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Abstract Evaluation of the origin intensity factor of the singular boundary method for 

Helmholtz equation with high wavenumbers has been a difficult task for a long time. 

In this study, a regularized approach is provided to bypass this limitation. The core 

idea of the subtraction and adding-back technique is to substitute an artificially 

constructed general solution of the Helmholtz equation into the boundary integral 

equation or the hyper boundary integral equation to evaluate the non-singular 

expressions of the fundamental solutions at origin. The core difficulty is to derive the 

appropriate artificially constructed general solution. The regularized approach avoids 

the unstable inverse interpolation and has strict mathematical derivation process. 

Therefore, it is easy-to-program and free of mesh dependency. Numerical experiments 

show that the proposed technique can be used successfully to avoid singularity and 

hyper singularity difficulties encountered in the boundary element method and the 

singular boundary method. 
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1. Introduction 

 

Boundary element method (BEM) [1-5] and boundary collocation method (BCM) 

[6-10] are efficient methods for simulating scientific and engineering problems, 

especially for the exterior Helmholtz problems [11-14]. Firstly, in comparison with 

the finite element method (FEM) [15-19], the BEM and the BCM need only boundary 

discretization. Thus, the number of dimension of the problem is reduced by one. 

Secondly, the fundamental solution used in the BEM and the BCM can satisfy 

automatically the radiation boundary conditions at infinity of the exterior Helmholtz 

problems. Therefore, the boundary of the BEM and the BCM do not need to be 

artificially truncated. Thirdly, the BEM and the BCM require lower sampling 

frequency to create the acceptable solution in comparison with the FEM. 

Unfortunately, the BEM and the BCM encounter the singularity and hyper 

singularity difficulties [20-22] due to the application of the fundamental solutions. In 

recent years, many useful techniques are proposed to bypass this limitation, such as 

the logarithmic quadrature formulation [23], the rigid body motion method [24], the 

subtraction and adding-back technique (SAB) [25-27], the integration by parts [28], 

the analytical integration approach [29] and the contour method [30]. As a 

competitive strategy, the SAB technique was first proposed by Young et [31-33] in the 

regularized meshless method (RMM) [34-36]. The core idea of the SAB is to 

substitute an artificially constructed general solution of the studied equation into the 

boundary integral equation (BIE) or hyper boundary integral equation (HBIE) to 

derive the nonsingular expressions of the fundamental solutions at origin. The core 

difficulty of the SAB is to find the appropriate artificially constructed general solution 

which satisfies certain boundary conditions. Thus, the unnecessary singularity or 

hyper singularity in the BIE or the HBIE can be deleted when 
i jx y , where ix  is 

the ith collocation point and 
jy  is the jth source point. The construction of the 

appropriate general solution is a difficult and important task. It directly determines the 

accuracy, efficiency and stability of the SAB technique.   
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It is well known that all the fast algorithms are all very complicated in terms of 

programming and theory, such as the fast multiple method [37], the modified 

dual-level algorithm [38] and the modified multilevel algorithm [39]. Therefore, it is 

very important to develop a method which is easy-to-program and has high accuracy 

and efficiency to combine with the fast algorithms. The singular boundary method 

(SBM) [40-43] is a novel strong form boundary collocation method free of mesh and 

integrals. The core competitive attribute of the SBM is the balanced numerical 

characteristics. Although the SBM has lower accuracy and convergence rate compared 

with the method of fundamental solutions (MFS) [44-46], the SBM avoids the 

computational instability caused by the fictitious boundary. Although the scope of 

application of the SBM is less than that of the BEM, the SBM can achieve higher 

accuracy and convergence rate using fewer computing resources for some specific 

problems. Therefore, the SBM is very suitable to combine with the fast algorithms to 

solve the large-scale complicated engineering problems. The balanced numerical 

characteristics constitute the core advantage of the SBM over the other existing 

methods. 

In the SBM, one uses the origin intensity factor (OIF) [47-50] to replace the 

singular and hyper singular terms. Therefore, the key issue of the SBM is to evaluate 

efficiently and accurately the OIF. In Refs [51], the SAB was first used to evaluate the 

OIF for the Laplace problems. In Refs [52-54], one transforms the OIF of the Laplace 

equation to the OIF of the Helmholtz equation by adding a constant. However, this 

strategy is lack of strict mathematical derivation and is largely based on experiments 

and experience. Its stability and efficiency can’t be guaranteed, especially for the 

higher frequency situations. At present, the appropriate general solution for Helmholtz 

equation is still not available. Therefore, the direct evaluation of the OIF for 

Helmholtz equation is still an open issue. 

In this study, two artificially constructed general solutions for the Helmholtz 

equation are proposed. The OIF of the SBM for three-dimensional (3-D) Helmholtz 

equation with high wavenumbers is hereby evaluated directly by using the regularized 

approach [55]. The present regularized approach has strict mathematical derivation 
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process and avoids the integrals, mesh dependency [56-58] as well as the unstable 

inverse interpolation. Therefore, the accuracy and stability are improved significantly. 

In particular, the related code based on the MATLAB is provided in the Appendix. 

The main contribution of this study is to provide an alternative strategy which is 

easy-to-use and easy-to-program to bypass the singular and hyper singular difficulties 

encountered in the BEM and the SBM for the high frequency Helmholtz problems.  

The article is organized as follows: section 2 reviews the formulations of the SBM 

and introduces the SAB technique. Section 3 investigates the SAB technique through 

two benchmark examples by using the SBM and the direct BEM. Section 4 makes 

some conclusions. 

 

2. Numerical methodology 

 

2.1. Review of the singular boundary method 

 

In this section, the basic formulations of the SBM for the 3-D Helmholtz equation 

are reviewed [59-61]. The basic formulations of the BEM for the 3-D Helmholtz 

equation can be found in Refs [62-65]. 

The 3-D Helmholtz equation is 

 2 2( ) ( ) 0,x k x x      , (1) 

 
1( ) ( ),x x x S    , (2) 

 2( ) ( ),q x q x x S   , (3) 

where 2  is the Laplacian operator, ( )x  is the physical variable, q(x) the normal 

derivative of ( )x . k denotes the wavenumber. S is the boundary of the domain Ω.  

The SBM uses the Burton-Miller formulations [66] to avoid the well-known 

non-uniqueness difficulties for exterior Helmholtz problems. The SBM based on the 

Burton-Miller formulations is expressed as 
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1

( , )
( ) ( , ) ,

( )

N
m j

m j m j me
j j

G x y
x G x y x

n y
  



 
   

  
 , (4) 

 

2

1

( , ) ( , )
( ) ,

( ) ( ) ( )

N
m j m j

m j me e e
j m j m

G x y G x y
q x x

n x n y n x
 



  
   

    
 , (5) 

where 
j  is unknown coefficient, x the collocation point, y the source point, 

( 1)i k    [67]. The superscript e represents the exterior domain and the 

corresponding fundamental solutions are 

 ( , )
4

ikre
G x y

r
 , (6) 

 
3

( , )
( , ) ( 1) ( , ) ( )

( ) 4

ikr
e

e

G x y e
K x y ikr x y n x

n x r


   


, (7) 

 
3

( , )
( , ) ( 1) ( , ) ( )

( ) 4

ikr
e

e

G x y e
F x y ikr x y n y

n y r


    


, (8) 

 
2

3 2 2

(1 ) ( ) ( )( , )
( , )

( ) ( ) 4 ( 3 3 ) ( , ) ( ) ( , ) ( )

e e
ikr

e e e e

ikr n y n xG x y e
H x y

n y n x r k r ki r x y n y x y n x

  
  

       
 

.

 (9) 

It is noted that the fundamental solutions encounter singularities and hyper 

singularities when 
i jx y . The SBM uses the OIF to replace the corresponding 

singular and hyper singular terms in Eqs. (4) and (5). The interpolation formulations 

are expressed as [54] 

 
1

( , ) ( , )
( ) ( , ) ( , ) ,

( ) ( )

N
i j i i

i j i j i i i ie e
j i j i

G x y G x y
x G x y G x y x S

n y n y
    

 

   
       

     
 . (10) 

 

2

1

2

( , ) ( , )
( )

( ) ( ) ( )

( , ) ( , )
,

( ) ( ) ( )

N
i j i j

i j e e e
j i i j i

i i i i
i ie e e

i i i

G x y G x y
q x

n x n y n x

G x y G x y
x S

n x n y n x

 

 

 

  
  

    

  
   

   


. (11) 
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Any physical variable can be evaluated by Eqs. (4) and (5) after one obtains the 

unknown coefficients from Eqs. (10) and (11).  

 

2.2. The subtraction and adding-back technique 

 

In this section, we derive the nonsingular expressions of the OIF for the 3-D 

Helmholtz equation by using the SAB technique. 

The BIE and the HBIE of the Helmholtz equation are expressed as  

 
( , )

( ) ( ) ( , ) ( ) ( ) ( ),
( )e

S

G x y
C x x G x y q y y dS y x S

n y
 

 
    

 
 , (12) 

and 

 
2( , ) ( , )

( ) ( ) ( ) ( ) ( ),
( ) ( ) ( )e e e

S

G x y G x y
C x q x q y y dS y x S

n x n y n x


  
    

   
 , (13) 

where 
1

( )
2

C x   when the boundary S is smooth. 

We construct an artificially constructed general solution of the 3-D Helmholtz 

equation as follows to derive the nonsingular expressions of the fundamental solutions 

at origin. That is 

 
sin( )

( ) ,
ij

j ij j i

ij

kr
y r y x

r
    , (14) 

 
2 3

cos( ) sin( )
( ) ( ) ( ) ,

ij ij e

j j i j ij j i

ij ij

k kr kr
q y y x n y r y x

r r

 
       
 

. (15) 

where 
1 2 3( , , )i i i

ix x x x  is the coordinate of the collocation point ix , 1 2 3( , , )j j j

jy y y y  

is the coordinate of the source point 
js , ij j ir y x   is the distance between the ix  

and 
jy  . It is noted that ( )jy k   and ( ) 0jq y   when 0ijr  . Thus, we obtain 

Eq. (16) by substituting Eqs. (14) and (15) into Eq. (12), 
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2 3

1

cos( ) sin( )
( , ) ( ) ( )

,
2( , ) sin( )

( )

ij ij e

i j j i j
N

ij ij

j j i i

j i j ij

e

j ij

k kr kr
G x y y x n y

r r k
A r y x x S

G x y kr

n y r



  
     

        
 

  

 .

 (16) 

It is noted that 
( , )

( )

i i

e

i

G x y

n y




 is the only singular term in Eq. (16) when i j . The 

other singular term ( , )i iG x y  is eliminated due to ( ) 0jq y   when i j . One 

reformulates Eq. (16) by moving the singular term to the left side. We have  

 

2 3

1

cos( ) sin( )
( , ) ( ) ( )

( , ) 1
,

( ) 2( , ) sin( )

( )

ij ij e

i j j i j
N

ij iji i
je

j ii i i j ij

e

j ij

j i i

k kr kr
G x y y x n y

r rG x y k
A

n y kA G x y kr

n y r

r y x x S

 

   
                    

   


.

 (17) 

Similarly, we have the following formulation by substituting Eqs. (14) and (15) into 

Eq. (13), 

 

2 3

2
1

( , ) cos( ) sin( )
( ) ( )

( )
0,

( , ) sin( )

( ) ( )

i j ij ij e

j i je
N

i ij ij

j j i i
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e e

j i ij

G x y k kr kr
y x n y

n x r r
A r y x x S

G x y kr

n y n x r



  
       

     
 


   

 .

 (18) 

One reformulates Eq. (18) as  

 

2 32

2
1
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( )( , ) 1
,
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  
   


   

   


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 (19) 

There is a following relationship for smooth boundary when the ix  approaches 

gradually the 
jy  along a line segment, 

 
( , ) ( , )

lim 0
( ) ( )i j

i j i j

e ex y
i j

G x y G x y

n x n y

 
 

 
. (20) 

We hereby have  

 

2 3

1

cos( ) sin( )
( , ) ( ) ( )

( , ) 1
,

( ) 2( , ) sin( )

( )

ij ij e

i j j i j
N

ij iji i
je

j ii i i j ij

e

j ij

j i i

k kr kr
G x y y x n y

r rG x y k
A

n x kA G x y kr

n y r

r y x x S

 

   
                     

   


.

 (21) 

We construct another general solution of the 3-D Helmholtz equation to further 

derive the nonsingular expression of the ( , )i iG x y .  

That is, 

  
3

1

( ) sin ( ) ( )j i e i

j m m m

m

y k y x n x


   , (22) 

  
3

1

( ) cos ( ) ( ) ( )j i e i e j

j m m m m

m

q y k k y x n x n y


    . (23) 

where  1 2 3( ) ( ), ( ), ( )e e i e i e i

in x n x n x n x  is the outer normal vector of ix , 

 1 2 3( ) ( ), ( ), ( )e e j e j e j

jn y n y n y n y  is the outer normal vector of 
jy . It is noted that 

( ) 0jy   and ( )jq y k  when 
i jx y . We obtain Eq. (24) by substituting Eqs. (22) 

and (23) into Eq. (12), 
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 

 

3

1

3
1

1

( , ) cos ( ) ( ) ( )

0,
( , )

sin ( ) ( )
( )

j i e i e j

i j m m m m
N

m

j i
i j j i e ij

m m me
mj

kG x y k y x n x n y

A x S
G x y

k y x n x
n y







 
   

    
 

   
 





. (24) 

One reformulates Eq. (24) as.  

 

 

 

3

1

3
1

1

( , ) cos ( ) ( ) ( )
1

( , ) ,
( , )

sin ( ) ( )
( )

j i e i e j

i j m m m m
N

m

i i j i
i j j i e ij ii

m m me
mj

kG x y k y x n x n y

G x y A x S
G x ykA

k y x n x
n y



 



 
   

    
 

   
 





. (25) 

The OIF for the 3-D Helmholtz equation are evaluated directly by Eqs. (17), (19), 

(21) and (25). The derivation process of error bound of the OIF for the Helmholtz 

equation is similar with that of the OIF for the Laplace equation. For more details of 

mathematical error bound and physical meaning of the OIF, one can refer to Ref [49]. 

One interesting phenomenon is that Eqs. (17) and (21) can obtain higher stability 

and accuracy in the practical applications when C(x) is 0. One possible explanation 

for this phenomenon is the null-fields theory of the BIE [31-33]. The related code of 

the OIF is provided in Appendix A (https://doi.org/10.13140/RG.2.2.13247.00162).   

 

3. Numerical results and discussions 

 

  The index Error is given  

  
2 2

1 1

( ) ( )
NT NT

i i

Error i i i  
 

   . (26) 

The convergence rate C is evaluated by  

 
     
   

1 2

1 2

ln ln
2

ln ln

Error N Error N
C

N N


 


, (27) 

  The SBM and the direct boundary element method (DBEM) with constant element 

[68] are tested via a laptop with 16GB RAM and an Intel Core i7-4710MQ 2.50 GHz 

Processor.  
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Example 1. A pulsating sphere is considered as shown in Fig 1. The analytical 

solution is  

 
2 ( )

0
(1 )

ik r aikc a e
r v

ika r









, 

where a=1m, c=340m/s , 3/2.1 mkg  and smv /30  . 

 

 

                     Fig. 1. A pulsating sphere model. 

 

At first, the OIF is tested by using the SBM and DBEM with the Dirichlet boundary 

conditions. The test points are placed on a sphere with radius of 2m. The convergence 

curves of the SBM and the DBEM are plotted in Figs. 2 and 3, where wavenumbers 

are taken to be 5 and 15, respectively. 
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Fig. 2. Convergence of the SBM and DBEM with k=5. 

 

 

Fig. 3. Convergence of the SBM and DBEM with k=15. 

 

One interesting phenomenon is that the SBM converges with rate of 2.5, while the 

BEM using the same OIF formulations converges only with rate of 1. In addition, it is 
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observed that accuracy of the SBM decreases with the increase of wavenumber, while 

accuracy of the DBEM is largely unaffected by the different wavenumbers.   

Secondly, we consider a frequency sweep with the Neumann boundary conditions 

for wavenumber varying from 0.1 to 10. The number of DOF is 1646, and the 

acoustic pressure at a point (2a, 0, 0) is evaluated. The acoustic pressures against 

wavenumbers are plotted in Figs. 4 and 5. 

 

 

Fig. 4. Real part of acoustic pressure against wavenumbers. 

 

 

Fig. 5. Imaginary part of acoustic pressure against wavenumbers. 

 

  It is observed that the DBEM and the SBM encounter the non-uniqueness 

difficulties near the characteristic wavenumbers, i.e., k=π,2π,3π [69]. However, it is 

found that the SBM and the DBEM avoid the non-uniqueness difficulties when the 
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Burton-Miller formulas are used. 

 

Example 2. Scattering of a plane acoustic wave by a real human head 

(0.152m×0.213m×0.168m) is considered as shown in Fig. 6. The number of DOF is 

5788, and the test points are placed on a circle having radius of 0.3m. The sound 

pressure level is  

 1020log ( ) ( )SPL p e p ref , unit: dB, 

where p(ref)=2e–5pa, c=343m/s, wavenumber is defined as 2k f c , f denotes the 

frequency.  

 

 
Fig. 6. A real human head model. 

 

An incident plane sound wave 
0

ikz

I e    is considered, where 0 1  . The rigid 

boundary conditions are expressed as  

0,s I
ix S

n n

  
  

 
. 

In this example, the commercial software COMSOL Multiphysics 5.3a is used to 

create a reference solution, where the computational domain of the COMSOL is set as 

a sphere with radius of 0.3m. The polar diagram of scattered sound pressure level is 

plotted in Fig. 7, where f=5000Hz and 0-degree direction is set as along the +X 

direction. The related calculating report is listed in Table. 1. 
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Table 1 Numerical results of the FEM, the SBM and the DBEM. 

Items 
FEM 

SBM without 

burton-Miller     

formulation 

SBM based on 

burton-Miller     

formulation 

BEM without 

burton-Miller     

formulation 

BEM based on 

burton-Miller     

formulation methods 

Number of DOF 4734593  5788 5788 5788 5788 

Frequency (Hz) 5000 5000 5000 5000 5000 

Sampling frequency 

(N/λ) 
6 18 18 18 18 

Total storage space 

(Mb) 
9758 490 979 981 1962 

Error / 1.31% 0.41% 1.73% 0.37% 

CPU (s) 1391 17.60 20.35 17.91 29.52 

 

 

  Fig. 7. Polar diagram of scattered sound pressure level of the human head. 

 

It is noted that the total number of DOF of the SBM and the DBEM is only about 

0.12% of that of the FEM. The SBM and the DBEM consume about 1% of the CPU 

time of the FEM to create the similar results.   

  Secondly, the total sound pressure level is plotted in Fig. 8 by using the SBM, 

where f=5000Hz and N=5788. 
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  Fig. 8. Total sound pressure level around the human head. 

 

  It is observed that both the SBM and the DBEM still simulate well this sound 

scattering problem with complicated geometry domain.  

 

4. Conclusions 

 

  A regularized approach evaluating the OIF of the SBM for the 3-D Helmholtz 

equation is provided in this study. The main contribution of this study is to derive two 

general solutions to evaluate directly the OIF by using the SAB technique. These 

artificially constructed general solutions satisfy certain boundary conditions. 

Therefore, the unnecessary singularity or hyper singularity in the BIE or HBIE can be 

deleted when 
i jx y . The proposed regularized approach is free of integration and 

mesh dependency. It has strict mathematical derivation process. Thus, the 

mathematical stability of the OIF is guaranteed. The related code is provided in the 

Appendix A. 

The numerical experiments demonstrate that the present OIF formulas can be 
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successfully used to avoid the singularity and hyper singularity problems encountered 

in the SBM and the BEM. The accuracy and stability of the OIF are unaffected by the 

shape of computational domain, boundary conditions or distribution form of source 

points. This study provides a competitive strategy which is easy-to-use and 

easy-to-program to bypass the singular and hyper singular difficulties encountered in 

the BCM for the high frequency 3-D Helmholtz problems. 
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Appendix A. Code of the origin intensity factor based on the Matlab 2016b 

 

function [ff]=G_xiyi(x,y,z,nx,ny,nz,S,kappa) 

%This function is to evaluate the non-singular formulation of G(xi,yi) 

%This program is written by Junpu Li, Email:junpu.li@foxmail.com 

%(x,y,z):coordinate of boundary nodes 

%(nx,ny,nz):outer normal vector at (x,y,z) 

%S:range of influence of boundary nodes 

%kappa:wavenumber 

len=length(x); 

for ii=1:len 

temp_x=x(ii)–x; 

temp_y=y(ii)–y; 

temp_z=z(ii)–z;     

R_X=nx.*temp_x; 

R_Y=ny.*temp_y; 

R_Z=nz.*temp_z;   

P_sjxi=(R_X+R_Y+R_Z);  
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clear R_X R_Y R_Z 

R_R=sqrt(temp_x.^2+temp_y.^2+temp_z.^2); 

C_sjxi_nsj=P_sjxi./R_R; 

C_sjxi_nsj(ii)=1; 

clear temp_x temp_y temp_z 

G0=sin(kappa.*(x–x(ii)))*nx(ii)+sin(kappa.*(y–y(ii)))*ny(ii)+sin(kappa.*(z–z(ii)))*nz(ii); 

Q=–(–exp(R_R.*kappa.*1i)./R_R.^2+(kappa.*exp(R_R.*kappa.*1i).*1i)./R_R).*C_sjxi_nsj; 

P2=G0.*Q.*S; 

P2(ii)=0; 

G=exp(1i.*kappa.*R_R)./R_R; 

Q0=kappa.*(cos(kappa.*(x–x(ii))).*nx.*nx(ii)+cos(kappa.*(y–y(ii)))… 

.*ny.*ny(ii)+cos(kappa.*(z–z(ii))).*nz.*nz(ii)); 

P1=G.*Q0.*S; 

P1(ii)=0; 

P_P=(P2–P1); 

ff(ii)=sum(P_P)./S(ii)./kappa./4./pi; 

end 

end 

 

function [ff]=F_xiyi(x,y,z,nx,ny,nz,S,kappa) 

%This function is to evaluate the non-singular formulation of F(xi,yi) 

%This program is written by Junpu Li, Email:junpu.li@foxmail.com 

%(x,y,z):coordinate of boundary nodes 

%(nx,ny,nz):outer normal vector at (x,y,z) 

%S:range of influence of boundary nodes 

%kappa:wavenumber 

len=length(x); 

for ii=1:len 

temp_x=x(ii)–x; 

temp_y=y(ii)–y; 

temp_z=z(ii)–z;     

R_X=nx.*temp_x; 

R_Y=ny.*temp_y; 

R_Z=nz.*temp_z;   

P_sjxi=(R_X+R_Y+R_Z);  

clear R_X R_Y R_Z    

R_R=sqrt(temp_x.^2+temp_y.^2+temp_z.^2); 

clear temp_x temp_y temp_z 

C_sjxi_nsj=P_sjxi./R_R; 

C_sjxi_nsj(ii)=1; 

G0=sin(kappa.*R_R)./R_R; 

Q=–(–exp(R_R.*kappa.*1i)./R_R.^2+(kappa.*exp(R_R.*kappa.*1i).*1i)./R_R).*C_sjxi_nsj; 

P2=G0.*Q.*S; 

P2(ii)=0; 
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C_xisj_nsj=–C_sjxi_nsj; 

G=exp(1i.*kappa.*R_R)./R_R; 

Q0=((kappa.*cos(R_R.*kappa))./R_R–sin(R_R.*kappa)./R_R.^2).*C_xisj_nsj; 

P1=G.*Q0.*S; 

P1(ii)=0; 

P_P=(P1–P2); 

ff(ii)=sum(P_P)./kappa./S(ii)./4./pi; 

end 

end 

 

function [ff]=H_xiyi(x,y,z,nx,ny,nz,S,kappa) 

%This function is to evaluate the non-singular formulation of H(xi,yi) 

%This program is written by Junpu Li, Email:junpu.li@foxmail.com 

%(x,y,z):coordinate of boundary nodes 

%(nx,ny,nz):outer normal vector at (x,y,z) 

%S:range of influence of boundary nodes 

%kappa:wavenumber 

len=length(x); 

for ii=1:len 

temp_x=x(ii)–x; 

temp_y=y(ii)–y; 

temp_z=z(ii)–z;     

R_X=nx.*temp_x; 

R_Y=ny.*temp_y; 

R_Z=nz.*temp_z;  

P_sjxi=(R_X+R_Y+R_Z);     

R_R=sqrt(temp_x.^2+temp_y.^2+temp_z.^2); 

C_sjxi_nsj=P_sjxi./R_R; 

C_sjxi_nsj(ii)=1; 

R_X1=nx(ii).*temp_x; 

R_Y1=ny(ii).*temp_y; 

R_Z1=nz(ii).*temp_z;  

P1_sjxi=(R_X1+R_Y1+R_Z1);  

C_sjxi_nxi=P1_sjxi./R_R; 

C_sjxi_nxi(ii)=1; 

clear R_X R_Y R_Z R_X1 R_Y1 R_Z1 temp_x temp_y temp_z 

C_xisj=nx(ii).*nx+ny(ii).*ny+nz(ii).*nz; 

G0=sin(kappa.*R_R)./R_R; 

Q=(exp(kappa.*R_R.*1i)./R_R.^3.*((1–kappa.*R_R.*1i).*C_xisj+… 

(3*(1i*kappa.*R_R–1)+kappa^2.*R_R.^2).*C_sjxi_nxi.*C_sjxi_nsj)); 

P2=G0.*Q.*S; 

P2(ii)=0; 

C_xisj_nsj=–C_sjxi_nsj; 

G=(–exp(R_R.*kappa.*1i)./R_R.^2+(kappa.*exp(R_R.*kappa.*1i).*1i)./R_R).*C_sjxi_nxi; 
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Q0=((kappa.*cos(R_R.*kappa))./R_R–sin(R_R.*kappa)./R_R.^2).*C_xisj_nsj; 

P1=G.*Q0.*S; 

P1(ii)=0; 

P_P=(P1–P2); 

ff(ii)=sum(P_P)./kappa./S(ii)./4./pi; 

end 

end 
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