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ABSTRACT  31 

Domestic livestock grazing is one of the dominant forms of land use globally. However, there 32 

are variable findings concerning the impacts of different grazing regimes on soil condition. 33 

We quantified the impacts of contrasting livestock grazing regimes on soil properties within 34 

nationally endangered temperate box-gum woodlands in south-eastern Australia. We sampled 35 

total soil nitrogen, phosphorus, carbon and bulk density at 65 woodland sites with a history of 36 

either continuous, strategic or rotational livestock grazing, as well as livestock grazing 37 

exclusion. We evaluated the influence of both historical and current management practices 38 

upon soil properties in the context of broad-scale soil forming factors such as climate, 39 

geology and topography.  40 

We found evidence of a strong relationship between total soil phosphorus and nitrogen, while 41 

phosphorus also was influenced by site-scale native tree cover. Total soil phosphorus and 42 

nitrogen were related to the combined effects of pasture type and long-term fertilizer history 43 

(>10 years prior to sampling). No significant differences in soil nutrients or bulk density were 44 

detected between different grazing treatments, likely due to the importance of total grazing 45 

pressure (i.e. from all exotic and native herbivores) and the level of environmental variation 46 

between sites. However, total soil phosphorus was significantly higher in soils sampled in the 47 

season following a grazing event, irrespective of grazing intensity or duration. Total soil 48 

nitrogen and carbon exhibited a similar pattern. This is likely a result of multiple processes 49 

such as direct input of organic matter to the soil and stimulation of soil microbial 50 

communities. These findings have important implications for the strategic management of 51 

woodland understorey vegetation as soil nutrients have been identified as important drivers of 52 

native plant diversity.  53 

KEYWORDS: Soil nutrients; livestock grazing; agro-ecosystem; Australia 54 
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1. INTRODUCTION 55 

Agro-ecosystems worldwide are under growing pressure due to global demand for increased 56 

food production and climate change (de Marsily and Abarca-del-Rio, 2015). Soil is a 57 

fundamental part of these ecosystems, and soil health is pivotal to maintaining both 58 

agricultural production and levels of biodiversity needed to maintain ecosystem resilience 59 

and provision of vital ecosystem services (Adhikari and Hartemink, 2016). 60 

Domestic livestock grazing is the single most extensive form of land use on the planet and a 61 

significant component of the global food system (Asner et al., 2004; Williams and Price, 62 

2011; IPBES, 2018). Up to 60 % of global lands that contribute to food production are 63 

considered either already degraded or used unsustainably (Montanarella and Vargas, 2012). 64 

However, it remains unclear how grazing might be best managed to promote soil health to 65 

both maintain agricultural production and conserve biodiversity (Dorrough et al., 2004; 66 

House et al., 2008; Tscharntke et al., 2012). Loss of native biodiversity has been linked to 67 

such problems as ongoing soil erosion, nutrient leaching, salinisation and reduction in water 68 

quality (Altieri, 1999; Eberbach, 2003; Tscharntke et al., 2012). Soil degradation directly 69 

impacts agricultural management through diminished productivity, increased management 70 

input costs, and reduced resilience to climatic change, including severe weather events 71 

(Adhikari and Hartemink, 2016).  72 

Balancing environmental and agricultural objectives is a high priority for the management of 73 

endangered box-gum grassy woodland (BGGW) ecosystems in south-eastern Australia 74 

(Lindenmayer et al., 2012). These ecosystems occur on some of the most fertile agricultural 75 

land in Australia, but 95 % of their original cover has been cleared, leading to widespread 76 

biodiversity loss and soil degradation (Eberbach, 2003; Dorrough et al., 2004; Lindenmayer 77 

et al., 2016). Conserving and restoring BGGW is essential for maintaining ecosystem 78 
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resilience and agricultural productivity in south-eastern Australia (Dorrough et al., 2004; 79 

Prober et al., 2014).  80 

Prolonged grazing by domestic livestock is a known driver of ecosystem degradation in 81 

BGGW (Lunt et al., 2007). The majority of remnant BGGW patches have been utilized for 82 

livestock grazing (Spooner et al., 2002; Spooner and Briggs, 2008; Fischer et al., 2009; 83 

Lindenmayer et al., 2010). To promote recovery of degraded BGGW communities, it remains 84 

unclear whether woodland remnants are best fenced and left undisturbed, or whether 85 

controlled disturbance such as fire or episodic grazing is necessary to aid native plant 86 

regeneration and recover native biodiversity (Dorrough et al., 2004; Lunt et al., 2007; Prober 87 

et al., 2014). Episodic grazing may be used to control invasive exotic vegetation, promote 88 

regeneration of native species, and aid soil restoration (Dorrough et al., 2004; Fischer et al., 89 

2009). 90 

The most widely adopted form of livestock grazing in temperate Australia is continuous 91 

grazing (also referred to as ‘set stocking’), where grazing occurs at relatively low densities 92 

but livestock remain within a given area for extensive periods (Mavromihalis et al., 2013), 93 

often resulting in degradation of soil and vegetation communities (Teague et al., 2011). 94 

Prolonged continuous grazing can eventually lead to reduced livestock carrying capacity, 95 

increased soil compaction, re-distribution of nutrients, reduction in deep-rooted perennial 96 

grasses, and selective removal of more palatable vegetation species (Savory and Parsons 97 

1980; Kemp et al. 2000; Dorrough et al., 2004; Mavromihalis et al., 2013).  98 

Controlled grazing may assist restoration of degraded ecosystems by allowing land managers 99 

to influence vegetation communities (Kemp et al., 1996; Fischer et al., 2009; Lindenmayer et 100 

al., 2012) and cycling of organic matter at the soil surface (Teague et al., 2011; Waters et al., 101 

2017; Orgill et al., 2018). High-intensity short-duration grazing (HISD grazing), also referred 102 
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to as rotational grazing, cell grazing, holistic resource management or time control grazing 103 

(Earl and Jones, 1996; McCosker, 2000) are all forms of controlled grazing strategies. Along 104 

a gradient between continuous and HISD grazing, is the intermediate approach of strategic 105 

grazing (SG), where livestock are excluded during a set period of each year (in this case, 106 

spring and summer) to encourage desirable native species to set seed (Barnes and Hild 2013; 107 

Massey, 2017). During the remainder of the year, stock are moved between paddocks based 108 

on vegetative ground cover targets.  109 

Understanding of the impacts of different grazing regimes on key aspects of soil condition is 110 

currently limited. To address this knowledge gap, we established a landscape-scale study of 111 

soil properties within replicated patches of BBGW. The spatial scale of our study is novel as 112 

it enables the overarching question to be tested: Which environmental and grazing 113 

management factors influence major soil nutrients and soil bulk density?  114 

 At the outset of this investigation, we made a series of predictions about soil responses. 115 

These were based on findings from earlier studies regarding organic litter decomposition 116 

(Post et al., 1982), fertilizer use and soil nutrients (Walker and Syers, 1976; Moir et al., 117 

1997), pasture type and grazing strategies and soil nutrients (Prober et al., 2002a, Teague et 118 

al., 2011), and relationships between soil carbon and nitrogen and tree cover (Prober et al., 119 

2002b). Specifically, we hypothesized that: 120 

 Site-specific environmental drivers would primarily control rates of organic matter 121 

decomposition and therefore reflect total carbon (Post et al., 1982).  122 

 Areas with high native tree cover would have high levels of soil organic matter due to 123 

greater leaf litter and manure inputs, and that this would be reflected in increased 124 

levels of total carbon and total nitrogen (Prober et al. 2002b).  125 
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 Fertilizer history followed by local geology would have a greater effect on total soil 126 

phosphorus (total phosphorus) than grazing strategy (Walker and Syers, 1976; Moir et 127 

al., 1997).  128 

 Pasture type, in particular exotic-dominated pasture, would result in higher total 129 

nitrogen (Prober et al. 2002a). 130 

 Grazing strategies which focus on pasture (HISD and strategically grazed) would 131 

result in higher levels of total Keldjahl nitrogen (total nitrogen) and total soil carbon 132 

(total carbon), along with lower bulk density (Teague et al., 2011).  133 

 134 

2. METHODS 135 

2.1 Study Region 136 

We sampled 65 sites from 22 farms distributed over an area of 1.5 m ha in southern New 137 

South Wales, south-eastern Australia. These farms were part of a long-term agro-ecology 138 

study established in 2010 (TSSC, 2006; Lindenmayer et al., 2012; Barton et al., 2016; Sato et 139 

al., 2016) where the dominant land use is livestock grazing (by either sheep (Ovis aries) or 140 

cattle (Bos taurus)). Native vegetation cover consisted of patches of temperate box-gum 141 

woodland (BBGW) with an overstorey dominated or co-dominated by yellow box 142 

(Eucalyptus melliodora A.Cunn. ex Schauer), white box (E. albens Benth.), Blakely’s red 143 

gum (E. blakelyi Maiden) or grey box (E. microcarpa Maiden) (DEH, 2006; TSSC, 2006).  144 

 145 

2.2 Data Collection 146 

We gathered remotely-sensed information using ArcGIS (version 10.4.1) on elevation, 147 

aspect, and percentage of woody vegetation cover within a 250 m radius of the central soil 148 

sampling point at each site (see Supplementary Table A.1 for full details). Digital mapping 149 
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layers were sourced from the SEED portal of the New South Wales Office Planning and 150 

Environment (OPE, 2017). Site elevation was deemed to represent climatic variation between 151 

farms as per Badgery et al. (2014). We used local geological data sourced from digital maps 152 

(OPE, 2015), and then ground-truthed using field site assessments. We assigned slope 153 

position (upper, mid, lower) to each site in the field. 154 

We assessed grazing management using four criteria; grazing management strategy, grazing 155 

intensity, time since grazing, and pasture management. We derived these data from 156 

landholder surveys. We assigned each site to one of five grazing management strategies: 157 

grazing exclusion (GE), continuous grazing (CG), long-conversion rotational grazing (LCR) 158 

(i.e. for c.a. 10 years prior to our study), short-conversion rotational grazing (SCR) (i.e. for 159 

c.a. 5 years prior to our study) and strategic grazing (SG) (no grazing through spring and 160 

summer, and vegetative groundcover of > 70 % to be maintained when grazed during the 161 

remainder of the year - c.a. 2 years prior to our study).  162 

We defined grazing intensity as the total daily “Dry Sheep Equivalent” (DSE) (a standardised 163 

measure of feed requirements by different kinds of livestock) impacting each site during the 164 

period 2010-2011, averaged by the days in which grazing occurred (i.e. excluding days when 165 

the pasture was rested) (Kay et al., 2017).  166 

Using information from landholder surveys, we categorized sites as either grazed or ungrazed 167 

in the three months prior to soil sampling.  168 

The type of pasture and the fertilization of that pasture reflects farm management strategies 169 

and impacts soil properties. We assigned sites to one of three pasture management classes 170 

based on the frequency of fertiliser application and the type of pasture being grown at each 171 

site during the period 1991-2011 (as identified from landholder surveys). The three categories 172 
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were: (i) Predominantly native pasture, not fertilized within the previous 20 years, but 173 

potentially receiving less than three fertilizer applications more than 20 years ago; (ii) Mixed 174 

native/exotic pasture, not fertilized within the previous 10 years, but potentially receiving less 175 

than three fertilizer applications more than 10 years ago; (iii) “Improved” pasture likely to 176 

contain purposely sown exotic species with fertiliser applied during the previous 10 years. 177 

2.3 Soil sampling and laboratory analysis 178 

We collected soils between August and December in 2011. At each site, sampling was 179 

undertaken at 12 points along a 200 m transect. We collected samples using mechanical 180 

coring to a depth of five centimeters, then air-dried and bulked in sets of four (with the 181 

samples numbered 1-4, 5-8, 9-12) to give a total of three composite samples per transect. We 182 

crushed samples to reduce aggregation and then removed particulate matter > 2 mm. We 183 

ground samples until particles were reduced to < 500 µm. We assessed total soil carbon (total 184 

carbon) through dry combustion using an Elementar Vario Max CNS analyser. We extracted 185 

total soil phosphorus (total phosphorus) and total Keldjahl nitrogen (total nitrogen) via 186 

Keldjahl digestion using concentrated H2SO4 at 350°C in the presence of K2SO4 and a copper 187 

catalyst. Following extraction, we determined nutrient content using flow-injection analysis 188 

and colorimetry.  189 

We determined bulk density using soil bulk density cores (4.6 cm diameter 5 cm high) taken 190 

at 0-5 cm soil depth. Following careful removal of surface plant and litter biomass, we 191 

calculated the oven dry weight of soil per unit volume using the method described in 192 

Hazelton and Murphy (2007). 193 
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2.4 Statistical Analysis 194 

To assess the influence of the selected environmental and management predictors on soil 195 

nutrients, we constructed individual hierarchical generalised linear mixed models (HGLM) ( 196 

Lee et al., 2006) fit by maximum likelihood, using total phosphorus, total nitrogen, total 197 

carbon and bulk density as the response variables, and including farm and site as random 198 

effects to account for the nested study design. We assumed a normal distribution with an 199 

identity link for response variables, and for the random component. For each model, we 200 

included, as fixed effects, five environmental factors (elevation, aspect, native woody 201 

vegetation, geology and slope position) and four management factors (grazing strategy, 202 

grazing intensity, time since grazing and pasture management). We used Wald tests to assess 203 

the significance of each predictor variable included in the model and summarized the effects 204 

of interest using predictions adjusted for all other variables in the model (i.e. all other 205 

variables held at their means). We constructed all models using Genstat version 18.2.1. 206 

 207 

3. RESULTS 208 

We found that two environmental factors (geology and native woody cover in the 209 

surrounding landscape) and two management factors (time since grazing and pasture 210 

management) significantly altered total phosphorus and nitrogen, but not total carbon or bulk 211 

density soil properties. With regards to the effects of grazing regimes, grazing strategy and 212 

grazing intensity did not significantly influence soil properties. Rather, time since grazing 213 

was most important grazing regime covariate. 214 

3.1 Influence of environmental factors on soils 215 

We showed that total phosphorus and total nitrogen soil properties were significantly 216 

influenced by geology. Total phosphorus (  
  = 185.62, p < 0.001; Table 1, Figure 1a) and 217 
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total nitrogen (  
  = 11.72, p = 0.008; Table 1, Figure 1b) levels were highest in soils formed 218 

from mafic volcanic geology and lowest in felsic and sedimentary soils.  219 

Soils on sites surrounded by large amounts of native woody cover had significantly lower 220 

values of total nitrogen (  
  = 3.90, p = 0.048; Table 1, Figure 2). Other environmental 221 

variables including elevation, aspect and slope position did not significantly influence any 222 

modelled soil property (see Table 1, Supplementary Table A.2). 223 

3.2 Influence of grazing management factors on soils 224 

Time since grazing had a significant effect on total phosphorus (  
  = 8.70, p = 0.003; Table 225 

1), with higher total phosphorus levels in recently grazed sites (i.e. grazed during the 3-month 226 

period prior to sampling or during sampling) compared with rested sites, irrespective of 227 

grazing type or duration (Figure 3). This pattern also was observed for total nitrogen (  
  = 228 

3.60, p = 0.058; Supplementary Table A.2) and total carbon (  
  = 3.57, p = 0.059; 229 

Supplementary Table A.2) but was not significant for either soil property.  230 

Predominantly native sites with fertiliser application prior to 1995 were characterized by 231 

significantly lower levels of total phosphorus (  
  = 16.33, p < 0.001; Table 1) and total 232 

nitrogen (  
  = 6.64, p = 0.036; Table 1), compared to either mixed native/exotic, or 233 

predominantly exotic, sites with fertiliser application between 1995 and 2005 (Figure 4a and 234 

b).  235 

Other management variables including grazing strategy and grazing intensity did not 236 

significantly influence any modelled soil property (see Table 1, Supplementary Table A.2). 237 

 238 

4. DISCUSSION 239 
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Soil is critical for both natural ecosystem function and agricultural productivity (Altieri, 240 

2018; Heger et al., 2018). Livestock grazing has the capacity to alter a range of soil 241 

properties, yet the effects of different grazing regimes on BGGW soils have not previously 242 

been investigated. We quantified the influence of both historical and current management 243 

practices on the properties of soils from BGGW in the context of environmental influences 244 

such as geology, landscape position, and site-scale native woody vegetation. We then 245 

assessed the relative influence of livestock grazing in terms of grazing regimes (continuous, 246 

strategic or rotational grazing), grazing intensity (DSE averaged over days when livestock 247 

grazing occurred) and time since grazing.  248 

4.1 Environmental and management factors with the greatest influence on soils 249 

Felsic geologies studied here produce lower nutrient soils than mafic geologies (Figure 1) and 250 

this conforms to other published literature (Gray and Murphy, 1999). Globally, natural 251 

grassland ecosystems have evolved with lower nutrient soils and native herbivores 252 

(Milchunas and Lauenroth, 1993). However, as land use shifts towards managed grazing, 253 

higher fertiliser use is often used to sustain increased grazing pressure. The lower inherent 254 

nutrient status of felsic soils can lead to native pastures being less resilient to often higher 255 

intensity (sustained over longer durations per area) introduced grazing which can ultimately 256 

lead to changes in pasture abundance and composition (Bardgett et al., 1998). This may affect 257 

soil biological processes and a subsequent reduction of nutrient cycling (Brussaard et al. 258 

2007). A reduction in these aspects of ecosystem function would result in less soil surface 259 

protection (e.g. from raindrop impact) and soil aggregation (Tisdall and Oades, 1982). Felsic 260 

soils in particular, given generally more coarse sediment textures, can be vulnerable to 261 

erosion (Wischmeier and Mannering, 1969; Koch et al., 2015). Application of fertilisers and 262 

sowing of exotic grass species are sometimes seen as a solution to rectify nutrient 263 

deficiencies, minimise soil loss, and ultimately maintain food for domestic livestock (Kemp 264 
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and Dowling, 2000). Whilst not significant, this trend of higher levels of total nitrogen at 265 

those sites on felsic soils which had been more recently fertilised was observed and may be 266 

an outcome of complex interactions between management and underlying environmental 267 

drivers.  268 

At the outset of this investigation, we postulated that sites surrounded by high levels of native 269 

tree cover would be characterized by relatively higher levels of soil organic matter due to 270 

localised patterns in the distribution of litter and manure, and that this would be reflected in 271 

increased levels of total carbon and total nitrogen (Manning et al., 2006; Prober et al., 2014). 272 

Unexpectedly, we observed trends showing negative relationships between all major nutrients 273 

and tree cover. This may be because timbered sites are commonly associated with less fertile 274 

soils, as naturally fertile areas have over time been preferentially cleared for agriculture 275 

(Fischer et al., 2010). Previous applications of fertiliser within cleared areas may have 276 

resulted in comparatively higher levels of soil nutrients in pastured areas (Prober et al., 277 

2002a). Compounding this, fertiliser use encourages the growth of exotic annual species 278 

which commonly lead to further increase in soil nitrogen (Prober et al. 2002b; Dorrough et al. 279 

2006). Consistent with these findings, our results showed fertiliser history and pasture type 280 

are important drivers of current patterns of soil nutrients. Sites fertilised in the previous 10 281 

years also contained high proportions of exotic pasture species, and these sites supported 282 

significantly elevated levels of total phosphorus and nitrogen. Total carbon content did not 283 

follow this pattern, although sites with higher total phosphorus are commonly associated with 284 

correspondingly greater levels of soil carbon (Chan et al., 2010; Orgill et al., 2014). 285 

We predicted that bulk density would decline close to trees, indicating improved soil 286 

structure due to a higher content of organic material (Wilson et al., 2002). The fact that bulk 287 

density was not significantly affected by tree cover at our sites (and, showed a weak positive 288 

relationship with tree cover) may be associated with livestock resting (‘camping’) beneath 289 
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trees. We observed that soil disturbance caused by livestock camps reduced ground cover and 290 

appeared to produce harder soil surfaces, which most likely aided removal of organic surface 291 

soil via water erosion processes. This livestock behaviour and subsequent negative impact on 292 

both soil and vegetation community has been widely observed (Landsberg and Wylie, 1988; 293 

Yates et al., 2000; Schnyder et al., 2010). Mature trees in these landscapes have been 294 

identified as keystone structures and protecting them from such processes should be 295 

considered a priority for land management (Manning et al., 2006). Implementing HISD 296 

grazing is one strategy towards achieving this aim as livestock are restricted from camping in 297 

the same places for long periods.  298 

Different soil properties are affected by different processes and this was reflected in our key 299 

findings. Total phosphorus is derived mainly through the process of mineral weathering or 300 

fertiliser application (Dorrough et al., 2006; Rui et al., 2012), both of which were likely to 301 

have had an important influence in our study. Sites associated with relatively nutrient-rich 302 

mafic geology had significantly higher levels of total phosphorus, as did sites fertilised during 303 

the previous 10 years.  304 

Total nitrogen levels were lower at sites associated with nutrient-poor felsic geology. Soils 305 

derived from felsic rock are commonly coarse in texture, low in clay content and the clays 306 

that do form have low cation exchange capacity and fertility (Gray and Murphy, 1999). These 307 

soils require well-functioning biological processes to drive nutrient cycling as labile forms of 308 

nutrients such as nitrogen easily leach from the upper soil (Decau et al., 2003). 309 

4.2 The effects of grazing on soil properties 310 

A key finding of this study was the increase in total phosphorus in those soils which had been 311 

grazed either during sampling or within the 3-month period prior to sample collection 312 

(‘recent grazing’). A similar pattern was found for total nitrogen and total carbon. These 313 
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results may be attributed to a series of concurrent processes: (i) direct input of organic matter 314 

and nutrients resulting from addition of manure/urine and trampling of above-ground biomass 315 

(Clegg, 2006; Semmartin et al., 2008), (ii) additional input of below-ground organic matter 316 

through the process of grass root die-off in response to grazing (Guitian and Bardgett, 2000), 317 

(iii) stimulation of soil microbial communities following input of organic matter and root 318 

exudates (Bardgett et al., 1998, Paterson and Sim, 1999), (iv) reduced plant uptake of 319 

nutrients following defoliation (Paterson and Sim, 1999), (v) redistribution of nutrients 320 

between rhizosphere, plant biomass and animal biomass (Rotz et al., 2005), and (vi) transport 321 

of nutrients via manure, urine or soil between paddocks either directly from stock (Oenema et 322 

al., 2007) or erosion processes (Fierer and Gabet, 2002; Chappell and Baldock, 2016). 323 

It is likely that a period > 2 years may be required for grazing to precipitate major changes to 324 

equilibrium levels of total soil nutrients (Halvorson et al., 1997). The increases we observed 325 

in total phosphorus and carbon at recently grazed sites in this study capture a specific phase 326 

within the broader temporal nutrient cycle and most likely reflect a process of transitory 327 

nutrient fluctuation rather than a long-term increase in baseline nutrient levels. Orgill et al. 328 

(2018) concluded that while seasonal processes impact the more labile forms of carbon, 329 

detection of total carbon stocks under differing grazing systems occur over longer time 330 

frames (> 5 years). The cumulative effect of multiple biologically driven processes enhances 331 

soil community complexity, building ecosystem function and leading to increases in soil 332 

nutrients (Brussaard et al., 2007). Increased knowledge of short-term interactions between 333 

nutrient cycles and grazing will allow development of more effective restoration strategies for 334 

native woodland vegetation (Prober et al., 2014).  335 

The different grazing regimes in our investigation (CG, LCR, SCR and SG) and grazing 336 

intensities had no significant influence on soil properties when compared with control sites 337 

where livestock had been excluded for 1-2 years. This contrasts with observations from other 338 
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studies describing changes following livestock grazing exclusion in grassy woodlands. For 339 

example, Spooner et al. (2002) reported a small but significant reduction in soil compaction 340 

2-4 years after livestock grazing exclusion, potentially reflecting natural soil rejuvenation 341 

processes. Due to environmental influences discussed in Section 4.1, determining soil 342 

response to long-term grazing management practices can be difficult at a landscape scale 343 

(Orgill et al., 2018), particularly across a broad range of land types such as those included in 344 

this study. For this reason, effects of a small magnitude (such as those resulting from a 345 

relatively recent (1-3 year) change in management (Halvorson et al., 1997)) may be difficult 346 

to detect. Yates et al. (2000) reported significant differences in both soil chemical and 347 

physical properties in grazed versus ungrazed woodlands, however the treatments in question 348 

had been in place for several decades.  349 

The lack of significant difference between grazed and ungrazed sites from our study may also 350 

reflect the impacts of total grazing pressure rather than only livestock grazing activity. We 351 

noted during sampling that many of the ‘ungrazed’ control sites were acting as refuges for 352 

large numbers of native herbivores, a situation indicating that grazing pressure remained high 353 

despite the exclusion of domestic livestock. Previous research has shown that native 354 

herbivore grazing can significantly alter vegetation attributes (Howland et al., 2016), 355 

indicating that soil processes also may be affected. 356 

The large spatial scale and access to property management records are key strengths of this 357 

study. However, associated with this comes heterogeneity of results driven by the 358 

environmental and management predictors themselves. Increasing replication across the 359 

diversity of predictors (e.g. number of sites on felsic soils = 142 versus 12 on mafic soils) 360 

would be preferable. However, considerable sampling logistics exist. The time required for 361 

sampling prohibits studying more transient forms of soil nutrients (e.g. nitrogen). The 362 

significance of total phosphorus in the study does suggest exploring plant available 363 
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phosphorus would be a valuable addition. Maintaining landholder engagement in the future 364 

would allow for repeated sampling at decadal intervals, potentially increasing understanding 365 

of management impacts. 366 

 367 

5.  CONCLUSIONS 368 

Our results provide new information on the management of woodland soils and native 369 

vegetation, emphasising the need to consider the timing of grazing events in the context of 370 

restoration planning, as well as the importance of long-term research when considering 371 

management impacts. We also highlighted the importance of both long- and short-term 372 

management history, as well as environmental variables, as factors influencing levels of soil 373 

nutrient. Our study suggests that grazing management has the potential to influence soil 374 

nutrients on a scale of weeks to months, but that this may reflect short-term fluctuations in 375 

nutrient levels rather than long-term trends. Our findings also emphasise the importance of 376 

broad-scale environmental variation and previous fertiliser use as factors affecting nutrient 377 

distribution at a landscape-scale. Grazing appears to be having a relatively immediate impact 378 

on soil nutrients. This type of knowledge has potential to inform restoration strategies applied 379 

to temperate grassy woodlands in south-eastern Australia.  380 
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FIGURE CAPTIONS 601 

Figure 1. Influence of geology on (a) total phosphorus and (b) total nitrogen. Error bars 602 

represent standard errors of the mean. 603 

Figure 2. Influence of native woody cover in the surrounding landscape on total nitrogen. 604 

Error bars represent standard errors of the mean. 605 

Figure 3. Influence of time since grazing on total phosphorus. Error bars represent standard 606 

errors of the mean.  607 

Figure 4. Influence of pasture management on (a) total phosphorus and (b) total nitrogen. 608 

Error bars represent standard errors of the mean.  609 
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TABLE 610 

Table 1. Significance of model terms testing the effects of environmental and land 611 

management on soil properties. Properties modelled include total soil phosphorus (total P), 612 

total Keldjahl nitrogen (total N), total soil carbon (total C), total bulk density (Bulk Density). 613 

Environmental variables include elevation, aspect, Native woody vegetation (Woody 614 

Vegetation), geology and slope position (Slope). Land management variables include grazing 615 

strategy, grazing intensity, time since grazing (Grazing Time) and pasture management 616 

(Fertiliser Application).  617 

 618 

 619 

 620 

 621 

 622 

 623 

*P<0.624 

05, **P<0.01, ***P<0.001, ns = not significant. 625 

  total P total N total C Bulk Density 

 df Wald Wald Wald Wald 

Environmental Variables      

Elevation 1 ns ns ns ns 

Aspect 1 ns ns ns ns 

Woody Vegetation 1 ns 3.90*** ns ns 

Slope 2 ns ns ns ns 

Geology 3 185.62**** 11.72*** ns ns 

Management Variables      

Grazing Strategy 4 ns ns ns ns 

Grazing Intensity 1 ns ns ns ns 

Grazing Time 1 8.70** ns ns ns 

Fertiliser Application 2 16.33*** 6.64*** ns ns 
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