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In this work, analytic expressions for the spatial coherence of noise fields are derived in the modal

domain with the aim of providing a sparse representation. For this purpose, the sound field in a

region of interest is expressed in terms of a given pressure distribution on a virtual surrounding

cylindrical or spherical surface. According to the Huygens–Fresnel principle, the sound pressure on

this surface is represented by a continuous distribution of elementary line or point sources, where

orthogonal basis functions characterize the spatial properties. To describe spatially windowed pres-

sure distributions with arbitrary angular extensions, orthogonal basis functions of limited angular

support are proposed. As special cases, circular and spherical pressure distributions with uncorre-

lated source modes of equal power are investigated. It is shown that these distributions result,

respectively, in cylindrically isotropic and spherically isotropic, i.e., diffuse noise fields. The ana-

lytic expressions derived in this work allow for a prediction of the spatial coherence between arbi-

trary positions within the region of interest, such that no microphones need to be placed at the

actual points of interest. Simulation results are presented to validate the derived relations.
VC 2017 Acoustical Society of America. https://doi.org/10.1121/1.5009451
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I. INTRODUCTION

Coherence is a property which matters for a large variety

of applications and technical areas. First of all, it helps to

characterize waves of any kind, be it acoustic waves or elec-

tromagnetic waves such as light or radio waves. It plays an

important role in mobile communication,1,2 in many different

multichannel signal processing concepts, e.g., in beamform-

ing,3 blind source separation,4,5 or dereverberation of acoustic

signals,6–8 and it is even utilized in certain medical applica-

tions, such as medical imaging.9 A high spatial coherence is

also necessary for a successful deployment of active noise

control (ANC) systems, i.e., for canceling acoustic noise in

spatially extended areas by emitting “anti-sound.”10–16

When it comes to the quantification of the spatial coher-

ence in practice, the environment and reverberation play a

decisive role. Several publications have been dedicated to

the coherence estimation for reverberant sound fields, e.g.,

Refs. 17–19, and references therein. A common assumption

is that especially late reverberation affects the estimates of

the spatial coherence in a similar way as diffuse sound,

which can be approximated by superimposing plane waves

of equal amplitude and uniformly distributed random phase

originating from all directions.20 For this reason, diffuse

noise is often considered as one ingredient for modeling

complex and reverberant sound fields.21,22

In this contribution, the spatial coherence is analytically

expressed as a function of a given pressure distribution

defined on a virtual cylindrical or spherical surface surround-

ing the region of interest. This pressure distribution may gen-

erally be evoked by an arbitrary number of noise sources,

but it can always be represented according to the

Huygens–Fresnel principle, i.e., by means of a continuous

distribution of elementary line or point sources on the sur-

face. The motivation for analyzing continuous source distri-

butions stems from the fact that many real-world noise

sources, e.g., a power transformer, an air conditioning

system, or complex noise passing through a window, are spa-

tially extended and not point-like. With the aim of providing

a compact representation, the source distributions are charac-

terized by so-called source or excitation modes, similar to

the work presented by Wu and Abhayapala.23 In this work,

the concept of the aforementioned reference is extended and

a potential cross-correlation between the individual modes is

taken into account. Furthermore, windowed source distribu-

tions of arbitrary angular extensions are analyzed. The

approach outlined above should provide a means to predict

the spatial coherence for any pair of positions within the

region of interest, while no sensors are required at the points

of interest. In addition, it should give insights into the prop-

erties of real sources—it was already shown24,25 that vibrat-

ing surfaces such as the diaphragm of a loudspeaker can be

well described using spatial basis functions.

The remainder of this paper is structured as follows. In

Sec. II, the problem tackled in this work is stated and general

definitions are formulated. Section III is dedicated to

cylindrical surfaces covered with a continuous distribution

of elementary line sources, where a relation between thea)Electronic mail: michael.buerger@FAU.de
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cross-correlation of the source modes and the resulting spatial

coherence of the evoked 2D variant sound field is derived. A

spherical distribution of elementary point sources is consid-

ered in Sec. IV, and the correlation of the source modes is

related to the spatial coherence of the resulting 3D variant

sound field. The theoretical findings and derived analytic

expressions for the spatial coherence are verified by simula-

tions in Sec. V before the work is concluded in Sec. VI.

II. PROBLEM FORMULATION AND DEFINITIONS

The spatial coherence between the signals observed at

positions~xl and~x� is defined as

C~xl~x� ðxÞ ¼
U~xl~x� ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U~xl~xlðxÞU~x�~x� ðxÞ
q ; (1)

where x ¼ 2pf denotes the angular frequency, U~xl~x� is the

cross-power spectral density, and U~xl~xl and U~x�~x� are the

auto-power spectral densities. In this work, it is assumed that

all signals can be characterized as ergodic random processes.

The power spectral densities (PSDs) in (1) can then be

obtained according to

U~xl~x� ðxÞ ¼ EfPð~xl; t;xÞP�ð~x�; t;xÞg; (2)

where P represents the sound pressures at the observation

points, Ef�g is the expectation operator with respect to

(w.r.t.) time, t indicates a time frame of the short-time

Fourier transform (STFT), and ð�Þ� denotes complex

conjugation.

The aim of this work is to quantify the spatial coherence

between an arbitrary pair of observation points located in a

sound field evoked by spatially extended noise sources. For

this purpose, the investigations of Cox26 serve as a starting

point, where the sound field was assumed to be a superposi-

tion of uncorrelated plane waves originating from arbitrary

directions. We extend this work to sound fields evoked by a

continuous distribution of elementary line or point sources

and, furthermore, introduce a modal description which con-

siders a potential correlation between the individual elemen-

tary sources. As a special case, continuous distributions of

line sources with limited angular extension are treated. The

presented analysis could be beneficial for efficient imple-

mentations of various algorithms, e.g., in the field of ANC,

notably if exploiting a sparse representation of the sound

field in the modal domain.27,28

Throughout this work, all signals are assumed to have a

harmonic structure with a time dependency of expðþixtÞ,
and the forward Fourier transform of a function f(t) is

defined as

FðxÞ ¼
ð1
�1

f ðtÞe�ixt dt: (3)

We stress that different definitions29 are used especially in

the acoustics community, which would change, e.g., the for-

mulations of the 2D and 3D Green’s functions in Eqs. (5)

and (25), respectively.

III. SPATIAL COHERENCE FOR CONTINUOUS
DISTRIBUTION OF LINE SOURCES EVOKING 2D
VARIANT SOUND FIELDS

A. Modal description of the cross-power spectral den-
sity in 2D

Let us consider a planar region of interest R which is

located in the x-y plane and surrounded by a closed contour

Y. This contour accommodates a continuous distribution of

infinitely long line sources extending along the z axis. Since

the line sources are oriented perpendicularly w.r.t. to the x-y
plane, the resulting sound field is z-invariant. The sound

pressure P at any position~x 2 R in the 2D region of interest

can be expressed as

Pð~x; t;xÞ ¼
þ
Y

Gð~xj~y; kÞSð~y; t;xÞ d~y; (4)

where S characterizes the noise source in the STFT domain

at a particular position ~y 2 Y on the contour, k ¼ x=c is the

wave number, and c denotes the speed of sound. Assuming

free-field propagation, the transfer function between ~y and ~x
is given by the 2D Green’s function30

G ~xj~y; kð Þ ¼ � i

4
H
ð2Þ
0 kjj~y �~xjj2
� �

; (5)

where H
ð2Þ
0 is the Hankel function of the second kind and

zeroth order, and jj�jj2 denotes the Euclidean norm.

Substituting Eq. (4) into Eq. (2), the cross-power spectral

density U~x1~x2
for two observation points ~x1 and ~x2 can be

expressed as

U~x1~x2
ðxÞ ¼ EfPð~x1; t;xÞP�ð~x2; t;xÞg

¼
þ
Y

þ
Y

Gð~x1j~y;kÞG�ð~x2j~y 0;kÞ

�EfSð~y; t;xÞS�ð~y 0; t;xÞgd~y d~y 0: (6)

If all points ~y of the source distribution lie on a circle

with radius R ¼ jj~y jj2 centered at the origin of the coordi-

nate system, they can be more conveniently represented by

their angles /y ¼ /~y w.r.t. the x axis. This allows us to

describe a noise source SR distributed along a circular con-

tour Y with radius R using a Fourier series expansion

SRð/y; t;xÞ ¼
X1

m¼�1
bmðt;xÞeim/y ; (7)

where bm are the weights of the basis functions expðim/yÞ,
which are referred to as excitation or source modes here. In

order to separate the variables~x and~y in the argument of the

Hankel function in Eq. (5), which is helpful for the integra-

tion in Eqs. (4), (6), we apply Graf’s addition theorem,31

H
ð2Þ
0 ðkjj~y �~xjj2Þ

¼
X1

n¼�1
Hð2Þn ðkRÞJnðkXÞeinð/x�/yÞ for X < R; (8)

where X ¼ jj~xjj2 and /x ¼ /~x. Furthermore, Jn and Hð2Þn

denote the nth order Bessel function and Hankel function of

3026 J. Acoust. Soc. Am. 142 (5), November 2017 Buerger et al.



the second kind, respectively. In the remainder of this paper,

we always assume that the condition Xi < R, with Xi ¼ jj~xijj2
and i 2 f1; 2g, is met. Introducing the cross-correlation

qmm0 ðxÞ ¼ Efbmðt;xÞb�m0 ðt;xÞg of the weights for the excita-

tion modes and substituting Eqs. (5), (7), and (8) into Eq. (6)

yields

U
�

~x1~x2
ðxÞ ¼ 1

16

þ
Y

þ
Y

X1
m;m0;n;n0¼�1

Hð2Þn ðkRÞJnðkX1ÞHð1Þn0 ðkRÞ

� Jn0 ðkX2Þqmm0 ðxÞe
in /x1

�/yð Þe�in0 /x2
�/0yð Þ

� ei m/y�m0/0yð Þ d/y d/0y; (9)

where the circle above U~x1~x2
indicates that the integration is

performed over a circular contour in the angular interval

½0; 2pÞ, and H
ð1Þ
n0 ¼ H

ð2Þ
n0
� is the n0th order Hankel function of

the first kind. The auto-power spectral densities U~x1~x1
and

U~x2~x2
can be computed analogously to Eq. (9) such that the spa-

tial coherence can eventually be obtained according to Eq. (1).

Due to the orthogonality of the complex exponential

functions, the expression for the cross-power spectral density

in (9) significantly simplifies according to

U
�

~x1~x2
ðxÞ ¼ p2

4

X1
n;n0¼�1

Hð2Þn ðkRÞJnðkX1ÞHð1Þn0 ðkRÞJn0 ðkX2Þ

� q�n�n0 ðxÞe
i n/x1

�n0/x2ð Þ: (10)

In practice, the number of modes utilized to describe the true

sound field is usually truncated while still retaining a suffi-

cient accuracy. Given that the area of interest R has a radius

of rmax, the summation in Eq. (10) can be limited to

n; n0 ¼ �N;…;N, where32

N ¼
�

1

2
ermaxkmax

�
(11)

with kmax ¼ xmax=c, the ceiling operator d�e, and e being

Euler’s number. Choosing this number assures that the

approximation error of the sound field within R will be

below 16.1% for angular frequencies up to xmax.32

B. Cylindrically isotropic noise field

Let us consider the special case of uncorrelated source

modes with unit power for all frequencies x. In this case,

q�n�n0 ðxÞ ¼ dnn0 , with dnn0 representing the Kronecker delta,

and Eq. (10) reduces to

U
�uncorr

~x1~x2
ðxÞ ¼ p2

4

X1
n¼�1

jHnðkRÞð2Þj2JnðkX1ÞJnðkX2Þ

� e
in /x1

�/x2ð Þ: (12)

If we furthermore assume the far-field case with kR� 1, we

can exploit the large-argument approximation of the Hankel

function33 and approximate Eq. (12) according to

U
�uncorr

~x1~x2
ðxÞ � p

2kR

X1
n¼�1

JnðkX1ÞJnðkX2Þein /x1
�/x2ð Þ (13)

¼ p
2kR

J0 kDXð Þ; (14)

where DX ¼ jj~x1 �~x2jj2 and Graf’s addition theorem for the

Bessel function33 is exploited to obtain Eq. (14) from Eq.

(13). After computing the auto-power spectral densities at~x1

and~x2 according to Eq. (14), the spatial coherence in Eq. (1)

results in the well-known coherence for a cylindrically iso-

tropic noise field,34

Ciso
~x1~x2
ðxÞ ¼ J0ðkDXÞ: (15)

That is, a continuous distribution of line sources located on a

circular contour with a large radius results in an isotropic

noise field inside the contour if all source modes are mutu-

ally uncorrelated and the corresponding weights are of equal

power.

C. Sources of limited angular extension

Next, we consider the case where the sound source does

not surround the area of interest completely, i.e., Y is not a

closed contour, but an arc with angular extension D/y. The

resulting cross-power spectral densities can again be

obtained from Eq. (9), where the integration must be limited

to the desired interval. Without loss of generality, we con-

sider the source distribution to be centered at /y ¼ 0� such

that the source extends in the interval ½�D/y=2;D/y=2	.
This limitation of the source extension can be described by a

multiplication of the sound pressure SR on the contour with a

rectangular window function in the angular domain. After

performing this windowing operation and the integration in

Eq. (9), we obtain

�U~x1~x2
ðxÞ

¼ 1

16
D/y

� �2
X1

n;n0¼�1
Hð2Þn ðkRÞJnðkX1ÞHð1Þn0 ðkRÞ

� Jn0 ðkX2Þei n/x1
�n0/x2ð Þ

�
X1

m0¼�1

X1
m¼�1

qmm0 ðxÞsinc
nþ m

2
D/y

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

discrete convolution w:r:t: m

� sinc
n0 þ m0

2
D/y

� �
; (16)

where sincðnÞ ¼ sinðnÞ=n. An inspection of Eq. (16)

reveals that a multiplication with a rect-function in the

angular domain results in a discrete convolution of qmm0

with a sinc-function in the modal domain. Again, the num-

ber of modes utilized to describe the sound field can be

limited according to Eq. (11). However, due to the

involved convolutions, source modes m;m0 > N will also

have an impact on lower-order modes n; n0 
 N. This

implies that the modal truncation can only be done after

performing the convolution. To realize the sinc-function in

practice, a window with a suitably chosen length needs to

be applied such that the approximation error can be

neglected. It is worth noting here that for the special case

D/y ¼ 2p, the sinc-functions will always be zero except

for m ¼ �n and m0 ¼ �n0 leading to a value of 1, which

means that Eq. (16) becomes identical to Eq. (10).
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D. Sources of limited angular extension represented
by alternative basis functions

In order to precisely describe the rectangular function

for windowed sources (see Sec. III C) by means of a Fourier

series, theoretically infinitely many basis functions are

required. It is thus desirable to utilize a set of orthogonal

basis functions Bm with limited angular support, i.e., basis

functions which are nonzero only within the limited angular

region of extension D/y and zero elsewhere. A straightfor-

ward approach would be the use of windowed complex

exponential functions,

Bmð/yÞ ¼ rect
/y

D/y

 !
e

im /y=D/yð Þ2p; (17)

the local spatial frequencies of which are integer multiples

m of the local spatial fundamental frequency 1=D/y deter-

mined by the window size. In comparison, the spatial fun-

damental frequency of the Fourier basis functions is

1=ð2pÞ. That is, the local spatial frequencies are scaled by a

factor 2p=D/y relative to the spatial frequencies of the

Fourier basis functions. An illustration of the basis func-

tions Bm is given in Fig. 1 together with the basis functions

used for the Fourier series expansion in Eq. (7). Note that,

for simplicity and without loss of generality, the modified

basis functions (17) are defined such that they are centered

at /y ¼ 0� corresponding to y¼ 0. Using Eq. (17), a sound

source of angular extension D/y can be conveniently

described as

SRð/y; t;xÞ ¼
X1

m¼�1
gmðt;xÞBmð/yÞ; (18)

with gm being the weight of the corresponding basis func-

tion. Similar to a Fourier series expansion, the weights gm

can be computed for a given sound pressure SR by evaluating

the inner product

gmðt;xÞ ¼
1

D/y

ðD/y=2

�D/y=2

SRð/y; t;xÞB�mð/yÞ d/y: (19)

Following the same steps as above, i.e., substituting Eqs.

(17), (5), and (8) into Eq. (6) and performing the integration,

we can describe the cross-power spectral density for two

observation points in an analogous way,

�U~x1~x2
ðxÞ¼ 1

16
D/y

� �2
X1

m;m0;n;n0¼�1
Hð2Þn ðkRÞJn kX1ð Þ

�H
ð1Þ
n0 ðkRÞJn0 kX2ð Þ�qmm0 ðxÞ

�sinc n
D/y

2
þmp

� �
sinc n0

D/y

2
þm0p

� �
�e

i �n/x1
þn0/x2ð Þ; (20)

where �qmm0 ðxÞ ¼ Efgmðt;xÞg�m0 ðt;xÞg denotes the cross-

correlation of the weights for the basis functions Bm. From

Eq. (20) it can be seen that the representation of the cross-

power spectral density with the new set of basis functions is

similar to the original one in Eq. (16). However, the number

of basis functions required to describe an angularly limited

noise source can now be significantly reduced. For example,

a solid vibrating surface (of infinite height z) could be

described by the zeroth basis function B0 only, which means

that only the summations over n and n0 would remain. Even

if several basis functions are active, the corresponding argu-

ments m and m0 of the sinc-functions in Eq. (20) are scaled

by p rather than D/y=2. This implies that, if D/y < 2p, the

envelopes of the sinc-functions decay faster relative to Eq.

(16), which is especially significant for low values of D/y,

such that shorter windows can be applied to the sinc-

functions. For completeness, it should be noted that Eq. (20)

also simplifies to Eq. (10) if D/y ¼ 2p.

To further illustrate the benefit of the new basis func-

tions, we now consider an example where the angular exten-

sion of the noise source is an integer fraction of the entire

circle, i.e., D/y ¼ 2p=L with L 2Nþ. Let us assume that

2 �M þ 1 of these basis functions are required in order to

resolve a certain maximum spatial frequency within the

angular window D/y. If the same spatial frequency is to be

resolved with the original excitation modes defined in Eq.

(7) for the entire circle, 2L �M þ 1 modes are required. This is

due to the fact that the angularly limited basis functions cor-

respond to compressed versions of the original excitation

modes and, thus, have an L times larger spatial frequency,

which can be seen from Eq. (17). In other words, L times

fewer basis functions are required in Eq. (20) in order to

model the same maximum spatial frequency as in Eq. (16).

For an actual implementation of Eq. (20), it is necessary

to truncate the individual summations. This truncation also

allows to simultaneously and conveniently express the cross-

PSDs for a set of Q observations points using a compact

matrix notation. For this purpose, we define a Q� 2N þ 1

matrix ½Hðk;~x;RÞ	l;n ¼ Hð2Þn ðkRÞJnðkXlÞein/xl governed by

FIG. 1. Illustration of (b) the proposed basis functions Bm, whose angular

support is limited to a range of D/y, in comparison with (a) the correspond-

ing basis functions of a Fourier series expansion for m¼ 1, 2.

3028 J. Acoust. Soc. Am. 142 (5), November 2017 Buerger et al.



the source radius R and the positions of the observations points,

a 2N þ 1� 2 �M þ 1 matrix ½�nðD/yÞ	n;m ¼ sincðnðD/y=
2Þ þ mpÞ governed by the angular extension D/y of

the source, and a 2 �M þ 1� 2 �M þ 1 correlation matrix

½�RggðxÞ	m;m0 ¼ Efgmðt;xÞg�m0 ðt;xÞg for the weights of the

basis functions Bm. The Q�Q PSD matrix �U for the set of Q
observation points can then be written as

�UðxÞ ¼ Hðk;~x;RÞ�nðD/yÞ�RggðxÞ�n
TðD/yÞHHðk;~x;RÞ;

(21)

where the superscripts ð�ÞT and ð�ÞH denote transposition and

conjugate transposition, respectively, and the dependencies

on the left-hand side are omitted for the sake of a compact

notation.

For completeness, it should also be noted that an alterna-

tive way to define a set of orthogonal bases are the Slepian

functions which, for the 1D case, are referred to as prolate sphe-

roidal functions.35,36 The advantage of this kind of functions is

that they are strictly limited in one domain while being maxi-

mally concentrated in the corresponding transform domain: For

example, Slepian basis functions based on cylindrical harmon-

ics would maximize the ratio of the energy within an angular

window D/y and the energy on the full circle, while only a

strictly limited number of basis functions is used.

IV. SPATIAL COHERENCE FOR CONTINUOUS
DISTRIBUTION OF POINT SOURCES EVOKING 3D
VARIANT SOUND FIELDS

A. Modal description of the cross-power spectral den-
sity in 3D

The sound pressure at observation point ~x for the 3D

case is evoked by a continuous source distribution S defined

on an acoustically transparent surface surrounding the region

of interest, i.e.,

Pð~x; t;xÞ ¼ �A e�ikjj~y�~xjj2

4pjj~y �~xjj2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
G3Dð~xj~y;kÞ

S ~y; t;xð Þ d~y; (22)

where G3D is the 3D Green’s function30 and ~y represents a

point on the surface A. Considering a spherical surface, any

position ~y 2 A can be parametrized by a constant radius R,

an elevation angle hy, and an azimuth angle /y. The sound

pressure SR on this sphere can then be described using spher-

ical harmonics,30

SRðhy;/y; t;xÞ ¼
X1
n¼0

Xn

m¼�n

am
n ðt;xÞYm

n ðhy;/yÞ; (23)

where Ym
n is the spherical harmonic of degree n and order m,

and am
n denotes the corresponding weight. The spherical har-

monics are defined as31

Ym
n ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p
� ðn� jmjÞ!

nþ jmjð Þ!

s
Pjmjn ðcos hÞeim/; (24)

with Pjmjn being the associated Legendre function of degree n
and order m. After introducing the nth order spherical Bessel

function jn and spherical Hankel function hð2Þn of the second

kind, the 3D Green’s function can be expanded using the

addition theorem,31

G3Dð~xj~y; kÞ ¼ �
X1
n¼0

Xn

m¼�n

ikhð2Þn ðkRÞYm
n
�ðhy;/yÞjnðkXÞ

� Ym
n ðhx;/xÞ: (25)

Inserting Eq. (25) together with Eq. (23) into Eq. (22), the

cross-power spectral density according to Eq. (2) for two

observation points~x1 and~x2 can be written as

U
�3D

~x1~x2
ðxÞ ¼ k2�A�A

X1
p;p0;n;n0¼0

Xp

q¼�p

Xp0

q0¼�p0

Xn

m¼�n

Xn0

m0¼�n0
hð2Þp ðkRÞYq

p
�ðhy;/yÞjpðkX1ÞYq

pðhx1
;/x1
Þ

� h
ð1Þ
p0 ðkRÞYq0

p0 ðh
0
y;/

0
yÞjp0 ðkX2ÞYq0

p0
�ðhx2

;/x2
Þqmm0

nn0 ðxÞYm
n ðhy;/yÞYm0

n0
�ðh0y;/0yÞ

� sinhy dhy d/y sinh0y dh0y d/0y; (26)

where qmm0

nn0 ðxÞ ¼ Efam
n ðt;xÞam0

n0
�ðt;xÞg represents the cross-

correlation of the weights for the spherical harmonics in Eq.

(23), and h
ð1Þ
p0 ¼ h

ð2Þ
p0
� denotes the p0th order spherical Hankel

function of the first kind.

B. Spherically isotropic noise field

Similar to the 2D case, we specifically treat a noise

source consisting of uncorrelated modes with unit power,

i.e., qmm0

nn0 ðxÞ ¼ dnn0dmm0 . Exploiting the orthogonality of

spherical harmonics, the cross-power spectral density in Eq.

(26) simplifies according to

U
�3D;uncorr

~x1~x2
ðxÞ ¼ k2

X1
n¼0

Xn

m¼�n

jhnðkRÞð2Þj2jnðkX1Þ

� Ym
n ðhx1

;/x1
Þ jnðkX2ÞYm

n
�ðhx2

;/x2
Þ: (27)

After utilizing the large-argument approximation of the

spherical Hankel functions31 for kR� 1 and applying the

addition theorem for the spherical Bessel function,37 the

cross-power spectral density in Eq. (27) turns into
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U
�3D;uncorr

~x1~x2
ðxÞ � 1

4pR2
j0 kDXð Þ: (28)

Using this result and computing the auto-power spectral den-

sities for~x1 and~x2 accordingly yields

Cdiff
~x1~x2
ðxÞ ¼ j0ðkDXÞ ¼ sincðkDXÞ: (29)

The expression in Eq. (29) describes the spatial coherence of

a spherically isotropic noise field, which again is a well-

known result34 and also referred to as diffuse noise.

V. SIMULATIONS

To validate the analytic description of the spatial coher-

ence derived above, we conduct the following simulations:

First, a set of discrete line sources located on a circular con-

tour around the region of interest is investigated in Sec. V A.

These line sources cover different angular extensions and

directly define the sound pressure on the cylindrical surface

surrounding the observation region. In the second simula-

tion, presented in Sec. V B, an “open window” scenario is

mimicked, where the sound waves created by multiple

simultaneously active line sources travel from the outside

through an opening into the region of interest. For both sce-

narios, a sampling frequency fs¼ 8 kHz is used, and the spa-

tial coherence at the observation points as obtained with

PSDs computed after Eq. (21) is compared to a classical

coherence estimation using the Welch method applied to the

simulated signals at the actual observation points.

A. Mutually independent line sources on a circular
contour

Let us consider a continuous distribution of line sources

located on an arc of angular extension D/y. This source dis-

tribution is approximated by NS discrete line sources located

on the arc with an inter-element spacing of 0:5�, where the

number NS of utilized sources depends on the angular exten-

sion D/y. These line sources emit mutually uncorrelated

white Gaussian noise signals of equal power such that the

sound pressure at different discrete source positions on the

contour is spatially white. A schematic illustration of the

considered setup is given in Fig. 2, where the source posi-

tions and observation points are represented by solid dots

and microphones, respectively. All observation points are

located on a circle of radius r¼ 0.2 m centered at the origin,

where positions ~x1 and ~x3 are separated by DX ¼ 0:4 m

along the x axis, and positions ~x2 and ~x4 are separated by

DY ¼ 0:4 m along the y axis. The source radius R is chosen

as 3 m, and angular extensions D/y 2 f20�; 45�; 60�;
90�; 135�; 180�; 270�; 360�g are considered. It should be

noted that, even though the spatial coherence obviously is a

function of k and the spacing between the observation points,

we consider a fixed spacing and treat the angular extension

as a variable here to evaluate the impact of differently-sized

sources.

To evaluate the PSD matrix �U in Eq. (21) for the consid-

ered setup, the correlation matrix �Rgg for the weights gm is

required. However, due to the fact that the signals on the con-

tour are spatially white, the weights gm for the basis functions

Bm defined in Eq. (17) also need to be mutually uncorrelated

and of equal power. This can be seen by investigating the

respective correlation matrices: Let sðt;xÞ ¼ ½Sð~y1; t;xÞ;
…; Sð~yNS

; t;xÞ	T be a vector capturing the individual source

signals and let Rss denote the corresponding correlation

matrix, which is defined as

RssðxÞ ¼ Efsðt;xÞsHðt;xÞg: (30)

In the case of mutually uncorrelated source signals of unit

power, the correlation matrix Rss results in an identity

matrix. For discrete source positions, the weights gm can be

obtained by computing the discrete equivalent of the inner

product in Eq. (19), i.e., they are the result of an inverse spa-

tial discrete Fourier transform (DFT) with scaled basis func-

tions Eq. (17). Therefore, the correlation matrix for the

weights gm is given by

�RggðxÞ ¼ FHðm;xÞ Efsðt;xÞsHðt;xÞgFðm;xÞ; (31)

where F represents the corresponding DFT matrix of dimen-

sion NS � NS. As the DFT matrix is orthonormal, the corre-

lation matrix �RggðxÞ will also be an identity matrix in case

of uncorrelated source signals of unit power, implying that

the modal weights are also uncorrelated and of unit power.

Consequently, the PSD matrix can be directly evaluated

without an estimation of the correlation matrix. Note that an

infinite number of basis functions Bm would be required in

order to obtain a constant power distribution on the entire

(continuous) contour, as would be the case for the number of

discrete line sources. However, due to the fact that only a

limited number of modes have a nonnegligible contribution

to the sound field at the observation points, i.e., within the

region of interest R defined by a circle of radius rmax, the

higher-order basis functions can be neglected.32 In practice,

the number of observable basis functions is limited by the

number of utilized microphones. Future work will consider

the required number of basis functions for accurately

describing the sound field withinR.

The spatial coherence between ~x1 and ~x3 as obtained

with the PSDs computed after Eq. (21) is shown in Fig. 3 for

N ¼ �M ¼ 20, which is twice the number resulting from Eq.

(11) and assures a higher accuracy. For verification purposes,

FIG. 2. Illustration of the simulation setup with line sources located on the

contour and emitting mutually uncorrelated white Gaussian noise, where the

source positions and observation points are indicated by solid dots and

microphones, respectively.
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the spatial coherence obtained by applying the Welch

method to the simulated time-domain signals at the observa-

tion points is also plotted in Fig. 3 with dash-dotted lines. It

can be seen that the simulated and the analytically evaluated

spatial coherence curves match very well. As already men-

tioned above, uncorrelated source modes with D/y ¼ 360�

result in a cylindrically isotropic noise field corresponding to

the zeroth order Bessel function, which can be clearly

observed in the plot. For decreasing values of D/y, the

coherence increases on average. This is an expected result,

as the continuous source distribution becomes a single line

source if D/y ! 0�, which results in a fully coherent sound

field.

We now consider the second pair of observation points

~x2 and ~x4, which are rotated by 90� relative to the first pair

and separated by DY¼ 0.4 m along the y axis. The resulting

spatial coherence with PSDs according to Eq. (21) is shown

in Fig. 4 for angular extensions D/y 2 f20�; 45�; 60�; 90�g
and compared to the coherence for the first pair of observa-

tion points~x1 and ~x3. The plot reveals that the spatial coher-

ence values strongly depend on the orientation of the pair of

observation points. It can be seen that the spatial coherence

is much higher if the connection line between the observa-

tion points is parallel to the principal orientation of the sound

intensity, i.e., the “main” propagation direction of the sound

waves (along the x axis), whereas lower values are obtained

if the connection line is oriented perpendicularly. This can

be explained with the trace wavenumber kjj, i.e., the

“effective” wavenumber as observed by a pair of observation

points, which is given by the projection of the wavenumber

onto the connecting line. For a plane wave incident from

direction /PW relative to the connecting line, the trace wave-

number is given by kjj ¼ k cosð/PWÞ, implying that the

observed wavenumber kjj may be much lower than k for

some directions. Due to this projection, the orientation of the

pair of observation points may have a strong impact on the

coherence.

B. “Open window”

As a second simulation, we mimic a scenario where noise

is traveling from the outside through an open window into the

region of interest. That is, the sound pressure on the contour is

not directly evoked on the same, but it results from four line

sources located outside the window, as illustrated in Fig. 5.

Uncorrelated white Gaussian noise with variances

r2
1 ¼ 0:04; r2

2 ¼ 0:25; r2
3 ¼ 0:81, and r2

4 ¼ 0:16 are used as

individual source signals, and the positions of the respective

sources are specified in terms of their ½x; y	 coordinates:

~y1 ¼ ½4; 0	m, ~y2 ¼ ½6;�2	m, ~y3 ¼ ½8; 2	m, and

~y4 ¼ ½7;�1	m. The shaded parts in Fig. 5 can be thought of

as perfectly absorbing infinitely long walls such that the sound

waves can only travel through the 40�-wide opening. Four

observation points are located at positions ~x1 ¼ ½0:5; 0	m,

FIG. 3. (Color online) Spatial coherence between a pair of observations points~x1 and~x3 separated by a distance of DX¼ 0.4 m along the x axis. The underly-

ing noise field is evoked by a continuous distribution of line sources of different angular extensions D/y 2 f20�; 45�; 60�; 90�; 135�; 180�; 270�; 360�g with

radius R¼ 3 m and uncorrelated weights gm of unit power. The solid lines represent the analytically computed coherence based on Eq. (21), whereas the dash-

dotted lines are obtained with the Welch method applied to a simulated noise field evoked by a finite number of uncorrelated line sources.

FIG. 4. (Color online) The solid lines show the analytically computed spatial coherence between two observations points ~x2 and ~x4 separated by DY¼ 0.4 m

as resulting from a continuous distribution of line sources of different angular extensions D/y 2 f20�; 45�; 60�; 90�g with radius R¼ 3 m and uncorrelated

weights gm of unit power. For comparison, the dashed lines show the spatial coherence C~x1~x3
ðkDXÞ for observation points~x1 and~x3 separated by DX¼ 0.4 m

along the x axis (see Fig. 2).
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~x2 ¼ ½0; 0:5	m, ~x3 ¼ ½�0:5; 0	m, and ~x4 ¼ ½0;�0:5	m, i.e.,

they are uniformly distributed around a circle of radius

r¼ 0.5 m with an angular spacing of 90�. To describe the dif-

fraction effects due to the opening and the resulting noise field

in the interior, the Huygens–Fresnel principle is applied. For

this purpose, the sound field is sampled on the arc with an

angular resolution of 0.5�, where an elementary line source is

placed at each of the sampling points.

The magnitudes of the resulting spatial coherence func-

tions C~x1;~x3
and C~x2;~x4

for the horizontal and vertical micro-

phone pairs, respectively, are shown in Fig. 6. Illustrated are

the coherence curves resulting from the Welch method in

comparison to the coherence based on Eq. (21), where differ-

ent values for the maximum order �M 2 f5; 10; 20g of the

excitation modes Bm are evaluated. It can be seen in the left

column that the coherence C~x1;~x3
obtained with the proposed

model for �M ¼ 5 already matches the Welch-based coherence

estimate very well, and an increase of �M has virtually no

effect. For the coherence C~x2;~x4
plotted in the right column,

however, there are severe deviations between the results

obtained with the Welch method and the ones from the pro-

posed modal description with �M ¼ 5, even though the distan-

ces between the respective observation points are identical in

both cases. These deviations are especially pronounced for

higher frequencies. An increase of the maximum order of uti-

lized excitation modes to �M ¼ 10 significantly reduces the

deviations, and the coherence curves match well for �M ¼ 20.

The coherence curves for �M > 20 are not shown here as they

are very similar to �M ¼ 20.

Figure 6 reveals that the number of excitation modes Bm

which is required to precisely describe the sound field varies

strongly with the positions of the observation points. More

precisely, a lower number of �M is sufficient for the pair of

observation points whose connection line points towards the

opening, whereas larger values of �M are required for the sec-

ond pair of observation points oriented perpendicularly. This

FIG. 6. (Color online) Magnitudes of

the spatial coherence C~x1 ;~x3
(left col-

umn) and C~x2 ;~x4
(right column) for two

pairs of observation points, where the

underlying setup is illustrated in Fig. 5.

The plots show a comparison of the

results obtained using the Welch

method and the proposed model with a

different maximum order �M of consid-

ered spatial basis functions Bm.

FIG. 5. Illustration of the simulation setup with a spatially windowed noise

field evoked by four uncorrelated white Gaussian noise sources located at the

indicated positions and observation points at the following ½x; y	 coordinates:

~x1 ¼ ½0:5; 0	m; ~x2 ¼ ½0; 0:5	m; ~x3 ¼ ½�0:5; 0	m; and~x4 ¼ ½0;�0:5	m.
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can be explained by the fact that the wave fronts in the

region of interest travel mainly from the right to the left,

where the coherence along the propagation direction does

not change significantly. In contrast, the sound field may

vary strongly in the vertical direction, which is captured by

the pair of observation points oriented perpendicularly to the

main propagation direction. This behavior is similar to the

one already observed in the first simulation (see Fig. 4) and

is again related to the trace wavenumber.

VI. CONCLUSIONS AND OUTLOOK

This contribution provides a general analytic description

for the spatial coherence of noise fields evoked by a given

pressure distribution on a cylindrical or spherical contour

surrounding the region of interest. According to the

Huygens–Fresnel principle, the sound pressure on these con-

tours has been represented by a continuous distribution of

elementary line or point sources. To model the spatial char-

acteristics of the source distribution on the contour, orthogo-

nal excitation modes have been utilized, where a potential

cross-correlation between different modes has been taken

into account. Based on this representation, a connection

between the cross-correlation of the excitation modes on the

contour and the spatial coherence of the resulting noise field

in the interior has been established for the free-field case and

source distributions of arbitrary angular extensions.

Furthermore, the well-known expressions for the coherence

of cylindrically isotropic and diffuse noise fields have been

derived using the modal representation. By means of differ-

ent simulated noise fields, the presented analytic expressions

for the spatial coherence have been verified and compared

with estimates based on the Welch method.

It has been shown that the derived relations allow for

the computation of the spatial coherence for known source

distributions at any pair of observation points in the free

space, while no sensors are required at the same. Thereby,

an upper bound for the performance of an ANC system can

be predicted at any position in the region of interest. In order

to assess the maximum possible performance of global ANC

for real scenarios, it is necessary to gain insights into the

behavior of real noise sources, i.e., understanding the shape

and number of active excitation modes as well as the cross-

correlation between them, which is a topic for further

research. Therefore, this work may be seen as the first steps

towards a possibly compact or even sparse representation of

spatially extended noise sources, which could be especially

beneficial when aiming at efficient and global ANC.
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