds, insects and snails eaten by one 200 g captive frog. Value is likely to be on the high side because weight of food on days when ate only insects was not always reported. $\mathrm{N}=$ numbe weight of food eaten was reported.

Reference	Age S	ex	Food type	Spring	Summer	Fall	Winter	N	Location	Habitat - Measure	Notes		
Cohen \& Howard1958	- -		Coloeptera		43.6			300	$\begin{aligned} & \text { California } \\ & 1950-51 \end{aligned}$	```artificial ponds % frequency of occurrence; stomach contents```			
			Notonectidae		10.3								
			Diptera		6.6						comprising <3\% not included here.		
			Hymenoptera		6.3								
			Ephemeroptera		4.3								
			Proturadecomposed tissue		3.3								
			18.0										
			spiders, Lycosidae	16.0									
			unidentified insect	21.3									
			rocks, grass, leaves bark	22.0									
			chitinous material	10.0									
			snails, Planorbid	9.0									
			frogs snails,		5.6								
			4.7										
			small fish	4.3									
$\begin{aligned} & \text { Corse \& Metter } \\ & 1980 \end{aligned}$	A	B			frogs tadpoles	35	33	39			$\begin{aligned} & \text { Missouri } \\ & 1972-73 \end{aligned}$	bait minnow pond Number of items; stomach contents	Sample size $=$ number of stomachs containing food. Spring = combined totals from May 1972 and Mar-Apr 1973; Summer = June-Aug 1973; and Fall $=$ Sept 1973. Items found <5 times in all seasons not included. These included mammals, snakes, toads, Chilopoda, adult Diptera, Hymenoptera, and Hirudinea.
			8	11		0							
			shiners	305	157	25							
				7	2	5							
			Gastropoda	55	70	26							
			crayfish	22	162	18							
			other crustacea	71	42	47							
				3	23	3							
			Arachnida	31	33	15							
			Hemiptera	2	7	0							
				$\begin{gathered} 41 \\ (164) \end{gathered}$	$\begin{aligned} & 43 \\ & (175) \end{aligned}$	$\begin{aligned} & 16 \\ & (84) \end{aligned}$							
Farrar \& Dupre 1983	J	B	Diplopoda		4	1.5			Iowa	```lake % number of items; gastrointestinal tract```	```Juvenile bullfrogs (transformed that summer) collected on July 30 and from September through mid October.```		
			Gastropoda		11.8	3.0							
			Arachnida		1.3	1.1							
			Crustacea Odonata		1.3	-							
					22.4	21.6							
			Orthoptera		6.6	5.8							
			Hemiptera		15.8	33.8							
			Diptera		1.3 14.5	17.3							
			Hymenoptera Lepidoptera		10.5	12.6							
					10.5	2.3							
			(sample size)		(13)								
Fulk \& Whitaker 1968	-	B	$\begin{aligned} & \text { Ranid tadpoles } \\ & \text { crayfish } \\ & \text { Libellulidae } \\ & \text { Lepidoptera } \\ & \text { young Rana sp. } \\ & \text { Aeschvidae } \end{aligned}$		20.0			78	$\begin{aligned} & \text { Indiana } \\ & 1966-68 \end{aligned}$	```farm ponds in pastures % volume; stomach contents```	Collected in June \& July. Items comprising < 2.5\% not included. Frogs averaged 107.2 mm SVL and 153.2 g .		
					14.8								
					10.4								
					4.7								
					3.9								
(continued)					3.9								

Reference	Age S	ex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
$\begin{aligned} & \text { Currie \& Bellis } \\ & 1969 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	B	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$		m radius m radius	$\begin{array}{r} 0.61 \\ 1.1 \end{array}$	$\begin{aligned} & 10.2 \\ & 11.3 \end{aligned}$	$\begin{aligned} & 88 \\ & 43 \end{aligned}$	Ontario, CAN 1960-61	pond	Mean activity radius for frogs captured 5 or more times in August and September. Year (1) 1960 population density 1,376 frogs/ha; (2) 1961 - density 892/ha.
Emlen 1968	A	M	BR	SU	2.7		m radius			94	$\begin{aligned} & \text { Michigan } \\ & 1965-66 \end{aligned}$	pond	Measured in June, when defended as breeding territory. Based on average distance between frogs in pond of $5.4 \mathrm{~m}+/-1.8$ S.D.
POPULATION DENSITY													
Cecil \& Just 1979	$\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { FA } \\ & \text { WI } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & 70,000 \\ & 29,000 \\ & 16,000 \end{aligned}$		$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \\ & \text { N/ha } \end{aligned}$				$\begin{aligned} & \text { Kentucky } \\ & 1975-76 \end{aligned}$	Fred Pond	Population that emerges from eggs in summer and overwinters in the pond, emerging between July and September of the next year. Month of estimate: (1) September (newly hatched only); (2) January; (3) May.
Cecil \& Just 1979	$\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { FA } \\ & \text { SP } \\ & \text { SP } \end{aligned}$	$\begin{array}{r} 130,000 \\ 69,000 \\ 42,000 \end{array}$		$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \\ & \text { N/ha } \end{aligned}$				$\begin{aligned} & \text { Kentucky } \\ & 1974-75 \end{aligned}$	Coldstream Pond	Population that emerges from eggs in summer and overwinters in the pond, emerging between July and September of the next year. Month of estimate: (1) November; (2) March; (3) May.
Clarkson \& DeVos 1986	A	B	-	SU	9.1		N/km			3	AZ, CA 1981	river banks	Number of frogs observed per km of the Colorado River (both banks). Does not include frogs in backwaters further than 5 m inland. $\mathrm{N}=$ the number of surveys conducted.
$\begin{aligned} & \text { Currie \& Bellis } \\ & 1969 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{array}{r} 1,376 \\ 892 \end{array}$		$\begin{aligned} & \text { N/ha } \\ & \text { N/ha } \end{aligned}$			$\begin{array}{r} 115 \\ 50 \end{array}$	Ontario, CAN 1960-61	pond	Density of frogs on study pond in (1) 1960; (2) 1961. $\mathrm{N}=$ population size. Pond was smaller in 1961 than in 1960.
Emlen 1968	B	B	-	SU	100		N/ha				$\begin{aligned} & \text { Michigan } \\ & 1965-66 \end{aligned}$	pond	Approximate density found at a 2 ha pond.

Reference A	Age S	Sex	Con	d Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Wright 1914	-	-	-	-	4		days				New York	NS	As cited in DeGraaf and Rudis 1983.
TIME TO METAMORPHOSIS													
Bleakney 1952	-	B	-	-	3		years				Nova Scotia, CAN	NS	As cited in Bury and Whelan 1984.
Cecil \& Just 1979	-	B	-	-	1		year				$\begin{aligned} & \text { Kentucky } \\ & 1974-76 \end{aligned}$	shallow ponds	Overwinter as larvae and metamorphose between July and September.
$\begin{aligned} & \text { Cohen \& Howard } \\ & 1958 \end{aligned}$	-	B	-	-			months	6-7			$\begin{aligned} & \text { California } \\ & 1950-51 \end{aligned}$	reservoirs	In artificial ponds that often dried up before the end of summer.
Collins 1979	-	B	-	-	1-2		years				Michigan $1972-74$	pond	
Corse \& Metter 1980	-	-	-	-			years	1	2		$\begin{aligned} & \text { Missouri } \\ & 1972-73 \end{aligned}$	stock pond	About half of the tadpoles from one egg mass introduced in June transformed the next June at 31 mm SVL; the other half would have taken two years but pond went dry first.
$\begin{aligned} & \text { Corse \& Metter } \\ & 1980 \end{aligned}$	-	-	-	-			months	3.5	12		$\begin{aligned} & \text { Missouri } \\ & 1972-73 \end{aligned}$	hatchery pond	About half of the tadpoles from one egg mass introduced into hatchery pond on June 27 with abundant food for the fish transformed in mid Sept. of same year; the rest transformed the next June. Size at transformation $=34 \mathrm{~mm}$ SVL in Sept, 44 mm SVL in June.
Durham \& Bennett 1963	-	B	-	-	23-25		months				Illinois	NS	As cited in Collins 1979.
George 1940	-	B	-	-	4-6		months				Louisiana	NS	As cited in Collins 1979.
$\begin{aligned} & \text { Gibbons \& } \\ & \text { Semlitsch } 1991 \end{aligned}$	-	-	-	-			months	4-5	12-13		S Carolina	ponds	
Martof et al. 1980	0 -	B	-	-	1		year				$\begin{aligned} & \text { Carolinas, } \\ & \text { Virginia } \end{aligned}$	NS	
Ryan 1953	-	B	-	-	2-3		years				New York 1949-51	NS	
Smith 1956	-	-	-	-	1		year				Kansas	NS	

Reference Ag	Age Sex	Cond	Seas	Mean	SD/SE	Units	Minimum	Maximum	N	Location	Habitat	Notes
Viparina \& Just 1975	- B	-	-	12-14		months	3-4			$\begin{aligned} & \text { Kentucky } \\ & 1971-73 \end{aligned}$	ponds	A small percent (3-5\%) transform after 3-4 months.
Willis et al. 1956	6 - B	-	-	1		year				$\begin{aligned} & \text { Missouri } \\ & 1952-53 \end{aligned}$	ponds	
Wright 1914	- B	-	-	2-3		years				New York	NS	As cited in Willis et al. 1956.
age at sexual maturity												
```DeGraaf & Rudis 1983```	- -	-	-			years	4	5		New England	aquatic	From time of hatching.
Dowe 1979	$\begin{aligned} & -\quad B \\ & -\quad B \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		year   years				Arizona	NS	Years after metamorphosis: (1) adults which metamorphosed in fall following hatching; (2) adults which overwintered as larvae and metamorphosed in spring; as cited in Clarkson and DeVos 1986.
George 1940	- B	-	-	2		years				Louisiana	NS	Years after metamorphosis; as cited in Turner 1960.
Howard 1978a	$\begin{array}{ll} - & M \\ - & F \end{array}$	-	-	$\begin{array}{r} 1 \\ 1-2 \end{array}$		$\begin{aligned} & \text { years } \\ & \text { years } \end{aligned}$				Michigan 1975-76	pond	Years after metamorphosis based on author's own data and Collins 1975.
Raney \& Ingram 1941	- B	-	-	2-3		years				New York	NS	Years after metamorphosis; as cited in Bury and Whelan 1984.
Ryan 1953	- B	-	-	1-2		years				New York 1949-51	NS	Years after transformation.

## MORTALITY

Cecil \& Just 1979	T	B	-	-	85.5	\% tadpoles	82.4	88.2	3	$\begin{aligned} & \text { Kentucky } \\ & 1974-76 \end{aligned}$	shallow ponds
Howard 1981a	A	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 79 \\ & 80 \end{aligned}$	\%/winter   \%/winter			$\begin{aligned} & 52 \\ & 54 \end{aligned}$	Michigan $1975-76$	pond
Howard 1981a	A	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	-	-	$\begin{aligned} & 88 \\ & 92 \end{aligned}$	\%/winter   \%/winter			$\begin{aligned} & 25 \\ & 26 \end{aligned}$	$\begin{aligned} & \text { Michigan } \\ & 1977-78 \end{aligned}$	pond

\% Mortality prior to metamorphosis metamorphized after about one year in the pond. Min and max are the range found in different ponds/years.

Percent of number at end of
breeding season (1975) not returning in spring (1976).

Percent of number at end of breeding season (1977) not returning in spring (1978).


## *** SEASONAL ACtIVITIES ***

Reference	Begin	Peak	End	Location	Habitat	Notes
MATING/LAYING						
Behler \& King 1979	Feb		Oct	southern range NA	NS	
$\begin{aligned} & \text { Clarkson \& DeVos } \\ & 1986 \end{aligned}$	Apr	May	late Jun	CA, AZ 1981	river	
Culley (pers. comm.)	Mar		Sep	Louisiana	NS	As cited in Bury and Whelan 1984.
DeGraaf \& Rudis      King 1979	late May	Jul	Jul	northern range	aquatic	
$\begin{aligned} & \text { Durham \& Bennett } \\ & 1963 \end{aligned}$	May		Jun	$\begin{aligned} & \text { e c Illinois } \\ & 1941-53 \end{aligned}$	impoundment	
Ryan 1980	Apr 21		Jun 18	New Jersey	pond	
Ryan 1953	late Jun		earl Jul	New York   1949-51	NS	
Smith 1961	late Apr		Aug	Illinois	NS	
Smith 1956		May		Kansas	NS	
Storer 1922	Apr		late Jul	California	NS	As cited in Bury and Whelan 1984.
Viparina \& Just   1975		Jun-July		$\begin{aligned} & \text { Kentucky } \\ & 1971-73 \end{aligned}$	pond	
Willis et al. 1956	May	late Jun	Aug	$\begin{aligned} & \text { Missouri } \\ & 1950-54 \end{aligned}$	farm ponds	


Reference	Begin	Peak	End	Location	Habitat	Notes
Wright \& Wright 1949	late Jun		late Jul	New York	NS	As cited in Bury and Whelan 1984.
METAMORPHOSIS TO ADULT						
Cecil \& Just 1979	July		Sept	$\begin{aligned} & \text { Kentucky } \\ & 1974-76 \end{aligned}$	shallow ponds	After spending about one year as a tadpole.
$\begin{aligned} & \text { Clarkson \& DeVos } \\ & 1986 \end{aligned}$	Aug		Oct	CA, AZ 1981	river	```Young of first clutches and some from second clutches that metamorphose in the year that they hatch.```
$\begin{aligned} & \text { Clarkson \& Devos } \\ & 1986 \end{aligned}$	Mar		Apr	CA, AZ 1981	river	Young (of second clutches) which overwintered.
Collins 1979	late Jun		late Sep	$\begin{aligned} & \text { Michigan } \\ & 1972-74 \end{aligned}$	pond	
Ryan 1953	July		Sept-Oct	$\begin{aligned} & \text { New York } \\ & 1949-51 \end{aligned}$	NS	
Viparina \& Just   1975		Jun-Aug		$\begin{aligned} & \text { Kentucky } \\ & 1971-73 \end{aligned}$	pond	
Willis et al. 1956	Jun	late Jun-Aug	earl Oct	$\begin{aligned} & \text { Missouri } \\ & 1950-54 \end{aligned}$	farm ponds	
HIBERNATION						
$\begin{aligned} & \text { Durham \& Bennett } \\ & 1963 \end{aligned}$	late Oct		late Mar	$\begin{aligned} & \text { e c Illinois } \\ & 1941-53 \end{aligned}$	impoundment	
Ryan 1953	Oct-Nov		Apr-May	New York $1949-51$	NS	Smaller frogs seem to emerge earlier and start hibernating later than large frogs.
Smith 1956			mid Feb	Kansas	NS	Earliest emergence from hibernation.
Willis et al. 1956	mid Oct		Mar	$\begin{aligned} & \text { Missouri } \\ & 1950-54 \end{aligned}$	farm ponds	
Wright 1914	mid Oct		May	New York	NS	As cited in DeGraaf and Rudis 1983.

