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ABSTRACT

In this paper, we investigate active noise control over large 2D
spatial regions when the noise source is sparsely distributed. The `1
relaxation technique originated from compressive sensing is adopted
and based on that we develop the algorithm for two cases: multi-
point noise cancellation and wave domain noise cancellation. This
results in two new variants (i) zero-attracting multi-point complex
FxLMS and (ii) zero-attracting wave domain complex FxLMS. Both
approaches use a feedback control system, where a microphone array
is distributed over the boundary of the control region to measure
the residual noise signals and a loudspeaker array is placed outside
the microphone array to generate the anti-noise signals. Simulation
results demonstrate the performance and advantages of the proposed
methods in terms of convergence rate and spatial noise reduction
levels.

Index Terms— Active noise control, Multi-channel system,
Adaptive algorithm, Compressive sampling, Wave domain

1. INTRODUCTION

Active noise control (ANC), or noise cancellation, involves an elec-
troacoustic or electromechanical system that employs secondary
sound sources to reduce the primary noise based on the princi-
ple of destructive interference [1, 2, 3]. This technique has been
successfully used in several commercial applications, such as noise-
cancelling headphones [4, 5], the control of noise in industrial
machines [6] and active noise cancellation for automobiles [7, 8, 9].
Given the fact that most of the time, noise is unknown and time-
varying, adaptive filters are employed to produce anti-noise signals.
Some well-known algorithms for implementation include the least-
mean-square (LMS) method or its variants, such as filtered-x LMS
(FxLMS) [10], adjoint LMS [11] and recursive LMS [12].

Noise cancellation over a few observation points is simple and
effective, where only one or two microphones and speakers are re-
quired to measure the residual signal and to produce the anti-noise
signal. A growing research interest is in expanding the above so-
lution to multiple listening points, which in turn requires increased
numbers of sensor and source units, and is named as multi-channel
ANC systems. There exist two main signal processing techniques for
multi-channel ANC systems. The first technique does noise cancel-
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lation directly on a set of multiple observation points (MP)1 in the
control region [13], whereas the second or the more recent technique
does wave domain (WD) noise cancellation over the entire continu-
ous control region [14]. The MP approach is fairly straightforward
and therefore is widely used in practice [15, 16, 17]. In contrast, the
WD approach is slightly advanced as it exploits the wave domain
signal representation of the Helmhotz wave equation to control the
overall continuous noise region [18, 19]. Recent work in wave do-
main adaptive ANC include feed-forward systems [14] as well as
feed-back systems [20].

While the above techniques are capable of achieving signifi-
cant noise cancellation over spatial regions, their respective adaptive
algorithms could be inefficient, especially when the noise field is
sparse. In typical applications such as in-car noise cancellation, this
sparse characteristic is very common [21, 22]. Note that sparsity is
a preferred characteristic in compressive sensing to bring down the
sensor/transducer numbers as well as the computational complexity
of signal processing algorithms. The `1-norm penalty is currently a
popular compressive sensing solution of this nature [23], and could
be adopted in the present ANC problem to improve the system per-
formance.

In this paper, we design new complex FxLMS algorithms com-
bined with the `1-norm constraint to assist adaptive ANC in sparse
noise fields. The new approaches are expected to improve the al-
gorithm efficiency by introducing a constraint on the loudspeaker
weights in the secondary source array. We develop the solutions
for both multi-point noise cancellation as well as wave domain
noise cancellation resulting in two new algorithms (i) zero-attracting
multi-point complex FxLMS (ZA-MP-CFxLMS), and (ii) zero-
attracting wave domain complex FxLMS (ZA-WD-CFxLMS). The
proposed ZA-MP-CFxLMS algorithm can be generalized for other
sparse CFxLMS algorithms, and the proposed ZA-WD-CFxLMS
algorithm can be generalized for other transfer domain (TD) sparse
CFxLMS algorithms. These are novel additions to the existing the-
ory as current sparsity solutions are limited to their non-complex
variants [24, 25].

The rest of this paper is organized as follows. The ZA-MP-
CFxLMS algorihm for noise cancellation is proposed in Section 2.
In Section 3, we derive the ZA-WD-CFxLMS algorithm for wave
domain noise cancellation. In Section 4, simulations are conducted
to evaluate the proposed algorithm in comparison with the conven-
tional multi-channel ANC system, while the last section gives some
concluding remarks.

1Here, the noise cancellation happens essentially at the measurement or
observation points and a small region around these points.
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Notation: (·)∗ and (·)T donate the conjugate and transpose opera-
tors, respectively. <(·) and =(·) denote the real part and the imag-
inary part of a complex quantity, respectively. The operator ‖ · ‖1
denotes `1-norm. exp(·) denotes the exponential function.

2. MULTI-POINT NOISE CANCELLATION USING THE
ZA-MP-CFXLMS ALGORITHM

In this section, we develop a zero-attracting complex FxLMS algo-
rithm for multi-point noise cancellation. Consider an adaptive ANC
system with a P -point microphone array (2D) and a Q-point loud-
speaker array (2D) in free field conditions.

The frequency domain measurement at the microphone array
can be represented by

e(n) = ν(n) + s(n) (1)

where e is the residual noise field, ν is the original noise field, s is
the anti-noise generated by the loudspeaker array and n is the itera-
tion index of the adaptive algorithm. Note that all components of (1)
are P -long vectors and the frequency dependence of each vector is
ignored for notational simplicity. Assuming the updated weights are
w(n), an FxLMS type formulation [17] is

e(n) = ν(n) +Gw(n) (2)

where G is a transfer function and the initial filter weights are de-
noted asw(0).

In the current multi-point system with Q loudspeakers, we
directly populate w(n) with the loudspeaker weights d(n) =
[d1, · · · , dQ] by setting w(n) = d(n) such that G becomes the
point source propagation characterization

G =
i

4


H

(1)
0 (k‖z1 − χ1‖) · · · H

(1)
0 (k‖zQ − χ1‖)

...
. . .

...
H

(1)
0 (k‖z1 − χP ‖) · · · H

(1)
0 (k‖zQ − χP ‖)

 (3)

where {(‖χ1‖, θ1), · · · , (‖χP ‖, θP )} represent the microphone
locations and {(‖z1‖, φ1), · · · , (‖zQ‖, φQ)} represent the loud-
speaker locations.

The goal of the adaptive ANC system is to design the loud-
speaker weights to cancel the noise over the control region. While
the conventional FxLMS approach is to minimize the power of the
residual signal, we aim to introduce an additional `1-norm constraint
on the speaker weights to exploit the sparse nature of the noise dis-
tribution [25]. To achieve this, we define a new cost function

ξ(n) =
1

2
e(n)2 + λ‖d(n)‖1, (4)

where λ is a controllable parameter to determine the degree of zero
attraction for the adaptive filter coefficients [26]. Notice that both e
and d are complex vectors in the frequency domain, hence we name
the new adaptive algorithm as a ZA-MP-CFxLMS algorithm.

Next, we derive the updating expression to satisfy the new cost
function. Adopting the gradient descent algorithm, w(n) in every
iteration is given by

w(n+ 1) = w(n)− µ

2
∇ξ(n), (5)

where µ is the step size. The gradient term in (5) can be written in
terms of (4) as

∇ξ(n) = ∇1

2
e(n)2︸ ︷︷ ︸
∇ξ1

+∇λ‖d(n)‖1︸ ︷︷ ︸
∇ξ2

. (6)

By the complex LMS algorithm [27], the term ∇ξ1 of (6) is simply
∇ξ1 = G∗e. To find ∇ξ2 of (6), we use its relationship to the
conjugate derivative [28]

∇ξ2 = 2
∂ξ2
∂w∗

, (7)

and solve for it as follows. By definition, ‖d‖1 =
Q∑
q=1

|dq|, and

|dq| =
√
<(dq)2 + =(dq)2 ≤ (|<(dq)|+ |=(dq)|).

Hence, ‖d‖1 ≤
Q∑
q=1

(|<(dq)|+ |=(dq)|)

=

Q∑
q=1

(|<(dq)|) +
Q∑
q=1

(|=(dq)|) = ‖<(d)‖1 + ‖=(d)‖1. (8)

From (8), (∂ξ2/∂w
∗) can be approximated by

∂ξ2
∂w∗

= λ(
∂‖<(d)‖1
∂w∗

+
∂‖=(d)‖1
∂w∗

). (9)

If the complexw is decomposed into its real and imaginary parts as
w = x+ iy, the complex partial differentiation based onw∗ can be
separated [29] by

∂‖<(d)‖1
∂w∗

=
1

2

(
∂‖<(d)‖1

∂x
+ i ∗ ∂‖<(d)‖1

∂y

)
∂‖=(d)‖1
∂w∗

=
1

2

(
∂‖=(d)‖1

∂x
+ i ∗ ∂‖=(d)‖1

∂y

)
. (10)

Since d(n) = w(n), each item in the RHS of (10) can be given by

∂‖<(d)‖1
∂x

= sign(<(w)),

∂‖<(d)‖1
∂y

=
∂‖=(d)‖1

∂x
= 0,

∂‖=(d)‖1
∂y

= sign(=(w)). (11)

Substituting (10) and (11) into (9), ∂ξ2/∂w
∗ becomes

∂ξ2
∂w∗

=
1

2
λ{[sign(<(w)) + i ∗ sign(=(w))]}. (12)

Finally, from (6), (7) and (12) the ZA-MP-CFxLMS algorithm
can be derived as

w(n+ 1) = w(n)− 1

2
µG∗e

− 1

2
µλ[sign(<(w)) + i ∗ sign(=(w))]. (13)



3. WAVE DOMAIN NOISE CANCELLATION USING THE
ZA-WD-CFXLMS ALGORITHM

In this section, we develop a zero-attracting complex FxLMS algo-
rithm for wave domain noise cancellation.

The principal of wave domain signal representation is to use fun-
damental solutions of the Helmholtz wave equation as basis func-
tions to express any wavefield over a spatial region. In this paper, we
opt for the cylindrical harmonic based wave equation solution [30].
This solution decomposes any homogeneous incident wavefield ρ(k)
observed at (r′, φ) into

ρ(r′, φ, k) =

∞∑
m=−∞

am(k)Jm(kr′) exp(imφ) (14)

where k = 2πf/C is the wave number, f is the frequency, C is the
speed of sound, am is the mth wave domain coefficient, and Jm(·)
is the cylindrical Bessel function. Within this circular region, the
infinite summation in (14) can be truncated at M = dekr/2e [31],
where r is the radius of the region of interest. The transfer function
in the wave domain could be represented by

G(r′, φ, k) =

M∑
m=−M

gm(k)Jm(kr′) exp(imφ) (15)

where gm(k) = i
4
H

(1)
m (k‖z‖).

Similar to the multi-point case, consider an adaptive ANC sys-
tem using a P -point microphone array and a Q-point loudspeaker
array in free field conditions. The observed residual signal e of (1)
and its decomposition can now be written in the wave domain fol-
lowing (14). Let the corresponding cylindrical harmonic coefficients
be αm, βm and γm respectively. The wave domain residual signal is
then

α(n) = β(n) + γ(n) (16)

where all three terms are (2N + 1)−long vectors in the complex
domain. An FxLMS type formulation of (16) is

α(n) = β(n) + diag(g)w(n), (17)

where g = [g−M , · · · , gM ]. Note that w is now in the wave do-
main and therefore, can not be directly populated with loudspeaker
weights d as before. Therefore, we need to form an appropriate
translation relationship of the form w = Td, where T is the trans-
formation matrix. For this purpose, we utilize the cylindrical har-
monic decomposition of a 2D point source [32], and define T as

T =

 e
iMφ1 ... eiMφQ

...
. . .

...
e−iMφ1 ... e−iMφQ

 . (18)

To calculate the updated equation (5) in wave domain, the gradient
term in (5) can be written as

∇ξ(n) = ∇1

2
α(n)2︸ ︷︷ ︸
∇ξ1

+∇λ‖d(n)‖1︸ ︷︷ ︸
∇ξ2

. (19)

From the wave domain Filtered-X Least Mean Square algorithm
[20], the term ∇ξ1 of (19) is simply ∇ξ1 = (diag(g))∗α. Since
each items in (10) in wave domain are,

∂‖<(d)‖1
∂x

= <((T−1)T ) ∗ sign(<(d))

∂‖<(d)‖1
∂y

= −=((T−1)T ) ∗ sign(<(d))

∂‖=(d)‖1
∂x

= =((T−1)T ) ∗ sign(=(d))

∂‖=(d)‖1
∂y

= <((T−1)T ) ∗ sign(=(d)), (20)

Substituting (20) into (9), ∂ξ2/∂w
∗ becomes

∂ξ2
∂w∗

=
1

2
λ{[<((T−1)T )− i∗=((T−1)T )]∗ [sign(<(T−1w))

+ i ∗ sign(=(T−1w))]}. (21)

Thus, the ZA-WD-CFxLMS algorithm can be derived as

w(n+ 1) = w(n)− 1

2
µ(diag(g))∗α

− 1

2
µλ{[<((T−1)T )− i ∗ =((T−1)T )] ∗ [sign(<(T−1w))

+ i ∗ sign(=(T−1w))]}. (22)

4. SIMULATION

In this section, the proposed ZA-MP-CFxLMS and ZA-WD-
CFxLMS algorithms are evaluated. The sparse noise field is assumed
to be a 200 Hz wavefield arriving from a 2D point source located at
a radius of 2.5 m along the positive x-axis. Noise cancellation over
a 2D spatial region of radius 1 m is observed.
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Fig. 1. Comparison of convergence performance for noise cancel-
lation using ZA-WD-CFxLMS and ZA-MP-CFxLMS algorithm for
variable zero attractor strength (λ = 0, 0.05, 0.1).

In the feedback control system, we use a circular microphone ar-
ray of radius 1 m and circular loudspeaker array of radius 2 m, both
of which are equi-angularly spaced. The microphone array also co-
incides with the boundary of the quiet zone. A signal-to-noise (SNR)
ratio of 40 dB is added at each microphone. According to the rule of
thumb [31], in the wave domain, such a noise field within the desired
quiet zone (radius of 1 m) needs m ∈ [−5, 5] orthogonal modes to
represent. Thus, we place 11 loudspeakers and 11 microphones in
each corresponding array. In order to evaluate the noise cancellation
levels over the spatial control region, we average the residual signal
energy over 1296 points uniformly placed inside the region.
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Fig. 2. Comparison of convergence performance for `1-norm of the
loudspeaker weights using ZA-WD-CFxLMS and ZA-MP-CFxLMS
algorithm for variable zero attractor strength (λ = 0, 0.05, 0.1).

Plots in Fig. 1 show the comparison of the proposed algorithm’s
convergence performance vs spatial noise reduction. Plots in Fig.
2 show the comparison of the convergence performance vs the `1-
norm constraint. The results in Fig. 3 demonstrate the spatial resid-
ual signal energy over the entire control region for the proposed al-
gorithms. Below is a case by case analysis of the results shown in
the above figures.

Case 1—Multi-point sparse field ANC: The dotted lines in Fig.
1 compare the convergence performance of ZA-MP-CFxLMS in the
time-varying noise field. Compared to the dotted red line with λ = 0
(which is the conventional MP-FxLMS [17]), the convergence speed
of its `1 constrained variants (blue and black) are significantly faster.
A general observation is that as λ increases, the convergence per-
formance gets better. At the 50th iteration we forcefully increase
the noise power, and the corresponding re-convergence time for ZA-
MP-CFxLMS again decreases with increasing λ. From Fig. 2, we
can see that as λ increases, the `1-norm of loudspeaker weights de-
creases and produces less energy. From Fig.3(b) and Fig.3(c), we
observe that introduction of the `1 constraint causes better noise can-
cellation performance after the same 30 iterations. This is a signifi-
cant advantage in practical noise applications, which are constantly
time-varying.

Case 2—Wave domain sparse field ANC: The solid lines in
Fig. 1 show the convergence performance of ZA-WD-CFxLMS
in the time-varying noise field. As we expected, the convergence
speed of ZA-WD-CFxLMS algorithms is much faster than ZA-MP-
CFxLMS in for all values of λ. For each λ, the ZA-WD-CFxLMS
demonstrates more noise reduction and faster convergence so it can
track the variation of the noise field and achieve better performance
than the ZA-MP-CFxLMS. With the sparse constraint added in the
FxLMS in wave domain, the total energy of loudspeaker weights
can be reduced as shown in Fig 2. Fig 3(d) shows a significant
noise reduction in the designed region after 30 iterations of ZA-
WD-CFxLMS. One drawback is, compared to the solid red line
with λ = 0 in Fig. 1 (which is the conventional WD-FxLMS [20]),
adding the sparse constraint decreases the noise reduction level of
the ANC system (blue and black solid line in Fig. 1).
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Fig. 3. The results of ANC in free-field. The inner array is a mi-
crophone array and the outer array is a loudspeaker array. (a) The
energy of the initial sparse noise field. (b) The residual energy after
30 iterations of MP-FxLMS. (c) The residual energy after 30 itera-
tions of ZA-MP-CFxLMS. (d) The residual energy after 30 iterations
of ZA-WD-CFxLMS.

5. CONCLUSION

We introduce the compressive sampling into the adaptive process-
ing and propose ZA-MP-CFxLMS and ZA-WD-CFxLMS algorithm
for active noise control over spatial region. We compare the per-
formance of the two new algorithms with the conventional multi-
channel algorithms in the feedback ANC system. In the sparsely
distributed noise field, the multi-point sparse complex FxLMS algo-
rithm can achieve better adaptive performance than the MP-FxLMS
algorithm. For the wave domain complex FxLMS algorithm, intro-
ducing the sparse constraint can reduce the total energy of the loud-
speaker weights, but there exits a trade off between noise reduction
and the energy of the loudspeaker weights. At the same time, wave
domain sparse FxLMS achieves significant noise reduction over the
entire designed region with fast convergence speed, which can track
the variation of the noise field very well.
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