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Abstract—The direct-to-reverberant ratio (DRR), which de-
scribes the energy ratio between the direct and reverberant
component of a soundfield, is an important parameter in many
audio applications. In this paper, we present a multi-channel
algorithm, which utilizes the blind recordings of a spherical
microphone array to estimate the DRR of interest. The algorithm
is developed based on a spatial correlation model formulated
in the spherical harmonics domain. This model expresses the
cross correlation matrix of the recorded soundfield coefficients
in terms of two spatial correlation matrices, one for direct
sound and the other for reverberation. While the direct path
arrives from the source, the reverberant path is considered to
be a non-diffuse soundfield with varying directional gains. The
direct and reverberant sound energies are estimated from the
aforementioned spatial correlation model, which then leads to
the DRR estimation. The practical feasibility of the proposed
algorithm was evaluated using the speech corpus of the ACE
(Acoustic Characterization of Environments) Challenge. The
experimental results revealed that the proposed method was able
to effectively estimate the DRR of a large collection of reverberant
speech recordings including various environmental noise types,
room types and speakers.

I. INTRODUCTION

The direct-to-reverberant energy ratio (DRR) is one of the
most important parameters when it comes to the analysis of
room acoustics. It not only determines the acoustic quality
of a room but also serves as an integral element in many
audio applications, such as speech enhancement and dere-
verberation [1]–[3], source localization [4], parametric spatial
audio coding [5], performance evaluation of beamforming
[6] and psychoacoustics, where it is believed that the DRR
helps humans to determine the distance to a sound source [4],
[7], [8]. The knowledge of DRR also helps the derivation of
various other acoustic parameters such as reverberation time
(T60), and diffuseness [9], [10].

Due to the broad usefulness of the DRR, its estimation
accuracy is considered to be vital. The most primitive method
to calculate the DRR is to use the room impulse response
(RIR) measured by an omnidirectional microphone. Even
though the DRR can be estimated using only the beginning
part of RIR [11], reasons such as, the need to use intrusive
signals to reliably obtain RIR measurements, the requirement
to repeat RIR measurements with moving source and receiver
positions and the necessity of prior processing to identify the
initial part of the RIR, makes this estimation process less
practical. Falk et al. [12] proposed an alternative method that
utilizes the long-term temporal dynamics of recorded speech

signals, however this method requires an a priori calculation of
a pre-defined energy ratio, which varies with changing acoustic
environments.

In order to avoid pre-processing, several authors have more
recently investigated the use of so-called blind methods that
do not require special measurement signals or a priori infor-
mation, but instead utilizes the microphone recordings of the
reverberant soundfield to directly estimate the DRR. There
exists two main approaches to blind DRR estimation, namely
power based estimation and coherence based estimation. In
order to simplify the problem formulation, both of these
approaches usually assume the reverberant soundfield to be
diffuse.

Power based estimators utilize the power spectral density
(PSD) of two or more beamformer signals to derive the direct
and reverberant signal PSDs. The authors in [13] proposed a
PSD estimator using a microphone array and two identical
beamformers while the authors of [14] proposed a similar
method using multiple directional microphones. Hioka et al.
[15] recently proposed an improved PSD estimator that uses
a microphone array and multiple arbitrary beamformers.

In contrast, coherence based methods use the cross-
correlation between two or more microphone signals and
appropriate signal processing algorithms to estimate the DRR.
They mostly utilizes the differences in propagation properties
of direct and reverberant sound to estimate the direct path
power and reverberant/diffuse field power separately, which
then leads to the estimated DRR. The authors of [4] proposed
a binaural system where, through cross-correlation, the direct
sound is removed from one channel by subtracting a filtered
version of the second channel. The drawback of this approach
is that not only the direct path energy but also part of the
reverberant path energy flowing from the source direction also
gets counted towards the estimated direct sound energy. A
multi-channel coherence based method is presented in [16]
where the spatial correlation matrix of the microphone array
is expressed in terms of two spatial correlation matrices,
one for direct sound and one for reverberation. The least
squares method is used to derive the direct and reverberant
sound energies. Instead of estimating the direct and reverberant
soundfield energies separately, some recent coherence based
methods use analytically derived relationships between the
DRR and the magnitude squared coherence (MSC) function
of the microphone array [7], [8] or the MSC between the
coincident pressure and particle velocity [17]–[19]. The use of
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these analytical relationships avoids the need of least squares
based numerical solving. However in general, all coherence
based approaches suffer from high estimation variance at low
frequencies since the omnidirectional microphone signals are
strongly correlated even if the soundfield is diffuse. Addressing
this problem, later work proposed the use of directional
microphones as in [20] or the use of coherence between
eigenbeams/spherical harmonic coefficients instead of direct
microphone signals as in [18], [19], [21].

In this paper, we propose a multi-channel coherence es-
timator based on a spatial correlation model formulated in
the spherical harmonics domain. The spatial correlation model
is similar to that of [16], but now the correlation matrix is
between the spherical harmonic coefficients/eigenbeams de-
rived from a spherical microphone array1. Apart from that, the
current method assumes a more realistic reverberant soundfield
that is non-diffuse such that different reflective surfaces may
have different directional gains. This can be considered as the
most novel concept compared to all of the aforementioned
DRR estimators. We evaluate the performance of this method
on the speech corpus of the ACE (Acoustic Characterization
of Environments) Challenge) [24], [25]. To investigate the
advantages of considering a non-diffuse reverberant field, we
carried out a performance comparison with the method in
[16]. Furthermore, since the problem specified by the ACE
challenge was a fully blind problem (i.e., no prior information
about the source direction is provided), the methods were
tested after being combined with a conventional direction-of-
arrival (DOA) estimation method.

This paper is organized as follows. In Section II, we
formulate the DRR estimation problem. In Section III, we
derive a spatial correlation matrix in the spherical harmonics
domain. In Section IV, we derive the estimated DRR from the
spatial correlation matrix derived earlier. Finally, in Section V,
we present the results obtained from the proposed estimation
algorithm. Comments on the outcome of this study and future
work conclude this paper.

II. PROBLEM FORMULATION

We first consider a spherical array of Q omnidirectional
microphones recording the incident soundfield caused by a
single source inside the room enclosure of interest. The
observed soundfield at the qth (q = 1, 2, · · · , Q) microphone
can be expressed in the time-frequency domain as

P (xq, k, t) = S(k, t)H(xq,yo, k) (1)

where k = 2πf/c is the wavenumber with f and c representing
the frequency in Hz and speed of sound in ms−1 respectively,
S(k, t) is the Short Time Fourier transform of the source
signal, t is the temporal frame index, and H(xq,yo, k) is
the room transfer function (RTF) between the source location
yo = (r0, θo, φ0) and the receiver location xq = (r, θq, φq).
Note that from now on, we omit the time dependency (t) for
notational convenience.

In a reverberant enclosure, P (xq, k) would comprise of
the direct path from the source as well as the reverberant

1Or other alternative structures as given in [22], [23]

path caused by room reflections. This decomposition can be
reflected in the RTF as

H(xq,yo, k) = Hdir(xq,yo, k) +Hrvb(xq,yo, k) (2)

where Hdir(·) and Hrvb(·) represent the direct and reverberant
components of the room impulse response, respectively.

Assuming the aperture size of the microphone array is
sufficiently small compared to the distance to the source2, the
direct path of (2) can be considered to be a single plane wave
of the form

Hdir(xq,yo, k) = HD(k)eikŷo·xq (3)

where HD(k) denotes the direct path gain and ŷo denotes
the unit vector along the incoming direction. Although a
common practice in DRR estimation algorithms is to assume
the corresponding reverberant path to be a diffuse field, it
is not a realistic model in practical acoustic environments
due to the non-isotropic gain distribution among reflective
surfaces. Therefore, we consider a more generalized model
for the reverberant path of (2) in terms of

Hrvb(xq,yo, k) =
∫
ŷ

HR(k, ŷ)eikŷ·xqdŷ (4)

where HR(k, ŷ) is the gain of the reflected plane wave arriving
from the direction ŷ = (1, θ, φ) for θ ∈ [0 : π] and φ ∈ [0 :

2π) and
∫
ŷ
dŷ =

∫ 2π

0

∫ π
0
sin θdθdφ. From (1), (2), (3) and (4),

we re-write P (xq, k) as

P (xq, k) = S(k)
(
HD(k)eikŷo·xq +

∫
ŷ

HR(k, ŷ)eikŷ·xqdŷ
)
.

(5)

By observing the above derivation, the ratio between the direct
path energy PD and the reverberant path energy PR can be
expressed as

DRR =
PD
PR

=
E
{
‖S(k)‖2 ‖HD(k)‖2

}
∫
ŷ
E
{
‖S(k)‖2 ‖HR(k, ŷ)‖2

}
dŷ

(6)

where E{·} denotes the expectation operator and ‖·‖ is the
2−norm. Our goal is to estimate the above ratio utilizing the
spherical microphone array recordings. Since spherical array
based signal processing techniques are well established in
the spherical harmonics domain, we first utilize the spher-
ical harmonic decomposition of the reduced wave equation
(Helmholtz wave equation) to derive a set of coefficients
defining the spatial soundfield enclosed by the array of interest.
We then use these coefficients to construct a spatial correlation
matrix model, which provides a pathway to estimate PD, PR
and eventually the desired DRR.

2When the aperture size is much smaller than the radiating wavelength, it is
said to be a point source, which radiates power equally in all directions with
a spherical radiation pattern. At great distances with respect to wavelength
from the source, the spherically spreading waves can be regarded as plane
waves forming a far-field. A common rule of thumb is far-field sources are
located at a distance of r > 2L2/λ where L is the aperture radius and λ is
the operating wavelength.
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III. SPHERICAL HARMONICS BASED SPATIAL
CORRELATION

In this section, we use the spherical harmonic decomposition
of soundfields to derive a similar relationship to (5), and utilize
it to formulate a closed form expression for spatial correlation
of reverberant soundfield recordings.

A. Spherical harmonic decomposition of wavefields

Spherical harmonics are a set of orthonormal spatial basis
functions, which can be used to represent functions defined
over a sphere. Thus, any spherical function f(θ, φ) may be
expanded as a linear combination of these basis functions in
the form of

f(θ, φ) =

∞∑
n=0

n∑
m=−n

anmYnm(θ, φ). (7)

where Ynm(·) and anm denote the spherical harmonic func-
tions and the corresponding coefficients, respectively. The
spherical harmonics are inherently orthonormal, and hence∫

ŷ

Ynm(θ, φ)Y ∗n′m′(θ, φ)dŷ = δnn′δmm′ . (8)

where ∗ denotes the complex conjugate operator and δ denotes
the dirac delta function.

As mentioned earlier, our intention is to derive a similar
relationship to (5) in terms of the spherical harmonic decompo-
sition given in (7) to assist the proposed estimation model. The
left-hand-side of (5) is the incident soundfield over a spherical
surface outlined by the microphone array, and therefore can
be expressed in a similar form to (7) as

P (xq, k) =
∞∑
n=0

n∑
m=−n

αnm(k)bn(kr)︸ ︷︷ ︸
anm(k)

Ynm(θq, φq). (9)

where k is introduced to represent the frequency dependance,
r is the radius of the spherical microphone array (e.g., Eigen-
mike), anm(k) = αnm(k)bn(kr) is a further simplification of
the observed incident soundfield based on the assumption that
it is a homogeneous incident soundfield [26], [27] and

bn(kr) =

{
jn(kr) for an open array

jn(kr)− j′n(kr)
h′n(kr)hn(kr) for a rigid array

(10)

with jn(·) and hn(·) denoting the spherical Bessel and Hankel
functions of order n respectively. Note that αnm(k), the
incident soundfield coefficients, can be derived up to order
N = dkre using the microphone array recordings P (xq, k)
for q = 1, 2 · · ·Q [26], [27].

Similarly, the spherical functions in the right-hand-side of
(5) can be decomposed in terms of spherical harmonics. These
include the reverberant gain function HR(k, ŷ) distributed over
all possible look directions, and the plane wave soundfields
eikŷo·xq and eikŷ·xq , as observed by the spherical microphone
array. We write HR(k, ŷ) in terms of

HR(k, ŷ) =
∞∑
n=0

n∑
m=−n

βnm(k)Ynm(θ, φ). (11)

where βnm(k) are the respective spherical harmonic coeffi-
cients, and eikŷ·xq by

eikŷ·xq =

∞∑
n=0

n∑
m=−n

inY ∗nm(θ, φ)jn(kr)︸ ︷︷ ︸
anm(k)

Ynm(θq, φq). (12)

where the spherical harmonic coefficients are known for a
given planewave incident direction [26].

By substituting (9), (11) and (12) in (5), we derive a modal
domain relationship analogous to (5) as

αnm(k) = S(k)in
(
HD(k)Y ∗nm(θ0, φ0) + βnm(k)

)
. (13)

where the soundfield coefficients recorded by the microphone
array are now represented in terms of their respective direct
and reverberant components. Please refer to Appendix A for a
detailed derivation of the above result. This relationship serves
as the basis for the spatial correlation expression formulated
in the following section.

B. Spatial correlation in the spherical harmonic domain

Here, we derive a spatial correlation expression in terms of
the spatial soundfield coefficients recorded by the microphone
array. Based on (13), the cross correlation between αnm and
αn′m′ is

E
{
αnm(k)α∗n′m′(k)

}
= in(−i)n

′
E
{
‖S(k)‖2

}
(
E
{
‖HD(k)‖2

}
Y ∗nm(θ0, φ0)Yn′m′(θ0, φ0)

+ E
{
HD(k)β∗n′m′(k)

}
Y ∗nm(θ0, φ0)+

E
{
βnm(k)H∗D(k)

}
Yn′m′(θ0, φ0)+E

{
βnm(k)β∗n′m′(k)

})
.

(14)

Due to the autonomous behavior of the reflective surfaces in
a room (i.e., the reflection gain from reflective surfaces are
independent from the direct path gain), the cross correlation
between the direct path gain and reverberant path gain coef-
ficients (second and third components of the RHS of (14))
can be assumed to be negligible. Under this assumption, (14)
simplifies into

E
{
αnm(k)α∗n′m′(k)

}
= in(−i)n

′
E
{
‖S(k)‖2

}
(
E
{
‖HD(k)‖2

}
Y ∗nm(θ0, φ0)Yn′m′(θ0, φ0)

+ E
{
βnm(k)β∗n′m′(k)

})
. (15)

The term E
{
βnm(k)β∗n′m′(k)

}
of the above equation is pre-

ferred to be further simplified to arrive at a tractable estimation
for DRR based on (15). Based on a second assumption that
the reflection gains from different incoming directions are
uncorrelated, that is

E
{
HR(k, ŷ)H∗R(k, ŷ

′)
}
=

{
E
{
‖HR(k, ŷ)‖2

}
ŷ = ŷ′

0 ŷ 6= ŷ′,
(16)
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and by utilizing a spherical harmonic decomposition for the
function E

{
‖HR(k, ŷ)‖2

}
of (16) as

E
{
‖HR(k, ŷ)‖2

}
=

∞∑
v=0

v∑
u=−v

γvu(k)Yvu(ŷ), (17)

where γvu(k) are the corresponding spherical harmonic co-
efficients, we derive a closed form expression for the term
E
{
βnm(k)β∗n′m′(k)

}
of (15) as

E
{
βnm(k)β∗n′m′(k)

}
=

∞∑
v=0

v∑
u=−v

γvu(k)( (2v + 1)(2n+ 1)(2n′ + 1)

4π

)1/2
W1W2 (18)

where W1 and W2 are Wigner coefficients, representing

W1 =

(
v n n′

0 0 0

)
and (19)

W2 =

(
v n n′

u m −m′
)
. (20)

Please refer to Appendix B for a detailed derivation of the
above result (18). Now we substitute (18) in (15) to arrive at

E
{
αnm(k)α∗n′m′(k)

}
= in(−i)n

′
E{‖S(k)‖2}(

E{‖HD(k)‖2}Y ∗nm(θ0, φ0)Yn′m′(θ0, φ0) +
∑
v,u

γvu(k)( (2v + 1)(2n+ 1)(2n′ + 1)

4π

)1/2
W1W2

)
(21)

The above result provides a comprehensive expression for
the spatial correlation between two spherical harmonic coef-
ficients of an enclosed soundfield, in terms of its direct path
component HD(k) and reverberant path component γvu(k). It
can be utilized in any room acoustic application that seeks
the separation of direct and reverberant soundfields. In the
following section, we use the above result to estimate the
desired DRR.

C. Spatial Correlation matrix

We define the modal domain spatial correlation matrix
R(k) by

R(k) ≡= E
{
α(k)αH(k)

}
(22)

where α(k) =
[
α00(k) α1−1(k) .. αNN (k)

]T
1×(N+1)2.

By substituting (21) to (22), we obtain

R(k) = PD


b0000 b001−1 · · · b00NN
b1−100 b1−11−1 · · · b1−1NN

...
...

...
...

bNN00 bNN1−1 · · · bNNNN

+

E
{
‖S(k)‖2

}
d0000 d001−1 .. d00NN
d1−100 d1−11−1 .. d1−1NN

...
...

...
...

dNN00 dNN1−1 .. dNNNN



γ00
γ1−1

...
γV V


(23)

where bnmn′m′ = Y ∗nm(θ0, φ0)Yn′m′(θ0, φ0),

dnmnm′ = [dnmnm′00 dnmnm′1−1 dnmnm′10 dnmnm′11 · · ·
dnmnm′V V ](N+1)2(V+1)2×1, and

dnmnm′vu =
( (2v + 1)(2n+ 1)(2n′ + 1)

4π

)1/2
W1W2.

IV. DRR ESTIMATION USING A SPATIAL CORRELATION
MODEL

In this section, we show how to estimate the desired DRR
from the spatial correlation matrix (23). In order to utilize (23)
to find the desired DRR, PD and PR needs to be individually
estimated (both are defined in (6)). While the term PD is
present in (23), PR is not. Therefore, we ought to derive an
equivalent expression for PR such that its extractable from
(23). To achieve this, we utilize the definition of PR given in
(6), the harmonic decomposition in (17) and the symmetrical
property of spherical harmonics to derive

PR = E
{
‖S(k)‖2

}∫
ŷ

E
{
‖HR(k, ŷ)‖2

}
dŷ

= E
{
‖S(k)‖2

} V∑
v=0

v∑
u=−v

γvu(k)
∫
ŷ

Yvu(ŷ)dŷ

= E
{
‖S(k)‖2

}
γ00(k)

(24)

Note that the above result can be used to replace the first
entry γ00(k) of the last matrix in (23) by PR/E

{
‖S(k)‖2

}
.

Therefore, (23) now embodies both PD and PR which are the
vital components to estimate the desired DRR.

Since the spherical microphone array characteristics are
initially known, α(k) in (23) can be calculated following the
method given in [27], [28]. If the direction of arrival is known
or estimated, then bnmn′m′ can also be calculated. dnmnm′
are composed of known functions. Thus, we can estimate the
unknown power spectra PD and PR by solving the following
set of equations, which were derived by reformulating (23) as

R0000

R001−1
...

R00NN

R1−100
...

RNNNN


︸ ︷︷ ︸

r̃(k)

≈



b0000 d000000 · · · d0000V V
b000−1 d000−100 · · · d000−1V V

...
...

...
...

b00NN d00NN00 · · · d00NNV V
b1−100 d1−10000 · · · d1−100−1V V

...
...

...
...

bNNNN dNNNN00 · · · dNNNNV V


︸ ︷︷ ︸

B(k)

×



PD
PR

E
{
‖S(k)‖2

}
γ1−1

...

E
{
‖S(k)‖2

}
γV V


︸ ︷︷ ︸

p(k)

.
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(25)

Here, Rnmn′m′ in r̃(k) denotes the (n2+n+m+1)th row and
(n′2+n′+m′+1)th column components of R(k), which can
be calculated from the spherical microphone measurements.
The estimated power spectra of the direct and reverberant
components can be derived by solving (25) using the least-
squares method

p̂(k) = B†(k)r̃(k) (26)

where [·]† and [̂·] represents the Pseudo-inverse and estimated
value, respectively. The first and second elements of p̂(k) then
gives the desired DRR estimate

DRRest(k) = 10 log10
P̂D(k)

P̂R(k)
. (27)

The basic formulation of this estimation is similar to that given
in [16], however, the performance of the present model is
expected to be more robust due to (i) the spatial characteristics
of the correlation matrix (23), and (ii) the realistic propagation
model used for the reverberated field. Note that the solution
to (26) provides higher order γ terms which are redundant
in the current application. These terms are essentially the
higher order harmonic components of the angular power of
reverberation (17), which could be useful to calculate the DRR
between a point source and a V th order spatial receiver region.

V. EXPERIMENT RESULTS USING THE ACE CHALLENGE
DATABASE

We evaluate the proposed DRR estimation algorithm with
real acoustic data. We used the ACE Challenge database [24],
[25] to retrieve a large corpus of multi-channel recordings
spanned over a variety of rooms, speakers and environmental
conditions.

A. The ACE Challenge database

The ACE Challenge database3 is a recently developed
database to stimulate research in non-intrusive acoustic param-
eter estimation in realistic environments including noise and
reverberation. The database comprises of a variety of anechoic
speech measurements, multi-channel room impulse responses
(RIR), and multi-channel ambient, fan and live babble noise
measurements recorded under the same conditions as the AIRs.
A detailed description of the database can be found in [24],
[25]. The results and analysis provided in this paper are
based on a subset (Eval-EM32) of the above data, which
were recorded using an Eigenmike. Included in this subset
are; anechoic speech recordings of 5 male talkers and 5
female talkers, each uttering 5 different English phrases, RIR
measurements for 5 different rooms at 2 different Eigenmike
positions per room (near and far from the source position),
and 3 types of noise recordings (babble, fan, ambient) under
the same room conditions. The ACE database also supplies a
software to construct realistic multi-channel noisy reverberant
speech utterances from the above recordings by convolving the

3Available at www.ace-challenge.org
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Fig. 1. Mean and standard deviation of the full-band DRR estimation error
for 5 rooms and 2 microphone configurations.
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Fig. 2. Mean and standard deviation of the sub-band DRR estimation error
averaged over all room configurations.

various elements of anechoic speech with the RIRs followed
by adding the associated noise measurements at 3 different
SNR levels (−1 dB, 12 dB and 18 dB). A resulting total
of 4500 different speech utterances were utilized to evaluate
the proposed DRR estimation algorithm. For performance
comparison, the ground truth values for both full-band DRR
and sub-band DRR are provided in the ACE database. In
[24], the authors mentioned that these ground truth values
were determined based on the the method given in [29].
The frequency sub-bands follows the ISO specifications for
1/3−octave sub-bands, such that the center-frequency (CF)
of band 1 is at 25.1189 Hz, CF of band 2 is at 31.6227766
Hz and so on.

B. DRR algorithm setup and DOA Estimation

The DRR estimation algorithm involves the implementation
of the spatial correlation model given in (25). This requires
the formulation of the modal domain correlation matrix r̃(k)
and the secondary matrix B(k). A detailed description of our
approach to this formulation is as follows.

The modal domain coefficient matrix r̃(k) gives the correla-
tion between the spherical harmonic coefficients of the spatial
region of interest. The available measured data were the 32
channel noisy reverberant Eigenmike recordings from the ACE
Challenge database. We first windowed each recording with a
window length of 4 ms to balance out the trade-off between
spectral leakage and reduced frequency resolution. We next
discarded the windows containing speech intervals or non-
speech segments to arrive at a better DRR estimation. Later
we performed Short-Time Fourier Transform on the signal(s)
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TABLE I
ROOM DIMENSIONS (APPROX.), MEAN T60 , AND MEAN DRR ACROSS ALL MICROPHONE POSITIONS, CONFIGURATIONS, AND CHANNELS

Name
L

(m)
W

(m)
H

(m)
Vol.
(m)

T60
(S)

Pos. 1 DRR
min. max.

(dB)

Pos. 2 DRR
min. max.

(dB)
Lecture Room 1 6.93 9.73 3.00 202 0.638 -0.825 14.6 0.872 7.90
Lecture Room 2 13.4 9.29 2.94 365 1.22 -0.370 12.8 -3.75 6.45
Meeting Room 1 6.61 4.73 2.95 92.2 0.437 -1.98 10.8 -3.10 7.57
Meeting Room 2 10.3 9.17 2.63 249 0.371 -2.57 11.2 -1.08 12.5
Office 2 5.10 3.22 2.94 48.3 0.390 -0.444 13.0 -2.28 9.48

along with 1/3 Octave banding. For each frequency bin
belonging to each sub-band we then calculated the spherical
harmonic coefficients αnm(k) using the 32-channel Eigenmike
data. For this purpose we followed the mode matching ap-
proach given in [27], and the spatial soundfield order was
determined according to the rule-of-thumb N = dkre [30].
From αnm(k) we then constructed the spatial correlation
matrix r̃(k). The frequency variants of r̃(k) were appropriately
averaged to arrive at individual sub-band results.

We only considered a frequency range between 178− 2239
Hz (or CFs 199.52 − 1995.26 Hz) containing a total of 11
1/3−octave bands. The elimination of low frequencies was
due to the inherent nature of the human voice spectrum and
the difficulty of obtaining sensible DRR estimations in noisy
conditions. Due to the inherent properties of speech signals,
we assume that there exists sufficient energy within the chosen
frequency range. For full-band estimations we averaged the
results over the 11 bands of interest. (When comparing the
full-band results with the ground truth, we performed a similar
averaging for the respective sub-band ground truth values
instead of using the direct full-band ground truth provided
by the database).

The formulation of matrix B(k) is straightforward as its
elements are known functions. The only unknown we needed
to estimate was the direction-of-arrival (DOA) which was not
a given in the ACE database. To achieve this, we performed
frequency smoothed MUSIC DOA estimation in the spherical
harmonics domain [31], [32]. When processing the raw data
for MUSIC estimation, we discarded all windows except for
those containing the beginning of each utterance such that the
corresponding impinging signal was almost purely due to the
direct path.

C. Full-band DRR estimation results

The overall results for full-band DRR estimation are shown
in Fig. 1. This figure shows the mean and standard deviation
of the absolute value of the DRR estimation error. Since the
DRR itself is a ratio between two values, it’s reasonable to
evaluate the error as a proportion of the estimate to the ground
truth given by the ACE database. As the DRR is defined in
units of decibels in the ACE database, the proportion between
the estimated DRR and ground truth DRR corresponds to
the difference between DRRestimate and DRRground. Thus as an
evaluation criterion, we calculated the DRR estimation error

εDRR by

εDRR = |DRRestimate − DRRground| (28)

The results are computed over all 5 rooms including 2 mi-
crophone configurations for each room. The 2 configurations
are explained in the ACE database as ‘A=long’ and ‘B=short’,
interpreting a large and a small distance between the source
and Eigenmike, respectively. The actual distance or their
consistency across different rooms are however not disclosed.

In order to study the effectiveness of modeling the re-
verberant soundfields as non-diffuse, we compared the DRR
estimation error with that obtained by Hioka et. al. [16],
where the reverberant component of (5) was assumed to be
a diffuse field. One of the reasons why the environment
may not be completely diffuse is because some rooms may
have carpet floors and other surfaces, which absorb more
than the reflective walls and ceilings. When this happens,
the spatial correlation expression formulated in [16] does not
hold because not all reverberant waves arrive equally from all
directions. While the proposed DRR estimation method avoids
the above assumption, it may have other drawbacks due to
(i) truncation error (ii) the numerical noise related to matrix
inversion. The reflection of the above concerns in Fig. 1 is
discussed as follows.

We can observe from Fig. 1 that out of the 10 different room
configurations, the modal DRR estimation method yields better
results for a majority of 7 cases with the error improvement
varying between 0.5− 2 dB. This reflects that in general, the
effect of using truncated modal expressions for the spatial
correlation model and the related numerical noise are less
problematic than a diffuse reverberation field assumption. For
both methods, the results are weakest in Lecture Room 1,
Lecture Room 2 and Meeting Room 2. These rooms are the
largest and therefore, the estimation error may be caused
by incorrect reverberant field estimation. This is due to the
environment becoming close to anechoic with increasing room
size.

D. Subband DRR estimation results

Here, we present the sub-band DRR results for 1/3−octave
bands with central frequencies ranging from 199 − 1995 Hz.
Figure 2 shows the mean and standard deviation of the sub-
band DRR estimation error (28) for the proposed method.
Similar to the full-band results, the results were averaged
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Fig. 3. Mean and standard deviation of the estimated DRR for individual rooms and microphone configurations.

over 4500 speech files spanning 5 rooms, 2 microphone
configurations, 10 speakers, 5 utterances, 3 noise types and
3 noise levels.

Figure 2 indicates that the DRR estimation error for the
proposed method is is fairly stable around 2dB throughout the
frequency range of interest. A slight decrease of mean error
is present at high frequencies compared to low frequencies.
This is due to a couple of reasons; (i) at each frequency
bin, the modal approach truncates the soundfield order at
N = dkre and therefore, the lower frequencies consider less
number of soundfield modes compared to higher frequencies;
(ii) the frequency resolution at low frequency sub-bands is
low, hence the number of frequency bins contributing to
the spatial correlation model is limited, which increases the

fluctuation of results compared to that of high frequency sub-
bands with higher resolution; (iii) the ground truth values are
bound to inherent estimation errors from RIR measurement
imperfections, numerical noise, limitations of the theories used
etc.

E. Influence of room statistics

A more detailed study on the influence of room statistics on
the proposed DRR algorithm is given below. We analyze the
effects of source-receiver distance, room size, reverberation
time, noise levels and noise types.

1) Influence of the source-receiver distance and room size:
Figure 3 shows the sub-band DRR estimation and DRR
ground truth for the 5 rooms and 2 microphone configurations
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Fig. 4. Mean and standard deviation of DRR estimation error for different
noise types at SNR= −1 dB.

as provided by the ACE challenge database. As mentioned
previously, the terms ‘long’ and ‘short’ express the source-
microphone distance. From the 10 cases, the DRR estimation
performance is consistently good (within 3 dB error) in 6
scenarios. The remaining 4 cases shows estimation errors up
to 5 dB for which the possible reasons are discussed below.
From the ‘long’ configuration, Lecture Room 2 and Meeting
Room 2 have the weakest DRR estimation performance. There
are two main reasons for this performance degradation. First,
it is observed from Table I that these two rooms are the largest.
As mentioned in Section V-C, the reverberant signal energy in
large rooms are quite low due to the rooms becoming close
to anechoic with increasing size. Therefore, the numerical
process involved with estimating the reverberant path power
will introduce additional noise. Secondly, there exists a for-
mulation error that specifically affects the DRR estimation
accuracy when the source-microphone distance is large. This
error is stemmed from the assumption made in Section III-A,
where the cross-correlation between direct and reverberant
path components of the soundfield coefficients αnm(k) was
assumed to be zero (14). The maximum error resulting from
this at each soundfield mode is 2|HD(k)Y ∗nm(θ0, φ0)||βnm(k)|.
As the receiver is moved further away from the source, the
direct component degrades while the reverberant component
stays the same. Consequently, the ratio of the error to the
power of the direct component |HD(k)Y ∗nm(θ0, φ0)|2, which
is 2|βnm(k)|
|HD(k)Y ∗nm(θ0,φ0)| , becomes inversely proportional to the

true DRR. Hence the formulation error prominently affects
the estimation of DRR at long distances where true DRR is
low. The results in Lecture Room 2 is a prime example for
this.

From the ‘short’ configuration, Lecture Room 1 and Office
2 display degraded performance. The main reason for this
degradation is the plane wave assumption of all incoming
sound waves incident at the Eigenmike. This assumption is
only valid for sound sources located in the far-field defined
by ||ŷ0 − xq|| > r2/λ where λ is the wavelength. Therefore,
when the source-microphone distance is less than this limit, the
above assumption causes discrepancies in the estimate direct
path correlation which then propagates to the estimated DRR.

2) Influence of Reverberation time T60: Rooms with larger
T60 values experience increased reverberation. From Table I,
Lecture Room 2 has the longest T60, which two or more
times larger than those of the remaining 4 rooms. When the
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Fig. 5. Mean and standard deviation of DRR estimation error for varying
SNR.

reverberant power is large, the most vulnerable scenario for
error is direct path estimation with a long source-receiver dis-
tance. As discussed in section V-E1, the direct path estimation
is already difficult due to its degradation with the increased
travel distance, and now a large reverberant signal is present
to further obscure its detection. For shorter source-receiver
distance the performance is expected to improve as observed in
Lecture Room 2-short. The DRR estimation of less reverberant
rooms can be expected to be least affected by the reverberation
time. However, if the reverberant field is incorrectly assumed
to be diffuse, when in reality its sparse and weak, the DRR
estimation performance is bound to degrade. This result can be
observed in Fig. 1, where the diffuse-method show increased
estimation errors in most rooms with low-medium T60 values.

3) Influence of Noise: In this section, we analyze the
influence of different noise types and noise levels on the
performance of the proposed DRR estimation algorithm. The
ACE challenge database provides microphone recordings for
3 noise types, namely, ‘Ambient’, ‘Fan’ and ‘Babble’. For
each noise type, the SNR is varied over 3 levels at 18 dB,
12 dB and −1 dB. For a more comprehensible presentation,
we re-grouped the sub-band results into ‘low’ (199−398 Hz),
‘medium’ (501 − 1000 Hz), and ‘high’ (1258 − 1995 Hz)
frequency bands as shown in figures 4 and 5.

Figure 4 shows the mean and standard deviation of the sub-
band DRR estimation error for the 3 types of noise present. On
their own, these noise types have distinct spectral characteris-
tics as described bellow. ‘Ambient’ noise is prominent in the
low frequency range with the energy decreasing gradually with
increasing frequency. ‘Fan’ noise has a very similar spectrum
to that of ‘Ambient’. In contrast, ‘Babble’ noise has a wider
spectrum due to the fact that it’s a collection of superimposed
speech signals. Therefore, the energy present in its mid and
high frequency bands are higher compared to that of ‘Ambient’
and ‘Fan’. Figure 4 seem to clearly reflect the effects of
above spectral characteristics. In the low frequency range, all
3 noise types result in the highest estimation error due to the
noise spectral energy dominance in that particular frequency
band. There’s a gradual decrease of error with increasing
frequency following the energy distribution of all 3 noise
types. The performance under ‘Ambient’ and ‘Fan’ noise are
almost identical due to the similarity of their noise spectrum.
However, the performance under ‘Babble’ noise is slightly
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higher, specially in the low and mid frequency ranges, due
to increased energy in its frequency spectrum.

Figure 5 shows the mean and standard deviation of the sub-
band DRR estimation error for 3 different noise levels with
the SNR varying between 18 dB, 12 dB and −1 dB. It is
observed that the estimation results are quite similar with 18
dB and 12 dB SNR. At −1 dB SNR, the mean and standard
deviation of the estimated error are slightly higher, specially
at low frequencies. Apart from the increased interference, this
could be partially stemming from the DOA estimation errors.

VI. CONCLUSION

In this paper, we presented and evaluated a novel approach
to estimate the Direct-to-Reverberant Ratio in a noisy field.
This method utilizes a spatial soundfield recording at the
receiver location of interest and spherical harmonics domain
spatial correlation model to reliably estimate the direct path en-
ergy, reverberant path energy and the desired DRR. In contrast
to existing research, we modeled the reverberant path with a
more realistic non-diffuse field. We showed that this approach
achieves better DRR estimates compared to that assuming a
diffuse model for the reverberant field. The simulation results
were obtained using a measurement database made available
by the ACE challenge. Further improvement should be sought
to make the proposed method more robust to the variation of
the acoustical environment, specially within the low frequency
range.

APPENDIX A
DERIVATION OF EQUATION (13)

By substituting (12) and (11) in (5), we derive

∞∑
n=0

n∑
m=−n

αnm(k)jn(kr)Ynm(θq, φq) =

S(k)
∞∑
n=0

n∑
m=−n

in
(
HD(k)Y ∗nm(θ0, φ0) +

∑
n′,m′

βnm(k)∫
ŷ

Y ∗nm(θ, φ)Yn′m′(θ, φ)dŷ
)
jn(kr)Ynm(θq, φq)

(29)

Based on the orthonormal property of spherical harmonic
functions (8), (29) can be simplified into

∞∑
n=0

n∑
m=−n

αnm(k)jn(kr)Ynm(θq, φq) = S(k)
∞∑
n=0

n∑
m=−n

in
(
HD(k)Y ∗nm(θ0, φ0) + βnm(k)

)
jn(kr)Ynm(θq, φq).

(30)

From (30), the modal coefficients of the spatial soundfield
recorded by the microphone array, αnm(k) can be identified
as

αnm(k) = S(k)in
(
HD(k)Y ∗nm(θ0, φ0) + βnm(k)

)
.

This completes the derivation of (13).

APPENDIX B
DERIVATION OF EQUATION (18)

In this section, we perform a four step simplification utiliz-
ing the inherent properties of spherical harmonics to derive a
closed form expression for E{βnm(k)β∗n′m′(k)}.

First we use the orthonormal property of spherical harmon-
ics (8) in (11) to derive

E
{
βnm(k)β∗n′m′(k)

}
= E

{∫
ŷ

HR(k, ŷ)Y ∗nm(ŷ)dŷ

∫
ŷ′
H∗R(k, ŷ

′)Yn′m′(ŷ
′)dŷ′

}
=

∫
ŷ

∫
ŷ′

E
{
HR(k, ŷ)H∗R(k, ŷ

′)
}
Y ∗nm(ŷ)Yn′m′(ŷ

′)dŷdŷ′ (31)

Second, based on the assumption that the reflection gains
from different incoming directions are uncorrelated (16), we
simplify (31) into

E
{
βnm(k)β∗n′m′(k)

}
=

∫
ŷ

E
{
‖HR(k, ŷ)‖2

}
Y ∗nm(ŷ)

Yn′m′(ŷ)dŷ.

(32)

In order to simplify (32), we next substitute the spherical har-
monic decomposition of E

{
‖HR(k, ŷ)‖2

}
defined in (17),

in (32) and derive

E
{
βnm(k)β∗n′m′(k)

}
=

∞∑
v=0

v∑
u=−v

γvu(k)
∫
ŷ

Yvu(ŷ)Y
∗
nm(ŷ)

Yn′m′(ŷ)dŷ. (33)

Finally, by utilizing one of the integral properties of spherical
harmonics given by [33]

∞∑
v=0

v∑
u=−v

∫
ŷ

Yvu(ŷ)Y
∗
nm(ŷ)Yn′m′(ŷ)dŷ

=
√
(
(2V + 1)(2n+ 1)(2n′ + 1)

4π
)W1W2

(34)

where W1 (19) and W2 (20) denote Wigner coeffi-
cients, in (33), we arrive at a closed form expression for
E{βnm(k)β∗n′m′(k)} as

E
{
βnm(k)β∗n′m′(k)

}
=

∞∑
v=0

v∑
u=−v

γvu(k)( (2v + 1)(2n+ 1)(2n′ + 1)

4π

)1/2
W1W2.

This completes the derivation of equation (18).
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