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Abstract 

Legumes form a symbiotic relationship with a group of bacteria, collectively known 

as rhizobia. The bacterial symbiont fixes atmospheric nitrogen within root nodules, 

thus providing the host with an assimilative nitrogen source. Nodule formation 

involves a complex signalling pathway within the legume host. The plant hormone 

auxin is involved in nodule organogenesis, but how auxin regulates nodulation is 

still poorly described. Several studies have found increased auxin signalling in 

nodule primordia, but so far auxin metabolites have never been quantified during 

the early stages of nodulation. Therefore, the first aim of this thesis was to establish 

methods for auxin quantification in legume roots. The presumed build-up of auxin 

in nodule primordia has been predicted to be due to inhibition of auxin export from 

cells at the nodule initiation site, but the regulation of auxin transport has not been 

tested systematically in different legumes. Therefore, the second aim was to 

compare auxin concentrations and auxin transport changes during nodulation in 

different legumes. Third, the regulation of auxin transport and auxin accumulation 

was placed into the known signalling pathway of nodulation in the model legume, 

Medicago truncatula. 

Auxins are naturally present in low quantities in the root. We developed an 

LC-MS/MS method for the accurate and sensitive quantification of auxins in root 

tissues. The method was validated and produced sensitive limits of detection / 

quantification and correlation coefficients. 

To compare the role of auxin between indeterminate and determinate 

nodule types, we measured auxin transport and auxin content in M. truncatula 

(forming indeterminate nodules) and Lotus japonicus (forming determinate 

nodules). In addition to acropetal auxin transport, basipetal auxin transport was 

regulated in response to rhizobia inoculation in both legumes. Different auxins 

with distinct levels of abundance were detected in separate legumes, with some 



unique to the nodule tissues. Auxin concentrations increased at the early stages of 

nodule formation in M. truncatula, but not L.japonicus. The inhibition of acropetal 

polar auxin transport by rhizobia occurred only in indeterminate nodule-forming 

legumes and correlated with the ability of synthetic auxin transport inhibitors to 

induce pseudonodules in those legumes. 

Finally, we investigated the role of the cytokinin receptor CREl in 

modulating auxin transport during nodulation in M. truncatula. We found that 

cytokinin signalling through CREl is necessary for inhibition of acropetal auxin 

transport, increased auxin concentration and auxin signalling in response to 

rhizobia. The CREl receptor was also required for the correct induction of several 

flavonoids, which could act as endogenous auxin transport inhibitors. External 

application of those flavonoids rescued nodulation in the crel nodulation-deficient 

mutant. 

In conclusion, we demonstrated that the auxin transport machinery is a 

crucial component in the host legume that is regulated in response to rhizobia. 

Auxin transport changes could explain measured changes in auxin concentrations 

during nodule initiation of M. truncatula, but not L. japonicus. Auxin transport 

control is mediated by endogenous flavonoids, and both flavonoid induction and 

auxin transport control are regulated by cytokinin signalling in M. truncatula. 
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1.1 A u x i n h o m e o s t a s i s and s ignal l ing d u r i n g p lant d e v e l o p m e n t 

1.1 Auxin homeostasis and signalling during plant development 

1.1.1 Auxin transport carriers regulate plant development 

Auxin is primarily synthesised in young shoot tissues, although other plant tissues 

are capable of producing auxin, too. Aerially-synthesised auxin is transported to 

lower parts of the plant (Ljung et al., 2001, Ljung et al., 2005, Petersson et al., 2009). 

The transport of auxin can occur through two possible mechanisms: (1) passive 

transport from source to sink tissues through the phloem and, (2) active transport 

across membrane barriers (Aloni, 2004, Baker, 2000). The latter, known as polar 

auxin transport (PAT), requires energy from ATP hydrolysis and is strictly 

regulated by auxin transport proteins. Due to the large sizes of many land plants, 

the requirement of auxin in lower body parts spells for the need of a quick transport 

stream. The phloem is capable of carrying auxin up to a speed of 7 cm h ' (Eliasson, 

1972), whereas PAT has been measured at about a tenth of that, i.e. ~1 cm h ' 

(Kramer et al., 2011). Thus, passive transport through the phloem is the likely route 

opted for long-distance transport (Baker, 2000). However, because genetic, 

molecular and biochemical evidence over the years have so successfully shed light 

on the nuts and bolts of polar auxin transport, the focus on auxin transport studies 

has largely remained in this domain (Friml, 2003, Krecek et al., 2009). 

The auxin indole-3-acetic acid (lAA) is a weak acid (pKa=4.75). Due to the 

slightly acidic apoplastic pH of ~ 5.5, it largely remains in the protonated form and 

can partly diffuse across the hydrophobic plasma membrane. There remains a 

population of deprotonated lAA, which is actively taken up into the cell by auxin 

facilitators (Terasaka et al., 2005, Yang et al., 2006). In Arabidopsis, there are at least 

four auxin importers known, represented by AUXIN-RESISTANT 1 (AUXl) and 

LIKE-AUXl (LAXl), LAX2 and LAX3 (Parry et al., 2001). The AUXl and LAX3 

proteins are located at the plasma membrane. These importers function to 

translocate auxin into the cytoplasm via a proton gradient (Bennett et al., 1996, 
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Swarup et al., 2008, Swamp et al., 2004, Yang et al., 2006). The AUXl protein 

mobilises between plasma membrane and internal compartments dynamically 

(Grebe et al., 2002, Kleine-Vehn et al., 2006). 

Once inside the cytoplasm, the more alkaline (~ pH 7) environment means 

auxin is present in the deprotonated form and has to be exported actively. The PIN-

FORMED (PIN) family of proteins, of which eight members have been identified in 

Arabidopsis (PIN 1-8) are crucial for auxin export. Orthologs have been discovered 

in many other plant species, including Medicago truncatula, Populus trichocarpa, 

Solanum lycopersicum, Oryza sativa and Zea mays (Carraro et al., 2012, Forestan et 

al., 2012, Nishio et al., 2010, Pattison and Catala, 2012, Schnabel and Frugoli, 2004, 

Wang et al., 2009). The name owes its roots to the PINFORMED inflorescence 

phenotype observed in the Arabidopsis mutant lacking PINl, the primary auxin 

export facilitator (Figure 1.1). The PIN proteins can be further subdivided into full-

length proteins (PINl, 2, 3, 4, 7) and truncated forms (PINS, 6, 8) (Zazimalova et al., 

2010). Members of the former group are localised to the plasma membrane and 

their auxin export capabilities have been well-characterised in multiple heterologous 

systems (Chen et al., 1998, Geisler et a l , 2005, Petrasek et al., 2006). Although auxin 

moves through the vascular tissue from shoot to root, it can be transported back up 

along the root cap cells and epidermis by PIN2 in Arabidopsis (Friml et al., 2004, 

Rashotte et al., 2000). This reflux / fountain model provides an additional source of 

auxin in the elongation zone and the early differentiation zone of the root, where 

priming and initiation of lateral roots may occur. PIN8, a truncated PIN protein, 

has been found in the nuclear membrane, in addition to the plasma membrane 

(Ganguly et al., 2010). The authors postulate the organelle-localised PINS possibly 

functions to sequester auxin from the nucleus, thus controlling nuclear auxin 

signalling. Another atypical efflux carrier, PINS, localises to the endoplasmic 

membrane, presumably to control the translocation of auxin from the cytoplasm 

into the lumen of the endoplasmic reticulum (Mravec et al., 2009). 
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1.1.1.1 PIN proteins 

An important characteristic of the full-length PIN proteins is their polar localisation 

in the cell. This gives directionality to auxin flow and underlines the role of PINs in 

creating auxin maxima, such as during the initiation of lateral roots, formation of 

nematode galls and meristem maintenance (Benkova et al., 2003, Blilou et al., 2005, 

Grunewald et al., 2009, Wisniewska et al., 2006). The asymmetric distribution of 

PIN proteins, especially PINl , is modulated by actin filaments via rapid recycling of 

the proteins into endosomal vesicles and subsequent plasma membrane domain 

repositioning (Geldner et al., 2001). The endosomal protein GNOM is involved in 

the polar recycling of PIN (Geldner et al., 2003, Kleine-Vehn et al., 2009). Drdova et 

al. (2013) recently postulated that PIN recycling involves an exocyst complex, 

similar to those functioning in exocytosis in animals and yeasts, which acts 

downstream of GNOM. Phosphorylation of PIN by PINOID relocates the auxin 

transport protein to the basipetal side of root cells through a GNOM-independent 

pathway. This process is negatively regulated by phosphatase 2A (PP2A) 

(Michniewicz et al., 2007). Hence, this mechanism allows plants to respond quickly 

by channelling auxin into the responding tissues upon receiving external stimuli. 
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Figure 1.1 Localisation and regulation of auxin transport facilitators. Auxin (lAA), a weak 

acid, can diffuse across the hydrophobic plasma membrane. However, the majority of auxin 

exists in the deprotonated form and thus requires assistance to traverse the hydrophobic 

plasma membrane. Auxin transport proteins have been identified in various plant species. 

The PIN and AUX1 / LAX families of auxin transporters are mainly associated with auxin 

efflux and influx activities, respectively. Members of the ATP-binding cassette subfamily B 

(ABCB) have been shown to exhibit auxin transport capacity and in one case, acts 

synergistically with a PIN protein. So far, "full-length" PIN proteins (long central hydrophilic 

loop) are primarily found at the plasma membrane, whereas "truncated" PIN proteins (short 

central hydrophilic loop) are mainly located in the ER membrane. The most well-

characterised plasma-membrane bound PIN protein is PIN1 (represented by the red PIN). 

The endocytic recycling of PIN and AUX1 proteins bypasses transcriptional regulation and 

presents a rapid mechanism to adjust auxin levels, or to redirect auxin flow during plant 

development. Image was adapted from Zazimalova et al. (2010). 

1.1.1.2 P-glycoprotein / A TP-Binding Cassette proteins 

A second group of transporters involved in auxin export is the family of P-

glycoproteins (PGP)/ATP-Binding Cassette subfamily B (ABCB) transporters. 

However, unlike PINs, their arrangement at the plasma membrane is more 

homogenous (Zazimalova et al., 2010). P-glycoproteins function in non-polar efflux 

of auxin. PGPl and PGP19/MDR1 (MULTIDRUG RESISTANTl) both interact 

and form complexes with the immunophilin-like protein TWISTED DWARF 1 

(TWDl) . Disruption of this interaction affects plant development, including 

epinastic and inflorescence growth (Geisler et al., 2003, Geisler et al., 2005). At least 

one member of the PGP family, i.e. PGP4 exhibits auxin import activity, in addition 

to its export capability in certain cells (Santelia et al., 2005, Terasaka et al., 2005, 

Yang and Murphy, 2009). PGP4 appears to be an inducible exporter. Under low 

lAA concentrations, it operates as an auxin importer, whereas it reverts to being an 

exporter when lAA concentrations increase. Direct evidence suggests the primary 

role of PGP is to restrict auxin flow in the vascular bundle and to prevent reflux of 

auxin. This is observed in small cells, where PGPs and auxin occur at high levels 
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(Bandyopadhyay et al., 2007, Blakeslee et al., 2007, Mravec et al., 2008). Models for 

PIN-PGP crosstalk have been drawn. In cases where PGP co-localises with PIN, 

they work in tandem to direct auxin translocation into specific cells. Nevertheless, 

their mostly homogenous distribution in cells means that PGPs primarily regulate 

the effective cellular auxin concentration by importing / exporting auxin, according 

to cellular stimuli (Blakeslee et al., 2007, Mravec et al., 2008, Titapiwatanakun et al., 

2009, Yang and Murphy, 2009). 

1.1.1.3 PILS proteins 

A novel group of putative intracellular auxin transport regulators was identified 

through in-silico analysis. The PIN-LIKES (PILS) family of genes encodes proteins 

with similar topology to the PIN proteins, i.e. they contain a predicted central 

hydrophilic loop flanked by five transmembrane domains on both sides (Barbez et 

al., 2012, Krecek et al., 2009). In addition, PILS contain the InterPro auxin carrier 

domain. Barbez and colleagues showed that the loss-of function insertion mutants 

and overexpression lines exhibited defects in auxin-dependent cellular growth and 

cellular auxin homeostasis. Despite sharing similar topology to PINs, the amino 

acid sequences between these two families of proteins have very low similarity (< 

20 %), limiting the usefulness of conventional BLAST approaches to search for 

homologs (Barbez et al., 2012). Nevertheless, Feraru et al. (2012) analysed the 

diversification of PILS and found that they are generally conserved throughout the 

plant lineage. Putative PILS members in other model organisms were also 

highlighted (Feraru et al., 2012). PILS are evolutionarily older because PILS are 

present in ancient plants, such as the unicellular algae Ostreococcus tauri and 

Chlamydomonas reinhardtii, where PINs are absent (Barbez et al., 2012; Mravec et 

al., 2009). The importance of intracellular auxin homeostasis was given further 

weight by the discovery of a tonoplast-localised auxin carrier, WALLS ARE THINl 
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(WATl) , which is a plant-specific protein and is also the first vacuolar auxin 

transport protein to be identified (Ranocha et al., 2013). 

Intercellular auxin transport is controlled by the three groups of auxin 

carriers mentioned above, i.e. AUXl/LAXs, PINs and PGPs/ABCBs. This clearly 

demonstrates auxin transport as a complex system, and one of many plant-evolved 

mechanisms controlling a plethora of developmental responses. Their roles in stem 

cell maintenance, organ initiation, growth and tropic responses were discovered 

owing to rigorous studies since the turn of the century. However, there are still 

questions unanswered. Based on current knowledge in a few model systems, their 

roles during plant-microbe interactions are evident but genetic and biochemical 

evidence are lacking. Furthermore, it remains to be seen whether other carrier-

carrier interactions exist apart from the currently known PIN1-PGP19 coupling. It 

is also worthwhile to note that research has so far focussed on the transport of the 

most abundant active auxin, lAA. Transport of other auxin metabolites, such as 

IBA (Liu et a l , 2012, Strader and Bartel, 2011), will require further studies. Liu et al. 

(2012) demonstrated a lower transport occurrence of IBA than lAA in Arabidopsis, 

but this could differ in other plant species. 

1.1.2 Auxin biosynthesis 

Auxin biosynthesis has been proposed to occur primarily in young shoot tissues. 

Aerially-produced auxins are then translocated to other plant parts via a very 

efficient transport stream (Ljung et al., 2001, Ljung et al., 2005, Petersson et al., 

2009). However, there is now evidence pointing towards alternative major 

biosynthesis hubs, such as the root meristem (Ljung et al., 2005). Auxin was the 

first phytohormone to be discovered more than 80 years ago (Went, 1926). 

Compounded by the astonishing fact that auxin is implicated in literally almost 

every aspect of plant development, it is surprising that the auxin biosynthesis 



1.1 Auxin homeostasis and signalling dur ing plant development 

pathways are still poorly defined. This is due to the lack of auxin biosynthesis 

mutants , and that dea r phenotypes might be difficult to obtain because of potential 

functional redundancy / lethality of such mutants . Work over the last two decades 

has unravelled many components of the auxin biosynthesis machinery (Tivendale et 

al., 2014). Intriguingly, microorganisms also possess similar pathways (Spaepen and 

Vanderleyden, 2010). Today, it is known that four main naturally-occurring active 

auxins are present in land plants, with indole-3-acetic acid (lAA) being the most 

abundant and biologically active auxin form in plant tissues. Other active auxins are 

indole-3-butyric acid (IBA), 4-chloro-indole-3-acetic acid (4-Cl-IAA) and 

phenylacetic acid (PAA). Auxin biosynthesis can be classified into two branches: 

the t ryptophan (Trp)-independent and the Trp-dependent pathways (Figure 1.2). 

1.1.2.1 Trp-independent pathway 

The Trp- independent pathway for auxin biosynthesis was fist demonstrated in the 

t ryptophan auxotroph mutant of Zea mays, orange pericarp. This mutant is unable 

to produce tryptophan as a resuh of mutat ions in two unlinked loci encoding 

TRYPTOPHAN SYNTHASE (3 (Wright et al., 1991). Despite this, orange pericarp 

accumulated 50 times higher total lAA than W T plants. Comparable results were 

demonstrated in Arabidopsis (Normanly et al., 1993). Furthermore, one of Trp 

precursors, indole, is suggested to be an intermediate in auxin biosynthesis not 

involving Trp. Ostin et al. (1999) showed that feeding Z. mays seedlings with 

["C] indole resulted in the production of ["ClIAA and this process is not inhibited 

by unlabelled Trp. Similar feeding experiments with ['"ClTrp did not yield the same 

outcome. Later, it was shown that indole-3-glycerol-phosphate may act as the 

branch point in Trp- independent auxin synthesis. Arabidopsis transgenic plants 

carrying an indole-3-glycerol-phosphate synthase (7GS) RNAi construct had 

significantly less lAA compared to W T plants (Ouyang et al., 2000). Interestingly, 
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t h e a u t h o r s a lso s h o w e d t h a t t h e T r p b i o s y n t h e t i c m u t a n t l ines trp2-l a n d trp3-l 

h a d h i g h e r l A A levels t h a n W T . T h e t o m a t o m u t a n t sulfurea exh ib i t s p a r a m u t a t i o n 

a n d is a u x i n de f i c i en t (Eh le r t et al., 2008) . A s u p p r e s s o r m u t a t i o n r e su l t ed in 

o v e r a c c u m u l a t i o n of l A A a n d the p a t h w a y invo lved is t h o u g h t t o b e i n d e p e n d e n t of 

T r p . A l t h o u g h m u l t i p l e l ines of e v i d e n c e sugges t t h e ex i s tence of a T r p -

i n d e p e n d e n t p a t h w a y , t h e m o l e c u l a r c h a r a c t e r i s a t i o n a n d e n z y m o l o g y of th i s 

p a t h w a y is still ba re ly exp lo red . 
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Figure 1.2 Auxin (lAA) biosynthesis in higher plants. The biosynthesis of auxin can occur 

via a Trp-independent or Trp-dependent pathway (separated by horizontal black line). Trp is 

produced in the plastid via the Shikimate pathway. So far, four Trp-dependent pathways 

have been proposed, each named after the immediate metabolite downstream of Trp, i.e. 

the IPyA, lAOx, lAM and TRA / TAM pathways. The IPyA pathway, which operates through 

a simple two-step process, is thought to be the major lAA biosynthetic pathway in plants. 

Trp is converted to IPyA by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 

(TAA) or the TAA-RELATED (TAR) family of proteins. The biosynthesis of lAA from IPyA is 

catalysed by the YUCCA (YUC) family of flavin monooxygenase-like enzymes. 

Abbreviations: ANT, anthranilate; IGP, indole-3-glycerol phosphate; Trp, tryptophan; IPyA, 

indole-3-pyruvic acid; lAOx, indole-3-acetaldoxime; lAM, indole-3-acetamide; TRA / TAM, 
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tryptamine; IAN, indole-3-acetonitrile; IG, indole-3-glucosinolates; CAM, camalexin; lAAld, 

indole-3-acetaldehyde; lAEt, indole-3-ethanol. Image was modified from Ljung (2013). 

1.1.2.2 Trp-dependentpathways 

At least four Trp-dependent pathways have been proposed to occur in land plants. 

Each of them is named after the intermediate directly below Trp. These are the 

indole-3-pyruvic acid (IPyA), indole-3-acetaldoxime (lAOx), indole-3-acetamide 

(lAM) and the tryptamine (TAM) pathways (Tivendale et al., 2014). The most 

widely-studied among these four pathways is the IPyA pathway. A complication 

arises here because IPyA is unstable and spontaneously converts into lAA. Hence, 

at times it is challenging to show experimentally that the conversion from IPyA to 

lAA is enzymatically-driven. At the turn of the decade, several studies shed light on 

the genetic position of the enzymes involved in the IPyA pathway. It turns out to be 

a simple two-step process. Independent studies have demonstrated that in this 

branch, Trp is converted into IPyA by TRYPTOPHAN AMINOTRANSFERASE OF 

ARABIDOPSISl (TAAl) and TAAl-related (TARl-3) (Mashiguchi et al., 2011, 

Stepanova et al., 2011, Won et al., 2011). From here, the flavin-monooxygenase-like 

enzyme family of YUCCA (YUC) proteins convert IPyA into lAA. Evidence for the 

repositioning of TAA, TAR and YUC in the same auxin biosynthesis pathway can be 

found. Phenotypic characteristics of taa and yuc mutants are very similar. 

Moreover, a study of auxin-related phenotypes between the taal tar2-l double 

mutant and another mutant carrying additional mutations on four YUC genes 

revealed no additional phenotypic alterations in the latter (Stepanova et al., 2011, 

Won et al., 2011). Internal IPyA levels decreased in the taal tar2-l double mutant 

and accumulation of IPyA was recorded in the yucl/2/4/6 quadruple mutant. 

Mashiguchi et al. (2011) showed that YUC converts IPyA into lAA in a 

heterologous Escherichia coli system and also proposed this as the rate-limiting step 

of lAA synthesis in Arabidopsis. 
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Regulation of TAA and TAR involves hormonal crosstalk. Ethylene 

positively regulates these genes. The taal mutant was originally isolated as an 

ethylene insensitive mutant, wei8. Ethylene-insensitive phenotypes of taal, 

including defective gravitropism, embryo patterning and vasculature development, 

were accompanied by a reduction in lAA levels (Stepanova et al., 2008, Tao et a l , 

2008). Although ethylene positively regulates these auxin transport proteins, auxin 

can also regulate ethylene-related genes (Stepanova et al., 2007). TAAl is also 

positively regulated by cytokinin. A mutant affected in the same gene was isolated 

by Zhou et al. (2011). The authors demonstrated that this mutant has reduced lAA 

induction upon cytokinin treatment. 

The IPyA pathway has been proposed to be the major pathway for auxin 

synthesis in Arabidopsis. Evidence for lAOx, lAM and TAM pathways operating in 

plants are more sporadic. Zhao et al. (2002) demonstrated in vitro and in vivo that 

the cytochrome p450 enzymes CYP79B2 and CYP79B3 are responsible for 

catalysing conversion of Trp to lAOx. The superrootl (surl) and sur2 mutants have 

elevated levels of lAOx, which culminates in much higher lAA levels (Mikkelsen et 

al., 2004), suggesting that the lAOx pathway could be a major source for lAA 

synthesis, and that the WT genes negatively regulate lAA. 

Studies in bacteria showed that Trp is converted to lAM by tryptophan-2-

monooxygenase, iaaM. lAM is then hydrolysed to lAA by the JAM hydrolase, iaaH 

(Tivendale et al., 2014). In Arabidopsis, the major source of lAM seems to originate 

from lAOx (Sugawara et al., 2009). However, because several plant species, such as 

maize, rice and tobacco lack the CYP79B2/3 enzymes, the endogenous lAM 

detected in these species is likely to be synthesised via a distinct route. In these 

plants, lAM is most likely converted from Trp by iaaM-like enzymes and then to 

lAA by the AMIl protein (Lehmann et al., 2010). 
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Interest in the TAM pathway gained momentum in the early 2000's 

following the discovery of the YUC family of enzymes (Zhao et al., 2001). Initially, 

NHT was proposed to be a product of TAM through YUC activity. This study, 

however, did not utilise authentic NHT standards for comparison. A subsequent 

mass spectrometry study using authentic NHT standards showed that the previously 

proposed mechanism was incorrect (Tivendale et al., 2010). The TAM pathway 

might still be a source of lAA in certain plant species, as Quittenden and colleagues 

showed that in pea roots, TAM is converted to lAA (Quittenden et al., 2009). 

Interestingly, this pathway does not seem to operate in pea seeds (Tivendale et al., 

2010). 

1.1.3 Auxin conjugat ion 

Although lAA is widely-regarded as the most abundant form of active auxin in 

higher land plants, its occurrence inside plants is less than half of the total auxin 

pool. Auxins are by and large conjugated to amino acids and sugars (Bajguz and 

Piotrowska, 2009). These compounds serve various functions, mostly for storage 

and as degradation intermediates. More recently, conjugated forms of auxins to 

peptides and proteins have been discovered, although their functions are unknown 

(Figure 1.3). From an evolutionary perspective, auxin conjugates are likely to play 

an equally important role as lAA, considering they are present in the most ancient 

land plants (e.g., moss), whereas lAA is not. Apart from lAA, other auxinic 

compounds with auxin activity, including IBA, indole-3-propionic acid (IPA), 4-Cl-

lAA and PAA can also form conjugates with amino acids and sugars (Bajguz and 

Piotrowska, 2009, Ludwig-Muller and Cohen, 2002). 
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Figure 1.3 Auxin (lAA) conjugation. lAA, an active auxin, can be conjugated to esters, 

amino acids, peptides and proteins. Several forms of auxin conjugates have been identified, 

althougli not all of them appear at similar concentrations in different plant species. The 

function of auxin conjugates is still poorly understood. However, the roles of a few lAA-

amide conjugates have been proposed. For example, lAA-Ala and lAA-Leu are thought to 

be storage forms, whereas lAA-Glu and lAA-Asp are proposed to be intermediates for lAA 

degradation. Abbreviations: lAA, indole-3-acetic acid; IBA, indole-3-butyric acid; lAA-Ala, 

indole-3-acetyl-L-alanine; lAA-Asp, indole-3-acetyl-L-aspartate; lAA-Glu, indole-3-acetyl-L-

glutamate; lAA-Leu, indole-3-acetyl-L-leucine; lAA-Trp, indole-3-acetyl-L-tryptophan; lAA-

Phe, indole-3-acetyl-L-phenylalanine; lAA-Val, indole-3-acetyl-L- valine. 

There is a huge range of auxin conjugates that exists in plants. Auxin 

conjugates comprising different permutations of the indole moiety (lAA, IBA, IPA, 

4-Cl-IAA and PAA) and the attached groups (amino acid, sugar, peptide and 

proteins) are possible. It is likely that these auxin conjugates play specific but 

overlapping roles during plant development (Ludvs'ig-Muller, 2011). Several low 

molecular weight auxin conjugates (indole moiety attached to amino acids and 

sugars) have been discovered in plants. Amide conjugates seem to be ubiquitous 
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among land plants investigated thus far. In Arabidopsis, a broad range of amide 

conjugates have been detected, including lAA-Alanine (lAA-Ala), lAA-Leucine 

(lAA-Leu), lAA-Glutamate (lAA-Glu), lAA-Aspartate (lAA-Asp) and 2-oxoindole-

3-acetic acid (Kowalczyk and Sandberg, 2001, Ludwig-Miiller, 2011). Detection of 

amide conjugates has also been reported in Scots pine (lAA-Asp), soybean and 

cucumber (lAA-Glu and lAA-Asp), spruce (lAA-Ala), tobacco and tomato (lAA-

Asp) (Bajguz and Piotrowska, 2009, Ludwig-Muller, 2011, Korasick et al., 2013). 

Increasing experimental evidence has arisen in recent years for the presence 

of high molecular weight auxin conjugates. These compounds consist of an indole 

moiety attached to peptides and / or proteins (Ludwig-Muller, 2011). Interest in the 

search for new forms of auxin conjugates stemmed from inconsistencies in the total 

constituent of compounds before and after hydrolysis. Furthermore, an example of 

such a conjugate in the form of an lAA-bound peptide has been reported in bean 

(Bialek and Cohen, 1986). Later, a gene encoding a protein modified by lAA, lAPl, 

was cloned from Phaseolus vulgaris (Walz et al., 2002). However, when this gene 

was heterologously expressed in Arabidopsis and M. truncatula under the control of 

the bean endogenous promoter, the resulting protein was not modified by lAA, 

suggesting a species specific conjugation form (Walz et al., 2008). Proteins modified 

by lAA have also been identified in pea and strawberry (Ludwig-Miiller, 2011). In 

strawberry, the protein in question has been identified as an ATP synthase, based on 

LC-MS/MS analysis (Park et al., 2006). More work is required to identify the 

peptide / protein moiety and to elucidate the function of this class of compounds. 

Our understanding of the function of auxin conjugates was boosted by the 

discovery of the GRETCHEN HAGEN3 {GH3) gene family. The proteins encoded 

by this family of genes are responsible for conjugating auxins and other hormones 

(Korasick et al., 2013). The crystal structures of an lAA conjugating GH3 enzyme 

(Peat et al., 2012), as well as an lAA-amino acid hydrolase protein have been 

resolved (Bitto et al., 2009). These findings have improved our knowledge on the 
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interconversion between free auxins and their conjugate forms. The number of 

GH3 and hydrolase gene copies in different species varies. For GH3, certain plants 

like Arabidopsis and Brassica rapa contain 24 and 41 entries, respectively, based on a 

current NCBI database analysis. On the other hand, lower numbers were found for 

Physcomitrella patens (two). As a result, single mutants in Arabidopsis usually do 

not show clear phenotypes, most likely due to the high redundancy in protein 

function (Ludwig-Muller, 2011). Recently, Yang et al. (2014) characterised the 

expression patterns of 17 GH3 genes in M. truncatula. 

Although lAA-amino acid conjugates have been detected in an array of plant 

species, there is currently limited information describing the direct biological role of 

auxin conjugates. As mentioned earlier, this is due in part to the high redundancy 

in protein function. In Arabidopsis, the clubroot disease induced by the protist 

Plasmodiophora brassicae caused an upregulation in the transcription of several 

GH3 genes, with a 100-fold induction for one of the genes (Siemens et al., 2006). 

Interestingly, Reddy et al. (2006) found that mRNA levels of Pinus pinaster GH3.16 

reduced upon interaction with the ectomycorrhizal fungus Hebeloma 

cylindrosporum. The reduction in transcription was more drastic when the 

interaction took place with an lAA-overproducing strain of H. cylindropsorum, 

suggesting a need for increased levels active auxin during the symbiotic interaction. 

During Arabidopsis-Pseudomonas syringae interaction, GH3.5 was upregulated 

(Zhang et al., 2007). The authors showed that induction of this gene is linked to an 

increased lAA synthesis during pathogen interaction. So far, the conjugation of 

auxin has largely been viewed as a mechanism to sequester active auxins inside the 

cell (Korasick et al., 2013). However, a direct activity of the auxin conjugates on 

target molecules cannot be overlooked. 

Nevertheless, the current hypothesis is that certain auxin conjugates serve as 

storage compounds, including lAA-Ala and lAA-Leu (Korasick et al., 2013). lAA-

Glu and lAA-Asp are thought to be intermediates for auxin degradation because 
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they are not hydrolysed significantly compared to the other auxin conjugates during 

Arabidopsis germination (Rampey et al., 2004). On the contrary, Campanella et al. 

(2008) demonstrated that lAA-Asp in M. truncatula can be easily hydrolysed to 

lAA, indicating the possibility of species specificity in terms of active auxin-auxin 

conjugate interconversion, or even different roles for the same compound in 

separate species. Finally, lAA-tryptophan (lAA-Trp) has been proposed to be an 

auxin antagonist, such as during the inhibition of lAA-induced lateral root 

production in Arabidopsis (Staswick, 2009). 

1.1.4 Auxin signalling 

In order for auxin to cause cellular changes, a complex signalling network is 

activated upon auxin perception. To date, several auxin receptors have been 

identified (Peer, 2013). The best studied receptor is the TRANSPORT INHIBITOR 

RESISTANTl (TIRl) nuclear receptor, along with its downstream components 

(Dharmasiri et al., 2005). When auxin binds to TIRl, it does not cause a 

conformational change to the receptor (Tan et al., 2007). Rather, this interaction 

promotes the complex to bind to the AUXIN / INDOLE ACETIC ACID 

(AUX/IAA) family of transcriptional repressors. Under low lAA conditions, the 

AUX/IAA proteins repress the AUXIN RESPONSE FACTOR (ARF) genes. An 

increase in endogenous lAA levels initiates the interaction between TIRl and the 

AUX/IAA repressors, causing the latter to be ubiquitinated and subsequently 

degraded by the 26S proteasomes (Figure 1.4). This promotes the transcription of 

the ARF genes, which facilitates further auxin responses (Sauer et al., 2013). 
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Figure 1.4 Auxin (lAA) signalling pathway. The most well-characterised auxin signalling 

pathway is the SCF^'"'"''® -mediated signalling cascade. The membrane receptor TIR1 

binds auxin and this reaction triggers the formation of the SCF^' complex inside the 

cell. Before a cellular auxin response is activated, the family of AUX/IAA transcriptional 

repressors blocks the promoters of auxin-responsive genes. The SCF^' complex 

removes AUX/IAA from the transcription start site and catalyses the ubiquitination of 

AUX/IAA proteins and subsequent degradation by the 26S proteasomes. In the meantime, 

the removal of AUX/IAA proteins activates transcription of auxin-responsive genes. Image 

was modified from Freschi (2013). 

A h u g e a m o u n t of e f f o r t h a s b e e n inves ted i n t o u n c o v e r i n g t h e c o m p o n e n t s 

of aux in s ignal l ing. A l t h o u g h t h e r e is c u r r e n t l y a n es tab l i shed u n d e r s t a n d i n g in 

h o w the p a t h w a y works , t h e r e a re still m a n y q u e s t i o n s to be a n s w e r e d (Sauer et al., 
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2013). The large family of proteins involved at every level of signal transfer is 

complicating our understanding of the pathway. For example, in Arabidopsis, there 

are five other paralogs of TIRl, namely AFBl-5, which all bind auxin with different 

affinities (Calderon-Villalobos et al., 2010). Based on crystallography, auxin binds 

into the substrate pocket of TIRl and then interacts with Domain II of AUX/IAA 

(Tan et al., 2007). Because there are 29 members of AUX/IAA in Arabidopsis, the 

range of TIRl-auxin-AUX/IAA combination is large. Indeed, Calderon Villalobos 

et al. (2012) showed that the AFB5-AUX/IAA combination selectively binds the 

auxininc herbicide picloram. This large variation in interactions may explain the 

range of auxin responses observed during different plant developmental programs 

and depending on cellular auxin concentrations. 

When complexity like the auxin signalling machinery involving redundancy, 

interactions and feedback presents a hurdle, the value of heterologous systems 

targeting isolated pathways is highlighted. For instance, using the yeast expression 

system. Havens et al. (2012) showed that the rate of AUX/IAA degradation is faster 

when auxin is perceived by TIRl and AFB2, compared to AFBl / 3. The auxin 

receptor TIRl has a distinct function from AFBl in vivo, as miR393 post-

transcriptionally regulates TIRl and AFB2 / 3, but not AFBl (Parry et al., 2009). 

These findings were recently supported by Shimizu-Mitao and Kakimoto (2014). 

The authors investigated the effect of all possible TIR/AFB-auxin-AUX/IAA 

combinations on the rate of AUX/IAA degradation. This work will be a valuable 

resource for further studies on auxin-mediated responses in various developmental 

processes. 

Our relatively detailed understanding of the TIR/AFB-AUX/IAA signalling 

has paved the way for the development of useful reporters. The GH3- and DR5-

based reporters have been widely used for studying auxin responses in plants. In 

addition to showing a local response, the output is usually also interpreted as 

depicting local auxin concentrations. Such interpretations can be misleading, as 
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complex signalling pathways are sandwiched between the initial input and final 

output. The novel DII-VENUS sensor is a much-improved tool for measuring 

auxin gradient and distribution in real-time (Brunoud at al., 2012). It utilises the 

auxin-interacting DIl domain of AUX/IAA proteins fused to the fast-maturing 

VENUS yellow fluorescent protein, thus giving a more controlled and linearised 

measurement of auxin. 

The S-PHASE ASSOCIATED KINASE 2A (SKP2A) receptor is suggested to 

be an alternative auxin receptor. This protein has high homology to the mammalian 

SKP2 protein involved in degradation of cell cycle transcription factors (del Pozo et 

al., 2006). Auxin has been shown to bind directly to SKP2A (Jurado et al., 2010). 

This interaction is abolished when amino acid residues in the binding site are 

mutated. Furthermore, skp2a mutants show auxin resistant growth phenotypes. 

Although direct links of SKP2A function to cell cycle factor degradation has not 

been established, circumstantial evidence suggests that SKP2A is likely to be an 

auxin receptor linked to cell cycle control (Sauer et al., 2013). A third auxin 

receptor, AUXIN BINDING PROTEINl (ABPl), has been known for decades but 

still poorly understood. It is the first auxin receptor to be identified (Napier et al., 

2002). Unlike TIRl/AFBs and SKP2A, both of which function at the nuclear 

membrane, ABPl is believed to be secreted from the endoplasmic reticulum to the 

extracellular space, where it functions. Indeed, Tian et al. (1995) showed that the 

maximum binding activity of ABPl to auxin occurs at a pH of 5.5, which is similar 

to the apoplastic pH. It is thought that ABPl could act as an auxin sensor, such as 

to determine auxin gradient and transport direction outside the cell, thus serving as 

the first point of auxin regulation before a signal is tranduced into the nucleus. This 

is supported by a recent finding that ABPl forms a complex with a plasma 

membrane located receptor-like kinase, regulating rapid non-transcriptional 

responses near the cell surface (Xu et al., 2014). Interestingly, though, ABPl seems 

unnecessary for Arabidopsis development (Gao et al., 2015). By comparing two 
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separately-generated abpl null mutants with the WT plant, the authors could not 

find any difference between the common auxin-inducible genes in both genotypes, 

as well as no observable developmental defects in the abpl mutants, at various 

growth stages. The role of ABPl in plants is still a mystery. 

1.2 Auxin - central regulator of organogenesis 

1.2.1 Organ init iat ion and development - the case of lateral roots 

Auxin is a key player in founder cell specification and organ development. In the 

last few years, there has been an increasing shift in research focus towards 

understanding organ development as an output from coordination between 

multiple hormonal networks (Chandler, 2011a). However, multiple lines of 

evidence exist showing that auxin is the main actor in the complex orchestration 

involved in organ formation. Perhaps the most well-studied system in this context 

is the initiation of lateral roots in Arabidopsis (Lavenus et al., 2013, Peret et al., 

2009). However, extensive studies have also been performed on the role of auxin in 

root development, flower development and meristem maintenance (Bishopp et al., 

2011, Chandler, 2011b, Su et a l , 2011). In most cases, the initiation of lateral organs 

is associated with the formation of auxin maxima. 

Lateral root formation in Arabidopsis has been rigorously investigated. The 

initiation of lateral roots is highly regular and tends to follow a rhythmic pattern in 

Arabidopsis (De Smet et al., 2007). The authors showed that this regular pattern is 

correlated with an elevated auxin response in the basal meristem. Each consecutive 

auxin pulse is spaced consistently ~ 15 h apart. The spots of increased auxin 

response are where lateral roots primordia will form (De Smet et al., 2007). Later, 

Dubrovsky et al. (2008) elegantly demonstrated that the earliest lateral root 

initiation event is an increased auxin response in a single pericycle cell and this is 
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sufficient to convert it into a lateral root founder cell. This suggests that auxin alone 

could act as a trigger for lateral organ formation. Several other reports support 

auxin as a positive regulator of lateral root initiation and development. The 

superwotl (surl) mutant has an increased aldehyde oxidase activity, which resulted 

in higher lAA biosynthesis and lateral root numbers (Seo et a l , 1998). Similarly, the 

sur2 mutant displays elevated lAA production and lateral root formation (Barlier et 

al., 2000). Aero- and basipetal auxin transport are required for lateral root initiation 

(Casimiro et al., 2001). Mutants with defects in the auxin transport machinery have 

clear lateral root phenotypes. The AUXl permease translocates lAA into the 

cytoplasm and is involved in root gravitropism (Bennett et al., 1996, Yang et al., 

2006). Loss-of-function in this gene reduced lateral root initiation (Marchant et al., 

2002). Another auxin importer, LAX3, has been proposed to translocate auxin from 

the developing lateral root into cortical and epidermal cells overlaying the lateral 

root primordium (Swarup et al., 2008). This promotes auxin-dependent expression 

of cell wall remodelling enzymes, which are likely to separate cells in the outer cell 

layers prior to lateral root emergence. In agreement with this positive role, the Iax3 

mutant has reduced numbers of emerged lateral roots, but is not defective in lateral 

root primordia initiation (Swarup et al., 2008). Finally, various mutants of the PIN 

family involved in auxin export, including pinl, pin3/pin7 double mutant, and the 

pinl/pm3/pin4 triple mutant have retarded lateral root primordia formation 

associated with aberrant auxin response (Benkova et a l , 2003). Defects in the auxin 

transport machinery could affect the creation of auxin maxima in the correct cells 

and consequently impact lateral root initiation and development. 

1.2.2 Auxin-cytokinin crosstalk 

Cytokinins, together with auxins, fine tune the processes of cell division and 

differentiation. These two hormones act antagonistically during plant development. 
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Auxin and cytokinin interaction has been investigated in embryogenic meristem 

formation, shoot and root meristem development (Bishopp et al., 2011). Several 

reports have shown that the antagonism between auxin and cytokinin in the root 

meristem is determined by certain integrators, which mutually control the signaUing 

pathways or homeostasis of both hormones (Figure 1.5) (Dello loio, 2008, Marhavy 

et al., 2011, Marhavy et al., 2014, Moubayidin, 2009, Ruzicka et al., 2009). 
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Figure 1.5 Auxin-cytok in in crosstalk in the root. Aux in and cytokinin act antagonist ical ly in 

the root to control lateral root emergence, the transit ion zone and root mer istem 

main tenance. The genet ic components involved are distinct, but over lap in each case. In 

general , cytokinin is perceived by a receptor- l ike k inase and the result ing signal causes an 

inhibit ion of auxin transport . Abbrev iat ions; AHK, Arabidopsis Histidine Kinase; ARR, 

Arabidopsis Response Regulator; SHY2, Short Hypocotyl 2; IPT, Isopentenyl t ransferase; 

AHP, Arabidopsis Hist idine Phophot ransfer protein. Image was modi f ied f rom El-Showk et 

al. (2013). 
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A genetic framework has been proposed describing auxin-cytokinin 

interaction in root meristem maintenance. Dello loio (2008) demonstrated that 

SHORT HYPOCOTYL2 (SHY2IIAA3) acts at the convergence of auxin-cytokinin 

signalling to control cell division and differentiation. The SHY2 gene is a member 

of the AUX/IAA gene family encoding transcriptional repressors functioning in the 

TIRl/AFB-dependant auxin signalling cascade (Tian et al., 2003). At the root 

transition zone, the cytokinin-induced transcription factor ARRl binds directly to 

the promoter of SHY2. An increase in SHY2 expression results in the reduction of 

PIN expression and a redistribution of auxin to promote cell differentiation (Dello 

loio, 2008). The repression of PINl by cytokinin requires the cytokinin receptor 

ARABIDOPSIS HISTIDINE KINASE (AHK) (Ruzicka et al., 2009). Furthermore, 

positive induction of SHY2 activates a negative feedback loop which downregulates 

the cytokinin synthesis gene ISOPENTENYL TRANSFERASES {IPT5) (Dello loio, 

2008). On the other hand, auxin negatively regulates SHY2 and increases PIN 

expression, thus creating an auxin distribution in the meristem favouring cell 

division and expansion (Dello loio, 2008, Tian et al., 2003). Therefore, SHY2 acts as 

a regulatory knob at the proximal meristem and root transition zone to control root 

meristem size. 

Auxin-cytokinin crosstalk can also be observed at the hormone biosynthesis 

level. Cytokinin was demonstrated to positively regulate auxin biosynthesis in 

young root and shoot tissues (Jones et al., 2010). External application or ectopic 

expression of cytokinin resulted in increased auxin biosynthesis. Furthermore, a 

decrease in cytokinin biosynthesis, either through loss-of-function mutations of IPT 

genes, or induction of the cytokinin degrading enzyme, CYTOKININ OXIDASE 

(CKX), resulted in a downregulation of auxin biosynthesis. Transcript profiling 

indicated that certain auxin biosynthesis genes, including YUC6, were upregulated 

after cytokinin treatment (Jones et al., 2010). Consistent with this, Zhou et al. 

(2011) showed an increase in TAAl expression after cytokinin treatment in 
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Arabidopsis roots. This was accompanied by a decrease in polar auxin transport and 

both of these cytokinin-induced responses were dependent on the AHK3-ARR1 

signalhng module. Previously, auxin biosynthesis has been shown to rapidly 

downregulate cytokinin production (Nordstrom et a l , 2004). Hence, a model has 

been proposed where cytokinin acts as a positive regulator of auxin biosynthesis but 

auxin represses cytokinin synthesis (Jones et al., 2010). 

Lateral root formation is induced by auxin and inhibited by cytokinin. 

Clearly, plants have to balance the actions of these two hormones in the context of 

lateral root organogenesis (Fukaki and Tasaka, 2009). Cytokinin acts at the lateral 

root founder cell specification stage by perturbing PIN expression, such that an 

auxin gradient promoting lateral root primordium is not formed (Laplaze et al., 

2007). Accordingly, the authors showed that transactivating CKXl in pericycle 

founder cells increased lateral root numbers. Using in vitro assays, Pernisova et al. 

(2009) showed that cytokinin controls organogenesis via the control of PIN 

expression and inhibition of auxin efflux. Moreover, an additional cytokinin 

modulator, ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER6 {AHP6), acts as a 

cytokinin inhibitor during lateral root initiation (Moreira et al., 2013). It is required 

to orient the initial pericycle cell divisions and is also necessary for correct PINl 

patterning. The reduction in PIN activity in response to cytokinin is rapid and 

independent of transcriptional control. Endocytic recycling of PINl from the 

plasma membrane is followed by lytic degradation (Marhavy et al., 2011). The 

susceptibility of PIN proteins at certain polar domains to degradation is dependent 

on its phosphorylation status (Marhavy et al., 2014). Phosphomimicking 

experiments and enhanced phosphorylation of PINl due to modified activities of 

PIN-specific kinases and phosphatases desensitised PINl to cytokinin (Marhavy et 

al., 2014). A mechanism bypassing transcriptional control such as this is useful for a 

rapid initial response, while a more elaborate and complex network of gene 

regulation may produce a synergistic output at a later stage. 



Genera l I n t r o d u c t i o n 

1.3 Biological nitrogen fixation and nodulation 

1.3.1 Biological nitrogen fixation and its relevance 

Nitrogen is one of the most essential elements for plant growth. It is required as a 

building block for nucleic acids, amino acids and many secondary metabolites. 

Nitrogen limitation is a frequent and major problem in many soil ecosystems 

(Herridge et al , 2008). Although the atmosphere comprises 78 % nitrogen (N2), this 

is not accessible to plants. Plants can only assimilate soluble nitrogen in the soil. 

Atmospheric nitrogen is converted into these accessible forms in a process known as 

nitrogen fixation. This process can happen naturally, such as through lightning and 

biological processes, or by human intervention through industrial nitrogen 

conversion. Enhanced efforts from governmental and private organisations have 

improved estimates of fixed nitrogen from various sources, thus giving a better 

overview of the scale of natural and anthropogenic inputs (Fowler et al, 2013). 

In the last few decades, soil infertility has been overcome by widespread 

application of nitrogenous fertilisers. The discovery of the Haber-Bosch process 

was a major breakthrough in the early 1900s, and instrumental for the advent of 

industrial fertiliser production (Erisman et al., 2008). However, the extreme 

conditions required for breaking the inert nitrogen molecule to make ammonia, 

coupled with the low yield, have increased production costs of nitrogenous 

fertilisers. Small scale farmers are finding it increasingly difficult to cope with the 

price hike of synthetic fertilisers. With the rising challenge of feeding an ever-

expanding human population, food security is becoming a serious issue, especially 

amongst third-world populations (Godfray et al., 2010). The available tools for 

increasing crop yield, including plant breeding, fertiliser application and pest 

control are simply not sufficient to cope with the current upward trend in human 

growth. What we need is a technological advance that can allow us to make the 
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quantum leap forward in agriculture, in the same manner as fertilisers did with the 

green revolution 50 years ago. 

Biological nitrogen fixation is an astonishing naturally-occuring process 

because it can perform nitrogen fixation at ambient conditions, instead of the 

extreme pressures and temperatures that the Haber-Bosch process requires. The 

ability to fix nitrogen is only present in a subset of bacteria. According to recent 

estimates, biological nitrogen fixation contributed by terrestrial and marine 

ecosystems accounts for 200 Tg N y e a r h a l f of the total fixed nitrogen on earth 

(Vitousek et al., 2013, Voss et al., 2013). The idea of engineering cereal crops that 

have the ability to fix nitrogen through symbiosis with nitrogen-fixing bacteria has 

been discussed for some time (Oldroyd and Dixon, 2014). If nitrogen fixation 

capability can be transferred to food crops, not only will the yield and nutritional 

value of crops likely increase, but importantly, the price of food will fall. On top of 

that, environmental and health issues resulting from nitrogen leaching from 

fertiliser use, such as water eutrophication and the blue baby syndrome, can be 

avoided (Holloway et al., 1998). 

The challenge of engineering symbiotic pathways into crops is not menial. 

Plants usually enter a symbiotic relationship with bacteria. The host plant 

harbouring the bacterial symbiont will then benefit from the nitrogen fixing activity 

of the microbe. Hence, it is imperative to dissect bacterial and plant signalling 

pathways before we can fully engineer biological nitrogen fixation in a new plant 

system. Over the last three decades, our understanding on both sides of the 

biological nitrogen fixation equation has made significant inroads. Model 

organisms have been adopted, which greatly accelerated research progress. 

Biological nitrogen fixation is now truly recognised as one of the answers to the 

future of sustainable agriculture and food security (Beatty and Good, 2011). 
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1.3.2 Non-symbiotic versus symbiotic nitrogen fixation 

The ability to fix atmospheric nitrogen is present in a range of bacteria. Nitrogen-

fixing bacteria can be loosely classified as non-symbiotic and symbiotic (requiring 

extensive differentiation into a specialised form). Examples of non-symbiotic 

nitrogen-fixing bacteria include cyanobacteria, proteobacteria and firmicutes (Zhan 

and Sun, 2012). The process of nitrogen fixation is energy expensive. Thus, non-

symbiotic nitrogen fixers thrive in soils rich in organic matter. They usually also 

occur in high densities in the rhizosphere, where they can feed off plant exudates 

(Orr et al., 2011). Nitrogen-fixing ability is conferred by the nitrogenase enzyme 

present in the bacteria. The function of nitrogenase is tightly controlled by the nif 

regulon. Expression of this enzyme complex and subsequently nitrogen-fixing 

function is only activated under low fixed nitrogen conditions in the soil. 

Furthermore, the enzyme complex is highly sensitive to oxygen and must therefore 

operate in an anaerobic environment (Schmitz et al., 2002). 

Symbiotic nitrogen fixation involves a host organism and a nitrogen-fixer. 

The host obtains nitrogen metabolites from the bacteria, and in exchange, the 

bacteria benefit from photosynthates and protection from the host. Cyanobacteria, 

for instance, can also form a symbiosis with Azolla and cycads, in addition to their 

nitrogen-fixing capability in free-living form (Herridge et al., 2008). The legume-

Rhizobium symbiosis is a very controlled interaction between a leguminous host and 

Rhizobium symbiont. Two model systems have been widely used in recent years to 

study this interaction, namely the Medicago truncatula - Sinorhizobium meliloti and 

Lotus japonicus - Mesorhizobium loti interactions. An initial signal exchange occurs 

between the host plant and Rhizobium. The symbiont will then enter the host plant 

root. A structure, termed nodule, concurrently initiates inside the host plant, which 

will eventually house the symbiont (Oldroyd et al., 2011). At least one non-legume, 

Parasponia sp., has been shown to form symbiosis with Rhizobium. This interaction 

also culminates in the formation of a nodule, albeit the Rhizobium infection process 
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differs (Santi et al., 2013). The nodule provides an opt imum environment for 

nitrogen fixation. A very similar process occurs between non-legumes and a group 

of actinorhizal bacteria, called Frankia. Entry of bacteria into the host plant occurs 

intracellularly in plants of the Fagales order and intercellularly in Resales 

(Pawlowski and Demchenko, 2012). In Datiscaceae and Coriariaceae, the process is 

unclear, due to the difficulty in studying the early infection processes. In legumes, 

nodules have a peripheral vasculature instead of a central vasculature, as formed by 

Frankia association with non-legumes (Guan et a l , 2013, Santi et al., 2013). 

Another marked difference is the formation of a prenodule, which has not been 

observed in \egume-Rhizobium symbiosis. 

1.3.3 Nodule organogenesis in legumes 

Nodulation in legumes involves signal exchange with a group of bacteria, 

collectively known as rhizobia. The M. truncatula and L. japonicus nodulation 

programs represent the two most extensively studied systems (Desbrosses and 

Stougaard, 2011). Nonetheless, work on other legume species, notably on Medicago 

sativa (alfalfa). Glycine max (soybean), Pisum sativum (pea), Trifolium repens (white 

clover) and Sesbania rostrata have also provided useful insights on similarities and 

differences between nodulating plants. Currently, there is a general consensus that 

leguminous nodules can be divided into two types, i.e. indeterminate and 

determinate nodules (Oldroyd et al., 2013). Indeterminate nodules contain a 

persistent meristem and can grow into larger, elongated structures. On the other 

hand, determinate nodules have a temporary meristem, which disappears early 

during nodule development, causing determinate nodules to be spherical in shape. 

Despite of this difference, there is a lot of overlap in indeterminate and determinate 

nodulation. The epidermal and cortical responses in both nodulation programs 

have been the subjects of rigorous investigations. 
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1.3.3.1 Epidermal responses 

Symbiosis between legumes and rhizobia is initiated wlien flavonoids are secreted by 

host plants into the rhizosphere. Flavonoids are plant secondary metabolites acting 

as Rhizobium chemoattractants (Aguilar et al., 1988, Dharmatilake and Bauer, 1992, 

Hassan and Mathesius, 2012). Upon perception of flavonoid compounds, the 

corresponding Rhizobium species synthesises Nod factors (lipochitin 

oligosaccharides). Nod factors are highly specific and unique to each Rhizobium 

species. These compounds are detected by N-acetylglucosamine-binding lysin 

motifs (LysM) receptor-like kinases (RLK) located at the epidermis (Arrighi et al., 

2006, Radutoiu et a l , 2003). In L. japonicus, the NOD FACTOR RECEPTORl 

(NFRl) and NFR5 are crucial for detection of Nod factors from Mesorhizobium loti 

(Madsen et al., 2003, Radutoiu et al., 2003). Transferring NFRl and NFR5 to 

M. truncatula allowed its symbiosis with M. loti (Radutoiu et al., 2007). Moreover, a 

difference in a single amino acid residue within NFR5 of L. japonicus and Lotus 

filicaulis confers specificity for different symbionts. Later, Broghammer et al. (2012) 

showed that these receptors directly bind Nod factors. In M. truncatula, NOD 

FACTOR PERCEPTION! (NFPl) and LYK3 are orthologs of NFRl/5, as well as 

being strong LysM-RLK candidates for binding Nod factors from S. meliloti. 

However, direct evidence for Nod factor binding is still missing. 

Nod factor perception is followed by a series of phosphorylation events. 

Pharmacological and biochemical evidence suggest a role for phospholipase C/D 

(PLC/D) in symbiotic nodulation. Charron et al. (2004) showed that by blocking 

the activities of PLC/D with inhibitors, expression of the nodulation marker EARLY 

NODULINll (ENODll) was abolished, and nodulation failed to occur in 

M. truncatula. Den Hartog et al. (2001) also showed the importance of PLC/D 

activity in Vicia sativa (vetch) nodulation, specifically for root hair deformation. 



1.3 B i o l o g i c a l n i t r o g e n f i x a t i o n a n d n o d u l a t i o n 

These two proteins are proposed to be secondary messengers linking plasma 

membrane ligand perception with nuclear activity (Oldroyd and Downie, 2008). 

Calcium spiking in the nuclear region of cells associated with, and in the 

vicinity of Nod factor perception, is a hallmark of nodule organogenesis. This 

phenomenon occurs inside and around the nucleus, which explains why secondary 

messenger(s) carrying information upon Nod factor perception from the plasma 

membrane into the nucleus was proposed (Charpentier and Oldroyd, 2013, Oldroyd 

and Downie, 2008). Specific calcium oscillation signatures within the nucleus are 

interpreted and decoded by the calcium and calmodulin-dependent protein kinase 

(CCaMK), a central player of nodule formation, encoded by the DMI3 gene in 

M. truncatula. Indeed, an autoactive form of CCaMK is sufficient to induce 

spontaneous nodule formation on M. truncatula and L. japonicus roots (Gleason et 

a l , 2006, Tirichine et al., 2006). Recently, Singh et al. (2014) demonstrated that 

CCaMK phosphorylates CYCLOPS, a process essential for its function as a 

transcription activator for nodulation-related genes, such as NODULE INCEPTION 

(NIN). Phosphomimetic forms of CYCLOPS were sufficient to cause spontaneous 

nodule formation independent of CCaMK. The GRAS-family transcription factors 

NODULATION SIGNALLING PATHWAY! (NSPl) and NSP2 form a 

heteropolymer, which binds directly to DNA and activates the nodulation marker 

ENODll (Hirsch et al., 2009, Kalo et al., 2005, Smit et al., 2005). Many of the 

genetic components above are also required during mycorrhization (the formation 

of a symbiotic relationship between the mycelium of a fungus and the roots of a 

plant), and hence are not nodulation-specific. However, a study by Soyano et al. 

(2013) suggested that the legume-specific NIN transcription factor could be one of 

the determinants of nodulation (Figure 1.6). 
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1.3.3.2 Bacterial infection 

Nod factor perception also leads to invasion of the correct Rhizobium species into 

host roots. The process is facilitated by cytoskeletal changes in root hair cells, 

causing deformation of the root hair. Rhizobia in the vicinity of the curled root hair 

are entrapped within the structure. The cell wall of the root hair grows inwards, 

forming a tunnel-like structure, called an infection thread that rhizobia migrate 

into. During infection thread growth, rhizobia undergo replication and increase 

Nod factor concentration by further synthesis, a process important for inducing 

plant responses in the latter stages of infection (Oldroyd et al., 2011). 
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Figure 1.6 Schematic representation of the nodulation process and regulatory pathways 

involved In legumes. Here, a Medicago truncatula nodule forming at the early stages is 

shown. The host plant exudes flavonoids, which act as chemoattractants to the 

corresponding Rhizobium species (Sinorhizobium meliloti). In addition, flavonoids induce 

Nod factor (NF) synthesis in Rhizobium. At the epidermis, NF is perceived by receptors, 

NOD FACTOR PERCEPTION (NFP) / LYK located in the root hairs. NF perception 

activates calcium spiking, which is decoded by calcium and calmodullin-dependent protein 

kinase (CCaMK). CCaMK activates transcription of nodulation-related transcription factors, 

including NODULATION SIGNALLING PATHWAY1 {NSP1), NSP2 and NODULE 
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INCEPTION (NIN). At the inner cortex, CCaMK also plays similar roles. In addition, it was 

recently shown that CCaMK directly phosphorylates CYCLOPS, which then directly 

activates NIN. An autoactive form of CCaMK is sufficient to induce nodule organogenesis. 

Hormones play important roles during nodulation. Cytokinin signalling is induced in the 

inner cortex and cytokinin signalling through CYTOKININ RESP0NSE1 (CRE1) is essential 

for nodulation in M. truncatula. CRE1 positively regulates RESPONSE REGULAT0R4 

(RR4) and NSP2. Cytokinin signalling via CRE1 is also essential for auxin transport 

inhibition, which is correlated with changes in PIN expression. This is followed by an 

increase in auxin response, cell divisions and development of a nodule primordium. 

Ethylene (C2H2) is a negative regulator of nodulation and controls the positioning of nodules 

through the ETHYLENE INSENSITIVE2 (EIN2) regulator. Ethylene signalling is controlled 

by the HD-ZIP III transcription factor, which in turn is post-transcriptionally regulated by 

MIR166. Concurrent with the cortical responses, rhizobia infect the curled root hair with the 

aid of an infection thread, a tunnel-like structure composed of plant cell wall material. Once 

inside the nodule primordium, rhizobia are released from the infection thread into nodule 

cells, where they further differentiate into bacteroids, which is the nitrogen-fixing form of the 

symbiont. The meristem-specific transcription factor, HAP2.1 is controlled post-

transcriptionally by MIR169 to promote nodule differentiation. Image was modified from 

Crespi and Frugier (2008). 

Root hair curling and cortical cell divisions are proposed to occur via 

independent pathways. The Nod factor receptor NFP is required for root hair 

deformation in M. truncatula (Esseling et al., 2003). Using various mutants 

defective in the early nodulation signalling pathway, Miwa et al. (2006) showed that 

there is no correlation between calcium spiking and induction of root hair curling. 

Hence, downstream responses after calcium spiking are not essential for root hair 

curling, which is likely to be controlled by a parallel pathway after Nod factor 

perception (Oldroyd et al., 2011). 

Infection thread formation and gro\\'th are tightly controlled by the host 

plants. Only the correct structure of the Nod factor f rom the specific symbiont will 

elicit normal infection thread formation and grovrth (Oldroyd and Downie, 2008). 

Studies in S. meliloti and Rhizobium leguminosarum (pea symbiont) showed that 

Nod factors with the incorrect side groups and modifications were able to induce 
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calcium spiking and ENOD expression, but progression of the infection threads was 

aborted in root hairs (Ardourel et al., 1994, Walker and Downie, 2000). This has led 

to a two-stage control hypothesis of nodulation. First, an initial stage of non-

stringent Nod factor recognition for calcium signalling and the expression of early 

response genes occur. Next, a stringent Nod factor recognition stage for bacterial 

invasion is required (Desbrosses and Stougaard, 2011). In M. truncatula, the NFP 

protein is proposed to be the initial ligand receptor and later forms a complex with 

LYK3 to perform higher stringency recognition of Nod factors during nodulation 

(Pietraszewska-Bogiel et al., 2013). 

J.3.3.3 Induction of cortical cell divisions 

While the epidermal layer controls the initial physical contact with Rhizobium, early 

responses and bacterial infection, the making of a nodule is controlled by the 

cortical and other inner cell layers. Initial cell divisions occur in the inner cortex 

and outer cortex of M. truncatula and L. japonicus, respectively (Mathesius, 2008). 

Recently, Xiao et al. (2014) has meticulously described the contribution of every cell 

layer to the formation of a mature nodule structure, including the fate of the 

pericycle and endodermal cells. Using cell-specific markers, they were able to trace 

the entire developmental journey taken by individual cells during nodule formation 

in M. truncatula. Studies in nodulation-defective mutants showed that the inner 

layer cell divisions and epidermal responses can occur independently of each other. 

Cortical cell divisions may proceed normally when bacterial infection has failed 

(Gleason et al., 2006, Tirichine et al., 2006), and the opposite is true as well (Murray 

et al., 2007, Plet et al., 2011). However, to form a functional nodule that contains 

nitrogen-fixing rhizobia, these two parallel processes must be coordinated so that 

they happen close to one another (Ferguson et al., 2010). 
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Several reports suggest that the onset of nodule organogenesis is to a large 

extent plant autonomous. In alfalfa and white clover, spontaneous nodules can 

form on W T plants in the absence of rhizobia. Spontaneous nodules do not contain 

the microsymbiont and are white in colour, instead of the typical pinkish 

appearance of a nitrogen-fixing nodule (Blauenfeldt et al., 1994, Joshi et al., 1991). 

Interaction between mutant symbionts and W T host plants can also result in similar 

structures (Imaizumi-Anraku et al., 2000, Tansengco et al., 2003). A genetic screen 

in L. japonicus and directed mutagenesis in M. truncatula identified the CCaMK 

protein as sufficient to induce nodule organogenesis in the absence of rhizobia 

(Gleason et al., 2006, Tirichine et al., 2006). Autoactivation of CCaMK, as shown in 

these two studies, activated ENODll expression in the same spatio-temporal 

manner as Nod factor perception does (Journet et al., 1994). Hence, the Nod factor 

signalling pathway downstream of CCaMK is predefined, regardless of whether 

rhizobia or a signal is recognised at the root surface. 

1.3.3.4 Regulation of nodulation by auxin and cytokinin 

Hormones, in particular auxin and cytokinin, are intrinsic players of nodule 

organogenesis. The participation of hormones in nodulation has been proposed a 

while back (Libbenga et al., 1973). Application of auxin transport inhibitors was 

able to induce expression of early nodulins and nodule-like structures on alfalfa 

(Hirsch et al., 1989). An S. meliloti strain overproducing lAA induced more 

nodules on M. truncatula than a W T strain (Pii et al., 2007). Interestingly, 

S. meliloti mutants that synthesise higher levels of cytokinin could also induce 

formation of nodule-like structures (Cooper and Long, 1994). Other hormones 

have also been implicated in nodulation control (Ferguson and Mathesius, 2014). 

The importance of cytokinin signalling as a positive cue for nodule 

formation has been highlighted by several studies. Soybean roots overexpressing 
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miR160 are hyposensitive to cytokinin and have reduced nodule primordia 

formation (Turner et al., 2013). Gain-of-function mutation in the cytokinin 

signaUing receptor gene LOTUS HISTIDINE KINASEl (LHKl) in L. japonicus was 

sufficient to induce spontaneous nodule formation in the absence of rhizobia or 

Nod factors (Tirichine et al., 2007). Conversely, loss-of-function in LHKl and the 

ortholog in M. truncatula, CYTOKININ RESPONSE! (CREl), greatly diminished 

nodulation capability in the respective host plants, in the presence of rhizobia 

(Murray et al., 2007, Plet et a l , 2011). Interestingly, the Ambidopsis ortholog of 

LHKl, ARABIDOPSIS HISTIDINE KINASE4 {AHK4\ was able to functionally 

complement nodulation in the Ml mutant, indicating the absence of legume-

specific features of LHKl (Held et al., 2014). Furthermore, nodules can still form on 

the Ihkl and crel mutants, indicating that other cytokinin receptors work partially 

redundantly in L. japonicus (Held et al., 2014), which is most likely the case in M. 

truncatula as well (Frugier, 2008). 

In M. truncatula, cytokinin induction is observed at the earliest stages 

following Nod factor perception, preceding cell divisions. Expression studies of the 

cytokinin primary response regulator RESPONSE REGULATOR4 {RR4) showed 

that after Nod factor application, the first point of cytokinin action is in the inner 

cortical cells, but not in the outer cell layers in M. truncatula (Plet et al., 2011). The 

MtRR4, MtNSP2 and a gene encoding a basic Helix-Loop-Helix (bHLH) 

transcription factor loci are direct targets of cytokinin signalling (Ariel et al., 2012). 

Loss-of-function and knockdown of MtNSP2 and the bHLH transcription factor, 

respectively, reduced nodulation (Ariel et al., 2012, Murakami et al., 2007, Oldroyd 

and Long, 2003). Although the point of cytokinin action has been investigated, 

whether cytokinin synthesis occurs in the same cells is unclear. However, Chen et 

al. (2013) demonstrated that a cytokinin synthesis gene, ISOPENTENYL-

TRANSFERASE3 {IPT3), positively regulates nodulation locally in the root. 

Intriguingly, another study showed that shoot-derived cytokinin is transported 
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towards the root and act as a negative regulator of nodulation (Sasaki et al., 2014). 

The authors proposed that cytokinin translocation from shoot to root as one of the 

components involved in controlling nodule numbers, a process termed 

autoregulation of nodulation. More recently, cytokinin synthesis was shown to 

increase as early as 3 h in response to Nod factor treatment (van Zeijl et al., 2015). 

Several reports suggest an important role for auxin during nodulation. One 

of the consequences of cytokinin signalling is the transient inhibition of auxin 

transport in indeterminate nodule-forming legumes (Plet et al., 2011). This 

phenomenon has been reported in multiple studies and the significance of auxin 

transport inhibition during nodulation will be discussed in section 1.4. 

Interestingly, auxin transport inhibition has not been observed during nodulation in 

determinate nodule-forming legumes. The temporary blockage of acropetal auxin 

transport is followed by an increased expression of the auxin response gene, GH3, in 

the nodule primordia of M. truncatula (Mathesius et al., 1998a, van Noorden et al., 

2007). Observations of these auxin maxima have also been reported in the nodule 

primordia of L.japonicus and soybean, where they occur in the dividing outer 

cortical cells (Pacios-Bras et al., 2003, Suzaki et al., 2012, Takanashi et a l , 2011, 

Turner et al., 2013). 

Despite the lack of auxin transport inhibition preceding cortical cell 

divisions in L.japonicus and soybean, it seems that an increased auxin response is 

conserved among indeterminate and determinate nodule-forming legumes. Suzaki 

et al. (2012) also found increased expression of the TRYPTOPHAN 

AMINOTRANSFERASE-RELATED (TAR) genes in response to rhizobia infection, 

which correlated with an increase in auxin response, as indicated by the DR5:GFP-

NLS signal. In line with this finding, it was reported that the proteome changes in 

response to rhizobia infection and exogenous auxin treatment highly overlap (van 

Noorden et al., 2007). However, external auxin treatment reduced nodulation on 

M. truncatula roots, as did the application of the auxin action inhibitor PCIB (van 
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Noorden et al., 2007). Such an observation can be explained by the differential 

requirement of auxin gradient and signalling during different stages of nodulation, 

which cannot be mimicked by external chemical treatments (Ferguson and 

Mathesius, 2014). Indeed, the requirement for a "window" of auxin sensitivity is 

supported by several other studies. Surprisingly, overexpression of miR160, which 

targets and degrades AUX/IAA transcriptional repressors of auxin response genes 

and thus enhances auxin response, resulted in reduced nodulation in M. truncatula 

and soybean (Bustos-Sanmamed et al., 2013, Turner et al., 2013). Finally, 

downregulation of the M. truncatula cell-cycle regulator, CELL DIVISION 

CYCLE16 {CDC16) attenuates auxin signalling and resulted in higher nodule 

numbers (Kuppusamy et a l , 2009). 

In addition to auxin sensitivity, induction of genes by auxin is also affected 

by the availability of internal auxin. Auxin breakdown by peroxidases, which are 

regulated by flavonoids, is part of auxin homeostasis and could control effective 

auxin levels inside cells (Peer et al., 2013). In white clover, specific flavonoids have 

been localised in the dividing cortical cells during nodule organogenesis (Mathesius 

et al., 1998a). It was found that the flavonoid 7,4-dihydroxyflavone and its 

derivative decelerated auxin breakdown by peroxidases in vitro, whereas the 

flavonoid formononetin sped up the process (Mathesius, 2001). Nevertheless, in 

vivo experimental evidence showing the control of auxin breakdown by specific 

flavonoids is still lacking. A computational model was produced to elucidate the 

likely events during nodulation that could explain the distribution of auxin maxima 

at various stages of nodule formation in indeterminate nodule-forming legumes 

(Deinum et al., 2012). For simplification, auxin maxima could arise from three 

basic mechanisms, namely (1) increased auxin influx, (2) decreased auxin efflux or, 

(3) elevated local auxin biosynthesis. The authors determined that the diffused and 

broad auxin response pattern observed during nodule primordia formation, coupled 

with the speed and timing in which it occurs, is most-likely contributed by a 



1.4 A u x i n t r a n s p o r t regulat ion d u r i n g n o d u l a t i o n 

decrease in auxin export. Relocalisation of auxin efflux carriers can also contribute 

to differential auxin maxima observed in the inner and outer cortex of 

indeterminate and determinate nodule primordia, correspondingly (Deinum et al., 

2012). The authors concluded that auxin breakdown is unlikely to be quick enough 

to reconcile the auxin patterns that experimental evidence has uncovered so far. 

1.4 Auxin transport regulation during nodulation 

1.4.1 Flavonoids are natural auxin transport inhibitors 

Flavonoids form one of the best-studied groups of secondary metabolites. The 

flavonoid biosynthesis pathway forms part of the phenylpropanoid pathway. The 

roles played by flavonoids are diverse, ranging from pathogen defence, UV 

protection, symbiosis, allelopathy and quorum sensing (Hassan and Mathesius, 

2012). Flavonoids also function as natural auxin transport inhibitors (Jacobs and 

Rubery, 1988). Flavonoid-biosynthesis mutants have altered auxin transport 

capacity. Apart from flavonoids, other naturally occurring auxin transport 

inhibitors exist. Recently, Ueda and coworkers identified two novel natural auxin 

transport inhibitors, namely dehydrocostus lactone and 4-hydroxy-|3-thujone, using 

a radish hypocotyl bioassay system (Ueda et al., 2013). 

Not all flavonoids have been shown to exhibit auxin transport inhibition 

activities. The flavonoid subclass flavonols in particular, such as kaempferol and 

quercetin, show the strongest inhibition (Figure 1.7) (Jacobs and Rubery, 1988, 

Murphy et al., 2000). Flavonoid overaccumulating mutants show decreased auxin 

transport rate, whereas the opposite is true for flavonoid-deficient mutants (Brown 

et al., 2001, Peer et al., 2004, Wasson et al., 2006). Flavonols inhibit auxin transport 

by competing with synthetic auxin transport inhibitors (including NPA and TIBA) 

for plasma membrane and microsomal binding sites (Bernasconi, 1996, Jacobs and 
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Rubeiy, 1988, Stenlid, 1976). Arabidopsis mutants lacking flavonoids have altered 

PIN expression and localisation (Peer et al., 2004). The PID/WAG kinases regulate 

PIN subcellular localisation and are flavonoid-sensitive (Benjamins et al., 2001, 

Christensen et al., 2000, Santner and Watson, 2006, Sukumar et al., 2009). As 

mentioned before, PID and PP2A act antagonistically to regulate polar localisation 

of PIN 1 (Michniewicz et al., 2007). Hence, flavonoids may indirectly modulate PAT 

via inhibition of PID/WAG. Flavonoids were also able to partially restore 

asymmetric PINl subcellular localisation and lateral redirection of auxin transport 

in the pin2/eirl mutant (Santelia et a l , 2008). 
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Figure 1.7 Natural and synthetic polar auxin transport inhibitors. Flavonoids represent a 

large group of secondary metabolites that can inhibit auxin transport. In particular, flavonols 

(a subclass of flavonoids), such as kaempferol and quercetin, have a strong capacity in 

inhibiting auxin transport. In addition to exhibiting auxin transport inhibition capabilities, the 

isoflavones, such as formononetin and genistein, are also unique to legumes. Synthetic 

auxin transport inhibitors, including TIBA and NPA, have been widely used to investigate the 

role of polar auxin transport during plant development. 
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Flavonoids may also act on PGP-mediated auxin transport. The binding of 

flavonols to mammalian and plant PGP transporters inhibits their activity, both in 

vivo and in heterologous systems (Brown et al., 2001, Ferte et al., 1999, Murphy et 

al., 2002, Peer et al., 2001, Terasaka et a l , 2005). Mammalian PGPs are regulated 

through phosphorylation and flavonoids were found to disrupt ATPase activity 

through phosphorylation and allosteric binding (Szabo et al., 1997). Since PGPs are 

highly conserved between species, flavonoids might regulate plant PGPs via 

phosphorylation (Bernasconi, 1996, Carrera et al., 2007, Verrier et al., 2008). 

Moreover, the flavonols kaempferol and quercetin have been demonstrated to 

disrupt the binding between PGPl and its activator, TWISTED DWARF (Bailly et 

al., 2008). 

Flavonoids and auxin seem to be closely associated in several developmental 

responses. Accumulation of auxin and expression of auxin transport carriers are 

accompanied by an increase in flavonoid concentration (Grunewald et al., 2012, 

Nob et al., 2001, Peer et al., 2001, Terasaka et al., 2005). Flavonoid aglycones are 

present in low concentrations in cells (Buer et al., 2013). The majority of flavonoids 

exist as glycosides stored in vacuoles. The active form of flavonoids involved in 

auxin transport inhibition is still questionable, and recently a glycoside form of 

kaempferol was shown to inhibit auxin transport in Arabidopsis shoots (Yin et al., 

2014). In the Arabidopsis mutant roll-2 {repressor of Irxl), flavonols specifically 

inhibit cellular export of naphthalene acetic acid (NAA), but not lAA, suggesting a 

possible developmental or tissue-specific mode of action of flavonols (Kuhn et al., 

2011). Although flavonoids affect auxin transport, their mechanism of action is still 

unknown and auxin transport carriers are not their direct targets. Most likely, 

flavonoids are not direct regulators of auxin transport, especially when experimental 

results suggest they target a range of different processes, including auxin 

transporters, kinases and the trafficking machinery. Interestingly, flavonoids 

accumulate in plant tissues during interactions with bacteria, nematodes and fungi 
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(Dakora and Phillips, 1996, Hassan and Mathesius, 2012, Hutangura et al., 1999, 

Mathesius et al., 1998b). The function of flavonoids in nodulation, in particular 

their effect on auxin transport, was further examined in this thesis. 

1.4.2 Regulation of local auxin transport 

Two major forms of nodules have been described. Indeterminate nodules can be 

found on temperate legumes, such as white clover {Trifolium repens), pea (Pisum 

sativum) and barrel medic (Medkago truncatula). Nodules formed on these plants 

originate from pericycle and inner cortical cell divisions. They are characterised by 

a persistent meristem, resulting in an elongated nodule form. On the other hand, 

determinate nodules do not have a persistent meristem and are defined by a 

globular shape. Determinate nodules are initiated by outer cortical cell divisions, 

which subsequently fuse with the pericycle. Such nodules are seen on (sub)tropical 

legumes, for instance, common bean (Phaseolus vulgaris), soybean {Glycine max) 

and birdsfoot trefoil {Lotus japonicus). Indeterminate and determinate nodules 

represent the best-studied forms of nodulation, although many other shapes and 

forms of nodulation have been identified. Interestingly, formation of uninfected 

nodule-like structures can be mimicked by external application of synthetic auxin 

transport inhibitors to the roots, suggesting that polar auxin transport inhibition is 

part of rhizobia's toolbox in making a nodule (Hirsch et al., 1989, Wu et al., 1996). 

Evidence for the occurrence of a transient auxin transport inhibition during 

indeterminate nodule formation can be found in multiple studies. In the model 

legume M. truncatula and vetch {Vicia sativa), the amount of radiolabelled auxin 

detected below the site of rhizobia or Nod factor treatment was reduced within 24 h 

(Figure 1.8) (Boot et al., 1999, Plet et al., 2011, Prayitno et al., 2006, Wasson et al., 

2006). Furthermore, auxin response studies using a proGH3:GUS construct, where 

proGHS is an auxin-responsive promoter, showed reduced GUS staining below the 
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site of rhizobia infection and Nod factor application in white clover. This was 
consistent with results obtained from application of synthetic auxin transport 
inhibitors (Mathesius et al., 1998). The reduced staining does not last, however, as 
staining could be observed below the infection site following a short period of 
inhibition, and enhanced staining was observed later at the infection zone. 
Intriguingly, attempts to find evidence for a similar pattern in determinate legumes 
have fallen short. Studies in L. japonicus and soybean did not yield similar resuhs 
(Pacios-Bras et al., 2003, Subramanian et al., 2006). On the contrary, an increase in 
radiolabelled auxin was measured in root segments encompassing the spot-
inoculated site of L. japonicus at an equivalent time point when inhibition is 
observed in M. truncatula and white clover (Pacios Bras et al., 2003). 



Genera l I n t r o d u c t i o n 

Figure 1.8 Auxin transport inliibition in response to rhizobia infection in indeterminate 

nodule-forming legumes. One of the characteristic responses in indeterminate nodule-

forming legumes, which has so far not been observed in determinate nodule-forming 

legumes, is the transient inhibition of acropetal auxin transport following rhizobia or Nod 

factor treatment to the roots. This phenomenon has been recorded in Medicago truncatula, 

white clover and vetch, as early as 10 h after rhizobia / Nod factor treatment. The inhibition 

of acropetal auxin transport is short-lived, and normal auxin transport rate resumes 

thereafter. Abbreviations: ep, epidermis; c, cortical cell layers; en, endodermis; s, stele; rh, 

root hair; Ire, lateral root cap. Red arrows indicate polar auxin transport, with the thickness 

proportional to auxin transport capacity. Arrows pointing downwards and upwards represent 

acropetal and basipetal auxin transport, respectively. Shades of green indicate auxin (lAA), 

with the darkness proportional to concentration. 

As described earlier, flavonoids have been implicated as endogenous auxin 

transport regulators, affecting multiple developmental programs. Flavonoids are 

one of the major players in nodulation control. External application of certain 

flavonoids phenocopied staining patterns driven by GH3:GUS of Rhizobium-

infected roots, i.e. the depletion of auxin response below the Rhizobium infection 

site (Mathesius et al., 1998b). Flavonoids are induced locally during the early stages 

of host-Rhizobium interaction, and could potentially act as auxin transport 

regulators (Mathesius et a l , 1998a). Flavonoid-deficient M. truncatula roots lacking 

the enzyme CHALCONE SYNTHASE (CHS), which catalyses the first committed 

step in flavonoid synthesis, were unable to nodulate (Wasson et al., 2006). This was 

associated with an inability of infecting Rhizobium to elicit a temporary inhibition 

of auxin transport. Supplementation of kaempferol to flavonoid-deficient 

M. truncatula roots reinstated nodulation ability (Zhang et al., 2009). The cral 

{compact root architecture!) mutant, on the other hand, has higher CHS activity, 

higher formononetin concentration and a lower auxin transport capacity (Laffont et 

al., 2010). Accordingly, knockdown of CHS in the cral mutant increased auxin 

transport to WT levels. Zhang et al. (2009) measured a 2.5-fold increase in 

kaempferol concentration during nodulation. Since auxin transport inhibition is 
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observed at 24 h post-infection, it is possible that kaempferol (or its derivatives) is 

the active auxin transport inhibitor during M. truncatula- S. meliloti interaction. 

In comparison to indeterminate nodulation, auxin transport inhibition has 

not been observed in determinate legumes, such as soybean and Lotus japonicus 

(Pacios-Bras et al., 2003; Subramanian et al., 2006). An increase in auxin transport 

was observed in L. japonicus following Rhizobium infection (Pacios-Bras et al., 

2003). Reduction in nodule numbers on isoflavonoid-deficient soybean roots was 

attributed to the inability of the host plant to induce Nod factor production in the 

symbiont Bradyrhizobium japonicum, rather than a host defect in isoflavonoid-

mediated auxin transport inhibition (Subramanian et al., 2006). Ripodas et al. 

(2013) reported a reduction in nodule numbers in the isoflavonoid RNAi-silenced 

roots of common bean (Phaseolus vulgaris, a determinate legume). The difference 

in auxin transport control in indeterminate and determinate nodulation programs 

could be attributed to the different location where initial cell division happens. 

However, the role of flavonoids in controlling auxin transport and / or 

accumulation in determinate nodule-forming legumes remains to be clarified. 

Recently, in a different nodulation program, Abdel-Lateif et al. (2013) 

showed that silencing of CHS in the actinorhizal tree Casuarina glauca reduced 

nodule numbers. C. glauca forms a symbiosis with actinorhizal Frankia bacteria. 

The authors found a three-fold decrease in concentration of two quercetin 

glycosides in RNAi-silenced roots, and nodulation was restored after 

supplementation of roots with naringenin, a precursor to flavonols (Abdel-Lateif et 

a l , 2013). It will be interesting to investigate whether auxin transport inhibition 

occurs, and if it does, which specific flavonoid(s) are involved in this process in 

actinorhizal nodules. 

Auxin transport control is likely to occur downstream of early Nod factor 

signalling. In M. truncatula, it is possible to induce formation of pseudonodules 
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after treatment with synthetic auxin transport inhibitors (NPA and TIBA) on the 

roots of nfp, lyk3, dmil, dmil, dmi3, nin, and ritl, but not the ethylene-insensitive 

mutant ski (Rightmyer and Long, 2011). Nodulation in the ski mutant is insensitive 

to NPA in the presence of rhizobia, suggesting that auxin transport control during 

nodulation requires ethylene signalling (Prayitno et al., 2006). The M. truncatula 

cytokinin-insensitive mutant creU which is a non-nodulating mutant, exhibits 

aberrant PIN expression after Nod factor treatment, compared to WT (Gonzalez-

Rizzo et al., 2006, Plet et al., 2011). Hence, it is plausible that auxin transport 

inhibition during nodulation in M. truncatula is mediated by PIN proteins and this 

is also partially regulated by cytokinin signalling. 

ATI-induced pseudonodulation has also been demonstrated in alfalfa, white 

sweetclover and pea (Hirsch et al., 1989, Scheres et a l , 1992, Wu et al., 1996). These 

nodule-like structures usually form through cortical cell division and subsequent 

expansion, with a final globular structure usually containing lobes. However, ATI-

induced pseudonodules share some structural features with Rhizobium-iniiuced 

nodules, such as a central tissue, (pseudo)nodule cortex and an equivalent tissue of 

the nodule parenchyma (Hirsch et al., 1989). Synthetic auxin transport inhibitor 

treatments to Lotus japonicus roots did not induce pseudonodule formation 

(Kawaguchi et al., 1996). Intriguingly, Takanashi et al. (2011) discovered that 

cotreatment of rhizobia with high concentrations of TIBA (100 [iM) significantly 

increased nodule primordia formation in Ljaponicus, despite a significant 

reduction in root growth. 

It is fascinating to observe a difference in auxin transport regulation between 

indeterminate and determinate nodule formation. The common theme in the two 

nodulation programs is an increase in auxin response. Perhaps the inhibition of 

auxin transport in certain nodulating plants serves as a mechanism to increase auxin 

concentration and response during nodule initiation. Indeed, auxin response (as 

indicated by Pr0(;/()::GUS) intensified at the earliest dividing pericycle and inner 
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cortical cells of white clover and M. truncatula (Huo et al., 2006, Mathesius et al., 

1998b, van Noorden et al., 2007). As the nodule develops and matures, auxin 

response is confined to a small group of meristematic cells at the tip of the nodule. 

In L. japonicus, elevated auxin response is found in dividing cortical cells early on 

and later restricted to the mature nodule vasculature near the base (Pacios-Bras et 

al., 2003, Suzaki et al., 2012, Takanashi et al., 2011). The spatio-temporal specificity 

of auxin response, which is to a considerable extent related to auxin localisation, 

may be governed by dynamic changes in auxin transporters, thus giving rise to 

directional auxin flow and asymmetric auxin responses. The observed changes in 

auxin response could also be attributed to local auxin biosynthesis, by both the 

legume host and / or rhizobia. 

1.4.3 Involvement of auxin t ranspor t carriers 

Several auxin export facilitators of the PIN family have been identified in legumes. 

Based on sequence similarities, Schnabel and Frugoli (2004) have identified ten PIN 

genes in M. truncatula and two in L. japonicus. Using reporter analyses, it was 

found that the expression pattern of MtPIN2 is similar to A\.PIN2 in their 

corresponding plants (Huo et al., 2006). Moreover, MtPIN2 expression during 

nodule initiation strongly mirrors that found during lateral root initiation, 

supporting the hypothesis that Rhizobium hijacked the developmental pathway of 

the closely-related process of lateral root organogenesis. Knockdowns of MtPIN2, 

MtPINS and MtPIN4 reduced nodulation (Huo et al., 2006). These results support 

the role of PINs in nodulation, presumably through coordination of polar auxin 

transport (Table 1.1). The fact that MtPIN2 is also highly expressed in root nodules 

suggests that MtPIN2-mediated auxin transport control is important throughout 

nodule development (Huo et al., 2006). Plet et al. (2011) found differential changes 
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in expression of certain PIN genes between WT and the non-nodulating crel 

mutant, indicating the roles of PIN in auxin transport control during nodulation. 

There are five auxin importers of the LAX family {LIKE AUXl) in 

M. truncatula and at least one in L.japonicus. One study found that the expression 

of MtLAX genes is concentrated in dividing cells of a developing nodule and lateral 

root (de Billy et al., 2001, Schnabel and Frugoli, 2004). In the latter stages, the 

expression domains shifted toward the peripheral and central region of a nodule 

and lateral root, respectively. The authors concluded that LAX could play a role in 

primordia development and vasculature differentiation (de Billy et al., 2001). In 

L.japonicus, LjABCBl was found to be highly expressed in nodules, expressed at 

low levels in roots and not expressed in other tissues (Takanashi et al., 2012). 

Localisation of this transporter exclusively to uninfected cells adjacent to infected 

cells suggested that LjABCBl exports auxin into symbiont-containing cells. 

During the symbiosis between the actinorhizal tree C. glauca and 

actinomycete Frankia, expression of CgAUXl was found in Frankia-infected cells 

throughout the infection process, and that treatment with the auxin influx inhibitor 

2-naphthoxyacetic acid severely reduced nodule numbers, suggesting the 

importance of auxin influx in actinorhizal nodulation (Peret et al., 2007). It was 

later discovered that C. glauca PIN 1-like proteins were selectively localised to 

uninfected cells (Perrine-Walker et al., 2010). Coupled with computer simulations, 

the authors suggested that CgAUXl and CgPINl-like proteins are arranged in this 

manner to direct auxin accumulation in Frankia-iniected cells. Isoflavonoids have 

the capability to control auxin transport, and transcript profiling during C. glauca-

Frankia association suggested a role for isoflavonoids during nodulation in this 

system (Auguy et al., 2011). However, whether isoflavonoids play a role in 

actinorhizal nodulation through auxin transport control remains a black box. 
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Table 1.1 Auxin transport facilitators involved in nodulation. The role of auxin transport 

during \egume-Rhizobium and actinorhizal plant-Fran/t/a symbioses is supported by 

molecular data. Several auxin exporters from the PIN family and auxin importers from the 

AUX1/LAX family have been shown to positively regulate nodulation. In addition, multidrug-

resistant transporters from the ABCB subfamily may also play critical roles during 

nodulation. 

Gene/ 
Protein 

Host 
organism Type of interaction Role / Phenotype Reference(s) 

MIP/W2 Medicago 
truncatula 

Sinortiizobium meliloti 
inoculation 

- Expressed in peripheral vasculature in early 
nodule prtmordium 
- Expressed at the base of mature nodule 
- Knockdown of MtPW2 reduced nodulation 

Huo et al. (2006) 

MXPIN3 Medicago 
truncatula 

Sinortiizobium meliloti 
inoculation 

- Knockdown of MtP/A/3 reduced nodulation Huo et al. (2006) 

M{PIN4 Medicago 
truncatula 

Sinortiizobium meliloti 
inoculation 

- Knockdown of MtP/A;4 reduced nodulation Huo eta l . (2006) 

Sinortiizobium meliloti 
Nod factor treatment 

- Increased expression after Nod factor treatment P le te ta l . (2011) 

MiPINIO Medicago 
truncatula 

Sinortiizobium meliloti 
Nod factor treatment 

- Increased expression after Nod factor treatment Ptet et al. (2011) 

MiLAX1-3 Medicago 
truncatula 

Sinortiizobium meliloti 
inoculation 

- Transcripts are localised to early dividing cells 
and to cells near the vasculature of early nodule 
primordium 

de Billy etal . (2001) 

L\ABCB1 Lotus 
japonicus 

Mesortiizobium loti 
inoculation 

- Localised to uninfected cells adjacent to 
rhizobia-infected cells 
- Exports lAA from uninfected cells into adjacent 
rhizobia-infected cells 

Takanashi et al. 
(2012) 

CgPINI Casuarina 
glauca 

Frankia inoculation • Localised to uninfected cells adjacent to Frankia-
infected cells 
- Exports lAA into Fran/c/a-infected cells 

Perrine-Walker et al. 
(2010) 

CgAUXI Casuarina 
glauca 

Frankia inoculation • Localised to Frankia-iniecieti cells 
- Imports lAA into Frankia-\r\fecXe6 cells 

Peret et al. (2007) 

1.4.4 Regulation of long-distance auxin t ranspor t 

In addition to the local control of auxin transport and signalling at the nodule 

initiation site, the involvement of shoot-derived auxin at the nodulation site has also 

been suggested. The hypernodulating, ethylene-insensitive ski mutant is defective in 

long-distance auxin transport regulation following rhizobia infection, although the 

mechanism by which ethylene signalling affects long-distance auxin transport 

control remains a question (Prayitno et al., 2006). Plant hosts control the number of 

nodules being formed according to their nitrogen requirements, in a process that 
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involves systemic signals and known as autoregulation of nodulation (AON) 

(Caetano-Anolles and Gresshoff, 1991). AON mutants are unable to limit nodule 

numbers and supernodulate (Stacey et al., 2006). This mechanism is governed by a 

leucine-rich repeat receptor-like kinase that acts in the shoot (SUNN, for SUPER 

NUMERIC NODULES, in Medicago). Upon rhizobia infection at the root, a root-

to-shoot signal is mobilised and perceived by the receptor and subsequently a 

reciprocal, yet-to-be-identifled signal is transmitted to the root. In the 

M. truncatula sunnl mutant, shoot-to-root auxin transport is higher than W T 

plants under uninfected conditions (van Noorden et al., 2006). Moreover, this long-

distance auxin transport is reduced in W T plants after rhizobia infection, but not in 

the sunnl mutant, suggesting that systemic auxin transport is part of the AON (van 

Noorden et al., 2006). The supernodulation phenotype in the sunnl mutant can be 

rescued by application of the auxin transport inhibitor NPA at the shoot / root 

junction, suggesting that long-distance auxin transport control is PIN-mediated. 

Nonetheless, it is possible that SUNN-mediated auxin transport is a more 

generalised mechanism for controlling root architecture in response to nitrogen. 

This is supported by the failure of the sunnl mutant to control lateral root density in 

response to nitrate through the modulation of shoot-to-root auxin transport (Jin et 

al., 2012). 

1.5 Aims and hypotheses 

This thesis contains three aims. Firstly, a method for quantifying auxin using LC-

ESI-Q-TOF MS/MS was optimised and established to quantify auxins during 

nodulation in legumes. Secondly, a comparison between indeterminate and 

determinate nodule-forming legumes in the context of auxin requirements during 

nodulation was performed. Thirdly, using a Medicago truncatula cytokinin 
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perception mutant crel, we attempted to elucidate downstream auxin transport 

components defective in the crel mutant. 

1.5.1 Aim one - Establishment of an LC-ESl-Q-TOF MS/MS protocol for 

auxin quantification 

The plant hormone auxin is essential for organ formation. Organ development is 

tightly regulated by auxin gradients (Su et al., 2011). At different stages of organ 

development, cellular auxin concentrations change dynamically as a result of auxin 

homeostatic control, including auxin biosynthesis and conjugation. Auxin 

represents a class of hormones, where the most abundant form of active auxin in 

most land plants examined hitherto is indole-3-acetic acid (lAA) (Tivendale et al., 

2014). However, several other active auxin species exist and they can be conjugated 

to amino acids. In M. truncatula roots, several auxins are thought to exist based on 

expression studies of auxin conjugation and hydrolase enzymes (Ludwig-Miiller, 

2011). Nevertheless, direct measurement of auxins, in particular during various 

stages of Rhizobium-legume interaction, is still missing. Several questions have to 

be addressed to unravel the role of auxins in nodulation. Firstly, it is still unclear 

which auxins are important for nodulation and whether their concentrations change 

during nodulation. Secondly, the contradictory reports for the requirement of 

auxin transport control in determinate and indeterminate nodulation warrant 

further investigation. Thirdly, the control of auxin transport in indeterminate 

nodule-forming legumes needs to be placed in the known signalling pathway of 

nodulation. Here, we aimed to develop a method for auxin quantification in 

M. truncatula roots during nodulation. Various methods exist in the literature but 

adaptation and optimisation for different instruments are necessary. We took 

advantage of a highly sensitive and specific LC-ESI-Q-TOF MS/MS system available 

at The Australian National University. By using a targeted MS/MS approach with 
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commercial standards available for comparison, we aimed to develop a method for 

unbiased quantification of endogenous auxin compounds. 

1.5.2 Aim / hypothesis two - Do indeterminate and determinate nodule-

forming legumes have different auxin requi rements dur ing nodulat ion? 

Nitrogen-fixing nodules in legumes can be loosely divided into two types, namely 

indeterminate and determinate nodules. Some examples of legumes which form 

indeterminate nodules include Medicago sp., clovers and pea. Determinate nodules 

form on L.japonicus, soybean and common bean (Hirsch, 1992). The difference 

between these two nodule types is the presence of a persistent nodule meristem in 

indeterminate nodules and the absence of it in determinate nodules. Moreover, 

auxin transport inhibition has only been observed in indeterminate legumes 

(Ferguson and Mathesius, 2014). However, detailed and localised measurements of 

auxin transport is lacking in the literature, with only one direct measurement in 

L. japonicus representing the available auxin transport data for determinate nodule-

forming legumes (Pacios-Bras et al., 2003). Here, we hypothesised that a transient 

acropetal auxin transport inhibition occurs in indeterminate, but not in determinate 

nodule-forming legumes, using M. truncatula and L. japonicus as our model 

systems, respectively. Furthermore, we investigated changes in basipetal auxin 

transport, which has been largely overlooked in legume-Rhizobium symbiosis. 

Auxin quantification was performed at sequential time points. Together with the 

auxin transport measurements, the requirement for auxin during early nodulation 

stages of M. truncatula and L. japonicus were compared. We also hypothesised that 

if auxin transport inhibition is specific to indeterminate nodule formation, 

application of synthetic auxin transport inhibitors would induce pseudonodules on 

the roots of indeterminate nodule-forming legumes, but not on the roots of 

determinate nodule-forming legumes. Crossing the legume boundary, we 
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investigated auxin content in a few non-leguminous species which do or do not 

nodulate. Here, we tested whether different auxin compounds might be present or 

absent, in comparison to legumes. 

1.5.3 Aim / hypothesis three — Does auxin t ranspor t inhibit ion act 

downs t ream of cytokinin signalling regulated by flavonoids in Medicago 

truncatula^ 

The crel mutant is cytokinin insensitive, displays increased lateral root formation 

and has greatly diminished nodulation capacity. Previously, it was shown that 

rhizobia inoculation on WT M. truncatula roots caused a reduction in acropetal 

polar auxin transport. However, this was not observed in the crel mutant (Plet et 

al., 2011). Thus, acropetal auxin transport inhibition likely occurs downstream of 

cytokinin signalling. Here, we aimed to investigate the molecular processes behind 

auxin transport inhibition, as well as downstream responses, which are dependent 

on this physiological response. We hypothesised that auxin transport inhibition is 

controlled by the PIN and LAX family of auxin exporters and importers, 

respectively, in M. truncatula (Schnabel and Frugoli, 2004). Flavonoids might be 

involved in this process, as they were previously shown to inhibit auxin transport 

(Brown et al., 2001). In addition, flavonoid-deficient M. truncatula roots exhibit 

increased auxin transport and failed to inhibit auxin transport in response to 

rhizobia treatment (Wasson et al., 2006). We hypothesised that selected flavonoids 

are induced in response to rhizobia treatment in WT roots, but this would be 

unaltered in the crel mutant. Moreover, exogenous application of flavonoids 

deficient in the crel mutant would complement nodulation. An increase in auxin 

response observed in WT would be absent in the crel mutant, and this is associated 

with an increase in local auxin biosynthesis in WT plants, but not in the crel 

mutant. 
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Materials and Methods 





2 . ) Plant mater ia l s a n d bacter ia l s t ra ins 

2.1 Plant materials and bacterial strains 

Plant materials used in this study include Medicago truncatula wild type cultivar 

Jemalong A17 (The South Australian Research and Development Institute, 

Adelaide), Lotus japonicus ecotype Gifu B-129 (Biological Resource Center In Lotus 

and Glycine, University of Miyazaki, Japan), Acacia longifolia (Royston Petrie Seeds, 

NSW, Australia), Trifolium subterraneum (suhclover) cv Karridale (Clean Seeds, 

Australia), Glycine max (soybean) cv Bragg (Prof. Peter Gresshoff, University of 

Queensland), Sesbania rostrata (Prof. Sofie Goormachtig, Ghent University, 

Belgium), Cucumis sativus (cucumber; Royston Petrie Seeds, NSW, Australia), 

Begonia cleopatra (courtesy of Steve Dempsey, ANU), Datisca glomerata, Casuarina 

glauca, and Coriaria myrtifolia (Prof Katharina Pawlowski). The M. truncatula 

cytokinin perception mutant crel-1 (kindly provided by Dr. Florian Frugier) was 

used for experimental studies described in Chapter 5 of this dissertation (Le Signor 

et al., 2009). 

The Sinorhizobium meliloti strain A2102, a triple nod mutant for nodDl, 

nodD2 and nodD3 derived from the WT strain Sml021, containing the pE65 

plasmid encoding a constitutively overexpressed copy of nodD3 (Barnett et al., 

2004) was used for all inoculations on M. truncatula (kindly provided by Melanie 

Barnett and Sharon Long, Stanford University), unless otherwise stated in 

individual sections below and / or in Chapter 4. This strain produces Nod factors in 

the absence of nod gene-inducing flavonoids from the legume host (Barnett et al., 

2004) and was used to exclude the possibility that defects in flavonoids in the crel 

mutant prevented proper nod gene activation in the symbiont (e.g., Zhang et al. 

2009). For standardisation of results in this thesis, this strain, hereafter referred to 

as "E65", was used for inoculation as opposed to a WT strain, unless otherwise 

stated. The E65 strain was maintained on Bergensen's Modified Medium (BMM) 

(Rolfe and Gresshoff, 1988) supplemented with 10 |Jg ml ' tetracycline and 100 
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Hgml ' streptomycin (Sigma Chemicals). For subclover, L.japonicus and soybean, 

inoculation (ODeoonm = 0.05) was performed with Rhizobium leguminosarum bv 

trifolii, Mesorhizobium loti WT strain MAFF303099 and Bradyrhizobium japonicum 

WT strain USDAllO, respectively. All three Rhizobium strains were maintained on 

tryptone-yeast (TY) medium. 

To generate a ^p-labelled E65 strain, the plasmid pTE3 containing the 

nodD3 expression cassette driven by the tcp promoter was isolated f rom S. meliloti 

A2102 (Barnett et al., 2004). A 957 bp region from the plasmid pHC60 containing 

gfp under a constitutive promoter (Cheng and Walker, 1998) was excised using Bglll 

(New England Biolabs, USA), ligated into the pTE3 vector containing nodD3 

expression cassette using T4 DNA ligase (New England Biolabs, USA), and 

electroporated into competent Sml021. The colonies were cultured on BMM with 

10 | igml ' tetracyclin (Sigma, USA) and screened for GFP fluorescence to confirm 

insertion of gfp fragment. This was done by Samira Hassan (ANU) 

The overexpression vector for MtFLS (flavonol synthase) was generated by 

amplifying the MtFLS full length sequence (IMGAG Gene ID Medtr5g059140) 

using the primers MtFLSox listed in Table 2.1. The PCR product was introduced 

into the overexpression vector pK7WG2D using Gateway cloning (Karimi et al., 

2002). The MtFLS overexpression vector was introduced into Agrobacterium 

rhizogenes strain ARqual using the freeze-thaw method (Hofgen and Willmitzer, 

1988). Plant transformation of A17 or the crel mutants with MtFLSox was done by 

A. rhizogenes hairy root transformation (Boisson-Dernier et al., 2001). The 

overexpression of MtFLS was confirmed through qRT-PCR. This was done by 

Samira Hassan (ANU). 
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2.2 Growth conditions 

M. truncatula, L. japonicus and subclover seeds were scarified with sand paper, 

surface-sterilized in 6 % (w/v) sodium hypochlorite for 10 min, then washed with 

sterilised milliQ water five times. Next, M. truncatula and L. japonicus seeds were 

imbibed in sterilised milliQ water containing 0.25 mg m l ' augmentin (further 

disinfection) for six hours, on a rotating wheel. Sterilised seeds were washed once 

with sterilised miliQ water and then plated on F medium (Fahraeus, 1957) for 

M. truncatula, or strength Broughton and Dilworth medium (Broughton and 

Dilworth, 1971) for L. japonicus. For subclover, seeds were sown straight onto F 

plates without the augmentin incubation step. Seeds were incubated at 4 °C in the 

dark for 48 h. Germination of seeds was synchronised by incubating the plates at 25 

°C for 24-48 h with plates inverted. Seedlings with radical length of approximately 

5-10 m m were transferred onto F plates (M. truncatula and T. subterraneum) or V4 

B&D plates {L. japonicus). Plates were semi-sealed with parafilm, placed vertically 

in a container with a black cardboard interspersed between each plate to shield roots 

f rom direct light. Plates were incubated at 25 °C (M. truncatula and T. 

subterraneum) or 20 °C (I . japonicus), with a 16 h light and 8 h dark period at 150 

^mol m^ s ' light intensity. 

For A. longifolia, a minute portion of the hard seed coat was chipped off with 

a scalpel. Seeds were then sterilised for 10 min in 6 % (w/v) sodium hypochlorite. 

Sterilised seeds were washed five times with sterilised miliQ water and then imbibed 

overnight in sterilised miliQ water on the bench. Imbibed seeds were plated onto F 

plates and left at 25 °C in the dark for germination over several days. Germinated 

seedlings were transferred into vermiculite (Grade 3) pots, watered with F medium, 

and grown at 16 h light and 8 h dark period at 150 |imol m^ s ' light intensity. 

For soybean, the germination protocol was based on Brechenmacher et al. 

(2009). Seeds were soaked in 0.1 N HCl for 10 min and then washed with tap water 
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five times. Seeds were then surfaced-sterilised with 6 % (w/v) sodium hypochlorite 

for 15 min and then washed with sterilised water five times, air dried for 20 min, 

and subsequently sown on 'A B&D plates. Seeds were left at 25 °C in the dark for 

germination over several days. Germinated soybeans were transferred into 

vermiculite (Grade 3) pots, watered with 14 B&D medium and grown at 16 h light 

and 8 h dark period at 150 |imol m^ s ' light intensity. 

For S. rostrata, the germination protocol was modified from Goethals et al. 

(1989). Seeds were immersed in ~ 4 M sulphuric acid for one hour and washed five 

times with tap water. This was followed by surface-sterilisation with 6 % (w/v) 

sodium hypochlorite for 15 min and then five washes with sterilised miliQ water. 

Sterilised seeds were imbibed overnight in sterilised miliQ water. Imbibed seeds 

were plated onto F plates and left at 25 °C in the dark for germination over several 

days. Germinated seedlings were transferred into vermiculite (Grade 3) pots, 

watered with F medium and grown at 16 h light and 8 h dark period at 150 |imol m ̂  

s ' light intensity. 

Cucumber and begonia were germinated directly in pots in fine sand 

without pre-treatment. Seeds were sown approximately 1 cm below the surface. 

D. glomerata, C. glauca and C. myrtifolia were grown at Stockholm University and 

the root materials directly shipped to The Australian National University for 

analysis, as part of a collaborative study with Prof Katharina Pawlowski and Dr. 

Irina Demina. 

2.3 Bacterial inoculation conditions 

For plant inoculation, an overnight culture of S. meliloti strain E65 in BMM at 28 °C 

was used. The optical density ( O D s o o n m ) of the culture was adjusted to 0.1 for spot-

inoculation and 0.01 for flood-inoculation. Spot-inoculation was performed by 
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placing ~ 1 |il of S. meliloti culture or BMM, 2 mm above the root tip, corresponding 

to the nodulation-susceptible zone (Bhuvaneswari et al., 1981). For analyzing 

GH3:GUS expression, spot-inoculation was performed with a glass capillary pulled 

into a fine tip over a flame and glued to a hypodermic needle. Flood inoculation (1 

ml / plate) used for complementation assays is described below. 

For inoculation of I . japonicus and subclover, a liquid culture of M. loti 

{L. japonicus) and R. leguminosarum (subclover) in TY medium were incubated for 

three days at 28 °C. The ODeoonm of the cultures were adjusted to 0.05. Inoculation 

was performed by placing 1 of Rhizobium culture or TY control, 3 mm above the 

root tip. 

For inoculation of soybean, a liquid culture of B. japonicum in TY medium 

was incubated for three days at 28 °C. The ODsoonm of the culture was adjusted to 

0.05. Inoculation was performed by pouring 50 ml of B. japonicum culture into 

individual pots. 

2.4 Flood treatment with auxin transport inhibitors 

Seeds were germinated as described above. At one week post-transfer onto agar 

medium, seedlings were treated by flooding, as described in Rightmyer and Long 

(2011). Diluted solutions of NPA (100 |iM), TIBA (50 ^M) (Sigma), kaempferol (3 

fiM), quercetin (3 |iM), naringenin (3 |iM), isoliquiritigenin (3 ^M) and hesperetin 

(3 |iM) (Sigma) were made in sterile 50 ml Falcon tubes. Control treatments 

contained equivalent dilutions of methanol used as a solvent for stock solutions. 

The concentrations of auxin transport inhibitors and flavonoids were chosen 

because they were previously demonstrated to induce pseudonodules and to 

complement nodule formation, respectively, in M. truncatula (Rightmyer and Long, 

2011, Zhang et al., 2009). Seedlings were flooded with 20-30 ml of diluted ATIs or 
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flavonoids for 10 s, and then the solution was decanted. Following flooding, the 

entire root of individual seedlings was inoculated with BMM (mock-inociilation) or 

strain E65 adjusted to 0.01 (ODeoonm) (~ 1 rnl). Similar treatments were performed 

on L. japonicus and subclover roots. For plants grown in pots (A. longifolia, 

soybean, S. rostrata), 100 ml of auxin transport inhibitor diluted in growth medium 

was applied to each pot, once. 

2.5 Auxin quantification 

2.5.1 Auxin s tandards 

Commercial auxin standards and a deuterated internal standard were used to 

determine elution times, collision energies, detection limits and for absolute 

quantification. Auxin standards were obtained from OlChemim (lAA-

Phenylalanine, lAA-Leucine, lAA-Valine, lAA-Tryptophan, 4-Cl-IAA), Sigma 

(lAA-Aspartate, lAA-Alanine, lAA-lsoleucine, lAA, IBA, PAA) and Cambridge 

Isotope laboratories (Indole-2,4,5,6,7-d5-3-acetic acid). 

2.5.2 Auxin extraction protocol 

The extraction protocol used was adapted from Muller and Munne-Bosch (2011). 

Plant roots were collected at 6, 24, and 48 h post-treatment with rhizobia or auxin 

transport inhibitors. Root segments of 4-5 mm spanning the inoculation spot (or in 

the case of ATI treatment, a segment corresponding to a rhizobia-treated root) were 

collected and snap-frozen immediately in liquid nitrogen. A total of 30-40 root 

segments (70-90 mg) were collected for each treatment, for each biological replicate. 

The frozen tissue samples were mechanically lysed with stainless steel beads in a 

Qiagen TissueLyser LT with a pre-cooled tube holder. To each tube 20 |iL of the 
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internal standard (1 |ig m L ' of 3-[^H5]indolylacetic acid) followed by 500 |il 

extraction solvent (methanol:propanol:glacial acetic acid, 20:79:1, v/v/v) were added 

and auxin extraction was performed in a sonicator bath for 30 min at 4 °C. Samples 

were then centrifuged at 16100 x g for 15 min. The supernatant was transferred to a 

fresh tube and subsequently dried in a Speedvac centrifuge. Extraction was repeated 

once and the supernatant combined with the (dried) supernatant from the first 

extraction, and subsequently evaporated in a Speedvac centrifuge. Vacuum-dried 

samples were resuspended with 100% methanol, vortexed for five seconds, and 

filtered through a Nanosep MF GHP 0.45 |im filter (Pall Life Sciences) by 

centrifugation at 16100 x g, for 1 min. The resuspension step was repeated once. 

The eluent containing the auxin extracts was transferred to an amber vial and 

vacuum-dried. Samples were stored at -80 °C until analysis. Prior to analysis, 

samples were taken out from the freezer to equilibrate with room temperature. 

Each sample was resuspended with 50 |il methanol (Acros Organics) and water 

(60:40, v/v). 

2.5.3 Liquid chromatography - electrospray ionisation - t andem mass 

spec t romet ry quadrupole t ime-of-f l ight (LC-ESI-MS/MS Q-TOF) methodology 

Tandem mass spectrometry was performed using an Agilent 6530 Accurate Mass 

LC-MS Q-TOF (Santa Clara, CA, USA). Samples were subjected to ESI in the let 

Stream interface in both ion positive and negative polarities. Based on optimised 

LC-ESl-Q-TOF parameters using auxin standards, the auxins lAA, IBA and lAA-

Ala had better sensitivity in the positive mode. The other auxin species were better 

detected in the negative mode. Optimised conditions in the positive mode were as 

follow: gas temperature 250 °C, drying gas 5 L min nebulizer 30 psig, sheath gas 

temperature 350 °C and flow rate of 11 L min ', capillary voltage 2500 V, nozzle 

voltage 500 V and fragmentor voltage 138 V. Conditions in the negative mode were 
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as follow: gas temperature 300 °C, drying gas 9 L min nebulizer 25 psig, sheath gas 

temperature 350 °C and flow rate of 11 L min ', capillary voltage 3000 V, nozzle 

voltage 500 V and fragmentor voltage 140 V. Samples were injected (7 |il) onto an 

Agilent Zorbax Eclipse 1.8 |im XDB-C18 2.1 x 50 mm column. Solvent A consisted 

of 0.1 % aqueous formic acid and solvent B, 90 % methanol/ water with 0.1 % formic 

acid. Free auxins and conjugates were eluted with a linear gradient from 10-50 % 

solvent B over 8 min, 50-70 % solvent B from 8-12 min (then held at 70 % from 12-

20 min) at a flow rate of 200 |il min '. The Q-TOF was run in targeted MS/MS mode 

using collision induced dissociation (CID; N2 collision gas supplied at 18 psi with 

miz 1.3 isolation window) where the MS extended dynamic range (2 Hz) was miz 

100-1000 with an acquisition rate of 3 spectra s ' and MS/MS at miz 50-1000 at 3 

spectra s '. 

2.5.4 Data analysis 

Data were analysed using Agilent Technologies MassHunter software (ver. B.5.0). 

Commercial auxin standards and deuterated internal standard were used to 

determine elution times, collision energies, limit of detections (LODs) and limit of 

quantifications (LOQs) in order for subsequent quantification of the endogenous 

2.6 Flavonoid quantification 

2.6.1 Flavonoid standards 

Commercial flavonoid standards and an analog internal standard, luteolin (Sigma) 

were used to determine elution times, collision energies, detection limits and for 

absolute quantification. Flavonoid standards were obtained from Sigma 
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(kaempferol, naringenin, quercetin, morin, hesperetin), Fluka (apigenin), ICN 

biomedicals (genistein) and Indofine Chemicals (luteolin). 

2.6.2 Flavonoid extract ion protocol 

Plant roots inoculated and mock-inoculated with rhizobia, as described above, were 

collected 24 h.p.i.. Root segments of 2 cm length starting f rom the root tip 

(including the inoculation site) were collected and snap-frozen immediately in 

liquid nitrogen. To determine the total content (free form and glycosides) of 

flavonoids, 30 root segments were collected for each treatment in each biological 

replicate and flavonoid concentration from 3 biological replicates were analysed. 

The frozen tissue samples were mechanically lysed with stainless steel beads in a 

Qiagen TissueLyser LT, with a pre-cooled tube holder. Extraction of total 

flavonoids was based on Farag et al. (2007), with some modifications. As an 

internal standard, 20 ng luteolin (Indofine Chemicals) was added to each tube and 

1 ml of 80 % methanol/water was used as the extraction solvent. Flavonoids were 

extracted overnight on a rotating wheel at 4 °C in the dark. Tubes were centrifuged 

at 16100 X g for 30 min and the supernatant transferred to a fresh tube and 

evaporated in a Speedvac centrifuge. The residue was redissolved in 100 |il of 2 N 

HCl and heated at 80 °C for 90 min to deglycosylate flavonoids. The acid 

hydrolysed sample was mixed with 200 of ethyl acetate, vortexed, and the ethyl 

acetate fraction (containing flavonoid aglycones) was transferred to a separate tube 

before being dried in a Speedvac centrifuge. Samples were resuspended in 50 of 

45 % methanol, passed through a Nanosep MF GHP (hydrophilic polypropylene) 

0.45 |im filter (Pall Life Sciences) and analysed by targeted LC-ESI-MS/MS. 

To determine the concentration of selected flavonoid free aglycones, 15 root 

segments were collected for each treatment in each biological replicate and 

flavonoid concentration f rom five biological replicates were analysed. Extraction 
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was similar to total flavonoids, but without the acid hydrolysis and ethyl acetate 

fractionation step, i.e. following overnight extraction, samples were dried and 

resuspended for targeted LC-ESI-MS/MS analysis. 

2.6.3 Liquid chromatography - electrospray ionisation - tandem mass 

spectrometry quadrupole time-of-flight (LC-ESI-MS/MS Q-TOF) methodology 

LC-ESI-MS/MS analysis was performed as described above in the negative mode, 

with collision energies optimized for the targeted flavonoids. Samples were injected 

(7 |il) onto an Ascentis® Express 2.7 |im CIS 2.1 x 50 mm column (Supelco). Mobile 

phase A consisted of 0.1 % aqueous formic acid and mobile phase B consisted of 

90 % acetonitrile/water with 0.1 % formic acid. The applied gradient was as 

described above. 

2.6.4 Data analysis 

Absolute quantification was performed as described above. For identification and 

relative quantification (peak area ratio of the endogenous analyte/internal standard) 

of flavonoid compounds where commercial standards were not available, the mass 

spectra of flavonoid compounds detected in samples were compared to the 

MassBank database (Horai et al., 2010) and the literature (Quo et al, 2008, Li et al., 

2013). 

2.7 Histochemistry and Microscopy 

GUS staining was performed as described in van Noorden et al. (2007). Sections 

were made using a Vibratome 1000 (Vibratome Company, St. Louis, MO, USA), 

and viewed under brightfield using a DMLB microscope (Leica Microsystems, 
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Wetzlar, Germany) and images were collected with a mounted CCD camera (RT 

Slider; Diagnostic Instruments, Sterling Heights, MI, USA). 

For complementation of nodulation by flood treatment, whole roots were 

viewed under a Leica M205 FA stereomicroscope. GFP fluorescence was visualized 

using an ET Blue LP filter system (max. excitation at 470 nm with a 515 nm long 

pass filter). Nodule sections were viewed under a Leica DM5500 epifluorescence 

microscope. GFP fluorescence was visualized using a +L5 filter cube (Leica 

Microsystems) with a blue excitation range (max. excitation at 480 nm, band pass 

filter at 527 +/- 30 nm). Photos were taken with a Leica DFC550 high-speed digital 

2.8 Auxin transport studies 

2.8.1 Prepara t ion of agar blocks and pre- t rea tment of seedlings 

Tritium-labelled indole-3-acetic acid ( 'H-IAA) solution (7.5 of 1 mCi m l ' ) 

(American Radiolabelled Chemicals, St Louis, MO, USA) was diluted in 20 |il 

ethanol and mixed with 1.5 ml of melted and cooled 1 % agarose at pH 4.8, in a petri 

dish. The pH was chosen as it is close to the isoelectric point of lAA. The 'H-IAA 

block was left to cool in the dark for 10 minutes with the lids off before transferring 

to 4 °C until use to prevent degradation. Small blocks with dimensions of 2 mm x 

2 m m X 2 mm were cut with a scalpel. This standardised the amount of 'H-IAA 

supplied to plants. Seedlings were pre-treated with Rhizobium/auxin transport 

inhibitors prior to auxin transport study, as described below. 
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2.8 .2 Acropeta l aux in transport s tud ies 

Acropetal auxin transport was strictly performed in relation to the spot- inoculat ion 

site. Where three segments were analysed, roots were cut 10 m m from the 

inoculation spot in the shootward direction (approximately 16 m m from the root 

tip); where two segments were analysed, roots were cut 8 m m from the inoculation 

spot in the shootward direction (approximately 12 m m from the root tip). The 

shoot-containing segment was discarded, a small 'H-IAA block (2 m m x 2 m m x 

2 m m ) placed on the cut end of the root-tip containing segment. A parafilm strip 

was placed underneath the root segments to prevent diffusion o f ' H - I A A from the 

growth media directly into parts of the root. Samples were incubated vertically for 

6 h (M. truncatula) or 12 h (L. japonicus) in the dark to allow 'H-IAA to diffuse 

from the agar block through the cut end. The first 4 m m segment touching the 'H-

lAA agar block was discarded. For analysis of three segments, the subsequent 

12 m m was divided into three segments; for analysis of two segments, the 

subsequent 8 m m was divided into two segments. These root segments were 

transferred into individual scintillation vials containing 2 ml scintillation fluid 

(Perkin-Elmer). 

2 .8 .3 Basipetal auxin transport 

For basipetal auxin transport measurements, 'H-IAA agar blocks were placed 

touching the root tip of intact seedlings, which were also placed on parafilm strips. 

After 6 h (M. truncatula) or 12 h (L. japonicus) vertical incubation in the dark, the 

first 2 m m root segment from the agar block was discarded. Subsequent 2 m m 

segments were collected into four separate vials containing scintillation fluid, with 

each vial containing one segment. 
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2.8.4 Sample incubation and radioactivity measurement by scintillation 
proximity assay 

Samples for both acropetal and basipetal transport measurements (in scintillation 
fluid) were incubated on an INOVA 2100 platform shaker (New Brunswick 
Scientific) overnight at room temperature. Radioactivity was measured in a 
scintillation counter (Tri-Carb* Liquid Scintillation Analyzer B2810TR, Perkin-
Elmer) over 1 min each. The default settings for tritium decay measurement were 
used. A vial containing just the scintillation fluid was used as a blank for 
background subtraction during analysis. Raw data were exported in Excel format 
and analysed with Excel. In Chapter 5, data was represented as "auxin relative 
transport change". These were calculated by dividing each data point with the 
untreated control for each genotype. 

2.9 RNA extraction, cDNA synthesis, and quantitative real-time 
PGR 

Frozen root samples were ground in liquid nitrogen with a pre-cooled mortar and 
pestle. Total RNA extraction was performed with an RNeasy" Plant Mini Kit 
(Qiagen) or SpectrumTM Plant Total RNA kit (Sigma). RNA quality and quantity 
were analysed with a NanoDrop* ND-1000 (Labtech International). First-strand 
cDNA synthesis was performed using a SuperScript™ First-strand Synthesis System 
for RT-PCR kit (Invitrogen). RNA quantity from each sample in each biological 
replicate was standardized prior to first-strand cDNA synthesis. Primers were 
designed using Clone Manager for Windows version 9.0 (GE Healthcare Life 
Sciences) or Primer 3. The list of gene primers and other relevant information are 
listed in Table 2.L Standard criteria for quantitative RT-PCR primer design were 
used, based on Udvardi et al. (2008). Sample mix for qRT-PCR was prepared in 
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384-well plates using standard reaction mixture from Power/Fast SYBR* Green 

(Applied Biosystems) and analysed with an Applied Biosystems 7900HT or ViiA" 7 

Real-Time PGR System. Raw data were analysed in Excel using a relative 

quantification method based on (Pfaffl, 2001), with GLYCERALDEHYDE-3-

PHOSPHATE DEHYDROGENASE {GAPDh) or RIBOSOME BINDING PROTEIN 1 

(RBPl) as the reference genes. 

2.10 Statistical analyses 

Statistical analyses were carried out with Genstat 15th Edition (VSN International, 

Hemel Hempstead, UK), Prism version 5.02 and Instat version 3.06 (Graphpad 

Software, La Jolla, CA, USA). 



Table 2.1 Primer sequences of genes used in this study and their gene IDs (v4.0). mPIN5 and MtP/A/8 mRNAs were 
not detected in M. truncatula roots (Schnabel and Frugoli, 2004). 

Gene Gene ID (Medicago v4.0) Sequences of primer pairs 

MtPINI Medtr4g084870 5'-TGCCCTGAACAAGCTAGGAG-3' ; 5 -GAGACGGGTCATAACACTTGC-3' 

mPIN2 Medtr4g127100 5'-AGCCTAAGCTGATTGCATGTGG' ; 5'-TGCTATTGAGGTTGCCGCAATC-3' 

MiPIN3 Medtr1g030890 5 -CTTCGCCGGTTTCGGAAAG-3' : 5'-GTTCATCAGCCACCACCATC-3' 

MXPIN4 Medtr6g069510 5'-GCATGGCTATGTTCAGTCTTGG-3' , 5'-GACCAACAAGGAATCTCACACC-3' 

MtP/A/6 Medtr1g029190 5'-CAGCCTCGTATCATTGCTTGTG-3' ; 5'-CGGCAATCGAGGATAAGGAC-3' 

mPIN7 Medtr4g 127090 5'-TGTGATTGCGGCAACCTC-3' ; 5'-TGGCAAACACAAAGGGAACG-3' 

MtP/N9 Medtr7g079720 5'-ATGGGTGTGGATCTTGTG-3' ; 5'-CCCTCTATTCCCGTTCTTC-3' 

mPINIO Medlr7g089360 5 -TGCCACCTGCTAGTGTTATG-3' ; 5 -GGGACCAGGTAAGACCAATAAG-3' 

MILAXI Medtr5g082220 5'-CTTGGCCTTGGCATGACTAC-3' ; 5'-TCTTTGGACCCGAGTGAACC-3' 

mLAX2 Medtr4g415390 5'-TGGGTTTGGGTTTGGAGGATGG-3' : 5'-GACTGGTGGTGGTTTGCATTGG-3' 

mLAX3 Medtr3g072870 5 -GACAGGCTGAGGATGTGAAG-3' ; 5 -AACAGCATGTCCACCAAAGG-3' 

mLAX4 Medlr4g415390 5'-TGGAGGATGGGCTAGTATGACC-3' : 5'-ATGGTGCTTGAGGTGGTGTTGG-3' 

MiLAXS Medtr4g073770 5'-CCACCGTTGGATCTCTACTTG-3' : 5'-CATTCTGTCGAGCAGAGGATG-3' 

MtGH3 MedtrSg016320 5'-CTCAGAGTTTCTGACCAGTTCAG-3' ; 5'-AGTAGGCTGTACAATAACTGACGAC-3' 

mCHS Medtr7g016780 5'-CACCTTCGTGAAGCTGGACT-3' ; 5 -GTGGCTCAAAAGCGTCAACC-3' 

MtCHR Medtr5g097900 5'-TTGGCCACTTAGCTCTCAGC-3' ; 5'-CCATGGATTCCCAAACACCC-3' 

MtCHI Medtr1g115870 5'-CCACCAGGCTCCTCTATCCT-3' ; 5 -ACTGCTGTCTCAACCTCTGG-3' 

MtF3'H Medlr3g025230 5'-CACCTTATGGTCCGCGGTG-3' ; 5'-TACCTCTTCCTGACGCAAGT-3' 

MtFLS Medtr5g032870 5'-GTGACCAACAATGTGCAACC-3' ; 5'-TTGGGAGGGTGTTCTTCATC-3' 

mFLS Medtr4g100590 5'-GGTGCCTCTGCTCATTCAGA-3' ; 5 -CCACACCTGAGGTTGCTTCA-3' 

MtGAPDh Medtr3g085850 5'-TGCCTACCGTCGATGTTTCAGT-3' ; 5'-TTGCCCTCTGATTCCTCCTTG-3' 

MtRBPI Medti6g034835 5'-AGGGGCAAGTTCCTTCATTT-3' ; 5'-GGTAGAAGTGCTGGCTCAGG-3' 

mFLSox Medtr3g072820 5'-ATGGAGGTAGAAAGGGTACA-3' ; 5'-TTATTGAGGGATCTTATTAA-3' 
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3.1 In t roduct ion 

3.1 Introduction 

Auxin precursors, conjugates and catabolites have been found to significantly 

influence several physiological stages dur ing a plant 's life cycle, including 

germinat ion, growth, differentiation, immuni ty , senescence, tropic and 

environmental stress responses. Like most other phytohormones , lAA metabolites 

are usually present at very low concentrat ions in planta, with a typical range of 

between 0.1 - 50 ng g ' fresh weight (Davies, 2010, Liu et al., 2013), or 1 0 ' M to 1 0 ' 

M (Muller and Munne-Bosch, 2011). Molecular biology has provided semi-

quantitative tools for ho rmone quanti tat ion, such as immunoassays and 

promoter : repor ter systems. However, immunoassays rely on specific antibody-

antigen interactions in sample detection, which have led to problems with 

inconsistent results due to cross-reactivities, and therefore lack validation. On the 

o ther hand, the relationship between promoter:reporter signal input and output is 

not linear, due to the complex pathways involved in between both ends of the signal 

t ransduct ion chain / network. Therefore, developing high- throughput and 

comprehensive analytical methods are required to reproducibly isolate and 

accurately quanti tate these chemically diverse lAA metabolites, as well as to validate 

and complement the conclusions derived f rom classical immuno- and reporter 

assays. Unfortunately, developing these analytical methodologies is highly 

challenging, not only due to the chemical diversity of these compounds , but also 

because some of these analytes are highly unstable and may degrade during 

extraction and purification procedures. To date, due to their different chemistries 

and varying concentrat ions in different plant tissues, most published studies have 

focussed on only small subsets of these compounds in a given plant tissue (Kai et al., 

2007, Mashiguchi et al., 2011, Tam et a l , 2000). Novak et al. (2012) successfully 

profiled a large subset of known auxin precursors and conjugates / catabolites in 

Arabidopsis tissue. Plant tissues are complex biological matrices comprising 

const i tuents with different chemistries, such as proteins, carbohydrates, lipids. 
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pigments and ligands (Villagrasa et al., 2007). Depending on the class(es) of 

compounds of interest (analytes), the other constituents must be removed from the 

crude plant extract using suitable solvents to obtain a sufficiently pure sample. If 

this is achieved, the interfering effects of these constituents plus the solvents (a.k.a. 

matrix effects) will be minimised during analysis, which may otherwise potentially 

modify the results (e.g., physical or chemical reactions with the analytes) or produce 

an enhanced or suppressed response from an instrument detector (Villagrasa et al., 

2007). 

Mass spectrometry (MS) and nuclear magnetic resonance (NMR) are two 

techniques conferring superior accuracy for the study of plant hormones (Kueger et 

al., 2012). These two technologies utilise physico-chemical detectors that can 

distinguish structurally similar compounds from one another. Due to the very low 

concentrations of auxins in complex plant extracts, NMR is not suitable as a 

quantification tool, as it lacks sensitivity. However, NMR is required for 

comprehensive structural elucidation of compounds, such as determining sugar 

positions in hormone conjugate identification (Ostin et al., 1995). At the turn of the 

century, MS has emerged as the primary tool for phytohormone analyses (Pan and 

Wang, 2009). Mass spectrometry is a highly sensitive and selective analytical tool 

for hormone profiling that can reliably complement immuno- and reporter-based 

techniques. Coupled with extraction and purification technologies, MS-based 

analytical methods are highly sensitive and selective for identifying and quantifying 

plant hormones, such as lAA metabolites. 

A mass spectrometer is an analytical instrument where molecules are ionised 

in an ion source by different kinds of energy sources, depending on the instrument 

(Ljung et al., 2010). The subsequent masses of the ions produced are detected, and a 

mass spectrum unique to the compound is generated. The mass spectrum is 

compared to either a commercial and / or synthesised standard, matching with 

existing MS libraries (MassBank, Wiley and NIST), if available, or by interpreting 
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the mass spectra using first principles calculations (Grimme, 2013). Molecules can 

be ionised in the liquid phase, such as liquid chromatography with electrospray 

ionisation (ESI), atmospheric pressure chemical ionisation (APCI), or frit-fast atom 

bombardment (frit-FAB). Alternatively, molecules can be introduced into the ion 

source in the gas phase, such as gas chromatography with electron ionisation (EI) or 

chemical ionisation (CI) (Pan and Wang, 2009). Gas chromatography (GC) and gas 

chromatography-mass spectrometry (GC/MS) were once widely used for lAA 

metabolite profiling (Engelberth et al., 2003, Schmelz et al., 2004). These techniques 

are suitable for volatile compounds, and therefore non-volatile hormones would 

usually have to undergo time-consuming steps of purification and derivatisation 

(e.g., methylation, silylation, and oximation) in order to increase their volatility and 

to enhance chromatographic behaviour and sensitivity for analysis. However, high 

injection temperatures during GC operation pose difficulties for analysing 

compounds that could be thermally labile (Birkemeyer et al., 2003). High 

performance liquid chromatography (HPLC) coupled to different detectors (e.g., 

conventional UV, fluorescence, or photodiode array) is a common technique 

employed for polar and thermally labile lAA metabolites in plant samples (Dai and 

Mumper, 2010). However, HPLC alone is usually not sensitive and selective enough 

for accurate determination of endogenous plant hormones. For instance, 

interferences by the matrix coextractives with the target HPLC-UV signals may lead 

to a longer separation analysis time, or a more complex purification procedure (Li et 

al., 2015). 

Like GC/MS, high throughput profiling of phytohormones using LC/MS has 

become popular and routine these days (Liu et al., 2013, Muller and Munne-Bosch, 

2011, Pan et al., 2010). Unlike GC/MS, however, LC/MS involves simple sample 

preparation, high sensitivity, and can cover a wide range of compound polarities 

operating under ambient temperatures, with no further need for derivatisation (Pan 

and Wang, 2009). However, the sensitivity of single mass spectrometers is usually 
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not high enough for hormone detection in low tissue quantities. Extensive 

optimisation of sample amount, extraction and purification techniques, as well as 

optimisation and method development of the chromatographic technique with a 

mass spectrometer are often required to achieve acceptable levels of sensitivity 

(Ribnicky et al., 1997). In addition, sample matrix that can coelute with the targeted 

compounds can cause ionisation suppression / enhancement during the ionisation 

process in the mass spectrometer, which can affect the quantification data (Gamoh 

et al., 1996, Novak et a l , 2003). 

Tandem mass spectrometry (MS/MS) or high resolution mass spectrometry 

(HRMS) could circumvent the need for extensive purification and other issues 

encountered by single MS by adding another layer of selection in the analytical 

process. Examples of tandem mass spectrometers are ion trap, triple quadrupole 

(QQQ). quadrupole time-of-flight (Q-TOF) and other hybrid instruments (e.g., 

triple quadrupole system coupled with a quadrupole-linear ion trap). These 

techniques improve the selectivity and sensitivity of the analysis. Several 

methodologies for hormone identification and quantification using these modules 

have been published (Pan and Wang, 2009). A triple-quadruple mass spectrometer 

is often used in hormonal profiling due to its high selectivity (Muller and Munne-

Bosch, 2011, Pan et al., 2010). The first quadrupole (Qi) serves as a mass analyser to 

select the specific parent (precursor) ion(s) unique to each target compound whilst 

filtering out interfering ions; Qi acts as a collision cell to break the precursor ions 

selected in Q, into fragments; Qj is a second mass analyser that detects the product 

ions produced from the fragmentation of the parent ion from Q2. The terms 

selected reaction monitoring (SRM) or multiple reaction monitoring (MRM) are 

often used for triple-quadrupole instruments, because they monitor precursor-to-

product ion pairs, providing superior sensitivity and selectivity during analysis (Pan 

et al., 2010). 
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The roles of auxin in growth, development and tropic responses in 

Arabidopsis have been studied extensively (Ljung, 2013, Overvoorde et al., 2010). 

However, less is known about how auxin regulates nodulation in legumes. The 

most abundant form of active auxin in most land plants appears to be indole-3-

acetic acid (lAA). Indole-3-acetic acid can be conjugated to amino acids, of which 

their functions are still open to investigation (Korasick et al., 2013). In 

M. truncatula, there is currently no study showing the direct detection of these 

conjugates, nor any study investigating the changes in auxin concentrations during 

nodulation. Enzyme feeding assays suggest the presence of lAA-Alanine, lAA-

Phenylalanine, lAA-Aspartate, lAA-Leucine, lAA-Isoleucine, and lAA-Valine in 

M. truncatula (Campanella et al., 2008). Auxin conjugates have been postulated to 

serve various functions, for instance, as storage compounds, degradation 

intermediates and auxin antagonists (Korasick et a l , 2013, Ludwig-Miiller, 2011). 

Investigating the changes in auxin concentrations during nodulation will potentially 

give new insights into the roles of auxin / auxin conjugates during nodulation, and 

plant development in general. 

The objectives of this chapter were: (1) to validate the lAA extraction and 

purification procedure published by Muller and Munne-Bosch (2011); (2) to 

develop and validate fast and accurate HPLC-MS/MS methods using electrospray 

ionisation (ESI) with Q-TOF MS technology for lAA metabolites and flavonoids 

and; (3) to apply these methods to identify and quantify lAA metabolites and 

flavonoids in root tissues of M. truncatula (as discussed in subsequent chapters, 

respectively). The primary focus of this thesis was to investigate the role of local 

auxin concentration changes during nodule development, with a secondary aim of 

elucidating the interaction between auxin and flavonoids as endogenous modulators 

of auxin transport. 
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3.1.1 Extraction and purification procedures 

The first step in any analytical study involving identifying and / or quantifying lAA 

and lAA conjugates / catabolites is sample preparation, where, if a large amount of 

sample is used, homogenisation is often performed by grinding the frozen plant 

material using a mortar and pestle. When only small amount of plant tissue is 

available, homogenisation can be more conveniently performed directly in tubes 

using ball grinders (Ernst et al., 2014). During homogenisation and extraction, the 

plant tissue must be kept at < 4 "C to prevent enzymatic or chemical degradation of 

the plant hormones. Antioxidants, such as diethyldithiocarbamic acid (DIECA), 

may also be added to prevent enzymatic metabolism of the hormones (Jackson et al., 

2002). One or more internal standards (e.g., D5-IAA, ''Cs-IAA, '^Cs, '^N.-IBA) are 

often added to the biological material, either prior to or after plant hormone 

extraction and derivatisation (Novak et al., 2012). Internal standards are needed for 

the final quantitative analysis of plant hormones (Castillo et al., 2011), account for 

losses of analytes during the extraction, purification and instrumental analysis, as 

well as to aid in determining the recovery efficiency of the extraction method. The 

internal standard is preferably similar in chemical structure and mimics the 

behaviour of the targeted endogenous analytes during extraction and purification. 

They could be a radiolabelled / stable isotope or an analogue compound, but must 

not occur naturally in the plant. Following homogenisation and internal standard(s) 

addition, an appropriate extraction solvent is added to the plant sample. The 

extraction solvent(s) used must efficiently isolate most of the target analytes away 

from the interfering substances (e.g., carbohydrates, proteins, pigments) from the 

plant sample that could contribute to matrix effects during analysis (Ljung et al., 

2010). Methanol, methanol / water, acetonitrile / water / formic acid mixtures or 

neutral pH buffers (e.g., 50 mM sodium phosphate) are common solvents used for 

auxin extraction (Pan et al., 2010). The extraction period should be long enough to 

allow the internal standard to equilibrate with the endogenous analytes in the plant 
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matrix, and then to subsequently extract most of the analytes from the medium. If 

the extraction period is too long, the analyte may degrade, or increase the chances of 

hydrolysing the hormone conjugates into free hormones in the resultant extract. 

The sample extract may further undergo another step of purification (e.g., 

solid phase extraction (SPE), preparative HPLC or immunoaffinity chromatography) 

prior to analysis (Ernst et al., 2014). Purification techniques, such as solvent 

partitioning and preparative HPLC are often sufficiently replaced by SPE methods 

alone. Examples of SPE columns with silica-based packing material include 

octadecyl carbon chain bonded silica (C18), strong ion exchange (SAX, SCX) and 

silica (Si). Target analytes are bound to the SPE column by retention-chemical 

interactions (e.g., non-polar, polar or ionic) with the solid stationary phase. A 

suitable solvent is used to wash off the interfering substances before applying a 

stronger solvent to elute the analytes off the column for analysis (Huie, 2002). 

3.1.2 Muller and Munne-Bosch (2011) extraction and purification method 

For our purpose, we chose an extraction method reported in Muller and Munne-

Bosch (2011). A flow diagram describing the extraction protocol is shown in Figure 

3.1. For their phytohormonal profiling of abscisic acid (ABA), salicyhc acid (SA), 

indole-3-acetic acid (lAA) and gibberellins (GAs - GA4, GA,) in rosemary leaves, the 

authors used methanol:isopropanol:glacial acetic acid, 20:79:1 (v/v/v) as the 

preferred solvent extraction mixture. The reported recoveries for these analytes 

were > 80 %. 
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) Ĵl extraction 
nofisopropanol: 
J (20:79:1)1 

30 min soni( ;ation (4 °C) 

Centrifugation (16100 xg 
for 15 min at 4 "C) 

I 
Collect su pernatant 

Add 500 Ml extraction 
solvent 

30 min sonication (4 °C) 

Centrifugation (16100 xg 
for 15 min at 4 "C) 

Collect supernatant 

Combine s upernatant 

Filter through 0.45 Mm filter 

Dried in Speedvac and resuspend (50 Ĵl) 
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Figure 3.1 Flow diagram describing the extraction protocol adapted from Muller and 

Munne-Bosch (2011) in this study. 

3.1.3 Optimisation, method development and validation of the Agilent 1200 

series HPLC and 6530 Accurate-Mass Q-TOF 

For our study, lAA and lAA conjugates were identified and quantified using an 

Agilent 1200 series HPLC and a 6530 Accurate-Mass Q-TOF LC/MS (Agilent 

Technologies, Inc. Santa Clara, USA). Standards and samples were subjected to 
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pneumatic electrospray ionisation (ESI) dual spray Jet Stream ion source interface, 

in both positive and negative ion polarities after separation on an Agilent ZORBAX 

Eclipse XDB-C18 column (2.1 x 50 mm; 1.8 |im). Figure 3.2 shows a schematic 

diagram of the ESl-Q-TOF system used at the Mass Spectrometry Facility, Research 

School of Biology, The Australian National University. 

Electrospray 
Low 

pressure 

Capil lary 

TIme-of-flight (TOF) 
chamber 

Coll ision cell 

x : 

1 — ' i r 
I — l i—i|L 

Quadrupole (Q) 

-Detector 

Figure 3.2 Schematic diagram describing major components of the Agilent 6530 ESI-Q-

TOF system. Image was adapted from Agilent technologies. 

Electrospray ionisation (ESI) is regarded as a soft ionisation technique, which 

utilises strong electrical fields to produce charged gas phase ions. The LC effluent is 

subjected to a high voltage as it exits through the nebulising needle which is set at 

ground potential (Figure 3.3). The LC liquid phase, which contains the lAA and 

lAA conjugate analytes, sprays into the source chamber from the nebuliser needle 

that is surrounded by a counter electrode, where high voltage is applied. The 

potential difference between the counter electrode and the nebulising needle creates 

a strong electric field that charges the surface of the emerging LC liquid to form a 

fine ionising spray of charged droplets (aerosols). The evaporation process is 

assisted by the application of high pressure and super-heated sheath nitrogen gas. 
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As the evaporated droplets move towards the dielectric platinum-plated capillary 

sampling orifice, counter-flow heated nitrogen drying gas removes uncharged 

particles and solvent, while continuing to repeatedly shrink the droplets until the 

repulsive electrostatic forces exceed the droplet surface tension to bring about 

droplet explosions (Figure 3.2 and 3.3). The gas-phase charged ions are transmitted 

through the capillary into the low atmospheric pressure region of the ion source, 

and then eventually into the higher vacuum region of the first MS analyser 

(quadrupole, Q) (Figure 3.2). The quadrupole mass filter scans the pre-determined 

m/z range and selects the targeted precursor ions. Targeted ions are then passed 

through to the collision cell, which also has a small hexapole that focusses and 

transmits the ions, while introducing neutral nitrogen as the collision gas into the 

ion flight path. The kinetic energy from the collision gas is transferred to the 

precursor ions to promote collision induced dissociation (CID). The energy 

transfer is sufficient to cause bond cleavages and rearrangements in the precursor 

ions to produce the respective product ions unique to each analyte. Precursor-to-

product ion formation can be represented by the following equation: 

Finally, fragmented ions generated in the collision cell enter the time-of-flight (TOF) 

chamber, where they are subjected to a fixed electric field and travel a known 

distance. The speed at which an ion travels is inversely proportional to its mass-to-

charge (m/z) ratio. At the end of the flight path, a detector recognises and amplifies 

the signal, which is then converted into a mass spectrum. 

The Agilent 6530 Accurate-Mass Q-TOF can operate in three operational modes, as 

explained in Table 3.1. 
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Figure 3.3 Components of an Agilent Jet Stream electrospray. Image taken from Agilent 

Technologies. 

Table 3.1 Agilent 6530 Accurate-Mass Q-TOF acquisition modes. 

Total 
transmission 

ion (TTI) mode 

All ions are passed through the quadrupole (which is in the TTI 
mode) to the TOF. No voltage difference. No collision energy 
applied in the collision cell, so only low energy collision occurs. 
Time-of-fllght performs as a stand-alone mass analyser providing 
high resolution data. 

Product ion 
scan auto 

MS/MS 

The software algorithm automatically selects the precursor ions 
(based on the highest ions detected) and fragments them. Signal-
to-charge is compromised as this is used for method development 
or identification of unknown compounds. 

Product Ion 
scan targeted 

MS/MS 

The quadrupole is directed to pass pre-selected precursor ions 
only into the collision cell. The TOF analyses all the resulting 
product ions. This sensitive mode is used for quantitative 
analysis, identification of known analytes and structural 
elucidation. 

Therefore, for our auxin analyses, we were only interested in the TTI (full scan MS) 

and targeted MS/MS modes. 
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3.2 Experimental procedure 

3.2.1 Chemicals 

Table 3.2 and 3.3 list auxin and flavonoid metabolites targeted in this study. 

Commercial auxin standards were obtained from OlChemim (lAA-Phenylalanine, 

lAA-Leucine, lAA-Valine, lAA-Tryptophan, 4-Cl-IAA), Sigma (lAA-Aspartate, 

lAA-Alanine, lAA-Isoleucine, lAA, IBA, PAA) and Cambridge Isotope laboratories 

(Indole-2,4,5,6,7-d5-3-acetic acid). For flavonoids, commercial standards were 

obtained from Sigma (luteolin, kaempferol, naringenin, quercetin, morin, 

hesperetin), Fluka (apigenin) and ICN biomedicals (genistein). 

Table 3.2 Auxin compounds targeted for investigation in this study. 

Aux in c o m p o u n d Molecular 
fo rmu la 

Molecu lar we igh t 
(g mol" ' ) 

lndole-2,4,5,6,7-d5-3-acetic acid (D5-IAA) C10H4D5NO2 180,21 

lndole-3-acetic acid (lAA) C10H9NO2 175.19 

lndole-3-butyric acid (IBA) C,2H,3N02 203.24 

Phenylacetic acid (PAA) C8H8O2 135.05 

4-chloro-indole-3-acetic acid (4-CI-lAA) C10H8CINO2 208.02 

lndole-3-acetyl-alanine (lAA-Ala) C,3H,4N203 246.27 

lndole-3-acetyl-aspartate (lAA-Asp) C,4H,4N205 290.28 

lndole-3-acetyl-leucine (lAA-Leu) C16H20N2O3 288.35 

lndole-3-acetyl-isoleucine (lAA-lle) C16H20N2O3 288.35 

lndole-3-acetyl-phenylalanine (lAA-Phe) C,9HieN203 322.37 

lndole-3-acetyl-tryptophan (lAA-Trp) C2IH,9N303 361.40 

lndole-3-acetyl-valine (lAA-Val) C16H18N203 274.32 



3.2 Experimental procedure 

Table 3.3 Flavonoid metabolites targeted for investigation in this study, based on flavonoid 

aglycones identified in Farag et al. (2007). 

Flavonoid compound Molecular 
formula 

Molecular weight 
(g mor ' ) 

Luteolin CisHioOe 286.24 

Kaempferol C15H10O6 286.24 

Naringenin C15H12O5 272.26 

Quercetin C15H10O7 302.24 

Morin C15H10O7 302.24 

Hesperetin C16H14O6 302.27 

Genistein C15H10O5 270.24 

Apigenin C15H10O5 270.24 

3.2.2 Optimisation of the LC-ESI-Q-TOF 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is regarded as an 

effective and sensitive analytical technique to study auxin metabolites. To optimise 

the LC-ESI-Q-TOF, we used a 2 ng mL ' standard mixture of all the auxin analytes, 

including the D5-IAA internal standard (Table 3.2). Parameters of both ion 

polarities (positive and negative) were optimised to enhance sensitivity for the better 

detection of these analytes. As reported and discussed later in more detail, some 

analytes were more sensitive in one polarity than the other. We compared 

acetonitrile and methanol gradients, with and without formic acid or acetic acid as 

additives. In order to further improve the sensitivity in the negative mode, we also 

compared post-column addition via a T-piece of ammonium hydroxide, 2,2,2-

trifluoroethanol, 2,2,3,3,3-pentafluoro-l-propanol, triethylamine acetic acid or 

formaldehyde. Other LC parameters optimised included column temperatures and 

flow rates. With respect to the MS, we optimised the ESI dual spray Jet Stream Q-

TOF parameters, i.e. fragmentor voltage, sheath gas temperature, nebuliser pressure, 

etc., as outlined in Figure 3.12. Once both ion polarities were optimised, calibration 
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standards (0.01, 0.05, 0.1, 0.5, 1.0, 2.0 and 5.0 ng ^L ' with the internal standard 

fixed at a known concentration of 0.4 ng fiL ') were analysed to determine the linear 

regressions, correlation coefficients, limits of detection (LOD, 3 x S/N), and limits 

of quantification (LOQ, 5 x S/N) for each hormone analyte. It is f rom optimising 

these specific parameters that we achieved the sensitivity we needed for the 

detection of trace plant lAA metabolites in the small amounts of plant tissues used. 

3.2.3 Extraction recovery experiment 

Commercial auxin standards were used to assess reproducibility and extraction 

recoveries of the extraction protocol from Muller and Munne-Bosch (2011). As 

shown in Figure 3.4, approximately 2 g of M. truncatula roots were pooled and 

snap-frozen immediately in liquid nitrogen to inhibit enzymatic degradation of 

auxins. The frozen root sample was then ground, using a pre-cooled mortar and 

pestle, in liquid nitrogen. The homogenised, ground sample was subsequently 

equally subdivided into two sets (n=5) in 2 mL Eppendorf tubes. One set was 

labelled as "spiked", and the other "unspiked", with ~ 100 mg accurately weighed 

tissue in each tube. To the samples labelled "spiked" 20 (iL of 2.5 |ig m l ' auxin 

standard mix and 20 pL of 1 |ig mL ' D5-IAA internal standard were added. To the 

samples labelled "unspiked" only 20 pL of 1 pg mL ' D5-IAA was added. In addition, 

five laboratory control blanks (empty 2 mL Eppendorf tubes) were also conducted 

in parallel to the plant samples to assess any cross contamination during the 

extraction procedure. Next, 500 pL of methanol:isopropanol:glacial acetic acid, 

20:79:1 (v/v/v) extraction solvent was added into each tube. Subsequent steps in the 

modified Muller and Munne-Bosch (2011) protocol were followed (Figure 3.1). To 

calculate the recovery of each analyte, the following equation was applied: 

Recovery (%) = [(spiked amount - unspiked amount) / spiked amount] x 100 % 
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Figure 3.4 Schemat ic d iagram descr ibing the exper imental design for determining the 

extract ion ef f ic iency of the modif ied extract ion protocol f rom Muller and Munne-Bosch 

(2011), as shown in the f low diagram above (Figure 3.1). 
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3.3 Results and Discussion 

3.3.1 O p t i m i s a t i o n of the H P L C system 

A commercial auxin standard mixture of 2 ng mL including the D5-IAA internal 

standard, was used to optimise the LC parameters. Liquid chromatography method 

development was first performed in the positive ion mode using the full MS scan 

mode and ESI-Q-TOF parameters were Agilent Technologies default settings. Once 

optimisation was completed for the entire LC-ESI-Q-TOF parameters in the 

positive ion mode, we then performed optimisation on the LC-ESl-Q-TOF in the 

negative ion mode. The following results and discussion are for ESI-Q-TOF 

positive ion polarity. 

3.3.1.1 Reversed-phase HPLC column selection 

For our study, we opted the reversed-phase Agilent ZORBAX Eclipse XDB-C18 (2.1 

X 50 mm, 1.8 |im) column. Reversed-phase C18 columns are often used for peptide 

and small molecule (e.g., auxins) separation, where the stationary phase is generally 

comprised of hydrophobic alkyl chains (-CH2-CH2-CH2-CH3) that interact with the 

analytes by retaining and separating them according to their degree of 

hydrophobicity (Itoh et al., 1993). Compounds tend to be retained on the reversed-

phase column in high aqueous mobile phase and then eluted f rom the column using 

high organic mobile phase. The Agilent ZORBAX Eclipse XDB-C18 (2.1 x 50 mm, 

1.8 |im) reversed-phase column offers high performance over a wide pH range (pH 

2-9) by providing good peak shape, rapid compound separation due to its short 

length, high resolution chromatograms and a low internal diameter to enhance MS 

response (Mack, 2011). These columns are extra densely bonded and double end-

capped to cover as many active residual silanols as possible, which would otherwise 

cause peak tailing at mid pH region. 
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3.3.1.2 HPLC mobile phase solvents 

The ESI technique ionises relatively high polar molecules by spraying the mobile 

phase into a strong electric field to produce fine charged droplets. Therefore, 

solvents with low viscosity, volatile salts that can dissolve polar compounds and can 

form fine charged droplets, are only suitable for ESI (Cech and Enke, 2001). 

Solvents recommended for mobile phases include alcohols (e.g., methanol, 2-

propanol), polar aprotic (e.g., acetonitrile, dimethyl sulfoxide, ethyl acetate, acetone), 

water or volatile aqueous solutions (e.g., formic acid, acetic acid, ammonium acetate, 

ammonium formate), and volatile ion pair reagents (e.g., dibutyl ammonium acetate, 

perfiuorocarbonate). By convention, reversed-phase solvents are installed on 

channels A and B of the HPLC. Solvent A is usually the aqueous solvent (e.g., 

HPLC-grade water); solvent B is generally the organic solvent (e.g., methanol, 

acetonitrile). A small amount of acid (~ 0.1 %) is also usually added to the solvents 

to improve chromatographic peak shape and to facilitate ionisation during LC/MS, 

by acting as a proton donor (Wu et al., 2004). Common acid additives include 

formic acid, acetic acid and trifluoroacetic acid, although the latter is commonly 

avoided in Q-TOF because it has been reported to cause ion suppression during MS 

ionisation (Annesley, 2003, Chan et al., 2012). 

Methanol (protic) and acetonitrile (aprotic) are the two most common 

organic mobile phases used in reversed-phase HPLC. We compared methanol and 

acetonitrile with 0.1 % formic acid to determine best chromatographic performance. 

For solvent A, we used HPLC grade water with 0.1 % formic acid. Acetonitrile, due 

to its lower viscosity, has higher ESI ionisation efficiency than methanol (Herrera et 

al., 2008). In aqueous mixtures (i.e. acetonitrile or methanol mixed with water), 

acetonitrile tends to have higher elution strength than methanol as well (Gilar et al., 

2014). However, the elution strength of methanol is higher when the organic 

composition gets closer to 100 %. As a result of this knowledge, it was important 

that we compared these organic solvents on our LC-ESI-Q-TOF performance. We 
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validated that methanol gave rise to better peak signals for D5-IAA, lAA and IBA, 

in accordance with previous reports that favoured methanol as the solvent of choice 

for lAA metabolite analysis (Figure 3.5) (Durgbanshi et al., 2005, Kallenbach et al., 

2009, Ma et al., 2008). Our primary compound of interest, lAA, had a four-fold 

higher peak height signal in methanol in comparison to acetonitrile. Indole-3-

butyric acid had nearly a 20-fold improvement in detection sensitivity in methanol. 

We then varied methanol composition with water such as 50/50, 70/30, 90/10 

methanol/water (v/v), and found that the composition 90/10 provided better 

separation, peak shape and signal. 

• A C N 

D M e O H 

D5-IAA lAA IBA 

Figure 3.5 Peak heights of auxins detected in acetonitrile or methanol with 0.1 % formic 

acid as the mobile phase B. Mobile phase A was water with 0.1 % formic acid. Higher peak 

height corresponds to enhanced sensitivity. Abbreviations: ACN, acetonitrile; MeOH, 

methanol. 

Next, we compared the effects of different acid additives on 

chromatographic performance. Formic acid and acetic acid, two widely used 

additives that are known to aid in improving compound separation, peak shape and 

protonation in LC/MS (Durgbanshi et al., 2005, Ma et al., 2008), were compared. 

Mobile phase A was water with 0.1 % acid and mobile phase B was 90% 

methanol/water with 0.1 % acid. Among the eight auxin compounds tested, five 
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(lAA, IBA, lAA-Asp, lAA-Phe and lAA-Trp) were better detected in 0.1 % formic 

acid, whereas the internal standard D5-IAA had similar detection sensitivity with 

either 0.1 % formic acid or acetic acid (Figure 3.6), suggesting that 0.1 % formic acid 

is a better overall option for further method development. Formic acid has a lower 

molecular weight than acetic acid and during negative ion analysis, these lower 

molecular weight deprotonated molecules and deprotonated dimers will cause less 

interferences (Annesley, 2003, McMaster, 2005). Furthermore, commercial formic 

acid solvents generally contain much less contaminants than acetic acid mobile 

phases. Solvent purity (HPLC or LC/MS grade) is particularly crucial during 

sensitive LC/MS analysis. 
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Figure 3.6 Peak heights of auxins detected in 0.1 % formic acid or 0.1 % acetic acid as the 

additive in mobile phases A (water) and B (90 % methanol/water). Higher peak height 

denotes enhanced sensitivity. Abbreviations: FA, formic acid; AcOH, acetic acid. 

In addition, we found that acetic acid is an inferior acid for chromatographic 

peak shape and elution selectivity. A comparison of 0.1 % formic acid or acetic acid 

as the additive for the mobile phases suggested that formic acid was the better 
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option for fully resolving D5-IAA and lAA, which eluted within seconds of each 

other. Using acetic acid resulted in unresolved D5-1AA and lAA peaks (Figure 3.7) 

but Gaussian (bell-curve) and baseline resolved peaks were attained with formic 

acid (Figure 3.8). Our preferred solvent system for ESI LC/MS was: Solvent A -

HPLC grade water with 0.1 % formic acid; Solvent B - HPLC grade 90 % methanol / 

water with 0.1 % formic acid. 
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Figure 3.7 Positive ion mode extracted ion chromatograms (EIC) of lAA, D5-IAA and IBA. 

Chromatograms show peak height counts on the y-axis and retention time (tR, min) on the x-

axis. Mobile phase B consists of 90 % methanol / water + 0.1 % acetic acid. Extracted ion 

chromatogram for lAA shows lAA peak unresolved from D5-IAA peak. 
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Figure 3.8 Positive ion mode extracted ion chromatograms (EIC) of lAA, D5-IAA and IBA. 

Chromatograms show peak height counts on the y-axis and retention time (Ir, min) on the x-

axis. Mobile phase B consists of 90 % methanol / water + 0.1 % formic acid. Full resolution 

of lAA and D5-IAA peaks was achieved. 

Although formic acid and acetic acid are common mobile phase additives in 

positive ion mode, less informat ion is available for the use of common, versatile 

additives in the opposite negative ion mode. As ment ioned earlier, acids are often 

added to positive ion ESI to provide a source of protons for reversed-phase HPLC 

(Wu et al., 2004). By logic, bases would serve as suitable modifiers for negative ion 

ESI to achieve good ESI LC/MS performance. However, a study using a m m o n i u m 

hydroxide as a basic modifier yielded poor detection limits and less sample stability 

in methanolic or aqueous solutions (Cech and Enke, 2001). On the other hand, 

f luorinated solvents like 2,2,2-trifluoroethanol were reported to improve negative 

ion ESI response (Cech and Enke, 2001). To select a potentially more suitable 

modif ier for negative ion ESI targeted MS/MS, we performed some quick 

experiments following W u et al. (2004) experimental design of post-column 

infusion of several acidic and basic modifiers, including water, 1 m M a m m o n i u m 

hydroxide, 100 m M 2,2,2-trifluoroethanol, 100 mM 2,2,3,3,3-pentafluoro-l-
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propanol, 0.01 % triethylamine, 1 mM acetic acid and 100 mM formaldehyde in 

negative ion mode using a T-piece post-column syringe infusion system (Figure 3.9). 

Mobile phase A was water, and mobile B was 90 % methanol/water and 7 nL of an 

auxin standard mixture of 1 ng m L i n c l u d i n g the D5-IAA internal standard, was 

injected via the autosampler. When no post-column modifiers were used, the 

mobile phase A was water + 0.1 % formic acid, and mobile B was 90 % 

methanol/water + 0.1 % formic acid and 7 ^L of the same 1 |ig mL ' auxin standard 

mixture with D5-IAA were run through the post-column infusion configuration 

(Figure 3.9; labelled in Figure 3.10 as "None") to compare results. In some cases, 

modifiers marginally improved detection of auxin compounds. Ammonium 

hydroxide (1 mM), for example, increased ESI" responses for D5-IAA, lAA, IBA and 

PAA (Figure 3.10). In general, however, the detection sensitivity of auxin 

compounds was quite comparable with or without additional modifiers. We 

therefore opted to proceed with future analyses without a post-column modifier. 
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Figure 3.9 T-piece set up for post-column infusion of modifiers for negative ion polarity ESI 

targeted MS/MS. (A) Photo of actual set-up; (B) Schematic diagram of the set-up. 

W e are aware that this was not an exhaustive investigation of the effects of 

post-column modifiers on ESI MS performance. For example, we did not test a 

range of concentrat ions for each modifier, but rather chose the op t imum 

concentrat ion based on W u et al. (2004). The authors, however, investigated the 

effects of negative ESI on androgen compounds that do not have acidic functional 

groups, and therefore, very different in chemical properties to auxins and thus 

reacted differently with the modifiers tested. In addition, they stated in their study 

that formic acid suppressed ionisation, while in our normal LC/MS configuration 

(without post-column infusion system), we found that formic acid used in negative 

ESI provided enhanced sensitivity for the detection of many lAA conjugates. 

Formic acid is a weak acid that has a small anion molecular volume (HCOO , 37.74 

A ) with high gas-phase proton affinity, unlike acetic acid ( C H j C O O , 54.97 A). As 

all auxins have a carboxylic acid group, formic acid would likely retain them longer 

dur ing reversed-phase HPLC and therefore, improve their separation and negative 

ESI response. However, in the future, it would be interesting to perform a more 

detailed survey of different modifiers on negative ESI response, particularly when 

the method can be potentially expanded to include analysis of different classes of 

plant hormones . 
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Figure 3.10 Effect of post-column modifiers on negative ion ESI targeted MS/MS. 

Histograms show raw peak tieight counts on the y-axis and different modifiers on the x-axis. 

Different auxin compounds were better detected with different post-column modifiers. Key: 

NH4OH, ammonium hydroxide; CF3CH2OH, 2,2,2-trifluoroethanol; C2HF5O, 2,2,3,3,3-

pentafluoro-1-propanol; N(CH2CH3)3, triethylamine; C2H5OH, acetic acid; CH2O, 

formaldehyde. 
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3.3.1.3 HPLC column temperature 

Column temperature is an essential parameter of HPLC. Peak retention time shift 

due to fluctuations in ambient temperature is common (Barwick, 1999). To 

circumvent this problem, many HPLC systems have controlled-temperature 

compartments. Besides maintaining a constant temperature to be able to reproduce 

peak retention times, column temperature can affect chromatographic separation. 

The temperature operation range of individual columns differs and extreme 

temperatures may not be suitable for some columns (Barwick, 1999). The column 

used in this study can tolerate temperatures up to 90°C. Higher temperature results 

in more rapid elution and sharper peaks, but may shorten column lifetime due to 

the deterioration of the stationary phase. 

We selected the optimum column temperature based on the detection 

sensitivity of the auxin compounds. The column temperature range investigated 

was between 30-50 °C. Higher temperatures resulted in more rapid compound 

elution and better separation. However, the higher or lower temperatures tested 

favoured detection of different subset of auxin compounds. We therefore opted for 

a compromise of 35 °C in the positive ion polarity, which conferred the best 

detection sensitivity for lAA (Figure 3.11), which is also our primary compound of 

interest, and most other auxin compounds. In the negative polarity, it was a 

straightforward selection of 35 °C due to maximal sensitivity of all but one 

compound (lAA-Trp) at this temperature. 
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35 °C 

30 °C 

tR (min) 

Figure 3.11 Column temperature selection of auxin compounds. Graph shows raw peak 

height counts on the y-axis and retention time (IR, min) on the x-axis. Chromatogram shows 

an example of the column temperature selection for lAA in the positive ion polarity. 

Detection sensitivity is proportional to peak height. Most auxin compounds analysed have 

an optimum column temperature close to 35°C. Analytes eluted faster at higher column 

temperatures, as indicated by the shorter retention times as temperature increased. 

3.3.1.4 HPLC gradients and flow rates 

Optimisation of HPLC gradient would serve to provide sufficient separation of 

compounds within the least amount of time possible. When large numbers of 

samples are involved, a shortened sample run would greatly improve the efficiency 

of the whole analytical process. At the start of the run, typically a low organic 

solvent (higher solvent A composition) is run through the column. Due to the 

relatively less polar nature of auxins, they can be retained on the C I 8 stationary 

phase (Ljung et al., 2010). As the organic solvent B composition increases, auxins 

are eluted f rom the stationary phase due to the increasingly favourable interaction 

with the high organic mobile phase. We compared several elution gradients in 

search for an optimal gradient that would provide separation, resolution and good 

peak shape of lAA and its conjugates. The mobile phase A was water + 0.1 % formic 

acid, and mobile phase B was 90 % methanol/water + 0.1 % formic acid. Aliquots of 

7 ^L of the 1 ng mL ' auxin standard mixture with D5-IAA were repeatedly injected. 

We varied the start of the gradient at 10 or 15 % B at 0 min, steadily took the 
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gradient to either 70 or 80 % B to ensure everything was eluted f rom the column, 

and de termined the run t ime between 30 and 40 min to observe when the last peak 

eluted to subsequently shorten the run time, if possible. The optimal gradient 

conferr ing total c o m p o u n d separation and good chromatographic peaks was 

de termined to be a linear gradient f rom 10-50% solvent B over 8 min, 50-70% 

solvent B f rom 8-12 min (then held at 7 0 % from 12-20 min) at a flow rate of 

200 |il min '. All compounds were eluted between 8-18 min. Total run time was 30 

min. Note that the starting composit ion of solvent B was not 0 % because this 

would cause the C I 8 alkyl chains to repel f rom the high polar aqueous mobile phase 

and "collapse" (Bidlingmeyer and Broske, 2004). This would result in inefficient 

binding of analytes to the stationary phase. 

For 2.1 m m diameter reversed-phase columns, such as the one used in our 

study, the typical flow rate is 200 |il min '. A flow rate at 160 min 'gave rise to 

broad, poor chromatographic peak shapes and lower peak height counts. Minor, 

poor peak shapes occurred at 180 |il min ' flow rate, although peak heights were 

similar to the 200 pi min ' flow rate. We opted for 200 pi min ' flow rate because it 

was the most sensitive and produced Gaussian peaks. Higher flow rates have the 

potential of increasing work efficiency by reducing run times, without 

compromis ing chromatographic peak performance (Cabo-Calvet et al., 2014), but 

might also increase the back pressure load on the system and cause leaks. However, 

fu ture trials of highly porous monoli th HPLC columns can overcome this issue by 

allowing much higher flow rates without increasing backpressure significantly (Svec, 

2010). 

3.3.2 O p t i m i s a t i o n of the E S I - Q - T O F 

3.3.2.1 Optimisation of the Agilent ESI Jet Stream Ion Source 
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Optimisation of the Agilent ESI Jet Stream ion source and Q-TOF were performed 

according to manufacturer 's suggestion, as outlined in Figure 3.12. The sheath gas 

temperature, sheath gas flow, nebuliser pressure, capillary voltage, nozzle voltage, 

drying gas temperature and drying gas flow were sequentially investigated to obtain 

optimised conditions to maximise detection sensitivity of all auxin compounds. The 

test range and increments investigated are shown in brackets next to each parameter. 

The function of each component in the ESI Jet Stream Q-TOF is detailed in Table 

3.4. For each parameter tested, an average value was selected because each auxin 

compound had a different optimal detection condition. Whilst quantification is 

based on peak area, to enhance sensitivity, optimisation was based on peak height. 

Detection in the positive and negative full MS scan modes displayed different 

optimal values for each ESI Jet Stream source component and therefore. Table 3.5 

summarises the optimised conditions for both ion polarities. 
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Figure 3.12 Work flow for the optimisation of the ESI Jet Stream ion source and the Q-

TOF. 

Table 3.4 Function of each component of the ESI Jet Stream ion source. 

ESI Jet Stream Source 
component 

Function/Description 

Sheath gas temperature / 
flow 

Sets the temperature and flow rate of the nitrogen 
drying gas and depends on the LC flow rate. 
Confines the nebulizer spray to more effectively dry 
and desolvate ions and concentrate them in a 
thermal confinement zone 

Nebullser pressure 

Controls the pressure of the nitrogen nebulizing gas 
and is dependent on the LC flow rate to determine 
the speed at which the sample is aspirated into the 
electrospray chamber 

Capillary voltage 
Applied at the entrance of the capillary in the 
ionisation chamber to transmit ions into the 
sampling capillary 

Nozzle voltage 
Voltage applied between the electrospray needle 
and the skimmer 

Drying gas temperature / 
flow 

Nitrogen drying gas facilitates drying of droplets 
formed in the ionisation chamber by carrying away 
excess charges and solvent until only "naked" 
charged sample ions are formed 

Table 3.5 Optimised Agilent Jet Stream ESI-Q-TOF parameters in the positive and 

negative full MS scan ion modes. 

ESI Jet Stream component 
Optimised 

positive ion 
polarity 

Optimised 
negative ion 

polarity 

Sheath gas temperature (°C) 350 350 

Sheath gas flow (L min"'') 11 11 

Nebuliser pressure (psig) 30 25 

Capillary voltage (V) 2500 3000 

Nozzle voltage (V) 500 500 

Drying gas temperature (°C) 250 300 

Drying gas flow (L min" ) 5 9 
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3.3.2.2 Optimisation of the Q-TOF 

The function of the fragmentor (at the end of the capillary) is to control the speed at 

which an ion travels from the electrospray chamber (atmospheric pressure) to the 

mass spectrometer. The voltage applied to the fragmentor must be sufficiently high 

to produce good and strong MS signals but should not fragment the ions travelling 

through the capillary (Hua and Jenke, 2012). Fragmentation of ions occurs in the 

collision cell. The collision cell contains neutral nitrogen gas inolecules which 

bombard precursor ions to produce fragments. Each target auxin analyte produces 

a distinct set of product ions (characteristic fragmentation spectrum) used for 

identification and quantification. An optimal collision energy must be sufficiently 

high to fragment individual precursor ions (10 % of the original precursor ion signal) 

to produce strong and reproducible product ions. Collision energies that are too 

high might over-fragment precursor ions to produce many indistinct and weak 

"noise-like" fragments (MacLean et al., 2010). We determined the optimal 

fragmentor voltage for individual auxin compounds in full MS scan mode. After 

varying the fragmentor voltage based on manufacturer 's suggestion for each 

compound, we selected voltages which conferred maximum peak sensitivity. For 

example, D5-IAA and lAA had optimal fragmentor voltages of 130 and 140 V in the 

positive polarity, respectively (Figure 3.13). The optimal fragmentor vohage for all 

auxin compounds are listed in Table 3.6. As the Q-TOF can only operate with one 

fragmentor voltage in each ion polarity, we arrived at an average value of 138 and 

140 V for the positive and negative ion modes, respectively. 

Next, we optimised the collision energies of individual auxin compounds. 

Optimal collision energy was chosen on the basis of near-complete fragmentation of 

precursor ions to produce the most intense product ions in both positive and 

negative targeted MS/MS scan modes. For example, the optimum collision energies 

for D5-IAA and lAA in positive ESI were 12 and 10 eV, respectively (Figure 3.14B 

and 3.14E). Lower collision energies insufficiently fragment the precursor ions, thus 
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affect ing the quant i tat ion process, w h i c h relies on g o o d product ion peaks (Figure 

3 .14A and 3 .14D) . O n the contrary, higher co lhs ion energy over- fragmented the 

precursor ions (Figure 3 .14C and 3.14F). 

IR (min) 

tR (min) 

Figure 3.13 Fragmentor voltage optimisation. Graphs show raw peal< height counts on the 

y-axis and retention time (IR, min) on the x-axis. Optimal fragmentor voltage for each auxin 

compound was investigated. Examples for fragmentor votage tested for D5-IAA and lAA 

are shown. Maximum sensitivity was achieved for D5-IAA and lAA with fragmentor voltages 

of 130 and 140 V, respectively. 
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Table 3.6 Fragmentor voltage optimisation for individual auxin compounds in the positive 
and negative ion polarities. An average fragmentor voltage value was calculated and used 
for subsequent LC/MS analyses, as the instrument can only operate at one fragmentor 
voltage in each ion polarity mode. 

Auxin compound 
Fragmentor voltage (V) 

Auxin compound 
Positive Negative 

D5-IAA 130 140 

lAA 140 135 

IBA 130 145 

4-CI-IAA 145 140 

lAA-Ala 145 145 

lAA-Asp 140 135 

lAA-Leu 145 NA 

lAA-lle 130 140 

lAA-Phe 140 140 
lAA-Trp 130 140 

lAA-Val 140 140 
Average 138 140 

The optimal collision energies for all auxin compounds in both positive and 

negative targeted MS/MS are listed in the Appendix B. Table 3.7 summarises the 

analytes that were best analysed in the positive and the negative ion modes, based on 

their limits of detection (LOD, 3 x S/N; S/N, signal-to-noise ratio). For subsequent 

quantification in standards and real samples, the most intense product ion for each 

auxin compound was selected as the quantification (quant) ion, and the other 

product ions were confirmation (qualifier) ions. For D5-IAA and lAA, the quant 

ion would be miz 134.09 and 130.06, respectively. Figures 3.15 and 3.16 show 

examples of targeted MS/MS extracted ion chromatograms (EIC) and MS/MS (MS2) 

product ion spectra for D5-IAA and lAA, in the positive and negative ion modes, 

respectively. Figures 3.17 and 3.18 show the fragmentat ion location on each auxin 

protonated, [M+H]+ and deprotonated, [M-H] molecules to produce the most 

intense product ion observed in the positive and negative ion modes, respectively. 
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The major precursor-to-product transition for D5-IAA was 181^134 (positive scan 

mode) and 179->135 (negative scan mode). In the positive ion mode, apart from 

IBA (204-»186) and 4-Cl-IAA (210-^164), all other auxin species had precursor 

ion->130 (quinolinium ion) transitions. In the negative ion mode, the most intense 

transitions were as follow: lAA (174^130), IBA (202^116), PAA (135^91), 4-Cl-

lAA (208^164), lAA-Ala (245^88), lAA-Asp {289->88), lAA-Leu/IAA-Ile 

(287^130), lAA-Phe (321^164), lAA-Trp (360->203) and lAA-Val (273^116). 

Phenylacetic acid could not produce a good peak in the positive ion MS/MS mode. 

The column used in our analyses could not resolve leucine and its isoform 

isoleucine, nor could mass spectrometry differentiate between these two compounds. 

Thus, future quantification of these compound(s) must be carefully interpreted. 

Alternatively, ion-exchange or chiral columns could be used to separate these 

isoforms prior to quantification. 
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Figure 3.14 Collision energy optimisation. Mass spectra show relative abundance on the 

y-axis and mass-to-charge (m/z) ratio on the x-axis. Product ion spectra of (A-C) D5-IAA 

and (D-F) lAA under different collision energies (CE) in positive ESI. The optimum collision 

energy dissociates the precursor ion to - 10 % of its original abundance (B,E). Lower 

collision energies promote insufficient fragmentation (A,D). Higher collision energies 

promote additional "nolse-like" fragments {C,F). Blue diamonds indicate precursor Ions. 



Table 3.7 Quality parameters for auxin detection using LC-MS/MS in our study. Commercial auxin standards used 

in this study and their respective retention times, optimised collision energies, collision induced dissociation high 

resolution product ions, LODs^ LOQs^ linearity and correlation coefficients for identification and quantification in 

positive and negative ion polarity ESI targeted MS/MS. 

Anatyte Molecular 
fomiulae 

M W 
(g/mol) 

Parent 
Ion 

|M»H)-

Collision 
energy 

(eV) 

IR 
(mm) Product ions (from most intense to least) LOD-

(pgftng) 
LOQ» 

(pgTmg) 
Lineanty 

(y = ) 

Correlation 
coeftpcicnl 

m 
D5- IAA C . I I H 4 D ! N 0 ; 180 21 181 1014 12 12 3 ± 

0 004 134 0892 133 0826 135 0961 116 9742 95 9716 0 54 0 9 1 

lAA C.OHINOJ 175 19 176 0710 10 1 2 4 i 
0 005 

130 0643 131 0663 158 0582 103 0522 77 0336 1 01 1 6 9 20 9120IC. 
0 1716 0 9991 

IBA C . iHf jNQj 203 24 204 1033 12 1 5 , 7 1 
0 007 

186 0890 130 0624 168 0787 158 0934 144 0790 0 20 0 5 1 34 5990X -
0 3430 0 9976 

lAA-Ala C » H w N i O i 246 27 247 1095 10 117 1 
0 014 

130 0651 90 0553 131 0686 201 1019 0 75 1 2 6 30 9550X• 
0 1009 0 9991 

Analyte Molecular 
formulae 

M W 
(g/mol) 

Parent 
Ion 

IM-Hh 
energy 

(eV) 

tn 
(min) Product ions (from most intense to least) LOD' 

(pg/mg) 
LOQ» 

(pglmg) 
Lineanty 

(y = ) 

Coirelalion 
coefficient 

(R!) 

DS-IAA C .oH.DsNGj 180 21 179 0874 10 
1 2 2 1 
0 020 

135 0960 90 9979 159 6305 59 1363 104 9311 3 7 1 6 1 8 

P A A C . H . O J 136 05 1350452 3 1 1 7 1 
0 047 

91 0526 72 0207 117 4564 50 2836 6 90 1150 1 2736X. 
0.0050 0 9922 

4 .C I - IAA C . » H i C I N O j 209 63 208 0171 8 1 5 0 1 
0 006 

164 0287 165 0275 128 0468 0 2 5 0 41 21 5260X 
• 0 1375 0 9956 

lAA-Asp 1 C i . H i . N i O i 290 29 289 0830 17 9 6 1 
0 059 

88 0423 132 0311 115 0051 173 0723 156 0472 1 55 2 6 8 9 1470x« 
0 0279 0 9975 

lAA-lle C,.H2ONJOI 288 35 287 1361 15 16 5 1 
0 002 

130 0854 131 0887 156 0425 243 1475 0 0 5 0 09 97 2150X 
» 1 1548 0 9959 

IAA4 .eu C I»HJON20! 288 35 267 1385 10 16 5 1 
0 002 

130 0854 131 0887 156 0425 243 1475 0 05 0 09 97 2150X 
« 1 1548 09959 

lAA-Phe C , ) H , . N J O I 322 37 321 1245 15 1 6 9 1 
0 007 

164 0718 165 0 749 147 0453 103 0548 277 1 341 0 14 0 24 45 3370X 
• 0 3456 0 9974 

lAA-T ip C j . H i i N i O i 361 39 360 1354 17 
164 1 
0 0 0 3 

203 0829 204 0864 74 0254 116 0514 156 0455 0 76 1 2 7 6 3667X » 
0 1310 0 9914 

lAA-Val i C . i H . . N j O i 274 32 273 1243 15 151 1 
0 006 

116 0739 117 0765 156 0478 128 0522 229 1371 O i l 0 18 58 1590X 
• 0 3346 0 9987 

Injection precision (n=10), data shows mean a n d S D 

• Limit of detection (LOD) 2 3 x S / N ; « Limit of quantification (LOQ) a 5 x S /N 
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Figure 3.15 Positive targeted MS/MS extracted ion chromatograms (top) and MS/MS 

product ion spectra (bottom) of (A) D5-IAA and (B) lAA, respectively, using a 5 pg ml"' auxin 

standard mixture. Extracted ion chromatograms show/ the retention time of Individual auxin 

analytes. Product Ion spectra show the precursor Ion and the three most abundant product 

Ions unique to each analyte. 
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Figure 3.16 Negative targeted MS/MS extracted ion chromatograms (top) and MS/MS 

product ion spectra (bottom) of (A) D5-IAA and (B) lAA, respectively, using a 5 pg ml"'' auxin 

standard mixture. Extracted ion chromatograms sliow the retention time of individual auxin 

analytes. Product ion spectra show the precursor ion and the three most abundant product 

ions unique to each analyte. 
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Figure 3.17 Location of fragmentation via collision induced dissociation (CID) on each 

auxin protonated molecule [M+H]* to produce the respective most abundant product ion in 

the positive ESI mode. Mass-to-charge (m/z) = 130 is a quinolinium ion. 
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Figure 3.18 Location of fragmentation via collision induced dissociation (CID) on each 

auxin deprotonated molecule [M-H]" to produce the respective most abundant product ion in 

the negative ESI mode. 
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3.3.3 Validation of the positive and negative LC-ESI-Q-TOF MS/MS auxin 

methods 

After optimisation of the LC-ESI-Q-TOF in both positive and negative ion polarities, 

calibration curves (0.01, 0.05, 0.1, 0.5, 1.0, 2.0 and 5.0 ng pL ' , with the internal 

standard fixed at a known concentration of 0.4 ng ^L ') were analysed to determine 

the linear regressions, correlation coefficients, limits of detection (LOD, 3 x S/N) 

and hmits of quantification (LOQ, 5 x S/N) for each auxin analyte, in both ion 

polarities. We found that MS response was no longer linear at the concentrations of 

1.0, 2.0 and 5.0 |ig ml ', compared to the lower concentrations (Figure 3.19), 

suggesting that detector saturation occurred after 1.0 [ig m l ' . Therefore, the 

hnearity range was from 0.01 to 1.0 îg m l ' . Note that for lAA and IBA, the slopes 

of the calibration curves were steeper in the positive ion mode, indicating that they 

have higher detection sensitivity in the positive mode. Good correlation coefficients 

for standard curves (normalised to D5-1AA) were obtained for all auxin compounds 

studied (R^ > 0.99), in the optimal scan polarity (Table 3.8). A separate set of 

calibration curves using raw peak height counts were constructed and they 

produced linear regressions with comparable R^ values (Table 3.8), suggesting that 

there were no matrix effects in both ion polarities (i.e. ion 

suppression/enhancement). Therefore, the use of an internal standard added prior 

to the extraction step in real samples would account for complex plant matrix effects 

and sample loss (Pan and Wang, 2009). An advantage of using labelled internal 

standards in comparison to analogue internal standards would be the similar 

chemical properties and behaviour between labelled internal standards with the 

endogenous compounds during extraction and analysis procedures (Lanckmans et 

al., 2007). Good reproducibility for retention times was observed with a relative 

standard deviation (% RSD) ranging from 0.01-0.70 % for run-to-run precision 

(n=10) (Table 3.7). In addition, the internal standard D5-IAA displayed 

reproducibility in peak area counts with a % RSD of 13% (run-to-run, n=10). The 
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limits of detection (LOD) and quantification (LOQ) were calculated based on a 

signal-to-noise ratio of 3:1 and 5:1, respectively. The LODs and LOQs of all 

compounds were determined and are listed in the Appendix B. The compounds 

lAA, IBA and lAA-Ala had lower LODs and LOQs in the positive ESI mode while 

other auxin analytes were better detected in the negative ESI mode (Table 3.7). 

Good LODs were obtained with our optimised methods (0.05-6.90 ng g '). 

150 

B 

1 2 3 4 
Concentration (ppm) 

1 2 3 4 
Concentration (ppm) 

Figure 3.19 Detector saturation at higti concentrations of analytes. Examples of lAA and 

IBA standard curves (0-5 jjg ml"') in the (A) positive and (B) negative scan polarities. 

Analyte counts were normalised to the D5-IAA internal standard. The detector saturation 

point occurs at around 1 pg ml'V 
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Table 3.8 Correlation coefficient (R^ values) of auxin compounds. Correlation coefficients 

were calculated from calibration curves generated from raw peak height counts, which were 

or were not normalised to the D5-IAA internal standard. Comparable R^ values indicate no 

matrix effects (i.e. ion suppression / enhancement) during MS ionisation. 

Auxin 
compound 

Correlation coefficient (R^) Auxin 
compound Normalised Not normalised 

lAA 0.9991 0.9988 

IBA 0.9976 0.9974 

PAA 0.9922 0.9949 

4-CI-IAA 0.9956 0.9992 

lAA-Ala 0.9991 0.9999 

lAA-Asp 0.9975 0.9997 

lAA-Leu 0.9959 1.0000 

lAA-l le 0.9959 1.0000 

lAA-Phe 0.9974 0.9998 

lAA-Trp 0.9914 0.9991 

lAA-Val 0.9987 0.9997 

3.3.4 Quality parameters of an LC-ESI-Q-TOF MS/MS flavonoid method 

In addition to optimising LC-MS/MS methods for auxin identification and absolute 

quantification, we adopted our auxin LC-ESI-Q-TOF negative ion mode method 

and optimised the collision energies to identify and quantify flavonoids in 

M. truncatula root tissue. The optimal collision energies were determined for the 

flavonoid compounds luteolin, kaempferol, naringenin, quercetin, morin, 

hesperetin, genistein and apigenin. For our study, luteolin was used as an analogue 

internal standard (20 ng) for flavonoid quantification in calibration standards and 

real samples. Due to time constraints, only the negative targeted MS/MS mode was 

investigated for flavonoid compounds due to its good MS response in a previous 

work conducted on the same LC-MS system (Buer et al., 2013). Samples were 

injected (7 ^I) onto an Ascentis* Express 2.7 (im C18 2.1 x 50 mm column (Supelco). 

Mobile phase A consisted of 0.1 % aqueous formic acid and mobile phase B 
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comprised of 90 % acetonitrile/water with 0.1 % formic acid, using the same 

gradient as for the auxin method. Chromatographic peak shapes, retention times 

and MS/MS product ion spectra of individual flavonoid compounds were good. 

Luteolin and naringenin are shown in Figure 3.20 as examples. Calibration curves 

f rom 0.01-5.0 ppm were generated and the linear range was found to be 0.01-2.0 

ppm (Table 3.9). Good correlation coefficients were obtained (R^ > 0.98) and the 

reproducibility of retention times was good with % RSDs of 0.09-1.37 % for run-to-

run precision. Furthermore, the internal standard luteolin has an area count % RSD 

of 7.96 % (run-to-run). Finally, the LODs (3 x S/N) and LOQs (5 x S/N) were 

calculated as previously, with the former ranging from 5.47-45.91 pg m g ' (Table 

3.9). 

§ 
• Luteolin, [M-H]-i = 285 1 

110.217 min 

t,(min) 
4 5 6 7 8 9 10 11 12 13 14 16 16 17 18 

^ 100 133 0322 Luteolin, MS2 product ion spectrum. 
/ CE = 35 

[M-H] 
66.0060 83.0155 286.0392 / / , 1 , 1 1 • '1 1 •!—S "-1 r 1 r̂  1 

Q: 40 60 80 100 120 140 160 180 200 220 240 260 280 300 

10.885 min 
Naringenin, [M-H] ' = 271 

5 6 7 8 10 11 12 13 14 15 16 17 18 

100-

50 

0 

119.0490 
161 0020 Naringenin, MS2 product ion spectrum, 
/ HI- CE = 25 

2 ^ 2 5 
J I, .. , , , ,—i—, 1 1- m/z 

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 
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Figure 3.20 Extracted ion chromatograms and MS/MS product ion spectra of flavonoid 

analytes analysed in the negative ion polarity with LC-ESI-Q-TOF-MS/MS using a 5 pg ml"' 

commercial flavonoid standard mixture. The compounds (A) luteolin and (B) naringenin are 

shown here. Chromatograms show the retention times (tR, min) of individual flavonoid 

analytes. Product ion spectra show the precursor ion [M-H]", the characteristic most 

abundant product ions unique to each analyte and the collision energies applied. 

3.3.5 Method validation of an existing auxin extraction protocol 

Once all the LC-ES-Q-TOF method development and validation were completed we 

continued on to validate the extraction protocol for auxins. In the work conducted 

by Muller and Munne-Bosch (2011), it was reported that the recovery of lAA was > 

80 %. An attempt was made in this study to reproduce the recovery for this analyte, 

as well as to investigate the suitability of this method in the extraction of auxin 

conjugates as listed in Table 3.2. The recovery experiment was performed as 

described in section 3.2.3 and schematically shown in Figure 3.4. The recoveries of 

auxin compounds are shown in Table 3.10. 



Table 3.9 Quality parameters for flavonoid detection using LC-MS/MS in our study. Commercial flavonoid standards used in this study 
a b 

and their respective retention times, CID high resolution mass product ions, LODs , LOQs , linearity and correlation coefficients used for 

identification and quantification by negative polarity ESI Targeted MS/MS. 
3 
a 
0-

Analyle Ivlolecular 
formulae MW(g/mol) 

Parent 
Ion 

IM.Hh 

Collision 
energy 

(eV) 
IR 

(mil) Product ions (from most intense to least) LOD* 
(pg/mg) 

LOQ» 
(pg'mg) 

Linearity 
Correlation 
coefficient 

(R') 

Lutcolln C15H1006 2 8 6 2 4 2 8 5 0 4 0 2 3 5 
10 3 ± 

0 0 1 0 
133 0306 65 0043 83 0155 107 0141 175 0399 7 5 5 12 5 8 

Ka»mpferol C15H1006 2 8 6 24 2 8 5 0 3 9 4 4 5 
11 1 ± 

0 109 
93 0318 117 0332 159 0429 65 0039 227 0369 8 61 1 4 3 5 

0 6106X » 

0 0 6 0 8 
0 9 9 5 0 

Narina*nin C15H1205 2 7 2 2 6 271 0 6 1 2 2 5 
10 9 ± 

0 112 
119 0518 151 0058 107 0154 65 0043 83 0151 5 4 7 9 11 

7 3793X • 

0 0 8 7 2 
0 9 9 8 5 

Quercetin C15H1007 3 0 2 2 4 301 0 3 5 4 3 5 
10 2 ± 

0 1 6 3 
15 1 0042 107 0127 121 0291 65 0039 83 0142 6 5 3 10 8 9 

31 4 3 7 0 X 

• 2 3 7 5 0 
0 9 9 0 2 

Morin C15H1007 3 0 2 2 4 301 0 2 6 5 3 5 
9 5 1 

0 1 9 6 
149 0251 65 0039 83 0149 107 0144 125 0255 10 8 8 18 13 

5 0 6 8 0 0 X 

• 1 4 1 2 2 
0 9 9 9 3 

Hesp«retin C16H1406 3 0 2 2 7 301 0 7 1 5 2 5 
11 4 ± 

0 0 9 7 
164 0122 136 0173 108 0218 151 0047 134 0394 4 5 91 7 6 5 2 

0 6 6 2 7 X » 

0 0 2 8 3 
0 9 8 9 6 

Gcnistcin C15H1005 2 7 0 2 4 2 6 9 0 4 5 5 3 5 
1 1 0 ± 

0 0 3 5 
117 0 343 151 0034 107 0144 65 0026 83 0151 1 4 2 1 2 3 6 8 

5 2 3 9500X 

- 3 4 8 7 4 
0 9 9 9 2 

Apigenin C15H1005 2 7 0 2 4 2 6 9 0 4 5 5 3 0 
11 0 ± 

0 0 3 5 
117 0343 151 0034 107 0144 65 0026 83 0151 1 4 2 1 2 3 6 8 

5 2 3 9500X 

- 3 4 8 7 4 
0 9 9 9 2 

Inieclion precrsion (n=10) data shows mean and SD 

• Limil of detection (LOD) 2 3 x S/N .» Limit of quantification (LOQ) s 10 x S/N 
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Table 3.10 Extraction recoveries of auxin metabolites (n=5). 

Auxin compound Recovery (%) % RSD' 
lAA 97.8 9.4 
IBA 42.1 20.2 

4-CI-IAA 101.6 15.6 

lAA-Ala 34.9 12.6 

lAA-Asp 42.2 43.1 

lAA-Phe 44.6 15,7 
' % Relative standard deviation (RSD) = (Standard deviation / Mean) x 100 % 

Based on Table 3.10, recoveries of lAA and 4-Cl-IAA were close to 100%; 

IBA, lAA-Ala, lAA-Asp and lAA-Phe were < 50 %. Other auxins, such as PAA, 

lAA-Leu, lAA-Ile, lAA-Trp and lAA-Val were not detected. Although the recovery 

of lAA was similar to other studies (Matsuda et al., 2005, Novak et al., 2012), 

recoveries of other metabolites, such as lAA-Ala, lAA-Asp and lAA-Phe could be 

improved, as demonstrated by Matsuda et al. (2005), which attained recoveries 

between 91-99%. Suboptimal analyte recoveries suggest that matrix effects (ion 

suppression) f rom interfering compounds in the sample extract were affecting the 

recovery of these analytes (Annesley, 2003). Nevertheless, the recovery of lAA, the 

primary active auxin, was comparable with other auxin extraction methods (Liu et 

a l , 2012, Novak et al., 2012), where different methanol composit ions (5-80 %) were 

used as the extraction solvent. Although the lAA conjugates in this study were all 

acidic in chemical characteristics, it was discovered by Novak et al. (2012) that the 

stability of these analytes only occurred over a pH range of 4-12, where compounds 

like lAA-Trp, IBA and lAA-Phe were only stable when the pH was at 8. One of the 

strengths of the Muller and Munne-Bosch (2011) method adopted in this study was 

the speed, and avoidance of additional steps, such as derivatisation and purification. 

However, adapting the Novak et al. (2012) extraction method, which incorporated a 

derivatisation step using cysteamine for the thermally labile auxins (0.25 M, pH 8.0, 
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incubat ion for 1 h o u r ) and SPE purif icat ion in this s tudy could have potentially 

improved the detect ion and quant i f icat ion of auxins in M. tmncatula root tissues. 

3.3.6 Conclusion 

It is f r o m opt imis ing these specific LC-ESI-Q-TOF parameters in both positive and 

negative ion polarities that we could achieve the sensitivity we needed for the 

reproducib le detect ion and quant i f icat ion of trace lAA and lAA conjugates in the 

small a m o u n t s of plant tissues used, within a relatively short analysis t ime. We did 

not , however , do an exhaustive survey and development of alternative extraction 

me thods . The extraction efficiencies obtained in ou r s tudy could be improved, for 

example, by modi fy ing the Muller and Munne-Bosch (2011) extraction protocol, or 

adop t ing the Novak et al. (2012) method , which repor ted good recoveries for 

various auxin metaboli tes. An improved me thod which allows s imul taneous 

h o r m o n e profi l ing with improved analyte recovery will accelerate our 

unde r s t and ing of h o r m o n a l ( inter)action dur ing legume development . 
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CHAPTER 4 

Comparison of Local Auxin Transport 

Control and Auxin Content in 

Indeterminate and Determinate 

Nodules 
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4.1 I n t r o d u c t i o n 

4.1 Introduction 

Nodulation in legumes is tightly regulated by plant hormones. Positive regulators of 

nodulation include auxin, cytokinin, gibberellic acid and brassinosteroids. Ethylene, 

jasmonic acid and abscisic acid are generally considered negative regulators of 

nodulation (Ferguson and Mathesius, 2014). Auxin is one of the most widely 

studied hormones during nodulation. The plant hormone auxin is a key regulator 

of meristem maintenance and organogenesis (Overvoorde et al., 2010). These two 

important functions are particularly relevant to nodulation, given that it involves: 1) 

the dedifferentiation of mature cells and the establishment of a new group of 

meristematic cells, forming the nodule meristem and; 2) a controlled auxin response 

in specific tissues as a nodule grows and differentiates outwards from the inner 

layers of the root to form a new organ (Mathesius, 2008, Oldroyd and Downie, 

2008). Even though the study of auxin has taken centre stage, many questions 

remain about its regulation during nodule development, including the similarities 

or differences in different nodulating species. 

Regulation of auxin takes place at multiple levels within a plant. Auxin can 

be synthesised locally or at a distant location and subsequently transported to the 

target tissue (Ljung, 2013). In addition, the vacuole is a store of inactivated/ 

conjugated auxins, which can be hydrolysed into active, free forms (Korasick et al., 

2013, Ludwig-Muller, 2011). Although lAA is the most abundant active, free auxin 

in most land plants, possible direct activity of auxin conjugates, which are generally 

present at levels many folds higher than free lAA, cannot be ruled out (Siemens et 

al., 2006). Other active auxin forms, such as IBA and 4-Cl-IAA, are also able to 

form conjugates with sugars and amino acids. However, their function in plant 

development is even more under-explored. Given the variety of auxin species 

present in plants, it is imperative that we understand their biological function and 
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behaviour in planta, including their concentration and localisation patterns during 

lateral organ formation. 

During the \egume-Rhizobium symbiosis, the auxin response at the early 

stages of nodule development changes dynamically. In white clover, auxin response 

indicated by GH3:GUS expression decreased at and below the Rhizobium trifolii-

inoculated site at 10 h post inoculation (h.p.i.) (Mathesius et al., 1998). Between 20-

30 h.p.i., an enhanced auxin response was visualised at the site of rhizobia 

inoculation. In M. truncatula, an increased auxin response at the pericycle, 

endodermis and cortex was detected at 24 h.p.i. with S. meliloti (van Noorden et al., 

2007). This enhanced auxin response was later localised to a cluster of dividing cells 

in the pericycle, endodermis and inner cortex at 48 h.p.i.. The development of a 

nodule in L.japonicus is slower, as a visible auxin response was only seen after 

5 d.p.i. (Suzaki et al., 2012). Similar to M. truncatula, auxin response is detected in 

cortical cells at the early primordia stage of L. japonicus (Pacios-Bras et al., 2003, 

Takanashi et al., 2011) and soybean (Turner et al., 2013). This enhanced auxin 

response is maintained in the entire nodule until it matures approximately a week 

later, where auxin response is primarily focussed at the periphery of the nodule, 

corresponding to the nodule vasculature (Suzaki et al., 2012, Takanashi et al., 2011). 

So far, the investigation of auxin response in other nodulating species is lacking. 

One open question is how the increased auxin response in the nodule primordia is 

achieved. Modelling suggests that it is most likely a result of reduced auxin export 

from the cortical cells (Deinum et al., 2012). Thus, we investigated auxin transport 

control during nodulation. 

The importance of polar auxin transport regulation in root development has 

been highlighted in multiple studies. Mutants in the PIN and AUX/LAX family 

(auxin efflux and influx facilitators, respectively; see section 1.1.1) show root growth 

and lateral root developmental defects (Overvoorde et al., 2010). In M. truncatula, 

knockdown of various PIN genes reduced nodule numbers on transgenic roots (Huo 
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et al., 2006). By comparing with a non-nodulating mutant of M. truncatula, it was 

subsequently suggested tiiat a transient inhibition of acropetal auxin transport after 

Nod factor treatment on WT M. truncatula roots was a prerequisite for nodule 

formation (Plet et al., 2011). This temporary inhibition of acropetal auxin transport 

has also been shown in vetch (Boot et al., 1999). So far, this phenomenon seems to 

be exclusive to indeterminate nodule formation. In L. japonicus, an increase in 

acropetal auxin transport capacity was measured at 48 h.p.i., but no inhibition was 

observed during the early stages of host-Rhizobium interaction in this legume 

(Pacios-Bras et al., 2003). Auxin transport inhibition is also likely not a requirement 

during soybean nodulation. Although RNAi'-induced silencing of ISOFLAVONE 

SYNTHASE (catalyse isoflavonoid synthesis, which are capable of inhibiting auxin 

transport) in soybean hairy roots increased auxin transport rate and reduced 

nodulation, these soybean hairy roots could be rescued with a genistein (an 

isoflavone)-hypersensitive strain of B.japonicum or purified Nod factors, suggesting 

that auxin transport regulation by isoflavonoids is not essential for nodulation in 

soybean (Subramanian et al., 2006). However, changes in basipetal auxin transport 

during nodulation have not been investigated. Because knockdown of PIN2 [auxin 

efflux facilitator orthologous to AtPIN2, which is involved in basipetal auxin 

transport in Arabidopsis; (Rashotte et a l , 2000)] in M. truncatula roots reduced 

nodule numbers (Huo et al., 2006), it is likely that basipetal, in addition to acropetal 

auxin transport, plays a key role during nodulation. 

The ability of synthetic auxin transport inhibitors to induce nodule-like 

structures on the roots of legumes further underlines the pivotal role of polar auxin 

transport (inhibition) in nodulation. Application of auxin transport inhibitors has 

successfully induced pseudonodule formation on the roots of alfalfa, M. truncatula, 

white sweetclover and pea (Hirsch et al., 1989, Rightmyer and Long, 2011, Scheres et 

a l , 1992, Wu et al., 1996). Critically, all four mentioned legumes form 

indeterminate nodules and a similar treatment on I . japonicus roots (forming 
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determinate nodules) roots failed to induce pseudonodules (Kawaguchi et al., 1996). 

Coupled with the difference in polar auxin transport regulation between 

indeterminate and determinate nodulation (evidence present for L. japonicus only), 

this suggests the essential role of polar auxin transport inhibition for indeterminate 

but not determinate nodule formation. The temporary inhibition of polar auxin 

transport was initially proposed as a mechanism to redirect auxin flow into the 

incipient nodule primordium (Mathesius, 2008). 

During lateral root formation in Arabidopsis, PINl auxin efflux carriers in 

lateral root primordia cells are depleted from the plasma membrane and undergo 

degradation, thus reducing polar auxin flow (Marhavy et al., 2011). In addition, the 

depletion of plasma membrane PINl from the vertical side of lateral root primordia 

cells also serves to reorganise the polarity of PINl, i.e. to the horizontal sides, thus 

redirecting auxin flow in the horizontal direction (Marhavy et al., 2014). Although 

this has not been demonstrated during nodule formation in M. truncatula, the 

plausibility of such a mechanism was supported by the reorganisation of a PIN3-

GFP fusion from basal-to-lateral configuration in the syncytium during nematode 

infection (Grunewald et al., 2009). Auxin transport inhibitors block endosomal 

recycling of PIN proteins (Geldner et al., 2001). Accordingly, application of auxin 

transport inhibitors to the roots blocks lateral root initiation (Casimiro et al., 2001). 

It is so far unclear how auxin transport inhibitors: 1) induce pseudonodule 

formation; 2) affect local and horizontal auxin flow in the nascent pseudonodule 

and; 3) regulate auxin response during pseudonodule development. Nevertheless, 

Suzaki et al. (2012) showed a localised auxin response during spontaneous nodule 

formation (an empty nodule-like structure not harbouring rhizobia, similar to 

pseudonodules) in the L. japonicus snf2 mutant, similar to the auxin response seen 

during normal nodule formation . 

A direct quantification of endogenous auxin concentration during nodule 

development will give us insights into changes of local auxin levels. This 
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information is missing f rom the literature hitherto. Although auxin response 

studies indicated by GH3- and DR5-driven auxin reporters give us information on 

auxin action, the changes in the reporter output does not necessarily translate 

linearly into alterations in endogenous auxin levels. Immunolabelling of lAA in 

mature M. truncatula nodules showed the localisation of lAA in the meristematic 

and invasion zones (Fedorova et al., 2005). Detection of lAA at the early stages of 

M. truncatula nodulation has so far not been demonstrated. In the actinorhizal 

plant Casuarina glauca, immunolocalisation experiments similarly demonstrated 

the presence of lAA in nodules (Perrine-Walker et al., 2010). In addition, a higher 

phenylacetic acid (PAA) signal was also detected in C. glauca (Perrine-Walker et al., 

2010) and Discaria trivernis (Imanishi et al., 2014) nodules. This suggests that PAA 

(an active auxin) might play an important role inside actinorhizal nodules. In fact, 

PAA was detected at levels multiple fold higher than lAA in several plants, 

including pea, tobacco and maize (Wightman and Lighty, 1982). So far, however, its 

activity has been poorly defined. Identification of multiple auxin conjugate forms 

hints at a more complicated mode of auxin action in determining developmental 

outputs, rather than just by a few active auxin species (Korasick et al., 2013). 

Expression studies of several auxin conjugate hydrolases, as well as the 

corresponding enzyme-product specificity assays, suggest the presence of several 

auxin conjugates in the roots of M. truncatula, including lAA-Alanine, lAA-

Phenylalanine, lAA-Aspartate, lAA-Leucine, lAA-Isoleucine and lAA-Valine 

(Campanella et al., 2008). The function of amino acid auxin conjugates is still 

unclear, but they have been proposed to serve as storage compounds, inactivation/ 

degradation intermediates, or as an auxin antagonist to inhibit its own activity 

(Korasick et al., 2013). Having knowledge on the endogenous levels of auxins 

during nodulation will complement our understanding about the role of auxin 

during the legume-Rhizobium symbiosis. 
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Here, we tested the effects of two common auxin transport inhibitors, TIBA 

and NPA, on the roots of M. truncatula, subclover {Trifolium subterraneum), acacia, 

Lotus japonicus, soybean {Glycine max) and Sesbania rostrata. We chose 

M. truncatula, subclover and acacia to represent indeterminate nodule-forming 

legumes; determinate nodule-forming legumes were represented by L. japonicus and 

soybean; S. rostrata has been reported to form both nodule types, but potentially 

prefers to form indeterminate nodules under non-waterlogging and well-aerated 

conditions, similar to the short-termed flood treatment and growth system used in 

our study, respectively (Fernandez-Lopez et al., 1998). Changes in basipetal auxin 

transport have not been investigated during \egume-Rhizobium symbiosis. We 

investigated aero- and basipetal auxin transport capacity in corresponding root 

segments in M. truncatula and L. japonicus to compare the effect of rhizobia 

infection on bidirectional auxin transport. Finally, we quantified endogenous auxin 

levels during legume-rhizobia symbiosis using liquid chromatography electrospray-

ionisation quadrupole time-of-flight tandem mass spectrometry (LC-ESI-Q-TOF 

MS/MS) to investigate local changes in auxin concentrations. 
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4.2 Results 

4.2.1 Auxin transport inhibitors induce pseudonodule formation in 

indeterminate nodule-forming legumes 

Auxin transport inhibitors (ATIs), such as TIBA and NPA, have previously been 

shown to induce pseudonodule formation on the roots of the indeterminate nodule-

forming legumes Medicago truncatula, alfalfa and pea (Hirsch et al., 1989, 

Rightmyer and Long, 2011, Scheres et al., 1992). We hypothesised that auxin 

transport inhibitors can only elicit pseudonodules in indeterminate but not 

determinate nodule-forming legumes. Because so far auxin transport inhibition has 

only been demonstrated during the formation of indeterminate nodules, we tested 

the effects of these auxin transport inhibitors at various concentrations on several 

indeterminate and determinate nodule-forming legume species, including 

M. truncatula, subclover, acacia, Lotus japonicus, soybean and Sesbania rostrata. 

First, we observed the effects of TIBA and NPA on the root growth of M. truncatula 

and L. japonicus, as the inhibition of auxin transport is expected to affect the root 

meristem (Sabatini et a l , 1999). As predicted, the application of TIBA and NPA 

significantly inhibited primary root growth in M. truncatula and L. japonicus 

(Figure 4.1). M. truncatula root growth was significantly reduced at ATI 

concentrations starting from 1 pM. The highest TIBA concentration tested, 100 ^M, 

significantly reduced root growth by approximately 45%. However, a ~ 80 % 

reduction in root growth was already observed with a 10 [iM NPA treatment on 

M. truncatula roots. L. japonicus was less sensitive towards the ATIs. NPA started 

inhibiting primary root growth at 10 pM. In comparison, TIBA only caused a slight 

but not significant growth reduction at 50 pM. Overall, primary root growth was 

inhibited by NPA more strongly than TIBA (p<0.0001, two-way ANOVA), 

suggesting that NPA is a more potent auxin transport inhibitor at the expense of 

severe pleitropic effects. 
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Figure 4.1 Primary root growth in response to TIBA and NPA treatment at various 
concentrations. Primary root growth was measured at 15 days post treatment for Medicago 
truncatula (A) and 25 days post treatment for Lotus japonicus (B). A two-way ANOVA with a 
Tukey-Kramer multiple comparison post-test was used for statistical analysis. Different 
lower case letter indicates statistically different root length (p<0.05, n=15-20). Abbreviations: 
0 , control; TIBA, 2,3,5-triiodobenzoic acid; NPA, 1-naphthylphthlamic acid. Graphs show 
mean and SD. Abbreviation: C, control treatment. 

We found that TIBA and NPA application in the concentration range of 1-
200 |iM induced formation of pseudonodules on the roots of M. truncatula, 
subclover and S. rostrata, but not on acacia, L. japonicus and soybean. In 
M. truncatula and subclover, there was a significant dose effect on the formation of 
pseudonodules by ATIs (Figures 4.2 A and B; p<0.0001, two-way ANOVA). The 
auxin transport inhibitor TIBA showed a significantly higher pseudonodule-
forming efficiency compared to NPA in both species (Figure 4.2A and B; p<0.001, 
two-way ANOVA). The concentration of 50 [iM of TIBA and NPA represents the 
optimal concentration for pseudonodule formation (Figures 4.2A and B). 
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Figure 4.2 Pseudonodule formation in response to TIBA and NPA treatment at various 

concentrations. Pseudonodules were counted three-weel<s post-treatment. Pseudonodule 

formation on the roots of (A) Medicago truncatula and (B) subclover, in response to TIBA 

and NPA treatment within the concentration range of 0-100 pM. A two-way ANOVA with a 

Tukey-Kramer multiple comparison post-test was used for statistical analysis. Different 

lower case letters indicate statistically different number of pseudonodules per plant (p<0.05, 

n=20-25). Graphs show mean and SD 

We observed a variety of pseudonodulation patterns in M. truncatula, 

subclover and S. rostrata. The majority of pseudonodules were individual structures, 

similar to normal nodules (Figures 4.3A and B; 4.4A and B; 4.5A and B). There was 

a sizeable number of pseudonodules forming adjacent to (Figures 4.4C and D), as 

well as at the base of lateral roots (Figures 4.4E and F; 4.5C). There were a few 

pseudonodules forming at the tip of lateral roots (Figures 4.4G and 4.5D). 

Interestingly, pseudonodules were found along the entire roots of M. truncatula and 

subclover. We noticed that ATIs were even able to induce pseudonodules close to 

the stems of M. truncatula (Figure 4.3C) and subclover seedlings. In many cases, 

more than 10 pseudonodules were formed on a single seedling, which is far more 

than the mean nodule number (approximately four nodules / plant) usually 

obtained in our growth system (Figure 4.6). The external morphology of a 

pseudonodule was similar to a normal nodule but the internal features were distinct. 

A rhizobia-induced, functional nodule can be divided into several zones, with each 
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zone comprising a few cell layers with specific functions (Vasse et al., 1990). Cross 

sections of pseudonodules revealed a structure which is not reminiscent of a typical 

nodule. In M. truncatula, subclover and S. rostrata, pseudonodules were typified by 

extensive pericyclic and endodermal divisions (Figures 4.7A-F), compared to 

predominantly cortical cell divisions in rhizobia-induced nodules. During legume-

Rhizobium symbiosis, a peripheral vasculature develops in a maturing nodule. This 

was not observed in pseudonodules. Moreover, the primary root vasculature of 

roots treated with TIBA and NPA was malformed. 

Figure 4.3 Pseudonodule formation in response to TIBA and NPA treatment on Medicago 

truncatula roots. (A) Pseudonodule formation in response to 50 |jM TIBA treatment. (B) 

Pseudonodule formation in response to 50 (jM NPA treatment. (C) Pseudonodules were 

formed along the entire length of the roots. Section encapsulated by the white box indicates 

the region where the majority of pseudonodules were found. White lines within the box 

indicate location of the root tip when the roots were first subjected to TIBA treatment. White 

arrows indicate pseudonodules found at distal parts of the roots. Scale bars represent 

1 mm in (A) and (B), and 1 cm in (0). 
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TIBA NPA 

Figure 4.4 Pseudonodule formation in response to TIBA and NPA treatment on subclover 

roots. Pseudonodules were formed at different sites on the root. They were observed as 

singular structures (A-B), directly adjacent to a lateral root (C-D), at the base of a lateral root 

(E-F), and at the tip of a lateral root (G). Scale bars represent 500 Ĵm. 
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Figure 4.5 Pseudonodule formation in response to TIBA and NPA treatment on Sesbania 

rostrate roots. Pseudonodules were formed at different sites on the root. They were 

observed as singular structures (A-B), at the base of a lateral root (0) and at the tip of a 

lateral root (D). Scale bars represent 500 pm. 

10i 

Control Rhizobia 

Figure 4.6 Modulation efficiency on A17 roots in response to local application of rhizobia. 

T IBA NPA 
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Figure 4.7 Cross sections of pseudonodules induced by TIBA and NPA treatment. 

Pseudonodules analysed were from Medicago truncatula (A-B), subclover (C-D) and 

Sesbania rostrata (E-F). Asterisl<s indicate location of the primary root vasculature. Arrows 

indicate pericyclic and endodermal cell divisions. Scale bars represent 500 pm. 

Both M. truncatula and subclover were grown on petri dishes containing 

growth media. Due to the size and growth rate of S. rostrata, we used a potting 

system with vermiculite, instead of an in vitro system. Although we observed 

pseudonodules on the roots of S. rostrata between the TIBA and NPA concentration 

range of 10-200 |iM, they were fewer compared to pseudonodules that were 

quantified on M. truncatula and subclover roots. Only 10 out of 96 S. rostrata 

plants at various TIBA and NPA concentrations formed pseudonodules on the roots. 

Similar to pseudonodules on M. truncatula and subclover roots, the observed 

internal structures displayed extensive pericyclic and endodermal divisions, with no 

apparent nodule vasculature development (Figures 4.7E and F). We did not observe 

pseudonodules on the stems of S. rostrata, despite of its ability to initiate stem 

nodules (Dreyfus and Dommergues, 1981). Nevertheless, we observed an elevated 

occurence of bump-like structures on the stems of S. rostrata treated with TIBA and 

NPA (Figures 4.8D-I), instead of structures more resembling adventitious roots on 

the stems of mock-treated plants (Figures 4.8A-C). There was no clear central 

vasculature in these TIBA and NPA-induced bumps, as opposed to those observed 

in emerging adventitious roots (Figures 4.8B and C). Instead, there was an 

observable increase in cell divisions in the inner tissue layers (Figures 4.8E, F, H, I). 
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Figure 4.8 Bump-like structures formed on the stems of Sesbania rostrata treated with 

TIBA and NPA. Images show the morphology of lateral structures induced by water (mock 

treatment) (A-C), TIBA (D-F) and NPA (G-l). Ultraviolet light images highlight tissues with 

high wood/suberin content. White arrows indicate location of lateral structures. Yellow 

arrows highlight layers which differ in thickness between TIBA and NPA-treated stems 

compared to mock-treated stems. Scale bars represent 500 pm. 

Finally, we compared changes in the auxin response during the development 

of a rhizobia-induced nodule, pseudonodule and a hijacked pseudonodule (nodule 

formed from a pseudonodule) on M. truncatula roots. During rhizobial nodule 

development, auxin response as seen by GH3:GUS expression was localised to the 

dividing pericycle, endodermal and inner cortical cells, at the early stage of 

nodulation (~ 48 h.p.i.; Figure 4.9B) and later restricted to the nodule meristem and 

vasculature in a late stage nodule (~ 10 d.p.i.; Figure 4.9C). In mock-inoculated 

(Figure 4.9A) and mock-flooded (Figure 4.9D) roots, auxin response was mainly 

observed in the primary root vasculature. Faint and diffuse auxin response was 

found in the cortical layers of mock-treated roots (Figure 4.9A and D). A distinct 

auxin response was also visualised in the primary root vasculature of early and late 
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stage rhizobia-induced nodules (Figure 4.9B and C), but could not be detected in the 

primary vasculature of the vast majority of roots treated with TIBA (Figure 4.9E, F, 

H, I, J, K, L). During the early stages of TIBA-induced pseudonodule development, 

auxin response was observed in the dividing pericycle, endodermis and inner cortex 

as well (between 5-10 d.p.t; Figure 4.9E-H). Auxin response remained in the inner 

layers of a late stage pseudonodule (~ 20 d.p.t; Figure 4.91). It is hypothesised that 

rhizobia are able to hijack a developing lateral root to form nodules (Mathesius et al., 

2000). When M. truncatula roots were co-treated with TIBA and S. meliloti, we 

observed that rhizobia were seemingly able to hijack pseudonodule formation to 

form a rhizobia-colonised nodule (Figure 4.9J-L). These structures are highly 

similar to rhizobia-induced nodules. Nonetheless, traces of pseudonodule origins 

could be observed in their slightly malformed primary root vasculature (increased 

number of protoxylem and xylem poles; Figures 4.9J-L), lack of auxin response in 

the central vasculature, as well as a slightly thicker outer cortical layer (Figure 4.9K 

and L). Interestingly, auxin response was observed in the "infection zone" of 

"hijacked pseudonodules", but was absent in rhizobia-induced nodules. 

Rhizobia-
induced nodules 

TIBA-induced pseudonodules 
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Figure 4.9 Auxin response as seen by GH3:GUS expression on Medicago truncatula roots. 

Auxin response in different tissues in a rhizobia-induced nodule (A-C), TIBA-induced 

pseudonodule (D-l), and a hijacked pseudonodule (J-L). Structures in J-L are possibly 

pseudonodules that were hijacked, and then rescued by Sinorhizobium meliloti during early 

development, as indicated by the thicker, outer cortical layer, typical of pseudonodules (H-l). 

White arrows indicate auxin response in dividing cells. Red arrows indicate auxin response 

in the nodule vasculature. White asterisks indicate the location of the nodule meristem, 

where an enhanced auxin response is observed. Yellow asterisks indicate malformed 

vasculature of the primary root. Scale bars represent 200 pm. 

4.2.2 Auxin t ranspor t regulation in response to Rhizobiutn inoculat ion is 

different in indeterminate and determinate nodu le - fo rming legumes 

Auxin transport inhibition during legume-Rhizobium symbiosis is believed to occur 

exclusively in indeterminate nodule-forming legumes. However, a combined 

systematic analysis of auxin transport in both legume types during the early stages 

of symbiosis has not been published in the literature to date. Furthermore, basipetal 

auxin transport at the root tip, close to the nodulation susceptible zone, has been 

largely overlooked. We quantified changes in aero- and basipetal auxin transport in 

M. truncatula and L. japonicus in response to Rhizobium inoculation. Following 

spot-inoculation of Sinorhizobium meliloti on the roots of M. truncatula, we 

quantified aero- and basipetal auxin transport at 6, 24 and 48 h.p.i. in a 4 mm 

segment below (acropetal) or encompassing (basipetal) the inoculation spot (Figure 

4.10). In agreement with previous findings (van Noorden et al., 2006, Wasson et al., 

2006), a significant acropetal auxin transport inhibition was observed at 24 h.p.i., 

where a one third reduction in auxin transport capacity was measured in root 

segments treated with S. meliloti, in comparison to mock-treated roots (Figure 

4.11 A). We did not observe any change in acropetal auxin transport capacity at 6 or 

48 h.p.i., although there was a significant overall reduction in response to S. meliloti 

treatment (p<0.05; two-way ANOVA). For basipetal auxin transport, we quantified 

auxin transport capacity in a 4 mm segment above the root tip at 6, 24 and 48 h.p.i.. 
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Here, we measured a significant increase in auxin transport capacity in S. meliloti-

inoculated root segments compared to mock-treated root segments at 6 and 24 h.p.i. 

(Figure 4.11B). Interestingly, basipetal auxin transport underwent an even larger 

overall change (increase) in response to rhizobia inoculation (p<0.0001; two-way 

ANOVA). Our results showed that in M. truncatula, basipetal auxin transport 

changes in response to S. meliloti treatment occur earlier than acropetal auxin 

transport. In addition, basipetal auxin transport changes were more sustained, as 

opposed to a more transient nature of acropetal auxin transport inhibition. 
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Figure 4.10 Cartoon showing auxin transport measurements performed in this chapter. (A) 

An intact seedling is treated with rhizobia/flavonoid, either by inoculation or flood treatment. 

For acropetal transport measurements (B), the root Is excised 8 mm from the inoculation 

spot, or an equivalent spot in a flood-treated root. The cut root is incubated with a ^H-IAA 

block touching the cut end. The 8 mm segment directly touching the block is discarded and 

radioactivity in the segment below the inoculation spot is measured. For basipetal auxin 

transport measurements (C), an intact seedling is incubated with a ^H-IAA block touching 

the root tip. The segment directly touching the block ( - 4 mm, depending on root growth) is 

discarded and radioactivity of a 4 mm segment encompassing the inoculation spot is 

measured. 
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Figure 4.11 Auxin transport measurements in Medicago truncatula root segments. 

Acropetal (A) and basipetal (B) auxin transport capacity were quantified in mock or 

Sinorhizobium me///of/-treated root segments at 6, 24 and 48 hours post inoculation (h.p.i.). 

Acropetal (C) and basipetal (D) auxin transport capacity were quantified in mock or TIBA-

treated root segments at 6, 24 and 48 h.p.i.. Note that total CRM does not reflect an 

absolute difference between acropetal and basipetal auxin transport. A two-way ANOVA 

with a Tukey-Kramer multiple comparison post-test was used for statistical analysis (p<0.05, 

n=15-25). Different lower case letters indicate statistically different auxin transport capacity. 

Graphs show mean and SD. Abbreviation: CPM, counts per minute. 
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Next, we performed equivalent measurements on L. japonicus roots. To 

establish the nodulation timeline in L japonicus in vitro, we cultivated L. japonicus 

seedlings in petri dishes and studied nodule development after inoculation with 

M. loti (we did not replicate this study in M. truncatula because we have a well-

established growth system in the lab for this legume species). We noticed that small 

but visible nodule bumps could be observed on the roots at the inoculated site at 

7 d.p.i., which is similar to another publication (Suzaki et al., 2012). In addition, we 

consistently obtained nodules directly at, or in very close proximity (within 2 mm) 

to the inoculation site, indicating a reliable system for studying the nodulation 

stages (Figure 4.12A and B). An equivalent stage (visible nodule bumps) on 

M. truncatula roots can be seen as early as 72 h.p.i. using our growth system. We 

wanted to focus on auxin transport changes prior to the formation of visible nodule 

bumps. Hence, we focussed on measuring auxin transport capacity at the nodule 

developmental stages before it. Aero- and basipetal auxin transport capacities were 

quantified in root segments below the inoculation site of L. japonicus seedlings that 

were either mock-treated or inoculated with M. loti at 12, 24, 48, 72, 96 and 

120 h.p.i.. Our data showed that there was a significantly higher acropetal auxin 

transport capacity in root segments treated with M. loti, in comparison to mock-

treated root segments at 48, 96 and 120 h.p.i. (Figure 4.13A). Although no 

significant change was observed at either 6, 24 or 72 h.p.i., there was a general 

increase in acropetal auxin transport capacity across all measurements (p<0.0001; 

two-way ANOVA). This is opposite to what was obtained in the case of 

M. truncatula roots in response to S. meliloti treatment. Similar results were 

obtained for basipetal auxin transport measurements. A significant elevation in 

basipetal auxin transport capacity in root segments in response to M. loti treatment 

occurred at 48 and 120 h.p.i. (Figure 4.13B). Furthermore, there was an overall 

significant inoculation effect on basipetal auxin transport capacity (p<0.01; two-way 

ANOVA), albeit less profound than the changes in acropetal auxin transport (Figure 
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4.13A). Intriguingly, we could not fail to notice a slight but significant inhibition of 

both aero- and basipetal auxin transport between 24-33 h.p.i. in L. japonicus roots 

after M. loti t reatment. Indeed, we quantified a significant decrease in aero- and 

basipetal auxin transport on separate occasions (Figure 4.14A and B). The fact that 

this trend was observed multiple times suggests it is not a coincidence. 
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Figure 4.12 Nodulation on Lotus japonicus roots 20 d.p.i. with Mesorhizobium loti. (A) 

Nodules per root on L. japonicus roots spot-inoculated with M. loti (n=40). (B) Nodules 

forming at the site of M. loti inoculation. White arrow Indicates the inoculation site. Scale 

bar represents 1 mm. Graph shows mean and SD. 
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Figure 4.13 Auxin transport measurements in Lotus japonicus root segments. Acropetal 

(A) and basipetal (B) auxin transport capacity were quantified in mock or Mesorhizobium 

/off-treated root segments at 12, 24, 48, 72, 96 and 120 hours post inoculation (h.p.i.). A 

two-way ANOVA with a Tul<ey-Kramer multiple comparison post-test was used for statistical 

analysis (p<0.05, n=25-30). Acropetal (C) and basipetal (D) auxin transport capacity were 

quantif ied in mock or TIBA-treated root segments at 48 h.p.i.. A Student's /-test was used 

for statistical analysis (p<0.05, n=25-30). Note that total CPM does not reflect an absolute 

difference between acropetal and basipetal auxin transport. Different lower case letters in A 

and B indicate statistically different auxin transport capacity. In (C), *** indicates an 

extremely very significant change (p<0.0001). Graphs show mean and SD. Abbreviations: 

CPM, counts per minute; C, control treatment; I, inoculated. 
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Figure 4.14 Auxin transport inhibition in Lotus japonicus roots in response to rhizobia 

inoculation. (A) Acropetal (at 33 h.p.i.) and (B) basipetal (at 24 h.p.i.) auxin transport 

capacity were quantified in mock or Mesorhizobium /o//-inoculated root segments. A 

Student's /-test was used for statistical analysis (p<0.05, n=25). Asterisks indicate 

significant change in auxin transport capacity. Graphs show mean and SD. Abbreviation: 

CPM, counts per minute. 

As mentioned in the previous paragraph, we have established growth 

systems which consistently produced localised nodule development in M. truncatula 

and L. japonicus. To reconcile the individual developmental stages with changes in 

auxin transport capacities, we examined root morphology of S. meliloti- and M. loti-

treated roots of M. truncatula and L. japonicus, respectively. We confirmed the 

slower development of L. japonicus nodules compared to M. truncatula nodules, by 

visually assessing the extent of cortical cell divisions present at each individual stage. 
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In M. truncatula roots, the first visible cell division can be observed as early as 

24 h.p.i. (Figure 4.15C), in agreement with a recent report by Xiao et al. (2014). 

This stage is also when acropetal auxin transport inhibition occurs (Figure 4.15C 

and 4.11 A). At 48 h.p.i., multiple cell divisions had occurred at the pericycle and 

inner cortex (Figure 4.15D). At 0 and 6 h.p.i., cell division could not be observed, 

although basipetal auxin transport had increased at 6 h.p.i. (Figure 4.15A and B; 

4.11B). In L.japonicus, cell division could not be observed at 0, 12, 24 and 48 h.p.i., 

although a single cortical cell division was possibly observed at 48 h.p.i. on one 

occasion (Figure 4.16A-D). Visible outer cortical cell divisions were reliably 

observed at 72, 96 and 120 h.p.i. (Figure 4.16E-G), when acropetal auxin transport 

capacity was increased in nodule-forming roots. 

6 h.p.i. 24 h.p.i. 48 h.p.i. 

Acropetal - No change Decrease No change 

Basipetal - Increase Increase No change 

Figure 4.15 Nodule development in Medicago truncatula. Cross sect ions of roots showing 

the stages of nodulat ion at 0 hours post inoculation (h.p.i.) (A), 6 h.p.i. (B), 24 h.p.i. (C) and 

48 h.p.i. (D). Changes in aero- and basipetal auxin transport at each individual stage are 

summar ised below each f igure. Approximately 10 roots were examined at each stage. 

Black arrows indicate pericyclic and cortical cell divisions. Scale bars represent 200 | jm. 
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Figure 4.16 Nodule deve lopment in Lotus japonicus. Cross sect ions of roots showing the 

s tages of nodulat ion with Mesorhizobium loti at 0 hours post inoculat ion (h.p.i.) (A), 12 h.p.i. 

(B), 24 h.p.i. (C), 48 h.p.i. (D), 72 h.p.i. (E), 96 h.p.i. (F) and 120 h.p.i. (G). Changes in acro-

and basipetal auxin t ransport at each individual stage are summar ised below each f igure. 

Approx imate ly 10 roots were examined at each stage. Black arrows indicate cortical cell 

d iv is ions. Dotted black arrow in D indicates possible cort ical cell division. Scale bars 

represent 200 pm. 

In section 4.2.1, we demonstrated the ability of auxin transport inhibitors to 

induce pseudonodule formation on the roots of M. truncatula, but not L. japonicus. 

To confirm that the formation of pseudonodules was due to a reduction in auxin 

transport, we measured aero- and basipetal auxin transport capacity in root 

segments of M. truncatula and L. japonicus following TIBA treatment. We chose 

TIBA instead of NPA because it confers less pleiotropic effects on the roots at the 

concentrations that were being used to initiate pseudonodules (50 |iM, Figure 4.1). 

We confirmed the reduction of aero-, but not basipetal auxin transport by TIBA in 

both M. truncatula and L. japonicus root segments. In M. truncatula, we observed a 
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significant reduction of acropetal auxin transport capacity in response to TIBA 

treatment at 6, 24 and 48 h.p.t. (Figure 4.1 IC). Similarly, a significant reduction was 

observed in L. japonicus at 48 h.p.t. (Figure 4.13C). Basipetal auxin transport in 

M. truncatula was not significantly affected by TIBA treatment at any of the 

individual time points tested, although a global reduction was observed after 

pooling all time points (p<0.01; two-way ANOVA) (Figure 4.1 ID). There was a 

slight but not significant reduction of auxin transport capacity with TIBA in 

L. japonicus roots at 48 h.p.t (Figure 4.13D). In summary, auxin transport 

regulation in M. truncatula and L. japonicus roots in response to treatments with 

their corresponding microsymbionts differ. Both legume species showed a transient 

acropetal auxin transport inhibition at 24 h.p.i., as well as a more sustained increase 

in basipetal auxin transport capacity in the root segment below, or encompassing 

the Rhizobium-inoculated spot, respectively. However, unlike M. truncatula, 

L. japonicus exhibited a longer and significant increase in acropetal auxin transport 

capacity below the Rhizobium-mocu\ated spot. This suggests an increased export of 

auxin from the site of nodule initiation in L. japonicus. 

4.2.3 Compar ison of auxin content dur ing nodule development and in mature 

nodules 

During nodule organogenesis, local auxin concentration in the nascent nodule 

could be affected by local auxin biosynthesis, conjugation/breakdown, and/or 

transport. These factors are hypothesised to contribute synergistically to a net 

change in auxin concentration. Liquid chromatography-mass spectrometry (LC/MS) 

is a sensitive analytical tool for measuring trace amounts of phytohormones (Pan 

and Wang, 2009). We used an LC-ESI-Q-TOF MS/MS system developed in Chapter 

3 to measure changes in auxins during the earlier stages of nodulation in 

M. truncatula and L. japonicus. We quantified auxins in a segment surrounding the 
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inoculation spot at 6, 24 and 48 h.p.i. in M. truncatula roots. Our data showed a 

significant increase in lAA concentration in roots inoculated with S. meliloti at 

24 h.p.i. (Figure 4.17A). This increase was not observed at either 6 or 48 h.p.i.. No 

change in IBA concentration was noted at any time point (Figure 4.16B). For lAA-

Ala, there was a progressive decrease in concentration overtime (p<0.0001, two-way 

ANOVA; Figure 4.17C). There was also a significant downregulation of lAA-Ala 

concentration at 48 h.p.i. in response to S. meliloti treatment. Although lAA-Asp 

could not be detected in our samples, we consistently measured relatively high levels 

of an lAA-Asp-like compound showing similar mass fragments to lAA-Asp, but 

eluting more than 1.5 s apart (Figure 4.17G). The auxins PAA, 4-Cl-IAA and lAA-

Val were not consistently detected (Figures 4.17D-F). We could not detect lAA-

Leu/Ile, lAA-Phe and lAA-Trp in M. truncatula root samples. Since TIBA 

treatment induces pseudonodule formation on M. truncatula roots, we investigated 

if a similar change in auxin concentration could be observed during pseudonodule 

formation. We quantified auxins in TIBA-treated M. truncatula roots at 6, 24 and 

48 h.p.t.. The concentration of lAA was significantly reduced at 24 h.p.t. in 

response to TIBA treatment (Figure 4.18A). Although no significant reduction was 

measured at 6 and 48 h.p.t., an overall significant reduction in lAA concentration 

was observed (p<0.01; two-way ANOVA). An lAA-Asp-like compound was also 

detected, albeit at levels much lower than in S. meliloti-Ueated roots (Figure 4.18B). 

Other auxins could not be detected in TIBA-treated M. truncatula roots. 
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Figure 4.17 Auxin content in developing Medicago truncatula nodules (segments around 

the inoculation site). Endogenous auxin concentrat ion (ng g"^ FW) in M. truncatula roots 

inoculated with Sinorhizobium meliloti and mock-t reated roots were measured at 6, 24 and 

48 hours post treatment (h.p.t.). Auxins detected in M. truncatula roots include (A) lAA, (B) 

IBA and (C) lAA-Ala. (D) PAA, (E) 4-CI-IAA and (F) lAA-Val were not consistent ly detected 

at all t ime points. A compound hypothesised to have high structural similarity to lAA-Asp (G) 

was also detected. A two-way A N O V A and a Student 's r-test were used for statistical 

analysis (p<0.05; n=2-10). Asterisks In (A) and ( 0 ) indicate signif icant di f ference in auxin 

concentrat ion (p<0.05). Graphs show mean and SD. Abbreviat ions: FW, f resh weight ; G, 

control treatment; I, inoculated; n.d., not detected. 
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Figure 4.18 Auxin concentration in TIBA-treated Medicago truncatula root segments of 

similar developmental stage as those for nodules in Figure 4.17. lAA (A) and an lAA-Asp-

like compound (B) were detected in M. truncatula roots at 6, 24 and 48 hours post treatment 

(h.p.t.). A two-way ANOVA and a Student's (-test were used for statistical analysis (p<0.05; 

n=3-5). Asterisks in A indicate a very significant change in lAA concentration. Graphs show 

mean and SD. Abbreviations: FW, fresh weight; C, control treatment. 

To compare the auxin content in L.japonicus roots during nodule 

development, we quantified auxins in root segments surrounding the M. loti treated 

site at 24 h, 48 h and 5 d.p.i.. Opposite to what we found in M. truncatula, there was 

a slight but significant decrease in lAA concentration at 24 h.p.i. (Figure 4.19A). 

There was no significant change in lAA concentration at 48 h and 5 d.p.i. in 

response to M. loti treatment. The auxins IBA, lAA-Ala, lAA-Asp and lAA-Leu/Ile 

were detected in L.japonicus roots, ahhough there were no significant changes in 

their respective concentrations following M.loti treatment (Figures 4.19B-E). 

Interestingly, we once again detected an lAA-Asp-like compound in the roots at 

relatively higher levels than other auxins (Figure 4.191). Furthermore, there was a 

significant reduction in the concentration of the lAA-Asp-like compound at 48 h.p.i. 

in response to M. loti treatment 3 fold) and a very significant overall reduction 

f rom M. loti treatment (p<0.01, two-way ANOVA). The auxins 4-Cl-lAA, lAA-Phe 

and lAA-Trp were not consistently detected at all time points (Figures 4.18F-H). 

We could not detect lAA-Val in the roots of L.japonicus. 
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Figure 4.19 Auxin content in developing Lotus japonicus nodules (segments around the 

inoculation site). Endogenous auxin concentration (ng g"'' FW) in L. japonicus roots 

inoculated with Mesorhizobium loti and mock-treated roots were measured at 24, 48 hours 

post- and 5 days post treatment. Auxins detected in L. japonicus roots include (A) lAA, (B) 

IBA, (C) lAA-Ala, (D) lAA-Asp and (E) lAA-Leu/lle. (F) 4-CI-IAA, (G) lAA-Phe and (H) lAA-

Trp were not consistently detected at all time points. A compound hypothesised to have 

high structural similarity to lAA-Asp (I) was also detected. A two-way ANOVA and a 

Student's Mest were used for statistical analysis {p<0.05; n=2-6). Asterisks in (A) and (!) 

indicate significant difference (p<0.05). Graphs show mean and SD. Abbreviations: FW, 

fresh weight; C, control treatment; I, inoculated; n.d., not detected. 

Next, we quantified auxins in mature nodules (four-week-old) of 

M. truncatula, L. japonicus and soybean. The auxins lAA, lAA-Ala, lAA-Asp, lAA-

Val and PAA were detected in nodules of all three legumes (Figure 4.20A-C). 

Interestingly, the auxin PAA, which was not detected in the roots of M. truncatula 

and L. japonicus, was present at high quantities (176 and 460 ng g ' FW, respectively) 

in the nodules of both legumes (Figure 4.20A and B). The auxin conjugate lAA-Asp, 

which was undetectable in M. truncatula roots, was present in M. truncatula 

nodules (8.8 ng g F i g u r e 4.20A) and was found at significantly higher levels in 

L. japonicus nodules (> 2000 n g g '; Figure 4.20B). lAA was present at different 

concentrations in all three legumes, i.e. at 6.2, 66.9 and 26.0 n g g ' FW in 

M. truncatula, L. japonicus and soybean, respectively (Figure 4.20A-C). The auxin 

4-Cl-IAA was only detected in the nodules of M. truncatula (4.3 ng g ' FW; Figure 

4.20A); IBA was only detected in soybean nodules (2.7 ng g Figure 4.20 C); lAA-

Trp was only detected in L. japonicus nodules (6.2 ng g Figure 4.20B). We once 

again could not fail to notice the overwhelming presence of an lAA-Asp-like 

compound, which reached significantly higher concentrations of > 9000 ng g ' FW 

in M. truncatula nodules (Figure 4.20D). It was also found at comparatively high 

levels in L. japonicus (97.2 ng g ' FW) and soybean (415.2 ng g ' FW). 
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Figure 4.20 Auxin content in mature 4-week-old nodules. Endogenous auxin 
concentration (ng g"̂  FW) in nodules of (A) Medicago truncatula, (B) Lotus japonicus and (C) 
soybean were quantified. (D) An lAA-Asp-like compound was detected in all three legumes. 
Auxin species detected in each legume differs. A one-way ANOVA was used for statistical 
analysis (p<0.05; n=2-4). Different lowercase letters indicate significant differences in auxin 
content. Graphs show mean and SD. Abbreviation: FW, fresh weight; n.d., not detected. 

4.2.4 Auxin con ten t in nodu la t ing and n o n - n o d u l a t i n g n o n - l e g u m e s 

It is generally thought that lAA is the primary active auxin dur ing plant 

organogenic events (Overvoorde et al., 2010). A report by Perrine-Walker et al. 

(2010) suggests that PAA, another active auxin, might be as important as lAA 

during actinorhizal nodule formation, at least based on its abundance. Indeed, 

auxin measurements in M. truncatula, L. japonicus and soybean suggest a role for 

PAA, and other auxins, during nodule development and maintenance of mature 

nodules. To compare auxin requirements between legumes and non-legumes, we 

quantified auxins in the roots (non-symbiotic conditions) of a few nodulat ing non-



4.2 Resu l t s 

legumes, including the actinorhizal species Datisca glomerata, Casuarina glauca and 

Coriaria myrtifolia. In D. glomerata, PAA was consistently found at significantly 

higher concentrations than lAA in primary roots (52.7 vs 1.8 n g g ' FW; Figure 

4.21A), hairy roots (119.9 vs 2.0 n g g ' FW; Figure 4.21B) and nodules (73.5 vs 1.5 

ng g ' FW; Figure 4.21C). The auxin conjugate lAA-Asp was measured at 10.2 ng g ' 

FW in primary roots (Figure 4.21 A) and 564.9 n g g ' FW in hairy roots (Figure 

4.2IB), suggesting an important role for lAA-Asp in hairy roots. lAA-Ala was 

found in the range of 1.0-2.5 ng g ' FW in all D. glomerata tissues. The auxins lAA-

Phe and lAA-Val were only detectable in the primary roots of D. glomerata (Figure 

4.21A). 

Auxins were also quantified in the roots of the actinorhizal species C. glauca 

and C. myrtifolia. The main auxins detected in both species were PAA (57.9 ng g ' 

FW; Figure 4.22A) and lAA-Asp (8.7 ng g ' FW; Figure 4.22B), respectively. The 

auxins lAA, IBA and 4-Cl-IAA were detected at similar proportions in both species. 

Most other auxins were not detectable in C. glauca and C. myrtifolia, except for 

lAA-Ala and lAA-Phe, which were measured at 2.9 and 4.3 ng g ' FW, respectively, 

in C. myrtifolia (Figure 4.22B). Because PAA was present in the roots of 

D. glomerata in relatively high concentrations, we hypothesised that PAA might be a 

major auxin in plants belonging to the Cucurbitales order, in general. To test this 

hypothesis, we quantified auxins in two other non-nodulating species belonging to 

the Cucurbitales order, i.e. cucumber and begonia, which are non-actinorhizal 

species. Although PAA was the major auxin compound in cucumber (72.2 ng g ' 

FW; Figure 4.22C), PAA could not be detected in begonia (Figure 4.21 D). Only the 

auxins lAA (3.8 n g g ' FW) and lAA-Asp (17.1 n g g ' FW) could be detected in 

begonia. In cucumber roots, lAA, lAA-Ala, lAA-Phe and lAA-Trp were all present 

in the range of 3.2-5.1 ng g ' FW (Figure 4.22C). 
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Figure 4.21 Auxin measurements with LC-MS/MS in Datisca glomerata root t issue. 

Concentrat ions of auxins were measured in the pr imary roots (A), hairy roots (B) and 

nodules (C). A one-way ANOVA with a Tukey-Kramer multiple compar ison post-test was 

used for statistical analysis (n=2-6). Different lower case letters in (A) and (C) indicate 

statistically different auxin concentrat ion in ng g"' FW. Graphs show mean and SD. 

Abbreviat ion; FW, fresh weight; n.d., not detected. 
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Figure 4.22 Aux in measurements wit l i LC-MS/MS in root t issue. Concentrat ions of auxins 

were measured in t l ie roots of Casuarina glauca (A), Coriaria myrtifolia (B), Cucumis sativus 

(C) and Begonia Cleopatra (D). A one-way A N O V A with a Tul<ey-Kramer mult iple 

compar ison post-test was used for statistical analysis (n=2-6). Different lower case letters 

indicate statist ical ly dif ferent auxin concentrat ion in ng g"' FW. Graphs show mean and SD. 

Abbreviat ion: FW, f resh weight ; n.d., not detected. 
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4.3 Discussion 

In this chapter, we compared auxin transport and content in different legumes 

during nodulation. Auxin transport inhibitors (ATIs) have previously been shown 

to initiate pseudonodules in a few leguminous species, all of which form 

indeterminate nodules (Hirsch et a l , 1989, Rightmyer and Long, 2011, Scheres et al., 

1992, Wu et al., 1996). We tested the ability of ATIs to induce pseudonodules on a 

selected few other leguminous plants. We employed a physiological approach by 

measuring auxin transport in M. truncatula and L.japonicus, with these two 

representing the indeterminate and determinate nodule types, respectively. Auxin 

quantification by LC-MS/MS was performed to determine auxin content during 

nodulation in these legumes. We also determined auxin content in a few non-

leguminous species, which do or do not nodulate. Our aim was to propose a 

generalised mechanism of auxin transport control during nodulation in 

indeterminate and determinate nodule-forming legumes, and to explain how auxin 

transport regulation relates to auxin content and response at a given time. 

Furthermore, we hypothesised that different auxins may play a more prominent role 

in different nodulating plants. 

4.3.1 Auxin transport regulation occurs bidirectionally during Medicago 

truncatula and Lotus japonicus nodule development 

Our data showed that changes in auxin transport in response to rhizobia treatment 

occur in the aero- and basipetal directions. Consistent with previous results in 

M. truncatula, we observed a transient reduction in acropetal auxin transport 

following rhizobia treatment (Plet et al., 2011, van Noorden et al., 2006, Wasson et 

al., 2006). For L.japonicus, Pacios-Bras et al. (2003) previously demonstrated a 

significant increase in acropetal auxin transport capacity in response to Nod factor 

treatment at 48h.p.i.. Here, we included two additional features to our 
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measurements: (1) we included additional time points at the early stages to assess if 

this increase in auxin transport capacity was of a transient or prolonged nature; (2) 

we measured auxin transport consistently in segments below the inoculation spot. 

Crucially, this study provides a direct comparison of two corresponding segments in 

M. truncatula and L.japonicus. Unlike the short-term nature of acropetal auxin 

transport inhibition during indeterminate nodule initiation, we found that an 

increased auxin transport capacity in L.japonicus was more sustained. Interestingly, 

we also found an increased auxin transport in response to rhizobia treatment in the 

basipetal direction in both M. truncatula and L.japonicus. We are not aware of any 

prior study examining basipetal auxin transport from the root tip towards the 

infection zone during nodulation. The requirement for basipetal auxin transport 

regulation in M. truncatula is consistent with two previous reports. Firstly, Huo et 

al. (2006) observed a reduced nodulation capacity in MtPIN2 knockdown roots of 

M. truncatula, where MtPIN2 is an ortholog of AtPIN2, an auxin carrier responsible 

for basipetal auxin transport in Arabidopsis (Rashotte et al., 2000). Secondly, a 

slight but significant increase in MtPIN2 mRNA expression was measured in 

M. truncatula WT roots in response to rhizobia treatment, and a ~ 5 fold increase 

was observed in the supernodulating ski mutant (Prayitno et al., 2006). These data 

strongly suggest a positive role for MtPIN2 and basipetal auxin transport during 

nodulation. Furthermore, knockdown of MtPIN4 (ortholog of AtPINl for acropetal 

auxin transport) in M. truncatula roots reduced nodulation (Huo et al., 2006), and 

transcription of this gene was one of the most highly upregulated by Nod factor 

treatment (Plet et al., 2011), strongly suggesting that acropetal auxin transport 

regulation might occur through MtPIN4. 

Genetic studies on the role of auxin transport carriers during nodulation in 

L.japonicus are lacking. One report highlighted the role of an ABCB-type 

multidrug resistance protein, LjABCBl, in mature L.japonicus nodules, but did not 

examine its role during early nodule development. The authors proposed that 
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LjABCBl exports auxin towards infected cells in the nodule, based on the selective 

localisation of the protein at adjacent uninfected cells (Takanashi et al., 2012). In 

the current study, we demonstrated that basipetal auxin transport capacity in 

L.japonicus increased at two distinct early time points following rhizobia treatment. 

Surprisingly, we found an inhibition of aero- and basipetal auxin transport in 

L. japonicus roots in response to rhizobia treatment in separate experiments. The 

inhibition of auxin transport in both directions happened between 24-33 h.p.i., 

whereas auxin transport capacity was consistently increased at later time points. 

Identification and functional characterisation of the L.japonicus auxin carrier 

orthologs would advance our current knowledge of the role of auxin transport 

during nodulation in determinate legumes. Collectively, the results presented here 

highlight the importance of aero- and basipetal auxin transport regulation during 

nodulation, and point to a difference in acropetal auxin transport capacity between 

legumes forming indeterminate and determinate nodules. 

4.3.2 Nodule and pseudonodule format ion involve an increased auxin 

response 

The results obtained suggest an increased basipetal auxin transport in response to 

rhizobia treatment as a common mechanism in indeterminate and determinate 

nodule-forming legumes. Indeed, we found an increased auxin response in the 

dividing cortical cells, endodermis and pericycle of M. truncatula nodule primordia 

(Figure 4.9), which was also observed at a similar stage during nodulation in 

L.japonicus (Suzaki et al., 2012, Takanashi et al., 2011). Although histological 

features of pseudonodules appear different to rhizobia-induced nodules, we also 

observed an increased auxin response in dividing cells of a developing 

pseudonodule. However, in a fully-developed pseudonodule, auxin response 

remains in the dividing pericycle and inner cortical cells, presumably due to the lack 
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of S. wie/i/ofi-mediated, coordinated cell divisions and a proper nodule meristem, as 

seen in a rhizobia-induced nodule (Guan et al., 2013). Studies in L.japonicus 

examining auxin response in spontaneous nodules induced by overexpression of 

LHKl, NIN (Suzaki et al., 2012) and CCaMK (Suzaki et al., 2013b) yielded results 

comparable to the auxin response observed during pseudonodule development 

(Figure 4.9). This suggests that despite the global and sustained auxin transport 

inhibition caused by ATI treatment, as well as a local reduction in lAA content early 

on, the host plant could increase auxin response locally at a later time to form a new 

lateral organ. Since in silico modelling suggests that during nodulation, a local 

increase in auxin is most likely caused by a local transient inhibition of acropetal 

auxin export and lateral redirection of auxin flow (Deinum et al., 2012), other 

components of auxin homeostasis, such as local synthesis and auxin breakdown, 

could play compensatory roles during pseudonodule formation. 

4.3.3 W h y do pseudonodules induced by ATIs form only in certain legumes? 

The data obtained in this study further strengthen previous results showing the 

formation of ATI-induced pseudonodules only in indeterminate nodule-forming 

legumes. We observed pseudonodule formation in M. truncatula, subclover and 

S. rostrata. Although S. rostrata has the capacity to form both nodule types, it 

potentially prefers to form indeterminate-type nodules under non-waterlogging and 

well-aerated growth conditions (Fernandez-Lopez et a l , 1998), and that our growth 

system and ATI assays simulated these conditions. Although we could not induce 

pseudonodules on A. longifolia roots, which form indeterminate-type nodules, it 

could likely be due to the suboptimal germination rates we encountered, which also 

resulted in poorly-developed seedling roots. In accordance with a previous study, 

we failed to observe any pseudonodule forming on L.japonicus roots in response to 

ATI treatment (Kawaguchi et al., 1996). To exclude the possibility that L.japonicus 
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could not inhibit acropetal auxin transport and thus failed to induce pseudonodules, 

we measured acropetal auxin transport following TIBA treatment and confirmed a 

reduction in acropetal auxin transport capacity in I . japonicus roots. This suggests 

that the inability of L. japonicus to form pseudonodules was not due to the inability 

of TIBA to inhibit acropetal auxin transport in this species. Curiously, gibberellins 

were able to induce pseudonodules on L. japonicus, but not alfalfa roots (Kawaguchi 

et al., 1996). The mode of action or physiological effects of gibberellins were 

however not examined. Nevertheless, gibberellins are not likely to inhibit acropetal 

auxin transport because of their failure to induce pseudonodules on alfalfa. 

Although acropetal auxin transport was reduced following TIBA treatment, 

basipetal auxin transport remained unchanged. This suggests that the formation of 

rhizobia-induced nodules, which involves changes in basipetal auxin transport, 

requires additional regulation compared to pseudonodules. Since Nod factor 

perception at the root hair activates a complex signalling pathway (Oldroyd et al., 

2011, Suzaki et al., 2013a), basipetal auxin transport regulation might be controlled 

by an early signalling component following Nod factor perception. This would be 

difficult to mimic with a simple ATI treatment. 

Aside from pseudonodules, we observed other structures forming on the 

roots of ATI-treated legumes. The induction of tumor-like structures, root 

bifurcation and swellings have been noted before in plants treated with growth-

modulating chemicals, although the auxin transport inhibiting activities of these 

chemicals were not tested (Allen et al., 1953, Arora et al., 1959, Kawaguchi et al., 

1996). However, ATI-induced pseudonodules have so far only form on plants 

capable of nodulation, suggesting that external ATI treatments can only elicit 

pseudonodules on species predisposed to nodulation. This hypothesis is supported 

by genetic studies in M. truncatula and L. japonicus. Overexpression of CCaMK 

resulted in spontaneous nodule formation in both legumes (Gleason et al., 2006, 

Tirichine et a l , 2006). Although CCaMK is activated in response to a wide range of 
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biotic interactions with other organisms, including rhizobia, mycorrhizal fungi and 

pathogens, both legumes are predisposed to form nodule-like structures with an 

autoactive CCaMK. In the present study, we focussed on structures resembling 

nodules. Our findings showed that NPA causes severe inhibition of tap root growth, 

whereas TIBA results in less pleitropic effects, suggesting that TIBA is more suited 

for studying ATI-effects on nodulation. TIBA, but not NPA, inhibits auxin export 

by stabilising actin filaments, and thus perturbs vesicle trafficking (Dhonukshe et al., 

2008, Geldner et al., 2001, Petrasek et al., 2003). The mechanism of NPA in 

inhibiting auxin transport is still a question for further studies. Both ATIs are likely 

to induce side effects unrelated to auxin transport. For example, TIBA would affect 

the transport of additional cellular components, and not just auxin transport 

carriers. We noticed that a substantial number of pseudonodules resembled 

modified lateral roots. These structures could be analogous to nodules formed by 

rhizobia crack entry. Unlike the controlled process seen in infection thread-

modulated rhizobia infection, the crack entry mechanism is less stringent and 

hypothesised to be a more evolutionarily ancient mechanism (Oldroyd et al., 2011). 

Rhizobia enter via cracks in the roots, such as at a lateral root emergence site, 

subsequently forming a nodule. Intriguingly, pseudonodules were found along the 

entire root axis, in large quantities. Under normal conditions, nodulation only 

initiates in a transient susceptible zone (Bhuvaneswari et al., 1981), and the numbers 

are tightly controlled by a negative feedback mechanism termed autoregulation of 

nodulation (Ferguson and Mathesius, 2014). This phenomenon could be explained 

by the whole root application of concentrated ATIs used in this study. An 

alternative explanation is that these structures could be modified lateral roots. 

Unlike the localised nature of spot inoculation, rhizobia-induced nodule 

development, the site of pseudonodule initiation could not be predicted. In 

M. truncatula, visible pseudonodule bumps are typically seen after two weeks, which 

is longer than the development of rhizobia-induced nodule bumps 72 h.p.i.). 



174 Compar i son of Local Auxin Transpor t Cont ro l and Auxin Con ten t in 

Inde te rmina te and De te rmina te Nodu les 

Thus, the formation of rhizobia-induced nodules and pseudonodules is Ukely to 

involve different pathways. 

4.3.4 Different auxins are more p rominen t at d i f ferent stages of nodula t ion 

and across species 

Our results show that several auxin species are present in M. truncatula and 

L.japonicus root tissue. In agreement with an increased auxin response observed in 

dividing cortical cells in the present and a previous study (van Noorden et al., 2007), 

we quantified an increase in lAA concentration at 24 h.p.i. in a root segment 

encompassing the inoculation spot of M. truncatula roots following rhizobia 

inoculation. Histological monitoring of nodulation progression in L.japonicus 

(Figure 4.16), and results from a previous report suggest that an increase in auxin 

response occurs at the onset of visible cell divisions, which corresponds to 5 d.p.i. 

(Suzaki et al., 2012). However, we did not observe a similar increase in lAA 

concentration in L.japonicus roots. It is possible that the increased auxin response 

seen in L.japonicus nodule primordia is in response to altered sensitivity to auxin in 

the primordia, or that small, local changes in auxin concentrations could not be 

detected by measuring auxin metabolites in root segments. There were two auxin 

conjugates, lAA-Phe and lAA-Trp that increased in concentrations in M. loti-

inoculated roots. Although the increase in concentrations were non-significant, it is 

possible that they account for induction of auxin response. Intriguingly, a reduction 

in lAA content was measured at 24 h.p.i., which corresponded to the inhibition of 

basipetal auxin transport measured at the same time (Figure 4.14B). Present 

evidence suggests that the reduction of auxin signalling upon pathogen recognition 

is correlated with increased pathogen resistance in certain plants (Domingo et al., 

2009, Wang et al., 2007, Wang and Fu, 2011). Here, it is tempting to speculate that 

rhizobia are first perceived by L.japonicus as invaders before subsequent symbiotic 
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signalling activation. Although auxin response increased at the inner cortical cells 

of developing pseudonodules, the concentration of lAA decreased in the TIBA-

treated root segments at an equivalent time-point when lAA concentration 

increased in rhizobia-inoculated roots. However, the induction of pseudonodules is 

slower, and the initial increase in auxin response was only observed after 1-week 

post TIBA treatment. 

The roles of other auxin compounds are largely unknown. The auxin 

conjugate lAA-Ala has been proposed to be a form of lAA storage compound 

(LeClere et al., 2002). A reduction in lAA-Ala concentration in M. truncatula roots 

at 48h.p.i . to increase the active lAA pool in response to rhizobia treatment 

supports this hypothesis. The concentration of lAA in the mature nodules of 

L.japonicus was considerably higher than in M. truncatula nodules. This was 

surprising because at this stage, M. truncatula nodules maintain active meristems 

but nodules in L.japonicus would have been terminally differentiated and stop 

growing (Oldroyd et al., 2011). However, there could possibly be a role for auxin in 

regulating defence, rather than organogenesis in the mature nodule. The 

significantly higher concentration of PAA in the nodules of M. truncatula, 

L.japonicus, soybean and D. glomerata relative to other auxin species suggests a 

prominent role for PAA in mature nodules. Earlier studies showed that bacteria are 

able to synthesise auxins, including PAA (Slininger et al., 2004, Somers et al., 2005). 

This could explain the high levels of PAA in mature nodules, but its absence in 

uninfected L.japonicus roots and the occasional detection in uninfected 

M. truncatula roots. Strong PAA signals in Frankia-infected cells of C. glauca and 

D. trinervis nodules have also been reported (Imanishi et al., 2014, Perrine-Walker 

et al., 2010). However, plants are capable of synthesising PAA, too, as observed in 

the root tissues of D. glomerata, C. glauca and cucumber, as well as in the shoots of 

several higher plants (Wightman and Lighty, 1982). Intriguingly, PAA was reported 

to exhibit carrier-mediated lAA transport inhibition in pea stems (Morris and 
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Johnson, 1987). A similar role during nodulation and in mature nodules will have 

to be examined. The much higher lAA-Asp concentration found in mature 

L.japonicus nodules in comparison to nodules in other species examined in this 

study is also intriguing. Previous results suggest lAA-Asp as an auxin intermediate 

targeted for degradation (Rampey et al., 2004), which could explain the high levels 

in a terminally differentiated nodule. However, a similar observation should, in 

theory, be observed in determinate soybean nodules. Perhaps lAA-Asp performs 

additional roles in mature L.japonicus nodules. Moreover, future identification of 

an lAA-Asp-like compound observed in our study could help explain its high levels 

in all tissues where it was detected, especially in M. truncatula nodules. 

Our results suggest that neither aero- nor basipetal auxin transport capacity 

is sufficient to explain the changes in auxin responses and auxin concentrations at 

the nodule initiation site. Despite an increase in auxin response in both 

indeterminate (e.g., M. truncatula, white clover) and determinate (e.g., L. japonicus, 

soybean) nodule primordia (Mathesius et al., 1998, Suzaki et al., 2012, Takanashi et 

al., 2011, Turner et al., 2013), regulation of aero- and basipetal auxin transport, as 

well as changes in auxin concentrations, are different in these legumes. Table 4.1 

provides an overview of the similarities and differences between indeterminate and 

determinate nodule-forming legumes, based on results in this chapter and the 

literature. One plausible explanation for the increase in auxin response in 

determinate nodules, but not the lAA concentration (Figure 4.19A), is that 

sensitivities toward auxin in determinate nodules could account for the increase in 

auxin response in nodules (Mao et al., 2013, Turner et a l , 2013). Other mechanisms, 

like auxin synthesis, could also contribute to the auxin pool in nodulating cells. It 

would also be interesting to investigate the role of lateral auxin transport in both 

L.japonicus and M. truncatula during nodule initiation by using PIN reporters or 

auxin biosensors. 
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Overall, we highlighted the importance of local, bidirectional auxin 

transport regulation during noduiation in indeterminate and determinate nodule-

forming legumes. The role of acropetal auxin transport regulation has previously 

been investigated, but we showed that the scope of rhizobia manipulation on the 

host's auxin transport machinery is wider. Despite the difference in auxin transport 

regulation across different legumes, we propose a common response in legumes, 

whereby basipetal auxin transport is increased, followed by an elevation in auxin 

response, but not auxin content. During Arabidopsis lateral root initiation, a proper 

auxin gradient could not be established in the acropetal auxin transport-defective 

pinl mutant (Benkova et al., 2003), suggesting that a functional auxin transport 

machinery is a prerequisite for proper auxin gradient and response during root 

development, in general. Finally, different auxin compounds are detected in root 

tissues and nodules, prompting the obvious question about their functions during 

root development. It is likely that some of them play overlapping roles, but a 

specific developmental stage function, such as PAA in nodules, is possible. The 

auxin measurements performed here has thus provided a very useful overview of 

candidate auxin compounds, and potentially the corresponding genes encoding 

enzymes for their synthesis /conjugation / breakdown, for future functional 

characterisations. 
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Table 4.1 An overv iew of the similarit ies and di f ferences that have so far been documen ted 

between indeterminate and determinate nodule- forming legumes. 

Medicago 
truncatula 

Lotus 
japonicus 

Other 
indeterminate 

nodule- forming 
legumes 

Other 
determinate 

nodule-
forming 
legumes 

Acropetal auxin 
transport 
Inhibition 

Yes. At 
24h.p . i . . 

Yes. Slightly at 
24 h.p.i.. 

Increase at all 
later t ime points. 

Yes. In Vicia 
sativa ( common 
vetch) (Boot et 

al., 1999). 

No. Increase 
in Lotus 

japonicus at 
48 h.p.i. 

(Pac ios-Bras et 
al., 2003). 

Basipetal auxin 
transport increase 

Yes. At 
several t ime 

points. 

Yes. At several 
t ime points. 

Not determined. 
Not 

determined. 

Auxin 
concentrat ion at 
t ime just before 
cell division 

Increase at 
24h.p . i . . 

No change, 
except maybe 

lAA-Trp and 
lAA-Phe. 

Not determined. 
Not 

determined. 

Pseudonodulat ion 
with T IBA Yes. No. 

Yes (subclover, 
alfalfa, pea etc.) 

(Hirsch et al., 
1989, Scheres 
et al., 1992). 

No. 

Increased auxin 
response in 
primordia 

Yes. Yes. 

Yes (white 
clover) 

(Mathesius et 
al., 1998). 

Yes (soybean) 
(Turner et al., 

2013). 
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5.1 Abstract 

Initiation of symbiotic nodules in legumes requires cytokinin signalling, but its 

mechanism of action is largely unknown. Here, we tested whether the failure to 

initiate nodules in the Medicago truncatula cytokinin perception mutant crel 

(cytokinin response 1) is due to its altered ability to regulate auxin transport, auxin 

accumulation, and induction of flavonoids. We found that in the crel mutant, 

symbiotic rhizobia cannot locally alter aero- and basipetal auxin transport during 

nodule initiation, and that these mutants show reduced auxin (indole-3-acetic acid) 

accumulation and auxin responses, compared to the wild type. Quantification of 

flavonoids, which can act as endogenous auxin transport inhibitors, showed a 

deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and 

hesperetin in crel roots compared to wild-type roots 24 hours after inoculation with 

rhizobia. Co-inoculation of roots with rhizobia and the flavonoids naringenin, 

isoliquiritigenin and kaempferol, or with the synthetic auxin transport inhibitor, 

2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in crel mutants and 

allowed auxin transport control in response to rhizobia. Our results suggest that 

CREl-dependent cytokinin signalling leads to nodule initiation through the 

regulation of flavonoid accumulation required for local alteration of polar auxin 

transport and subsequent auxin accumulation in cortical cells during the early 

stages of nodulation. 
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5.2 Introduction 

Symbiotic bacteria collectively called rhizobia can initiate the formation of nitrogen-

fixing root nodules in many species of legumes. Nodule initiation involves the re-

initiation of cell divisions in the cortex, endodermis, and pericycle of the root, 

followed by differentiation of the nodule primordium into a mature organ, similar 

to the process of lateral root formation (Herrbach et al., 2014, Hirsch et al., 1997, 

Mathesius, 2008, Xiao et al., 2014). Legume species differ in the types of nodules 

formed. Typically in temperate legumes, including the model legume Medicago 

truncatuluy alfalfa {Medicago sativa), or clovers, indeterminate nodules are initiated 

f rom pericycle and inner cortical cell divisions, and nodules maintain a persistent 

meristem. In many tropical legumes however, including common bean {Phaseolus 

vulgaris) and soybean {Glycine max), determinate nodules form from outer cortical 

cell divisions, and the resulting nodules contain a temporary meristem that later 

differentiates (Hirsch, 1992, van Spronsen et al., 2001). 

The mechanism of nodule initiation is only partially elucidated. Nod factors 

produced by rhizobia are in most cases necessary and in some legumes sufficient to 

induce nodules (Truchet et al., 1991). The signalling cascade mediating Nod factor 

action leads to the activation of cytokinin signalling in the cortex of the root (Crespi 

and Frugier, 2008, Oldroyd et al., 2011), which is accompanied by activation of the 

gene encoding the cytokinin biosynthesis enzyme LOGl, a cytokinin riboside 5-

monophosphate phosphoribohydrolase (Mortier et al., 2014), and an increase in 

cytokinin concentration at the nodule initiation site in M. truncatula (van Zeijl et al., 

2015). Several studies have implicated cytokinin as a central regulator in nodule 

development (Frugier, 2008). The expression of a cytokinin synthesis gene in 

Sinorhizobium nodulation mutants was sufficient to induce cortical cell divisions 

and expression of nodulation genes in alfalfa (Cooper and Long, 1994). Application 

of cytokinin can induce cortical cell divisions and expression of nodulation genes in 
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alfalfa (Fang and Hirsch, 1998, Hirsch et al., 1997), white clover {Trifolium repens) 

(Mathesius et al., 2000b) and L.japonicus (Heckmann et al., 2011), and 

pseudonodules on the actinorhizal plant Alnus glutinosa (Rodriguez-Barrueco and 

De Castro, 1973). Legume mutants impaired in cytokinin perception typically fail 

to initiate nodules (Gonzalez-Rizzo et al., 2006, Held et al., 2014, Murray et al., 2007, 

Plet et al., 2011), while constitutive cytokinin signalling was found to cause 

spontaneous nodule formation in the absence of rhizobia (sn/2 mutant, spontaneous 

nodule formation; Tirichine et al., 2007). In M. truncatula, the cytokinin receptor 

CREl is necessary for perceiving exogenous cytokinin in roots, and both mutation 

or local RNAi-induced silencing of CREl in roots leads to the inhibition of nodule 

formation (Gonzalez-Rizzo et al., 2006, Plet et al., 2011). In response to rhizobia 

and cytokinins, the crel mutant fails to induce several cytokinin primary response 

genes such as RR4 {RESPONSE REGULATOR 4) and NSP2 {NODULATION 

SIGNALLING PATHWAY 2) (Ariel et al., 2012). A recent transcriptome 

comparison of gene expression changes in wild-type and crel mutant roots in 

response to a 3 h Nod factor treatment in M. truncatula demonstrated that 

cytokinin signalling is necessary for the majority (-75% or -600 transcripts) of Nod 

factor-induced transcriptional changes (van Zeijl et al., 2015). However, the 

mechanism of how cytokinin controls nodule development is still not defined. 

Previous studies have suggested that cytokinin signalling may regulate plant 

developmental processes through its action on auxin transport. Auxin transport is 

essential for establishing auxin gradients in the plant, leading to cell type 

specification and induction of meristematic cell divisions (Benkova et al., 2003). 

Auxin transport regulation has been most closely studied for indole-3-acetic acid 

(lAA), which enters the cell partially by diffusion and by facilitated import via 

AUXl/LAX (AUXIN RESISTANTl/LIKE AUXl) and ABCB (ATP Binding Cassette 

subfamily B) related transporters. Auxin export is strictly regulated through PIN 

(PIN-FORMED) and ABCB-type transporters that are polarly inserted into the 
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plasma membrane on specific sides of the cell to control the direction of auxin 

transport in acropetal, basipetal or lateral direction (Petrasek and Friml, 2009). In 

the Arabidopsis thaliana root, auxin transport in the acropetal direction, from the 

root base to the root tip, is mainly mediated by PINl, whereas basipetal auxin 

transport, from the root tip to the elongation zone, is mediated by PIN2 

(Michniewicz et al., 2007, Rashotte et al., 2000). 

Certain flavonoids act as modulators of auxin transport by affecting the 

expression (Peer et al., 2004) and localization of PIN proteins (Santelia et al., 2008), 

the cycling of PIN proteins to endosomal vesicles (Geldner et al., 2001), as well as 

modifying the activity of ABCB-type auxin transporters (Bailly et al., 2008, Di Pietro 

et al., 2002, Peer and Murphy, 2007). Flavonoids bind to two types of protein 

complexes, a low-affinity binding complex containing an aminopeptidase and a 

high affinity complex containing ABCB-type transporters (Murphy et al., 2002, Noh 

et al., 2001). External application of certain flavonoids, in particular flavonols, can 

inhibit auxin transport (Jacobs and Rubery, 1988), and auxin transport in flavonoid-

deficient mutants or transgenic plants is altered (Brown et al., 2001, Buer and 

Muday, 2004, Laffont et al., 2010, Peer et al., 2004, Wasson et al., 2006). In addition, 

flavonoids are required to control auxin transport during nodule initiation in 

legumes forming indeterminate nodules (Wasson et al., 2006), and flavonols are the 

most likely subclass of flavonoids responsible for this auxin transport control 

(Zhang et al., 2009a). 

Several studies indeed demonstrated that a local auxin transport inhibition is 

required for indeterminate nodule initiation. Early studies showed that application 

of synthetic auxin transport inhibitors can induce pseudonodules in some legumes 

that are characterized by a peripheral vasculature, which does not extend into the 

distal part of the nodule, an uninfected central zone and a diffuse meristem (Allen et 

al., 1953, Hirsch et al., 1989). During nodulation, acropetal root auxin transport is 

temporarily inhibited by rhizobia inducing indeterminate nodules, and this is 
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followed by a local increase in auxin response in the pericycle and inner cortex at 

the site of nodule initiation (Boot et al., 1999b, Mathesius et al., 1998, van Noorden 

et al., 2007). In the crel mutant, rhizobia are unable to inhibit acropetal auxin 

transport and this is associated with a misregulation of some PIN auxin carrier-

encoding gene expression and protein accumulation (Plet et al., 2011). The 

hypothesis that cytokinin acts upstream of auxin transport regulation is supported 

by studies from Arabidopsis showing that cytokinin regulates PIN expression, 

accumulation, selective degradation, and subsequently polar auxin transport 

(Marhavy et al., 2011, Marhavy et al., 2014, Pernisova et al., 2009, Ruzicka et al., 

2009a). This is thought to regulate auxin accumulation during lateral root 

formation (Laplaze et al., 2007a, Marhavy et al., 2014). The finding that auxin 

transport inhibitors can cause pseudonodule formation in Nod factor signalling 

defective mutants acting downstream of CREl, such as nsp2 and nin {nodule 

inception), suggests that auxin transport control of nodulation acts downstream of 

cytokinin signalling (Rightmyer and Long, 2011). Furthermore, cytokinin 

application induces auxin responses in pseudonodule primordia in white clover 

(Mathesius et al., 2000b), and spontaneous nodules formed in the L. japonicus 

constitutively activated cytokinin signalling mutant, snf2, also show activation of 

auxin responses in dividing cortical cells during nodule primordium formation 

(Suzakiet al., 2012). 

Collectively, these findings suggest that a crucial role of cytokinins may be to 

regulate auxin transport and/or response during nodule initiation. To investigate 

this hypothesis, we performed a detailed study of auxin transport, auxin response 

and auxin metabolite accumulation in the M. truncatula crel mutant. We found that 

crel mutant roots did not mediate rhizobia-induced changes in aero- as well as 

basipetal auxin transport, and had a liinited activation of auxin response in the 

inner cortex. Following inoculation with rhizobia, crel roots also showed reduced 

accumulation of the auxin indoIe-3-acetic acid (lAA) and of several flavonoids. 
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Nodule initiation was rescued by the application of synthetic auxin transport 

inhibitors, as well as certain flavonoids that also rescued auxin transport inhibition 

and auxin responses in rhizobia-infected crel roots. These results suggest that 

cytokinins act through induction of flavonoids, which would alter auxin transport 

and accumulation during the initiation of indeterminate nodules. 
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5.3 Results 

5.3.1 The crel mutant is defective in acropetal and basipetal auxin transport 

regulation and auxin accumulation following Rhizobium inoculation 

To investigate auxin transport control in the crel mutant, we quantified acropetal 

and basipetal auxin transport using radiolabelled lAA applied either above the site 

of inoculation or at the root tip, respectively. To exclude the possibility that defects 

in flavonoids in the crel mutant prevented proper nod gene activation in the 

symbiont (e.g. Zhang et al., 2009), we used, instead of a wild-type strain, a genotype 

of Sinorhizobium meliloti that constitutively expresses nodDS, i.e. that produces 

Nod factors in the absence of nod gene-inducing flavonoids from the legume host 

(Barnett et al., 2004); hereafter this strain is referred to as 'E65'. This strain formed 

a significantly higher number of nodules on wild-type (WT) roots compared to the 

reference strain S. meliloti 1021 (Figure 5.1). Under our growth conditions in agar 

plates, both strains usually did not lead to nodule formation in the crel mutant 

(Figure 5.1), and when nodules formed, this was at a significantly lower level than in 

WT, as reported previously for the crel mutant (Plet et al. 2011) and other cytokinin 

receptor mutants (e.g.. Held et al., 2014; Murray et al., 2007). 

s 

r 
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Rm1021 £65 Rm1021 E65 
A17 crel 

Figure 5.1 Nodulat ion eff iciency on W T and cre1 mutant roots spot- inoculated wi th 

Sinorhizobium meloti strains Rm-1021 and E65. Nodules were quant i f ied two weeks post-

inoculation. A two-way A N O V A with a Tukey-Kramer mult iple compar ison post-test was 

used for statistical analysis (p<0.05, n=20). Dif ferent lowercase letters indicate signif icant 

di f ferences in nodule numbers per plant. Graphs show mean and SD. 
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Acropetal ( f rom root base to root tip) auxin transport capacity was 

measured just below the site of inoculation with E65, where previous studies 

detected a reduct ion in auxin t ransport capacity following inoculation with strain 

1021 (Wasson et al., 2006; Plet et al., 2011; Figure 5.2A). Consistent with those 

studies, the E65 Rhizobium strain led in W T roots to a significant reduction in 

acropetal auxin t ransport into a root segment below the inoculation site within 24 h. 

In the crel mutan t , inoculation with E65 failed to inhibit acropetal auxin transport 

(Figure 5.2A). Near the root tip, auxin t ransport also occurs in a basipetal ( f rom the 

root tip upwards) direction and we therefore tested whether this basipetal auxin 

flow was also affected by rhizobia. We measured basipetal auxin transport capacity 

of the root segment just above the inoculation site (Figure 4.10). In W T roots, E65 

inoculation significantly increased basipetal auxin transport capacity at 24 h p.i. 

(post inoculation), while in crel mutant roots there was no significant difference 

between inoculated and control roots (Figure 5.2B). 
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Figure 5.2 Relative auxin transport changes in WT (A17) and cre1 mutant roots. (A) 

Acropetal and (B) basipetal auxin transport measurements 24 h after mocl<- or E65-

inoculation in a segment just below (for acropetal) and above (for basipetal) the inoculation 

site, respectively. Acropetal auxin transport measurements in (C) A17 and (D) cre1 mutant 

roots 24 h after mock- or benzylaminopurine (BAP) treatment (10-7 M) in a segment just 

below the mock or BAP application sites. Control treatments were set .to "1" in each case. 

A two-way ANOVA with a Tukey-Kramer multiple comparison post-test was used for 

statistical analyses in (A-B) (p<0.05, n=15-20). Different lowercase letters indicate 

significant differences in relative auxin transport rate. A Student's f-test was used for 

statistical analyses in (C-D) (p<0.05, n=20), where asterisks in (C) indicate a significant 

difference in relative auxin transport rate (p<0.001). Graphs show mean and SD. 

Near the root tip, auxin transport also occurs in a basipetal direction, and we 

therefore tested whether this basipetal auxin flow was also affected by rhizobia. We 

measured basipetal auxin transport capacity of the root segment just above the 

inoculation site (Figure 4.10). In WT roots, E65 inoculation significantly increased 

basipetal auxin transport capacity at 24 h p.i., while in crel mutant roots there was 

no significant difference between inoculated and control roots (Figure 5.2B). 

To test whether cytokinin signaling may directly lead to auxin transport 

inhibition, we measured acropetal auxin transport in WT and crel mutant roots 

24 h after treatment with the synthetic cytokinin BAP (benzyl amino purine) at 10 ' 

M. This cytokinin application led to a significant inhibition of acropetal auxin 

transport in WT (Figure 5.2C), but not in crel mutant roots (Figure 5.2D). 

We predicted that a reduction of auxin export below the inoculation site 

would likely increase auxin concentrations at the Rhizobium inoculation site in WT. 

Thus, we quantified the auxin content in a 4 mm long root segment comprising the 

inoculation site (2 mm above and 2 mm below the inoculation site), harvested at 6 h 

and 24 h p.i.. The most abundant non-conjugated auxin measured in the roots of 

both WT and crel mutants was lAA (Figure 5.3). The lAA concentration in WT 

root segments inoculated with rhizobia did not change at 6 h p.i., but significantly 
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increased at 24 h p.i. (Figure 5.3A). In crel roots, no significant increase was 

measured at 6 h or 24 h p.i. (Figure 5.3B). Concentrations of indole-3-butyric acid 

(IBA) were not significantly changed in response to inoculation in WT or crel 

mutants, but crel roots showed elevated IBA concentrations compared to W T 

(Figure 5.3C, D). The conjugated auxin lAA-Alanine showed no significant changes 

in response to E65 inoculation in either genotype, but higher concentrations were 

observed in WT at 6 h p.i. compared to crel roots (Figure 5.3E, F). Overall, 

combined auxin concentrations were higher in WT than in crel roots under both 

control and inoculated conditions (Figure 5.4). We could not detect 4-chloro-IAA, 

phenylacetic acid (PAA), and the auxin conjugates lAA-Phenylalanine, lAA-

Tryptophan, lAA-Leucine, lAA-Isoleucine, lAA-Valine or lAA-Aspartate in any of 

the root segments. These auxin metabolites were targeted for quantification because 

a previous study suggested their presence in M. truncatula based on enzyme feeding 

assays (Campanella et al., 2008). The detection limits for these auxins are shown in 

Table 3.7 and are below the concentrations measured for some of these auxins in 

other studies (e.g., Kowalczyk and Sandberg, 2001; Matsuda et al., 2005; Scheider et 

al., 1985). 

Next, we visualized changes in auxin response in roots transformed with the 

auxin reporter GH3:GUS (Hagen et al., 1991; Figure 5.5). In uninfected WT roots, 

GH3:GUS expression was detected in the vascular bundle and pericycle (Figure 

5.5A), similar to the expression in uninfected crel roots (Figure 5.5E). At 24 h p.i., 

an auxin response was activated in the cortex and root hairs of WT plants before the 

initiation of cortical cell divisions (Figure 5.5B, C). The extent of GH3:GUS 

induction in the cortex varied between roots f rom partial to complete staining of the 

cortex. In crel mutants, only a weak GH3:GUS response was seen in root hairs and 

cortical GH3:GUS expression was absent (Figure 5.5F, G). At 48 h p.i., dividing 

cortical and pericycle cells were detected in WT roots inoculated with E65, and these 

dividing cells, as well as cortical and epidermal cells surrounding the nodule 
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primordium, showed a strong auxin response (Figure 5.5D). In crel roots, no 

activation of auxin response was observed in the cortex, which typically fails to 

induce cell divisions in response to E65 (Figure 5.5H). GH3:GUS expression was 

seen in epidermal cells of crel mutants in the absence of cortical cell divisions 

(Figure 5.5H). However, in a few cases the crel mutant did form small and delayed 

nodules, and in these cases GH3:GUS expression was found in dividing cells of the 

nodule primordia, as well as in overlying outer cortical and epidermal cells (Figure 

5.51), similar to the WT. Reverse transcription quantitative PGR (RT-qPCR) 

showed significantly higher expression of GH3 inoculated in WT compared to crel 

roots at 6 h p.i. (Figure 5.6A). 
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Figure 5.3 Auxin concentration in WT (A17) and cre1 mutant roots at 6 and 24 h post 

mocl<- or E65 inoculation. (A-B) lAA concentration; (C-D) IBA concentration; (E-F) lAA-Ala 

concentration. A three-way ANOVA witli a Bonferroni post-test was used for statistical 

analysis. Asterisk in (A) indicates a significant difference in auxin concentration with a 

Bonferroni post-test (p<0.05; n=5-6). Each biological replicate consists of at least 30 root 

segments. Graphs show mean and SD. 
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Figure 5.4 Combined auxin concentrations (sum of lAA, IBA and lAA-Ala) in WT (A17) and 

cre1 mutant roots mock-treated or inoculated with E65 rhizobia. A Student's f-test was used 

for statistical analyses (p<0.05, n=4-5). Asterisks indicate significant differences in total root 

auxin concentrations between WT and cre1 mutants. 

To test whether changes in auxin transport and auxin accumulation were 

accompanied by changes in the expression of auxin transporter-encoding genes, we 

monitored the relative expression of all ten known PIN genes and of the five known 

LAX genes , using RT-qPCR (Schnabel and Frugoli, 2004a). A significantly higher 

PIN4 and PIN 10 expression at 6 h p.i. and PIN2 expression at 24 h p.i. was found in 

E65-inoculated WT roots compared to crel roots (Figure 5.6B). None of the other 

PIN genes showed a significantly differential expression between WT and crel roots 

in the first 24 h, while some minor changes in expression occurred at later time 

points (Figure 5.7). None of the LAX genes showed altered expression levels 

between genotypes or in response to inoculation with E65 (Figure 5.8). 
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Figure 5.5 Auxin response {GH3:GUS expression) is localised to dividing cells during the 

early stages of nodule and pseudonodule development. (A) Auxin response in a mock-

treated WT (A17) root. (B) Auxin response is localised to the root hairs and underlying 

cortex directly below the root hairs of a A17 root spot-inoculated v /̂ith E65 at 24 h p.i.. (C) 

Cross-section of (B). (D) Auxin response in the dividing pericycle, endodermal and cortical 

cells during early symbiotic stages in an A17 root inoculated with E65 at 48 h p.i.. (E) Auxin 

response in a mock-treated cre1 mutant root. (F) Auxin response is absent in the root 

cortex but present in the root hairs of a cre1 mutant root spot-inoculated with E65 at 24 h p.i.. 

(G) Cross-section of (F). (H) In most of cre1 mutant roots, no cell divisions occur in 

response to E65 inoculation at 48 h p.i.. (I) Dividing cells in cre1 mutants are associated 

with an enhanced auxin response and are observed in less than 5% of cre1 mutant roots 

inoculated with E65. Auxin response in the dividing cells of A17 (J) and cre1 (K) roots in 

response to TIBA treatment. Auxin response in a cre1 (L) naringenin-, (M) isoliquiritigenin-, 

(N) kaempferol-, and (O) quercetin-rescued nodule primordium. (P) No enhanced auxin 
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response or cell divisions were observed in hesperet in- t reated roots. A r rowheads indicate 

nodule pr imordia. Ar rows indicate auxin response in the root hairs and / or the root cortex. 

At least 30 individual samples were observed for each t reatment. Horizontal and vert ical 

scale bars represent 100 pm and 1 mm, respect ively. Abbreviat ions: ep, epidermis; c, 

cortex; en, endodermis ; p, pericycle. 
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F i g u r e 5.6 Quant i tat ive RT-PCR showing transcript abundance in root segments of W T 

(A17) and cre1 mutants inoculated for 6 and 24 h with E65 relatively to mock- t reated roots. 

Express ion was normal ised to the GAPDh re ference gene. The auxin response gene 

M t G H 3 (A), and the lAA expor ter -encoding genes MtP/W2, mPIN4 and mPINW (B) were 

analysed. A two-way A N O V A with a Tukey-Kramer mult iple compar ison post-test was used 

for statist ical analyses (p<0.05, n=3). Dif ferent lowercase letters indicate signif icant 

d i f ferences in transcr ipt abundance within each gene. Each biological repl icate consists of 

at least 50 root segments . Graphs show mean and SD. 
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Figure 5.7 Quantitative RT-PCR of MtP/W genes. Transcript abundance was quantified in 

root segments Inoculated for 6, 24, 48 h, 5 and 11 d with E65 relatively to mock-treated 

roots. Expression was normalised to the GAPDh reference gene. lAA exporter-encoding 

genes PIN1 (A), PIN2 (B), PIN3 (C), PIN4 (D), PIN6 (E) , PIN7 (F), PIN9 (G) and PIN10 (H) 

were analysed. PINS and PINS mRNAs were not detected In M. truncatula roots (Schnabel 

and Frugoll, 2004). A two-way ANOVA with a Tukey-Kramer multiple comparison post-test 
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was used for statistical analysis (p<0.05, n=3). No significant differences were found 

between any of the treatments. Three biological replicates consisting of at least 50 

individual root segments were analysed. Graphs show mean and SD. 
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Figure 5.8 Quantitative RT-PCR of M t M X genes. Transcript abundance was quantified in 

root segments inoculated for 6 and 24 h with E65 relatively to mock-treated roots. 

Expression was normalised to the GAPDh reference gene. lAA importer-encoding genes 

LAX1 (A), LAX2 (B), LAX3 (C), LAX4 (D), and LAX5 (E) were analysed. A two-way ANOVA 

with a Tukey-Kramer multiple comparison post-test was used for statistical analysis (p<0.05, 

n=3). No significant differences were found between any of the treatments. Three 

biological replicates consisting of at least 50 individual root segments were analysed. 

Graphs show mean and SD. 
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5.3.2 The crel mutant shows an altered flavonoid profile 

Because flavonoids can act as modulators of auxin transport (Peer and Murphy, 

2007) and are required for acropetal auxin transport control during nodulation of 

M. truncatula (Wasson et al., 2006), we studied the flavonoid profile of WT and crel 

mutant roots. We quantified the abundance of flavonoids in WT and crel mutant 

roots in mock-inoculated and E65-inoculated roots comprising 2 cm of roots from 

the root tip upwards and including the inoculation site at 24 h p.i. using LC-MS/MS. 

We performed two assays, first a quantification of free aglycones (Figure 5.9), and 

second a quantification of the total flavonoid pool following acid hydrolysis of root 

extracts, which converts flavonoid glycosides into free aglycones (Figure 5.10). 

Quantification of the total flavonoid pool could reconcile physiological changes 

mediated by flavonoid glycosides in response to rhizobia infection, which might not 

be detected with the quantification of free flavonoid aglycones alone. In 

uninoculated roots, crel mutants showed no significant changes in concentrations 

for any of the measured free aglycones compared to WT roots (Figure 5.9). After 

inoculation with E65, WT, but not crel mutants roots, showed a significant increase 

in concentrations of the flavonol quercetin and the flavone hesperetin (Figure 5.9). 

Isoliquiritigenin was significantly increased in response to E65 inoculation in both 

genotypes, but the concentration in inoculated WT roots was significantly higher 

than in crel mutant roots. Naringenin concentration was also significantly higher 

in inoculated WT roots in comparison to inoculated crel mutant roots. The 

concentration of kaempferol decreased to levels below the detection limit in both 

genotypes following inoculation. Inoculation significantly elevated the 

concentrations of the isoflavonoids daidzein, formononetin, medicarpin and 

biochanin A, with similar responses in both genotypes. Concentrations of 

liquiritigenin, chrysoeriole and morin were not significantly altered by genotype or 

inoculation. A summary of differences in flavonoid aglycone abundance between 
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WT and crel roots in response to E65 inoculation is depicted in Figure 5.11 to 
correlate the observed defects with the flavonoid metabolic pathway. 
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Figure 5.9 Concentrations of major flavonoids in WT (A17) and cre1 mutant root segments 

24 h after mock- or E65 inoculation. Flavonoids analysed include the flavanones 

(naringenin, hesperetin), flavonols (quercetin, kaempferol, morin), isoflavonoids 

(isoliquiritigenin, liquiritigenin, medicarpin, formononetin, daldzein, biochanin A), and a 

flavone (chrysoeriole). Relative quantification was performed on chrysoeriol and medicarpin, 

where commercial standards were not available. A two-way ANOVA with a Tukey-Kramer 
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multiple comparison post-test was used for statistical comparison (p<0.05; n=3-5). Different 

lowercase letters indicate statistically significant difference between treatments. A total of 

15 root segments were harvested for each biological replicate. Graphs show mean and SD. 
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Figure 5.10 Concentrations of total flavonoid aglycones following acid hydrolysis of 

flavonoid glycosides in WT and cre1 roots. The flavonoids quercetin, naringenin, 

kaempferol, daldzein, formononetln, medicarpin, liquiritigenin and chrysoeriol were analysed 

in root segments 24 h after mock- or E65 inoculation. A two-way ANOVA with a Tukey-

Kramer multiple comparison post-test was used for statistical analysis (p<0.05, n=3). 

Different lower case letters indicate a significant change in flavonoid concentration 

measured. A total of 15 root segments were harvested for each biological replicate. Graphs 

show mean and SD. 
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Figure 5.11 Schematic overview of the flavonoid biosynthesis pathway in Medicago 

truncatula. Aglycones that were detected in the roots are shown in bold. Flavonoids shown 

in bold red showed differences in induction after inoculation between genotypes 

(isoliquiritigenin, naringenin, hesperetin and quercetin). Different subclasses of flavonoids 

are indicated in different colours. Note that we could detect genistein/apigenin but could not 

differentiate between them because of the identical MW and elution time. Enzymes are 

shown in blue and are abbreviated as follows: AMFG, S-adenosylmethionine:flavonoid 7 -0-

glucosyltransferase; CHI, chalcone isomerase; CHR, chalcone reductase; CHS, chalcone 
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synthase; DFR, dihydroflavonol 4-reductase; DMID, 7,2'-dihydroxy-4'-methoxy-isoflavonol 

dehydratase; F3'H, flavonoid-3'-hydroxylase; F3'M, flavonoid 3'-monooxygenase; FLS, 

fiavonol synthase; FNS, flavone synthase; FSII, Flavone synthase II; I2'H, isoflavone-2'-

hydroxylase; IFD, 2-hydroxyisoflavanone dehydratase; IFR, isoflavone reductase; IFS, 2-

hydroxyisoflavanone synthase; lOMT, isoflavanone-O-methyltransferase; P450, cytochrome 

P450; VR, vestitone reductase. Genes encoding enzymes in bold were Induced by 

E65/cytokinln treatment. 

Quantification of flavonoid aglycones after acid hydrolysis, i.e. after release 

from glycosides (Figure 5.10), showed no significant differences between genotypes 

or depending on E65-inoculation, except for a significant induction of liquiritigenin, 

formononetin and medicarpin concentrations in crel mutants after inoculation, 

which was not observed in WT. This suggests that the crel mutant is compromised 

in its ability to regulate flavonoid accumulation in response to rhizobia either 

through cytokinin-mediated changes in biosynthesis or conversion of flavonoids 

during nodule initiation. A previous study showed that a large number of flavonoid 

metabolic genes were transcriptionally regulated by cytokinin in M. truncatula roots 

(Ariel et al., 2012; genes listed in Table 5.1). 

To test whether the observed changes in flavonoid content, in particular 

those with differential responses in WT and crel mutants, i.e. naringenin, 

isoliquiritigenin, quercetin and hesperetin (highlighted in bold red in Figure 5.11), 

are accompanied by altered expression of the respective flavonoid synthesis genes, 

we monitored the expression of CHALCONE SYNTHASE (CHS), CHALCONE 

ISOMERASE (CHI), CHALCONE REDUCTASE {CHR), FLAVONOID-3'-

HYDROXYLASE {F3'H) and FIAVONOL SYNTHASE (FLS) by RT-qPCR. 



Table 5.1 Induction of flavonoid-related genes by the cytokinin BAP, extracted and modified from the publication by 
Ariel et al. (2012). 
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Expression of these flavonoid synthesis genes in response to a short-term cytokinin 

treatment ( 1 0 ' M BAP for 30 min) revealed significant induction of CHR, F3'H and 

FLS expression in BAP-treated WT but not crel mutant roots compared to mock-

treated roots (Figure 5.12), indicating that these genes are cytokinin-inducible. A 

comparison between uninoculated roots of the two genotypes revealed significantly 

higher expression of CHS, CHR, F3'H and FLS in crel mutants roots compared to 

WT at 24 h, and of CHR and FLS also at 6 h (Figure 5.13). In response to 

inoculation with E65, we found a significant induction of CHS, CHR, and FLS in 

WT but not crel roots at 6 h p.i., and of CHS and F3'H also at 24 h p.i. (Figure 5.14; 

shown in bold blue in Figure 5.11). On the contrary, expression of CHS and CHR 

was significantly reduced by E65 inoculation in the crel mutant at 24 h p.i. for both 

genes and at 6 h p.i. for CHS (Figure 5.14). F3'H was significantly induced in WT 

and crel roots after E65 inoculation at 6 h, but this increase was only significant in 

WT at 24 h p.i. (Figure 5.14). CHI was neither induced by BAP nor by rhizobia. 

These gene expression assays support the hypothesis that the observed differential 

accumulation of isoliquiritigenin (requiring CHS and CHR activities) and quercetin 

(requiring CHS, F3'H and FLS activities) in WT roots in response to rhizobia is 

mediated through cytokinin signalling. For naringenin, which only requires CHS 

activity, there was a discrepancy between induction of CHS by rhizobia in WT (but 

not crel mutants), while CHS was not significantly induced by BAP. It is possible 

that this is due to the different timing of BAP application and rhizobia inoculation 

or biological variation of the RT-qPCR experiment. 
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Figure 5.12 Quantitative RT-PCR showing relative transcript abundance of flavonoid-

related genes in roots treated with cytokinin (Benzylaminopurine, BAP). Transcript 

abundance of flavonoid-related genes in WT (A17) and the cre1 mutant roots treated with 

10"' M BAP for 30 min, relatively to mock-treated roots. Expression was normalised to the 

RIBOSOMAL BINDING PR0TEIN1 (RBP1) reference gene (Plet et al., 2011). (A) 

CHALCONE SYNTHASE (CHS), (B) CHALCONE REDUCTASE (CHR), (C) CHALCONE 

ISOMERASE {CHI), (D) FLAVONOID ^-HYDROXYLASE (F3'H) and (E) FLAVONOL 

SYNTHASE (FLS) genes were analysed. A Student's Mest was used for statistical 

analyses (p<0.05, n=3). Asterisks indicate significant inductions by BAP compared to the 

mock-treatment in WT. Graphs show mean and SD. 
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Figure 5.13 Quantitative RT-PCR showing transcript abundance of flavonoid-related genes 

in root segments. Transcript abundance of flavonoid-related genes in mock-inoculated 

(control) and inoculated (E65) roots for 6 and 24 h in cre1 mutants relatively to WT (A17). 

Expression was normalised to the GAPDh reference gene. (A) CHALCONE SYNTHASE 

(CHS), (B) CHALCONE REDUCTASE {CHR), (C) CHALCONE ISOMERASE {CHI), (D) 

FLAVONOID 3-HYDROXYLASE {F3'H) and (E) FLAVONOL SYNTHASE {FLS) genes 

were analysed. A Student's Mest was used for statistical analyses between cre1 mutants 

and WT (fold change) (p<0.05, n=3). Asterisks indicate significant differences in induction / 

repression in cre1 mutants relative to WT. A two-way ANOVA with a Tukey-Kramer multiple 

comparison post-test was used for statistical analyses between control and E65 treatments 

(p<0.05, n=3). Different lowercase letters indicate significant differences in induction / 

repression between control and E65 treatments. Graphs show mean and SD. 
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Figure 5.14 Quantitative RT-PCR showing transcript abundance of flavonoid-reiated genes 

in root segments. Transcript abundance of flavonoid-reiated genes in WT (A17) and the 

cre1 mutant inoculated for 6 and 24 h with E65 relatively to mock-treated roots. Expression 

was normalised to the GAPDh reference gene. (A) CHALCONE SYNTHASE (CHS), (B) 

CHALCONE REDUCTASE (CHR), (C) CHALCONE ISOMERASE (CHI). (D) FLAVONOID 

3 -HYDROXYLASE (F3'H) and (E) FLAVONOL SYNTHASE (FLS) genes were analysed. A 

Student's f-test was used for statistical analyses between roots inoculated with E65 

relatively to mock-treated roots (fold change) (p<0.05, n=3). Asterisks indicate significant 

differences in induction / repression in roots inoculated with E65 relatively to mock-treated 

roots within individual treatments. A two-way ANOVA with a Tukey-Kramer multiple 

comparison post-test was used for statistical analyses between genotypes (p<0.05, n=3). 

Different lowercase letters indicate significant differences in induction / repression between 

A17 and cre1 mutants. Graphs show mean and SD. 
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5.3.3 Nodulation in crel mutants can be rescued by auxin transport inhibitors 

As the crel mutant is deficient in the acropetal auxin transport inhibition preceding 

nodule initiation, we tested whether the failure to initiate nodules in this mutant 

could be rescued by application of synthetic or natural auxin transport inhibitors, 

including flavonoids. We used flooding-application of the synthetic auxin transport 

inhibitors 1-N-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid 

(TIBA), which were previously shown to induce the formation of pseudonodules 

(Rightmyer and Long, 2011). Pseudonodules were indeed observed in the absence 

of rhizobia, both in WT and crel mutants (Figure 5.15). We observed that NPA 

caused pleiotropic effects on roots, such as inhibiting root growth or causing root 

curling, while TIBA did not induce these phenotypes at the concentrations used in 

our experiments. We therefore only used TIBA for subsequent tests as a synthetic 

auxin transport inhibitor. 
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Figure 5.15 Complementation of nodulation in cre1 mutants using flavonoids or ttie 

synthetic auxin transport inhibitor TIBA. (A) Number of nodules forming on WT (A17) and 

cre1 roots, with or without E65 inoculation and various treatments: W - water; K - 3 pM 

kaempferol; N - 3 pM naringenin; iL - 3 pM isoliquiritigenin; T - 50 pM TIBA. Note that 

nodules formed with TIBA in the absence of rhizobia were uninfected pseudonodules. A 

three-way ANOVA with a Tukey-Kramer multiple comparison post-test was used for 

statistical comparison (p<0.05; n=35). Different lowercase letters indicate statistically 

significant difference in nodule numbers between treatments. Graph shows mean and SD. 

(B) Percentage of plants forming nodules in A17 and cre1 mutants. Two-sample (-tests 

were used for statistical analysis (** p<0.01, * "p<0.001; n=35). 

We selected those flavonoid aglycones that were differentially altered by 

rhizobia in WT and crel mutants, as well as kaempferol, which responded similarly 

to rhizobia in both genotypes but is a likely auxin transport inhibitor acting in 

nodulation, or a precursor thereof (Zhang et al., 2009). The flavonoid concentration 

used for these rescue experiments (3 |iM) was selected as it is in the range of the 

measured tissue concentrations for free aglycones (Figure 5.9) and roots were 

flooded with the flavonoids for 10 s at the start of the experiment, identical to the 

NPA and TIBA treatments. This treatment of seedlings with the flavonoids 

kaempferol, naringenin, and isoliquiritigenin at a 3 pM concentration did not lead 

to pseudonodule formation in either genotype in the absence of rhizobia (Figure 

5.15A). Similarly, root growth was not affected by these flavonoids at the 3 pM 

concentration (Figure 5.16). We also tested kaempferol application at 

concentrations up to 100 pM, but this did not cause pseudonodule formation either. 

However, when WT or crel mutant roots were inoculated with E65 in the presence 

of TIBA, kaempferol, naringenin, or isohquiritigenin, nodules formed on both 

genotypes with a similar efficiency (Figure 5.ISA, B). Addition of quercetin 

increased percentage of nodulated crel roots and increased nodule numbers in crel 

mutants such that there was no significant difference in nodule numbers on E65-

inoculated roots between mock-treated WT and crel mutants treated with quercetin 

(Figure 5.17A, B), suggesting a partial rescue effect of quercetin. In contrast, 
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hesperetin was not able to rescue nodulation of crel mutants to a WT level (Figure 

5.17A, B). Overall, naringenin, kaempferol and isoliquiritigenin were able to rescue 

the crel nodulation phenotype, while quercetin partially rescued nodulation and 

hesperetin did not rescue nodulation under our conditions. 
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Figure 5.16 Root growth (change in tap root length) on Medicago truncatula WT plants 

with or without flavonoids and E65. A Tukey-Kramer multiple comparisons test was used for 

statistical comparison between treatments (p<0.05; n=15). Abbreviations; W, water; K, 3 pM 

kaempferol; Q, 3 pM quercetin; N, 3 pM naringenin; H, 3 pM hesperetin. 
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Figure 5.17 Nodulation on WT and cre1 mutant roots treated with or witlnout quercetin or 

liesperetin, in ttie presence of E65. (A) Nodule formation on A17 and cre1 mutant roots 

treated with or without quercetin or hesperetin, in the presence of E65. A two-way ANOVA 

with a Tul<ey-Kramer multiple comparison post-test was used for statistical comparison 

between treatments (p<0.05; n=35). (B) Percentage of plants forming nodules on WT (A17) 

and cre1 mutant roots treated with or without quercetin or hesperetin, in the presence of E65. 

A two-sample Student's f-test was used for statistical comparison between treatments (** 

p<0.01; n=35). Abbreviations: W, water; H, 3 pM hesperetin; Q, 3 pM quercetin. 

Subsequently, we tested whether application of natural or synthetic auxin 

transport inhibitors also enabled the induction of GH3:GUS expression in nodule 

primordia. In the absence of rhizobia, pseudonodule primordia that formed in the 

presence of TIBA expressed GH3:GUS in dividing root pericycle, endodermal, and 

cortical cells similarly in the WT and the crel mutant (Figure 5.5J, K). Likewise, 

nodules formed in crel mutants in the presence of E65 and naringenin (Figure 5.5L) 

showed an auxin response in developing nodule primordia. Similar GH3:GUS 

expression was seen in nodule primordia induced in crel roots after addition of 

either isoliquiritigenin, kaempferol or quercetin (Figure 5.5M-0) but not after 

addition of hesperetin (Figure 5.5P). To test whether nodules formed in crel 

mutants in the presence of auxin transport inhibitors were infected, we used a GFP-

labelled strain of S. meliloti transformed with the E65 plasmid. Nodules that formed 

on crel mutant roots supplemented with naringenin looked similar to the WT, and 

were infected with GFP-labelled rhizobia (Figure 5.18). Similarly, supplementation 

with TIBA, isoliquiritigenin, kaempferol, or quercetin also led to the formation of 

infected nodules in crel mutants (Figure 5.19). 
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Figure 5.18 Nodules restored on cre1 mutant roots treated with selected flavonoids are 

infected by rhizobia. (A-C) WT (A17) roots inoculated with E65 without gfp to show 

background autofluorescence under GFP excitation; (D-F) A17 roots inoculated with a gfp-

expressing Sm1021 pE65 strain; (G-l) cre1 mutant roots inoculated with a gfp-expressing 

Sm1021 pE65 strain and treated with naringenin (3 pM); (J-L) Cross-section of a cre1 

naringenin-rescued nodule shown in (G-l), with gfp-expressing Sm1021 pE65 in infected 

cells of the nodule. (A,D,G,J) Brightfield images; (B,E,H,K) Images taken under GFP 

excitation (max. excitation 470 nm; 515 nm longpass filter) of the same nodules as in 

A,D,G,J; (C,F,I,L) Overlay of brightfield and fluorescence images from the same row. More 

than 20 nodule-forming roots were observed under fluorescence for each treatment. White 

arrowheads in J and L indicate the nodule peripheral vasculature. Scale bars represent 1 

mm in A-l and 500 pm in J-L. 
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Figure 5.19 Nodules formed on cre^ mutant roots with addition of auxin transport inhibitors 

are infected by rhizobia. Roots were co-flood-inoculated with each auxin transport inhibitor 

and a gfp-expressing Sm1021 E65 strain. Nodules were photographed at 3 weeks p.i.. (A) 

TIBA-, (B) isoliquiritigenin-, (C) kaempferol- and (D) quercetin-rescued nodules. Images 

were taken under GFP excitation (max. excitation 470 nm; 515 nm longpass filter). More 

than 20 nodule-forming roots were observed with fluorescence for each treatment. Scale 

bars represent 1 mm. 

To determine whether supplementation with TIBA or flavonoids rescued 

acropetal auxin transport regulation in crel mutants, we measured auxin transport 

24 h after the flood treatment. TIBA alone, which is sufficient to induce 

pseudonodules, inhibited acropetal auxin transport significantly in WT and crel 

mutants (Figure 5.20A). Flood treatment with naringenin alone also significantly 

inhibited acropetal auxin transport in WT and crel roots (Figure 5.20B). Co-

treatment with E65 and naringenin, which is sufficient to rescue nodulation in crel 

mutants, significantly reduced acropetal auxin transport in WT and crel (Figure 

5.20B). A comparable result was found with isoliquiritigenin, kaempferol and 

quercetin (Figure 5.21A, B), but not with hesperetin, (Figure 5.21C, D), which also 

did not rescue nodulation in crel mutants. 
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Figure 5.20 Acropetal auxin transport measurements in roots of WT (A17) and the cre1 

mutant. Auxin relative transport rate changes at 24 h post-treatment are shown. Seedlings 

were treated with (A) TIBA or (B) naringenin, either in the presence or absence of E65. A 

two-way ANOVA with a Tukey-Kramer multiple comparison post-test was used for statistical 

comparison (p<0.05; n=15-25). Different lowercase letters Indicate significant differences In 

relative auxin transport rates. Graphs show mean and SD. 

II 

A 1 7 

X 

cT 

B 
1.5 

? Q. 
£ 

If 
I 

0.0 

X 
cre1 

dT 

X 

I 2.0. 
o. <ft 

£ " 
.S OS' 

A 1 7 

X. 
a 

X 
crel 

b 

X 



5.3 Resu l t s 

Figure 5.21 Acropetal auxin transport in roots treated with or without flavonoids, in the 

presence of E65. Acropetal auxin transport in E65-inoculated roots, with a short-term 

treatment of loempferol , quercetin, naringenin or isoliquiritigenin on A17 (A) and cre1 (B) 

plants. Acropetal auxin transport in E65-inoculated roots, with a short-term treatment of 

TIBA or hesperetin in A17 (C) and cre1 (B). A Tukey-Kramer multiple comparison test was 

used for statistical comparison between treatments (p<0.05; n=20). Different lower case 

letters indicate a significant change in relative auxin transport. Abbreviations; W, water; K, 3 

pM kaempferol; Q, 3 pM quercetin; N, 3 pM naringenin; IL, 3 pM isoliquiritigenin; H, 3 pM 

hesperetin. Graphs show mean and SD. 

In contrast to acropetal auxin transport, basipetal auxin transport was not 

inhibited by application of TIBA in WT or in crel mutants (Figure 5.22A). Flood 

treatment of roots with a number of flavonoids also failed to alter basipetal auxin 

transport (Figure 5.22B). Co-treatment of roots with E65 and quercetin reduced 

basipetal auxin transport in WT but not in crel mutants (Figure 5.22C). Thus, none 

of the tested auxin transport inhibitors mimicked the increased basipetal auxin 

transport that was observed in WT after E65 inoculation (Figure 5.2B), even though 

they were sufficient to rescue nodulation. This suggests that the acropetal, but not 

the basipetal, auxin transport changes following Rhizobium infection are crucial for 

successful nodule initiation. 
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Figure 5.22 Basipetal auxin transport in WT and cre1 mutant roots in response to auxin 

transport inhibitors at 24 h.p.i.. (A) TIBA, (B) flavonoids (A17 only) (3 pM) in the absence of 

rhizobia, (C) quercetin (3 pM) in the absence and presence of E65. A two-way ANOVA with 

a Tukey-Kramer multiple comparison post-test was used for statistical analysis in (A) and (C) 

(p<0.05, n=20). A Tukey-Kramer multiple comparison test was used for statistical analysis 

in (B). Different lower case letters indicate a significant change in relative auxin transport. 

Abbreviations: W, water; TIBA, 2,3,5-triiodobenzoic acid; K, 3 pM kaempferol; Q, 3 pM 

quercetin; H, 3 pM hesperetin; iL, 3 pM isoliquiritigenin; N, 3 pM naringenin. Graphs show 

mean and SD. 
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5.4 Discussion 

5.4.1 Cytokinin s ignal l ing is required for increased auxin accumulat ion at the 

infect ion site 

Our results suggest that cytokinin signalling through CREl is required for the 

accumulation of auxin in pericycle, endodermal, and cortical cells targeted to divide 

to form a nodule. Indeed, crel mutants did not show increased lAA concentrations 

following Rhizobium inoculation, and the auxin reporter GH3:GUS was only 

induced in dividing cells leading to nodule formation in the W T or in the few cases 

of successful nodulation in crel mutants. Our evidence points to a correlation 

between lAA concentrations and GH3:GUS expression level. However, we cannot 

exclude the importance of other auxins that were not detectable or not measured in 

our assays. While we concentrated on auxin amino acids conjugates, which were 

previously suggested to be present in M. truncatula (Campanella et al., 2008), a 

number of other auxin conjugates exists in plants that could contribute to the 

dynamics of auxin breakdown, storage and activity (Korasick et al., 2013). In 

addition, it is likely that the GH3:GUS reporter construct does not reflect the exact 

localization and activity of all different auxins in the root. Nevertheless, auxin 

activity analyzed through GH3:GUS expression agrees with the induction of the DR5 

promoter in nodule primordia of L. japonicus (Suzaki et al., 2012) and soybean 

(Turner et al., 2013) and in the cortex of M. truncatula (Breakspear et al., 2014). 

Interestingly, an auxin response in root hairs at the infection site was visible after 

24 h p.i. in both genotypes. A similar auxin response was identified in M. truncatula 

recently, and shown to be involved in the infection process (Breakspear et al., 2014). 

This suggests that the cortical auxin response is associated with nodule primordium 

formation, depending on CREl, while the epidermal auxin response associated with 

infection still occurs in the crel mutant. In addition, supply of crel mutants with 

auxin transport inhibitors restored the induction of cortical GH3:GUS expression in 
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nodule primordia and the development of nodules. These results are consistent 

with the findings that cytokinin application induced expression of GH3:GUS in 

dividing cortical cells in white clover (Mathesius et a l , 2000a) and that spontaneous 

cortical cell divisions in the Lotus japonicus snf2 mutant are associated with 

DR5:GFP expression (Suzaki et a l , 2012). In addition, we also measured a 

significandy higher transcript abundance of the putative auxin synthesis genes 

YUC2 and YUC3 in WT relatively to the crel mutant, in response to E65 inoculation 

(Appendix E). These preliminary results suggest a possible role for lAA 

biosynthesis in generating auxin maxima in the nodule primordia of M. truncatula. 

These data are reminiscent of studies showing that, in Arabidopsis, 

cytokinin signaling regulates auxin accumulation during lateral root initiation 

(Laplaze et al., 2007b). In Arabidopsis, cytokinin was previously shown to control 

the auxin pool via alteration of PIN protein expression and localization, for example 

during lateral root initiation (Pernisova et al., 2009, Ruzicka et al., 2009b, Marhavy 

et al., 2011, Marhavy et al., 2014). In our study, we did not find any clear evidence 

that the decrease in acropetal auxin transport was accompanied by a reduction in 

PIN or LAX gene expression. Indeed, in response to Rhizobium inoculation in the 

WT, we found an increased PIN4 and M. truncatula PIN 10 expression, the closest 

homolog of Arabidopsis PINl, which encodes a protein that transports auxin 

acropetally in Arabidopsis (Petrasek and Friml, 2009). PIN4 and PINIO transcript 

levels also increased within the first 6 h p.i. with Nod factors in WT but not crel 

mutant roots (Plet et al., 2011). Therefore it is most likely that PIN expression levels 

are not a sufficient predictor of actual auxin transport capacity. Instead, additional 

post-transcriptional regulatory mechanisms likely modulate PIN protein activity. 

Alternatively, M. truncatula PIN4 and PINIO may not be the main transporters 

mediating acropetal auxin transport, but might be involved in lateral auxin 

transport. 
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As both synthetic auxin transport inhibitors as well as certain flavonoids 

inhibit auxin export (Jacobs and Rubery, 1988), it is expected that the accumulation 

of auxin in nodule primordia is related to a decreased auxin export from these cells. 

Reduced acropetal auxin transport was measured below the nodule initiation site in 

M. truncatula in this study, as well as in Plet et al. (2011) and Wasson et al. (2006). 

Accordingly, in Vicia sativa roots, Nod factor application reduced acropetal auxin 

transport (Boot et al., 1999a). Our evidence thus supports the in silico modeling of 

auxin maximum generation during nodule initiation, which suggested that auxin 

accumulation in nodule primordia is most likely explained by a reduced auxin 

export (Deinum et al., 2012). While BAP application to white clover roots did not 

lead to reduced GH3:GUS expression below the application site in white clover 

(Mathesius et al., 2000), our finding that BAP application to roots significantly 

reduced acropetal auxin transport in M. truncatula supports the hypothesis that the 

induction of cytokinin signalling during nodulation acts upstream of auxin 

transport control, in accordance with results from Plet et al. (2011). 

We also measured basipetal auxin transport, and found increased basipetal 

auxin transport in response to rhizobia in the W T at 24 h p.i., which was not 

detected in crel mutants. This was accompanied in the W T with increased PIN2 

expression; M. truncatula PIN2 is a homolog of the Arabidopsis PIN2 transporter 

responsible for basipetal auxin transport from the root tip to the elongation zone 

(Schnabel and Frugoli, 2004b). However, the increased basipetal auxin transport 

was not mimicked in crel mutants rescued with auxin transport inhibitors, 

therefore we cannot confirm at this stage whether the increased basipetal auxin 

transport is necessary for nodule initiation. 

Collectively, our results show that the crel mutant is defective in the 

inhibition of acropetal auxin transport in response to rhizobia. As TIBA and 

specific flavonoids were able to inhibit acropetal auxin transport similarly in 
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inoculated crel mutants as in WT roots, this suggests that crel mutants are defective 

in the induction of an endogenous auxin transport inhibitor. 

5.4.2 Flavonoids rescue the crel mutant 

Our results showed that mRNA levels of CHS, CHR, and FLS were induced 

significantly by rhizobia in WT but not in crel mutant roots, and that crel mutant 

roots did not show increased free naringenin, quercetin, and hesperetin 

concentrations in E65-inoculated roots, while the concentration of isoliquiritigenin 

was increased in crel mutants after inoculation with E65, but was significantly lower 

than in inoculated WT roots. CHS activity is required for the synthesis of all 

flavonoids, while CHR leads to isoliquiritigenin synthesis and FLS leads to 

kaempferol and quercetin synthesis (Figure 5.11). Supplementation of crel mutant 

roots with rhizobia and naringenin, isoliquiritigenin or kaempferol rescued 

nodulation to a WT level, while hesperetin did not, and quercetin showed a partial 

rescue. These results strongly suggest that the transcriptional induction of 

flavonoids during nodule initiation is a (direct or indirect) target of cytokinin 

signalling. Similarly, results by van Zeijl et al. (2015) showed that a number of 

flavonoid synthesis genes are induced by Nod factors after 3 h in WT but not in crel 

roots, including a flavonoid hydroxylase, a dihydroflavonol reductase-like protein, a 

flavonoid glucosyl transferase, five isoflavone methyltransferases and a malonyl-

CoA:isoflavone 7-O-glucoside malonyl transferase, while two copies of flavonol 

synthase/flavanone-3-hydroxylase were significantly reduced in WT, but not crel 

roots. In addition, our study showed induction of CHR, F3'H and FLS expression by 

the cytokinin BAP, while a previous transcriptomic analysis of M. truncatula root 

apices response to cytokinins demonstrated that flavonoid-metabolic genes 

constituted the most significantly enriched functional category (Ariel et al., 2012 

and Table 5.1). Previous results showing that a local BAP treatment of white clover 
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roots led to cortical cell divisions, CHS induction and flavonoid accumulation in the 

dividing cells also support this model (Mathesius et al., 2000a). In addition, in 

Arabidopsis, expression of some flavonoid genes was also found to be under the 

control of cytokinins (Bhargava et al., 2013). However, it is likely that BAP 

treatment does not correctly mimic the induction of specific endogenous cytokinins 

during nodule initiation (van ZeijI et a l , 2015), since BAP also induced changes in 

flavonoid gene expression in the crel mutant. This suggests that the BAP-induced 

changes are mediated by CREl, as well as other cytokinin receptors. 

So far, it is unknown which flavonoid(s) is (are) responsible for auxin 

transport regulation during nodulation. Silencing of the flavonoid pathway in 

M. truncatula indirectly suggested that flavonols, most likely kaempferol, are 

required for auxin transport control because kaempferol addition to CHS-silenced 

roots, in combination with supplying rhizobia with nod gene inducing flavones, 

rescued nodulation (Zhang et al., 2009b). Our results show that even though 

nodulation in the crel mutant could be rescued by application of kaempferol, the 

crel mutant roots were not deficient in free or total kaempferol concentrations 

compared to WT. However, we detected in crel a deficiency in the induction of free 

quercetin by rhizobia, which was observed in the WT at 24 h p.i. with E65. 

Kaempferol can be converted to quercetin (Figure 5.11), and thus it is possible that 

experiments with kaempferol addition may lead to an increase of the quercetin pool. 

However, quercetin supplementation only partially rescued nodule formation in 

crel mutants. Therefore, it is unlikely that flavonol aglycones are sufficient 

candidates for acropetal auxin transport control during nodulation in M. truncatula. 

We could also rescue nodulation in crel mutants with naringenin and 

isoliquiritigenin, which accumulated to significantly higher concentrations in 

inoculated WT compared to inoculated crel roots. In our assays, naringenin and 

isoliquiritigenin could rescue auxin transport inhibition in crel roots, and are 

therefore also good candidates for auxin transport inhibitors during nodulation. A 
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summary of the characteristics of the different flavonoids tested and their relative 

abundance in WT and crel roots in response to Rhizobium inoculation is shown in 

Table 5.2 and Figure 5.23. From this comparison, the most likely candidates for 

auxin transport control regulated by the CREl cytokinin pathway are naringenin 

and isoliquiritigenin, or derivatives thereof, formed in the root after 

supplementation. 

Recent studies have suggested that in addition to flavonoid aglycones, 

flavonoid glycosides might act as auxin transport inhibitors. For example, an 

Arabidopsis flavonoid 3-O-glycosyltransferase mutant, which over-accumulated 

kaempferol 3-0-rhamnoside-7-0-rhamnoside, showed reduced polar auxin 

transport (Yin et al., 2014). Similarly, auxin transport phenotypes in several 

Arabidopsis flavonoid mutants have been linked to altered accumulation of 

flavonoid glycosides as they contain undetectable levels of free kaempferol or 

quercetin aglycones (Buer et al., 2013). In addition, overexpression of the 

transcription factor WRKY23 in Arabidopsis led to increased levels of quercetin-3-

O-rhamnoside, accompanied by a reduced auxin transport in seedling roots 

(Grunewald et al., 2012). Among the 18 cytokinin-inducible flavonoid-related genes, 

14 were putative (iso)flavonoid glycosyl transferases (Ariel et al., 2012; Table 5.1). 

Thus, future studies could be focused on detailed analysis of flavonoid glycosides 

during nodulation. 

In addition to their activity as endogenous auxin transport inhibitors, 

flavonoids also play a role as nod gene inducers in rhizobia. As the crel mutant was 

partially defective in the induction of isoliquiritigenin, which can act as a nod gene 

inducer in S. meliloti (Zuannazzi et al., 1998), this may affect the ability of rhizobia 

to induce nodules in the crel mutant. However, in our study we used the A2102 

strain harboring the pE65 plasmid, which expresses the NodD3 gene from a 

constitutive promoter (Barnett et al., 2004). Therefore, it is unlikely that a 



Table 5.2 Summary table showing the roles of different flavonoid aglycones identified in this study. 

Flavonoid 

Differential 
accumulation 

between WT and 
cref roots after 

rhizobia 
inoculation 

Rescue of 
nodulation 

in cref 

Rescue of 
acropetal auxin 

transport 
inhibition in cref 

Rescue of 
GH3:GUS 

response in cre1 
nodule primordia 

Expression of 
genes leading 
to flavonoid 

synthesis 
induced by 

rhizobia 

Expression of 
genes leading 
to flavonoid 

synthesis 
induced by 
cytokinin 

Naringenin Yes' Yes Yes Yes Yes Yes 

isoliquiritigenin Yes2 Yes Yes Yes Yes Yes 

Quercetin Yes3 Partial Yes Yes Yes Yes 

Kaempferol No Yes Yes Yes Yes Yes 

Hesperetin Yes' No No No Yes Yes 

Ctirysoeriol No Not tested Not tested Not tested No Yes 

Morin No Not tested Not tested Not tested Not tested Not tested 

Liquiritigenin No Not tested Not tested Not tested Not tested Not tested 

Daidzein No Not tested Not tested Not tested Not tested Not tested 

Formononetin No Not tested Not tested Not tested Not tested Not tested 

Medicarpin No Not tested Not tested Not tested Not tested Not tested 

Bioctianin A No Not tested Not tested Not tested Not tested Not tested 
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Free 
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Figure 5.23 Relative flavonoid abundance (free aglycones) in W T and cre1 mutant roots in 

control or E65-inoculated roots. The flavonoids shown here only represent those with 

absolute quantitation data. 

To conclude, our results suggest a model in which cytokinin signalling 

(activated by Nod factor perception) via the CREl receptor leads to a transient 

induction of flavonoid synthesis or release, which is required for local, acropetal 

auxin transport inhibition and subsequent auxin accumulation in the initiating 

nodule (Figure 5.24). Our current evidence points to naringenin and 

isoliquiritigenin as the most likely candidates for flavonoids acting as auxin 

transport inhibitors and lAA as the most likely active auxin induced during early 

nodule development. Since the crel mutants is defective in the induction of a large 

number of transcripts following Nod factor application (van Zeijl et al., 2015), it will 

be interesting to determine in the future whether these gene expression changes are 

also dependent on changes in flavonoid accumulation. 
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NPAorTIBA 
treatment 

Nod factor perception 
and signaling 

Cytokinin | 
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ing (CRE1) 
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release of flavonolds 
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acropetal auxin transport 

Local auxin accumulation 
and Increased auxin 

response 

Nodule organogenesis 

Figure 5.24 Proposed model for the action of cytokinin on auxin transport and 

accumulation during nodule initiation in Medicago truncatula. Our data suggest a model in 

which cytokinin signalling mediated by the CRE1 receptor transiently activates or releases 

certain fiavonoids (most likely naringenin and / or Isoliqulritigenin) In the root, which then act 

as auxin export Inhibitors that cause auxin (lAA) accumulation and subsequently enhance 

auxin response in cells that will divide to form a nodule primordium. Both transient 

application of synthetic auxin transport inhibitors like NPA and TIBA, or flavonolds, induce 

(pseudo)nodules infected by rhizobla. 
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We aimed to investigate the mechanisms that lead to an increased auxin response in 

the nodule primordia of both indeterminate and determinate nodules, as 

demonstrated in previous studies. Since an increase in auxin concentrations is one 

of the most likely reasons that can explain the increase in auxin response, we aimed 

to develop a sensitive and reproducible method for quantifying auxins in root 

tissues. We were also interested in comparing the differences between 

indeterminate and determinate nodules, in terms of their endogenous auxin 

concentrations and profile. A recent modelling approach suggested that differences 

in auxin export at the nodule initiation site could be the defining feature of nodule 

type. Therefore, we compared auxin transport changes at the nodule initiation site 

between M. truncatula and L. japonicus, as well as correlated the differences in 

auxin transport capacities with their endogenous auxin concentrations. Finally, we 

aimed to place the regulation of auxin transport and changes in auxin 

concentrations in context with the known nodulation signalling pathway of 

M. truncatula, in particular with cytokinin signalling. 
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6.1 Hypothesis one: Mass spectrometry complements qualitative/ 

semi-quantitative results obtained through alternative approaches 

to study auxin 

In Chapter 3, we optimised a method for high sensitivity quantification of auxins in 

root tissues. This highly sensitive LC-MS/MS method was used to study 

endogenous auxin concentrations in various legumes and non-legumes in Chapters 

4 and 5, in an attempt to elucidate the differences relating to changes in auxin 

concentrations during indeterminate and determinate nodulation. We interpreted 

data derived from a combination of: (1) direct quantification of auxins via LC-

MS/MS and, (2) various molecular and physiological approaches. We reasoned that 

metabolomics complements other tools used to study nodulation. In this thesis, we 

hypothesised that multiple, complementary approaches not only provide important 

biological information at different cellular regulatory levels, but are also essential at 

facilitating conclusions based on a more holistic view of complex developmental 

pathways. 

6.1.1 Challenges in the study of auxin at mult iple levels 

Auxins represent a large class of plant hormones with a complex signalling pathway. 

Auxin was the earliest hormone to be identified in plants and is implicated in many 

physiological processes. The idea of comprehensively describing the role of auxins 

using different approaches at multiple regulatory levels is presented with many 

hurdles. As described in Section 1.1 in more depth, the auxin signalling pathway is 

complex. The best-characterised auxin signalling pathway is the TIRl/AFBs-

AUX/IAAs signalling module (Dharmasiri et al. 2005). However, previous reports 

suggest the existence of two other auxin receptors, which could potentially lead to 

multiple auxin signalling pathways, depending on stimuli (del Pozo et al. 2006; 
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Napier et al. 2002). One of the most widely utilised auxin reporters is the primary 

auxin response gene GH3. However, since the cloning of the first GH3 promoter 

f rom soybean (Hagen et al. 1991), multiple copies have been identified in various 

species. In M. truncatula, 17 copies of the GH3 gene have recently been reported 

(Yang et al. 2014). This complicates the use of one particular GH3 gene as a 

universal reporter due to cell or stage-specific promoter activities, in addition to 

their auxin-responsive elements. Auxin homeostasis is affected by auxin transport, 

biosynthesis and conjugation/breakdown. The ABCB/PGP subfamily of 

transporters could potentially be important auxin transport regulators during 

nodulation, but these are still poorly understood. Auxin biosynthesis was 

investigated in Chapter 5. However, the TAA and YUC genes in the IPyA pathway 

were targeted in this study although other auxin synthesis pathways could 

contribute significantly, but are yet to be systematically studied in M. truncatula. 

Although multiple lAA-conjugates were identified via LC-MS/MS in Chapters 4 and 

5, the genetic and molecular basis of their regulation was not investigated in this 

study. The scale of experimental work required to uncover the labyrinth of auxin 

regulation at any given developmental stage is large. 

In Chapter 5, we explored the mechanism of nodule formation, focussing on 

M. truncatula. We approached this question by forming several complementary 

hypotheses surrounding molecular players that either regulate, or are regulated by 

auxin. Physiological experiments showed that auxin transport regulation in 

M. truncatula requires a functional cytokinin receptor-like kinase. Exogenous 

application of auxin transport regulators induced nodule-like structures, supporting 

our hypothesis that auxin transport regulation occurs downstream of the cytokinin 

receptor-like kinase. This was further supported by transcript analyses showing the 

involvement of several auxin carriers in response to Rhizobium treatment. 

Transcript analyses also suggest a role played by auxin synthesis genes in generating 

a proper auxin gradient during nodulation. Reporter-based assays reaffirmed the 
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auxin transport data, which suggested a potential accumulation of auxin around the 

Rhizobium-treated spot. Finally, auxin quantification via LC-MS/MS supported a 

change in auxin concentration in response to Rhizobium treatment, possibly due to 

a synergistic contribution by auxin transport and auxin synthesis (Figure 6.1). 

Curiously, although an increase in DR5 response has previously been reported in the 

nodule primordia of L.japonicus (Suzaki et al. 2012; Takanashi et al. 2011), we did 

not detect an increase in lAA concentration after Rhizobium treatment. Thus, we 

speculate that lAA might not be the inducer of DR5 in L.japonicus. 

Figure 6.1 Complementary approaches to study auxin regulation of nodulation in 

Medicago truncatula. The regulation of auxin transport surrounding the Rhizobium 

treatment zone was confirmed by direct measurements with radiolabelled auxin. Results 

from reporter assays and transcript analyses of auxin carriers support data from 

radiolabelled auxin measurements. Effects from Rh/zob/um-induced changes could be 

mimicked by auxin transport inhibitors. An increase in auxin concentration thereafter was 

confirmed by LC-MS/MS analyses and reporter assays. An induction of several auxin 
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synthesis genes suggests a possible role for auxin synthesis, together with auxin transport, 

in generating a correct auxin gradient during nodulation. Grey boxes indicate 

observed/measured experimental outcomes. White boxes indicate experimental 

techniques/observations used to produce/infer those experimental outcomes. Thick solid 

lines represent auxin transport flow (upwards)/inhibition (downwards). 

6.1.2 Advantages and disadvantages of quantitative hormone measurements 
using mass spectrometry 

Due to technological improvements in recent years, mass spectrometry has emerged 
as the nuinber one tool for quantitative hormone profiling. Mass spectrometry 
offers superior specificity and sensitivity, two very important factors for low 
concentration metabolites like auxins with a large family of similarly-structured 
compounds. Modern mass spectrometers can target specific compounds by having 
multiple layers of selection filters (Pan and Wang 2009). This is an advantage over 
reporter-based techniques, because many promoters are not specific to one activator. 
For example, the synthetic DR5 promoter has been shown to respond to 
brassinosteroids, in addition to auxin (Nakamura et al. 2003). This suggests that 
reporter outputs might not necessarily represent an equivalent level of input by the 
intended compound / activator of interest. On the other hand, authentic reference 
standards can be used to unequivocally identify a specific compound because no two 
compounds share the same mass fingerprint. Transgenic plants are often limited to 
one or few reporter constructs, which means only a few compounds can be 
monitored at once. Mass spectrometry allows profiling of multiple classes of 
hormones in a single experiment, thus saving experimental material and equipment 
run cost. Furthermore, by switching the mass spectrometer into "automatic" mode, 
it allows metabolite discovery by scanning the whole metabolome of the sample and 
subsequently displays the top hits. One of the limiting steps in metabolite 
quantitation via mass spectrometry is the extraction procedure. However, the 
availability of automated workstations would increase data acquisition rate. 
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Disadvantages of mass spectrometry include the need to optimise the system 

for specific aims / metabolites, prior to experimentation. For the targeted 

operational mode, the same method is not transferable to study other compounds. 

To achieve maximum sensitivity and accuracy, especially for the study of 

metabolites that are low in concentrations, every parameter of the mass 

spectrometer needs to be optimised. Moreover, mass spectrometry does not offer 

spatial and temporal resolution of metabolite concentration due to the inherent 

need for tissue destruction prior to analysis. In the case of localised metabolite 

quantification, such as that employed in this project, plant material from multiple 

organisms is usually needed to achieve sufficient, minimal tissue mass for a single 

sample. 

6.1.3 Advantages and disadvantages of ho rmone quant i ta t ion using alternative 

techniques 

Classical immunolocalisation, particularly with monoclonal antibodies, is a direct 

tool for in situ hormone detection. Immunolocalisation provides subcellular 

localisation of the target compound. However, although whole-mount 

immunolocalisation is suitable in small plants (e.g., in Arabidopsis roots), the 

antibodies may not sufficiently penetrate thicker and bigger plants, such as 

M. truncatula. As a consequence, tissue sections are required for sufficient antibody 

contact with target compounds, which increase labour and experimental time. As 

mentioned above, promoter:reporter assays are not suitable for hormone 

quantitation due to potential non-specific promoter activation. Furthermore, in the 

case of the auxin responsive GH3 and DR5 reporters widely used to study auxin 

response, multiple genetic components are involved between auxin perception and 

reporter activation (Figure 6.2). The transcription and translation rates of each 

component may be different. The relationship between auxin abundance and 
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reporter output is non-linear, making conclusions about auxin concentrations 

derived f rom such experiments unreliable. A biosensor was developed for auxin 

and this presents a more direct approach for auxin quantitation (Brunoud et al. 

2012). The use of a fast maturing VENUS protein ensures a rapid response upon 

auxin perception. The DII-VENUS auxin sensor allows mapping of auxin 

distribution at the root tip, as well as monitoring auxin concentration during several 

developmental programs in real-time (Band et al. 2012; Sassi et al. 2012). In 

addition, it could potentially be used to derive information about auxin transport 

direction during developmental responses, such as during lateral root and nodule 

formation. Despite of this, the auxin biosensor is still an indirect detection and 

quantification approach compared to immunolocalisation and mass spectrometry, 

because it is still dependent on the TIRl-AUX/lAA signalling pathway. In the last 

few years, Forster Resonance Energy Tranfer (FRET)-based biosensors have been 

developed (Wells et al. 2013). This type of biosensor provides direct detection of 

small molecules. Upon binding of a fluorescent protein (FP) to its target small 

molecule-FP fusion, FRET-induced changes in fluorescence characteristics can be 

directly detected. This strategy has been used in the identification of sucrose 

transporters (SWEETs) (Chen et al. 2012). Ribonucleic acid is also an emerging 

platform for generating fluorescent biosensors that can directly target small 

molecules and plant hormones (Liang et al. 2011; Paige et al. 2012). The recent use 

of fluorescent auxin analogues for direct visualisation is also an enticing alternative 

for studying auxin concentration and transport (Hayashi et al. 2014). Microscopy is 

generally a labour-intensive and time-consuming process. Hence, the downside for 

many of the fluorescent-based techniques above is the low throughput. Side effects 

f rom exogenous introduction of fluorescent compounds into plants are also subjects 

for further investigation. 
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Figure 6.2 Comparison of various techniques to measure auxin transport and 

concentration. Traditional GH3 and DR5-based reporters are activated following a complex 

signalling pathway involving transcription, translation and feedback mechanisms. Auxin 

input and the resulting GH3 / DR5 output is not linear. LC-MS/MS, immunolocalisation and 

fluorescent auxin analogs are direct methods for studying auxin concentration and transport, 

with several distinct advantages and disadvantages. The auxin biosensor, DII-VENUS 

interacts with TIR1 / AFB and is degraded along with the AUX / lAA proteins at the 

proteasome. It is not a direct method for auxin quantitation, but represents a tool which can 

provide quantitative data with proper mathematical calibration. Future biosensors could be 

based on FRET methods or RNA molecules. 
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6.2 Hypothesis two: Auxin transport control is a general 

mechanism for increasing/decreasing auxin content during 

nodulation 

Auxin transport control has been a major assessment tool throughout this thesis. In 

Chapter 4, we compared auxin transport regulation between M. truncatula and 

L.japonicus in response to Rhizobium treatment. These two model legumes 

represent indeterminate and determinate nodule-forming legumes, respectively. 

Previous results suggested that auxin transport control in these two groups of 

legumes differs. By using a combination of physiological, molecular and 

microscopic techniques on a few leguminous plants, we showed that auxin transport 

control can be manipulated by rhizobia differently to achieve the same outcome in 

legumes, i.e. nodulation. Changes in auxin concentrations in response to 

Rhizobium treatment were different between M. truncatula and L.japonicus. In 

general, however, only lAA showed significant changes in concentrations in 

response to rhizobia inoculation, whereas the auxin conjugates that were detected 

did not show any significant change. Thus, the host auxin transport machinery is 

not only an important toolbox manipulated by rhizobia during nodulation; it is also 

a highly tuneable system, as evident by the differences in regulation in two closely-

related nodulation programs. 

6.2.1 W h y does auxin t r anspor t inhibi t ion occur? 

The importance of auxin transport control during nodule organogenesis was 

initially demonstrated by Allen et al. (1953) and later by Hirsch et al. (1989). The 

authors demonstrated that external application of synthetic ATIs could induce 

nodule-like structures on the roots of leguminous plants. ATI-treated alfalfa roots 

expressed the nodulation markers EN0D2 and Nms-30 (Hirsch et al. 1989), similar 
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to root responses to Rhizobium treatment. Later, Rightmyer and Long (2011) 

showed that several genes exhibited similar transcriptional responses when treated 

with either ATI or S. meliloti, and that genes that showed opposite transcriptional 

responses at the early stages upon ATI or S. meliloti treatment exhibited similar 

transcriptional patterns at the later stages. These findings suggest that inhibition of 

auxin transport acts in the nodulation signalling pathway. Since then, various 

studies have shown a signature transient acropetal auxin transport inhibition in 

indeterminate nodule-forming legumes, including M. truncatula, white clover and 

vetch, in response to Rhizobium or Nod factor treatment (Boot et al. 1999; 

Mathesius et al. 1998; Plet et al. 2011; van Noorden et al. 2006; Wasson et al. 2006). 

Interestingly, this phenomenon has never been reported in determinate nodule-

forming legumes. In the determinate nodule-forming legume L.japonicus, one 

study measured an increase in acropetal auxin transport in response to Rhizobium 

treatment at 48 h.p.i. (Pacios-Bras et al. 2003). Another study in soybean (forming 

determinate nodule) inferred a null requirement for acropetal auxin transport 

inhibition based on their primary data. The authors, however, did not measure 

auxin transport directly (Subramanian et al. 2006). By quantifying auxin transport 

capacity in corresponding segments of M. truncatula and L. japonicus, we 

demonstrated that both legumes regulated aero- and basipetal auxin transport in a 

different manner during the early stages of nodulation. 

Interestingly, we discovered more similarities than differences in auxin 

transport control between both nodulation programs, contradictory to our initial 

expectations. We detected a temporary inhibition of aero- and basipetal auxin 

transport in L.japonicus following Rhizobium treatment at 24-33 h.p.i., both which 

has never been reported in the literature before. Although whole-root TIBA 

treatment did not inhibit basipetal auxin transport in either M. truncatula or 

L.japonicus, it would be interesting to see if a localised TIBA (or quercetin) 

treatment at the root could inhibit basipetal auxin transport in both legumes. From 
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previous results, we know that auxin signalling decreased below the Rhizohium 

infection site in white clover, prior to an increase at the infection zone (Mathesius et 

al. 1998). Decrease in auxin signalling was suggested to be a mechanism to increase 

resistance in response to pathogen recognition (Domingo et al. 2009; Wang et al. 

2007; Wang and Fu 2011). Up to now, the decrease in auxin transport at the 

Rhizohium infection site observed in indeterminate nodule-forming legumes has 

been suggested to be a mechanism to increase auxin concentration around the 

infection zone, correlating with the increased auxin response. An increase in local 

auxin concentration is believed to promote cell divisions during nodule primordia 

formation. If this is true for indeterminate nodules, should we not expect a similar 

mechanism in determinate nodules? Auxin response as indicated by GH3- or DR5-

based reporters shows that auxin response increases in the nodule primordia in both 

nodulation programs (Figure 6.3) (Suzaki et al. 2012; van Noorden et al. 2007). 

Why, then, do synthetic ATIs manage to induce nodule-like structures on the roots 

of indeterminate but not determinate nodule-forming legumes? The idea that both 

indeterminate and determinate nodule-forming legumes would use a similar 

mechanism (auxin transport inhibition) to manipulate local auxin concentrations 

would contradict the inability of determinate nodule-forming legumes to form ATI-

induced pseudonodules. 

There are two possible explanations to this: (1) the auxin transport 

inhibition observed in both M. truncatula and L.japonicus could be a pathogenic 

rather than a symbiotic response. Recently, the Nod factor receptor in 

M. truncatula, NFP, has been shown to perceive pathogenic signals as well (Rey et al. 

2013). Furthermore, non-legumes can perceive Nod factors and downregulate 

microbe-associated molecular pattern (MAMP)-triggered immunity (Liang et al. 

2013); (2) auxin transport inhibition in M. truncatula could activate other signalling 

components not induced in L.japonicus to promote cell divisions and formation of 

a nodule / pseudonodule. Similarly, the fact that gibberellins induce pseudonodules 
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on L. japonicus, but not alfalfa roots supports this idea about alternative signalling 

pathways in different legumes (Kawaguchi et al. 1996). Taking evidence from 

Chapter 5 into consideration, where the nodulation-defective crel mutant (which 

still forms initial infection threads) failed to inhibit acropetal auxin transport, the 

second explanation looks more plausible. Moreover, flavonoid-deficient roots of 

M. truncatula, which failed to nodulate, also lost their ability to inhibit acropetal 

auxin transport (Wasson et al. 2006). Thus, at least in indeterminate nodule-

forming legumes, auxin transport inhibition seems to be a positive cue for successful 

nodulation. A possible experiment to test this would be to quantify auxin transport 

changes in response to Rhizobium treatment in all known nodulation-defective 

M. truncatula mutants, including all early mutants, such as nfp, nsp and nin. Auxin 

transport control in these mutants should be abolished for this model to hold true. 
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Figure 6.3 Di f ferences in auxin regulat ion at the site of nodule initiation between 

indeterminate and determinate nodule- forming legumes. Members of the auxin carriers in 

the PIN and LAX fami l ies have been demonst ra ted to play a posit ive role in indeterminate 

nodulat ion. Whether a simi lar role is per formed by these proteins in determinate nodules 

has not been addressed. The role of P-glycoproteins (PGR) has not been investigated in 

indeterminate nodulat ion, but has been shown to play an indirect role in determinate 

nodulat ion. Di f ferences in the location of initial cell divisions might be contr ibuted by the 

increase in auxin response in the inner or outer cortical cells of indeterminate and 

determinate nodule- forming legumes, respectively. Interestingly, a reduced sensit ivity to 

auxin is required for nodule deve lopment in soybean (Turner et al. 2013). So far, we have 

shown that an increase in lAA concentrat ion occurs at the early stages of nodulat ion in 

Medicago truncatula, but the opposi te was observed in Lotus japonicus. How this 

contr ibutes to the di f ferences in the two nodulat ion programs remains to be explored. 

The auxin transport measurements performed in this thesis give a net 

readout in the form of auxin transport capacity of a given root segment. However, 

auxin transport may occur passively through the primary vasculature, or actively via 

cell-to-cell polar auxin transport. In Chapter 5, we examined the gene expression of 

all known auxin transport carriers of the PIN and LAX family in M. truncatula. 

Auxin transport carriers are directly involved in cell-to-cell auxin transport (Peer et 

al. 2011). Previous molecular and RNAi studies have strongly pointed towards a 

positive role for several auxin carriers in M. truncatula nodulation (Figure 6.3) (de 

Billy et al. 2001; Huo et al. 2006; Plet et al. 2011; Prayitno et al. 2006). In Chapter 4, 

we did not perform a similar expression analysis of auxin carriers, due to limited 

annotation of the L. japonicus genome. Nevertheless, auxin carriers are likely to be 

directly involved in L.japonicus, and indeed nodulation in general. The auxin 

carriers CgPINl and CgAUXl have been suggested to act synergistically in 

actinorhizal nodules of C. glauca (Peret et al. 2007; Perrine-Walker et al. 2010). 

Similarly to M. truncatula, the redundancy of auxin carriers means that multiple 

experimental techniques, such as promoter analysis and knockdown approaches of 
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individual / multiple gene members will be required to understand the role of auxin 

transport during nodulation in L.japonicus and other legumes. 

6.2.2 The enigmatic pseudonodule 

Pseudonodule is a collective term used to describe non-functional, nodule-like 

structures. The overexpression of genetic players in the nodulation signalling 

pathway, such as DMI3, NIN and CREl / LHKl produces nodule-like structures, 

which are devoid of rhizobia (Soyano et al. 2013; Tirichine et al. 2006; Tirichine et al. 

2007). Treatment of roots from certain plant species with plant grovrth regulators, 

including cytokinins and gibberellins, induces pseudonodules as well (Kawaguchi et 

al. 1996; Rodriguez-Barrueco and De Castro 1973). Here, we were interested in 

ATI-induced pseudonodules. We hypothesised that a local, transient auxin 

transport inhibition is required for proper nodulation, at least in indeterminate 

nodule-forming legumes. However, pseudonodules were only induced with whole 

root ATI treatment. Our attempt in promoting pseudonodule formation with local 

application of ATIs fell short. Perhaps a stronger dose of ATI is required for the 

latter approach. Crucially, ATI-induced pseudonodules, and indeed pseudonodules 

formed by overexpression of DM13, NIN and CREl / LHKl, do not exhibit the 

characteristic peripheral vasculature, as seen in rhizobia-induced nodules (Guan et 

al. 2013; Soyano et al. 2013; Tirichine et al. 2006; Tirichine et al. 2007). In addition, 

a partial infection process (normal infection pockets formed but no infection thread 

initiation), produced nodules without proper vascular patterning as well (Guan et al. 

2013). Rhizobia, it seems, are required throughout the nodulation process to 

coordinate proper vascular development. In agreement with this, our preliminary 

results showed that the nodulation-defective crel mutant roots cotreated with TIBA 

and rhizobia formed normal-looking nodules with the characteristic peripheral 

vasculature. Auxin is involved in the regulation of proper vascular development 
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(Lucas et al. 2013). Specifically, correct auxin localisation driven by auxin carriers is 

important for promoting vascular development and differentiation. A simple 

external treatment with ATI is unlikely to achieve this result. It would be interesting 

to see how rhizobia mechanistically affect the host auxin transport machinery and 

subsequently auxin concentration to make a vascular strand extending from the 

primary root into the nodule. 

6.2.3 Lessons f rom compute r models 

Over the last decade, there has been a rise in the "systems biology" approach to 

biological research. Computer models are generated to understand complex 

signalling networks and processes. Various auxin transport models focussing on 

meristem (shoot and root) maintenance and organ initiation in Arabidopsis have 

been proposed (van Berkel et al. 2013). Deinum et al. (2012) modelled auxin 

transport changes during nodulation and found that inhibition of acropetal auxin 

transport and subsequent lateral redirection of auxin transport is the most likely 

mechanism to increase local auxin concentrations sufficiently in the nodule 

primordia of indeterminate nodule-forming legumes. In determinate nodule-

forming legumes, presumably due to differential positioning of cortical auxin 

carriers, the same auxin transport mechanism does not occur. The authors further 

suggested that local auxin biosynthesis and breakdown are not sufficiently quick to 

increase local auxin concentrations. This model reconciles our current knowledge 

about the molecular players involved in nodulation. However, there are still many 

unknowns about this process. For example, the localisation of individual auxin 

carriers in legumes is still unknown. The protein / enzyme kinetics of the auxin 

carriers, synthesis and hydrolysing enzymes have still not been systematically 

investigated. Hence, this model forms a very useful baseline for auxin transport 

modelling in legumes. In the future, information on the localisation, activity and 
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kinetics of individual molecular players should be integrated into this model to 

improve its accuracy in predicting auxin transport changes during legume 

development. 

Nevertheless, based on the current in-silico model and results f rom this 

thesis, we propose a model incorporating aero- and basipetal auxin transport 

regulation during nodulation in M. truncatula, and potentially indeterminate 

legumes in general (Figure 6.4). Although there were simUarities in auxin transport 

control between M. truncatula and L.japonicus found in Chapter 4, further 

molecular experiments on L.japonicus need to be completed before a generalised 

model for all legumes can be constructed. Briefly, consistent with previous studies, 

we found a temporary inhibition of acropetal auxin transport in M. truncatula. We 

propose basipetal auxin transport as an additional positive player in nodulation, and 

this hypothesis could be further tested in Mtp{n2 mutants. Bidirectional auxin 

transport changes most likely contribute increasing auxin concentration at the 

nodulation site to promote cell divisions and nodule primordia formation. 
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Figure 6.4 Schemat ic model for auxin transport routes before and after Rhizobium 

infection in Medicago truncatula. Before infection, acropetal auxin transport occurs primari ly 

through the phloem via passive transport. A proport ion of auxin is also t ransported act ively 

in the outer cell layers. The quiescent centre maintains a steady-state auxin level. 

Basipetal auxin transport transports aux in back up the root. Specif ic PIN proteins are 

responsible for export ing auxin in the outer cell layers. So far, the localisation of the PIN 

proteins in M. truncatula roots is not known. After Rhizobium infection, auxin transport is 

transiently inhibited at the point of Rhizobium entry. Auxin is temporar i ly depleted below the 

site of infection. After the temporary inhibit ion in auxin transport, aux in increases at, and 

above the site of Rhizobium invasion, promot ing cell divisions. O n top of that, basipetal 

auxin transport rate may increase to channel more auxin towards the site of nodule 

organogenesis. 
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6.3 Hypothesis three: Cytokinin perception triggers flavonoid-

mediated regulation of auxin transport during nodulation 

In Chapter 5, we demonstrated flavonoids as potential regulators of auxin transport 

during nodulation in M. truncatula. Although: (1) flavonoids have been shown to 

regulate auxin transport in general and; (2) auxin transport regulation mediated by 

auxin carriers affects secondary root organ formation, no study outside 

M. truncatula has placed flavonoids as a direct (co)player in auxin transport 

regulation during other organogenic events. Flavonoids represent a large class of 

secondary metabolites and multiple members from different flavonoid subclasses 

have been shown to inhibit auxin transport. It would be interesting to dissect the 

individual contribution of candidate flavonoids and to pinpoint the primary auxin 

transport regulator(s) involved in nodule organogenesis. 

6.3.1 Auxin t ranspor t regulation - where do flavonoids fit in? 

An early, transient, and local auxin transport inhibition has been established as a 

hallmark of M. truncatula nodulation. A previous study in our laboratory showed 

that flavonoids are required for auxin transport control and nodulation in 

M. truncatula roots (Wasson et al. 2006). We hypothesised that the crel mutant 

fails to properly regulate auxin transport due to its aberrant flavonoid profile. In 

accordance with our hypothesis, we showed that the endogenous concentrations of 

selected flavonoids between WT and the crel mutant roots were different, before 

and after Rhizobium treatment. Supplementation of these flavonoids to the roots of 

the crel mutant was able to restore auxin transport control, auxin response, and 

nodulation. These findings support our hypothesis that flavonoids are integral to 

auxin transport control during nodule organogenesis in M. truncatula. 
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However, there is currently no other organogenic process which necessitates 

flavonoids as auxin transport regulating agents. During lateral root organogenesis, 

PIN and AUXl/ LAX auxin carriers positively regulate various stages of lateral root 

formation (Figure 6.5). Mutations in several AtPIN carriers resulted in several 

undifferentiated layers of divided pericycle cells (Benkova et al. 2003). The AtAUXl 

auxin importer plays a role during lateral root initiation via regulation of basipetal 

auxin transport (De Smet et al. 2007; Swarup et al. 2001). The AtLAX3 auxin 

importer controls lateral root emergence by regulating auxin gradients in the outer 

endodermis and cortical layers (Lavenus et al. 2013; Swarup et al. 2008). On the 

other hand, during nematode gall formation, AtPIN 1 is involved at the initiation 

stage by directing auxin into the syncytium, whereas AtPIN3 and 4 are postulated to 

redirect auxin in the lateral direction to promote radial cell expansion of the 

nematode feeding site (Grunewald et al. 2009). Flavonoids were not implicated in 

these processes. Indeed, flavonoid-deficient roots of M. truncatula were not 

impaired in the total number of lateral roots and nematode galls formed (Wasson et 

al. 2009). In addition, Arabidopsis flavonoid-deficient mutants are not defective in 

lateral root formation or nematode infection (Brown et al. 2001; Buer and 

Djordjevic 2009; Wuyts et al. 2006). This suggests that although auxin transport 

regulation is clearly involved in lateral root and nematode gall formation, flavonoids 

are not likely to play a role in these processes. Excluding nodulation, flavonoids are 

not essential for the formation of secondary root structures per se. 

At the moment, this puts flavonoids in a unique role during nodule 

organogenesis. Intriguingly, although nodulation in soybean and common bean 

(both determinate nodule-forming legumes) require the correct set of flavonoids for 

nod gene induction, flavonoid-mediated auxin transport inhibition is not required 

during determinate nodulation (Ripodas et al. 2013; Subramanian et al. 2006). 

From these findings, we can conclude that different flavonoid subclasses play 

distinct roles during nodulation. Zhang et al. (2009) proposed kaempferol as the 
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flavonoid / flavonoid precursor involved in auxin transport inhibition during 

M. truncatula nodulation. In general, flavonols (e.g., kaempferol) are considered 

the primary auxin transport inhibitors with the strongest activity (Kuhn et al. 2011; 

Murphy et al. 2000), although we found that flavonols and several other flavonoid 

metabolites to have similar levels of acropetal auxin transport inhibiting activity in 

M. truncatula roots. Indeed, our results demonstrated that flavonols (i.e. 

kaempferol, quercetin), their precursor (naringenin), or isoliquiritigenin (which has 

a different structure, and thus unrelated to flavonols) could inhibit acropetal auxin 

transport when coapplied with rhizobia, and at least partially restore nodulation in 

the crel mutant. However, multiple flavonols were detected in M. truncatula roots, 

including kaempferol, quercetin and morin. Furthermore, flavonol glycosides, 

some of which were shown to inhibit auxin transport (Yin et al. 2014), were not 

investigated in this study. Multiple enzymes could be involved in the 

interconversion of flavonols and their glycosidic forms, which would determine the 

steady state concentration of the aglycones (Routaboul et al. 2006). Future 

experiments could identify if other flavonols or flavonol glycosides play a role 

during M. truncatula nodulation. In addition to a few other flavones which are 

involved in Rhizobium Nod gene induction, there are likely other nodulation-related 

roles performed by flavonoids which are yet to be identified. 

6.3.2 Mechanism of auxin t ranspor t regulation dur ing nodulat ion 

In Chapter 4, we showed, at the physiological level, that changes in auxin transport 

occur bidirectionally in response to Rhizobium treatment. We subsequently 

investigated in more detail the possible molecular mechanisms behind the CREl-

mediated regulation of auxin transport in Chapter 5, by comparing auxin transport 

changes between WT and the crel mutant. We confirmed a previous finding that 

the crel mutant fails to transiently inhibit acropetal auxin transport in response to 
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symbiotic cues (Plet et al. 2011). Additionally, we discovered that the crel mutant 

failed to alter basipetal auxin transport in response to Rhizobium treatment, in 

contrast to WT seedlings. These defects had a direct impact on the auxin 

concentrations of the crel mutant. The results obtained suggest that PIN-mediated 

auxin transport regulation may at least, in part, occur at the transcription level. 

Indeed, we showed that the transcription of several PIN genes was differentially 

regulated between WT and the crel mutant, in response to Rhizobium treatment, 

and that Plet et al. (2011) found similar results with a Nod factor treatment. Lateral 

root initiation involves changes in PIN expression, which is perturbed by cytokinin 

treatment (Laplaze et al. 2007). However, cytokinin-induced posttranslational 

regulation of PIN activity has also been demonstrated during lateral root formation. 

Cytokinin induces changes in the phosphorylation state of the PINl auxin carrier, 

causing repositioning of AtPINl proteins from basal-to-lateral sides of the cell 

(Marhavy et al. 2014). This redirects auxin to flow in an asymmetrical, horizontal 

fashion into the lateral root primordia. Moreover, cytokinin treatment increased 

the population of AtPIN2 auxin carriers at the apical side of epidermal cells to 

elevate basipetal auxin transport. We hypothesised that a similar regulation occurs 

during nodulation because of the similarities in the signalling pathway of both 

organogenic events (Figure 6.5). Furthermore, nematode-induced gall formation in 

Arabidopsis involves the repositioning of the AtPIN3 and AtPIN4 fusion proteins 

(Grunewald et al. 2009). Our initial attempts to immunolocalise M. truncatula PIN 

auxin carriers using an anti-AtPINl antibody yielded positive signals, suggesting 

that the antibody was able to bind the orthologs in M. truncatula (MtPIN4 and 10). 

However, we did not detect any changes in antibody signal, before and after 

Rhizobium treatment. These results should be interpreted carefully because the 

antibody used was not specifically raised against M. truncatula PIN proteins. We 

have generated polyclonal antibodies targeting several MtPIN auxin carriers, based 

on transcript expression changes in response to Rhizobium treatment. Future 
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immunolocalisation experiments on these proteins could shed hght on possible 
changes in posttranslational activity. Alternatively, MtPIN:GFP reporter fusions 
could be constructed. 
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Figure 6.5 Cytokinin regulation of nodule organogenesis and lateral root initiation share 

many similarities. Cytokinin is perceived by histidine kinases, w/hich activate cytokinin 

response regulators (RRs). In Medicago truncatula, flavonoids are transiently activated / 

released by cytokinin signalling. Flavonoids are involved in auxin transport regulation during 

M. truncatula nodulation. So far, flavonoids are not implicated in auxin transport regulation 

during lateral root initiation. The expression and activity of several PIN auxin carriers 

change during both organogenic events, vi/hile the AUX1 / LAX auxin import carriers have 

only been implicated in lateral root formation. In both cases, cell division is associated vi/ith 

a positive auxin response in founder cells primed to divide to form a primordium. The lAA 

synthesis genes (YUCs) w/ere show/n to act during nodulation in this study, while Masiguchi 

et al (2011) demonstrated that YUCs positively affect lateral root numbers in Arabidopsis. 
The role of auxin deconjugation in increasing auxin pools has not been investigated. 

Abbreviations: CRE, Cytokinin Response; RR, Response Regulator; CKX, Cytokinin 

Oxidase; HK, Histidine Kinase. 
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Importantly, we currently do not understand the mechanism in which 

flavonoids inhibit auxin transport. Flavonoids are unlikely to be specific regulators 

of auxin transport considering they have multiple proposed targets, including auxin 

carriers, kinases and the trafficking machinery (Peer et al. 2011). In addition, 

flavonoid aglycones and glycosides have both been shown to inhibit auxin transport, 

prompting the question of specific flavonoid compound(s) acting as the auxin 

transport regulator during separate developmental programs. Flavonols, for 

example, have been shown to bind ABCB / PGPs (Bailly et al. 2008; Ferte et al. 1999). 

There is currently no evidence for the interaction of flavonols with PINs or AUXl / 

LAX proteins. Genetic and molecular evidence have shown that PIN and LAX 

auxin carriers play a role during nodulation in M. truncatula (de Billy et al. 2001; 

Huo et al. 2006; Plet et al. 2011). It would be interesting to see if flavonols, which 

have been proposed to act as auxin transport inhibitors in M. truncatula (Zhang et 

al. 2009), interact with PIN / LAX auxin carriers. Moreover, the role of ABCBs 

during nodulation could be investigated. Synthetic auxin transport inhibitors, 

which specifically inhibit ABCBs, such as BUM (2-[4-(diethylamino)-2-hydroxy-

benzoyljbenzoic acid) could be a valuable tool for distinguishing the roles of PIN / 

LAXs versus ABCBs during nodulation (Kim et al. 2010). Recently, Cho et al. (2014) 

identified 5-Nitro-2-(3-Phenylpropylamino)-Benzoic Acid as a specific blocking 

agent of ABCB 19, another established auxin transporter. Considering that the 

absence of flavonoids negatively affect nodulation, but not lateral root and gall 

formation, identifying the direct targets of flavonoids in the context of auxin 

transport regulation could be valuable in understanding nodulation-specific 

molecular players in legumes. 
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6.3.3 Nodulation - the big picture 

We hypothesised flavonoids to act in a hnear pathway within the nodulation 

signalling cascade. The application of synthetic ATIs alone was able to induce 

pseudonodules on M. truncatula roots. However, supplementation of flavonoids 

alone to W T roots did not induce visible pseudonodules. This was rather 

contradictory to the known functions of flavonoids and synthetic ATIs. Logically, if 

synthetic ATIs' only activity is the inhibition of auxin transport, we would assume 

flavonoids, which are implicated in other cellular processes in addition to inhibiting 

auxin transport, to be able to induce pseudonodules as well. Nevertheless, this 

suggests that parallel pathways exist, and it is most likely that the parallel signals are 

activated upstream of flavonoid induction (Figure 6.6). So far, NIN looks like the 

most plausible candidate to start with the search for these parallel signals, for three 

reasons. Firstly, NIN is proposed to be legume-specific (Schauser et al. 2005; Yokota 

and Hayashi 2011), and that the closest homolog of NIN in the non-legume, rice 

(OsNLPl) could not rescue the mn-2 phenotype (Yokota et al. 2010). Secondly, NIN 

is positioned upstream of auxin transport inhibition, and thus is also possible to be 

upstream of flavonoid induction (Oldroyd et al. 2011). Thirdly, overexpression of 

NIN, the gene furthest down the nodulation signalling pathway compared to prior 

targets of overexpression, is sufficient to induce pseudonodules (Soyano et al. 2013). 

Comparison of the flavonoid profile of WT and nin mutants after Rhizobium 

treatment would provide insights into NIN's position in the nodulation signalling 

pathway relative to flavonoid induction. 

In Chapter 5, we found that supplementation of selected flavonoids together 

with Rhizobium was sufficient to restore nodulation in the crel mutant. This would 

suggest that the parallel signal(s) is induced upstream of CREl, rather than by NIN. 

However, at least two other cytokinin receptors {MtHK2 and 3) are present in 

M. truncatula and it is likely that these cytokinin receptors play residual but positive 

roles during nodulation (Frugier 2008). In agreement with this, only loss-of-
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function of all cytokinin receptors in L. japonicus completely abolished nodulation 

(Held at al. 2014). The supplementation of flavonoids could have compensated for 

the insufficient induction / release of flavonoids mediated by the primary cytokinin 

receptor, CREl. Moreover, it is unlikely that the cytokinin receptors in legumes 

encode a nodulation-speciflc function, because replacement with an Arabidopsis 

ortholog in a loss-of-function mutant completely restored nodulation (Held et al. 

2014). 
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Figure 6.6 Cha l lenges in the identif ication of signals which are necessary and suff icient for 

nodulat ion. The overexpress ion of several genet ic components was suff icient to induce cell 

d iv is ion and nodule- l ike structures on the roots of Medicago truncatula and Lotus japonicus. 

The pathway shown here is a simplist ic overv iew of our current understanding of the 

nodulat ion signal l ing pathway. Whi le this pathway includes evidence f rom M. truncatula and 

L. japonicus, it is possib le that some of these responses are specif ic to one of these 

legumes. Flavonoids are tentat ively posi t ioned directly above auxin transport inhibition. 

Results obta ined in this study suggest that parallel signals are likely to operate fol lowing 

cytokinin signal l ing, because f lavonoids alone were not able to induce pseudonodules. W e 

propose that these signals could be induced by NIN, consider ing its posit ion in the pathway 

and its abil ity to induce pseudonodules f rom overexpression (Singh et al. 2014; Soyano et al. 

2013; Tir ichine et al. 2006; Tir ichine et al. 2007). Abbreviat ions: AA, autoactivation; OX, 

overexpress ion. 
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86.4 Future perspectives 

6.4.1 Improvement in experimental design, suggestions for further 

experiments and future direction 

Mass spectrometry provides a powerful tool for metabolite identification and 

quantification. Current technology and software offer algorithms for large-scale 

metabolite discovery, but at the cost of specificity and sensitivity, and vice-versa. In 

this project, we opted for highly targeted and sensitive detection over large-scale 

data output from whole metabolome scanning. This targeted operational mode is 

often limited to lO's of metabolites, as opposed to lOOO's that can be detected with 

non-targeted, whole metabolome mining. Modern mass spectrometers and 

software, such as the recently-developed AB Sciex TripleTOF* 6600 system, 

combine discovery and targeted metabolomics to achieve much higher specific hit 

rates, with potentially up to lOO's of targeted metabolite identification and 

quantification. It is thus possible to measure multiple classes of hormones in 

tandem with other primary and secondary metabolites in a single run. With such a 

large amount of data, it is imperative to have improved analytical software, database 

curation and database search algorithms to facilitate this "next-generation" 

metabolomics. 

The auxin transport measurements performed in this project give us a direct 

quantification of auxin transport capacity in individual root segments. However, in 

the case of acropetal auxin transport measurements, the wounding of tissue (see 

Materials and Methods) would likely have changed the physiological parameters of 

the root. We performed these assays on the assumption that auxin carriers function 

normally after wounding. This was not an issue for basipetal auxin transport assays. 

In addition, quantification in smaller root segments could give a more accurate 

representation of local auxin transport changes. Recently, fluorescent auxin analogs 

were introduced as a potential alternative technique to studying auxin transport in 
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planta (Hayashi et al. 2014). These fluorescent auxin analogs are recognised and 

transported by auxin carriers, but do not activate the TIRl-AUX / lAA-ARF auxin 

signalling module. Imaging of legume roots treated with Rhizobium and these 

compounds would allow high resolution spatio-temporal visualisation of auxin at 

the subcellular level. Moreover, the localisation of individual auxin carriers either 

with protein-GFP fusions or antibodies could hnk the directionality of auxin 

transport with specific auxin carriers in legumes. Through the combination of 

fluorescent auxin analogs and auxin biosynthesis inhibitors, Hayashi and colleagues 

went on to demonstrate the essential role of auxin biosynthesis in creating auxin 

maxima at the root apex. Preliminary results (Appendix E) showed that putative 

YUC orthologs in M. truncatula were upregulated in response to Rhizobium 

treatment. Thus, we cannot rule out auxin biosynthesis as an equally important 

component in generating proper auxin gradient during nodule primordia formation. 

Auxin antibodies are commercially available for the direct localisation and semi-

quantitative measurements of auxin. Both lAA and / or PAA have been localised in 

nodules of the legume M. truncatula (Fedorova et al. 2005), and the actinorhizal 

plants C.glauca (Perrine-Walker et al. 2010) and D. trinervis (Imanishi et al. 2014). 

Indeed, we have attempted to perform auxin immunolocalisation assays, but 

encountered some hurdles, including high background fluorescence, even with a 

fluorophor that is energised by a high excitation wavelength (Xcxciiaiion = 647 nm). 

Alternatively, auxin biosensors could be used as the closest proxy to measuring 

auxin concentration in planta (Brunoud et al. 2012). This technique has the 

additional advantage of being less laborious than immunolocalisation. 

Despite the wealth of information that can be generated by mass 

spectrometry, the lack of temporal information is still a chink in its armour. 

Reporters and biosensors are valuable tools for providing real-time data on dynamic 

developmental processes. The non-linear relationship between signal molecules and 

sensor / reporter output can be corrected by mathematical modelling. Using 
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mathematical algorithms, Band et al. (2012) demonstrated that the auxin DIl-

VENUS biosensor can accurately predict auxin distribution and concentration at 

the root apex during a root gravitropic response. This technique is more feasible if 

the underlying signalling cascade is well-characterised, such as in the case of auxin 

and jasmonic acid (Brunoud et al. 2012; Larrieu et al. 2015). In combination with 

mass spectrometry, these techniques complement each other to provide high 

spatiotemporal resolution of hormone changes during plant development. 

6.4.2 Conclusion 

In this thesis, we have developed a sensitive LC-MS/MS method for auxin 

quantification in root tissue. This method will be a valuable tool in future 

investigations on plant development via hormone profiling. We showed that auxin 

transport is a general mechanism employed by nodulating plants to regulate auxin 

concentration at various stages of nodulation. Different auxin species might play 

more prominent roles in separate plant tissue and in different nodulating plants. 

Finally, we demonstrated that flavonoids could be a unique class of secondary 

metabolites recruited by legumes to regulate auxin transport during nodulation. 

Proper regulation of flavonoids relies on a functional cytokinin receptor. 

Flavonoids could increase nodulation capacity in a nodulation-defective mutant via 

modulation of auxin transport, highlighting the essential role of flavonoid-induced 

auxin transport changes in shaping the unique nodule organ. 
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Appendix A - Growth media 

1. Fahraeus medium (Fahraeus, 1957) 

Chemical Stock conc. ml / L d H 2 0 

Calcium chloride dihydrate, CaCl2.2H20 13.2 g / 100 ml 1 

Magnesium sulphate heptahydrate, MgS04.7H20 12 g / 100 ml 1 

Potassium dihydrogen phosphate, KH2PO4 10 g / 100 ml 1 

Disodium hydrogen phosphate dodecahydrate, 

Na2HP04.12H20 
15 g / 100 ml 1 

Ferric citrate 0.5 g / 100 ml 1 

Gibson's trace elements* See below 1 

Agar (J3 grade) NA l O g / L 

* Gibson's trace elements 

Chemical Conc. 

Boric acid, H3BO3 2.96 g / L 

Manganese sulphate tetrahydrate, MnS04 .4H20 2.03 g / L 

Zinc sulphate heptahydrate, ZnS04.7H20 220 mg / L 

Copper sulphate pentahydrate, CUSO4.5H2O 80 mg / L 

Molybdic acid monohydrate, H2M0O4.H2O 90 mg / L 

Sodium molybdate dihydrate, Na2Mo04.2H20 121 m g / L 



2. M o d i f i e d Fahraeus m e d i u m (for Agrobacterium rhizogenes t r a n s f o r m a t i o n ) 

Chemical J Stock conc. Final conc. 
Macroelements 
Calcium chloride, CaCh 0.9 M 0.9 mM 
Magnesium sulphate, MgS04 0.5 M 0.5 m M 
Potassium dihydrogen phosphate, KH2PO4 0.7 M 0.7 mM 
Disodium hydrogen phosphate, Na2HP04 0.4 M 0.8 mM 
Ferric citrate 20 mM 20 nM 
Ammonium nitrate, NH4NO3 1 M 0.5 mM 
Microelements 
Manganese chloride, MnCb 1 mg / ml 100 | ag /L 
Copper sulphate, CUSO4 1 mg / ml 100 ng / L 
Zinc chloride, ZnCU 1 mg / ml 100 ^g / L 
Boric acid, H3BO, 1 mg / ml 100 \xg / L 
Sodium molybdate, Na2Mo04 1 mg / ml 100 îg / L 
Agar (13 grade) NA l O g / L 

Kanamycin is added to autoclaved medium to a final concentration of 25 mg /1 

3. Broughton and Di lworth m e d i u m ( B r o u g h t o n and Di lworth , 1971) 

Chemical Amount in 100 ml Stock conc. (lOOOx) Final conc. 
CaCl2.2H20 14.7 g 1.0 M 1.0 mM 
KH2PO4 6.8 g 0.5 M 0.5 mM 
FeCitrate.H20 0.26 g 0.01 M 10 uM 
MgS04.7H20 6.2 g 0.25 M 0.25 mM 
K2SO4 4.4 g 0.25 M 0.25 mM 
MnS04.H20 16.9 mg 1.0 mM 1.0 uM 
HjBO, 12.4 mg 2.0 mM 2.0 uM 
ZnS04.7H20 14.4 mg 0.5 mM 0.5 uM 
CUSO4.5H2O 5.0 mg 0.2 mM 0.2 uM 
C0CI2.6H2O 2.4 mg 0.1 mM 0.1 uM 
Na2Mo04.2H20 2.4 mg 0.1 mM 0.1 uM 



4. Bergensen's m o d i f i e d m e d i u m (Rolfe and Gresshoff , 1988) 

Chemical Stock conc. 
Amount / 

conc. 
Calcium chloride, CaCh 4 g / 100 ml 1 m l / L 
Magnesium sulphate, MgS04 8 g / 100 ml 1 m l / L 

Disodium hydrogen phosphate, Na2HP04 36 g / 1 0 0 ml 4 m l / L 
Iron(III) chloride, F e d , 0.3 g / 100 ml 1 m l / L 

Gamborg's trace elements** NA I m l / L 

Vitamins*** NA 1 m l / L 
Glutamic acid (sodium salt) NA 0.5 g 
Yeast extract NA 0.5 g 
Mannitol 
- for solid media NA 3.0 g 
- for liquid media 10.0 g 
Agar (J3 grade) NA 1 2 g / L 

Gamborg's trace elements [filter-sterilised; Gamborg et al., 1968) 

Chemical Conc. ( g / L ) 

Boric acid, HjBOj 3.0 

Manganese sulphate tetrahydrate, MnS04.4H20 10.0 

Zinc sulphate heptahydrate, ZnS04.7H20 3.0 

Copper sulphate pentahydrate, CUSO4.5H2O 0.25 

Copper chloride hexahydrate, C0CI2.6H2O 0.25 

Sodium molybdate dihydrate, Na2Mo04.2H20 0.25 

Vitamins 

Microwave to boiling 90 ml dH20 , add 20 mg biotin and stir. Add 200 mg thiamine. 

Adjust to 100 ml. Add 1 drop of 1 M HCl. Filter-sterilise into autoclaved bottle. 
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1 2 4 t 
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Injection precision (n=10), data show mean and SD 
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Appendix C - Targeted MS/MS product ion spectra of auxin 

metabolites 

1. MS/MS product ion spectra of auxin metabolites in the positive ion polarity 
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MS/MS product ion scans and spectra of auxin metabolites in the positive polarity with LC-

ESI-Q-TOF MS/MS using a 5 |ig m l ' commercial auxin standard mixture. Chromatograms 

show the retention times of individual auxin metabolites. Product ion spectra show the 

precursor ions and the three most abundant product ions for individual auxin metabolites. 

2. MS/MS product ion spectra of auxin metabolites in the negative ion 

polarity 

D 5 - I M , [M-H]- = 179 
12.255 min 

-1 1 1 1 1 1 1 r <1 ("II") T 1 1 \ 1 1 1— 
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

• 100 

i 50H 

134.9884 
/ 

90.9992 
104.931 

I y 

IM-H) 
178.9772 
1/ 

D5-IAA, M S 2 product ion spectrum, 
CE = 10 

O-T 1 r—1 r-—T r 
n: 40 60 80 100 120 140 16 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 

•S 50 

^ 0 

12.365 min 
lAA, [M-H)-= 174 

9 10 11 12 13 14 15 16 17 18 19 20 

130.0658 lAA, MS2 product ion spectrum. 
/ 

|M-H| 

CE = 8 

86.9763 146.0590 174.0344 
1 / 

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 

IBA. [M-H] = 202 
15.667 

-Kmin) 
9 10 11 12 13 14 15 17 18 19 20 

" 50 § 

116.0486 
/ 

73.0278 
/ 

IBA, MS2 product ion spect rum, 
CE = 25 

|M-H] 
168.0970 202.0930 

/ X-
40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 



PAA, [M-H] = 135 

u- 1 1 — I 1- 1 1— 1 1 1 * • * 1- (min) 
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

100- PAA, M S 2 p roduc t ion spec t rum. 100-
91.0516 CE = 3 

50- / (M.Hj 
50.2836 117.4564 135.0452 

0- / / / m/7 
40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 

,15.001 

4-CI-IAA, [M-H) = 208 

I I I I I I 
9 10 11 12 13 14 15 16 17 18 19 20 

tf(min) 

164.0281 
/ 

4-CI-IAA, MS2 product ion spectrum. 164.0281 
/ 

|M-H| 
CE = 8 

128.0468 165.0275 208.0179 
/ / / ^ : ^ ^ ^ OJ 

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 

11.576 

lAA-Ala, [M-H)-= 245 

—1 1 r 1 1 1 T——1 1 1 r I, (mm) 
10 11 12 13 14 15 16 17 18 19 20 

88.0404 
/ •g 100 

c 

•S 50 
§ 

I 0 
40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 

128.0499 156.0444 
/ / 

lAA-Ala, MS2 product ion spectrum, 

245.0928 
/ 

. t , , , , _ m / 2 

lAA-Asp, (M-H)- = 
289 

9.626 

f t(min) 

-g 100 

" 50 
f 

5 6 7 8 

88.0417 

10 11 12 13 14 15 16 17 18 19 20 

132.0315 
/ 

115.0048 

_i_L 

lAA-Asp, MS2 product ion spectrum, 

,M-H| 
289.0862 

-r-1 ^-li : : \ 1 f- m/Z 
40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 



16487 

lAA-lle, [M-H]- = 287 

T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

t,<min) 

100-

50-

130.0849 
/ 

156.0420 

lAA-lle, MS2 product ion spectrum, 
CE = 15 

[M-H| 
243.1465 287.1360 

/ / 

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 

16.877 

lAA-Phe, [M-H]-=321 

-Kmin) 
9 10 11 12 13 14 15 16 17 18 19 20 

164.0713 
/ 

103.0537 147.0442 
^ 

lAA-Phe, MS2 product ion spectrum, 
CE = 15 

[M-H] 
321.1240 

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 

16.364 
lAA-Trp, [M-H] = 360 

100-

50-

0 

-1 1 1 1 1 1 1 1 1 1 1 r - l-d^i") 
9 10 11 12 13 14 15 16 17 18 19 20 

203.0826 lAA-Trp, MS2 product ion spectrum. 

74.0256 116.0492 

CE = 17 
|MH| 

360.1359 

—I 1- rn/2 
40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 

16.364 
lAA-Val, [M-H]- = 273 

1 1 1— 
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

r— tr(fT"fl) 
20 

116.0715 
/ 

lAA-Val, MS2 product ion spectrum, 
CE = 15 

128.0522 156.0447 

[M-Hl 
273.1240 
/ 

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 31 30 380 



lAA-Leu. [M-H]- = 287 

loo-

se 

16.487 

10 11 12 13 14 15 16 17 18 19 20 
-rl,(min) 

130.0849 
/ 

156.0420 

lAA-Leu, MS2 product ion spectrum, 
CE = 15 

IM-Hl 
243.1465 287.1360 

-I i i 1 1 — I h 1 i — 
40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 

MS/MS product ion scans and spectra of auxin metabolites in the negative ion polarity with 

LC-ESI-Q-TOF MS/MS using a 5 |jg m l ' commercial auxin standard mixture. 

Chroma tog rams show the retention times of individual auxin metabolites. Product ion 

spectra show the precursor ions and the three most abundant product ions for individual 

auxin metabolites. 
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Appendix D - Targeted MS/MS product ion spectra of flavonoid 

metabolites 
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MS/MS product ion scans and spectra of flavonoid metabolites in the negative ion polarity 

with LC-ESI-Q-TOF MS/MS using 5 [ig ml ' commercial flavonoid standards. 

Chroma tog rams show the retention t imes of individual flavonoid compounds . Product ion 

spectra show the precursor ions and the three most abundant product ions. 
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Appendix E - Transcriptional changes in putative auxin synthesis 

genes in response to E65 inoculation 
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ai 13 
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yCC2(Medtr3g109520) 

ab 
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ID 
i 2 ^ 
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o 1 

YUC3 (Medtr7g099330) 

be 

A17 cre1 A17 cre1 
6h 24h 

Transcript ional abundance of putative YUC genes in W T and the crel mutant in response 

to E65 inoculation. Expression was normalised to the GLYCERALDEHYDE 3-

PHOSPHATE DEHYDROGENASE (GAPDh) reference gene. A two way ANOVA with a 

Tukey-Kramer multiple comparison post-test was used for statistical analysis (p<0.05; n=3). 

Different lowercase letters indicate statistically significant difference in transcript 

abundance . 


