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ABSTRACT

The availability of large spatial and spatial-temporal data geocoded at accurate loca-

tions has fueled increasing interest in spatial modeling and analysis. In this dissertation,

we present one study concerning the inference on properties of a single spatial process,

and then turn to multiple processes and provide two modeling approaches exploring the

spatially varying relationship between covariates and the response variable of interest.

In the first study, we investigate the inference tool based on quasi-likelihood, compos-

ite likelihood (CL) method and propose a new weighting scheme to construct a CL for the

inference of spatial Gaussian process models. This weight function approximates the op-

timal weight derived from the theory of estimating equations. It combines block-diagonal

approximation and tapering strategy to facilitate computations. Gains in statistical and

computational efficiency over existing CL methods are illustrated through simulation stud-

ies.

The second investigation is the development of a new spatial modeling framework

to capture the spatial structure, especially clustered structure in the relationship between

response variable and explanatory variables. The proposed method, called Spatially Clus-

tered Coefficient(SCC) regression, results in estimators of varying coefficients, which

conveys important information about the changing pattern of the relationship. The SCC

method works very effectively in estimation for data either with clustered coefficients or

smoothly-varying coefficients, based on our simulation results. Thus, it allows the re-

searchers to explore the spatial structure in the regression coefficient without any priori

information. We also derive some oracle inequalities, which provides non-asymptotic er-

ror bounds on estimators and predictors. An application of the SCC method to temperature

and salinity data in the Atlantic basin is provided for illustration.
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Motivated by the studies in Geoscience that the influence of turbulent heat flux on sea

surface temperature (SST) varies at different spatial scales, we develop a statistical model

to quantify the continuous dependence of SST-turbulent heat flux relationship (T-Q rela-

tionship) on spatial scales. In particular, we propose a penalized regression model in the

spectral domain to estimate the changing relationship with spatial scales. While appli-

cation to T-Q relationship is the main motivation for this work, it should be emphasized

that the penalized spectral regression framework is general and thus is applicable to other

phenomena of interest as well.
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1. INTRODUCTION

Nowadays the popular usage of geographical information systems (GIS) and global

positioning systems (GPS) have led to the increased collection of research data geocoded

at accurate locations, in the field of geoscience, econometrics and biological science. This

has fueled increasing interest in statistical modeling and analysis with the spatial locations

of measurements being taken into account. Spatial statistics is now an important field

within statistics.

The main feature of spatial data is the dependence of observations since data observed

on proximal locations tend to have similar values, possibly resulting from homogeneous

physical dynamics or environmental conditions. Ignoring this spatial dependence may

result in incorrect estimation of model parameters and inaccurate predictions.

There are three major objectives for spatial analysis. One of the research goals is to

make inferences on the properties of the process. That is, to estimate the parameters de-

scribing the spatial dependence structure. Another primary goal is to explain the variability

in the process of interest using a set of explanatory variables. One useful framework to

achieve this goal is spatial regression. Spatial regression coefficients reveal both the effect

of covariates, and provide important information on the relationship between two pro-

cesses. The third goal of spatial analysis is that of prediction. That is, predict an outcome

at an unobserved location, given the observed values. This dissertation focuses on the first

two research goals.

In investigating the properties of a process, conventional likelihood-based model infer-

ence methods, such as maximum likelihood estimation (MLE) and Bayesian inference, are

computationally expensive for many spatial models with large data sets. As an alternative

inference tool, composite likelihood (CL) methods have gained considerable attention in
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recent years due to their simplicity and sound asymptotic properties. However, CL estima-

tors often result in substantial loss in statistical efficiency with respect to MLE. To improve

statistical efficiency or to reduce the computational burden, recent approaches consider the

choice of weights in constructing composite likelihood in the context of spatial process.

We follow this path, in the first study, to seek an adaptive weight function for composite

likelihood with a good balance between computational complexity and estimation effi-

ciency.

In dealing with multiple spatial processes, spatial regression models such as Gaus-

sian process regression or spatial generalized linear regression models have been widely

adopted to address this problem, in which spatial dependence is taken into account by

adding a spatial random effect to the (generalized) linear regression model. Regression

coefficients in such models are often assumed to be a constant. However, in many prob-

lems especially when data are collected across a large region, it is unlikely that a constant

regression coefficient can adequately capture the spatially dynamic relationship between

response variables and covariates. One example is to have clustered pattern of regression

coefficients that abruptly change across the boundary of adjacent clusters but stay rela-

tively homogeneous within clusters. Indeed, it is of great interest to many practitioners to

identify such clusters that allow them to explain varying associations between the response

of interest and covariates. There is no existing method designed to address the clustered

coefficient regression. We develop a spatial modeling approach with the ability to capture

the spatial structures in the effect of the explanatory variables.

The relationship between response variables and covariates may not only vary in the

physical space but also in the spectral space. The latter is quite common in the applica-

tions of geophysics as the dynamics controlling the relationship typically changes with

the spatial scales. While a knowledge of the scale-dependent relationship is essential to

understand the nature of geophysical system, so far no modelling approaches have been

2



proposed to address these types of problems. In the third study, we extend the varying coef-

ficient regression model developed in the second study to the spectral domain, constructing

a penalized spectral regression model to estimate the scale-dependent relationship between

response variables and covariates.

The rest of this dissertation is organized as follows. In Section 2, we present the

study of weighted composite likelihood, focusing on effective estimation of covariance

parameters in spatial Gaussian process. Section 3 details the Spatial Clustered Coefficient

(SCC) model and its theoretical properties. An extension of the SCC model in the spectral

domain is provided in Section 4 with its application to the relationship between sea surface

temperature and turbulent heat flux at the air-sea interface. Section 5 summarizes the

studies in this dissertation.
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2. ON APPROXIMATING OPTIMAL WEIGHTED COMPOSITE LIKELIHOOD

METHOD FOR SPATIAL MODELS

2.1 Introduction

There has been much interest in recent years in a form of likelihood type estimation

called composite likelihood (CL). It is a weighted product of a collection of component

likelihoods such as low dimensional conditional or marginal densities. Because each com-

ponent in CL is a valid likelihood object, the corresponding estimating equation obtained

from the score function of CL is unbiased under standard regularity conditions. There-

fore, the CL inference is known to have well established properties of a likelihood from

a misspecified model. Compared to the maximum likelihood (ML) approach, the CL

method does not require evaluations of full likelihood functions but only products of low-

dimensional marginal or conditional likelihoods, leading to a considerable reduction of

computational burden, although a loss of statistical efficiency is generally expected with

respect to the ML method.

CL methods have been used in many contexts when it is difficult or computational ex-

pensive to evaluate or specify full likelihoods. In particular, various types of CL functions

have been introduced in spatial statistics to facilitate computations. For spatial GP models,

it is known that the full likelihood function of a GP model involves inversion of an n × n

covariance matrix for a data set of size n, requiring O(n3) operation and O(n2) memory.

This can be computationally infeasible for large datasets which are becoming increasingly

common in geosciences. [1] compared three CL functions for spatial GP models based on

the paired marginal distributions, paired conditional distributions and paired differences.

Recently, in [2], the authors proposed to use a composite likelihood function defined as

a product of the joint densities of pairwise spatial blocks. For spatial generalized lin-
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ear mixed models, the authors in [3] proposed a composite likelihood approach based on

marginal densities of pairwise differences of responses; and the authors in [4] proposed a

pairwise composite likelihood approach based on bivariate marginal densities. [5] used the

composite likelihoods for the inference of a Gaussian max-stable process for spatial ex-

treme values, in which the closed-form expressions of the corresponding joint likelihoods

are intractable.

As outlined in [6], for a given estimation problem, the choice of a suitable CL function

should be driven by statistical and computational considerations. However, it is noticeable

that many existing methods of CLs are constructed with equally weighted pairs due to its

simplicity. To improve statistical efficiency or to further reduce the computational burden

associated with large data sets that have enormous number of pairs, several investigations

have considered the choice of weights when constructing CL in the context of a spatial

process. One popular strategy is to use binary weights to exclude those pairs whose dis-

tances are beyond certain taper range [4, 7]. [8] and [9] consider selecting a taper range

by maximizing certain criteria derived from the Godambe information matrix of a CL es-

timator. The CL estimators based on binary weights have improved statistical efficiency

over equally weighted CL methods. However, these methods ignore dependence among

selected pairs and hence can still lead to considerable loss of statistical efficiency. Thus

far, very limited work has been done on designing non-binary weights. [8] investigated

weighted composite score for a scalar parameter and constructed a weight by minimiz-

ing an upper bound of the asymptotic variance of the estimates. They find that the pro-

posed weighted CL method performs better than both the binary weighted method and

the equally weighted CL method for Gaussian random fields. [10] proposed a joint com-

posite estimating function (JCEF) approach through a weight matrix to spatio-temporally

clustered data.

Our main contribution in this paper is to construct a new efficient weighted composite

5



likelihood (WCL) method for spatial Gaussian processes. The proposed weight is moti-

vated from the optimal weight derived from the theory of estimating equations. It is known

that the computational burden in constructing optimal estimating equations is formidable

as it requires the inversion of a large covariance matrix of scores. To circumvent the diffi-

culty in computing optimal weights, we exploit spatial dependence structures among pairs

and develop a sparse matrix approximation method based upon block-diagonal structure

and tapering. This leads to a weight function with a good balance between computation

complexity and estimation efficiency.

Both the cases with a scalar parameter and multiple covariance parameters are inves-

tigated. We develop a weighted profile composite likelihood method that iteratively esti-

mates each model parameter using WCL. Our method allows the use of different weights

for each individual model parameter to reflect different correlation structures among pairs

of score functions.

This section is organized as follows. In Section 2.2, we review some basics for compos-

ite likelihoods and spatial Gaussian process relevant to this study, and then introduce our

methods for efficient covariance estimation. Section 2.3 illustrates the performance of our

method through a number of simulation studies. An application to real data is presented

in Section 2.4, using the yearly total precipitation anomalies dataset [11]. Conclusions are

summarized in Section 2.5 followed by discussion.

2.2 Methodology

2.2.1 Composite likelihood

Consider a parametric statistical model with probability density function {f (z;θ), z ∈

Z ⊆ Rn}, where θ is a p-dimensional parameter vector to be estimated. Denoting

by {A1,A2, ... ,AK} a set of marginal or conditional events, composite likelihood is a

6



weighted product of the likelihood corresponding to each single event [6]

CL(θ; z) =
K∏

k=1

f (z ∈ Ak ;θ)ωk , (2.1)

where f (z ∈ Ak ;θ) is the likelihood of event Ak and {ωk , k = 1, ... , K} is a set of non-

negative weights to be chosen. The associated weighted composite log-likelihood is

cℓ(θ; z) =
K∑

k=1

ωkℓk (θ; z), (2.2)

where ℓk (θ; z) = logf (z ∈ Ak ;θ).

CL in (2.2) is a universal expression of the weighted composite log-likelihood allowing

for combinations of marginal and conditional densities [12]. For example, a special form

of CL is compounded based on pairwise differences between observations

cℓ(θ; z) =
N∑

t=1

∑
i ̸=j

wijℓij(θ; z(t)
i − z(t)

j ), (2.3)

where z(t)
i is the sample of the t-th replicate for zi .

Consider a spatial random field Z (s) that is modeled as a Gaussian process with mean

µ(s) and a covariance function C(s, s′;θ). For example, an exponential covariance func-

tion takes the form C(s, s′;θ) = σ2 exp(|s− s′|/ϕ), where σ2 is the variance parameter, ϕ

is the spatial dependence range parameter. It is well known that the data likelihood with n

observed locations involves the inversion of an n×n covariance matrix. The computational

cost can be very intensive or even prohibitive when n is large.

CL offers an alternative inference approach that only requires low-dimensional like-

lihood calculation and hence has a clear computational advantage over full likelihood.

Indeed, the computational cost for considering all possible pairs is of order O(n2). In this
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paper, we focus on constructing a WCL based on pairwise differences for the inference

of covariance parameters while assuming µ(s) is a constant in the rest of the paper. We

remark that it is relatively straightforward to extend the proposed method by including

a mean model for µ(s) following similar strategies as in restricted maximum likelihood

(REML).

Let Uij ,t = Z (si , t) − Z (sj , t), i ̸= j , t = 1, · · · , N , the differences between any two

observations of the t-th replicate. Then, we have Uij ,t ∼ N (0, 2γij(θ)), where γij(θ) =

var[Z (si) − Z (sj)], also known as the variogram in spatial statistics. The composite likeli-

hood of the pairwise difference in (2.3) can be expressed as cℓ(θ) =
∑N

t=1

∑
i ̸=j wijℓij ,t (θ),

where ℓij ,t (θ) = −{logγij(θ)/2 + [Uij ,t ]2/(4γij(θ))}.

Composite likelihood can be justified within the framework of the theory of estimating

functions. Let θ̂CL be the maximum composite likelihood estimator of θ. Clearly, θ̂CL is

also the solution of the following composite score equations,

s(θ; z) = ∇cℓ(θ; z) =
∑
i ̸=j

wijsij(θ; z) = 0, (2.4)

where ∇ denotes the gradient obtained by differentiation with respect to θ. Here sij(θ; z) =

(
∑N

t=1 ∇θ1ℓij ,t (θ; z), · · · ,
∑N

t=1 ∇θpℓij ,t (θ; z)), representing score contributions from each

pair (i , j).

Since s(θ; z) is a linear combination of the scores associated with each of the likeli-

hood terms, it is indeed an unbiased estimating equation satisfying E{s(θ, z)} = 0 under

standard regularity conditions [6]. Therefore, under the theory of the unbiased estimating

function, the maximized composite likelihood estimator θ̂CL is a consistent and unbiased

parameter estimator [4, 6],

N1/2(θ̂CL − θ) → Nq{0, G−1(θ)} (2.5)
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in distribution as N → +∞, where G(θ) = H(θ)J(θ)−1H(θ) known as Godambe infor-

mation [13] or sandwich information, H(θ) = E{−∇2cℓ(θ)} and J(θ) = var{∇cℓ(θ)}.

Despite its sound asymptotic properties, the estimation method using CL typically

results in loss of statistical efficiency compared with the maximum likelihood estimator

counterpart. Indeed, CL can be viewed as a misspecified model, and hence may not attain

the Cramér-Rao lower bound [12]. Nevertheless, efficiency gain might be achieved by

carefully designing ways to construct composite likelihood while keeping low computa-

tional cost [10, 14]. Below, we seek to construct a WCL to provide a good compromise

between computation cost and estimation efficiency.

2.2.2 Approximate optimal weighted composite likelihood

In this paper, we present a weighting strategy with the goal to improve the efficiency of

CL by exploiting the theory of optimal estimating equations [15]. Stack all the individual

score vector sij(θ) of size p into a column vector S(θ) of size pn(n−1)/2. Now let W(θ),

a pn(n − 1)/2 × p matrix, be the weighting function of θ. Then Q(θ) = W(θ)TS(θ)

defines a class of valid unbiased estimating functions. For example, the equally weighted

CL corresponds to the case where W(θ) is a binary matrix 1n(n−1)/2 ⊗ Ip. Let θw be the

root of the estimating function Q(θ) with weight matrix W, the approximate asymptotic

covariance matrix of θw is given by

E{∇Q(θ)}]−1E{Q(θ)Q(θ)T}]−1E{∇Q(θ)}]−T (2.6)

In the class of estimating functions Q(θ), the approximate covariance matrix in (2.6) is

minimized with respect to the partial ordering of nonnegative definite symmetric matrices

(see, [15]) when

W = WOpt = Cov{S(θ)}−1ET{∇S(θ)} (2.7)

9



Although the weight matrix with the above form combines score vectors in an optimal

way and leads to efficient estimators, it is rarely used in practice. Indeed, Cov(S(θ)) is

a pn(n − 1)/2 × pn(n − 1)/2 matrix, whose inversion requires O(n6) of computational

complexity, making it computationally prohibitive for large spatial data sets. Below, we

seek strategies to approximate WOpt to circumvent computational difficulties.

We first consider the case in which parameter θ is a scalar. In this case, we stack

sij(θ; z), j ̸= i into a vector S(θ) of size n(n − 1)/2. Following (2.7), the optimal weight

WOpt = −ET{∇S(θ)}Cov(S(θ))−1. Under mild regularity conditions, −E{∇Sij(θ)} =

Var(Sij(θ)), i.e., the diagonal entries of Cov(S(θ)). Rewrite Cov{S(θ)} = DCorr{S(θ)}D,

where D is a diagonal matrix proportional to the square roots of the diagonal entries of

Cov(S(θ)). The optimal weight WOpt can be expressed as

WOpt = D−1Corr(S(θ))−1D1. (2.8)

Clearly, equally weighted CL essentially corresponds to the case where correlations among

score elements are treated as zeros. However, such assumptions are unrealistic for spa-

tial models in which pairs of scores constructed on spatial differences often show non-

negligible dependence.

We seek methods to approximate the optimal weight function that takes into account

correlations among spatial pairs while keeping the computation at a low cost. To motivate

such an approximation, we investigate the pattern of the weight function WOpt (θ) and the

covariance of score functions below. First note that −ET{∇S(θ)} is a vector of size n(n−

1)/2 with each element to be Iij , the marginal Fisher information of the likelihood for a

spatial pair (i , j). The marginal information contribution from each spatial pair is expected

to vary as the distance between i and j . In fact, for a spatial Gaussian process model

with variogram γij , Iij = N
[γ(1)

ij (θ)]2

2γ2
ij (θ) . Using simple algebra, we can prove that the Godambe
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information gain by adding a pair (i , j) from a weighted CL is bounded by the marginal

information Iij . Therefore, this motivates us to taper pairs if their marginal information is

below certain threshold before constructing WCL. For example, when γij is an exponential

variogram function and the goal is to estimate the range parameter while fixing σ2, it is

easy to show that the marginal information is a monotone decaying function of distance,

which indicates that pairs with distances beyond certain taper range, denoted as τ , can be

excluded since their contributed information is minimal.

Let S(θ)taper denote the score vector stacked from the tapered sij(θ). We next examine

the pattern of the correlation matrix of the score function Cscore,taper = Corr{S(θ)taper}.

Apparently, the dimension of this correlation matrix is greatly reduced thanks to taper-

ing. To further reduce computation, a natural idea is to seek strategies to approximate

Corr{S(θ)} by only keeping elements with large correlations. Note that for the spatial

problem we consider here,

Corr{Sij(θ), Sℓk (θ)} =
{γiℓ(θ) − γjℓ(θ) + γjk (θ) − γik (θ)}2

4γij(θ)γℓk (θ)
. (2.9)

It can be proved that for a given pair (i , j),

Corr{Sij(θ), Sℓk (θ)} ≤ max{Corr(Sij(θ), Sℓ1ℓ2(θ))} (2.10)

holds for any ℓ1 ∈ {i ̸= j} and ℓ2 /∈ {ℓ ̸= k}. This inequality suggests that two pairs

achieve the largest correlation when two vertices from each pair coincides with each other.

Motivated by this finding, for a score function corresponding to a given pair (i , j), we

propose to keep its correlation with {(i , ℓ)}, for all {ℓ : diℓ < τ} and set correlations for

pairs without shared vertex to be 0. It clearly has an advantage over equal-weight CL which
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completely ignores correlations among pairs. By using a more accurate approximation of

the optimal weights, WBT (ϕ) is expected to achieve greater statistical efficiency compared

with other WCL methods.

We acknowledge that this approximation ignores correlations among pairs without

shared vertices. We explain below why it is necessary to do so for the sake of computation

efficiency. Under a proper ordering of pairs, the approximation method described above

results in a block diagonal matrix approximation to the correlation matrix Cscore,taper , de-

noted as Cscore,BT . Let M denote the number of blocks, which equals the number of unique

vertices from all remaining pairs after tapering. For a given order of these vertices from

1 to M , the m-th block is the correlation matrix of a set of two pairs {(m, j), (m, ℓ)}, for

{j ̸= ℓ > m, dmj < τ , dmℓ < τ}. Compared to the original full correlation matrix of

the score vector for all pairs, the computational cost associated with this approximated

correlation matrix is greatly reduced for two reasons: first the dimension of the matrix is

substantially reduced from the total number of pairs to the number of close pairs only;

and the approximated correlation of the close pairs has block diagonal structures, whose

computation can be handled efficiently and in parallel.

To illustrate the above idea, below we plot the pattern of the covariance matrix of the

score function Cscore,taper through a simulation. We generate 100 independent replicates

of realizations from a spatial Gaussian process at 100 randomly selected locations from

[0, 100] × [0, 100]. An exponential covariance function is used with the range parameter

ϕ = 30 and the variance σ2 = 1 (no nugget effect). We first consider estimating ϕ assuming

σ2 is known. Figure 2.1(a) shows the averaged score correlation matrix Cscore,taper for the

re-ordered remaining pairs after tapering. A notable feature for Cscore,taper is that the value

in its block diagonals are generally significantly larger than the non-block diagonals, which

justifies our approximation strategy by only considering block diagonal correlations that

capture dependence for two pairs that share a vertex.
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Figure 2.1: Weights for composite likelihood. (a) Various weights as a function of distance
of pairs. (b) The covariance matrix of scores Cov(S(θ)) based on exponential covariance
with σ2 = 1 and ϕ = 30.

With the use of the approximated score correlation matrix Cscore,BT , we propose a new

weighting function termed as block-tapering (BT) weight

WBT (θ) = −ET{∇S(θ)taper}Cscore,BT (θ)−1, (2.11)

for all pairs with dij < τ , and 0 otherwise.

Using the same simulated dataset as above, we evaluate the proposed weight func-

tion WBT (referred to as the BT-WCL method) and compare it with various other weight

functions, including a binary 1/0 weight by tapering distant pairs (denoted as W1/0(ϕ),

referred to as 1/0-WCL), an adaptive weight WWCS(θ) = diag{−E [ℓ(2)
ij (θ)]} (referred to

as the WCS method) proposed by [8], and the optimal weight WOpt (ϕ) as a benchmark.

Clearly WOpt (ϕ) appears to have a strong decreasing trend as distance d as shown in Figure

2.1(b), which is consistent with the findings in previous studies that distant pairs are nearly

uncorrelated and hence contribute little information in terms of estimating range parame-

ter. For the examples considered here with the exponential covariance, indeed the optimal

weight WOpt (ϕ) decreases from 1 (d = 0) to 0.05 at d ≥ ϕ, suggesting the use of ϕ as a

13



threshold to guarantee little loss of efficiency. It is also noticeable that the weight WBT (ϕ)

is in greater agreement with the curve WOpt (ϕ) than WWCS(ϕ) or W1/0(ϕ). This finding is

not surprising considering that W1/0(ϕ) is essentially equivalent to the weight by approxi-

mating Corr(S(ϕ))taper as an identity matrix, and WWCS(ϕ) is essentially equivalent to the

weight by approximating Cov(S(ϕ)) as an identify matrix. For d ≥ ϕ, WOpt (ϕ),WBT (ϕ)

and W1/0(ϕ) are nearly zero while WWCS(ϕ) is still significantly greater than zero. For

d ≤ ϕ, WOpt (ϕ),WBT (ϕ) and WWCS(ϕ) all decrease fairly smoothly with spatial lag d .

But the decay rate of WBT (ϕ) is much closer to that of the WOpt (ϕ) than that of WWCS(ϕ).

These findings imply that the our proposed method uses a more accurate approximation to

the optimal weight and hence is expected to improve statistical efficiency compared to the

1/0 weight and WCS weight methods. We will further demonstrate the utility our method

in Section 2.3 through numerical simulations.

We now consider the case with multiple parameters. The optimal weight in this case

involves the inversion of Cov(S(θ)), a pn(n − 1)/2 × 2n(n − 1)/2 matrix. In view of the

computational expense of the joint optimal weight in (2.8), we propose to iteratively esti-

mate model parameters following a similar spirit as in the profile likelihood method. That

is, given current values of (σ̂2, ϕ̂), we calculate a weighting function for each individual

parameter and then estimate the parameter by maximizing the weighted profile composite

likelihood. For example, assume both the range parameter ϕ and the variance σ2 are now

unknown, we estimate model parameters according to the following procedures:

(1) Start from some initial values of (σ̂2, ϕ̂). One way is to obtain preliminary estimates

of (σ̂2, ϕ̂) using fast estimation methods such as the tapered equally-weighted CL.

(2) Given σ̂2, update ϕ̂ using the BT-WCL method, and

(3) Given ϕ̂, update σ̂2 using the CL estimation with equal weights.
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The entire procedure repeats steps (2) and (3) until convergence. Of course, there is no

guarantee that convergence to a fixed pint of the iterative process will occur, especially

when parameters are not orthogonal [16]. However, our simulation studies show that in

general convergence to a fixed point is rapid.

2.3 Simulation studies

We design a number of simulation studies to investigate the use of the BT-WCL method

for the inference of spatial Gaussian process regression models.

2.3.1 Simulation 1: only range parameter is unknown

We simulate N process realizations from a Gaussian process with exponential covari-

ance function at n spatial locations. We set the true value of the variance parameter σ2

to be 1 and experiment with a range of true values of the range parameter ϕ. We first

consider the situation where only the range parameter is unknown while the other param-

eters are fixed. We compare the estimators under different CL methods via Monte Carlo

simulation results by setting N = 1000 replicates. We set n = 100 spatial locations

to make it computationally feasible to obtain the results of the optimal weight CL esti-

mator WOpt (ϕ) for our comparison analysis. To avoid numerical singularities, locations

of observations are generated following a sampling approach similar to the one in [11].

Specifically, a two-dimensional regular grid is first generated with increments of 2 over

the domain [0,
√

100N] × [0,
√

100N]. Then each grid point is perturbed by adding a

random noise, uniformly distributed on [−0.5, 0.5] to each coordinate. In this case, each

perturbed gridpoint is at least 1 unit away from any of its neighbors. Finally, n locations

are randomly chosen from the perturbed grid points without replacement.

Figure 2.2 presents the boxplots of the estimates using the five CL methods (Eq-WCL,

WCS, 1/0-WCL, BT-WCL, Opt-WCL) and the MLE method for various values of ϕ. No

strong biases are observed across all the CL estimators. In contrast, evident differences
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Figure 2.2: The boxplots of estimates for ϕ̂ using various methods. Those include Eq-
WCL, WCS, 1/0-WCL, BT-WCL, Opt-WCL and MLE when (a) ϕ = 15, (b) ϕ = 20, (c)
ϕ = 25 and (d) ϕ = 30 with observation number N = 100. Dot-dashed horizontal lines
represent the true value of ϕ. The variance is known as σ2 = 1.

in standard error for the 6 estimators are observed from the boxplots. Generally, the stan-

dard error for all estimators becomes larger as the range parameter ϕ increases. We also

calculate the relative efficiency (RE) between each of the 5 versions of composite like-

lihood (WBT (ϕ),Wequal(ϕ), W1/0(ϕ) and WWCS(ϕ), WOpt (ϕ) ) and the MLE, denoted as

MSE(·)/MSE(MLE), and report the results in Figure 2.3 (a). As expected, the highest

RE among the five CL methods is achieved by using the Opt-WCL method. Moreover,

all of the three adaptive weight CL approaches (BT-WCL, WCS, 1/0-WCL ) show better

performance than the equally weighted CL. Among them, the estimates obtained from the

proposed BT-WCL estimator yield a value of RE closest to that of the Opt-WCL estimates,

which is consistent with the findings in Section 2.2.2. In this study, the RE of the 1/0-WCL

and the WCS are generally 30%−65% lower than that of the BT-WCL. We also examine

the performance of these CL methods for two larger numbers of locations n = 400 and

n = 1000, respectively. The results of the WOpt (ϕ) are not shown since the computation

becomes formidable for large n. Overall, the results in Figure 2.3(a) and (b) indicate that
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the use of the BT weight achieves significant efficiency gains over the other CL methods

in parameter estimations. Efficiency gain also seems to be stronger as spatial dependence

range becomes shorter.

Figure 2.3: The relative efficiency (RE) of CL estimates for ϕ using different weighting
schemes. RE are calculated in case of (a)N = 100, (B)N = 400 and (c)N = 1000. The
variance is known as σ2 = 1. Dot-dashed horizontal lines represent RE = 1.

2.3.2 Simulation 2: all parameters unknown

To examine the performance of the iterative CL method for the case with multiple

parameters described in 2.2.2, in this study we consider a similar simulation design as the

one in 2.3.1 but assume both ϕ and σ2 are unknown. For each of the 1000 simulation

replicates, we generate data at N = 1000 sampling locations. We compare the results of

the estimates of ϕ and σ2 using the (iterative) BT-WCL, Eq-WCL, 1/0-WCL, and WCS

methods. In addition, we also include the results of the estimates of c = σ2/ϕ, whose

MLE has been shown to be a consistent estimator under the fixed domain asymptotics [17].

Figure 2.4 shows the RE for each estimator. Overall, we observe similar results as in the

case where σ2 is known. The (iterative) BT-WCL approach outperforms the Eq-WCL,
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1/0-WCL, and WCS method. For ϕ and c, all the adaptive weighted CL methods have

substantial improvement in RE over the equally weighted CL method, especially for spatial

GP with smaller scale spatial dependence structures. But for σ2, the relative efficiencies

(RE) of the estimates from various CL methods are comparable with each other.

Figure 2.4: The relative efficiency (RE) of CL estimates for different parameters. Esti-
mates for (a)ϕ, (b)σ2 and (c)c are calculated using different weighting schemes in case of
N = 1000. Dot-dashed horizontal lines represent RE = 1.

2.3.3 Simulation 3: computational efficiency

We have shown that the BT-WCL method achieves significant statistical efficiency gain

in the above simulations. We now focus on examining the performance of the BT-WCL

in terms of its computational efficiency. We use the simulation designed as study 1 but

varying the number of locations K from 100 to 6400 to compare the computation time

associated with each different methods. All computations are carried out on a 2.3GHz

four-core processor with 16GB of memory.

Figure 2.5(a) shows the computation times required for a single evaluation of the full

likelihood function and the composite likelihood function associated with each of the WCL

methods. These are calculated by averaging over 100 repetitions of evaluation. Note that
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Figure 2.5: Computational burden for different weights. (a) The computation time for
a single evaluation of full likelihood function and CL function with different weighting
schemes. (b) The ratio of computation time for computing BT weight to that for evaluating
composite likelihood.

the calculation of composite likelihood is of the same order for the BT-WCL and the

1/0-WCL method if the same taper range is used. This is also the case for the WCS

and the Eq-WCL approach in which all pairs of observations are included. All the CL

estimators result in a reduction of computational time compared to the MLE as expected.

The computational gains of the BT-WCL are substantial: with 6400 observations, the

computation time for the BT-WCL is only 0.3% of that for the MLE. It also outperforms

BT-WCL the equal-weighted CL method and WCS method thanks to the exclusion of

distant pairs: the computational time for the BT-WCL is only 7% of that for the WCS

and equal-weighted CL method. It is also noticeable that the computational gain becomes

more pronounced when increasing the number of observations, making it desirable for

large spatial data sets.

We remark that the computation of the BT-WCL estimator requires precomputing the

BT weight matrix to be used for the evaluation of the composite likelihood function.

Therefore, we also examine the extra computational cost associated with the computa-
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tion of the BT weight matrix. Figure 2.5(b) shows the ratio of the computation times

between calculating weights and composite likelihood functions given weights. The result

indicates that the computation cost is mainly attributed to CL function evaluation as n be-

comes large. The computation of the inversion of the sparse block matrix Cov(S(θ)) used

in BT-WCL does not cause a substantial increase in computational burden.

2.4 Application to precipitation data

We illustrate the BT-WCT method using the yearly total precipitation anomalies at

7,352 weather stations from the year 1962 in United States. This large, irregularly spaced

spatial data was used by [11]. The yearly totals precipitation anomalies is yearly totals

standardized by the long-term mean and standard deviation for each station. [11] men-

tioned it shows no obvious nonstationarity and anisotropy. Therefore, we fit to the data

Gaussian process model with an exponential covariance function (without nugget effect),

which is stationary and isotropic.

Table 2.1: Estimates of ϕ, σ2 and c using MLE and CL method with different weighting
schemes. The bottom row presents the computation time required for a single evaluation
of full likelihood function and composite likelihood.

Parameter MLE BT-WCL Eq-WCL WCS 1/0-WCL
ϕ(km) 65.9 101.4 203.8 162.8 145.8
σ2 0.72 0.77 0.78 0.77 0.77
c 0.011 0.008 0.004 0.005 0.005

Times(s) 12.64 0.03 0.47 0.47 0.03

The estimates for ϕ, σ2, and c using MLE and CL method with different type of

weights are provided in Table 2.1. The MLE for ϕ and σ2 are 65.9 and 0.722, respec-

tively, while the CL estimators are 101.4 and 0.765, larger than MLE. Among various
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weighted CL estimates, BT-WCL estimate is the closet to MLE. It is not surprising that

the equally weighted CL estimate is furthest from the MLE. As to the computation cost,

the CL estimators lead to a substantial reduction of computational time compared to the

MLE (Table 2.1). The MLE requires 12.64 seconds to evaluate a single likelihood, which

is about 400 times of the cost of BT-WCL.

2.5 Conclusions and discussion

The section addressed the problem of estimating covariance parameters of spatial

Gaussian processes when the dataset is large and irregularly spaced. We have proposed a

new adaptively weighted CL method, i.e., the BT-WCL method. The BT weight is an ap-

proximation to the optimal weight derived from the theory of optimal estimation equation.

It is calculated with the strategy of combining block-diagonal feature and tapering. This

weighting scheme leads to a considerable reduction of computational burden and retains

sound estimation efficiency.

We have shown the utility of our method through simulations and data examples. In

this section, we only investigate the use of a BT weight for the estimation of a spatial

Gaussian process with exponential covariance function. It is possible to extend the tech-

niques to more generalized covariance function with decay correlation with distance. In-

deed, we also find that the block-diagonal feature of the covariance of scores exists for the

model with power exponential covariance in an unreported simulation study. A challenge

in some of these cases will be to analytically evaluate the covariance of scores. However,

sampling or subsampling based methods might be adopted to estimate them as done in [18]

and [10]. Finally, our method of estimating the optimal weight in WCL by blocking and

tapering also has great potential to be applied for non-Gaussian spatial data in the context

of copula models or spatial generalized linear models. These topics will be investigated in

future work.
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3. SPATIAL CLUSTERED COEFFICIENT REGRESSION MODEL

3.1 Introduction

Numerous problems in environmental, earth, and biological sciences nowadays involve

large amounts of spatial data, obtained from remote ground sensors, satellite images, scien-

tific climate computer models, geographic information systems, public health and spatial

genetics, etc. In many such applications, a main problem of interest is to explain the vari-

ability in a response variable observed over the region of interest using a set of explanatory

variables, considering spatial dependence of observations.

Spatial regression models such as Gaussian process regression or spatial generalized

linear regression models have been widely adopted to address this problem, in which spa-

tial dependence is accounted for by adding a spatial random effect to the (generalized)

linear regression models. Regression coefficients in such models are often assumed to be

a constant. However, in many problems especially when data are collected across a large

region, it is unlikely that a constant regression coefficient can adequately capture the spa-

tially dynamic relationship between response variables and covariates. One example is to

have clustered pattern of regression coefficients that abruptly change across the boundary

of adjacent clusters but stay relatively homogeneous within clusters. Indeed, it is of great

interest to many practitioners to identify such clusters that allow them to explain varying

associations between responses of interest and covariates.

Our specific motivation problem is from an important scientific question in oceanog-

raphy. Geophysical fluids (i.e., air and sea water) consist of distinct fluids masses [19].

Within each fluids mass, the physical and chemical properties are relatively homoge-

neous. But they change rapidly across the narrow boundary between adjacent fluids masses

(termed as fronts in geoscience). Such a phenomenon is formed as a result of nonlinear
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nature of geophysical fluids dynamics and ubiquitous in the atmosphere and ocean [20].

When exploring the relationship between features of fluids, it is likely that the relationship

will change abruptly across the fronts. One notable instance is the relationship between

temperature and salinity of sea water (referred to as the T-S relationship henceforth). In

oceanography, temperature and salinity are two important features of water masses and

strongly affect the ocean currents [19]. Knowledge of spatial distribution of T-S relation-

ship in the ocean provides important information on the movement and extent of individual

water masses. Such information can be further used to monitor the pathway and strength

of meridional overturning circulation (MOC) which plays a key role in the global climate

system. It is desirable to built a model with the ability to capture such spatial structures in

the effect of the explanatory variables.

However, to the best of our knowledge, there are very limited work on spatially clus-

tered coefficient regression models. Thus far, literature on spatially varying coefficient

models mainly focus on smoothly varying coefficient models. Geographically Weighted

Regression (GWR) [21] and Spatially-Varying Coefficients (SVC) model [22] are two

popular models of this type. GWR is an ensemble of spatial local regression models fitted

separately. That is, a linear regression model is fitted at each spatial point, giving greater

weights to the closer points. In SVC model, the spatially-varying coefficient surface is

modeled as a multivariate spatial process with stationary specification. The SVC adopts a

Bayesian approach with posterior inference for all attainable model parameters and thus

offers a richer inferential framework. [23] and [24] compare these two methods and sug-

gest that SVC generally produces more accurate inferences on the regression coefficients

especially in the presence of strong colinearity among explanatory variables. However,

the superiority of SVC in estimation accuracy is at the cost of much higher computational

burden due to the requirement of Metropolis MCMC. For a moderate data size of 1000

points and three spatially varying coefficients, it may take several days to collect sufficient
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MCMC samples [23]. This largely limits its application to large spatial datasets which

become more and more common with advances in observational techniques. Moreover,

both GWR and SVC implicitly or explicitly assume stationarity in the spatially-varying

coefficient surface over the space as neither the weighting function in GWR or covariance

function of the coefficient process in SVC depends on the location. However, such a sim-

ple assumption would not be consistent with the complicated spatial structure of regression

coefficients in certain applications. The coefficients could vary more rapidly in some parts

of the domain than others.

In this section, our main contribution is to propose a new spatial modeling approach to

estimate regression coefficients with the presence of a spatial pattern, especially a clustered

pattern, influencing the effect of the explanatory variables without assuming stationarity

in effect. The proposed method, called Spatially Clustered Coefficient (SCC) regression,

employs penalized least square by penalizing the pairwise difference of regression coeffi-

cients between two locations that are connected by an edge in the graph. Edge selection in

our problem is challenging since there is no clear ordering of spatial points. Previous stud-

ies such as 2d (gridded) fused lasso [25] considers all the edges in a lattice graph, which

can have costly computational complexity for large spatial data sets. We implemented a

spatial graph based on minimum spanning trees (MST). Two coefficients with locations

connected by a MST tends to be similar. Therefore, the SCC model can capture the spatial

structures in coefficients by encouraging the homogeneity of the coefficient on proximate

locations. Even for the smoothly varying coefficients, we will see in the simulations that

SCC model has strong local adaptivity and can also accurately detect a spatially highly

variable pattern. With this property, the SCC model allows researchers to explore the spa-

tial structures in regression coefficients either clustered or smoothly varying. In practice,

the proposed method is computationally highly efficient, thanks to the use of MST and

transformation that reduces the problem to a usual lasso-type optimization with n − 1
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penalty terms for a spatial data set of size n.

The rest of the section is organized as follows. Section 3.2 details the Spatial Clus-

tered Coefficient (SCC) model and discusses theoretical properties of SCC. In Section 3.3,

a series of simulation studies are designed to illustrate the performance of SCC. An appli-

cation of the method is presented in Section 3.4 using the aforementioned temperature and

salinity data in the Atlantic basin. Section 3.5 summarizes the major conclusions of this

study followed by discussion. Related proof are provided in the Appendix A.

3.2 Methodology

3.2.1 Spatially clustered coefficient model

Suppose we observe spatial data {(x(si), Y (si)), i = 1, ... , n} at locations s1, ... , sn ∈

R2, where the response variable Y (si) is assumed to be spatially correlated and x(si) =

(x1(si), ... , xp(si))T is the p-dimensional vector of explanatory variables for the observation

located at si . The intercept can be included by defining xp(si) = 1 for i = 1, ... , n.

Consider the standard linear regression, Y (si) = x(si)Tβ + ϵ(si), where β = (β1, ... , βp)T

is the vector of regression coefficients and ϵ(si)’s are independently identically distributed

random noises with mean 0 and variance σ2. Without loss of generality, we assume that

the explanatory variables are standardized to have mean 0 and unit variance.

The extension of the linear regression model to allow spatially varying regression co-

efficients is straightforward,

Y (si) = x(si)Tβ(si) + ϵ(si). (3.1)

However, in many spatial datasets, it is very common to observe only one or a limited

number of replicates at each location, making the above model ill-posed if without any

assumptions on β(si). Indeed, strong spatial patterns of β(si) do exist since association
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between response variables and explanatory variables at nearby locations are expected to

be highly homogeneous. This motivates us to assign a regularization function for β(s)

utilizing their spatial homogeneity patterns.

Specifically, we propose to estimate β by minimizing the following objective function

n∑
i=1

{Y (si) −
p∑

k=1

xk (si)βk (si)}2 +
p∑

k=1

∑
(i ,j)∈E

Pλ(|βk (si) − βk (sj)|), (3.2)

where E is a set of coordinate pairs.

The term Pλ is a penalty function to encourage homogeneity between two regression

coefficients if their corresponding locations si and sj are connected by an edge in E. Here

λ is a regularization parameter determining the strength of penalization. The selection of

the penalty functions Pλ, the edge set E and tuning parameters λ are three key ingredients

in the model in (3.2). Below, we discuss strategies to address these problems.

3.2.1.1 Selection of the penalty function Pλ

There are various forms of penalty functions encouraging sparsity in the literature of

variable selection. The simplest and perhaps the most widely adopted one is the Lasso [26]

that employs an L1-penalty of the form

Pλ(t) = λ|t |. (3.3)

As the penalty (3.3) is a convex function, efficient convex optimization algorithms can

be readily applied. In this case, the L1 penalty enforces sparsity of the difference in two

edge-connected coefficients. This method allows the estimation of regression coefficients

with a spatially piece-wise constant if edge sets are selected appropriately to incorporate

spatial information. The non-zero elements of the estimated |βk (si) − βk (sj)| correspond

to boundary points, whereas any two edge-connected coefficient with zero difference be-
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long to the same cluster. Naturally, spatial cluster for each explanatory variable can be

automatically detected. However, as Lasso assigns large penalties to large values of t , it

tends to underestimate t , in our case, the difference in two regression coefficients, when its

true value is large. To remedy this flaw, various penalty functions have been proposed, in-

cluding adaptive Lasso [27], smoothly clipped absolute deviation (SCAD) [28], minimax

concave penalty (MCP) [29], and reciprocal L1-regularization (rLasso) [30]. Adaptive

Lasso assigns larger weights to the terms with small values in the L1 penalty. SCAD and

MCP adopt some concave functions that converge to constants as the penalized term be-

comes large. The rLasso uses a class of penalty functions that are decreasing in (0,∞)

with a discontinuity at 0 and converging to infinity when the penalized term approaches

zero. These two forms have smaller estimation errors compared to Lasso, which, however,

is at the expense of considerable increase in computational cost. Therefore, in practice,

penalty functions are often selected by weighing a trade-off between statistical efficiency

and computational complexity for specific problems. It should be noted that the reduction

of computational burden is critically important in spatial analysis as large datasets have

become common in diverse fields such as geoscience, ecology, and econometrics. In this

section, we mainly focus on the Lasso penalty to demonstrate the power of SCC method

for computational simplicity and conservative comparison. We remark that using more

advanced penalty forms may further improve the performance of SCC method.

3.2.1.2 Edge selections based on minimum spanning tree

Here we pay special attention to the selection of an edge set E. In spatial problems,

each location is a node in a graph. If we believe that the physical properties of geographical

locations with close distance tend to be homogeneous, it is not unreasonable to anticipate

similar coefficients for proximate locations. Therefore, E should only include the coordi-

nate pairs that are close to each other. A simple choice of E satisfying this criterion is the
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set consisting of neighboring coordinate pairs, i.e., E = {(si , sj) : i = 1, ... , n; sj ∈ Nsi}

where Nsi is the set representing the neighbors of si .

However, it is known that, unlike temporal data, spatial data do not have a natural

ordering, making it challenging to construct E.

The neighboring set Nsi can be defined using either the nearest neighbor of si or four

neighbors with common borders for grid data such as in 2D fused lasso. Although such

selections of E appear to be natural, they suffer from two evident deficiencies. First, E

defined above does not necessarily connect all the data points together. In this case, (3.2)

does not reduce to a constant regression coefficients model, when λ → ∞. Second, the

set E may include redundant coordinate pairs, imposing great computational challenges

[31, 32]. For example, consider a regular grid consisting of n points. The number of

penalty terms is 2n − 2
√

n, many of which are redundant.

The aforementioned analysis suggests that an appropriate choice for E should only

include coordinate pairs close to each other, lead to connectivity of all data points, and

have no redundant pairs. One choice of E satisfying all the three criteria is the minimum

spanning tree (MST). For spatial data, we can construct an undirected graph, a set of

vertices connected pairwise by edges, G = (V,E) consisting of the set V of vertices and

the set E of edges. In particular, the vertices correspond to the spatial locations and weights

of edges correspond to the distance between two locations. In graph theory, a minimum

spanning tree (MST) is a sub-graph that connects all the vertices together without any

cycles and with the minimum total edge weight. The edge set E constructed from the MST

automatically satisfies the three criteria by definition and is thus an appropriate choice. We

choose E as the edge set of the minimum spanning tree in this study and the corresponding
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penalized least square (3.2) with the Lasso penalty becomes

n∑
i=1

{Y (si) −
p∑

k=1

xk (si)βk (si)}2 + λ

p∑
k=1

∥Tβk∥1, (3.4)

where βk = (βk (s1), ... , βk (sn))T and T is a (n − 1) × n matrix constructed from the edge

set E in the MST. T has full rank and each row vector of T only contains two non-zero

elements, 1 and −1, by this construction.

3.2.1.3 Selection of tuning parameter λ

When λ → ∞, the model (3.2) yields a constant regression coefficient; when λ = 0,

it reduces to the ordinary least square with all different coefficients across the region.

With an appropriate λ, the penalized least square model (3.2) produces clustered regres-

sion coefficients. In practice, the optimal λ can be determined via some data-dependent

model selection criteria, such as generalized cross-validation (GCV) [33], Bayesian infor-

mation criterion (BIC) [34] and extended Bayesian information criterion (EBIC) [35, 36].

In this section, we use BIC instead of EBIC to choose λ since the latter tends to produce

over-sparsity in the penalized term (the difference of regression coefficients in our model)

according to previous studies [30].

3.2.2 Computation

The SCC model (3.2) is an optimization problem. It is easy to implement as it can be

transformed into a Lasso, or Lasso type problem after suitable reparameterization. We first

consider the transformed parameters θk = (θk (s1), ... , θk (sn))T, k = 1, ... , p defined as

θk =

 T

1
n1T

βk = T̃βk . (3.5)

Note that the T̃ is a n× n invertible matrix since T has full rank and the row vectors of
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T are orthogonal to the unit vector 1. Thus, there is a one-to one transformation between

βk and θk . Define a new design matrix as

X̃ = [diag(x1), ... , diag(xp)]T̃−1, (3.6)

where diag(xk ) is a diagonal matrix with the diagonal entries xk = (xk (s1), ... , xk (sn))T.

Then the SCC model (3.4) can be rewritten as

∥Y − X̃θ∥2
2 + λ

∑
t∈B

|θt |, (3.7)

where θ = (θT
1, ... ,θT

p)T and B represents the set B = {t : mod(t , n) ̸= 0}. Henceforth,

we will denote
∑
t∈B

|θt | as ∥θB∥1 for neatness.

Therefore, the solution to the SCC model (3.2) with Lasso penalty can be obtained by

solving the Lasso problem (3.7) with respect to the parameters θ. Estimators for β are

given by β̂k = T̃−1θ̂k . Many efficient algorithms for the Lasso, such as LARS algorithms

[37] and coordinate decent algorithm [38] can be readily applied for the SCC model. In

this study, we implement the SCC method using the package glmnet (both in R and Matlab)

which is based on the coordinate descent algorithm.

3.2.3 Theoretical properties

In this subsection, we establish the oracle inequalities for the SCC estimators. As there

is a one-to one transformation between βk and θk , we present theorem in terms of θ.

Assumptions 1. (a) There is a positive constant C1 so that n−1
n∑

i=1
X̃ 2

i ,t ≤ C1 for any n > 0

and t ∈ {1, ..., n · p}. (b) There is a positive constant Φ so that for any vector u ∈ Rn·p

satisfying
n· p∑
t=1

|ut | ≤ 4
√
|A|
√∑

t∈A
u2

t where A = {t : θt ̸= 0} ∪ BC and |A| denotes its
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cardinality, we have

1
n

uT(X̃TX̃)u ≥ Φ
∑
t∈A

u2
t . (3.8)

Assumption 1 is widely adopted in previous literature [39–42]. Assumption 1(a) re-

quires the random variables Vt = n−1
n∑

i=1
X̃i ,tεi to be sub-Gaussian for any t ∈ {1, ..., n·p}.

A sufficient condition for assumption 1(b) to be satisfied is that the restriction of Gram ma-

trix X̃TX̃ to column A is positive definite.

Theorem 1. Suppose that Assumption 1 holds. If λ
√

n/log(n) ≥ 4
√

(1 + C2)2C2
1σ

2

where C2 is a positive constant for any n > 0, we have the following inequalities with

probability tending to unity as n → ∞

1
n
||X̃θ − X̃ θ̂||22 ≤ 4λ2

n|A|
Φ

, (3.9)

∥θ − θ̂∥1≤
8λn|A|

Φ
. (3.10)

The detailed proof for (3.9) and (3.10) is provide in Appendix A. We note that for the

case of infilling domain, |A| ∼ O(
√

n) as n → ∞. Accordingly, the right hand sides of

(3.9) and (3.10) decrease asymptotically to zero as n → ∞.

3.3 Simulation studies

In this section, we present two simulation studies to illustrate the performance of the

SCC method under two different scenarios: the true regression coefficients having clus-

tered pattern and smoothly varying pattern respectively.

In both studies, we use 2000 spatial locations that are randomly selected from the
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square domain [−0.5, 0.5] × [−0.5, 0.5]. The responses at each location are generated

using the linear regression model with two predictors and an intercept:

Y (si) = β1(si)x1(si) + β2(si)x2(si) + β3(si) + ϵ(si), (3.11)

where ϵ(si)
iid∼ N(0,σ2). We set σ to be 0.1 in the following simulations.

x1(s) and x2(s) are then generated by linearly transforming two independent realiza-

tions of a spatial Gaussian process with mean zero and covariance matrix defined from an

anisotropic exponential function:

Cov{xk (si), xk (sj)} = exp

(
−

√
(sh,i − sh,j)2

ϕ2
h,k

+
(sv ,i − sv ,j)2

ϕ2
v ,k

)
, k = 1, 2, (3.12)

where (sh,i , sv ,i) is the coordinate in the horizontal and vertical direction and (ϕh,k ,ϕv ,k )

is the anisotropic range parameter. Specifically, suppose x1,0(s) and x2,0(s) are the two

independent realizations. We let x1,0(s) = x1(s) and x2,0(s) = rx1,0(si) +
√

1 − r 2x2,0(si),

allowing for the colinearity between the two spatially varying predictors. In the following

analysis, we let r = 0.75, corresponding to moderate colinearity.

We remark that numerical data analyses in previous works often generate the value

of predictors from a white noise process, corresponding to the special case (ϕh,k ,ϕv ,k ) =

(0, 0) [23, 24]. However, such a design of independent variables is far from the reality for

spatial data. For example, most of the variables used in geoscience, such as temperature,

precipitation, wind speed, ocean primary productivity, and dissolved oxygen in the sea

water, have evident spatial structures [19]. When serving as predictors of a regression

model in numerical studies, they should be generated from spatially-correlated processes.

In the following simulation studies, we reveal that the spatial correlation of predictors will

have a profound influence on the efficiency of estimation and prediction.
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We use Gaussian processes to produce predictors, considering various extent of spatial

correlation. Three combinations of range parameters (ϕh,k ,ϕv ,k ), corresponding to weak,

moderate and strong spatial correlation, are provided in the Table 3.1. To avoid loss of

generosity, we allow distinct spatial structures for different predictors by assigning differ-

ent values of (ϕh,k ,ϕv ,k ) for different k . For each value of (ϕh,k ,ϕv ,k ), we simulate 100

datasets. In each dataset, we randomly select 1000 data points out of the 2000 data points

for estimation with the remaining data points held-out for prediction.

Table 3.1: Spatial range parameters for predictors used in simulation studies.

Range parameters Weak Moderate Strong
(ϕh,1,ϕv ,1) (0.3,0.1) (1,0.3) (3,1)
(ϕh,2,ϕv ,2) (0.1,0.3) (0.3,1) (1,3)

In both studies, we compare the results with those of GWR. For the GWR method,

the regression coefficients at location si are estimated by β(si) = (XTW(si)X)−1XTW(si)Y

where X is a n × p matrix with x(si) as the i-th row and W(si) is a diagonal matrix

determined from a chosen spatial kernel function. Here we employ an exponential spatial

kernel function with the optimal range parameter estimated through cross-validation. We

use the packages glmnet to implement SCC method and the package gwr to implement

GWR (both packages are available in R and Matlab). The results of the SVC model are not

reported here since it is computationally too expensive for the size of the data considered

here. Moreover, previous studies suggest that SVC typically produces comparable results

as GWR [23].
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3.3.1 Study 1: clustered coefficients

In this study, the true regression coefficients are set to be spatially clustered. Specif-

ically, the coefficients are constant within each cluster with an abrupt change of value

across the boundaries of clusters. Three different cluster patterns are assigned to each of

the coefficients β1(si), β2(si), and β3(si) to reveal the ability of SCC for detecting various

clusters as shown in the top panel of Figure 3.1.

Figure 3.1: Spatial structure for clustered coefficients. Panel (a-c) corresponds to true
coefficient β1, β2 and β0. The estimated coefficient surface from (d-f) GWR method and
(h-g) SCC method in one simulation with spatial range parameters (ϕh,1,ϕv ,1) = (1, 0.3)
and (ϕh,2,ϕv ,2) = (0.3, 1) for predictors.

The estimated coefficients obtained from the GWR and the SCC methods are plotted

in Figure 3.1(d-i). It is noted that spatial patterns of the coefficients derived from the SCC
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method shown in the bottom panel of Figure 3.1 are highly consistent with the true regres-

sion coefficients shown in the top panel. It successfully captures the clustered structure in

coefficients and detects the abrupt changes across the boundaries of adjacent clusters. In

contrast, the estimated coefficients obtained from the GWR method do not exhibit clear

cluster structure. Specifically, the GWR method produces poor estimations of regression

coefficients near the boundary of clusters, mainly due to its nature of smoothing regression

coefficients.

We further examine the performance of the SCC in terms of parameter estimation

and prediction at hold-out locations. Specifically, we consider the mean squared error of

coefficient estimation (MSEβ) and mean squared error of prediction (MSEp), defined as:

MSEβ =
1
|Ie|
∑
i∈Ie

p∑
k=1

(βk (si)−β̂k (si))2,

MSEp =
1
|Ip|
∑
i∈Ip

(Y (si)−Ŷ (si))2,

where Ie (Ip) is the subset of data points used for estimation (prediction) with |Ie| (|Ip|)

denoting its cardinality.

The comparison of MSEβ and MSEp for GWR and SCC, under 3 different settings

of spatial dependence for covariates, is reported in Figure 3.2 and Table 3.2. For coef-

ficient estimation, the SCC method clearly outperforms the GWR method with consid-

erably smaller values of MSEβ in all the 3 settings. As the spatial correlation in co-

variates becomes stronger, the SCC estimators remain relatively more stable, whereas the

performance of the GWR degrades substantially. For instance, the MSEβ for GWR es-

timator is 0.60 when spatial correlations in covariates is weak ((ϕh,1,ϕv ,1) = (0.3, 0.1)

and (ϕh,1,ϕv ,1) = (0.1, 0.3)) but increases to 6.82 in the case of strong spatial correlation
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Figure 3.2: Boxplot of errors in Study 1. The (a)MSEβ and (b) MSEp for GWR and SCC
method, under 3 setting of spatial correlation (weark, moderate and strong) for predictors,
based on 100 simulated datasets.

((ϕh,1,ϕv ,1) = (3, 1) and (ϕh,1,ϕv ,1) = (1, 3)). In contrast, MSEβ associated with the SCC

estimator changes less by a factor of 3. Therefore, the SCC method provides more robust

inference on the regression coefficients especially in presence of strong spatial correlation

in covariates.

Table 3.2: Summary of Study 1 (clustered coefficients). The MSEβ and MSEp for the
SCC and GWR method, under various spatial correlation for predictors.

Spatial correlation MSEβ MSEp

GWR SCC GWR SCC
Weak 0.60 0.10 0.30 0.21

Moderate 1.88 0.16 0.28 0.18
Strong 6.36 0.28 0.27 0.17

For prediction, the MSEp for the SCC method is also systematically smaller than that

of the GWR method. The improvement in prediction of the SCC method over the GWR is

substantial but less striking compared with the improvement in parameter estimations. We
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note that although the MSEβ derived from the GWR method increases rapidly as the spa-

tial correlation in covariates become stronger, its MSEp is almost unchanged. This might

be partly due to the canceling effect when the estimation errors in regression coefficients

for individual covariates are carried to calculate the prediction of the response variable.

3.3.2 Study 2: smoothly varying coefficients

This study has a similar design as in Study 1, except that the regression coefficients are

independently generated from a Gaussian spatial process and hence are smoothly varying.

Here we use a zero mean and an anisotropic exponential covariance function as in (3.12).

The variance parameter is fixed at 4 and the anisotropic range parameter is set to be (3, 1)

for β1(si), (1, 3) for β2(si), and (2, 2) for β3(si), respectively.

Figure 3.3 displays the true coefficient and the estimated values using GWR and SCC

methods, respectively. The spatial pattern of coefficients derived from the SCC method

agrees reasonably well with that of the true model. The estimates from the GWR method

are, however, quite noisy with artificially large coefficient values in some parts of the

domain. This is partly due the fact that the isotropic kernel function used in the GWR is

too restrictive when fitting an anisotropic spatial field. In contrast, an advantage of SCC is

its strong local adaptivity. The use of a local pairwise penalty function allows the fitting of

a spatial field that is constant in one area but highly changing in another. Comparisons of

the MSEβ further confirm the superiority of the SCC method in estimating the smoothly-

varying coefficients (Figure 3.4). For instance, in the presence of strong spatial correlation

in predictors, the MSEβ for SCC estimator is only 1/8 of that for GWR estimator (Table

3.3).

3.3.3 Summary of simulation results

In this section, we evaluated the performance of SCC method for estimating the clus-

tered and smoothly-varying coefficients, respectively. In both cases, the SCC method is
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Figure 3.3: Spatial structure for smoothly varying coefficients. Panel (a-c)correspond to
true coefficient β1, β2 and β0. The estimated coefficient surface from (d-f) GWR method
and (h-g) SCC method in one simulation with spatial range parameters (ϕh,1,ϕv ,1) =
(1, 0.3) and (ϕh,2,ϕv ,2) = (0.3, 1) for predictors.

Table 3.3: Summary of Study 2 (smoothly varying coefficients). The MSEβ and MSEp

for the SCC and GWR method, under various spatial correlation for predictors.

Spatial correlation MSEβ MSEp

GWR SCC GWR SCC
Weak 0.29 0.17 0.15 0.25

Moderate 0.83 0.23 0.13 0.22
Strong 2.62 0.37 0.13 0.20

capable of capturing the spatial pattern in coefficients and outperforms the GWR method

with considerably smaller MSEβ . It should be noted that Study 1 and Study 2 can be
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Figure 3.4: Boxplot of errors in Study 2. The (a)MSEβ and (b) MSEp for GWR and SCC
method, under 3 setting of spatial correlation (weark, moderate and strong) for predictors,
based on 100 simulated datasets.

treated as the two extreme cases for the spatial pattern of coefficients. The former is con-

sistent with the assumption underpinning the SCC method while the latter favors the set-

ting (i.e., a global spatial kernel function independent from location) of the GWR method.

Most of the applications probably lie in between these two extreme cases. Therefore, we

expect that the SCC method should have a superior performance to the GWR method for

estimating the spatially varying coefficients in real examples, which will be demonstrated

in the following section using the hydrographic data in the ocean.

3.4 Real data analysis

3.4.1 Dataset

An application of the SCC method is performed by analyzing the temperature-salinity

relationship in the Atlantic Ocean, along with a comparison analysis with the GWR and

OLS methods. The temperature and salinity records are obtained from the World Atlas

2013 version 2 (WOA 13 V2) archived at National Oceanographic Data Center (available

through https://www.nodc.noaa.gov/OC5/woa13/). WOA is a dataset of objectively ana-
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lyzed climatological fields of temperature, salinity, dissolved oxygen, Apparent Oxygen

Utilization (AOU), percent oxygen saturation, phosphate, silicate, and nitrate derived by

combining all the available observations. All the variables are provided on regular grids.

The grid size in the zonal and meridional directions is 1 ◦ while the vertical grid size in-

creases from 10 m near the sea surface to 200 m just above the sea floor. The non-uniform

vertical grid size is typical in oceanic datasets and is rationalized by the fact that oceanic

variables like temperature and salinity change much more rapidly in the upper ocean than

in the abyss.

To facilitate analysis, we take a meridional segment of temperature and salinity in the

Atlantic basin along 25◦W between 60◦S-60◦N (Figure 3.5), leading to 11166 grid points

in total. This is a standard segment widely used in oceanographic studies as it is well

representative of spatial variations of oceanic variables. Figure 3.5a and 3.5b display the

spatial distributions of temperature and salinity along the 25◦W segment, respectively.

There are three notable features. First, the temperature and salinity are not randomly

distributed but have well organized spatial structures. Specifically, the temperature is gen-

erally higher at the lower latitudes and in the upper ocean as a result of solar radiation.

The spatial distribution of salinity is somewhat more complicated. Near the sea surface,

the salinity values peak around 30◦S and 30◦N due to the low precipitation rates at these

latitudes. In addition, there is a pronounced low-salinity tongue originating from the sea

surface around 50◦S-60◦S and extending northward and downward to the equatorial region

at 1000 m or so. This low-salinity tongue corresponds to the Antarctic Intermediate Water

(AAIW). The encounter of AAIW with high-salinity water mass centered at 30◦S leads to

a strong salinity front.

The second notable feature is that the temperature and salinity are highly anisotropic.

The temperature and salinity gradients in the vertical directions are several orders of mag-

nitude larger than those in the horizontal direction. The anisotropy is essentially a result
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Figure 3.5: Spatial distribution of (a) temperature in ◦C and (b) salinity in PSU along the
meridional segment 25◦W.

of ocean geometry. It has a width of around 20000 km but a thickness about 4 km. To

account for the geometry of ocean, oceanic studies typically adopt non-dimensional coor-

dinates (s′
h, s′

v ) = (sh/L, sv/H) where s′
h (s′

v ) is the non-dimensional horizontal (vertical)

coordinate and L (H) is the horizontal (vertical) length of ocean, respectively [20]. In the

non-dimensional coordinates, the magnitudes of horizontal and vertical gradients are on

the same order of magnitude, largely eliminating the anisotropy. In this study, we will

adopt this scaling technique following the convention of oceanic studies.

Finally, the distributions of temperature and salinity appear to be non-stationary. As

mentioned above, there is strong salinity gradient around the front formed by the AAIW

and high-salinity water mass centered at 30◦S. In addition, there is also a strong temper-

ature gradient near the sea surface around 40◦S and 40◦N. These temperature fronts are
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maintained by the energetic eastward ocean currents through the thermal wind relation.

Furthermore, both the gradients of temperature and salinity are generally stronger in the

upper ocean than in the abyss. This is because the turbulent mixing, a process homog-

enizing the fluids properties, dominates the evolution of temperature and salinity in the

abyss [20].

3.4.2 Analysis results

To explore the spatial structure of the T-S relationship, We adopt the proposed SCC

model (3.2) with Lasso penalty function (3.3) and the regression model below:

S(sh
′, sv

′) = β1(sh
′, sv

′)T (sh
′, sv

′) + β0(sh
′, sv

′),

where the response variable S(sh
′, sv

′) denotes salinity, T (sh
′, sv

′) denotes temperature,

regression coefficient β1(sh
′, sv

′) measures the T-S relationship of interest, and β0(sh
′, sv

′)

is the intercept.

To quantitatively evaluate the performance of the SCC, GWR and OLS methods, we

compare the prediction error measured by MSEP for the three methods. First, Nt points

are randomly selected from the 11166 observations for estimation with the remaining

points for prediction. Next, let Nt = 1000, 2000 and 4000 to partition the data into

training and testing sets to investigate the influence of sample size on prediction efficiency.

Finally, for each value of Nt , we repeat the random partition of data sets for 100 times and

calculate the MSEP for each dataset.

Figures 3.6a and 3.6b display the estimated coefficient surface for β1(sh
′, sv

′) from

the SCC and GWR methods, respectively. Although the true value of β1 is not available

in this case, the performance of SCC and GWR methods can still be inferred from their

estimated surface of β1. The β1(sh
′, sv

′) estimated from the SCC method has a well orga-

nized spatial structure. Its value is positive throughout the segment except in the AAIW.
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Figure 3.6: The T-S relationship β1 estimated from the (a) SCC method and (b) GWR
method. Computation are implemented based on 4000 data points randomly selected from
the 11166 data points. Note that the colorbar in (b) is saturated. The largest positive and
negative values of the GWR estimator are 11.99 and -3.61, respectively. Data points with
|β1| > 1 are marked by grey circles.

This leads to a rapid change of β1(sh
′, sv

′) in the frontal region between the AAIW and

high-salinity water mass centered around 30◦S. Such a rapid change is not unreasonable

as these two water masses are formed through different dynamics and characterized by

distinct water properties [19]. Furthermore, the β1(sh
′, sv

′) value estimated from the SCC

method is generally more variable in the upper ocean than in the abyss. This feature is

also supported by ocean dynamics: in the upper ocean, there are many active dynamical

processes affecting the T-S relationship, such as air-sea interaction, turbulent mixing, and

advection [20]; different dynamical processes may dominate in different parts of the upper
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ocean, contributing to a spatially varying T-S relationship; whereas the abyssal ocean is

much less active and thus a relatively uniform T-S relationship is expected [20].

The estimator from the GWR, however, is quite noisy with occasional outliers. We

note that the noisy result similarly occurs in the simulation studies (see Section 3.3), which

strongly implies that such noise in estimation is perhaps not an actual feature of this data

but probably due to the deficiency of the GWR method in the case with spatially correlated

explanatory variables. Indeed, the noise, especially in the abyss, is not consistent with the

oceanic dynamics since there is no dynamical process that can lead to changes of the T-

S relationship at such a short distance in the abyssal ocean [19]. According to the above

heuristic interpretation of the results with regard to ocean dynamics, the SCC method tends

to produce a more reasonable estimate for the T-S relationship than the GWR method.

We further examine the performance of SCC in terms of prediction. A summary of the

prediction error (MSEp) for the three method, SCC, GWR and OLS, is provided in Figure

3.7 and Table (3.4). The MSEp for SCC method are consistently smaller than that for

GWR and OLS. The boxplot of MSEp for GWR spreads much more widely and exhibits

more unrealistic predictive outliers, compared with that for SCC and OLS. This inferiority

of GWR is highly notable when the sample size Nt is small. These findings suggest that the

predictive performance of GWR method can be unstable and hence unreliable especially

when data size is small. The large variability of MSEp for the GWR method is partially

attributed to the severely biased estimator of coefficients as we observed in Figure 3.6b.

Concerning that the mean value of MSEp for the GWR method may be dramatically

affected by a few outliers, we also compute the median value of MSEp for various methods

(Table 3.4). The SCC method again outweighs the GWR method in terms of both the mean

and median of MSEp. For example, the mean MSEp for GWR method is 36.7 × 10−3,

12.7 × 10−3, and 45.2 × 10−3 for Nt = 1000, 2000, and 4000, respectively. But

the corresponding values for SCC method is 0.9 × 10−3, 0.8 × 10−3, and 0.8 × 10−3.
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Figure 3.7: Boxplots of MSEp for temperature and salinity dataset using SCC, GWR and
OLS method. Nt = (a) 1000, (b) 2000, and (c) 4000 data points are used for estimation.

Table 3.4: The mean and median of MSEβ and MSEp for the SCC, GWR and OLS
method. The unit here is PSU2.

Sample size Mean MSEβ Median MSEp

GWR SCC OLS GWR SCC OLS
N = 1000 0.0367 0.0009 0.1165 0.0186 0.0008 0.1164
N = 2000 0.0127 0.0008 0.1166 0.0077 0.0008 0.1165
N = 2000 0.0452 0.0007 0.1161 0.0029 0.0007 0.1158

Both SCC and GWR methods are superior to the OLS model with constant regression

coefficients, as evidenced by their much smaller mean and median MSEp. This highlights

the necessity of allowing regression coefficients to vary over space. Moreover, we note

that there is a gain in prediction efficiency for all three methods as the sample size Nt

increases. These comparisons demonstrate that the SCC method is more robust than the

GWR method.

3.5 Conclusions and discussion

When exploring complicated phenomena in ecology, econometric and environmetrics,

it is desirable to built a spatial model with the ability to capture the spatial structure in the
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relationship between a response variable and explanatory variables. This section described

a new spatial regression approach, called spatially clustered coefficient (SCC) method, to

address the problems with the presence of spatial pattern, especially clustered pattern in

the effect of covariates. Specifically, the SCC method accommodates spatial dependence

through structured coefficients and employs penalized least square for estimation, where

the penalty function encourages similarity in coefficients with locations connected by min-

imum spanning tree. Although the SCC method is designed to detect the cluster structure

coefficients, it also works reasonably well in capturing a wide range of spatial patterns,

as illustrated in the simulation studies. Thus, it allows researchers to explore the spatial

pattern in the regression coefficient without any priori information. We establish the oracle

inequalities for SCC estimator and demonstrate that its mean square error asymptotically

approaches zero as the number of spatial points increases to infinity, under the infilling

domain asymptotics. The SCC method is easy to implement as it can be transformed

into the a Lasso (or Lasso-type) problem, so that a lot of efficient algorithms and some

well-established packages in R and Matlab can be readily applied.

Both simulation studies and real data analysis indicate that the SCC method outper-

forms the GWR method in terms of estimation and prediction. This superior performance

becomes more evident when the explanatory variables have spatial correlation. In the anal-

ysis of temperature and salinity data in the Atlantic Ocean, the SCC method produces a

more reasonable and robust estimate for the T-S relationship than the GWR method and

OLS. The coefficients surface estimated from the SCC method are consistent with the in-

ference from the oceanic dynamics. In contrast, the GWR estimator is quite noisy with

unrealistic large values occurring in some regions.

Through simulation studies we show that the SCC method is flexible in terms of local

adaptation even for spatially smooth varying coefficients. However, a large number of

piece-wise constants need to be fitted for such situations. Ideally, a penalty function that
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simultaneously detects the boundaries of a cluster while encouraging smoothly varying

coefficients within a cluster is desired. We leave the extension of SCC to this setting to

future work.
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4. QUANTIFICATION OF CONTINUOUS DEPENDENCE OF SST-TURBULENT

HEAT FLUX RELATIONSHIP THROUGH PENALIZED SPECTRAL

REGRESSION∗

4.1 Introduction

Turbulent heat flux at the air-sea interface is an important quantity in the atmosphere-

ocean interactions and is closely related to the sea surface temperature (SST). An in-depth

knowledge of the relationship between SST and turbulent heat flux (referred to as T-Q re-

lationship henceforth) is essential to understand the nature of coupled atmosphere-ocean

system and to improve the model representation of oceans meridional overturning circula-

tion [43–46].

The T-Q relationship is complicated by the dual role of turbulent heat flux in the dy-

namics of SST [47]. At large scales (>1000 km), the turbulent heat flux largely contributes

to the generation of SST anomalies, and the generated SST anomalies in turn can modulate

the turbulent heat flux. The former leads to a negative T-Q relationship (The heat flux is

defined positive upward throughout this study) while the latter tends to produce a positive

T-Q relationship (also known as the negative air-sea feedback) [48]. At mesoscales (100-

1000 km) [19], the SST anomalies are mainly generated through the baroclinic instability

of major oceanic fronts and strongly damped by the turbulent heat flux [49]. This results

in a strong positive T-Q relationship.

Despite the differed influence of turbulent heat flux on SST at different spatial scales,

a continuous dependence of T-Q relationship on spatial scales has not been quantified

mainly due to the lack of appropriate statistical tools. Previous studies [48,50, 51] usually

∗Reprinted from "Quantify the continuous dependence of SST-turbulent heat flux relationship on spa-
tial scales" by Furong Li, Huiyan Sang, and Zhao Jing, 2017. Geophysical Research Letters, vol. 44,
doi:10.1002/2017GL073695, Copyright [2017] by American Geophysical Union.
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evaluated the scale dependence by spatially averaging the data to several arbitrarily chosen

coarser grids and then estimating the relationship from coarse-grained data. However,

such a method can only provide a crude estimate on the dependence of T-Q relationship

on spatial scales. In particular, it evaluates the T-Q relationship at several pre-chosen scale

ranges rather than a continuous dependence on scales.

Another deficiency of previous methods is the requirement of sufficiently long time

series to get a reliable estimate of the T-Q relationship [48, 52]. This ignores the strong

temporal variability in the T-Q relationship and may lead to biased estimates. Therefore,

it is desirable to have a statistical model that can provide reasonable estimates even only

one time record is available. Such a statistical model can not only reduce biases in the

estimates but also allow analyzing the temporal variability of T-Q relationship. We note

that the variability of T-Q relationship at interannual and longer time scales has not been

reported in the previous literature probably due to the limitation in the existing methods.

In this study, we propose a novel statistical modeling approach, penalized spectral

regression, based on state-of-the-art statistical methodologies to explore the scale depen-

dence of the T-Q relationship and its temporal variability at seasonal and longer time pe-

riods. As demonstrated below, the penalized spectral regression (PSR) is able to capture

continuous dependence of T-Q relationship on spatial scales. Furthermore, it is applicable

to the case where only one time record is available. The section is organized as follows.

The data and methodology are provided in Section 4.2. Section 4.3 presents the analysis of

the T-Q relationship in the Kuroshio extension region by applying the PSR method to the

ERA-Interim reanalysis [53] dataset. Conclusions and discussion are included in Section

4.4.
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4.2 Data and methodology

4.2.1 Data

The SST and turbulent heat flux data used in this study are obtained from the ERA-

Interim reanalysis [53] dataset. The data are monthly outputs spanning from January 1979

to October 2016. To analyze the scale dependence of T-Q relationship, we use the data in

the Kuroshio extension region (148.5◦E-171.5◦W, 17.5◦N-47.5◦N), one of the regions with

the strongest atmosphere-ocean coupling. The spatial resolution of the dataset is 0.75◦×

0.75◦ which is fine enough to resolve a large portion of variability at mesoscales (A recent

high-resolution (0.1◦) coupled modeling study by [49] reveals that most of the mesoscale

variability in the Kuroshio extension region occurs around 600 km). The box size chosen

here is small enough to avoid strong spatial non-stationarity in the T-Q relationship [51]

but is sufficiently large to include the interested spatial scales.

4.2.2 The PSR method

A regression model capturing the continuous dependence of T-Q relationship on spatial

scales is

Q̃t
k ,ℓ = (αk ,ℓ + iβk ,ℓ)T̃ t

k ,ℓ + (ck ,ℓ + idk ,ℓ) + ϵt
k ,ℓ, (4.1)

where Q̃t
k ,ℓ and T̃ t

k ,ℓ are the 2-D Fourier transform of turbulent heat flux and SST anoma-

lies, k and ℓ are the wavenumber components in the zonal and meridional directions, t

is the index for time series, αk ,ℓ + iβk ,ℓ and ck ,ℓ + idk ,ℓ are the complex regression coef-

ficients and intercepts to be estimated, and ϵt
k ,ℓ is the complex independently identically

distributed random noise. The real part of regression coefficients αk ,ℓ characterizes the

continuous dependence of T-Q relationship on wavenumbers.

Canonically, αk ,ℓ + iβk ,ℓ and ck ,ℓ + idk ,ℓ can be estimated by solving the ordinary least
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square problem:

min{
∑

t

∑
k ,ℓ

|Q̃t
k ,ℓ − (αk ,ℓ + iβk ,ℓ)T̃ t

k ,ℓ − (ck ,ℓ + idk ,ℓ)|}. (4.2)

In Eq. (4.2), αk ,ℓ + iβk ,ℓ and ck ,ℓ + idk ,ℓ are estimated pointwisely in the wavenumber

space. It requires a relatively large number of samples (a sufficiently long time series in

our case) to get a reliable estimate. In particular, αk ,ℓ+iβk ,ℓ and ck ,ℓ+idk ,ℓ are undetermined

with only one time record available. To overcome this shortage, we propose a penalized

spectral regression (PSR) method that allows borrowing information across wavenumbers

to estimate αk ,ℓ + iβk ,ℓ and ck ,ℓ + idk ,ℓ. Specifically, αk ,ℓ + iβk ,ℓ and ck ,ℓ + idk ,ℓ are estimated

by minimizing the following objective function,

∑
t

∑
k ,ℓ

|Q̃t
k ,ℓ − (αk ,ℓ + iβk ,ℓ)T̃ t

k ,ℓ − (ck ,ℓ + idk ,ℓ)|

+ λ
∑
k ,ℓ

P(αk ,ℓ) + P(βk ,ℓ) + P(ck ,ℓ) + P(dk ,ℓ),
(4.3)

where λ is a tuning parameter determining the amount of penalization, the penalty

function P(θ), θ = α, β, c, d is defined as

P(θk ,ℓ) = |θk ,ℓ −
1
4

(θk+∆k ,ℓ + θk−∆k ,ℓ + θk ,ℓ+∆ℓ + θk ,ℓ−∆ℓ)|. (4.4)

Eq. 4.4 belongs to generalized Lasso penalty functions [25]. It penalizes the difference

of αk ,ℓ+iβk ,ℓ (ck ,ℓ+idk ,ℓ) at some wavenumber from its values at neighboring wavenumbers

and thus encourages the similarity of αk ,ℓ + iβk ,ℓ (ck ,ℓ + idk ,ℓ) between adjacent wavenum-

bers. When λ approaches infinity, Eq. 4.3 will result in constant T-Q relationship in the

wavenumber space. For λ = 0, Eq. 4.3 reduces to Eq. 4.2. In practice, the optimal value

of λ can be determined from the Bayesian information criterion (BIC) or cross validation.
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Finally, we remark that more advanced penalty functions, such as the smoothly clipped

absolute deviation (SCAD) penalty [28] and minimax concave penalty (MCP) [29] are

also applicable but at the expense of increased computational burden.

The rationale of adopting the penalty functions Eq. 4.4 is rooted in the belief that the

T-Q relationship should have a well-organized structure rather than fluctuate randomly in

the wavenumber space. From a dynamical point of view, there are no foreseen reasons

why such a belief is unreasonable. As Eq. 4.2 fails to utilize such prior information, it

requires a sufficiently long time series to get a reliable estimate and thus is an inefficient

method to estimate the T-Q relationship. In contrast, the PSR method borrows neighboring

information to accommodate structured T-Q relationship in the wavenumber space. As

illustrated in Section 4.3, it can provide reasonable estimates even when only one time

record is available.

4.2.3 Computation of the PSR

The monthly data are temporally averaged to construct seasonal time series of SST and

turbulent heat flux. To compute the SST and turbulent heat flux anomalies, we remove a

linear fit along each longitude from the SST and heat flux map, followed by subtracting

a linear fit along each latitude (See Figure 4.1a) for an instance of resultant SST and

turbulent heat flux anomalies). Given the domain size used in this study, such defined

anomalous fields are isolated from the basin-scale background and at the same time largely

preserve the variability from the smallest resolved spatial scale (150 km) to 8000 km,

making it suitable to analyze the T-Q relationship on a wide range of interested spatial

scales. Finally, a 2-D fast Fourier transform (FFT) is applied to the SST and heat flux

anomalies to evaluate Q̃t
k ,ℓ and T̃ t

k ,ℓ. As the linear fits make the Fourier components at

the zero wavenumber, i.e., Q̃t
0,0 and T̃ t

0,0, become zero, α0,0 + iβ0,0 is poorly constrained.

To avoid unrealistic large values for α0,0 + iβ0,0 and its contamination on neighboring
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wavenumbers, we replace the penalty terms λ(P(α0,0)+P(β0,0)) in Eq. 4.3 by λ|α0,0+β0,0|

to constrain the value of α0,0 + iβ0,0. Such a penalty term is also reasonable in a dynamical

sense as previous studies suggest that the T-Q relationship should be much weaker at basin

scales than at mesoscales [48, 50].

Figure 4.1: A A case study of SST and turbulent heat flux anomalies. (a) The spatial
distribution of SST anomalies in K (contours) and turbulent heat flux anomalies in W/m2

(color) in DJF between 2011 and 2012. (b) The wavenumber spectra of SST anomalies
(blue solid) and turbulent heat flux anomalies (red dashed). Each spectrum has been nor-
malized by its maximum. (c) The scatter plot of SST anomalies v.s. turbulent heat flux
anomalies. The black dashed line denotes the pattern regression.

With the values of Q̃t
k ,ℓ and T̃ t

k ,ℓ available, Eq. 4.3 can be solved for any length of time

series using the coordinate descent algorithm [38]. To fully assess the temporal variability

of the T-Q relationship and also to illustrate the power of the PSR method, we will solve

Eq. 4.3 for each season of individual years, in which case there is only one time record

available for each estimation.
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4.3 Results

4.3.1 The continuous dependence of T-Q relationship on spatial scales

We first perform a case study in the winter season (DJF) between 2011 and 2012 to

illustrate the performance of PSR method. Figure 4.1a and b display the SST and turbulent

heat flux anomalies and their wavenumber spectra, respectively. Both the SST and turbu-

lent heat flux anomalies exhibit a full spectrum of variability with dominant variability

occurring within 4◦-30◦ (1◦ corresponds to about 100 km in the studied domain). There is

a positive pattern correlation between SST and turbulent heat flux anomalies (Figure 4.1c).

Their pattern regression coefficient is 36.2 W/(m2K).

Figure 4.2: The T-Q relationship. (a) The continuous dependence of T-Q relationship on
spatial scales in the case study of DJF between 2011 and 2012. (b) Same as (a) but for the
climatological T-Q relationship in each season.

Figure 4.2a displays the continuous dependence of T-Q relationship on the wavenum-

ber (kH =
√

k2 + l2) derived from the PSR method. It provides much richer information

than a single regression coefficient derived from the pattern regression. The value of α av-
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eraged over all the wavenumbers is 36.3 W/(m2K), compatible to 36.2 W/(m2K) derived

from the pattern regression. However, as revealed by Figure 4.2a, the T-Q relationship

varies significantly with wavenumber. The value of α stays relatively stable at mesoscales.

It varies by less than 20% for kH ranging from 0.1 cycle per degree (cpd) to the largest re-

solved wavenumber (0.67 cpd). The mean value of α within 0.1-0.67 cpd is 39.9 W/(m2K),

larger than that derived from the pattern regression which essentially merges the T-Q rela-

tionship at all the spatial scales. Then the value of α decreases rapidly and monotonically

as the scales become larger. It ends at 5.6 W/(m2K )) at the smallest resolved wavenum-

ber (0.0125 cpd). Such a scale-dependence of α is supported by the SST dynamics in the

Kuroshio extension region. At mesoscales, the SST anomalies are mainly generated by the

baroclinic instability of Kuroshio extension jet and are strongly damped by the turbulent

heat flux once generated [49]. Such a scenario is consistent with a large positive value for

α at mesoscales. At large scales, the turbulent heat flux plays a dual role in the dynamics

of SST anomalies. On one hand, it largely contributes to the generation of SST anomalies,

contributing to a negative value of α. On the other hand, the SST anomalies are subjected

to the damping by the turbulent heat flux after their generation but this damping effect is

expected to be weaker than that at mesoscales [54, 55]. Combining these two effects will

result in a rapid decrease of magnitude of α as the spatial scales migrate from mesoscales

to large scales.

The scale-dependence of the SST-heat flux relationship averaged over 38 years is quali-

tatively similar to the relationship obtained in the case study (Figure 4.2b). The climatolog-

ical mean value of α varies by less than 4% at mesoscales and then decreases rapidly as the

spatial scales become larger. However, the climatological mean value of α at mesoscales

is only about 26.0 W/(m2K)), significantly smaller than 39.9 W/(m2K) in the case study.

As demonstrated in the next subsection, such a difference is mainly due to the pronounced

seasonality of α at mesoscales.

55



4.3.2 Low-frequency variability of scale-dependent T-Q relationship

In this subsection, we examine the variability of scale-dependent T-Q relationship at

seasonal and longer time periods. Figure 4.2b displays the value of α in different seasons

averaged over 38 years. In all the seasons, the dependence of α on spatial scales is qual-

itatively similar to that in the case study above, i.e., the value of α is relatively stable at

mesoscales and then decreases rapidly as the spatial scales further increase. Despite these

similarities, α exhibits an evident seasonal cycle. Its phase is coherent at all the spatial

scales but its amplitude is more pronounced at mesoscales than at large scales. In winter

(DJF), the mean value of α at mesoscales reaches up to 37.2 W/(m2K), more than twice the

value (14.5 W/(m2K)) in summer (JJA). The strong damping of mesoscale SST anomalies

in winter is mainly due to the cold dry air masses coming from the Asian continent and

high wind speed associated with the energetic winter storms, which significantly enhances

the air-sea coupling [56].

The seasonality of the T-Q relationship in the Kuroshio extension region has also been

studied in previous literature but without taking the scale dependence into consideration

[48, 57]. These studies reported that the damping of SST anomalies by turbulent heat

flux in the Kuroshio extension region is stronger in winter and autumn than in spring and

summer, which is consistent with our results derived from the PSR method. However,

the results in this study clearly show that the phase of seasonality of T-Q relationship is

coherent at all the spatial scales.

Thus far the interannual and decadal variabilities of the T-Q relationship in the Kuroshio

extension region remain poorly understood. However, such variabilities could play an im-

portant role in modulating the strength of Kuroshio extension jet at corresponding time

scales. As demonstrated in a recent study by [49], the Kuroshio extension jet becomes

weaker and wider when the damping of mesoscale SST anomalies by turbulent heat flux
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is suppressed. In this subsection, we analyze the interannual and decadal variabilities of

the T-Q relationship at mesoscales derived from the PSR method. As the value of α does

not change significantly at mesoscales (Figure 4.2), we use its mean value averaged be-

tween 0.1-0.67 cpd (denoted as αmeso hereinafter) to characterize the T-Q relationship at

mesoscales to facilitate analysis.

Figure 4.3: Time series of annual mean for (a) αmeso , (b) wind energy, (c) storm track
intensity, and (d) variance of mesoscale SST anomalies. Here the wind energy is computed
as (u2

10 + v2
10)/2 where u10 and v10 are daily mean 10-m wind velocity derived from the

ERA-Interim reanalysis. The storm track intensity is evaluated as the standard deviation
of 2-8 day band-pass filtered v10.

Figure 4.3a displays the annual mean time series of αmeso from 1979 to 2016. The

most notable feature is that the value of αmeso during 1979-2001 is systematically smaller
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than that during 2002-2016. This difference is due to an abrupt increase of αmeso from

2001 to 2002. Despite the key role of wind speed in the T-Q relationship [56], there is no

evidence for the enhancement of wind energy or storm track intensity at the same time pe-

riod (Figure 4.3b and c). Instead, the abrupt increase of αmeso from 2001 to 2002 coincides

remarkably well with the abrupt increase of variance of mesoscale SST anomalies (Figure

4.3d). As such, the correlation coefficient between αmeso and wind energy (storm track

intensity) is only about -0.25 (-0.17) (not statistically significant at 5% significance level)

but increases to 0.73 (statistically significant at 5% significance level) between αmeso and

mesoscale SST anomaly variance. It should be noted that the abruptly elevated mesoscale

SST anomaly variance is not a realistic feature but simply results from the change of pre-

scribed lower boundary conditions of ERA-Interim simulation from low-resolution (1◦)

SST data products to higher-resolution (< 0.5◦) products [53]. Therefore, we suspect the

abrupt increase of αmeso from 2001 to 2002 may be an artifact of numerical model config-

urations. Furthermore, it also suggests that the T-Q relationship at mesoscales might not

be well represented when low-resolution SST is used to force the atmosphere general cir-

culation models. The climatological mean αmeso derived from the ERA-Interim reanalysis

during 1979-2016 may bias low.

4.4 Conclusion and discussion

In this section, we developed a novel statistical model, penalized spectral regression

(PSR), to evaluate the continuous dependence of SST- turbulent heat flux relationship (T-Q

relationship) on spatial scales. By penalizing the difference of T-Q relationship at adjacent

wavenumbers to reflect the belief that the T-Q relationship should be well organized in

the wavenumber space rather than fluctuate randomly, the PSR model is able to provide

reasonable estimates even when only one time record is available. Application of PSR

model to the ERA-Interim reanalysis in the Kuroshio extension region reveals pronounced
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variation of T-Q relationship with spatial scales. The regression coefficient α stays stable

at mesoscales (< 1000 km) with a climatological mean value of 26 W/(m2K ). Then its

value decreases rapidly as the spatial scales further increase but is always positive. There

is a pronounced seasonal cycle in α with its phase coherent at all the resolved spatial scales

(150-8000 km). The largest and smallest values occur in winter and summer, respectively.

In addition, the value of α during 1979-2001 is systemically smaller than that during 2002-

2016 due to an abrupt increase of its value from 2001 to 2002. However, we suspect that

the abrupt increase is not a realistic feature but probably due to the use of high-resolution

SST datasets as lower boundary conditions in ERA-Interim reanalysis since January 2002.

Figure 4.4: The climatological mean α in W/(m2K) as a function of k and ℓ.

The PSR method is not only able to evaluate the continuous dependence of T-Q re-

lationship on spatial scales but also its continuous dependence on azimuth. Figure 4.4
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displays the climatological mean value of α as a function of k and ℓ. It seems that the T-Q

relationship is basically isotropic although the value of α tends to be slightly stronger for

east-west directed SST gradient than north-south directed SST gradient at spatial scales

between 250-1000 km. Whether such a slight difference (< 5%) has a clear dynamical

interpretation remains unknown but deserves further investigation in future studies. Fur-

thermore, the PSR method can be readily extended to analyze the continuous dependence

of T-Q relationship on geographic location and time. These extensions can be done by

modifying the penalty functions to penalize the difference of regression coefficients at ad-

jacent locations and time. We conclude that the PSR model provides a feasible tool to

analyze the relationship between various quantities (e.g., SST v.s. sea surface height, SST

v.s. precipitation, and SST v.s. wind speed) in geophysics.
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5. SUMMARY

Statistical Inference for large spatial data is studied in this dissertation from three as-

pects. We first address the problem of estimating covariance parameters for large and

irregularly spaced dataset. Then a new modeling approach, called spatially clustered coef-

ficient (SCC) regression, is proposed to explore the spatially-varying relationship between

covariates and the response variable of interest. Finally, a penalized spectral regression

(PSR) model is constructed by extending the idea of SCC model to the spectral domain.

The major progresses of this dissertation are summarized as follows:

In Section 2, a new weighting scheme is proposed to construct a composite likelihood

(CL) for the inference of spatial Gaussian process models. This weight function is an ap-

proximation to the optimal weight derived from the theory of optimal estimating equations.

It is calculated with the strategy of combing block-diagonal approximation and tapering.

Gains in statistical and computational efficiency over existing CL methods are illustrated

through simulation studies and applications to the rainfall data.

In Section 3, we propose a new modelling approach, called spatially clustered coef-

ficient (SCC) regression, to capture the spatial structure, especially clustered structure in

the relationship between response variable and explanatory variables. It is demonstrated

based on simulation studies that the SCC method works very effectively in estimation for

data either with clustered coefficients or smoothly-varying coefficients. Thus, it is a feasi-

ble and power tool to explore the spatial structure in the regression coefficient without any

priori information. Some oracle inequalities are derived, providing non-asymptotic error

bounds on estimators and predictors. Finally, the SCC method is applied to analyzing the

temperature-salinity relationship in the Atlantic basin and shows good performance.

In Section 4, we extend the idea of SSC method to the spectral domain and construct a
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penalized spectral regression (PSR) model. The PSR method is applied to quantifying the

wavenumber-dependent relationship between sea surface temperature (SST) and turbulent

heat flux (T-Q relationship). The T-Q relationship derived from the PSR method is con-

sistent with geophysical dynamics, lending support to its good performance. Moreover,

some new features in the T-Q relationship are disclosed by the PSR method and are likely

to raise broad interest in the geoscience community.
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APPENDIX A

PROOF OF THEOREM 1

To prove Theorem 1, we first derive the following two lemmas, and then prove the

oracle inequalities using the lemmas.

Lemma 1. Define Λn = { max
t=1,...np

|Vt | 6 λn/4} where Vt = n−1
n∑

i=1
X̃i ,tεi . Then

P(Λn) > 1 − 2p · n−C2. (A.1)

Lemma 2. On the event Λn, we have

1
n
∥X̃θ − X̃θ̂∥2

2 +
λn

2
∥θ − θ̂∥1 ≤ rn∥θA − θ̂A∥2, (A.2)

where rn = 2λn
√

|A|.

Proof. According to Assumption 1a, Vt is a sub-Gaussian random variable with a zero

mean and a sub-Gaussian parameter C1σ/
√

n. Using the upper and lower deviation in-

equalities, we have:

P(|Vt | ≤ λn/4) ≥ 1 − 2 exp(− λ2
n/16

2C2
1σ

2/n
) ≥ 1 − 2n−(1+C2),

and

P( max
t=1,...np

|Vt | ≤ λn/4) ≥ (1 − 2n−(1+C2))np ≥ 1 − 2p · n−C2.

This proves Lemma 1.
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Proof. As the estimator is the minimizer of penalized least square, we have

1
n
∥Y − X̃θ̂∥2

2 + λn∥θ̂B∥1 ≤ 1
n
∥Y − X̃θ∥2

2 + λn∥θB∥1.

After some manipulations, we have:

1
n
∥X̃θ − X̃θ̂∥2

2 ≤ λn∥θB∥1 − λn∥θ̂B∥1 +
2
n
ϵTX̃(θ̂ − θ).

Then on the event Λn, we have

1
n
∥X̃θ − X̃θ̂∥2

2 ≤ λn∥θB∥1 − λn∥θ̂B∥1 +
λn

2
∥θ − θ̂∥1.

Therefore, we have

1
n
∥X̃θ − X̃θ̂∥2

2 +
λn

2
∥θ − θ̂∥1 ≤ λn∥θB∥1 − λn∥θ̂B∥1 + λn∥θ − θ̂∥1

≤ 2λn∥θA − θ̂A∥1

≤ 2λn

√
|A|∥θA − θ̂A∥2.

(A.3)

This proves Lemma 2.

Now we prove the oracle inequalities. According to Lemma 2, we have:

∥θ − θ̂∥1 ≤ 4
√
|A|∥θA − θ̂A∥2. (A.4)

Then θ − θ̂ satisfies Assumption 1b. Therefore, we have

1
n
∥X̃θ − X̃θ̂∥2

2 ≥ Φ∥θA − θ̂A∥2
2. (A.5)
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Combining (A.3) and (A.5) yields

1
n
∥X̃θ − X̃θ̂∥2

2 ≤ rn√
nΦ

∥X̃θ − X̃θ̂∥2. (A.6)

This directs leads to inequality (3.9). Based on inequality (3.9) and (A.5), we have

Φ∥θA − θ̂A∥2
2 ≤ 4λ2

n|A|
Φ

. (A.7)

Combining (A.3) and (A.7) directly leads to inequality (3.10).

Finally, we derive the oracle inequality for β. According to inequality (3.10), we have

∥θ − θ̂∥2 ≤ ∥θ − θ̂∥1 ≤ 8λn|A|
Φ

. (A.8)

Let rmin denote the smallest eigenvalue of T̃
T
T̃ . Then rmin is positive as T̃

T
T̃ is positive

definite. Therefore, we have

∥θ − θ̂∥2
2 ≥ rmin∥β − β̂∥2

2. (A.9)

Combining (A.8) and (A.9) yields

∥β − β̂∥2 ≤ 8λn|A|
Φ
√

rmin
.
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APPENDIX B

THE DIAGRAM FOR MINIMUM SPANNING TREE

The following schematic diagram illustrates the rationale of minimum spanning tree in

the SCC method .

Figure B.1: A schematic diagram for minimum spanning tree (MST). The left panel de-
picts the MST for 10 spatial location. The right panel displays the estimated coefficient
after constructing the MST.
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