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Abstract 

T follicular helper (Tfh) cells localize to follicles where they provide growth and 

selection signals to mutated germinal center (GC) B cells, thus promoting their 

differentiation into high affinity long-lived plasma cells and memory B cells. T­

dependent B cell differentiation also occurs extrafollicularly, giving rise to unmutated 

plasma cells that are important for early protection against microbial infections. Bcl-6 

expression in T cells has been shown to be essential for the formation of Tfh cells 

and GC B cells but little is known about its requirement in physiological extrafollicular 

antibody responses. We use several mouse models in which extrafollicular plasma 

cells can be unequivocally distinguished from those of GC origin, combined with 

antigen-specific T and B cells, to show that the absence of T cell-expressed Bcl-6 

significantly reduces T-dependent extrafollicular antibody responses. Bcl-6+ T cells 

appear at the T: B border soon after T cell priming and prior to GC formation, and 

these cells express low amounts of PD-1. Their appearance precedes that of Bcl-

6+PD-1 hi T cells, which are found within GC. IL-21 acts early to promote both 

follicular and extrafollicular antibody responses. In conclusion, Bcl6+ T cells are 

necessary at B cell priming in order to form extrafollicular antibody responses and 

these pre-GC Tfh cells can be distinguished phenotypically from GC Tfh cells. 

Overactivity of the GC pathway due to accumulation of Tfh cells causes 

autoimmunity, UrJderscoring the need to understan~ the factors that control Tfh 

-homeostasis. Here we have identified posttranscriptional repression of interferon-y 

(/fng) mRNA as a novel mechanism to limit Tfh cell formation. Using the sanroque 

lupus model, we have shown that decreased lfng mRNA decay caused excessive 
. 

IFN-y signaling in T cells . and led to accumulation of Tfh cells, spontaneous GC, 

C) 
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autoantibody formation and nephritis. Unlike ICOS and T-bet deficiency that failed to 

rescue several autoimmune manifestations, interferon-y receptor (IFN-yR) deficiency 

completely prevented lupus development. IFN-y blockade after disease onset 

reduced Tfh cells and autoantibodies, demonstrating that IFN-y overproduction was 

required to sustain lupus associated pathology. Increased IFN-yR signaling caused 

Bcl-6 overexpression in Tfh cells and their precursors. This novel link between I FN-y 

and aberrant Tfh formation provides a rationale for IFN-y blockade in lupus patients 

with an overactive Tfh cell-associated pathway . 
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Chapter 1 Introduction 

Chapter 1 - Introduction 

Preamble 

Vaccination is a preventive strategy used to induce a protective immunological 

response that allows rapid effector responses upon re-exposure to a pathogen, 

resulting in marked reductions in morbidity and mortality. Most approved human 

vaccines currently used are largely dependent on stimulating humeral immune 

processes. Modern day vaccination strategy is based on the capacity of antibody to 

neutralize protein antigens derived from infective pathogens, or the generation of 

·protective antigen-specific B cell memory for long term antibody responses 1 
· 

2
. Less 

attention has been given to_ T follicular helper (Tfh) cells which are .essential in 

helping B cells to generate both antibody responses and immunological memory, a 

critical component of the protective immunity conferred by most human vaccines. 

Previous studies have demonstrated that the loss or dysregulation of Tfh cells 

dramatically alters the quality of antibody, leading to profound impairment of the· 

immune response. to infection. In humans, immunodeficiency disorders caused by 

genetic defects in CD40 ligand (CD40L), SH2D1A/SAP and inducible T cell 

. . 

costimulator (ICOS) lead tQ impaired Tfh production and defective memory B cell 

responses3
. There·fore, understanding the cellular and molecular processes that 

regulate Tfh cell homeostasis is critical in the geReration of optimal B cell responses, 

and in facilitating superior vacdnation design and strategy. 

Conversely, Tfh cells can be a fundamental driver of autoimmunity · when aberrant 

accumulation 0(?CUrs due to loss of regulatory mechanisms. This excess proliferation 

• 
1 . 

- -·-~---:...- ti 



Chapter 1 Introduction 

in itself, or in conjunction with qualitative dysfunction, can lead to Tfh cell 

hyperactivity and accumulation. Recent growing evidence suggests that overactivity 

of Tfh cells can disrupt the GC milieu, leading to the production of pathogenic 

autoantibodies and subsequent autoimmune disease4
-
6

. Cytokines appear to be 

central to this process because IFN-y, TNF-a, IL-18, IL-21, IL-10, IL-17, and IL-6 

have all been implicated in the dysregulation of Tfh cells and/or the pathogenesis of 

murine and human systemic lupus erythematosus (SLE)7. Therapies that specifically 

target dysregulated Tfh cell responses or cytokine signaling are urgently needed. 

Monoclonal antibodies directed against these cytokines are being trialled in the 

treatment of SLE even though the exact mechanism is unclear8
, it is imperative to 

understand their underlying mechanisms of action and therefore rationalise their use. 

This thesis investigates two important aspects of Tfh cell biology that have 

fundamental implications in our understanding of Tfh cell function and regulation, 

and may in turn provide insights into how to better combat infection. It investigates 

priming of B cells by Tfh cells prior to differentiation to short-lived plasma cells or GC 

B cells. This thesis also investigates a novel molecular pathway to lupus 

development, linking excessive _ lnterferon-gam·ma (IFN-y) . production with Tfh cell 

. . 

accumulation and · autoantibody formation, thus providing a potentially potent 

framework for the prevention of Tfh · and/or T helper type 1 (Th 1 )-mediated 

autoimmune disease. 

' , 
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Chapter 1 Introduction 

Thymus-dependent humoral response 

Our immune system is divided into innate and adaptive immune systems. Innate 

immune responses are effective in providing rapid defence and a relatively non­

specific response that target a very broad array of pathogens. This response is 

triggered when microorganisms are recognized by pattern recognition receptors 

(PRRs) on innate cells such as macrophages, neutrophils and dendritic cells (DC), 

which in turn elicit inflammatory and antimicrobial responses, and activate the 

adaptive immune response9
• 

10
. The adaptive immune response is mediated by T 

cells and B cells with polyclonal antigen receptors of narrow specificities 11
. Antigens 

are substances, most frequently microbes that can trigger an immune response. 

Antigen-specific receptor recognition by T and B cells allows clonal selection of a 

specific population of lymphocytes that expresses an antigen receptor of a single_ 

specificity, in response to cognate antigen 12
. · 

Upon infection or immunisation, antigen-presenting cells (APC) including DC and . . 

mature naive B cells, encounter antigen at sites of infection and in the blood, 

respectively. The antigen is then transported to the secondary lymphoid organs 

(lymph nodes, spleen, Peyer's patch, tonsils) where it 1s presented in the form of 
. 

complexes of peptide and major histocompatibility complex (MHC) II or MHC I to T 

helper CD4+ and cytotoxic CD8+ T cells, respectively. PRRs recognition on DC also 
. . 

activates DC to produce cytokines and express cell-surface costimulatory molecules 

- like CD80/86 and ICOSL. Subsequently, antigen-specific na·1ve CD4+ T cells, that 

recognise antigenic peptides by their T-cell receptor and receive CD28 costimulatory 

signals from the ligands CD80/CD86, become activated to differentiate into one of 
- . 

several effector cell lineages depending on the type of infecting pathogens9
• 

12
-
15

. The 
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Chapter 1 Introduction 

helper T cells will then release cytokines, which influence the activity of many cell 

types including the APC that activated it16
· 

17
. In response to priming stimuli described 

below, a small subset of naive T helper cells will clonally expand and proliferate to 

form Tfh effector cells that will migrate to the T-8 border. 

In the case of B cells, conventional B cells express unique B cell receptors (BCRs) 

that recognise only one particular antigen in its naive form. B cells take up the 

antigen through their BCR, process it and then present antigen complexed to MHC 11 

molecules. In the case of protein antigens, T cell help is required for full activation 

and subsequent differentiation. Upon T-8 cognate interaction, antigen-specific T 

cells that have previously been primed on the surface of DCs deliver CD40L and 

cytokines signals to B cells, which initiate B cell proliferation and differentiation 18
· 

19
. 

When an antigen and Pathogen-Associated M_olecular Pattern (PAMP) are physically 

I-inked in a single particle such as in the Toll like receptor (TLR) ligands 

lipopolysaccharide-or flagellin, B cells can directly bind to these molecules through 

co-engagement of BCR and PRR without T cell help. This type of antigen is known 

as a T-independent antigen20
. 

B cells ·encounte,r antigen on the surface of follicular dendritic cells (FDCs), 

subcapsular sinu·s macrophages or lymphoid DC; they can also take up soluble 

antigen in B cell follicles21
-
24

_ In response to BCR cross-linking with antigens, they 

· become activated and up-regulate CC-chemokine receptor 7 (CCR?; a receptor for 

CC-chemokine -ligan~ 19 (CCL 19) and CCL21 expressed by stroma cells in the T cell 

zone) that enables migration to the T-8 border25
. At this location, B cells can interact . 

with cognate T cells that have been previously primed by DCs to form antigen-

,, 
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Chapter 1 Introduction 

specific cell clusters within 1 to 2 days of immunization26
-
29

. As a consequence of 

priming by T cells at the T-B border, B cells upregulate activated-induced cytidine 

deaminase (AID) that initiates lmmunoglobulin (lg) class switching and is guided by 

different T cell-derived cytokines30
' 

31
. As a consequence of isotype switching, B cells 

produce different classes of antibodies that activate specific modules of the innate 

system32
. For example, lgG activates complement and opsonises pathogens to aid 

their phagocytosis by macrophages and neutrophils, whereas lgE activates mast 

cells and basophils33
' 

34
. 

Activated B cells move to the outer follicle and differentiate into one of three alternate 

fates; short-lived extrafollicular plasmablasts (EFPBs), early memory B cells, or GC 

B cells, though the molecules and signals that determine these cell fate decisions 

are not entirely understood35
' 

36
. Early memory B cells (CD73- lgM+) can circulate in 

blood; they can form in a manner independent of B-cell lympho~a 6 (Bcl-6), ICOS 

and IL-21, and their significance for protective immunity is unclear37
' 

38
. Both 

extrafollicular and follicular pathways are important for protective immunity. 

Extrafollicular plasma cells provide the first wave of rapid antibody production, whilst 

the GC B cells provide high affinity long-lived ·memory B -cells and memory plasma 
. . 

cells that home to ·the bone marrow. Both memory B cell types can survive for long 

periods and together provide rapid and highly efficient antibody in the event of 

recurrent infection39
. 

Notably, entry into fol.licles to seed GC reactions is only permitted for a small number 

(~3) of B cell clones that initiate the response26
' 

40
. A pre-GC affinity-depend~nt T . 

cell-mediated selection checkpoint was proposed to determine the GC versus EFPB 

5 
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Chapter 1 Introduction 

fate. Initially, it was thought that the decision would depend on the strength of the 

initial interaction between BCR and antigen, whereby B cells clones with high BCR 

affinity or more abundant epitopes favor the extrafollicular pathway, whereas 

decreasing BCR affinity or antigen density results in the GC pathway and B cell 

clones with weaker antigen affinity undergo affinity maturation in GCs41
. 

Nevertheless, two separate subsequent studies showed that BCR affinity enhanced 

survival and proliferation rather than GC . versus EFPB fate42
• 

43
. Indeed, the 

expansion of lgG+ -switched EFPBs was supported by high antigen affinity: B cell 

clones that have the highest antigen affinity proliferated more rapidly and probably 

survived longer independently of IL-21 R signaling43
. Similar observations were made 

amongst GC B cells42
. A separate study suggested high affinity B cells would capture 

more pMHC at the T-8 border and thus outcompete lower affinity B c~lls for T cell 

help, become activated, proliferate and upregl:Jlate FAS, GL-7 and CCR6, and enter 

the GC. This direct competition for antigen would prevent B cells with relatively lower 

affinity from entering the GC, thus _gradually eliminating these cells from the 
. . 

reaction44
. Stable and long-lived interactions between B and T cells requiring SLAM-

associated protein (SAP) signaling in T cells were shown to be essential to direct B 

cells to become GC B cells. By contrast, EFPBs were less .dependent on SAP6
· 
45

. 

The extraf ollicular antibody response 

_ Following immunisation with Thymus-dependent or Thymus-independent antigens, 

extrafollicular antibqdy responses occur either at the splenic bridging channels, also 

known as junction zones, at the boundary between the red pulp and T zones, and at · 

lymph node medullary cords. B cells differentiating· along this route upregulate 

" 
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Chapter 1 Introduction 

expression of 8 lymphocyte induced maturation protein 1 (Blimp-1 ), CCR? and 

orphan G protein-coupled receptor Epstein-Barr virus-induced gene 2 (EBl2) and 

move to the T-8 border29
· 

46
-
48

. Here, antibody-secreting plasmablasts rapidly divide 

and expand to form extrafollicular foci and differentiate into low affinity unmutated 

switched (lgG+, lgA + lgE+) or unswitched (lgM+) short-lived plasma cells30
· 

49
· 

50
. 

However, somatic hypermutation has been observed in the extafollicular foci of 

lupus-prone MRL'Pr mice50
. Although this _initial wave of antibody response Is 

destined to last only for few weeks, it is important to neutralize rapidly-dividing 

pathogens such as viruses51
. 

Terminal differentiation of plasmablasts into plasma cells requires the upregulation of 

Blimp-1 and interferon regulatory factor 4 (IRF4), as well as the engagement with 

CD11 chi DCs that provides survival/growth signals49
· 

52
-
54

. Blimp-1 induces CXC­

chemokine receptor 4 (CXCR4) and represses CXCRS and CCR? resulting in the 

correct localisation· of plasma cells55
. Plasma cells secrete antibody for ~ 3 days, 

after which the majority undergo apoptosis in situ49
· 

56
. 

The Germinal Center (GC) response 

An important feature of the immune system's response to infection or immunisation 

. . 
is the generation of high affinity, class-switched antibodies that effectively neutralize 

. ' 
- protein antigens produced during inoculation. Once antigen activated 8 cell blasts 

have received T cell ·help, they further upregulate EBl2 and downregulate CCR? in 

order to move to inter- and outer-follicular region before they can enter the follicle57
. 

. . . 
Those 8 cells adopting a GC 8 cell fate up-regulate Bcl-6 and . then move to the 

.. 
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Chapter 1 Introduction 

center of the follicle and grow as B cell blasts to fill the follicle. B blasts retain high 

expression of CXCR5 and CXCR4, as consequence of IRF8 and downregulation of 

EBl2 and CCR?, which in turn represses Blimp-1, thereby inhibiting B cell 

differentiation into plasmablasts and enabling correct positioning of GC B cells in the 

follicular dark zone that is located close to the T cell zones46
-
48

· 
58

-
60

. Within the dark 

zone, B cell blasts become centroblasts (CBs) with oligoclonal BCR specificities and 

continue to express AID that drives somatic hypermutation (SHM). Through the 

process of SHM, random point mutations are introduced into lg V region genes 

encoding the BCR. This process introduces stochastic changes in antibody affinity 

and specificity; as a consequence, some cells increase their affinity for the 

· immunising antigen, whereas others may lose it or become self-reactive61
-
63

. Using 

multiphoton live-imaging studies, GC dynamics are revealed as a _bidirectional 

movement of CBs between dark and light zo~es, although the movement from light 

zone to dark zone is less prominent and only for a selected subset of cells64
-
66

· 
68

. 

CBs that exit cell division become centrocytes (CCs) and move towards the light 

zone where they capture antig_en held on FDCs via their BCR. The amount of 

antigen gathered .has been proposed to be directly proportional to the affinity of their 

BCRs, leading to. differential peptide-MHC der.1sity between high and low affinity B 

cells67
. Subsequently, GC Tfh cells will select the CCs with highest peptide-MHC II 

levels, providing them with CD40L and cytokine signals such as IL-21 and IL-4, 

which are essential for survival, proliferation and differentiation4
· 

39
· 

63
• 

68
. GC 

· formation is abrogated with CD40L blockade even after the onset of the GC 

response69
. CD40L deficiency also causes X-linked hyper-lgM syndrome (HIGM1) in 

humans and diminished GCs with impaired lgG production in mice70
· !1

. A small 

number of CCs can re-enter the dark zone for iterative cycles of proliferation and 

' , 
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selection to achieve enrichment in mutations leading to affinity maturation of the 

BCR39
• 

68
. Selected B cells differentiate into either memory B cells or long-lived 

memory plasma cells that home to the bone marrow, whereas not selected self­

reactive or low affinity GC B cells are thought to undergo apoptosis72
· 
73

. 

Which are the T cells that prime B cells? 

I have described above how CD4+ T cells proliferate in the T cell zone within 2 days 

of antigen recognition and priming by DC and how a subset moves to the T-8 border 

where they can interact with B cells. This interaction is key to B cell differentiation 

into either follicular or extrafollicular pathways, and for isotype switching, via 

provision of cell surface ligands and cytokine signals30
· 

31
· 

38
· 

74
. When the. work in this 

thesis commenced, it had become clear that Bcl-6-expressing Tfh cells were 

essential to initiate and sustain a GC B cell response. However, it was unclear which 

T · cell type primed B cells at the T-8 border, initiated lg isotype switching and 

induced an extrafollicular antibody response. Since IFN-y and IL-4 are required for 

the lgG isotype switching to lgG2a (lgG2c in C57BL/6) and lgG 1, respectively31 
· 
75

, it 

had been suggested that Th 1 and Th2 cells are the T cell subsets responsible for 

. . 

priming B cells to· become EFPBs. In some autoimmune mouse models such as 

MRL'pr, CD4+ T cells had been found increased in numbers at the extrafollicular sites 

and responsible for sustaining (and thus potentially also priming) extrafollicular 

· responses76
. In MRL'pr mice, .which produce autoantibody predominantly from chronic 

autoreactive extrafollicular plasma cells, CD4+ T cells that localise to extrafollicular 

sites and provide help to B cells are analogous to Tfh cells with the exception of 

reduced expression of CXCR5. They downregulate Pi:.selectin glycoprotein ligand 1 

,, 
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Chapter 1 Introduction 

(PSGL-1), require ICOS to upregulate CXCR4, and mediate lgG antibody responses 

via CD40L and IL-21 76
. In non-autoimmune prone mice, Thymus-dependent 

extrafollicular antibody responses require CD40L/CD40 signaling at the initial sites of 

T-8 cell contact, and this pathway is also ICOS dependent77
· 

78
. 

It had been suggested that "pre-GC Tfh" cells might play roles to initiate both GC and 

extrafollicular antibody responses79
. Nevertheless, it remained to be formally tested 

whether the T cells positioned at the T-8 border that prime B cells for physiological 

extrafollicular antibody responses, are bona-fide Tfh cells had not been tested. One 

of the aims of my thesis is to clarify this point of contention. 

Checkpoints for the regulation of antibody production. 

B cell responses require tight regulation to prevent autoimmunity. Pathogenic 

autoantibodies are ·mainly high affinity class-switched lgG antibodies and can arise 

at a high frequency during T cell-dependent responses to foreign antigen. They are 

mainly the by-products of SHM and antigen-driven selection in GCs80
-
85

, but they can 

also be generated extrafollicularly in T cell-dependent and T cell-independent 

responses50
· 

86
-
88

. Failure to remove self-reactive B cells often results in an increased 

number of autoreactive plasma cells and memory B cells that can live for many 

years5
. These autoreactive B cells can potentially lead to autoimmune diseases with 

end organ injury. Systemic, autoimmune diseases include SLE and rheumatoid 

arthritis89
-
92

. 
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The quality and quantity of antibody is tightly controlled by the integration of diverse 

signals in each step of B cell development. There are a few important central and 

peripheral checkpoints in place to eliminate self-reactive GC B cells. It is estimated 

that up to 55% of emergent early i:mmature human B cells are self-reactive and large 

numbers of them are removed from the repertoire via receptor editing, clonal 

deletion, immunological ignorance or anergy during B cell maturation in the bone 

marrow or at the transition into mature na'ive B cells in the periphery93
-
100

. The avidity 

of the BCR for the autoantigen determines the fate of autoreactive B cells, whereby 

stronger BCR signals invoke deletion or receptor editing, while weaker signals 

induce anergy 104
. 

Autoreactive B cells that escape initial tolerance mechanisms will be-· subjected to 

further screening for self-reactivity in the periphery. These peripheral checkpoints 

·include deletion and anergy, but not receptor revision 101
-
103

. Anergic peripheral B 

cells fail to respond to antigenic or mitogenic stimulus 105
· 

106
, a~though provision of T 

cell help can result in -their activation and recruitment into an antibody response 107
• 

108
. In some cases, fully functional autoreactive B cells can be auto-antigen 

ignorant109
• 

110
. In healthy individuals, these autoreactive B cells are recruited into the 

circulating mature na·ive B cell pool and may enter GC; but typically remain 

quiescent and do not exit GCs as memory B cells 111
. However, in SLE patients, 

these cells are often the precursors of cells that produce pathogenic antibodies91 
· 

92
· 

112
. SLE patients can still produce high titers of self-reactive autoantibodies during 

clinical remission even in the absence of clinical signs and symptoms, strongly 

suggesting that these patients fail to maintain B cell tolerance regardless of their 

disease status91
• 

92
· 

113
. The proapoptotic protein Bim has also been shown to be 

,, 
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important for the maintenance of anergic B cells: loss of Bim can lead to the survival 

of autoreactive B cells due to reduced requirement for BAFF125
. Combined deficiency 

of Bim and FAS also results in early-onset SLE122 and overexpression of Bel-XL 

interferes with the apoptosis of autoreactive B cells 126
-
128

. 

In the periphery, when homeostasis is perturbed by a change in the internal 

environment such as infection, stressed and damaged host tissues, autoreactive B 

cells can be activated by TLR ligands (both TLR7 and TLR9 ligands) together with 

BCR in response to autoantigens, even in the absence of T cell help. For example, 

hypomethylated CpG-containing DNAs derived from apoptotic cells or necrotic debris 

can form complexes with anti.:.DNA lgG autoantibodies. These immune complexes 

can then bind to rheumatoid factor B cells resulting in activation of autoreactive B 

cells 114
-
117

. This required B cell-intrinsic expression of MyD88 suggesting that TLR 

signals direct to B cells are important114
-
117

. Signals from the inna~e system can also 

help to determine the fate of autoreactive B cells. For example, excessive expression 

of the receptor for B-cell-activ.ating factor (BAFF) - a key B cell survival factor 

produced by stromal and myeloid cells - can enable self-reactive B cells to compete 

for limiting amounts of BAFF and allow them to survive in the follicular and marginal ~ 

zone niches 118
· 

119
: Indeed, BAFF overexpression leads to autoimmunity in mice and 

SLE patients show increased levels · of BAFF120
, 

121 Overexpres~ion of genes 

encoding BCR activating signals such as ETS-family transcription factor SPIB; the B 

cell co-receptor CD45, and GTPases that can enhance B cell activation, can also 

lead to overt autorea_ctive responses 123
• 

124 
. 

• 
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Within GC, mature autoreactive B cells can also arise as a consequence of SHM of 

BCR during affinity maturation and inappropriate FDC- and Tfh-cell derived 

signals/selection5
· 

122
. Because of limiting follicular niches, self-reactive 8 cells can 

also be excluded based on competi_tion for antigen presented by specialised antigen­

presenting cells in the follicles including macrophages, FDCs, and 8 cells 

themselves66
· 

68
• 

132
· 

133
. Interactions between B cells and FDC will provide selection 

signals at the time of antigen encounter. When GC 8 cells are exposed to soluble 

self-antigens, they are eliminated by apoptosis in situ69
· 

134
· 

135
. There is also growing 

evidence showing that posttranslational modification of antigens during apoptosis 

can generate new self-antigens by altering immunologic processing and 

presentation. These self-antigens may play a role in the initiation of autoimmune 

disease because they are not encountered during central tolerance processes in the 

bone marrow129
-
131

. 

Recent advances in in vivo imaging technology that allow tracking of individual GC 8 

cells for prolonged periods of time showed that the selection of centrocytes is limited 

by competition for small numbers of Tfh cells68
. Only those GC 8 cells that are 

successful in forming stable cognate interactions with Tfh cells will be provided with 

. . 

proliferation, survival and differentiation signals through CD40L ligation and 

cytokines like IL-4 and IL-21 68
· 

136
. This suggests that tight regulation of Tfh cell 

, 

numbers is also crucial for T-cell mediated selection. Also, non-antigen-specific and 

self-reactive GC 8 cells appear to be kept in check by CD4+ FoxP3+ T follicular 

regulatory cells (Tfr) and Qa-1 restricted cos+ T regulatory (Treg) cells which· are 

capable of suppressing Tfh-mediated antibody production 137
-
142

. Alterations in the . 

number and function of these specialized follicular regulatory cells have been 

• 
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implicated in autoantibody production: a five-fold increase in Tfh cell numbers in Qa-

1 mutant mice (mutation of Qa-1 molecules disrupt the inhibitory interaction between 

COB+ Treg cells and Qa-1+ Tfh) was associated with lupus-like autoimmune disease 

as a consequence of excess T cen help 138
. The depletion of Tfr also leads to the 

expansion of non-antigen specific B cells and GC Tfh cells; the latter are sufficient to 

drive antibody production by anergic B cells 139
• 

143
. Taken together, multiple intrinsic 

and extrinsic factors control B cell signaling thresholds, and can increase the 

likelihood that autoreactive B cells escape tolerance and cause autoimmune 

disease. 

T follicular helper cells 

Under the influence of cytokines produced · by the innate immune system, and 

depending on the _type of antigen, after priming by DCs, na"ive T ,cells will undergo 

tr~nscription factor mediated 'differentiation \nto distinct effector. T helper subsets in 

order to coordinate the immune response 16
• 

17
• 

144
. Each of the T cell subsets has 

distinct gene expression program~. under the control of specific transcription factors, 

including the exp.ression o~ signature cytokine·s, cell surface receptors and homing 

. 
receptors that facilitate the migration to non-lymphoid sites of inflammation, and 

regulatory factors. that mediate specific effector function 145
. These T cell subsets also 

. ' 

have specific roles in immune system. Th1 cells, which produce IFN-y, are critical to 

. ' 
- activate macrophages and other cell types to provide protection against intracellular 

pathogens 146
; Th2 cells via IL-4, IL-13, and IL-5 production control the function of 

eosinophils, basophils and the mucosal epithelia, are required for the clearance of · 

' . . 
helminths 147

; __ whilst IL-17 producing Th17 cells have been known to have important 
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Chapter 1 Introduction 

functions in protection against extracellular bacteria and fungi such as 

Staphylococcus aureus and Candida albicans148
-
150

. A special cell type, the Treg 

cells, are responsible for maintaining immune system homeostasis and preventing 

autoimmunity 151
. 

This decade has brought about the discovery of a new effector subset, Tfh cells. Tfh 

cells are regarded as a separate lineage from Th1, Th2, and Th17 cells due to their 

high expression of Bcl-6, which dictates their selective follicular homing ability and 

distinct cytokine secretion pattern 136
· 

152
-
154

. These cells are specialised in assisting 

GC B cell affinity maturation through the provision of survival and selection signals in 

GC. Murine Tfh cells, that reside in the GCs, are characterized by their high 

expression of CXCR5, programmed cell death-1 (PD-1 ), ICOS, B and T lymphocyte 

attenuator (BTLA), CD40L, CXC-chemokine. ligand (CXCL 13), SAP, IL-21, and 

decreased expression of CCR?, PSGL-1 and CD1274
• 

155
-
157

_ Human Tfh cells share 

biomarkers with murine Tfh cells and a proportion of human Tfh cells also express 

CD57158
· 

159
. There are also memory-type Tfh cells that reside in the lymph node, 

which are CXCR5+ ICOS10
, CD69+ 160

, and recirculating central memory (CM) cells in 

peripheral blood {CCR?+ CD45RA- CD4+ TCM) that are CXCR5+ CXCL 13+ ICOShi 

and secrete IL-101
1?

1
, 

162
. These memory-type Tfh cefls with accelerated antigen-recall 

ability could regulate B cell responses. 

Kinetics of Tfh cell differentiation and formation 

Na·ive T cells, which are CCR7hi will migrate to T zones in response to CCL21 
. . 

gradient on _ the follicular stromal cells. In the T zone, antigen-specific T cells 
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encounter antigen presented by DCs and are subsequently primed. Within hours of 

DC priming in conjunction with signals from the T cell receptor (TCR) and 

costimulatory molecules including CD28 and ICOS, some antigen-specific na·1ve T 

cells will upregulate Bcl-6 as early as first cell division, downregulate CCR? and 

move to T-8 border48
• 

163
. Recent studies have shown that the decision by a na·1ve T 

cell to polarize into a Bcl-6 expressing Tfh cell or Blimp-1-expressing non-Tfh cell 

occurs at the time of T cell priming by DC, after the first or second cell division, and 

precedes T-8 interaction59
· 

163
-
165

. This is also supported by studies showing human 

DCs can induce Bcl-6 expression in T cells in vitro under the influence of IL-12166
· 

167
. 

DC-derived instructive signals to commit into a Tfh cell fate were largely dependent 

on the type of antigen and ICOSL upregulation. It has been shown that targeting 

peptide to specific receptors (Clec9A) on CD8+ DCs that enhance and prolong 

presentation on MHC class II promoted Tft, cell development168
. Early ICOSL­

derived signals from DCs also favor Tfh cell formation by inducing Bcl-6 

upregulation 164
. B cells have been shown not be required for the initial upregulation 

of Bcl-6 mRNA/protein, but interaction with B cells was important to sustain - and 

possibly enhance - Bcl-6 expression, important for the maintenance of Tfh-related 

gene expression including CXCR5, PD-1 and IL-21 59
• 

163
• 

16
~· 

169
-
171

. 

Bcl-6 expressing CD4+ T cells will prime B cells within 1 to 3 days of antigen 

encounter by forming a stable and prolonged interaction with cognate B cells. Co-

. engagement involving SAP between T and B cells triggers signals that are important 

to stabilise T-B ·interactions and to sustain Bcl-6 expression45
· 

172
. Interaction with B 

cells coincides with a second wave of Bcl-6 expression in Tfh cells at around their 

fifth cell division59
· 

165
. Taken together, sustained and high levels of Bcl-6 expression 

• 
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are required to coordinate a stepwise signaling program that facilitates Tfh cell entry 

and persistence in GC, resulting in a distinct and stable GC Tfh cell population. At 

the ·Iate phase of the GC response, Tfh cells will gradually downregulate Bcl-6, 

terminate proliferation and upregu_late IL-7 receptor59
. Although their fate is not 

completely elucidated, it is possible that some leave as effector or memory Tfh 

cells 162 and others die by apoptosis. 

The role of Bcl-6 

B cell lymphoma-6 (Bcl-6) expression by B cells has been shown to be important for 

the proliferation, differentiation and survival of GC B cells 173
· 

174
. Bcl-6 deficiency 

abrogates GCs and affinity maturation 175
-
177

_ Bcl-6 expression in T cells- is sufficient 

to drive the differentiation of Tfh cells, to initiate and sustain GCs and, as we show in 

this thesis, extrafollicular plasma cells responses 136
· 

152
· 

153
· 

178
. A Rrominent function 

of highly and stably expressed Bcl-6 is first to facilitate the initial Tfh and B cell 

interaction at the T-B bor~er by downre~ulating CCR? and upregulating CXCRS, 

SAP and CXCL 13. Bcl-6 expression also directs follicular entry of Tfh cells by further 

upregulation of C·XCRS that responds to a CXCL 13 gradient expressed by stromal 

FDCs and Tfh cells themselves. Upregulation of CXCR4 and downregulation of EBl2 

may also contrib~te to the trafficking of Tfh cells into the follicle48
· 

136
; 

152
· 

153
· 

179
-
181

. 

Bcl-6 does not regulate the expression of IL-4 and IL-21 169
· 

179
, rather the opposite: 

_ IL-21 ·produced by T cells themselves promotes and enhances Bcl-6 expression 

upon T cell activation. 

., 
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Bcl-6 is a transcriptional repressor: it represses expression of other lineage 

transcription factors such as T-bet, GATA3, RORyt and Blimp-1 , thereby inhibiting 

the differentiation of other CD4+ effector T cell subsets3
· 

136
· 

152
· 

153
. Blimp-1 and Bcl-6 

have been shown to mutually r~press each other; the balance of these two 

transcription factors will determine whether a primed T cell follows a Tfh or an 

effector cell fate3
· 

152
. Indeed, 20% of virus-specific T cells had fully differentiated and 

polarized to Bcl-6+ CXCR5+ Tfh while the . remaining cells displayed a Blimp-1+ 

CXCR5- IL-2Ra+ non-Tfh effector phenotype by 3 days after lymphocytic 

choriomeningitis virus (LCMV) infection 164
. 

Development and maintenance of Tfh cells 

Tfh development is a multi-stage process requiring multiple signals from DCs, B cells 

and Tfh cells themselves. Studies have identified the requirements. of DC and B cell­

derived ICOSL signals 164
· 

182
-
1
·
85

, phosphotidylinositol 3 kinase 18
~-

188 (Pl3K), SAP6
· 

45
· 

1n IRF4189. IL-6153, 185,190, 191 IL-21 184, 185, 190,192 IL-12166, 167 IL-27193 basic leucine 
' ' . ' . ' ' ' 

zipper transcription factor ATF-like (BATF194
· 

195
), Maf179 (c-Maf in mice), the strength .. 

of TCR binding 196
· 

197
, CD80 expression on B cells 198

, TCR avidity of antigen 199 and 

Type 1 IFNs 191 for development and optimal function of Tfh cells. Conversely, 

negative regulators such as plasma cells36 and IL-2 signaling via a , constitutively 

active form of Signal transducer and activator of transcription 5 (STATS), have been 

_ shown to suppress Tfh cell · differentiation by up-regulating Blimp1 and repressing 

CXCR5, c-Maf, 'Bcl-6,. BATF and ·IL-21 200
-
202

. 
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ICOS has been shown to promote Tfh differentiation by coupling with the 

cytoplasmic YFMF motif to induce Pl3K activation, probably through the p11 Oo 

isoform of Pl3K, and these signals are critical for the induction of Tfh cytokines such 

as IL-21 and IL-4, but not required for Bcl-6 expression, downregulation of CCR? or 

Tfh cell entry into the follicles 186
• 

187
. Interestingly, a research study by Choi et al. 

showed that ICOS is upstream of Bcl-6 and is critical for the initial upregulation of 

Bcl-6; sequential ICOS signals are important for Tfh cell differentiation 164
. ICOS can 

also induce c-Maf, which regulates optimal production of IL-21, in turn regulating the 

induction and/or expansion of Tfh cells 184
· 

203
. A study analyzing human Tfh showed 

that coexpression of BCL-6 and MAF could induce the expression of ICOS, CXCR4 

and PD-1 179
. However, it is unclear whether MAF alone can upregulate ICOS. Mice 

deficient in ICOSL selectively on B cells and treated with anti-lCOSL had a reduced 

Tfh cell population 164
· 

185
. 

Cytokines such as IL-6, IL-12, IL-21 and IL-23 can induce IL-21 expression in human 

tonsils and in human peripheral and cord blood. However, only IL-12 appears to 

sustain CXCR5 and ICOS expression 166
•
167

. IL-6 and IL-21 itself have been shown to 

induce IL-21 production in mice185
·

204
-
207

. IL-27 ·has also been shown to induce IL-21 

. . 

production via the ·STAT3 signaling pathway and promote the survival of Tfh cells in 

mice 193
. Furthermore, ICOS and priming· by B cells are required for the induction and 

. . 

optimal production of IL-21 in mice 169
· 

184
• 

18
·
5

· 
203

. Kroenke et al. showed that MAF was 

· important for the ability of human Tfh cells to express IL-21 179
. IL-21, a key cytokine 

from Tfh cells, had. long been known to be an important cytokine for B ·cell 

differentiation and expansion208
· 

209
. It was then shown to· be an important regulator . 

for Tfh homeostasis to maintain optimal Tfh cell numbers and formation 184• 
185· 192· 20~. 

, , 
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Subsequent studies completed the pi9ture by showing that IL-21 also acts within 

GCs to promote GC B cell survival - which could also have a positive effect in Tfh 

cell homeostasis, and affinity maturation 192
• 
210

-
212

. Differential requirements for IL-21 

in Tfh differentiation shown by tt,e different studies are likely to result from 

differences in the type and dose of infecting agents leading to differential strength 

and chronicity of TCR signaling 192
• 

211
• 
213

. 

There have also been some conflicting results regarding the ability of IL-21 and IL-6 

to work together or independently to induce Tfh development in mice. IL-6 or IL-21 

alone, which signal through phosphorylation of STAT3, had been shown to be 

capable of inducing Bcl-6 expression and contribute to formation of Tfh cells in mice 

immunized with keyhole limpet haemocyanin (KLH) in CFA185
, but n_ot in some 

experimental models such as (4-hydroxy-3-nit~ophenyl) acetyl (NP)-CGG in alum or 

LCMV infection 170
. A subsequent study showed that IL-6 combined with IL-21, but 

not the individual cytokines, could promote Bcl-6 expression through phosphorylation 

of STAT3 during· LCMV infection 190
. Interestingly, a study showed that IL-6 produced 

by irradiation-resistant cells is important for Bcl-6 upregulation and enhanced Tfh cell 

response at late -but not early stages of LCMV chronic infection214
. The reasons 

accounting for all these discrepancies again· may be due to differences in the stage 

of the infection, the type and route of ·immunization including adjuvant used, the 

presence of replicating viruses or chronic- viral . persistence. Overall, these studies 

·have suggested that IL-6 ar,d IL-21 may be functionally partially redundant with 

respect to the upregulation of Bcl-6 and consequently Tfh cell development. In some 

circumstances, IL-6 may compensate for the lack of IL-21 · since they both signal via 

STAT3, The role of STAT3 in Tfh cell development does not appear to be redundant 
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as showed by the defect of Tfh cell formation in STAT3-deficient mice and STAT3-

deficient CD4+ T cells in human 185
· 

215
. However, the latter result may also be 

confounded by the consequences of defective STAT3 signaling in B cells. 

Importantly, the above results also suggest that there are IL-6 and IL-21-independent 

mechanisms for Tfh cell development. 

Roles of Tjh cells in physiological immune responses 

The main known function of GC Tfh cells is to facilitate antigen-specific selection of 

GC B cells by providing growth and survival signals via IL-21 and CD40L3
· 

62
· 

66
· 

68
. 

Tfh cells also maintain GC niches via the secretion of IL-21, a requirement for 

sustaining maximal Bcl-6 expression in both Tfh and GC B cells, which in turn 

promotes proliferation and affinity maturation of GC B cells as well as their transition 

to plasma cells and memory B cells 192
· 

211
· 

216
. IL-21 a!so provides survival signals to 

Tfh cells in an autocrine manner184
· 

185
· 

192
. Tfh cells also produce .substantial amounts 

of IL-4 that, in concert with IL-21, maintains GC B cell survival and selection77
· 

209
. IL-

4 is also known to be important for isotype switching to lgG1 217
. Expression of the 

inhibitory receptor PD-1 on Tfh cells is required for the selection and survival of GC 

B cells; deficiency of PD-1 led to reduced numbers of antigen-specific long-lived 

bone marrow (GC-derived) plasma cells. Deficiencies in PD-1 or any one of its 

ligands PD-L 1 and PD-L2 only minimally alter Tfh cell numbers, while the formation 

, of plasma cells was considerably diminished in the combined absence of both PD-L 1 

and PD-L2218
. Interestingly, another study showed an increase in antigen-specific 

antibody responses to infection and immunisation as a result of expansion of Tfh cell 

in PD-1 deficient mice and upon PD-L 1 (B7-H1) blockade on B cells219
. The 
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discrepancy between these two studies remained unresolved but again might be 

related with different immunization models. 

Roles of Tfh cells in pathological immune responses 

Given the pivotal importance of the Bcl-6 gene in GC B cell development, an 

aberrant regulation of Bcl-6 expression has consistently been associated with 8-cell 

lymphomas. More recently, a peripheral T cell lymphoma, Angioimmunoblastic T-cell 

lymphoma (AITL) has been shown to derive from the malignant transformation of Tfh 

cells220
. Human AITL is the second most common subtype of peripheral T-cell 

lymphoma, displaying some autoimmune disease features including 

lymphadenopathy, hepatosplenomegaly, skin rash and hypergammaglobulimia221
• 

222
. 

AITL contain infiltrates of immunoreactive CD4+ T cells that are analogous to Tfh 

cells, characterized by the overexpression of Tfh asso~iated genes such as CXCL 13, 

BCL-6, ICOS and PD-1 though the neoplastic T cells only account for a small 

fraction of the lymphoid infiltrate220
• 
223

-
226

. 

Tfh overactivity also represents a new mechanism of autoimmunity. Since the first 

description of Tfh accumulation linked with systemic lupus in ·sanroque mice227
, 

aberrant accumulation of Tfh cells has been shown to cause, exacerbate, or be 

associated with several human and mouse· diseases such as SLE, Type 1 diabetes, 

-arthritis, hepatitis, Sjogren's syndrome and others (reviewed in5
· 

7
• 

157
). Mouse models 

have been used to investigate Tfh-mediated autoimmunity, including the sanroque 
. . 

model used in this thesis, which is characterized by the presence of spontaneous 
. . . 

GC reactions and pathogenic autoantibodies mediated by aberrant regulation of Tfh 

• 
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cells. Previously, we showed that sanroque mice develop a Tfh cell-driven lupus-like 

syndrome caused by a mutation in a novel immune regulation gene, Roquin 

(discussed further in the section below). Similarly, another murine lupus model, 

B6.Sle1 .Yaa mice, is also characte~ized by increased expression of Tfh-associated 

genes including /cos, Pdcd1, Cxcr5, 1121, and increased IFN-y-secreting cells228
• 

IL-17-producing Tfh cells have been shown to promote spontaneous GC formation in 

autoimmune BXD2 mice by modulating CXCL 12, resulting in the accumulation of GC 

B cells and increased production of pathogenic anti-DNA lgG, anti-histone lgG, lgG 

and anti-BiP lgM autoantibodies229
. In addition, abundant extrafollicular Tfh-like cells 

· have been found outside GCs in MRL1,or mice76
. Tfh cells have also been shown to 

induce autoimmune hepatitis (AIH) with severe T-cell infiltration and increased 

production of antinuclear antibodies that leads to fatality in neonatal thymectomy 

NTx-PD-1 deficient mice230
. 

In humans, Tfh ·cells are associated with several ·autoimmune diseases including 

SLE and juvenile" dermatomyositis. A subset of SLE patient shows expansion of 

circulating Tfh cells (CXCRS+ _ IL21+ CD4+ ICOS+) that correlates well with the 

diversity and quantity of autoantibodies, as well as the severity of 

glomeluronephritis231
-
233

. Patients with juvenile dermatomyositis (JDM) also displayed 

blood CXCRS+ Tfh subsets skewed towards Th2~ and Th 17-type cells and these 

·subsets were able to induce na"ive B cells to produce antibodies via IL-21. The extent 

of skewing correlated with disease severity and frequency of circulating 

plasmablasts 158
. 

' , 
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Chapter 1 Introduction 

Systemic Lupus Erythematosus (SLE) 

SLE is a complex multi-organ disease characterised by significant clinical 

heterogeneity, and is driven by different lymphocyte effector cells including T cells 

and B cells as well as antigen-presenting cells such as myeloid cells. In this systemic 

autoimmune disease, the immune system recognises self-nuclear antigens resulting 

in inflammatory lesions within several organs; when taken in the context of side 

effects related to non-specific immunosuppressive drugs used to control the disease, 

a vast burden of illness is represented. Some of the clinical manifestations affect 

multiple organs, which include the skin, kidneys, heart, central nervous system, 

lungs, heart, gastrointestinal tract and joints in SLE patients. In SLE, autoreactive B 

cells become activated and produce autoantibodies against nuclear antigens and 

their interacting proteins. Typically these are antibodies against dsONA, RNA, 

ribonuclear proteins (RNPs) and histones and tend to be somatically mutated and 

class-switched (lgG)112· 234· 235. Autoantibody-autoantig~n immune complexes activate 

complement and are deposited in various tissues leading to tissue inflammation and 

·injury234, 235. 

SLE predominantly affects _women of childbearing age with a nine to one female 
. 

gender bias. Both hormonal and X-chromosome factors have been proposed to 

account for this difference. Amongst the latter is the observed aberrant activation of 

. 
immune response genes on the normally silenced X chromosomes such as CD40L, 

-caused at least in part by DNA demethylation 424-425 . A role for genes in the X­

chromosome is also supported by the data showing higher incidence of SLE in men 

with Kleinfelter's syndrome (47,XXY) compared to men in the general population and 
. . 

protection ar11ongst w-omen with Turner's syndrome (XO), suggesting a close 

• 
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correlation between X chromosome gene dose and SLE425
-
426

. The estimated 

prevalence of SLE is between 12-64 per 100,000 in European populations and 1 per 

2000 in US populations. The prevalence in non-Caucasians is two to four-fold higher 

than in the Caucasian population236
· 

237
. The diagnosis of SLE is not solely 

determined by the presence of antinuclear antibodies, although it is present in 99% 

of patients. Rather, the American College of Rheumatology criteria stipulate 4 of 11 

clinical or biochemical criteria to be present for the diagnosis of SLE238
· 

239 

(Appendix 1. 1 ). 

Given the disease's complexity and the clinical heterogeneity of SLE patients, the 

development of new therapeutic strategies in SLE has been difficult. The marked 

improvements in the management of lupus that have been associated with improved 

survival are largely attributable to the advances in medical management of lupus­

associated life threatening conditions such as renal impairment. Recent clinical trials, 

based on robust preclinical effects in animal models, have tested rituximab (anti­

CD20), infliximab (tumor necrosis factor inhibitor), tocilizumab (IL-6 inhibitor) and 
. . 

abatacept (costimulation blocker), but have all met with limited success due to lack 

of clinical efficacy and, in som~ instances, a high adverse event rate240
. The first 

. . 

drug that has been ·approved by US Food and Drug Administration (FDA) for the last 

50 years is belimumab (a monoclonal ·antibody that targets BAFF) which targets 

moderately active lupus and is the only drug that, showed significant clinical benefit in 

_ ·phase ·3 clinical trials, though this benefit was marginal240
. 
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Chapter 1 Introduction 

The pathogenesis of SLE 

The pathogenesis of SLE remains unclear. However, the current view is that 

genetically susceptible individuals exposed to diverse environmental and hormonal 

risk factors, trigger activation of both innate and adaptive immune responses, 

resulting in loss of tolerance to ubiquitous self-antigens234
· 
236

• 
237

• 
241

• 
242

. Three major 

pathways have been identified in SLE pathogenesis: aberrant clearance of nucleic­

acid-containing debris and immune complexes, excessive innate immune pathway 

activation by TLR and type I IFNs, and abnormal T and 8 lymphocyte activation234
. 

Several genetic loci have also been implicated in disease etiology243
. In this thesis, 

we will focus on the discussion of failure of regulation and excessive activation of the 

adaptive immune system. 

In SLE patients, the regulatory mechanisms for self-reactive T and 8 cells may be 

genetically defective or environmentally altered. 20-50°/o of mature naive 8 cells 

circulating in the peripheral blood of untreated SLE patients produce self-reactive 

autoantibodies many years before the clinical onset of SLE, implying that breakdown 
. . 

in 8 cell tolerance-checkpoints leads to clonal expansion of autoreactive 8 cells91
· 

113
. 

Another mechanism of 8 cell autoreactivity is enhanced BCR signaling due to 
. . 

increased signals from CD19, intracellular TLRs and BAFF receptor, leading to 8 cell 

hyper-activation and survival244
. Defective GC selection by Tfh or FDCs also results 

in spontaneous GC formation and permits autoreactive 8 cells to differentiate into 

_ pathogenic memory and plasma cells. This may be the consequence of excess Tfh 

cell help5
· 

245
• 

246
·. Loss of GC tolerance may also be the result of defective 8 cell 

signaling, defective regulatory cell function, or inadequate clearance of apoptotic 

, , 
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Chapter 1 Introduction 

cellular debris, as described above; this has been illustrated in human SLE and in 

lupus-prone mouse models5
· 

234
· 
245

. 

Studies have also shown that the_ aberrant T cell activation implicated in SLE 

development may be due to faster T cell calcium influx, oxidative stress caused by 

mitochondrial dysfunction, decreased CD8 cytotoxic activity and increased 

expression of CD40L and CD44 on T cells234
. Furthermore, the strongest genetic risk 

allele for SLE has been mapped to the MHC region, suggesting that aberrant MHC 

presentation may lead to excessive T cell activation and subsequent immune 

responses247
. 

The sanroque model of SLE 

Sanroque mice were discovered as a new mode_l of lupus in the N-ethyl-N­

nitrosourea (ENU) murine screening program for immune . regulatory genes. 

Sanroque mice display systemic lymphadenopathy, splenomegaly, 

hypergammaglobulinemia with hig_h lgG1, lgG2a (lgG2c in C57BU6), lgG2b, lgG3, 

. . 
lgM and lgE, autoimmune thrombocytopenia, elevated high affinity anti-DNA 

antibodies in the serum and glomerulonephritis with deposition of lgG complexes in 

the kidney. Sanroque mice (homozygous for the "san" allele of Roquin, Roquinsanlsan) 

develop a lupus-like systemic autoimmunity due to a homozygous mutation in the 

. ' 
-Roquin gene, in which there is "T" to "G" substitution in methionine at position 199 

. . 

(M199R) leads to an amino acid change to arginine. The M199R mutation is located 

in a novel protein domain termed ROQ, which so far has only been identified in 

Roquin and its paralogue Mnab. Microarray analysis revealed that Roquinsanlsan mice 
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express elevated Tfh cell signature genes including PD-1, CXCRS, CXCL 13, IL-21, 

SAP, CD40L, ICOS and Bcl-6. This is also accompanied by large GCs with 

accumulation of excessive numbers of Tfh cells that can already be observed in the 

first weeks of life227
. 

Haploinsufficiency of Bcl-6 ameliorates spontaneous GC formation, pathogenic 

autoantibody ( dsDNA lgG) production and renal pathology in sanroque mice6
. SAP­

deficiency also abrogates spontaneous Tfh and GC formation, autoantibody 

production (dsDNA lgG) and renal pathology, but not hypergammaglobulimia, 

lymphadenopathy and splenomegaly in sanroque mice6
. The adoptive transfer of 

·sanroque Tfh cells drives spontaneous GC formation in recipient mice, suggesting 

that the disease is Tfh-cell driven6
. Collectively, these data sugge~t that the 

Roquinsan mutation induces accumulation of lJh cells in a T-cell intrinsic manner. 

This, in part results from defective posttranscriptional degradation of /cos mRNA by 

mutant ROQUIN248
·-

249
. Taken together, Tfh cell accumulation drives aberrant 

· positive selection of autoreactive .B cells in the GCs and lupus. 

Studies from our -lab also revealed that sanroque mice have other Tfh-mediated 

pathologie·s. For example, 50%> of heterozygous sanroque mice (Roquinsanl+ mice) 

develop Tfh cell-driven, AITL-like tumors with hypergammaglobulinemia by the age 

of 6 months250
. -Roquinsanisan mice also develop autoimmune diabetes in a susceptible 

genetic background. Furthern:,ore, the Roquinsan mutation dramatically increases the 

progression to type 1 diabetes in TCR+ HEL+ transgenic mice: 100%,°of Roquinsanlsan 

TCR+ HEL + mice develop diabetes by 8 weeks of age characterised by ectopic GC 

containing large numbers of Tfh cells in. the pancreas, ·accompanied by peri-insulitis 

, , 
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with islet destruction and exocrine pancreatitis. The pathology is lgG anti-islet 

antibody-mediated - triggered by transfer of purified anti-islet-expressed antigen 

(HEL) lgG probably as a consequence of excessive Tfh activity251
. Also, transfer of 

short-lived effector (SLEC)-like CDS+ T cells from Roquinsanisan mice triggers 

autoimmune diabetes in a diabetes susceptible model, RIP-mOVA mice, whereas 

wild-type T cells failed to do s0252
. 

ROQUIN (gene symbol Rc3h1) belongs to the RING-type E3 ubiquitin ligase protein 

family and, upon stress, localizes to cytosolic stress granules where RNA 

metabolism is regulated. It contains a RING domain (consensus for the E3 ubiquitin 

ligase protein), a novel ROQ domain (RNA-binding and stress-granule-localising), a 

CCCH zinc-finger domain (RNA binding) and a proline-rich-region domaio (important 

for interacting with SH3 domain-containing prot~ins). Both ROQ and CCCH domains 

enable ROQUIN to bind to and regulate mRNA: they mediate ROQUIN's binding to 

the 3'-untranslated region (3' .UTR) of /cos mRNA leading to its repression248
· 

253
. 

Homozygosity for Roquinsan causes overexpression of /cos in sanroque mice through 

the impairment of ./cos mRNA degradation. In vitro, this has been show to be due to 

ROQUIN's ability to promote mRNA decapping in the processing (P)-bodies. This 

process is .mediated by ROQUIN's interaction with the helicase Rck and enhancer of 

decapping Edc4 which in turn associate ·with the decapping complex Dcp1 :Dcp2 to 

mediate mRNA degradation independent of miRN.As253
. Whether Roquin . also 

regulates other mRNAs by the same mechanism remains elusive. Halving the gene 

dose of /cos ameliorated the hypercellularity (splenomegaly and lymphadenopathy) 

of sanroque mice. Sanroque lcos+i- mice still had elevated levels of ICOS on the 

surface of T cells, but the levels were lower than those of sanroque /cos+;+ mice.· 
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Given that Roquinsanisan lcos-1- mice still developed splenomegaly, as shown in this 

thesis for the first time, we hypothesised that additional dysregulated ROQUIN 

mRNA targets may be required for the development of lupus in Roquinsanlsan mice. 

Increased expression of IL-21 was previously excluded as a candidate to cause the 

phenotype, given that elimination of IL-21 neither dampened the GC and Tfh 

accumulation, nor the onset of autoimmunity6
. 

Another conundrum was the recent demonstration that loss of Roquin caused a 

phenotype distinct to that of Roquinsanlsan mice254
. Complete knockout of Roquin 

results in perinatal lethality, whilst the ablation of Roquin in hematopoietic cells 

results in the expansion of myeloid cells (eosinophils and macrophages) and ICOS+ 

T cells population, in particular the short-lived effector coa+ T cellsL However, 

Roquin deficiency itself was not sufficient to ~ause autoimmunity as the knockout 

model demonstrates intact T cell development in the thymus with normal CD4 + T cell 

homeostasis and no spontaneous GCs. The reason why the sanroque phenotype 

fails to be recapitulated by Roql!in knockout has not been fully explained, but we 

have unpublished .observations pointing to two non-mutually exclusive possibilities 

that are discussed -in the final chapter (Chapter 6). 

, , 
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Cytokines as regulators of Tfh cells and SLE 

Cytokines and their networks are implicated in the innate and adaptive immune 

response, driving inflammation and pathogens neutralization. Other than their 

function in normal immune responses, there is overwhelming data showing that 

dysregulation of certain cytokines and activation of various signaling pathways by 

these cytokines contributes to SLE pathogenesis (reviewed in255
· 

256
) and/or 

dysregulation of Tfh number and function (reviewed in7
· 

157
; Figure 1.1). However, 

there is only a handful of studies that link cytokines, aberrant regulation of Tfh and 

GCs and SLE together. 

Of interest, cytokines produced by Tfh appeared to contribute to SLE development. 

This is not surprising, however, given their role in facilitating GC 8 cell formation and 

maturation. IL-21, the predominant cytokine secreted by Tfh cells, has markedly 

increased levels of production from T cells, including_ Tfh cells, in , BXSB.Yaa mice 

and $LE patients216
· 

257
· 

258
. IL-21 deficiency or blockade (soluble IL-21 R-Fc) has 

been shown to ameliorate disease development and progression. Symptoms 

dampened include hypergammaglobulinemia, autoantibody production, renal 
. , 

disease, monocytosis, expansion of splenic T and B cells including marginal zone B 

cells, and also premature morbidity in BXSB.Yaa and MRL'pr mice258
-
261

. IL-21 

deficiency, conversely, has no effect on sanroque mice (unpublished observation). 

-.Another cytokine, I L-17, is produced by Tfh cells arid has been shown to promote 

spontaneous GC formation in autoimmune BXD2 mice by modulating CXCL 12, a 

chemotactic migration factor of B cells that results in the retention of 8 cells in GCs, 

. . 

and increased production of pathogenic anti-DNA lgG, anti-histone . lgG, anti-Bl P lgG 
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Figure 1.1. Cytokine-mediated dysregulation of Tfh and GC responses (the 
pathogenic sffects of IFN-y were taken from this thesis). 

A)Tfh formation: IFN-y promotes the pr9liferation of early effector T cells. IFN-y, IL-21 
and IL-6 are able to induce Bcl-6 expression 184, 185,190, 192_ 

B) B cell priming & lg switching: At the time of T cell priming, IL-21 produced by Tfh 
cells promotes B cell activation and differentiation along the extrafollicular and GC .. 
pathways. IFN-y can induce isotype switching to lgG2a, the most pathogenic isotype, in 
mice 185,192,211. · · 

C) Accumulation of Tfh cells and suppression of Tfh: Excessive IFN-y, IL-6 and 
IL-21 promote the accumulation of Tfh cells that sustain spontaneous GC responses. 
Both IL-6 ~nd IFN-y can induce Bcl-6 overexpression in GC Tfh cells and/or their 
precursors. IL-6 can repress Treg cell function423 , thus it is possible that it also represses 
Tfr cells that normally limit aberrant Tfh· and GC B cell accumulation 184, 185, 190, 192. 

· D) GC B cell retention and survival: IL-21 produced by Tfh cells acts directly on GC B 
cells to sustain Bcl-6 expression, thus promoting their growth and _survival1 85, 192, 211 . 

IL-17 excess produced by Tfh cells in autoimmune-prone BXD2 mice can promote GC B 
cell retention ·in GC229 , which may lead to more rounds of somatic mutation and more . 
self-reactive GC B cells . 
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and lgM autoantibodies229
. Other cytokines such as IL-2, type I interferons, IL-4, IL-6, 

IL-12 and IL-27 have all been independently shown to have important roles in Tfh or 

SLE (reviewed in7
• 

157
• 

255
• 
256

) . 

lnterferon-y 

lnterferon-y (IFN-y) is the only member of the type II class of interferons and plays a 

central role in innate and adaptive immunity. IFN-y is produced by innate cells 

including plasmacytoid dendritic cells (pDCs), myeloid dendritic cell (mDCs), y6 T 

cells, Natural killer (NK) cells, NK T cells and macrophages (Mac) under the 

influence of IFNa/lFN~, IL-12, IL-18, IL-2, and IL 15; in contrast, it is inhibited by 

TGF~ and IL-6. IFN-y is upregulated upon cytokine stimulation, including IL-2, IL-12, 

IL-18 and/or IFN-y itself produced by NK cells, DCs and other APC, activated CDS T 

cells and CD4 T cells262
• 

263
. IFN-y is the signature cytokine of Th1 cells. The Th1 

. differentiation program is driven by the transcription factor, T-bet,· which is necessary 

for full commitment to IFN-y· production217
· 
264

. The biologically active form of IFN-y is 

a 34 kDa homodimer which exerts· its biological response through binding the IFN-y 

receptor (IFN-yR), which is composed of a heterodimer of two membrane-spanning 
. 

proteins (IFN-yR1 and IFN-yR2) that signal through the Janus kinase (JAK)-STAT 

pathway265 (Figure 1.2). 
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Figure 1.2. Signaling and activation of transcription mediated by IFN-y and IL-12. 

A) IFN-y signaling is initiated by the binding of the IFN-y homodimer, which directs the 
activation of two IFN-yR1 chains and ~o IFN-yR2 chains. Receptor subunit assembly 
then leads to phosphorylation and activation of two receptor-associated Janus kinases 
(JAKs) (i.e. JAK 1 .and JAK2). These JAKs phosphorylate a tyrosine residue on the 
I FN-yR 1, which directs the SH2 domain-dependent recruitment and activation of 
STAT1. Activated STAT1 molecules then dissociate from the receptor and form 
homodimer complexes. Subsequently, phoshorylated STAT1 homodimers translocate 
to the nucleus and bind to I FN-y-activ.ated site (GAS) enhancer elements in the 
promoters of IFN-y-stimulated genes, thereby switching on gene transcription. 

B) Bindin_g of IL-12 to the IL 12R~1 and IL-12R~2 chains induces phosphorylation of 
Tyrosine kinase (TYK) 2 and JAK2 and results in the binding of STAT 4 to the 
cytoplasmic tail of IL-12R~2. Phsphorylated STAT4 molecules then dimerise and 
translocate to the nucleus and bind to the promoter region of IL-12-induced genes 
(those with an IL-12 response element, IL-12RE) and drive the transcription of IL-12 
responsive genes. 

AP-1 , activator protein-1; ATF2, Activating transcription factor 2; iNOS, inducible nitric 
oxide synthase; IRF, interferon regulatory factor; NFAT, nuclear factor of activated T _ 
cells, NFKB, nuclear factor KB; SOCS, suppressor of cytokine signaling 
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Regulation of IFN-1 production 

In humans, IFNa and IFN~ in conjunction with IL-18 and IL-12 can drive acute IFN-y 

secretion in Th1 cells via the STAT1/STAT4 signaling pathway266
-
271

. In mice, IL-12R 

is able to induce effective and sustained STAT4 activation269
· 

272 (Figure 1.2), but 

type I IFNs do not induce STAT4273
-
275

. Upon stimulation with TLR4 and TLR?/8, 

human DCs can also induce na·1ve CD4+ cells to produce IFN-y and IL-10276
. Another 

cytokine, IL-27, secreted by virally-infected cells, activated Mac and DCs, can drive 

proliferation of Th1 cells and induce IFN-y production by synergizing with IL-12 and 

IL-18 to activate both STAT3 and STAT1 proteins, in turn inducing T-bet 

expression263
· 

277
. Notably, IL-27 has been shown previously to support Tfh formation 

via induction of IL-21 193
. 

IL-10 serves as a feedback regulator for IFN-y production. Acute ablation of Treg 

cells - a prominent cellular source of IL-10 - leads tC? an increase in IFN-y-producing 

Th1 cells, indicating that Th1 effector function was limited by the Treg cells278
. IL-1 0 

is produce·d abundantly by Treg cells and. is known to directly inhibit IFN-y production 

by T cells and indirectly suppress IFN-y by inhibiting Mac and DCs, but not B cells, 

from stimulating · Th1 cells to produce IFN-y279
-
281

. Th1 ·cells themselves can also 

secrete IL-10 in ·response to intracellular protozoa infection, suggesting a self­

regulatory role tq limit the IFN-y pathogenic potential282
· 

283
. IL-27 and IL-6 can also 

induce Th1 cells to produce IL-10 via STAT1/STAT3 and STAT3 alone signaling 

_ pathways respectively, suggesting that these cytokines also exert a feedback 

regulatory role ·on Th1 cells to prevent unwanted chronic inflammatory responses284
. 

,, 
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Physiological and pathogenic roles of IFN-')' 

IFN-y exerts multiple responses against certain viral, intracellular bacterial 

(mycobacteria, Listeria, Salmonella) and protozoan (Toxoplasma and Leishmania) 
I 

infections. It also has pro-inflamm.atory, immunoregulatory and anti-tumour effects 

via the regulation of various genes. Its important functions in the immune system 

include enhancing antigen presentation through up-regulation of both MHC-I and 

MHC-II expression, activating Mac by increasing phagocytosis, leukocyte trafficking 

at sites of inflammation including leukocyte-endothelial interactions, and promoting 

NK cell activity263
. 

In this thesis, I will focus on the role of IFN-y in regulating CD4+ T cell function. The 

cytokine milieu is crucial for CD4+ T cell differentiation: the main function of IFN-y on 

CD4+ T cells is to mediate the differentiation; maturation and activation of Th1 cells 

against infections, while also suppressing Th2 and Th17 cell differentiation, probably 

via T-bet264
. IFN-y also induces T-bet expression in Th1 cells ~nd promotes lg class 

switching to lgG2a (lgG2c in C57BL/6) in mice, though a recent report suggested 
. . ' 

that IFN-y is not required for isotype switching or B cell antibody production in 

humans75
• 

158
. It also antagonises the effect of IL-4 on switching to lgG1 and lgE30

• 
31

• 

285 Furthermore, · I FN-y also exerts pro-apoptotic effects, increasing effector cell 

apoptosis and r~storing the balance of the T cell population expande,d by antigenic 

stimulation, consequentially suppressing ·autoimmunity262
· 

286
. IFN-y also appears to 

_ play 'intriguing anti-inflammatory roles in certain disease models: in the context of 

experimental allergic encephalomyelitis (EAE), IFN-y induces FoxP3 expression in 

CD4+ T cells and also promotes the conversion of non-Treg cells to Treg .cells, · 

thereby limiting tissue damage associated with overt inflam·mation287
. 
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I FN-y production is tightly controlled by Treg cells: ablation of Treg cells leads to 

increased IFN-y production that rapidly triggers autoimmune diabetes288
. 

Interestingly, IFN-y and IL-27 promote a specialised Treg subset, which is T-bet 
-· 

CXCR3+, and appears to be critical to limit Th-1 cell-mediated inflammation289
· 

290
. 

Notably, Tfr also secrete IL-10, which limit Tfh and GC numbers, they may also play 

a role in the regulation of IFN-y production within GCs 137
• 

139
. 

Relationship between IFN-y and Tfh cells 

Although Tfh cells can produce IFN-y during inflammatory conditions, infection, and 

in the context of autoimmunity 152
' 
291

, human tonsil and mouse GC Tfh cells generally 

produce less IFN-y than non-Tfh cells including Th1 cells in both human tonsils and . 

mice, suggesting a critical need for limiting IFN-y production in normal GC 

responses 136
• 

166
. Low levels of IFN-y in Tfh cells may be due to elevated expression 

. . 
of Bcl-6, wherein Bcl-6 antag·onizes Blimp-1 required for the differentiation of non-Tfh . . 

effector subsets including. IFN.:y-producing Th1 cells 152
' 

292
. Bcl-6 can also directly 

repress both lfng and Tbx21 .. transcription, the latter also leading to partial 

downmodulation ·of IFN-y13
~· 

153
. 

One of the proposed mechanisms to regulate the balance between Tfh and Th 1 cells 
. . 

is through the T-bet-Bcl-6 axis in which both IL-2 and IL-12 signaling have been 

• I 

- shown to contribute to the phenotype and function of Tfh and Th1 cells. In fully 

developed Th 1 eel-ls, T-bet has shown to repress I FN-y transcription by physically 

recruiting Bcl-6 to the lfng locus, repressing its activity in the late Th1 differentiation · 
. . . 

stages and thereby limiting IFN-y production 136
' 

153
. IL-2 availability at the time of T 

,, 
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Chapter 1 Introduction 

cell priming in vivo also appears to be a critical factor influencing whether a 

developing effector T cell elects a Th 1 or Tfh cell fate. When there are limiting 

amounts of IL-2, Th1 cells increase their Bcl-6/T-bet ratio, allowing excess Bcl-6 to 
--

re press Blimp-1, subsequently favpring a Tfh cell-like profile293
. IL-2 directly inhibits 

Tfh differentiation via STATS, which competes with STAT3 for binding to the Bcl-6 

locus, and promotes the expression of Prdm1, the gene encoding Blimp-1 201
· 

202
. 

Early coexpression of Bcl6 and T-bet in a transition stage before the cell fate 

decision is made, is supported by work showing that T-bet may be essential for both 

the Th1 and Tfh differentiation pathways at the initial stage294
. This notion is 

supported by the fact that IL-12/STAT4 pathway is shared by both Tfh and Th1 cells. 

STAT4 can bind directly to regulate Tfh related genes such as Bcl6 an.d IL-21 294
. At 

the initial phase of IL-12 mediated Th1 cell di~erentiation downstream of STAT4, Tfh 

and Th1 cells share a transient stage where uncommitted CD4+ T cells exhibit a Tfh­

Th1-like phenotype (IL21 + IFN-y+ Bcl6+ T-bet+). The subsequent induction of T-bet 

-represses Bcl-6, resulting in full differentiation of Th1 (IL21+IFN-y+Bcl6-T-bet) cells 

at late stages of.Th1 differentiation. Th1 cells use T-bet and STAT4 signaling to limit 

Bcl-6 expression, which favors a Th1 phenotype and limits Tfh cell formation294
. This 

paper suggests tt:lat there are threshold levels of T-bet and Bcl-6 expression that 

need to be reached, similar to the Bcl-6 and Blimp-1 regulatory axis dictating Tfh or 

Th1 cell phenotype, thus controlling the levels -of IF.N-y in normal conditions. In this 

· thesis, I will describe a nov,el consequence of the ,action of excessive IFN-y on Tfh 

cells: to promote Tfh cell accumulation and cause autoimmunity in a manner' that 

operates independently of T-bet. 
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Chapter 1 Introduction 

The other IFN family - type I interferons - has also been shown to act as an adjuvant 

on DCs to selectively support the differentiation of lymph node resident Tfh cells. 

Upon activation by antig,ens in conjunction with TLR3 (pl:C) or TLR4 (LPS) agonists, 

type I interferons (IFNa/lFNf3) support the differentiation of Tfh cells by enhancing 

CD86 expression on DCs and B cells to strengthen their T cell stimulatory capacity. 

In addition, autocrine and paracrine IFN-I signalling also induces IL-6 production 

from CD11c+ DCs191
. IL-6 signalling via STAT3 in T cells appears to be required for 

Tfh differentiation 185
. 

Relationship with SLE 

Aberrant secretion of IFN-y has been shown to mediate the progression of several 

autoimmune diseases such as multiple sclerosis, rheumatoid arthritis and diabetes. 

·increased serum levels of IFN-y correlated with the developmer:,t, disease activity 

and progression of SLE in patients. Several studies have show_n high levels of IFN-y 

in serum or kidney sections of SLE patients and this is associated with lupus 

nephritis, lymphadenopathy or nephrotic syndrome295
-
299

. Furthermore, IFN-y­

producing Th 1 ~ells are detected in the blood and kidneys of patients with diffuse 

proliferative nephritis300
. SLE patients also show increased circulating CXCL 10, an 

IFN-y-inducible ~erum chemokine, as well_ as higher expression of IFN-y in urinary 

sediment, whi'ch correlates well with the SLE Disease Activity Index (SLEDAl)301
• 

302
. 

_ Expression of IFN-y, T-bet and STAT1 was · increased in peripheral blood 

mononuclear cells (PBMCs) from SLE patients and also correlated with disease 

activity303
-
305

. In addition, NK cells from active SL~ patients showed an activated · 

phenotype and abundant IFN-y production306
. The ·combination of Val14Met arid 

, , 
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Gln64Arg polymorphisms within the IFN-yR1 and IFN-yR2 has also been identified in 

some SLE patients and is associated with the susceptibility to SLE307
. All together, 

IFN-y and genes related to IFN-y signaling pathway may play an important role in 

SLE pathogenesis and can be used as biomarkers for disease activity. 

IFN-y is of particular interest to us since in our murine lupus model, sanroque, T cells 

exhibit increased production of this cytokin.e227
. Similarly, high levels of IFN-y are 

documented at the mRNA and protein levels in T cells of several different lupus­

prone mice including MRL'pr, NZB/W F1 and BXSB.Yaa308
-
314

. There is also 

increased IL-12 expression in kidney-infiltrating mononuclear cells and tubular 

epithelial cells of MRL'Pr mice315
-
317

. In other lupus-prone mouse models, IFN-y or 

IFN-yR deficiencies in MRL'Pr, NZB/W F1 and pristine-induced lupus mice have been 

shown to reduce autoantibodies, glomerulonephritis severity or prolong survival 318
-

322 . The injections of IFN-y in NZB/W F1 mice accelerated disease progression, 

whilst neutralising IFN-y antibodies or soluble IFN-yR ameliorated disease and 

resulted in significant remIssIon, prolonged survival and amelioration of 

glomerulonephritis323
• 

324
. Consistent with this, depletion of IFN-y using cDNA 

encoding IFN-y/Fc receptor in MRL'pr mice reduced autoantibody production, 

lymphoid hyperplasia, glomerulonephritis a·nd mortality325
. Even more striking is the 

fact that transgenic mice expressing IFN-y in their epidermis, under the control of the 

involucrin promoter, developed inflammatory skin disease and a lupus-like syndrome 

charaterized by production of lgG anti-dsDNA, anti-histone autoantibodies and 

antinuclear autoantibodies (ANAs), and glomerulonephritis mediated by imrnune 

complex deposits in the kidney326
. Further analysis of these mice suggests that . 

antigen-specific a~ T cells targeted apoptotic epidermal keratinocytes as a source of 

• 
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self-antigens led to the formation of pathogenic autoantibodies327
. However, one 

study showed that recombinant IFN-y (rlFN-y) treatment to MRL'P' mice has 

dichotomic effects, beneficial at the early stage of disease yet accelerating 

symptoms once SLE has manife~ted328
. These data from several different lupus 

models (reviewed in329
) emphasise the importance of IFN-y/lFN-yR signaling for 

autoantibodies production and immune complex glomerulonephritis, and provide 

evidence that impeding IFN-y signaling through IFN-y blockade may be beneficial in 

the treatment of SLE in humans. Indeed, Amgen has recently conducted a phase lb 

clinical trial (safety test) on a fully human monoclonal antibody that binds to IFN-y 

(AMG 811) for the treatment of SLE. 

The interferon signaling pathway, mainly the Type I IFNs (IFNa/lFN~}-secreted by 

innate cells such as pDC and mDC in response to proficient TLR receptor 

signaling330
, is considered the major signaling pathway involved in the pathogenesis 

of SLE. Indeed, most studies place IFN-y downstream of this pathway. Further, 

excess type I IFNs are able to break peripheral tolerance -through the unabated 

activation of myeloid DCs which expand rather than delete autoreactive T cells 

(including Th1 eells with subsequent excess production of IFN-y) and B cells, 

. . 

resulting exacerbation of SLE through enhancement of the inflammatory cellular 

response, autoantibody secretion and · immune complex formation331
. Notably, low 

. . , 

levels of type I IFNs can induce at least -10-fo-ld enhancement of IFN-y in DCs, NK 

cells ,and T cells via STAT1 and STAT 4 332
• 

333 
. 
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Chapter 1 Introduction 

The mechanism by which IFN-1 promotes SLE 

The exact mechanism underlying the action of IFN-y in SLE development is 

uncertain because of the highly pleiotropic properties of IFN-y. There is the 

possibility that IFN-y increases expression of MHC I and MHC II on APC and T cells 

with subsequent excessive self-peptide presentation culminating in excessive B cell 

help and autoantibody production. Additional mechanisms may include its indirect 

effect on B cell activation and maturation, whereby peripheral blood T cells from SLE 

patients that express significantly higher amounts of IFN-y have been shown to 

induce soluble BAFF (B lymphocyte stimulator; Blys) via monocytes or 

macrophages. This subsequently results in excessive B cell activation and 

pathogenic autoantibody production334
. In mice, IFN-y induces lg switching to 

pathogenic lgG2a (lgG2c in C57BL/6) and lgG3 autoantibodies that efficiently 

activate lg FcyRI 11 and FcyRIV receptor and complement, leading to the initiation of 

the inflammatory response in lupus nephritis335
. However, this n:,ay be different in 

humans: a recent study showed that blood CXCR5+ or CXCRs-_ IFN-y-producing Th1 

cells failed to provide help _to B cells 158
. Interestingly, there is also evidence that IFN­

'Y may participate in the early stage of the disease, specifically in the initiation of ANA 

production. Som·e rheumatoid arthritis patients receiving systemic treatment with 

rlFN-y showed · emergence of SLE with de nova anti-dsDNA antibody, 

glomerulonephritls and a butterfly rash, suggesting that the excessive amounts of 

IFN-y in susceptible individuals can trigger an SLE-like autoimmune response336
. 

An essential role of IFN-y/lFN-yR signaling in the pathogenesis of immune complex­

mediated renal disease in MRL'pr mice has been well established. Kidney infiltrated·T · 

cells and mesangial cells secrete IFN-y to induce coiony stimulating factor (CSF)~1 
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and tumor necrosis factor (TNF)-a, which in turn, recruit and foster the expansion of 

macrophages and T cells. It also has been shown that IFN-y produced by T cells 

could induce apoptosis of renal parenchymal cells in MRL'pr mice. Thus, the influx of 

additional T cells into the kidney pr,ovides a positive amplification loop that results in 

apoptotic renal parenchymal cells and culminates in kidney destruction319
· 

337
. In 

addition, infiltrating macrophages also produce IFN-y, which in turn upregulates 

adhesion molecules, induces Mac accumulation and results in inflammation in the 

kidney even in the absence of autoantibody deposits. IFN-y controls macrophage 

migration into the kidney, and the levels of IFN-y secretion by Mac correlate with 

glomerulonephritis development338
. All together, these studies show that I FN-y is 

involved in the induction and progression of lupus nephritis by promoting 

inflammation and initiating a positive feedback loop that is responsible for amplifying 

autoimmune kidney damage. A direct effect of IFN-y on promoting Tfh cell 

accumulation as a key early factor in SLE pathogenesis, which is the focus of this 

thesis, is not yet documented. 

, , 
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Chapter 1 Introduction 

Thesis aims 

This thesis aims to address several topics revolving around the regulation and 

function of physiological and pathogenic Tfh cell formation and their impact on both 

follicular and extrafollicular antibody responses. 

The first results chapter of of this thesis (Chapter 3) focuses on aiding the 

understanding of the nature of T cells that drive extrafollicular 8 cell responses. 

Since our lab has previously shown that Bcl-6 is the transcription factor for GC Tfh 

and Bcl-6 expression in T cells is essential for initiation of GC reactions, we asked 

whether T cell expression this transcription factor is also required in the 

extrafollicular pathway. 

The second and third results chapters of this thesis (Chapters 4 and 5) investigate a 

role for IFN-y, a cytokine abundantly produced . by sanroque T cells, in the 

accumulation of Tfh, spontaneous GC formation, and SLE pathogenesis of sanroque 

mice. Our results .reveal that I FN-y not ·only contributes to SLE pathogenesis via 

induction of istoype switching or. downstream of the antibody response, but it itself 
. 

alters the quality of the antibody response by influencing the differentiation and 

homeostasis of 8 cell helper T cells (Tfh cells). Targeting IFN-y emerges as a 

tantalising concept in the development of therapeutics for Tfh and-mediated disease. 
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Chapter 2 Materials and Methods 

Chapter 2 - Materials and Methods 

Mice and Immunizations 

C57BL/6, Cd2a-1- mice, Bc/01-, C57BL/6.Fas-/- 339
, VavP-Bc/2340

, Rag1-1-, Roquinsanlsan 

mice; and Roquinsanlsan mice crossed to lfngt1-, lfng-1-, Tbx21Du/Du 341 , lcos-1-, Tcra-1-, 

Jgdenlken mice were maintained by the Au_stralian National University Bioscience 

Services in specific pathogen-free conditions and had access to food and water ad 

libitium. SWHEL CD45.1 mice, which carry a VK1 OK light chain transgene and a 

knocked-in VH 10 lg heavy chain in place of the JH segments of the endogenous lgH 

gene that encode a high-affinity antibody for HEL, were obtained from the laboratory 

of R. Brink (Garvan Institute, Sydney, New South Wales, Australia) an9 maintained 

by Australian National University Bioscien~e Services. SWHEL 1121 t 1
+ CD45.2, 

SWHEL·//21 r-1
- CD45.2, and recipient C57BL/6 CD45.1 mice were maintained in the 

animal facility at. the Garvan Institute. All procedures were performed with 
. . 
appropriate ethical and legal approval by the Australian National University's Animal 

Experimentation .Ethics Committee . 

Generation of fetal liver and bone marrow chimeras 

Recipient Rag1-1
- mice were irradiated with 500 Rad and reconstituted via 1.v. 

_ injection with 2 x 106 donor fetal-liver or bone marrow-derived hematopoietic stem 

cells. Mice were reconstituted with the following combinations of fetal liver cells: for 

S. enterica infection and hapten (4-hydroxy-3-nitrophenyl) acetyl (NP) coupled to · 

keyhole limpet haemocyanin (KLH) immunization experiments: 80%, Bc/6"1
-

• 
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Chapter 2 Materials and Methods 

CD45.2:20% Cd2a-1- CD45.1 and control 80% Bcl6+;+ CD45.2:20%> Cd2a-1- CD45.1 

fetal liver cells; and for recipients of CD45.1 SWHEL B cells, 80% Bclo1- CD45.2:20%> 

Cd2a-1- CD45.2 and control 80% Bcl6+;+ CD45.2:20% Cd2a-1- CD45.2 fetal liver cells. 

Bone marrow chimeras were recor:,stituted with the following combinations of bone 

marrow cells: 70% Roquinsanisan Tcra-1-:30°/c> Roquinsanisan, 70%> Roquinsanisan Tcra-1-

:30°/c> Roquinsanlsan lfngr-1-, 70% Roquinsanlsan lgJ<enlken :30%> Roquinsanlsan, 70% 

Roquinsan/san lgJ<en/ken :30°/c> Roquinsan/san lfngt1-, and controls 100% Roquinsanlsan, 

Roquin+;+ and Roquinsanlsan lfngr-1- bone marrow cells. All groups were maintained on 

antibiotics for 6 weeks, and experiments were performed 8 to 1 0 wk after 

reconstitution to allow for full reconstitution of the immune system. 

S. enterica inoculations and liver bacterial counts 

S. enterica serov~r Dublin strain SL5631 342 was grown in Luria-Bertani medium 

oyernight. Mice were inoculated with 106 ~olony-forming units- (CFUs) from a log­

phase culture adm!nistered i.p. in PBS, with control mice receiving PBS only. Liver 

. 
bacterial load was measured at_ ,day 12 after infection by homogenizing organs, 

. 
plating serial dilutions in _PBS onto Luria-Bertani agar, and incubating at 37°C 

. 
overnight. For experiments with S. enterica serovar Typhimurium strain SL3261, 

mice were immunized i.p. with 5 x 105 bacteria in PBS . 

, , 

• 
44 

~---= - 'b . 



Chapter 2 Materials and Methods 

Antibodies detection by ELISA 

ELISAs were used to quantify serum titers of anti-HEL, anti-NP and anti-S. enterica 

antibodies. To quantify anti-HEL and anti-S. enterica antibodies, 96-well plates were 

coated with either 1 µg/ml HEL protein or 250 µg/ml S. enterica lysate prepared as 

previously described in 0.05 M carbonate buffer (Na2CO3 + NaHCO3, pH 9.6) 

overnight and subsequently blocked with PBS/1 °/o BSA6
. Serum was serially diluted 

onto the 96-well plates in PBS/1 % BSA/0.05% Tween 20 buffer and incubated for 2 

h at 37°C. After washing, antigen-specific antibodies were detected with anti-mouse 

lgM, anti-mouse lgG1 or anti-mouse lgG2c antibodies conjugated to alkaline 

phosphatase (Vector Laboratories). Bound antibody was detected with para­

nitrophenylphosphatete glycine buffer. Plates were read at 405 nm with a microplate 

reader (Thermomax; Molecular Devices), and titers for serum sa-mples were 

calculated as the log serum concentration required to achieve 50% maximum optical 

density. To detect anti-NP antibodies 96-well plates were coated with 20 µg/ml NP13-

B~A in PBS overnight. Serum samples "".'ere serially diluted on plates in block 

solution (PBS/1 % ~CS/0.6.% skim milk pGwder/0.05% Tween 20) and incubated for 

at least 20 h at room temperatur_e. Anti-NP was shown with goat anti-mouse lgG1 

. . 

conjugated to horseradish _peroxidase (HRP; SouthernBiotech) and visualized with 
. 

ABTS substrate (2'2-Azinobis [3-ethylbenzthiazoline sulfonic acid] diammonium salt; 

Sigma-Aldrich). Plates were read at 405 nm, with reference wavelength 490 nm 

(Molecular Devices) . 
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ANA assessment 

Serum was obtained from 8 to 10-wk-old mice by eye or cardiac bleed and used for 

immunoflourescence staining on fixed Hep-2 slides (Antibodies, Inc.) as previously 

described6
. Briefly, slides were incubated with 20 µI serum for 45 min followed by 20 

µI goat anti-mouse lgG-A488 (lnvitrogen) incubation for 20 min. Slides were viewed 

using . an Olympus microscope (model TH4-200; Olympus Optical) at 20X 

magnification and fluorescent intensity of the autoantibodies was measured by 

Image J software (National Institutes of Health, USA) on 20 randomly selected 2,400 

µm2 regions of clustered Hep-2 cells. ANA lg autoantibodies levels in serum were 

also measured using Mouse ANAs Total lg ELISA kit (Alpha Diagnostic) according to 

the manufacturer's instructions. Briefly, 100 µI serum and standards were incubated 

in 96-wells pre-coated with purified extractable nuclear antigens for 60 -rnin at room 

temperature. Then, 100 µI of goat anti-mouse lg coupled with HRP was added and 

incubated for 30 ~in. !his is followed by 100 µI 3,3',9,5'-tetrameth¥Ibenzidine (TMB) 

substrate incubation for 15 min in the dark and 100 µI stop soluti,on. Plates were then 
. . 

read at 405 nm using a microp·late reader (Infinite 200® Pro; Tecan). The ANA lg 

titers were calculated relative to mouse ANA standards. 

Serum cytokine detection 

IFN-y levels in serum were evaluated by cytometric bead array (Mouse Th1/Th2 
. 

cytokine CBA kit, BO) according to · the manufacturer's instructions. 50. µI serum and 

standards were added into 50 µI of cytokine capture bead suspension together with 

50 µI PE-detection reaction and incubated for 2 h at room temperature in the dark . 

.. 
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Data were acquired with a LSRII flow cytometer. Detection of serum IFN-y levels in 

mice at different stages of disease was performed using the Mouse IFN-y ELISA kit II 

(BO) according to the manufacturer's instructions. Briefly, 50 µI serum and standards 

were added into 96-wells pre-coated with anti-mouse IFN-y monoclonal antibody 

(mAb) and incubated for 2 h at room temperature. Then, 100 µI biotinylated anti­

mouse IFN-y antibody was added and incubated for 1 h. This is followed by 100 µI 

TMB substrate incubation for 30 min in the dark. Finally, 50 µI stop solution was 

added and plate was read at 450 nm using a microplate reader (Infinite 200® Pro; 

Tecan). The IFN-y titers in serum were calculated according to the standard curve 

generated. 

Immunization 

For experiments involving SWHEL mice, 1 as SWHEL · B cells were transferred into 

recipients, which were simultaneously immunized i.v. with 2 x 108 sheep red blood 

cells . (SRBCs) conjugated to (hen egg · Iysozyme) HEL or HEL2
x protein41

. For 

experiments involving NP-KLH, immunizations with NP-KLH at a molar ratio of ~16: 1 
. 

were performed. 1 OOµg of NP-KLH was precipitated in alum and injected i.p. 
. . 

. Cell _sorting,- culture and stimulation 

Single cell suspensions were prepared and resuspended in ice-cold ·sorting buffer 

(1 % FCS, 0.1 % NaN3 in PBS) for sorting using a FASC Aria II (BO). 5 x 1 as na·ive 

(CD4410 co25- CD4+) sorted T cells were activated in. Th1 . polarizing conditions (1 O 

, , 

• 
47 

-. -~-· _: - II) 



.. 

Chapter 2 Materials and Methods 

ng/ml recombinant mouse IL-12p70 (eBioscience) and 10 ng/ml anti-lL-4 (Biolegend) 

in RPMI medium for 0, 1, 2, 4, 6, 12 and 24 h at 37°C in triplicate in 24-wells plate 

(Corning) pre-coated with 5 µg/ml anti-CO3 (BO) and 2.5 µg/ml anti-CO28 (BO). For 

some experiments, na·ive cells were cultured in 10 ng/ml anti-I L-4 and 10 ng/ml anti­

TGF~ (BioXcell) in the presence or absence of 2.5 µg/ml anti-CO28, 5 ng/ml IFN-y 

(PeproTech) or 30 ng/ml rll-6 (R&O Systems) for 24 and 72 h at 37°C. Cell culture 

supernatants were then aspirated and cell pellets were stored in TRlzol (lnvitrogen) 

for real-time RT-PCR analysis. 

Actinomycin D treatment 

For actinomycin O treatment, 5 x 105 naive cells were cultured and activated in the . 

. presence of 5 µg/ml anti-CO3, 2.5 µg/ml anti-CO28 and 10 ng/ml IL-12p70 for 16 h in 

a 24-wells plate followed by treatment with 1 0µg/ml actinomycin O (transcriptional 

· ii:,hibition reagent, Sigma-Aldrich) in triplica~e for 0, 0.5, 1 and 3· h. 

cDNA preparation and real time_ RT-PCR 

RNA was extra~ted using the TRlzol extraction method, and cONA was prepared 

using M-MLV reverse-transcription with oligo(dT) (lnvitrogen). Quantitative PCR was 

performed with- a ABI Prism detection system (model 7900; Applied Biosystems) 

using Power SYBR® Green PCR Master Mix (Applied Biosystem). Forward and 

reverse primers used are: lfng 5'-ACAGCAAGGCGAAAAAGGAT-3' and 5'­

TGAGCTCATTGAATGCTTGG-3'; 112 5'-CCACAGTTGCTGACTCATCATC-3' and 5'-- . 

" 
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AAGGGCTCTGACAACACATTTG-3'; bc/6 5'-TGTCCTCACGGTGCCTTTTT-3' and 

5'-CACACCCGTCCATCATTGAA-3'; gapdh 5'-TGACGTGCCTGGAGAAA-3' and 5'­

AGTGTAGCCCAAGATGCCCTTCAG-3'. Quantification for lfng-, 112- and bc/6-

specific fold change, normalized tq gapdh, was performed using the 2-Mct method. 

OT-II and SWHEL adoptive cell transfer experiments and HEL­

Ovalbumin (OVA) immunization 

For collaborative responses of SWHEL 8 cells and OT-II T cells, 105 sorted CD45.2 

SWHEL 8 cells and 20 µg HEL-OVA323-339 peptide43 were injected i.v. into Cd2S-1
-

CD45.1 mice. 4 h later, 105 sorted naive CD4410 co25- CD4+ CD45.2 OT-II T cells 

were injected i.v. into same recipient mice, and mice were immunized i.p. with 100' 

µg of OVA (Sigma-Aldrich) in alum (Thermo Fisher Scientific) immediately after 

I 

adoptive cell transfer. 

T cell passiye transfer experimen~s 
• 

For experiment involving T cell transfer, Cb4+ T cells from spleens and lymph nodes 

of Roquin+I+, Roquinsan/san and RoquinSc!nlsan lfngr1- mice and 8220+ from spleens and 

lymph nodes of Roquin+i+ mice were sorted as described in the previous section. 5 x 

106 CD4+ T cells of genotypes indicated in the text and 7 x 106 Roquin+;+ 8220+ 

sorted cells were injected i.v. into Ragr1
- recipients. Experiments were performed 8 

weeks after transfer. 

.. 
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lmmunohistochemistry 

NP-binding cells were visualized by freezing spleen samples in OCT (Tissue-Tek; 

Sakura). Spleen sections were prepared and stained as described343
. Antibodies and 

conjugates used were B220-biotin (RA3-6B2), goat anti-mouse lgG1-HRP 

(SouthernBiotech) and streptavidin alkaline phosphatase (SouthernBiotech). 

Antibodies were visualized with substrates AEC (Vector Laboratories) and FastBlue 

(Vector Laboratories). 

lmmunofluorescence 

To visualize the responses to S. enterica and SRBC immunization, spleen samples 

were fixed for 20 min in ice-cold acetone (for S. enterica) or 4% paraformaldehyde• 

for 2 hon ice, incubated in six changes of sucrose buffer overnight (for SRBCs), and 

embedded in Tissue-Tek OCT compound. Sections were blocked with streptavidin 

· and biotin Blocking Kit (Vector Laboratories) before staining. Sections were stained 

for CD3 using anti-CD3 · (BD) followed by anti-Armenian hamster Cy5 (Jackson 

lmmunoResearch Laboratories, · Inc.). For Bcl-6, anti-mouse Bcl-6 (Santa Cruz 
. 

Biotechnology, Inc.) was followed by donkey anti-rabbit FITC (Jackson 
. 

lmmunoResearc~ Laboratories, Inc.) and then Alexa Fluor 488- conjugated goat 

anti-FITC (lnvitrogen). PD-1 was stained with purified anti-PD-1 (BioLegend) 
. 

followed by anti-rat Cy3 (712-166-153, Jackson lmmunResearch Laboratories, Inc.). 
\ 

For AID, anti-mouse AID (eBioscience) was followed by biotinylated anti-rat lgG, 

then streptavidin-HRP conjugates (Zymed) were followed by TSATM 

tetramethylrhodamine (PerkinElmer). Stained · sections were mounted in 

, , 
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Fluoromount-G (SouthernBiotech) and analyzed with a confocal laser-scanning 

microscope (DMRXA2; Leica; SRBC experiments) or a laser-scanning confocal 

microscope (LSM51 O; Carl Zeiss) a microscope (AxioVert 1 QOM; Carl Zeiss) using a 

40X objective. The latter images ,were subsequently analyzed on the LSM Image 

Browser (Carl Zeiss). 

Quantification of cells in tissue sections 

Quantification of Bcl6+ CD3+ PD-1 hi/lo cells was carried out as follows. 10 T zone 

areas were ra-ndomly selected. For each image, the number of CD3+ Bcl6+ cells and 

their PD-1 status (brighUintermediate or negative) was quantified, and the total 

number of cells in each spleen was calculated as described prevfously344
. Cell 

numbers and densities were estimated using point counting, and counts were 

adjusted for the different sizes of the spleens .seen througl1out the study by 

~ultiplying the celis/mm3 by the mass of the spleen. 

. 
Anti-lFN-y treatment 

5-week-old fem~le Roquinsanlsan mice were bled prior to treatment and then injected 

i.v. with 500 µg· anti-lFN-y mAb (XMG 1.2; BioXcell) or 500 µg rat lgG1 lsotype 
. 

control mAb (Bi·oXcell) every 3 days for 3 weeks . 
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Assessment of renal pathology 

Kidneys slides were prepared and stained with hematoxylin and eosin (H & E), and 

2°/o aqueous uranyl acetate for electron microscopy as described previously6
. 

Nephritis severity was assessed by histological analysis and scored blindly 

according to the criteria in Appendix 2.1. 

Flow cytometry 

To identify specific cell subsets, single cell suspension of splenocytes in ice-cold 

FACS buffer (2°/o FCS and 0.1 % NaN3 in PBS) were stained with the antibodies 

detailed below, all from BO unless specified, with thorough washing between stain 

layers. Flow cytometry data was acquired on flow cytometers (LSRII; BO) running ­

FACSOiva and analyzed with Flowjo version 8 (Tree Star). 

NP-binding cells were identified by staining with lgM Alexa Flu·or 580 (conjugated in 

house, lnvitrogen); NP-APC (conjugated "in house345
), CO138-PE, PNA-FITC (Vector 

Laboratories), B220-PE Cy7 and CO45.1-Pacific Blue. HEL-binding GC B cells were 

identified by first staining cells with 200 ng/ml HEL solution, followed by GL7-FITC, 
. 

CO95-PE, CD45.2-PerCP Cy5.5, anti-HEL HyHEL9-Alexa Fluor 647 (conjugated in-

house with an Al·exa Fluor 647 antibody labeling kit; . lnvitrogen), 8220-APC Cy7, and 
. 

CD45.1-Pacific Blue (Biolegend). HEL + EFPBs were identified by treating spleens 

with collagenase and ONase; spleens were cut into ~1 mm3 pieces. and incubated at 

37°C for 30 min with 1 ml of 1 mg/ml type II collagenase and 0.1 % ONase in 

RPMl/10% FCS. After washing in FACS buffer as above, cells were stained with 

~ 
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Chapter 2 Materials and Methods 

CD45.2-PerCP Cy5.5, B220-APC Cy? and CD45.1-Pacific Blue, permeabilized using 

BD Cytofix/Cytoperm kit (BO) according to the manufacturer's instructions, and 

stained for intracellular HEL binding and lgG1 with HEL protein conjugated to Alexa 

Flour 647 as above and anti-mous~ lgG1-FITC, respectively. 

The presence of GC B cells in S. enterica-infected and uninfected mice was 

identified by staining cells with GL 7-FITC, CD95-PE, CD 19-Alexa Flour 700 

(eBioscience), lgG2c-biotin, lgG1-APC, and B220-APC Cy?. NK cells were identified 

using NK1 .1-APC, CD49b-PE, CD11 b-APC and CD11 c-PerCP Cy5.5 (Biolegend). T 

cell phenotypes were investigated using combinations of the following antibodies: 

CXCR5-biotin + streptavidin-PE Cy? (eBioscience), PD-1-PE (eBioscience), IL21-

APC (R&D Systems), CD4-APC Cy?, B220-FITC, CD44-Pacific Blue _.(Biolegend), 

CD25-PerCP Cy5.5, CD45.2-PerCP Cy5.5, . CD4-PerCP, FoxP3-Alexa Flour 700 

(eBioscience), T-bet-PerCP Cy5.5 (eBioscience), Ki-67-Alexa Flour 647, Bcl-6-Alexa 

Flour 647, IFN-y-FITC, IL-4-PE Cy? (eBiosicence), IL-17-Alexa Flour 700 and mouse 

lgG1 isotype control-Alexa Flour 647. For the detection of cytokine-producing Tfh 
. . 

cells, cells were -stained with 1 h CXCR5-biotin and 30 min SA-PE Cy? prior to PMA, 

lonomycin and Golgi stop stimulation. For Annexin-V/7-aminoactinomycin D (7 AAD; 

. . 

lnvitrogen) staining, cells were incubated at 37°C for 2 h before staining for surface 

molecules and then Annexin-V-Pacific Blue (Biolegend) was added for 15 min in the 

dark at room temperature in Annexin-V binding buffer (Biolegend). Cells were 

, stained with 7 AAD immediately before data acquisition. 
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Chapter 2 Materials and Methods 

Statistical analysis 

Two-way analysis of variance was used to interrogate whether IL-21 R signaling was 

a significant contributor to variance over a time-course (Figure 3.8 and 3.9). For 

other experiments, nonparametric Mann-Whitney test (U-test) was used except 

mixed bone marrow chimeras experiments, in which paired Student's t-test was 

used; . and in vitro culture experiments, in which unpaired t test was used. All 

statistical analysis was performed with Prism software (GraphPad Software). 

Statistically significant differences are indicated as*= P s 0.05, ** = P s 0.01; *** = P 

s 0.001; and ns = not significant. Unless otherwise specified, each dot in graphs 

corresponds to one biological replicate or an individual mouse and bars represent 

median values in each group. 

,, 
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Chapter 3 Bcl-6+ T cells drive extrafollicular antibody responses 

Chapter 3 - B Cell Priming for Extrafollicular Antibody 

Responses Requires Bcl-6 Expression by T Cells 

Chapter introduction 

During thymus-dependent responses, B cells that make cognate interactions with T­

cells in the outer T zone of secondary lymphoid tissues can differentiate along either 

follicular or extrafollicular pathways. In the follicular pathway, activated B cells form 

the GC, where they undergo somatic hypermutation, selection, and eventually exit as 

high affinity long-lived plasma cells or memory B cells39
. In the extrafollicular 

pathway, B blasts migrate to the splenic bridging channels or junction zones at the 

border between the T zones and red pulp or the lymph node extramedullary cords, 

where they form foci of short-lived plasmablasts49
. These plasmablasts provide a 

wave of early antibody that, although unmutated and generally of modest affinity, can 

be critical for protection against infection51
. Bcl-6 expression in .T cells is required for 

. . 

the formation of Tfh cells, which are essential to support· GC reactions 136
· 

152
• 

153
. 

Whether Bcl-6 expression in T ~ells is required for B cell differentiation along the 

. 
extrafollicular pathway is s~ill unknown . 

Bcl-6 and Blimp ... 1 are important transcriptional regulators of terminal differentiation 

of T and B cells; they are mutually repressive, and their reciprocal abundance 

. 
, appears to specify one or other cell fate when two differentiation pathways are 

possible. In B cells, Bcl-6 is essential for the development of GC B cells 174
-
176

, 

whereas Blimp-1 is required for extrafollicular plasma cell formation346
. T cells 

require Bcl~6 expression for upregulation of CXCRS, the receptor for the chemokine 

• 
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Chapter 3 Bc/-6+ T cells drive extrafollicular antibody responses 

CXCL 13, which is produced by follicular DCs in B cell follicles and GC T cells 

themselves 159
· 

347
. Coordinated down-regulation of CCR? and up-regulation of 

CXCRS by T cells is required for the interactions at the T-8 border that precede 

follicular migration 180
· 

347
. During this initial T-8 cognate interaction, T cells provide 

signals that initiate lg isotype switching 30
· 

343
. 

There is evidence to suggest that the nature of T cell help required to promote 

extrafollicular antibody responses may differ from that required to drive GC 

development. First, extrafollicular responses occur in response to pure 

polysaccharide antigens in the absence of T cell help, whereas T-independent GCs 

are only found in exceptional circumstances348
. Second, while SAP expression in T 

cells is required for differentiation of Tfh cells and GC B cells45
· 

172
, ~xtrafollicular 

antibody responses are less dependent on this adaptor molecule6
. 

Although it is thought that Th 1 and Th2 cells, which form in a Bcl-6-independent 

manner, can drive extrafollicular switched antibody responses, there is indirect 

evidence to suggest that Bcl-6 may play a role in these responses. Early antibody 

production is diminished in LCMV-infected mice express.ing low levels of Bcl-6 in T 

cells as a conse~uence of Blimp-1 overexpression 152
. Also, in autoimmune lupus­

prone MRL'pr mice, T cells that share · some but not all phenotypic markers of Tfh 

cells and are Bcl-6-dependent have been found in extrafollicular foci, and they 

_ appear to promote autoantibody production76
· 

170
. In contrast, the early antibody 

response to protein antigen was reported to be intact in irradiated Rag1-1
- ·mice 

reconstituted with Bcl-6-deficient bone marrow 175
. However, it is difficult -to 

distinguish follicular from extrafollicular origin · of antibody because most 
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Chapter 3 Bcl-6+ T cells drive extrafollicular antibody responses 

immunization strategies do not result in development of only one or the other 

pathway of B cell differentiation. Furthermore, isotype switching is comparable in 

both pathways, and up to 25% of the plasma cells found in splenic extrafollicular foci 

after standard TD immunization protocols are of GC origin349
. 

In this study, we report the results of experiments from several different models in 

which we can distinguish antigen-specific plasmablasts and/or antibodies of either 

extrafollicular or follicular origin. We show that Bcl-6-expressing T cells are essential 

for extrafollicular production of lgG1 in responses to the model protein antigens HEL 

and NP-KLH and for the production of S. enterica-specific lgG2c. Bcl-6-expressing 

helper T cells are initially situated at the interface between the B cell follicle and the 

T zone and, unlike Tfh cells located in the GC, do not express high levels of PD-1 . 

e 
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Results 

Bcl-6-expressing PD-1 1° CD3+ T cells are seen at the T-8 border early in 

the course of an antibody response 

We began by investigating whether Bcl-6 expression is confined to GC T cells during 

T-dependent immune responses by assessing the distribution and kinetics of Bcl-6-

expressing cells during a T-dependent response to SRBCs. In unimmunized mice, 

there were virtually no Bcl-6+ T cells detected outside rare background GCs (Figure 

3.1A). Between days 2 and 3, CD3+ Bcl-6+ PD-1 10 cells were seen at the T-B border 

(Figure 3.18). By day 7, CD3+ cells expressing higher amounts of Bcl-6 and PD-1 

appeared within newly formed GCs (Figure 3.1 C). As has been reported before 180
• 

213
, most Bcl-6+ CD3+ PD-1 hi T cells were rarely seen at sites other than GC. We 

conclude that high expression of PD-1 identifies GC Tfh cells. Together, these 

"results suggest that the T cells that interact with B cells at the out~r T zone have up­

regulated Bcl-6, raising the- possibility that expression of Bcl-6 influences B cell 

commitment to ·both the fo_llicular and the _extrafollicular pathways. 

Bcl-6 expression in T ,cells boosts T-dependent extrafollicular antibody 

responses to a haptenated protein 

To evaluate the influence of T cell-expres.sed Bcl-6 on the early antibody response to 

- NP-KLH, we constructed mixed chimeras in which sublethally-irradiated Ragr1
- mice 

were reconstituted with 80% Bc/01
- CD45.2:20°/o Cd2Er1- CD45.1 fetal liver. Cd2Er1-

fetal liver cells help maintain the chimeras' health and provide a source of Bcl-6+ B 

cells and T_ cells that cannot differentiate into effector cells, including Tfh cells. · A 

• 
· 58 

-..._._,__, -- --- .. 



A 

B Bcl-6 PD-1 CD3 Merge 

C 

Figure 3.1. Bcl-6+ PD-1 1° CD3+ cells·are seen at the T-8 border after SRBC 
'immunization. 

lmmunofluorescence stains of spleen sections from C57BL/6 mice at O (A), 3 
(8) and 7 d (C) after SRBC immunization. Boxes areas indicate the location of 
the zoomed-in images on the right, in the same order (from top to bottom). 
These data are representative of two independent experiments with four mice 
per experiment ·F, _follicle; T, T zone. 

,, 
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Chapter 3 Bcl-6+ T cells drive extrafollicular antibody responses 

control group was reconstituted with 80°/c> Bc/6+1+ CD45.2:20°1c> Cd28"1
- CD45.1 fetal 

liver. 

Chimeric mice were immunized i.p. with NP-KLH in alum. 7 d after immunization, 

mice lacking functional Bcl-6-expressing T cells did not form GC (Figure 3.2A and 

3.28) or Tfh cells (Figure 3.2C and 3.2D). This concurs with previously published 

data showing that Bcl-6-expressing Tfh cells are required for the formation of GCs 136
· 

152
· 

153
. Mice lacking functional Bcl-6-expressing T cells had an ~50% reduction in 

switched Syndecan-1 + (CD 138+) plasma cells in the spleen (Figure 3.3A and 3.38). 

NP-specific lgG1 titers were reduced by >40-fold, and a more modest reduction in 

NP-specific lgM titers was also observed (Figure 3.4A). By day 7, few extrafollicular 

foci containing lgG1 + plasma cells were visible (Figure 3.48) in the spleens of 

chimeras lacking Bcl-6 expression in-T cells. J ogether, these results suggest Bcl-6-

expressing T cells are important for optimal extrafollicular antibody responses to 

protein antigens. 

Bcl-6-expressing T cells ~re required for the development of antigen­

specific extrafolUcular plasmablasts (EFPBs) 

Although the afc;>rementioned results · suggest a role for Bcl-6 in extrafollicular 

antibody responses, the origin of the antibody-producing cells cannot be precisely 

, identified in this model. For example, an early wave of memory 8 cells that develops 

in parallel to the extrafollicular antibody response independently of GC, Bcl-6, ICOS, 

and IL-21 has been now described by several groups43
· 

177
· 

192
• 

211
· 

350
. Another 

potential caveat of these experiments is that the abse·nce of Bcl-6-expression in 80°/c> 
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Figure 3.2. ·Reduced .formation of GC B cell and Tfh cell to NP-KLH in the 
absence of T cell'-expressed Bcl-6. 

. . 

Representative flow cytometric contour plots (A and C) and quantification (B 
and D) of GC B cells identified as 8220+ PNAhi splenocytes (A and B) and Tfh 

cells ident!fied as CXCR5tii PD-1 hi (g~ted on co4+ cells; C and D) from 80°/c> 
Bc/6-1- CD45.2:20% _Cd2B-1-CD45.1 (i.e., effector T cells lack Bcl-6; Tc Bc/6-1-) or 
control 80o/Q Bc/6+1+ CD45.2:20°/o Cd2a-1- CD45.1 (Tc Bc/6+1+) fetal liver chimeric , 

mice immunized 7 d earlier with NP-KLH. These data are representative of two 
independent experiments with five mice per group in each cohort. The 
experiment was performed by Dimitra Zotos_. 
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Figure 3.3 . . Reduced_ splenic switched plasma cells in mice lacking Bcl-6 
expression in T cells . 

Representative flow cytometric contour plots (A) and quantification (8) of 
switched (lgM-) CD138+ plasma cells in the 80°/o Bc/6-1- CD45.2:20% Cd2a-1-

CD45.1 (Tc Bc/6-1-) or control 80% Bc/6+/+ CD45.2:20% Cd2a-1- CD45.1 (Tc 

Bc/6+1+) fetal liver chimeric mice imm·unized 7 d earlier with NP-KLH. These 

data are r~presentative of two independent experiments with five mice per , 

group in each cohort. The experiment was performed by Dimitra Zotos. 
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Figure 3.4. -Reduced . plasma cell responses to NP-KLH in the absence of 
T cell-expressed Bcl-6. 

· A) NP-specific lgG1 and NP-specific lgM antibodies from 80%, Bc/6-1-
CD45.2:20% Cd28-1-CD45.1 (i.e., effector T cells lack Bcl-6; Tc Bc/6-1-) or 
control 80°/o Bc/6+1+ CD45 ."2:20% Cd2a-1- CD45.1 (Tc Bc/6+1+) fetal liver chimeric 
mice immunized 7 d earlier with NP-KLH. . 
B) ·Photomi~rograptis of spleen sections stained with 8220 (follicles; blue) and 

lgG1 (plasma cells; brown). These data are representative of two independent 
experiments with five mice per group in each cohort. The experiment was 
performed ·by Dimitra Zotos. 
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Chapter 3 Bc/-6+ T cells drive extrafollicular antibody responses 

of the 8 cells may influence the extrafollicular plasma cells response, although 8cl-6-

deficient 8 cells would be expected to give rise to enhanced rather than decreased 

plasma cell responses as the result of unopposed 8Iimp-1 expression. 

To control for these possibilities and accurately quantify the number of EFP8s 

produced, we took advantage of the SWHEL adoptive transfer system. CD45.1 SWHEL 

transgenic 8 cells bearing a rearranged HEL~specific VDJH element targeted into the 

lgH chain locus combined with an HEL-specific K L-chain transgene351 were 

transferred i.v. into mixed Bc/01
- CD45.2:Cd2a-1- CD45.2 or Bc/6+1+ CD45.2:Cd2a-1-

CD45.2 chimeric mice in combination with HEL protein conjugated to SR8C. Thus, 

transferred SWHEL 8 cells have an intact bc/6 gene, can undergo class switching and 

develop into both GC 8 cell and EFP8 populations in response to HEL41
· 

351
. In this 

model, GC 8 cells and EFP8s can be identifieo by flow cytometry41 
· 

351
. 

The development of HEL-binding, CD45.1 EFP8s and GC 8 cells was quantified 4.5 

d after transfer. The gating strategies are shown in Figure 3.5A; GC 8 cells derived 

from transferred SWHEL cells are CD45.1 8220+ GL-7hi Fashi and HEL-binding. In the 

absence of 8cl-6-expressing T cells, the development of antigen-specific GC 8 cells 

was reduced to -~ 0% of the numbers found in the presence of 8cl-6-expressing T 

cells (Figure 3.58), which is consistent with the previously described lack of 

functional Tfh cells in these chimeric mice136
. • 

The EFP8 response derived from donor SWHEL 8 cells can be measured by 

enumerating CD45.1 + 822010 intracellular HEL-bindinghi cells41 
· 

351 (Figure 3.6A). In 

the absence of 8cl-6-expressing T cells, the percentage of EFP8s was reduced to 

• 
64 

-----· 1b 



A 
B /6+/+ (a· -y. 

C . . . :::.;,,/ .. if½ ... · 
• •-•"""' M L•.• •• 3.1 Ofc 

C) 
C ·-"'O 
C 

0 
-9 0 
_J 

t-,.. 
I 

_J 0 

w 
I 0 

CJ Q) 
u 
~ '1 
:J 

5.0o/c 
Cl) 

0 

0 0 

CD95 CD45.1 

B 
Cl) -.-. 
ID cn 1000 
U_fil I 

** (0 >. u 
g ~ 100 
C) a. I I I 0 
C Cl) 

"'O LO co 10 
·- T""-..c 

I s..... 
_J Q) 

I w a. □ 
I...._, 1 

Tc Bc/6 +/+ +/+ -/-
HEL - + + 

Figure 3.5. Development of HEL-specific GC B cells is greatly impaired in 
the absence of T cell-expressed Bcl-6. 

Representative flow cytometric dot plots (A) and quantification (B) of SWHEL 
GC B cells identified as B220+ GL-7+ Fas+ HEL-binding CD45.1 cells in 
CD45.2 chimeric mice sufficient (Tc Bcf-6+1+) or deficient (Tc Bcf-6-1-) in Bcl-6-
expressing T cells 4.5 d after adoptive transfer of SWHEL B cells and HEL­
SRBC immunization. Control (H~L-) mice -received SWHEL B cells and were 

immunized with SRBCs that had not been conjugated to HEL. These data are 
. representative of two independent experiments with five mice per group 
immunized with HEL-SRBC and two mice per group in the HEL-only control 
group for each independent experiment. The experiment was done with 
Robert Rigby. 
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Figure 3.6. Development of HEL-specific EFPBs is greatly impaired in the 
absence of T ... cell-expressed Bcl-6 . . . 

Representative flow cytometric dot plots (A) and quantification (B) of EFPBs 
identified as CD45.1 + B22010 intracellular H"EL-binding cells in CD45.2 chimeric 
mice sufficient (Tc Bcf-6+1+) or deficient (Tc Bc/-6-1-) in Bcl-6-expressing T cells 
4.5 d after adoptive transfer of SWHEL B cells and HEL-SRBC immunization. 
Control (H.EL-) mice received SWHEL B cells. and were immunized with SRBCs 
that had not been conjugated to · HEL: These data are representative of two 
independent experiments with five mice per -group immunized with HEL-SRBC 
and two mice per group in the HEL-only control group for each independent 
experiment. The experiment was done with Robert Rigby. 
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Chapter 3 Bc/-6+ T cells drive extrafollicular antibody responses 

~5% of that produced in the presence of Bcl-6-expressing T cells (Figure 3.68). On 

day 5 of the SWHEL B cell response to HEL-SRBC, anti-HEL antibodies are produced 

exclusively by EFPBs41
. Quantification of serum anti-HEL lgM and lgG1 (the 

predominant isotype found in SWH_EL B-cell responses to HEL-SRBC351
) antibodies 

revealed negligible production of anti-HEL lgM in the mice lacking Bcl-6-expressing 

T cells (0.18% of the titer found in mice with Bcl-6-expressing T cells; Figure 3.7) 

with no detectable anti-HEL lgG1 antibodies. These results demonstrate a 

requirement of Bcl-6-expressing T cells for the production of switched and 

unswitched EFPBs in response to a TD antigen. 

IL-21 acts early to promote follicular and extrafollicular antibody 

responses 

IL-21 is produced by Tfh cells and acts directly on B cells to maxImIze Bcl-6 

expression and pr·omote GC B cell growth and survival192
· 

211 
. . IL-21 also promotes 

Blimp-1 expression and plasma cell formation216
. We compared side by side the 

. . 

effects of IL-21 in the course of a SWHEL B cell-derived GC and EFPB response. 

SWHEL B cells sufficient or deficient for the IL-21 R (1121 t.;) were transferred to 

CD45.1 congenic;; C57BL/6 mice, which were immunized with HEL 2x-SRBC. HEL 2x is 

a mutant HEL protein that binds the SWHEL BCR with lower affinity. In the absence of 

_ IL-21'R signaling, the production of GC B cells was reduced to ~12% of the levels 

seen with IL-2·1 R-sufficient donor cells at day 4.5 (Figure 3.8 and 3.9A), which is 

consistent with the described dependency of GC B cells on IL-21. The development ­

of EFPBs was also impaired in the absence of IL-2'1 R signaling, with only around 

'• 
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Chapter 3 Bc/-6+ T cells drive extrafollicular antibody responses 

10% of the cell numbers seen with IL-21 R-sufficient donor cells at day 4.5 (Figure 

3.1 OA). In the absence of IL-21-mediated signaling, the extrafollicular response 

peaked 12 hours later, on day 5. At this time point, there was a 4-fold reduction in 

the number of EFPBs in the absen~e of IL-21 R (Figure 3.8 and 3.98). The GC and 

EFPB responses to SRBCs elicited by the host CD45.1 1121,+1
+ B cells were 

comparable in both groups of adoptively transferred mice352 (Figure 3.1 OB). 

The effects of IL-21 deficiency were apparent after 4 d in the course of both follicular 

and extrafollicular antibody responses (Figure 3.9A and 3.98), suggesting that IL-21 

produced by T cells acts at the stage of T-8 interaction to enhance and accelerate B 

cell activation prior to their differentiation into either GC cells or extrafollicular plasma 

cells. IL-21 has recently been shown to promote GC B cell proliferation _and survival, 

at least in part through maximizing Bcl-6 expression in B cells 192
· 

211
. Our findings 

extend this effect of IL-21 to extrafollicular antibody responses and are consistent 

both with reports that IL-21 _ also promotes Blimp-1 expression and plasma cells 

accumulate when overexpressed216 and with the paucity of extrafollicular plasma 

cells 7 d after NP.-KLH immunization in IL-21 Rand IL-21 knockout mice211
. Although 

Bcl-6 and Blimp-1 are mutual antagonists by inhibiting each other's expression427
, IL-

21 induced both Blimp-1 and Bcl-6216
. This maybe explained by its ability to enhance 

B cell activation and differentiation at · different stages of B cell maturation; IL-21 

exerts effects on lg production, isotype switching and plasma cell production in a 

· context-regulated manner. 
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Figure 3.7. Reduced splenic plasma cells in mice lacking Bcl-6 
expression in T cells. 

HEL-specific antibody titers in the same HEL-SRBC immunized chimeric mice 
as in Figure 3.5 and 3.6. These data are representative of two independent 
experiments with five mice per group immunized with HEL-SRBC and two 
mice per group in the HEL-only control group for each independent 
experiment. 
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Figure 3.8. IL-21 influences GC and EFPB responses . 

1121 r +;+ 

1121 r-1-

Representative flow cytometric dot plots showing HEL-binding versus 8220 

staining of 1121 r-1+ or 1121 r1- CD45.2 SWHEL 8 cells at the indicated days after 

transfer into congenic . (CD45.1) C5i8L/6 recipients immunized with HEL 2x_ 
SR8C at the time of transfer. The gates in each plot are drawn around GC 8 

cells (8220t1i; right) and EFP8s (822010 ; left). Numbers' in plots indicate the 

percentage · of HEL-binding CD45.2 SWHEL cells out of total splenocytes. 

These data are representative of two independent experiments with three mice 

·per group per time point.·The experiment was performed by Tyani Chan. 
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Figure 3.9. IL-21 influences GC and EFPB responses from the early 
stages of B cell activation. 

Number o~ SWHEL GC B cells (A) and EFPBs (B) in the same mice using the 

gates shown in Figure 3.8. These data are .representative of two independent 

experiments with 3 mice per group· per time point. The P-values were 

calculated using a two-way analysis of variance that interrogates the variance 

over the entire time 'Course between the two groups of mice receiving either 

1121 r-1+ or 1121 r1- SWHEL B cells. The experiment was performed by Tyani Chan. 
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Figure 3.1-0. Host-derived GC formation in mice receiving l/21r1+ or //21r1-

SWHEL B cells after SRBC immunization. 

" 
A) Total numbers of donor-origin .1121 r+-1+ or 1121 r1- SWHEL GC B cells and 
EFPBs at day 5 after immunization. 
B) Representative flow cytom~tric plots showing endogenous GC B cells 
identified as 8220+ CD3810 in CD45.1 recipient mice. These data are 
representative of two independent experiments with two to three mice per 

group pe~ time point. The experiment was performed by Tyani Chan. 
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Chapter 3 Bcl-6+ T cells drive extrafollicular antibody responses 

Bcl-6-expressing T cells are required for the development of class­

switched extrafollicular plasma cells in S. enterica infection 

We next sought to examine whether the requirement for Bcl-6 expression in T cells 

also occurs in the context of an extrafollicular antibody response to S. enterica 

infection, which has been shown to occur independently of IL-21 192
. The immune 

response to infection with S. enterica induces a potent extrafollicular plasma cell 

response, resulting in the· production of T-independent lgM antibodies and T­

dependent class switching of B cells to produce lgG2a (lgG2c in C57BL/6 mice) and 

lgG2b antibodies 213
• 

353
. T dependency has been previously demonstrated by the 

absence of S. enerica-specific switched antibody responses in mice lacking CD28213
· 

353
. The GC response is considerably delayed, developing between days 20 and 35 

after infection344
. It has also been established that IFN-y-producing T-h1 cells are 

responsible for bacterial clearance, starting on week 2 after immunization354
. Thus, 

S. enterica infection is an ideal model in which to investigate whether Bcl-6-

expressing T cells rather than conventional Th 1 cells are r~quired to drive the 

extrafollicular plasma cell ~esponses with9ut the potential interference of GC B cell­

derived antibodies or GC Tfh cells. 

Bc/6+1+ CD45.2:Cd2a-1- CD45.1 or Bc/6"1- CD45.2:Cd2a-1- CD45.1 mixed fetal liver 

chimeric mice w.ere infected i.p. with S. enterica. As shown previously344
, this 

immunization did not increase GC cells above oackground 7 d after infection (Figure 

, 3.11A and 3.11 B). At this same time point, anti-S. enterica lgM and lgG2c titers 

Were measured by ELISA. Bcl-6 deficiency in T cells did not reduce the production of 

specific lgM (Figure 3.12A) but significantly reduced the titer of anti-S. enterica 

lgG2c antibodies (Figure 3.128). This mirrored the requirement of CD28 for specific 
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Chapter 3 Bcl-6+ T cells drive extrafollicular antibody responses 

lgG2c but not lgM production in a cohort of C578L/6 Cd28"1
- mice (Figure 3.12A and 

3.128). Together, these results suggest that switched antibody responses to S. 

enterica require help from T cells in a Bcl-6-dependent manner. 

Our data so far suggest that Bcl-6-expressing T cells rather than conventional Th 1 

cells are required for extrafollicular antibody responses. To confirm the presence of 

functional S. enterica-specific Th 1 cells in mice lacking Bcl-6 expression in T cells, 

we investigated bacterial clearance, which has been shown to be critically dependent 

on the presence of functional Th1 cells354
. Although bacterial counts were increased 

by nearly 2 logs in nonchimeric Cd28"1
- mice that lack Th1 cells (Figure 3.13A), lack 

of Bcl-6 expression in T cells did not alter bacterial load in the livers of chimeric mice 

12 d after infection (Figure 3.13A). 

Next, we investigated when and where Bcl-6+ T cells appear during the response to 

S: enterica. A population of CD3+ Bcl-6+ PD-1 101
- cells was detected at outer T zone 

on day 4 after infection (Figure 3.15A and 3.16), with total numbers increasing ~10-

fold above background. This is consistent with our previous finding of a 20-fold 

increase in numl:>ers of lgG2c switched plas-ma cells as early as day 4 after S . 

enterica infection34
•
4

. At this time point (day 4), CD3+ Bcl-6+ PD-1 hi cells were absent 

(Figure 3.15A and 3.16), but they became visible 35 d after immunization, when S. 

enterica-induced GCs appear, and they were located within GC (Figure 3.158 and 

3.16).· Together, these results highlight a necessary role for T cell-expressed Bcl-6 

soon after infection to promote switching. Given that the lgG2c response occurs 

normally in the absence of IL-21 but requires IFN-y, it is likely that early Th1 cells 
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Figure 3.11. GC responses to S. enterica are impaired in the absence of T 
cell-expressed Bcl-6 . 

. . 

A) Represe·ntative flow cytometric plots showing Fas versus GL-7 stains from · 

spleens of. 80% Bc/6-1- CD45.2:20% Cd2B-1 -CD45.1 (Tc Bc/6-1-) chimeras or 

control 80°/o Bc/6+1+ CD45.2:20% Cd2a-1- CD45.1 (Tc Bc/6+1+) fetal liver chimeric 

mice injected 7 d previously with S. enterica; oval gates identify GC B cells. 

8) Bar graphs show the number of splenic GC B cells in the same mice (left) 

. and a group of Cd2a-1- and control Cd2a+1+ mice infected with S. enterica at the 

same time (right). These data are representative of three independent 

experiments with three mice per PBS-only control groups and five to seven 

mice per S. enterica-infected groups. 
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Figure 3.12. lgG2c extra.follicular antibody responses to S. enterica are 
impaired in the absen~e of T cell-expressed Bcl-6. 

S. enterica-specific lgM (A) and lgG2c (B) antibody titers 7 d after S. enterica 
infection in. 80% Bc/6-1- CD45.2:20% Cd2B-1- CD45.1 (Tc Bc/6-1-) chimeras or 
control 80% Bc/6+1+ CD45.2:20o/~ Cd2a-1- CD45.1 (Tc Bc/6+1+) fetal liver chimeric 
mice, or nonchimeric Cd2a-1- and Cd2B+I+ mice. These data are representative 
of three independent experiments with three mice per PBS-only control groups 

.and five to seven mice per S. enterica-infected groups. The experiment was 
performed by Roybel Ramiscal. 
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Figure 3.13. Lack of Bcl-6 expression in T cells did not alter bacterial load. 

S. enterica CFUs in livers 12 d after infection of 80°/o Bc/6-1- CD45.2:20% Cd2a-1-

CD45.1 (Tc Bc/6-1-) chimeras or control 80% Bc/6+1+ CD45.2:20% Cd2B-1- CD45.1 
(Tc Bc/6+1+) fetal liver chimeric mice (left) or nonchimeric Cd2a-1- and Cd2B+I+ 

mice (right). These data are representative of three independent experiments 
with three mice per PBS-only control groups and five to seven mice p~r S. 
enterica-infected groups. The experim~nt was performed by Roybel Ramiscal. 
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Figure 3.14. Increased proportion of effector cells amongst BcI-s-1- T cells 
from mixed chimeric mice. · · 

A) Repres~ntative flow cytometric plots showing CD4 versus CD44 staining of 
spleens from unimmunized 80% Bc/6-1- CD45.2:20% Cd2a-1- CD45.1 (Tc Bc/6-1-) 
or control 80°/o Bc/6+1+ CD45.2:20% Cd2a-1- CD45.1 (Tc Bc/6+1+) fetal liver 
chimeric mice. 
·s and C) Proportion 'of CD4410 (left) and CD44hi (right) cells gated on CD45.1 

(8) and CD45.2 (C). These data are representative of three independent 
experiments with three mice per PBS-only control groups and five to seven 
mice per S. enterica-infected groups. 
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Figure 3.15. Bcl-6+ T cells inducec;t by S. enterica infection are PD-1 10 and 

locate to the T-B border. 

lmmunofluorescence stains of spleen sections from C57BU6 immunized 4 (A) 

or 35 d (8) previously with S. enterica. ~oxes areas indicate the location of the 

zoomed-in images on the right, in the same order (from top to bottom). These 

pata are representative of two independe.nt experiments with four mice per 

group in each cohort. The experiment was performed by Jennifer Marshall. 
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Figure 3.16. Bcl-6+ T cells induced by S. enterica infection are PD-1 10 • 

Quantification of PD-1 10 Bcl-6+ co3+ (left) and PD-1 hi Bcl-6+ co3+ (right) cells 

in the T-B border and GCs at the indicated times after immunizations. These 
data are repre_sentative of two independent experiments with four mice per 
group in each cohort. The experiment was performed by Jennifer Marshall. 
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Chapter 3 Bcl-6+ T cells drive extrafollicular antibody responses 

producing IFN-y up-regulate Bcl-6 that facilitates migration to the T-8 border and 

thus cognate interaction with antigen-primed B cells. 

The expression of PD-1 and CXCR_5 was evaluated on effector (CD4+ co44hi) cells. 

On day 7, at which time S. enterica fails to induce GCs regardless of Bcl-6 

expression, PD-1 hi CXCR5hi GC Tfh cells (Figure 3.17, red gate; and Figure 3.1 SC) 

that were seen at background levels in PBS-immunized chimeras were low or absent 

after S. enterica immunization in all chimeras. Immunized chimeras lacking Bcl-6 

expression in T cells selectively lacked a PD-1 1° CXCR5+ population (Figure 3.17, 

blue gate; and Figure 3.188), which is likely to correlate with those cells shown in 

Figure 3.1 B that localize to T-8 border and prime B cells. Non-Tfh effectors 

identified as CD4+ co44hi CXCRs- Po-1- (Figure 3.17, green gate; _.and Figure 

3.18A) were equally represented in both s~ts of chimeras, irrespective of T cell 

expression of Bcl-6. Together, these data suggest that CD4+ co44hi CXCR5+ Bcl-6+ 

PD-1 10 cells may be important. for the initiation of an extrafollicular antibody response. 

Bcl-6 is requi·red for a T and 8 cell antigen-specific extrafollicular 

antibody response 

A potential confo_unding factor in the aforementioned experiments is the increased 

proportion of activated Bclo1
- co44hi CD4+ cells' in mixed chimeras reconstituted with 

, Bclo1
~ fetal liver (Figure 3.14A-C). To overcome this issue, we performed adoptive 

transfers of 105 na"ive CD45.2 OT-II cells that express a transgenic TCR specific for 

OVA peptide 323-339 and were either deficient or sufficient in Bcl-6 into CD45~ 1 -

Cd2s-1
- mice. Recipient mice also received 105 SWHE,L B cells and were immunized 
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Figure 3.17. PD-1 1° CXCRS+ cells are reduced in the absence of T cell­
expressed Bcl-6 7 d after S. enterica infection. 

Representative flow cytometic plots st:lowing PD-1 versus CXCR5 expression 
on effector/memory co4+ CD44hi cells from 80% Bc/6-1- CD45.2:20% Cd2a-1-

CD45.1 (Tc Bc/6-1-) or control 80% Bc/6+1+ CD45.2:20°/o_ Cd2B-1- CD45.1 (Tc 
Bc/6+1+) fetal liver chimeric mice injected 7 d previously with S. enterica (green 
gate, non-Tfh effectors; blue gate, PD-1 10 Tfh cells; and red gate, PD-1 hi Tfh 

cells). These data are representative of two independent experiments with four 
mice per grol)p in each cohort. 
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Figure 3.18. PD-1 1° CXCR5+ cells . are reduced in the absence of T cell­
expressed Bcl-6. 

Frequencies of non-Tfh effectors (A), PD-1 10 Tfh cells (B) and PD-1 hi Tfh cells 
(C) 7 d after S. enterica infection. Gating strategy is described in Figure 3.17. 
These data are representative of three independent experiments with three 
mice per PBS-only · control groups . and five to seven mice per S. enterica­
infected groups. 
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Chapter 3 Bcl-6+ T cells drive extrafollicular antibody responses 

with HEL-OVA conjugates. We first compared the phenotype of Bcl-6-sufficient 

effector (CD44hi) OT-II cells at the 8 cell priming stage (pre-GC Tfh, day 2) and the 

stage in which GC Tfh cells are readily visible (day 4; Figure 3.19A and 3.198). 

Concordant with the immunohistqchemistry data from SRBC-immunized mice 

(Figure 3.18), OT-II T cells had up-regulated PD-1 on day 2, but the levels were ~3-

fold lower than those of day 4 OT-I I cells from immunized recipient mice analyzed on 

the same day (Figure 3.20A and · 3.208). CXCR5 expression did not increase 

significantly from day 2 to 4 (Figure 3.20A and 3.208). 

On day 5.5 after immunization, spleens were harvested, and distinct HEL-specific 

GC 8 cells and extrafollicular plasma cells were identified by flow cytometry on the 

basis of size and differential expression of 8220, CXCR5, and HEL-binging (Figure 

3.21A). Recipients of Bclo1
- OT-II cells showe~ a parallel and comparable reduction 

in both GCs and EFPBs (Figure 3.218 and 3.21C). Staining with PD-1 and CXCR5 
. 

demonstrated the absence of _PD-1 hi CXCR5hi Tfh cells among OT-I I Bclo1
- T cells on 

day 5.5 (Figure 3.22A and 3.228). These results confirm that T cell-expressed Bcl-6 

plays a role in 8 cells differentiating along the extrafollicular pathway. GL-7 has been 

recently described as a marker of GC Tfh cells355
. The appearance of GL-7hi CD4+ 

cells among OT-II Gells lacking Bcl-6 expression (these cells expressed low amounts 

of PD-1 and CXCR5; Figure 3.23) suggests GL-7hi cells are a heterogeneous 

population comprised of activated CD4 + cells other than GC Tfh cells . 
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. Figure 3.19. OVA-specific T cells e_xpressing Bcl-6 are PD-1 10 at the B cell 
priming stage. 

Naive OT-H CD45.2 cells were transferred i.v. into Cd2a-1- CD45.1 recipient 
mice, which were then immunized with OVA in alum i.p. Spleens were 
harvested 2 and 4 days after adoptive transfer. 
A) Gating strategy to identify na"ive versus activated donor OT-I I cells on day 2 
or 4 after transfer. 
B) Representative flow cytometric plots showing CXCR5 versus PD-1 
expression · of na"ive (CD4410) and activated (CD44hi) <;)T-II Bc/6+1+ cells on 
either day 2 or 4 after adoptive cell. transfer a·nd immunization, analyzed on the 
same day. These data are representative of two independent experiments with 
three to six mice per group. 
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Figure 3.20. OVA-specific T cells expressing Bcl-6 are PD-1 10 at day 2 
after adoptiye transfer and immunization . . 

· Histograms (A) and bar graphs (B) showing PD-1 and CXCRS expression of 
na·ive (CD4410) and activated (CD44hi) OT-II Bc/6+1+ cells on either day 2 or 4 
after adoptive cell transfer and fmmunization, analyzed on the same day. 
These data are representative of two independent experiments with three to 
six mice per group. · · 
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Figure 3.2~. Developmenf of HEL-specific GC and EFPBs is impaired in 
the absence of OVA-specific T cells expressing Bcl-6. 

Naive OT-II Bc/6+1+ or OT-II Bc/6-1- with or without SWHEL B cells were 
transferred i.v. 4 h apart into Cd2a-1- CD45.1 recipient mice, which were then 
immunized with HEL-OVA in alum i.p. Spleens were harvested 5.5 days after 
adoptive transfer. 
A) Representative flow cytometric plots showing the gating strategy to identify 
donor-origin SWHEL GC B cells (CD45.2 B22Qhi HEL-bindinghi CXCR5hi small 
forward s_catter [FSC]) and · EFPBs (CD45.2 B22010 HEL~binding1° CXCR510 

large FSC) in -the spleen of Cd2a-1- CD45.1 recipient mice. 
B-D) Flow cytometric profiles with frequencies + standard. deviation. (B) and· 
quantification of SWHEL EFPBs (C) and GC B cells (D) in the same recipient 
mice. These data are representative of two• independent experiments . with 
three to six mice p~r group. This experiment was performed by Louis Tsai. 
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Figure 3.22. Formation of Tfh cell is impaired in the absence of OVA­
specific T cells expressing Bcl-6. 

Representative flow cytometric plot showing gatirig strategy (A) and 
quantification (8) of donor-origin Tfh cells identified as CXCRShi PD-1 hi CD45.2 
(gated on CD4+ cells) after transfer of OT-II Bc/6+1+ or OT-II Bc/6-1- T cells. 
These data ·are representative of two independent experiments with three to 
six mice per group. This experiment was performed by Louis Tsai. . . 
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Figure 3.23. · PD-1 hi but not GL~7hi cells fail to form in the absence of 
Bcl-6. 

Representative flow _cytometric plots showing CXCR5 versus PD-1 (A), GL-7 
versus PD-1. (B), and GL-7 versus ·cxCR5 (C) staining of donor OT-II cells 
sufficient or deficient in Bcl-6, 5.5 days after transfer into Cd2a-1- CD45.1 mice 
and OVA immunization. Cells have been gated on co4+ CD45.2. Numbers 
represent the percentages in the gates. These data are .representative of two 
independent experiments with fourto six mice per group. This experiment was 
performed by Louis Tsai. 
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Chapter Discussion 

We observed significantly fewer switched EFPBs in the absence of T cell-expressed 

Bcl-6 across all experimental systems used in this study. A previous report described 

normal antibody titers in the first 2 wk after immunization of chimeric mice -lacking 

Bcl-6 in T and B cells 177
. It is possible that the requirement for Bcl-6+ T cells may be 

overcome by signals from other cells; B cells differentiating along the extrafollicular 

route are also known to be boosted by IL-6 -and/or APRIL (a proliferating-inducing 

ligand)-producing cells that colocalize with EFPBs356
. It is also conceivable that the 

plasma cells and antibodies detected on day 14 in mice lacking Bcl-6+ T cells have 

arisen from an alternative route of differentiation. Indeed, several groups have 

reported a third B cell differentiation route into early memory B cells that is Ge-, 

1cos-, Bcl-6-, and IL-21- independent43
· 

177
· 

192
· 

211
· 

350
. 

Our data establish that Bcl-6 expression enables T cel_ls to provide effective help to B 

cells for both follicular and extrafollicular antibody responses to protein antigens. PD-

1 expression distinguishes .outer T zone PD-1 101
int Bcl-6+ pre-GC Tfh cells from the 

PD-1 hi Bcl-6+ Tfh cells that appear within GC (GC Tfh cells). Bcl-6 has been shown .. 

to be critical for up-regulation of CXCRS and · down-regu·Iation of CCR7136
· 

152
· 

153
, 

which are required for T and B cell localization to the T-8 border180
· 

347
. Thus, 

expression of Bcl-6 appears important to facilitate the initial T and B cell encounter at 

this location that results in the provision of T cell help required to initiate T-dependent 

-B cell differentiation and lg isotype switching. Indeed and contrary to common belief, 

there is evidence that production of >99% of switch transcripts occurs at this time 

and therefore precedes GC formation30
· 

343
. In agreement with this, we have shown 

here that in the absence of Bcl-6 expression by CD4+ T cells, the switched antibody 
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Chapter 3 Bcl-6+ T cells drive extrafollicular antibody responses 

responses to all antigens are completely abrogated, including the extrafollicular 

lgG2c response to S. enterica, against which only antigen-specific lgM, of probable 

T-independent origin, is maintained. We also have observed that PD1-1 10 cells were 

not induced by S. enterica infection, in wild-type mice. It is possible that there are 

inhibitors in S. enterica that selectively limit the development of PD-1 10 cells or Tfh 

cell precursors. 

Our finding that T cell-expressed Bcl-6 acts at the time of T-8 interaction does not 

exclude the possibility that Bcl-6-expression in T cells may also be required at the 

stage of plasmablast growth in extrafollicular foci. CXCR51° CXCR4hi CD4+ T cells 

have been found in splenic extrafollicular foci of autoimmune MRL/Fas'pr mice76
, and 

these are also Bcl-6 dependent170
. This works suggests that Tfh are _even more 

heterogeneous than we thought. Bcl-6+ T ~ells in the outer T zones appear 

competent to help B cells differentiate along either follicular or extrafollicular 

pathway. This highlights the need for refining the nomenclature of 8 follicular helper 

T cells. As has been previously proposed79
, pre-GC Tfh cells can be used to refer to 

T cells that prime 8 cells at the T-8 border, which are shown here to be PD-1 101int Bcl-

6+, whereas GC-Tfh can be used to refer to those CD4+ T cells located within GCs, 

which are generally, albeit not universally, PD-1 hi_ 
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Chapter4 I FN-y excess leas to pathogenic Tfh 

Chapter 4 Interferon-gamma Excess Leads to 

Pathogenic Accumulation of Follicular Helper T cells and 

Germinal Centers 

Chapter Introduction 

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease 

caused by autoantibodies targeting nuclear components that affect multiple 

organs357
. Clinical manifestations range from skin rashes and arthritis to life­

threatening kidney or cardiovascular involvement. The relative paucity of effective 

drugs for lupus indicates that we need a better understanding of its pathogenesis. 

Only one new drug has been approved for lupus by the FDA in the past 50 years 

(a_nti-BAFF mAb, Belimumab), and this treatment has a relatively modest effect on 

disease activity in a_ small subset of patients244
. Part of the problem is heterogeneity 

· of ·causes, with several different pathways contributing to disease in different 

patients: dysregulation in Th1, Th17, Tfh and Treg cells, or excessive production of 

pro-inflammatory cytokines and growth factors such as type I interferon, TNF, or . . 

BAFF, can promote activation of self-DNA-reactive B cells triggering lupus244
· 

357
-
359

_ . 

Recent evidence of crosstalk between . some of these pathways suggests lupus 

pathogenesis may be less heterogeneous than previously thought: A link between 

dysregulated Th 17 activity and Tfh cells has recently been described229 as has been . \ 

a feed back lo~p between excessive IFN-y and BAFF production360
. To date., a 

pathogenic pathway that links excessive IFN-y production and Tfh cell dysregulation 

has not been described. 

, , 
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Chapter4 I FN-y excess leas to pathogenic Tfh 

Follicular helper T cells have recently emerged as a specialized helper T cell subset 

specialized in providing help to B cells for both GC and extrafollicular antibody 

responses3
· 

4
· 

79
· 

178
· 

361
. Aberrant formation and/or accumulation of Tfh cells which 

mediate positive selection of B cells t,hat have acquired somatic mutations in the lg V 

region genes has recently emerged as a key driver of autoantibody-mediated 

diseases5
. In mice, dysregulated Tfh cell formation is found in lupus- and type 1 

diabetes-prone Roquinsanlsan mice, lupus-prone BXSB.Yaa mice, autoimmune 

hepatitis-prone Pdcdr1
- mice and in IL-27-dependent pristane-induced lupus 193

· 
228

· 

230
· 

258
. Dysregulated IL-17-producing GC Tfh cells have also been proposed to 

explain lupus in BXD2 mice229 and autoimmune arthritis of K/BxN mice362
. 

Furthermore, Tfh cells found in extrafollicular foci have been shown to promote 

autoantibody formation in MRL'Pr mice76
· 

170
. In humans, associations _have been 

described between increased circulating Tfh-like cells and SLE232
, and between an 

increased proportion of IL-17-producing circulating Tfh-like cells and juvenile 

dermatomyositis 158
. • 

Homozygosity for .the "san" allele of Roquin that increases the binding affinity for 

mRNA has recently emerged as a powerful driver of Tfh cell accumulation6
· 

227
· 

248
. 

Roquinsanisan mice develop T cell-autonomou·s accumulation of Tfh cells and lupus. 

By contrast, mice expressing a null allele of Roquin have reduced GCs and do not 

develop autoimmunity254
. The observation that abrogating Tfh cell formation 

prevented lupus in Roquinsanlsan mice together with induction of spontaneous GCs 

upon Tfh cell transfer demonstrated a pathogenic role for Tfh cells in lupus6
. Roquin 

was shown to repress /cos mRNA posttranscriptionally249
· 

253 through its ability to 

directly bind RNA248
· 

253
. Although Roquin-mediated- overexpression of ICOS249· 
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Chapter4 I FN-y excess leas to pathogenic Tfh 

promotes Tfh cell formation and resistance to Treg cell suppression363
, as we show 

here, it cannot alone explain Tfh cell accumulation and lupus development. 

Th1 cells and their dominant eff~ctor cytokine, IFN-y, have long since been 

associated with lupus development329
. In mice, genetic disruption of lfngr prevents 

the appearance of autoantibodies and kidney damage in MRL'Pr and NZB/W mice319
· 

321 and blockade of IFN-y signaling with antibodies against IFN-y or IFN-yR prevents 

renal disease in NZB/W mice323
. Furthermore, treatment with IFN-yR-Fc reverses 

disease in MRL'pr mice325
. In humans, associations between polymorphisms in IFNG 

gene and lupus have been described, including a risk allele leading to elevated IFN-y 

expression364
. In addition, increased IFN-y in culture supernatants from PBMC of 

SLE patients strongly correlated with SLE Disease Activity Index scores365
·. 

The results from this chapter show that failure to repress lfng posttranscriptionally by 

Roquin acts in a cell~intrinsic manner to produce excess IFN-y. In _turn, this excessive 

. production of IFN-y initiates Tfh-driven lupus in Roquinsanlsan mice; ablation of IFN-yR 

signaling in Roquinsanisan mice reduced autoantibody production and renal disease .. 

significantly. 
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Results 

Accumulation of IFN-y-producing cells in lupus-prone Roquinsanlsan mice 

We have previously reported T cell autonomous accumulation of effector/memory 

CD4+ cells, including Tfh cells, in lymph nodes and spleen of Roquinsanlsan mice6
• 

227
. 

Measurement of cytokines in culture supernatants had also revealed increased IFN-y 

production by Roquinsanlsan T cells227
. To evaluate the relative abundance of cytokine­

producing CD4+ T cells in Roquinsanlsan mice, we enumerated effector/memory 

(CD44hi) cells producing IFN-y, IL-4 and IL-17. IFN-y-producing cells were the most 

-abundant T cell effectors (13% of total co44hi effector/memory cells), followed by IL-

4+ cells (1 %,) and IL-17+ cells (0.9%,; Figure 4.1A and 4.1 B). Total numbers of IFN-y-
. -

producing effector cells were ?-fold higher than those of wild-type littermates (Figure 

4.~)- There was also a mild increase in the number of IL-17-producing cells in 

Ro_quinsanlsan mice (Figure 4.2). IFN-y was detected (50-350 pg/ml) in the serum of 

. Roquinsanlsan mice from 7 weeks of age in Roquinsanlsan mice coinciding with disease 

onset (Figure 4.3~ and 4.38); IFN-y remained below the level of detection in wild-
, 

type littermates (Fi,gure 4.3A). 

Next, we evaluated whether the IFN-y-producing cells also included Tfh cells and 

found 2- and 3-fold increases in the number of pre-Tfh and Tfh cells producing IFN-y 

i•n Roquinsanlsan m·ice compared to wild-type counterparts (Figure 4.4A and 4.48) . 

IFN-y-producing -cells amongst non-Tfh co44hi effector/memory ce·11s· were 9-fold 

higher in Roquinsanlsan compared with Roquin+;+ mice (Figure 4.4A and 4.48). There 
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Figure 4.1. Enhanced production of IFN-f-producing cells in Roquinsanlsan 
mice. 

Representative flow cytometric plots showi.ng intracellular stains of I FN-y 
versus IL-17, and IFN-y versus IL-4 gated on CD44hi FoxP3- CD4+ cells (A) 
and quantification of total numbers and percentages of IFN-y, IL-4 and IL-17-
producing co4+ cells (B) from 8-wk-old Roquin+I+ and Roquinsanlsan mice. 
These dat_a are representative of two independent experiments with four mice 
per group. 
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Figure 4.2. Increased IFN-y-producing T cells in Roquinsanlsan mice. 
1 . 

Quantification· of total numbers (top) and percentages (bottom) of IFN-y, IL-4 
and IL-17-producing CD44hi CD4+ cells from 8-wk-old Roquinsanlsan and Roquin 
+I+ mice. These data . are representative of two independent experiments with 
four mice p~r group. 
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Figure 4.3; Increased IF~-y concentration in serum of Roquinsanlsan mice. 

A) IFN-y concentration in serum of 8 to 10-wk-old Roquinsanlsan mice and 
Roquin+I+ littermates analyzed by Cytometric Bead Array. 
B) IFN-y · titers in serum of Roquinsanlsan mice of indicated ages measured by 
ELISA. These data are representative of two independent experiments with 
more than eight mice per group . 
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Figure 4.4. Enhanced production of IFN-y-producing Tfh cells in 
Roquinsanls~n mice. 

A) Representative flow cytometric plots showing IFN-y versus CD44 gated on 
non-Tfh (CXCRS- PD-1- CD4+; green), pre-Tfh (CXCRS+ PD-1int CD4+, blue) 

' and Tfh (CXCRS+ PD-1 + CD4+; red) cells from 8-wk-old Roquin+I+ and 
Roquinsanl~an mice. 
B) Percentages· of IFN-y+ cells and mean fluorescence intensity (MFI) of IFN-y . 
expression amongst non-Tfh, pre-Tfh and Tfh cells from 8-wk-old Roquin+1+ 
and Roquinsanlsan mice. These data are representative of two independent 
experiments with four mice per group. 
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was also a higher proportion of NK cells producing IFN-y in sanroque mice (Figure 

4.5). 

Roquinsan delays lfng mRNA decay in CD4+ T cells 

Next we investigated whether increased production of I FN-y by Roquinsanlsan T cells 

was directly caused by the Roquin mutation in CD4+ cells, or was an indirect 

consequence of the inflammatory milieu. For this, mixed bone marrow chimeras 

were constructed. Recipient Ragr1
- mice were sublethally-irradiated and 

reconstituted with a 1: 1 mix of Roquin+;+ CD45.1 and Roquinsanlsan CD45.2 bone 

marrow cells. A control set of mice was reconstituted with a 1: 1 mix of Roquin+;+ 

CD45.1 and Roquin+;+ CD45.2 bone marrow. The proportion of IFN-y-pFOducing cells 

amongst Roquinsanlsan CD45.2 cells was ~4-fold higher than amongst Roquin+;+ 

·co45.1 cells in the same chimeric mice (Figures 4.6A and 4.68). IFN-y expression 

in na·ive T cells was also significantly higher within Roquinsanis~n CD45.2 than within 

Roquin+;+ CD45.1 cells .(Figures 4.6C. and · 4.60). These data indicate that the 

accumulation of IFN-y-producing cells in Roquinsanlsan mice is T cell-intrinsic. We 

previously showed that the increase in Tfh cells in Roquinsanisan mice is also T cell­

intrinsic6 (Figure 4. 7). 

To investigate if ROQUIN delays lfng mRNA decay as described for /cos mRNA249
· 

, 
253

, p'urified Roquinsanlsan and Roquin+;+ na"ive (CD4410
) CD4+ T cells were activated 

with anti-CD3 and anti-CD28 for 24 hand lfng mRNA was measured by quantitative 

RT-PCR. Roquinsanlsan CD4+ T cells expressed 40-fold higher amounts of lfng mRNA 

than Roquin+;+ CD4+ T cells at 4 h (Figure 4.8A). Next, we investigated whether 

• 
100 

----...:.-~ -- ~ 



A 

B 

>­
I z 

LL 
- 0 

Roquin+1+ 

13.9% 

1.9% 

LC044 

Roquinsan1san 

3.1 Ofo 

6.4% 

-20 * -.15 I + 0 •• I + 
.C N ~ .c 
0) N 15 • 0 0) 

~ 2S 10 'q'" co 
0, 
o 'q'" 10 :- (..) 
+ 0 ·o >- + 
""""": (..) 

I 

5 Z""""": 
T""" ~ 5 LL T""" ~o -~ 
Z:::R z 
~ 0 QI 

Roquin +/+ sanlsan 

Gated on CD4+ 

2.5 
* + - ~ I I """"": a 2.0 I 

0 T""" T""" 

~ >< 
z :-1.5 

• 
+ .c 

• ~~ 1.0 

• Zo 
LL (..) 0.5 --

I I I 0 
+/+ sanlsan +/+ 

Figure 4.5. Increased IFN-y-producing NK cells in Roquinsanlsan mice. 
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A) Representative flow. cytometric plots showing gating strategies of NK cells 
(NK1 .1 + CD49b+) and IFN-y production by NK cells (a plot showing IFN-y , 
production ·by Roquinsanlsan CD4+ cells from the same stain is included as a 
positive control) from 10-wk-old. Roquinsanlsan and Roquin+I+ mice. 
B) Quantification of percentages of NK cells (NK1 .1 + C_D49b+; left) and IFN-y­
producing NK cells (middle); and total numbers IFN-y-producing NK cells 
(right) from 10-wk-old Roquinsanlsan and Roquin+I+ mice. These data are 

· representative of two independent experi.ments with four to five mice per 
group. 
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Figure 4.6_. T cell-intrinsic overproduction of IFN-y in Roquinsanlsan mice. 

A and 8) Representative flow cytometric plots (A) and percentages (B) of 
IFN-y+ co4+ cells from 50°/o Roquin+I+ CD45.1 :50%: Roquinsanlsan CD45.2 or 

. control 50% Roquin+1+ CD45.1 :50% Roqui(I+;+ CD45.2 bone marrow chimeras 
10 weeks after cell reconstitution . 
C and D) Bar graphs (C) and histograms (D) showing IFN-y expression in 
na·1ve (CD4410) CD4+ cells. These data are representative of four independent 

experiments with four to five mice per group. 
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Figure 4.8. T cell-intrinsic overproduction of IFN-y in Roquinsanlsan mice is 

caused by.increased lfng mRNA stability. 
\ 

A) Quantitative RT-PCR analysis of lfng mRNA expression in sorted CD4410 

CD4+ ceHs from 8-wk-old Roquinsanlsan and Roquin+I+ mice cultured for 

indicated times with anti-CD3, anti-CD28 in the presence of IL-12p70 and anti­

lL-4. 
· B) Remaining lfng mRNA levels in activated Roquinsanlsan and Roquin+I+ cells 

using same culture condition as in A for 18 h, then treated with actinomycin D 

and measured at indicated times using quantitative RT-PCR. lfng mRNA levels 

at time O in each group were assigned as 100°/o. Trend lines were fitted to 

predict lfng mRNA half-life (T112). These data represent mean values ± 

standard deviation with three biological · .replicates in two independent 

experiment~. 

,, 

• 
104 

____ . .. 



Chapter4 I FN-y excess leas to pathogenic Tfh 

accumulation of lfng mRNA was occurring posttranscriptionally. Na·ive CD4+ T cells 

from Roquinsanisan and Roquin+;+ mice were treated with actinomycin D 3 h after 

activation to inhibit mRNA transcription and lfng mRNA was measured at different 

intervals after treatment. Roquinsanlsan delayed lfng mRNA decay, prolonging its half­

life by ~9-fold (Figure 4.88). By contrast, no differences in i/2 mRNA decay were 

observed between Roquinsanisan and Roquin+;+ T cells (Figure 4.9). These results 

indicate that excessive I FN-y production _ in the presence of Roquinsan is a 

consequence of failed posttranscriptional repression of lfng mRNA. 

Deficiency in IFN-yR but not T-bet or ICOS rescues hypercellularity 

The results above suggest excessive IFN-y production may contribute -to the lupus­

like syndrome and autoimmune susceptibility of Roquinsanlsan mice. To test this, we 

generated Roquinsanlsan mice deficient in either IFN-yR (Roquins~nlsan lfngt1-), IFN-y 

(Roquinsan/san lfng4 ) or T-bet (Roquinsan/san Tbx21Du/Du) 341 . . We also generated 

C57BL/6.Roquinsanlsan mic~ lacking ICOS;_ previously ICOS hemizygosity (/cos+1-) i·n a 

mixed C57BL/6.CBA background was shown to decrease ICOS overexpression, 

albeit not to the ·1evel of wild-type T cells, reducing Roquinsanlsan splenomegaly and 

lymphadenopathy249
. 

Lack of IFN-yR signaling in Roquinsanlsan "ffngr1
- mice prevented hypercellularity and 

, spleriomegaly (Figures 4.1 OA and 4.1 OB). Roquinsanisan lfngt'- mice also showed a 

significant reduction -in the percentage of effector/memory (CD44hi) CD4+ cells but 

maintained the elevated Treg cell numbers typical of Roquinsanlsan mice (Figure 

4.108). By contrast, complete deficiency of either T-bet or ICOS failed to rescue the 
·. - . 
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Chapter4 I FN-y excess leas to pathogenic Tfh 

splenomegaly and effector/memory T cell expansion (Figure 4.1 OA, 4.1 OB, 4.11A 

and 4.12). Of note, Roquinsanlsan Tbx21Du/Du mice still overproduced IFN-y compared 

to wild-type mice (Figure 4.11 B), suggesting that mutant Roquin leads to IFN-y 

overproduction independently of T-bet-mediated transcriptional control. In contrast to 

the effect of ICOS hemizygosity in Roquinsanisan mice, complete lack of ICOS not only 

failed to reduce splenomegaly but further increased splenic cellularity (Figures 

4.1 OA, 4.1 OB and 4.12) and led to the . production of homogeneous nuclear 

antinuclear antibodies (ANAs; data not shown), different from the mixed 

nuclear/cytoplasmic pattern typical of Roquinsanisan mice. This is likely to be explained 

by the observed reduction in FoxP3+ CD4+ Treg cell numbers in the absence of 

ICOS in Roquinsanlsan mice (Figure 4.1 OB and 4.12) plus defectiv_e Treg cell function 

that characterizes !COS-deficient Treg cells363
. 

Excessive IFN-y signaling promotes accumulation of Tfh cells and 

germinal centers, and ~riggers lupu~ 

Next we sought to investigate a possible link between IFN-y overproduction and the .. 

aberrant Tfh accumulation and spontaneous GC formation in Roquinsanlsan mice. Tfh 

. 
and GC B cells were enumerated using flow cytometric staining. Lack of IFN-y 

signaling significantly reduced total CD4+ T cells, Tfh and GC B cell numbers in 

Roquinsanlsan lfng(1
- mice (Figure 4.13A ·and 4.138). Complete IFN-y deficiency in 

• I 

~ Roquinsanlsan lfng-1- mice also reduced the proportion of Tfh and GC (Figure 4.14). 

Consistent with the· described roles for IFN-y in switching to lgG2a (lgG2c in 
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treated with actinomycin D and measured at the indicated times using 
quantitative RT-PCR. //2 mRNA levels at time 0 in each group were assigned 
as 100%. These data represent mean values ± standard deviation with three 
biological replicates in two independent experiments. This experiment was 
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Figure 4. ~ 0. IFN-yR defic.iency in Roquinsanlsan mice reduces 
hypercell~larity. 

A) Photograph indicates spleens • from 8-wk-old Roquin+1+, Roquinsanlsan, 
Roquinsan/san lfngrl-,. Roquinsanlsan Tpx21ou/Du and Roquinsan/san /cos-I-_ 
B) Quantification of total numbers of splenocytes (top), and frequencies of 
effector/m~mory (CD44hi Foxp3-; middle) and Treg (CD44int FoxP3+; bottom) 
co4+ cells. in mice with indicated genotypes (data for Roquinsanlsan Tbx21ou/Du is 

listed in Figure 4.11 ). 
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hypercelli:Jlarity. 

A) Bar graphs enumerating total numbers of splenocytes (top left), the 
percentages of effector/memory (CD44hi CD25-; top right) and co44int co25+ 
(bottom) CD4+ cells from 8-wk-old Roquin+1+, Roquinsanlsan and Roquinsanlsan 
Tbx21ouiou· mice. 
B) Representative flow cytometric plots of IFN-y+ cells gated on co4+ T cells of 
Roquin+I+; Roquinsanlsan and Roquinsanlsan Tbx21ou/Du mice. These data are 

representative of three independent experiments with four to five mice per 
group. _ 
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Figure · 4:12. ICOS deficiency in Roquinsanlsan mice does not reduce 
hypercellularity. 

Bar graphs. enumerating total numbers of- splenocytes (top), and frequencies of 
effector/memory (CD44hi FoxP3+; middle) and Treg (CD44int FoxP3+; bottom) 
cells from · 8 to 10-wk-old Roquin+1+, Roquin+I+ lcos-1-, Roquinsanlsan /cos-1- and 

Roquinsanlsan mice. These data are representativ~ of three independent 
experiments with three to five mice per.group. 
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Figure 4.1'3. IFN-yR deficiency in Roquinsanlsan mice reduces Tfh and GC B 

cell formation. · 

Representative flow cytometric plots (A) and quantification of total numbers (B) 
of CD4+ T cells, Tfh cells identified as CXCR5hi PD-1 hi (gated on CD44hi Foxp3-

CD4+ cells), GC B cells identified as GL-7+ FAS+ (gated on B220+ cells) and 

lgG2c+ cells (gated on GC B cells) from 8-wk-old Roquin+1+, Roquinsanlsan and 

Roquinsanlsan /fngr1- mice. These data are representative of four independent 

experiments with five mice per group . 
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Figure 4.14 .. IFN-y deficiency in -Roqilinsanlsan mice reduces Tfh and GC B 
cell formation. 

Bar graphs showing total numbers of -Tfh cells (top), GC B cells (middle) and 
lgG2c+ GC B cells -(bottom) from ~ to 10-wk-old Roquin+1+, Roquin+1+ lfngr1-, 

Roquin+I+ lfng-1-, Roquinsanlsan lfngr1-, Roquinsan/san lfng-1- and Roquinsan/san mice. 

These dat~ are representative of three independent experiments with three to 
five mice per group. · 
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Chapter4 I FN-y excess leas to pathogenic Tfh 

C57BL/6 mice}75
· 

366
, lgG2c+ GC B cells were also reduced or absent in Roquinsanisan 

mice lacking IFN-yR or IFN-y (Figure 4.13A and 4.138). 

Given our previous observation of a causal relationship between Tfh cell 

accumulation and lupus when Roquin is mutated6
, we investigated the 

consequences of IFN-y signaling in Roquinsanisan autoimmune disease. Assessment 

of renal histology revealed that all Roquinsanlsan mice had multiple mesangial 

electron-dense deposits, while only one out of six Roquinsanisan lfngr1
- mice had minor 

interstitial mesangial deposits compared to aged-matched 8-month-old Roquinsanisan 

mice (Figure 4.15A). Lack of IFN-yR also reduced nephritis (Figure 4.15A and 

4.158) and prevented ANA formation (Figures 4.16A and 4.168). These results 

contrast with the lack of contribution of IL-21 to the hypercellularity, _ Tfh and GC 

numbers, and autoantibodies in these mice6
. 

We next investigated if disease can be ameliorated by blocking IFN-y. For this, five 

week-old female mice, which had already developed ANAs, were treated with 500 µg 
. . 

of anti-lFN-y mAb every 3 d for 3 weeks. At the end of this treatment, anti-lFN-y 

treated mice hatJ reduced numbers of effector/memory· cells (Figure 4.17 A), Tfh 

(Figure 4.178 ahd 4.17C) and GC B cells (Figure 4.1 BA and 4.188), and 

significantly less. ANAs than mice treated with isotype control (Figure 4.1 BC). 

Strikingly, autoantibody titers in anti-lFN-y trsated mice had reverted to the titers 

, found in wild-type mice (Figure 4.1 BC). Togethe'r, these results demonstrate that 

-IFN-y overproduction leads to a pathogenic and lupus-inducing Tfh cell response and 

is required to sustain this aberrant response. 
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Figure 4.15. IFN-yR deficiency ameliorates the autoimmune phenotype of 
Roquinsan/san mice. 

Represer:,tative images of kidney sections (A) stained with H & E (left) or 

viewed under an electron microscope (right) and scores of nephritis severity 

(B) according to the criteria given in Table 4.1 from 6-mo-old Roquin+1+, 
Roquinsanlsan and Roquinsan/san lfngr1- mice. Electron-dense lg deposits are 

indicated with arrows. These data are representative of two independent 

experiments with five to six mice per group. Severity of renal pathology was 

determined by Giles Walters. 
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Figure 4.16. IFN-yR deficiency reduces ANAs in Ro·quinsanlsan mice. 

Representative images (A) and quantification of fluorescence intensity (B) of 

ANA lgG autoantibodies detected using Hep-2 slides in serum from 8-wk-old 
Roquin+I+, Roquinsan/san . and Roquinsan/san lfngr1- mice. These data are 

representative of two -independent experiments with six to eight mice per 
group. 
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Figure 4 .. 17. IFN-y blockad_e reduces hypercellularity and Tfh cell 
accumulation in Roquinsanlsan mice. 

A) Bar graphs showing total splenocytes (left) and effector/memory cells (right) 
. of untreated Roquin+I+ and treated female. Roquinsanlsan mice with anti-lFN-y or 

rat lgG1 isotype control every 3 d from week 5 to 8 of age. 
B and C) Representative flow cytometric plots (8) and quantification (C) of 
percentages and total numbers of Tfh from untreated Roquin+I+ and treated 

female Roquinsanlsan mice with anti-I FN-y or rat lgG 1 isotype control. These 

data are representative of two independent_experiments with four to si~ mice 
per group. 
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Figure 4.18. IFN-y blockade reduces GC B cell accumulation and ANAs in 
Roquinsanlsan mice: 

A and 8) Representative flow cytometri_c plots (A). and quantification of 
percentages and total numbers (8) of GC B cells from untreated Roquin+I+ and 
treated female Roquinsanlsan mice with anti-lFN-y or rat lgG1 isotype control 

· every 3 d from week 5 to 8 of age. 
C) Concentration of ANA -lgG autoantibodies in arbitrary activity units (U) 

according to the mouse ANA standards, in serum of Roquin+I+ (untreated) and 
female Roquinsanlsan mice prior to treatment and after treatment with anti-lFN:y 

mAb or rat lgG1 isotype control every 3 d from week 5 to 8 of age. These data 
are representative of two independent experiments with four to six mice per 
group_. 

• 
117 

. ~ ~--. -----~ .. ---
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Next we asked whether the aberrant Tfh response arising from an overactive IFN-y 

response is unique to the sanroque mouse model or shared by other lupus-prone 

mice. Fas-1
- mice develop early or late-onset lupus depending on whether they are 

bred on an MRL or 86 background, respectively367
· 

368 and IFN-y blockade 

experiment has demonstrated this treatment ameliorates •lupus pathology325
. MRL'Pr 

mice with defective FAS signaling also have expanded follicular helper T cells 

located at extrafollicular sites that are pathogenic76
. Analysis of I FN-y-producing cells 

in Fas-1
- mice revealed a significant increase in IFN-y-producing amongst total 

effector/memory (Figure 4.198, 4.19C), non-Tfh and Tfh cells (Figure 4.20A). This 

was accompanied by a 3-fold increase in total effector/memory cells (CD4+ CD44hi; 

Figure 4.19A), 9-fold increase in Tfh cells (PD-1hi CXCR5hi; Figure 4.208 and 

Figure 4.20C), 11-fold increase in GC B cells (Figure 4.21A and- 4.218) and 

increased ANAs compared with wild-type controls (Figure 4.21 C). Our data together 

with evidence that SAP deficiency - known to selectively eliminate Tfh cells6
• 

45
• 

172 
-

• abrogates lupus in· Fas-1
- mice369

, further supports the notion that the pathogenic IFN­

Y response is linked to the aberrant Tfh cell response. 

Seeking further "evidence that aberrant Tfh formation is not only associated with 

lupus-autoantibodles but is also a consequence rather than a cause of excessive 

IFN-y signaling, "'!e analyzed mice expressing a Bcl-2 transgene under the control of 

the Vav-promoter. These mice form a spontaneous and excessive GC response 

_ dependent on excessive T cell help340
. Antinuclear antibodies were increased in 

VavP-Bc/2 transgenic mice (Figure 4.23C), and this was associated with a 8-fold 

expansion in Tfh cells (Figure 4.23A) and a 5-fold increase in GC B cells (Figure 

4.238), but no difference in total effector/memory cens (Figure 4.22A). As expected 
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Chapter4 IFN-y excess leas to pathogenic Tfh 

and in contrast to sanroque mice and Fas-1
- mice, there was no significant increase in 

IFN-y-producing cells (Figure 4.228 and 4.22C), consistent with aberrant Tfh 

expansion and survival being independent of cytokines and instead due to 

constitutive Bcl-2 expression. Tog~ther, these results support the evidence that Tfh 

cell expansion caused by I FN-y overexpression - which can be recapitulated by a 

Bcl-2 transgene -, is pathogenic and causes autoantibody production. 
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Figure 4.19. Fas-1- mice develop· hypercellularity. 

' 

A) Quantification of total numbers of splenocytes (top), and frequencies of 

effector/memory (bottom left) and Treg (bottom right) cells from 10-wk-old 
Fas-I- and Fas+/+ mice. 
B and C) Representative flow cytometric plots (8) and quantification of 

percentages (C) showing IFN-y-, IL-4- and IL-17-producing cells amongst 
CD4+ CD44hi cells from 10-wk-old Fas-1- and Fas+i+ mice. These data are 

representative of two independent experiments with five mice per group. 
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Figure 4.20. Increased numbers c;>f IFN-y-producing cells in Fas-1· mice. 

A) Quantification of percentages of IFN-y-producing cells amongst non-Tfh 

(left) and Tfh cells (right) from f0-wk-old Fas-1- and Fas+;+ mice. 

B and_ C) Representative flow_ cytometric plot (B) · and qua_ntification of 

percentages (C; left) and total numbers (C; right) of Tfh cells from 10-wk-old 

Fas-1- and Fas+;+ mice. These data are representative of two independent 

experiments with five mice per group. 
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Figure 4.21. Fas-1- mice develop spontaneous GC and ANAs . 
. . 

A and B} Representative flow cytometric plots (A) and quantification of 

percentage~ (B; left) and total numbers (B; right) of GC B cells from 10-wk-old 
Fas-1- and Fas+!+ mice . 
C) Concentration of ANA lgG a.utoantibodies in serum of 10-wk-old Fas-1- and 

Fas+!+ mice. These data are representative of two independent experiments 

with five mice per group. · 
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Figure 4.22. VavP-Bc/2-1- mice develop hypercellularity. 
. . 

ns ao 

VavP-Bc/2 

A) Quantification of total numbers of splenocytes (left), and frequencies of 

effector/m~mory (middle) and Treg (right) cells from 10-wk-old VavP-Bc/2 and 
C57BL/6 mice. 
B) Quantification of percentages· showing IFN-y-, IL-4- and IL-17-producing 
_cells amongst CD4+ CD44hi cells from 10-wk-old VavP-Bc/2 and C57BL/6 
mice. 
C) Quantification of percentages of IFN-y-producing cells amongst -non-Tfh 
(left) and Tfh cells (right) from 10-wk-old VavP-Bc/2 and C57BU6 mice. These 
data are representative of two independent experiments with five mice per 
group. 
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Figure 4.23. VavP-Bc/2-1- ·mice have increased Tfh, GC B cells and ANAs. 
. . 

• 
A) Represe.ntative flow cytometric pl-ots (left) and quantification of percentages 

and total numbers (right) of Tfh cells from 10-wk-old VavP-Bc/2 and C57BL/6 

mice. 
B) Representative flow cytometric plots (left) and quantification of percentages 

and total numbers (right) of GC B cells .from · 10-wk-old VavP-Bc/2 and C57BL/6 

mice. 
·C) Concentration of ANA lgG autoantibodies in serum of 10-wk-old VavP-Bc/2 

and · C57BL/6 mice. These data are representative of two independent 

experiments with five mice per group. 
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Chapter Discussion 

IFN-y has been long associated with lupus pathology but its precise role in disease 

pathogenesis has been unclear. Here we have discovered how excessive I FN-y acts 

in a reliable model of lupus: by promoting Tfh cell accumulation. Limiting Tfh cell 

numbers has emerged as an important mechanism to control GC output and 

maintain tolerance to nuclear antigens. These findings have significant clinical 

implications. Subsets of patients with lupus · and other autoimmune disorders have 

been shown to bear biomarkers of an overactive Tfh/GC pathway 158
' 

232
. We 

speculate that IFN-y neutralization may be particularly effective in this patient group. 

The relationship between Th 1 cells and Tfh cells has been controversial. Although 

Tfh cells are driven by their own transcriptional regulator, Bcl-6136
' 

152
' 

15
@, description 

of Tfh cells capable of producing IFN-y291
• 

355 led to the hypothesis that Tfh cells could 

derive from Th1 as well as other T helper cell lineages3
. More recently, the report of 

very early - at the time of the first or second division - and dichotomous polarization 
. . 

into either Bcl-6 expressing Tfh cells or Blimp-1.:.expressing non-Tfh cell effectors has 

suggested that Tfh cells originat~. independently from other effectors including Th1 

cells 164
' 

165
. Conversely, A ~ecent study by Liu ·et al. revealed substantial plasticity of 

. 
all effector cell lineages in the early phase of Tfh cell differentiation in vivo. Both Th 1 

and Th2 cells, but only few Th17 cells were able to convert to Tfh cells370 
. 

, A question that arises is whether expanded Th1 cells in Roquinsanlsan mice are also 

contributing to the ·Iupus phenotype, independently of Tfh cells. Our previous 

experiments suggest this is unlikely: selective abrogation of Tfh formation via genetic 

deficiency in SAP - which did not reduce Th 1 cells - in sanroque mice resulted in 
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complete abrogation of autoantibody formation and lupus disease, although it did not 

correct the splenomegaly or the hypergammaglobulinemia6
. This together with the 

demonstration in the same study that passive transfer of Roquinsanlsan Tfh cells 

promotes spontaneous GC formati<;>n, suggests that Tfh cells but not Th1 cells are 

responsible for the aberrant B cell activity leading to autoantibody production and 

kidney disease in Roquinsanlsan mice. However, it is likely that Th 1 cells, and not Tfh 

cells, are responsible for the hypercellularity of secondary lymphoid tissues, which is 

not an autoimmune manifestation per se. Importantly, the effect of IFN-y described 

here acts independently of T-bet; in fact, T-bet deficiency in Roquinsanisan mice did not 

ameliorate lupus. T-bet-independent IFN-y production as observed in Roquinsanisan 

has been shown to occur physiologically downstream of IL-12/STAT-4, BAFF, coa+ 

T cell-derived IFN-y or yo T cell-derived IFN-y264
· 

360
· 

371
· 

372
. We cannot tQ_tally exclude 

the possibility that IFN-y may promote other c;ytokines and signalling pathways that 

contribute to the aberrant formation of GC B cell and Tfh cells in Roquinsanisan mice. 

-However, this is unlikely due .to the fact that lack of IFN-y signalling in Roquinsanlsan T 

cells ·virtually corrected the aberrant accumulation of Tfh and GC B cells in 

Roquinsanlsan mice·. 

As opposed to the· amelioration of lymphoid organ cellularity observed by halving the 

gene dose of /cos in Roquinsanlsan CBAxB6 mice, complete ICOS deficiency failed to 

reduce splenomegaly. Interestingly, the pattern of the autoantibodies also changed, 

_ suggesting an additional mechanism of autoantibody formation is triggered by ICOS 

deficiency. The 4-fold reduction in the number of Treg cells in Roquinsanisan /cos-1-

mice together with impaired suppressive function of Treg cells lacking ICOS363 are 

likely to account for the disease exacerbation. The corollary from this and our 
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previous study is that although excessive ICOS signaling contributes to Tfh cell 

expansion, it is not the primary cause of disease pathogenesis, which we show here 

stems from excessive lfng mRNA production. This is consistent with the finding that 

I FN-y deficiency alone could not completely correct Tfh cell numbers, suggesting 

other factors including ICOS overexpression lead to this phenotype. Our work 

reveals a second target of mRNA regulation by Roquin, only known to date to 

regulate /cos mRNA posttranscriptionally248
• 
249

· 
253

. The increased lfng mRNA half-life 

in Roquinsanlsan T cells compared to Roquin+;+ controls, together with the 

demonstrated T-cell autonomous nature of lfng mRNA accumulation from the na·ive 

T cell stage, suggest lfng and /cos mRNA may be deregulated by Roquinsan by a 

similar mechanism. 

In this chapter, we have identified a GC tol~rance checkpoint: posttranscriptional 

control of /fng mRNA that prevents excessive Tfh formation. In the Roquinsanlsan 

model of lupus, impaired /fng _mRNA decay leads to aberrant Tfh cell formation and 

spontaneous GCs, and lupus pathology. In addition, IFN-y blockade or deficiency of 

Roquinsanlsan mice prevent Tfh accumulation and all autoimmune manifestations, 

highlighting a direct causal role for this cytokine in lupus disease due to overactive 

Tfh cell activity. It is important to note that it is only in the presence of excessive IFN­

Y that Tfh cells a're dysregulated; IFN-y deficiency did not impair a Tfh response 

against immunization with foreign antigen (data not shown). This emphasizes the 

importance . of posttr~nscripti,onal control to specifically prevent accumulation of lfng 

mRNA after its induct_ion, in the prevention of autoimmunity . 
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Chapter 5 IFN-y excess leas to overexpression of Bcl-6 

Chapter 5 - Excessive Interferon-gamma Promotes Bcl-6 

Overexpression in Tfh cells and Proliferation of Effector T 

cells 

Chapter Introduction 

Tfh cell formation is driven by the transcription factor Bcl-6, which controls 

expression of key Tfh molecules including PD-1 and CXCR5136
• 

152
• 

153
. Recently, 

extrinsic mechanisms that control Tfh homeostasis and in turn GC output have been 

described; these include the inhibitory effects of plasma cells36 and specialized CD4 

and COB follicular regulatory T cells 138
• 

139
• 

373
. Little is known about cell-intrinsic 

-
mechanisms that repress Tfh formation to prevent autoimmunity. Thus, 

understanding the mechanisms that control Tfh cell homeostasis or lead to their 

dysregulation will b~ important for deciphering the pathogenesis of the growing list of 

autoantibody-mediated diseases5
. 

.. 
In the previous c_hapter, we have shown that . excessive IFN-y caused by impaired 

posttranscriptional . regulation of ROQUINM199
R changes the quality of the T cell 

response by inducing the accumulation .of Tfh cells; this in turn leads to aberrant GC 

formation, autoantibody production and lupus p~thology. The next· important question 

arising is: How· does IFN-y influence Tfh cell accumulation? There are several 

possibilities by which IFN-y can enhance Tfh formation and/or accumulation: 1) IFN-y 

can act directly on T cells and induce Tfh cell formation via for example modulation 

of Bcl-6 and/or increased proliferation or survival of T.fh cells or their precursors. 2) 

-
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IFN-y-produced by other cells such as myeloid cells or NK cells can have an indirect 

impact on Tfh cells by providing an inflammatory environment that fosters B and T 

cell activation leading to differentiation of the latter cells into IFN-y-producing T cells. 

In turn, these cells may contribute to the Tfh cell precursor pool. In addition, IFN-y 

production by T cells may also provide a positive feedback loop to sustain more 

myeloid cell activation/proliferation. 3) IFN-y may act on B cells to induce B cell 

proliferation, survival, and enhanced T cell priming. All of this together would 

promote Tfh formation and provide a niche that favors Tfh cell and GC B cell 

survival. Indirect effects of IFN-y on B cells could also be mediated via stimulation of 

myeloid cells to release BAFF334
• 

360
. To adequately address these questions, we 

have taken advantage of mixed bone chimeras that specifically lack T or B cells, and 

passive transfer experiments into Ragr1
- mice. Understanding the molecular and 

cellular basis of Tfh-driven lupus is critical for .the development of specific therapies 

in affected individuals. 

To our knowledge, direct effects of IFN-y on Bcl-6 expression by T cells have not 
. . 

been reported, with the exception of an in vitro experiment showing that rlFNg was 

able to induce transient upregulation of Bcl-6 · in Jurkat cells and murine T cells374
. 

Nevertheless, whether I FN-y has an effect on Tfh cells and Bcl-6 expression in vivo 

has not yet be~n documented. Dichotomous functions of IFN-y in promoting 

proliferation or· inducing apoptosis of differentiated CD4+ T cells have been reported. 

, In an · autoimmune/inflammatory setting, the ability of IFN-y to induce CD4+ T cell 

proliferation has been reported in patients with multiple sclerosis, acute myeloid 

leukemia (AML) and B cell-type chronic lymphocytic leukemia (8-CLL); it has also 

been reported in human myeloid leukemia cell lines375
-
377

. Interestingly, IFN-y is also 
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required for apoptosis of expanded CD4+ T cell clones during infection and mice 

lacking IFN-y or IFN-yR exhibit impaired apoptosis and delayed contraction of 

activated antigen-specific T cells378
-
381

. 

Despite numerous studies strongly implicating IFN-y in SLE pathogenesis and IFN-y 

mAb (AMG811) treatment recently entering phase I clinical trials382
, the precise 

pathogenic mechanism by which this cytokine contributes to disease is poorly 

understood. Here we have demonstrated a fundamentally different mechanism of 

action of this important cytokine: failure to repress lfng posttranscriptionally by 

ROQUIN acts in early effector CD4+ T cells in a cell-intrinsic manner to enhance Bcl-

6 expression and increase their proliferation, leading to aberrant Tfh cell 

accumulation, pathogenic GCs, autoantibodies and end-organ damage. _ 

, , 
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Results 

T cell-specific IFN-yR deficiency is sufficient to reduce Tfh accumulation 

To investigate whether IFN-y was acting predominantly on CD4+ cells to induce the 

aberrant Tfh cell and GC phenotype, we generated chimeric mice in which only T 

cells would lack IFN-yR signaling. For this, sublethally irradiated Rag1-1
- recipient 

mice were reconstituted with a 70°/c>:30% mix of Roquinsanlsan Tera-I- and Roquinsanlsan 

/fngt1
- bone marrow cells. A control set of chimeras with intact IFN-yR signaling was 

constructed using a 70°/c>:30% mix of Roquinsanlsan Tera-I- and Roquinsanlsan bone 

marrow cells. Sets of 100% chimeras reconstituted with either Roquin+1+, 

Roquinsanlsan or Roquinsanlsan lfngt1- bone marrow were also used as controls. 

~elective deficiency in IFN-yR in T cells reduced Tfh accumulation in Roquinsanlsan 

mice to the levels ._found in Roquinsanlsan lfngt1- mice and Roquin+I+ mice indicating 

that increased I FN-yR signaling in T cells leads to Tfh cell accumulation in 

Roquinsanlsan mic~ (Figure 5.1 ). IFN-yR signaling in T cells also contributed to the 

. . 
increase in GC B .cells observed in Roquinsanisa~ mice: few~r GL-7+ FAS+ 8 cells were 

observed· in Roquiosanlsan chimeras lacking IFN-yR only in T cells although GC 8 cells 

were higher than in mice lacking IFN-yR. signaling in all cells (Figure 5.1 ) . 

· To formally test whether excessive IFN-y signaling also acts directly on GC 8 cells, 

we set up mixed ch_imeras in which only 8 cells would lack IFN-yR signaling by 

reconstituting sublethally-irradiated Rag1-1
- recipient mice with a 70°/c>:30% mix of 

Roquinsanisan JgcJ<enlken and Roquinsanisan lfngt1- bone marrow cells. Although both Tfh 
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· Figure 5.1. l·FN-yR signaling in T cells is required for Tfh and GC B cell 
accumulation in Roquinsanlsan mice. .. 

. . 

Representative flow. cytometric plots (left) and quantification of percentages 

(right) of Tfh cells identified as CXCRShi PD-1 hi (gated on CD44hi co2s- co4+ , 

cells) and GC 8 cells cells identified as GL-7+ FAS+ (gated on 8220+ cells) 

from mixed bone chimeras · of indicated genotypes 10 weeks after 

reconstitution. These data are representative of two independent experiments 

with four to eight mice per group in each experiment. 
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and GC 8 cells were reduced in these chimeras (Figure 5.2), the same reduction 

was seen in control recipients of Roquinsanlsan Jgc!en/ken: Roquinsan/san bone marrow 

cells. The number of 8220+ cells was ~ 5-fold lower, but no difference in total number 

of CD4+ cells, in recipients of bone _marrow containing Jgc!enlken cells compared with 

other chimeric groups (Figure 5.3A and 5.38), suggesting that the correction of the 

Tfh and GC phenotype is a consequence of the significantly reduced 8 cell numbers 

in these chimeric mice and these chimeras cannot be used to draw conclusions on 8 

cell-intrinsic effects. ANAs were not measured because the irradiation and 

reconstitution process induces autoantibodies. IFN-yR signaling is known to exert 

important effects on myeloid cells. All myeloid cell subsets were found to be 

expanded in total numbers in Roquinsanisan spleens, but this effect was T cell-driven 

because myeloid cell expansion and splenic hypercellularity were_ completely 

corrected in Roquinsanlsan Ragr1
- mice (Fig~re 5.4A-C) but not in Roquinsanlsan 

Jgc!enlken (8 cell-deficient) mice (data not shown). 

Excessive IFN-y signaling enhances Bcl-6 expression and increases 

proliferation of early CD4+ T cell effectors 

IFN-y has been described to have paradoxical pro-proliferative and pro-apoptotic 

effects in CD4+ and coa+ T cells383
· 

384
. Intracellular staining with Ki-67 and Annexin 

' ' 

V/7 AAD was used to investigate proliferation and survival, respectively. Lack of IFN-

. 
- yR signaling did not have any effects on Tfh cell proliferation (Figure 5.58), but 

significantly decreased the proportion of cycling na·ive (CD441° FoxP3-) and non-Tfh 
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Figure 5.2: Reduced Tfh and GC B cell numbers in chimeras constructed 
with B cell-deficient bone. marrow . 

. 
Representative flow cytometric . plots (left) and quantification of the 

percentages (right) of Tfh and GC B cells from mixed bone chimeras of 

indicated g_enotypes 10 weeks after reconstitution (top panel is reproduced 

from Figure 5.1 ). These data are representative of two independent 

experiments with four to eight mice per group in each experiment. 
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Figure 5.3: Reduced Tfh and GC B cell numbers in chimeras constructed 
with B cell-deficient bone marrow is associated with decreased total B 
cell numbers. 

. . 

Bar graphs ·showing total numbers of B220+ (A) and CD4+ (B) cells in the 
chimeric mice shown in Figures 5.1 and 5.2. These data are representative of 
two indep~ndent experiments with four to eight mice per group in each 
experiment. 
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Figure 5.4. Myeloid cell expansion and -splenic hypercellularity in 
Roquinsanlsan mice are completely .corrected in Roquinsanlsan Rag1·1· mice. 

A and B) Representative flow cytometric plots of CD11 b versus CD11 c (A) and 
quantification of all myeloid subsets (B) from 8 to 10-wk-old Roquin+I+ and 
Roquinsanlsan mice. 
C) Bar graphs showing total numbers of splenocytes (left) and CD11 b+ cells 
.(right) from 8 to 10-wk-old Roquin+I+, Roquin+I+ Rag1-1-, Roquinsanlsan Rag1-1- and 

Roquinsanlsan mice. These data are representative of two independent 
experiments with three to five mice per group. This experiment was performed 
by Pheh-Ping Chang . 
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Figure 5.5: IFN-yR signaling enhanc·es proliferation of effector/memory T 
cells. 

A) Histograms showing Ki-67 e)'.(pression (gated on CD4+ cells) from 8-wk-old 
Roquin+I+, Roquinsan/san, Roquinsan/san lfngr1- mice. 

B) Quantification of percentages of Ki-6.7+ cells amongst" na"i"ve (CD441° FoxP3-; 
top left), effector/memory (CD44hi FoxP3-; top right) CD4+ cells, and Tfh cells 
{bottom) from 8-wk-old Roquin+I+, Roquinsan/san, Roquinsanlsan lfngr1- mice. 

These data are representative of three independent experiments with four to 

nice mice pe~ group. 

, , 

0 

137 

~-. --• .. --· __ : -- " 



Chapter 5 IFN-y excess leas to overexpression of Bc/-6 

cell effectors (Figure 5.5A and 5.58). IFN-yR deficiency did not have any influence 

in the survival of na·1ve or effector/memory T cells (Figure 5.6). 

Several studies have shown that Bcl-6 is required for the formation of Tfh cells 136
· 

152
· 

153
, so we asked whether excessive IFN-yR signaling altered Bcl-6 expression in 

Roquinsanisan mice. Roquinsanisan mice were found to express significantly higher 

amounts of Bcl-6 (an isotype control for the Bcl-6 stain is shown in Figure 5.78). Bcl-

6 overexpression was observed in both PD-1 hi CXCRShi GC Tfh cells and PD-1 int 

CXCRS+ cells that include Tfh cell precursors 178
; Figure 5.7A). Strikingly, lack of 

IFN-yR signaling completely normalized Bcl-6 expression in both Tfh-related subsets 

in Roquinsanlsan mice (Figure 5. 7 A and 5. 7C). Bcl-6 expression was not altered in 

- Roquinsanlsan na·1ve (CD4410
) or non-Tfh (CXCR510 PD-1 10

) cells (Figure _5.BA). Also, 

IFN-yR signaling had no effect on Bcl-6 expres?ion in GC B cells (Figure 5.88). 

.. 

To investigate whether excessive IFN-yR signaling in T cells is sufficient to drive 

autoantibody formation and enhance Bcl-6 expression, we transferred 5 x 106 

Roquinsanlsan T ce·lls sufficient or deficient in I FN-yR signaling together with 7 x 106 

wild-type B ce·11s i'nto Rag1-1- mice. Eight weeks after transfer, ANAs were higher in 

recipients of Roqulnsan/san T cells than in recipients of Roquinsan/san lfngt1- T cells; the 

latter were compa.rable to recipients of wild-type T cells (Figure 5.9C). The increase 

in autoantibodies in recipients of Roquinsanisan T cells was paralleled by a substantial 

_ increase in Tfh cells (Figure 5.9A and 5.98), which expressed higher amounts of 

Bcl-6 (Figure 5.98). Together these results suggest that overproduction of IFN-y and 

IFN-yR signaling in T cells are the main drivers of the Tfh cell accumulation and 
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Figure 5.6. If N-yR deficiency in Roquinsanlsan mice does not affect 
survival. 

\ 

Quantification of frequencies of apoptotic cells identified as Annexin-V (AV)+ 
7 AAD- cells amongst Tfh (top), total co4+ (middle) and GC B cells (bottom) 
from 8-wk-old Roquin+I+, Roquinsan/san and Roquinsan/san lfngr1- mice. These 

data are representative of two independent . experiments with five mice per 
group. 
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Figure 5.7. IFN-yR signaling enha~ces B~l-6 expression of Tfh cells. 

A) Histograms of Bcl-6 expression in na·ive (CD441° Foxp3-), pre-Tfh identified 

as CXCR5_hi PD-1 int and Tfh cells (gated on CD4+ T cells) from 8-wk-old 
Roquin+I+, Roquinsan/san, Roquinsanlsan lfngr1- mice. 
B) lsotype control of Bcl-6 staining in Roquin+I+ and Roquinsanlsan mice. 
C) Bar graphs of Bcl-6 expression ·in pre-Tfh and Tfh cells from 8-wk-old 
Roquin+I+, Roquinsanlsan, Roquinsan/san lfngr1- mice. These data are 

representative of two independent experiments with four to eight mice per 
group. 
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Figure 5.8: IFN-yR deficiency in Roquinsanlsan mice does not affect Bcl-6 
expression of non-Tfh effector/memory cells and GC B cells. 

. . 

A) Gating strategy and bar graphs showing Bcl-6 expression in na"i"ve (CD4410 

CD4+; top}, non-Tfh effector/memory cells (CXCR510 _PD-1 1° CD44hi CD4+; 
bottom) . 
B) bar grpphs showing Bcl-6 expression in GC (top) and non-GC B cells 
(bottom). These data, are representative of,two independent experiments with 
four to eight mice per group. 
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Figure 5.9._ IFN-yR signaling in T cells is sufficient to drive autoantibody 
formation. · 

A and 8) Representative flow cytometric plots (A) and quantification (8) of 
percentages of Tfh cells (left), Bcl-6 e?(pression (right) in Rag1-1- mice 
transferred with 5 X 106 sorted Roquin+I+, Roquinsan/san or Roquinsan/san lfngr1-
CD4 + T cells and 7 x 106 sorted Roquin+1+ 8220+ cells 8 weeks after adoptive 
cell transfer. 
C) Concentration of ANA lgG autoantibodies in serum of Rag1-1- mice as 
described in panel A and B. These data are representative of two independent 
experiments with four mice per group. 
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Chapter 5 IFN-y excess leas to overexpression of Bcl-6 

autoimmune phenotype, but a contribution of IFN-yR signaling in myeloid cells and B 

cells cannot be excluded and is likely to accelerate or exacerbate the disease. 

We confirmed previous findings demonstrating that 5 ng/ml rlFN-y can induce bc/6 

mRNA in anti-CD3 activated T cells within 24 h, regardless of CD28 costimulation 

(Figure 5.1 OA). Bcl-6 upregulation was maintained for 72 h in the presence of CD28 

costimulation to levels comparable those induced by rll-6, but not in the absence of 

CD28 (Figure 5.1 OB). Collectively, these data suggest that IFN-y promotes 

proliferation of activated na·ive T cells and enhances Bcl-6 expression in Tfh cells 

and their precursors. 
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Figure 5.10. ~ecombinant IFN-y can induce bc/6 mRNA in ex vivo T cells. 

. 
Quantitative RT-PCR analysis of bc/6 mRNA expression in sorted CD4410 co4+ 

T cells from. 8-wk-old Roquin+1+ mice activated for .24 (A) and 72 hours (8) with 
~ 

anti-CD3, anti-lL-4, anti-TGF~ in the. presence or absence of CD28 and rlFN-y 
or rll-6. These data represent mean values ± standard deviation with three 
biological r~plicates in two independent experiments . 

• 
144 

---=------ -•,r-- _: - 11:t 



Chapter 5 IFN-y excess leas to overexpression of Bcl-6 

Chapter Discussion 

IFN-y promotes T cell proliferation from the naive stage and augments Bcl-6 

expression in Tfh cells and their precursors. These effects are likely to enhance the 

formation and possibly the maintenance of Tfh cells: Bcl-6 transgenic mice develop T 

cell-derived tumours bearing Tfh markers385
. Bcl-6 acts in a dose-dependent manner 

in the regulation of downstream targets and Tfh cells hemizygous in Bcl-6 form 

decreased Tfh cells 136
. Excessive Bcl-6 expression is predicted to maintain Blimp-1 

levels low in activated T cells, favoring this fate over that of non-Tfh effectors 164
. We 

and others have shown that incubation of anti-CD3-activated T cells with IFN-y 

induces upregulation of Bcl-6374
. This upregulation is thought to occur via pSTAT1 

binding to an interferon-responsive element in exon 1 of Bc/B374
. The pro-proliferative 

effect of IFN-y is probably a consequence of this cytokine's ability to enhance T cell 

costimulation and/or antigen presentation by plJC386 and mDCs387
. 

Our work also illuminates fundamental Tfh cell biology: IFN-y deficiency did not 
, . , 

impair a Tfh response against immunization with foreign antigen (data not shown); 

nevertheless, excessive IFN-y led to Tfh accumulation. Our findings underscore the 
, . 

potential danger of excessiye IFN-y production during viral infection, and therefore, 

. 
the importance of IFN-y regulation to offset this risk of developing GC-driven 

autoimmunity. Our observation that costimulation is required to m~intain IFN-y-driven 

Bcl-6 expression. is consistent with the notion that uncontrolled or chronic stimulation 
. 

,_ with foreign pathogens may trigger a pathogenic autoimmune re_sponse. This 

observation is also consistent with our previous findings showing CD28-deficiency 

prevented spontaneous Tfh cells and GC B cell formation, and lupus formation in 
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Chapter 5 IFN-y excess leas to overexpression of Bc/-6 

sanroque mice. Furthermore, our results provide an explanation for the intriguing 

observation made by us and others that, unlike sustained high production of IL-4 and 

IL-21 as Tfh cells terminally differentiate, IFN-y production is lowered on a per cell 

basis in GC Tfh cells compared to their precursors (reviewed in 154
). The added layer 

of IFN-y repression revealed by our study - control of lfng mRNA stability in T cells -

emerges as a potent mechanism to prevent accumulation of Tfh cells in the context 

of infection, and as key checkpoint to prevent _GC-derived autoimmunity. 

There is renewed interest in cytokine therapy in human SLE. Ongoing clinical trials 

with therapies directed at blocking TNF, IFN-a and IFN-y (reviewed in359
) hold the 

promise to further improve disease course and prognosis. One of the main stumbling 

blocks for successful therapy is the marked clinical heterogeneity of S_LE disease, 

likely to be underpinned by more than one pathway to disease. Cytokine profiles 

themselves vary significantly from individual to individual and at different disease 

stages359
. Recently; subsets of patients with lupus and other autoimmune disorders 

have been shown to bear biomarkers of an overactive Tfh/GC pathway 158
• 

232
. Our 

study highlights the potential of IFN-y blockade in this subset of SLE patients. 

. . 

In summary, our studies indicate that the control of IFN-yR signaling in T cells is 

important at two levels in the generation ·of Tfh cells: excessive IFN-y promotes T cell 

proliferation from the earliest stages - increased Ki-67 staining was already evident 

_ in cells with an otherwise naive phenotype-, and augments Bcl-6 expression in Tfh 

cells and their precursors. Both of these are likely to promote spontaneous · Tfh 

formation in Roquinsanlsan mice. This in turn leads to aberrant GC formation and 

autoantibody production and subsequently to the devel'opment of SLE. 
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Chapter 6 General discussion 

Chapter 6 -General Discussion 

Preamble 

In recent years, the GC response has received significant attention and has been 

extensively studied, but the extrafollicular response has been relatively neglected, at 

least in part due to the lack of accurate methods to distinguish plasma cells arising 

from follicular versus extrafollicular pathways. Chapter 3 in this thesis provides some 

new insights into the nature of T cell help required for extrafollicular B cell 

differentiation. Our results reveal a requirement of Bcl-6 expression by T cells for 

extrafollicl:Jlar antibody responses. By using three different mouse models in which 

extrafollicular plasma cells can be unequivocally distinguished from those of GC 
...: 

origin. We demonstrated that pre-GC Tfh cells, identified by their expression of Bcl-6 

and intermediate levels of PD-1 expression, are necessary for B cell priming to 

induce extrafollicular antibody responses. Bcl-6-expressing T cells were seen at the 

. T-B border soon after T cell priming, prior to GC formation (Figure 6.1). IL-21 was 

also required for the early extrafollicular response. These pre-Tfh cells precede GC 

Tfh cells, which are found within the GCs. Pre-Tfh cells were able to induce B cell lg 

' 
switching to lgG2a (lgG2c in C57BL/6) _in purely extrafollicular responses to 

Salmonella. 

_In the second part of the thesis, our work evaluated the effect of excessive I FN-y 
. 

· production in driving SLE pathology: Previous work from our laboratory showed that 

in sanroque mice, the dysregulation and resulting overexpression of some 

costimulatory molecules such as ICOS contributed to aberrant accumulation of Tfh 
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Figure 6.1. Bcl-6 express·ion by T cells is required for the extrafollicular 
pathway. · · · 

. 
Antigen-specific T cells become activated after priming by the interdigitating 

DCs (iDCs) in the T-cell area. These cells then migrate to the T-8 border to 

interact with antigen-specific 8 cells. At the extrafollicular sites, these cells 

acquire the phenotypic markers Bcl-6+ PD-1 int/lo and become Pre-Tfh cells. 

Pre-Tfh cells precede Bcl-6+ PD-1hi T (Tfh) cells within GC and are able to 

prime 8 cells and drive their differentiation .into extrafollicular plasmablasts or 

memory 8 cells . 
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Chapter 6 General discussion 

cells. Halving the gene dose of ICOS corrected, to a large extent, the splenomegaly 

and lymphadenopathy of sanroque mice249
. However, we show in this thesis that 

complete ICOS deficiency had a different effect, aggravating autoimmunity. It not 

only failed to rescue several autoimmune manifestations of sanroque such as 

splenomegaly, lymphodenopathy and ANAs, but it also changed the disease 

phenotype with a shift from production of cytoplasmic antibodies to purely nuclear 

autoantibodies. This was possibly due to the observed reduction in Treg cells with a 

reciprocal increase in T cell effectors - ICOS has been previously shown to be 

important for Treg cell formation and function. We thus hypothesized that other 

signaling pathways were likely to be involved in the sanroque Tfh cell-driven 
. 

autoimmunity. Given the excessive IFN-y production by sanroque T cells, this 

pathway was probed as a likely disease-causing candidate. To o~r surprise, 

sanroque IFN-yR deficient mice developed minimal pathology. Data presented in 

chapter 4 and 5 of this thesis demonstrate that excessive IFN-y signaling in T cells 

leads to accumulation of Tfh cells and maintains spontaneous GC, autoantibody 

formation and lupus development. We also showed that increased IFN-yR signaling 

causes Bcl-6 overexpression in Tfh cells, and their precursors, and promoted the 

proliferation of early effector cells, resulting in. an increas_ed precursor pool for Tfh 

cell differentiation (Figure 6.2). 

Our work thus reveals yet another mechanism for IFN-y pathogenicity in lupus. This 

·adds to the described ability of IFN-y to induce. switching to lgG2a (lgG2c in 

·C57BL/6) in mice, known to promote myeloid cell activation and end-organ damage 

in lupus. Although IFN-y plays a profound role in disease development, as shown by 

antibody blockade and genetic manipulation studies, we cannot exclude the 

.. 
148 

_..,_...:.._·_ 'b 



Memory B cells 

(Q) 
• 

Long lived 
plasma cells 

II" Tfh formation and survival • 

iI P rol iteration 

t 

(Stat 1) 
iJ Bcl-6 

IFN-y 

. . . . 

. ? .· l 
suppr~s1on. r t •. •·· 

(@??// 
IL-10:: 

• --\ ••• Ei 
.. ~ :: 

¥ Ag-specific, co. high affinity 

• 

\. 
Somatic 

hypermutation 

y ff Apoptotic cells 

\. Non-Ag-specific, 
\.... low affinity, 
~ ···········.~elf-reactive .. .. 

··. ··. ·•. ~ ·····•·••• · .. . . 
.\ \ 

Figure 6.2. Excessive IFN-yR signaling . leads to dysregulated Tfh cell 
formation: 

Increased. IFN-yR signaling due to impaired IFN-y mRNA repression by 
ROQUIN leads to IFN-y overproduction in sanroque T cells. Excessive IFN-yR 
signaling promotes the proliferation of early effector cells and causes Bcl-6 
overexpression in Tfh cells and their precursors, probably via STAT1 signaling 

· and may also cause resistance to Tfr suppression (remains to be tested). All 

together, these lead to Tfh cell accumulation, spontaneous · GC, autoantibody 
formation and lupus development in sanroque mice. 
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Chapter 6 General discussion 

possibility of other genes overexpressed by sanroque T cells such as 

Tnfsf11/RANKL, Maf, Nfatc1, Fyn, Ox40, and others contributing to sanroque 

pathology227
. This is suggested by our observation that disease is substantially 

reduced in sanroque IFN-yR-deficient mice but nof totally eliminated. Intriguingly, 

protection from disease as seen in sanroque lfngt1- mice was not observed in 

sanroque Tbx21ouiou (lacking functional T-bet). However, in these mice, T cells still 

overexpressed IFN-y, presumably independent of T-bet transcription, as a 

consequence of failed posttranscriptional repression conferred by ROQUINsan_ It is 

also possible that overproduction of other cytokines, for example, type I IFN may 

also lead to similar findings since both IFN-y and type I IFN share the same 

· signalling pathways via STAT1 and STAT3. Indeed, type I IFN has been shown to 

induce IL-6 secretion by DCs and thus supported the generation of lymph node-

resident Tfh cells 191
. 

l_n this thesis, I have proposed_ a novel tolerance checkpoint to prevent autoimmunity: 

ROQUIN-mediated repression of lfng mRNA to limit IFN-y production. Limiting IFN-y 

emerges as an important brake in the control of Tfh cell numbers, and ultimately in 

preventing the development of SLE. Therapies. that block I_FN-y action or production 

may thus be useful .for SLE patients with an overactive Tfh pathway. 

These observations also raise some interesting questions. First, how ··important is 

·pre-Tfh-derived IFN-y in extrafollicular antibody responses? Does IFN-y secreted by 

o_ther cell types -contribute in sanroque autoimmunity? Does IFN-y/lFN-yR signaling 

lower the threshold for T cell differentiation into Tfh cells? Why do-sanroque mice 

show a more exacerbated phenotype than Roquin knoGkout -mice? 
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Does IFN-y promote extrafollicular antibody responses in 

lupus? 

An obvious role for I FN-y in pathogenic extrafollicular antibody responses is the 

induction of switching to lgG2a (lgG2c in C57BL/6), shown to be more pathogenic 

than other lg isotypes335
. Signals to switch for either follicular or extrafollicualr 

antibody responses are likely to be delivered by pre-Tfh cells, judging by the early 

detection of switch transcripts in activated B cells and the comparable rates of 

switching in both pathways of B cell differentiation30
· 

31
. Although IFN-y-induced 

switching occurs in mice, there is some evidence that in hum.ans this might not be 

the case. Human circulating IFN-y-producing CD4+ T cells that are either CXCRS+ or 

CXCRs- are unable to prime B cells to produce lg, unlike CXCRS+ T cells skewed to 

Th2 or Th 17 cells 158
. Circulating Th 17-like and Th2-like CXCRS+ cells ~ere equally 

capable to induce na·1ve B cells to produce lg via IL-21. 

_ Despite the evidence that GC are unique microenvironments where B cells undergo 

somatic mutation ta produce high-affinity ·autoantibodies, there is evidence that in 
. 

MRL'P' lupus-prone mice, SHM and autoantibody formation occurs at extrafollicular 

sites50
· 

388
· 

389
. Within GCs, Tfh cells contribute to the survival and selection of 

mutated B cells. Less is known about the T cell help requirements for autoreactive B 

cells generated outside GC and there have been conflicting reports on this issue. T 
. 

cell help was reported to be dispensable for in vivo activation of expansion and 
• 

- differentiation of autoreactive B cells in MRL'P' mice; activation being c;jependent on 

endogenous B cell-intrinsic MyD88/TLR7 or 9 signals 114
. However, other evidence 

pointed to a role for Tfh-like cells located within extrafollicular plasma cell foci for 
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plasma cell survival and autoantibody production through the provision of IL-21 and 

CD40L signals in MRL'pr mice76
• 

261
. There is also some recent evidence that T cell 

help can also boost TLR-mediated 8 cell activation in vivo390
. Unlike the pre-Tfh cells 

described here, the extrafollicular Tfh-like cells in MRL'pr mice lack CXCR5 

expression, which is probably related to their positioning requirements 76
. 

IFN-y has been shown in chapter 5 of this thesis to promote Bcl-6 expression and 

increase Tfh differentiation and accumulation in sanroque mice. Tfh-like PSGL10 T 

cells from MRL'pr mice also secrete IFN-y76
; it is possible that IFN-y promotes 

formation and/or accumulation of these cells at extrafollicular sites, although this 

remains . to be tested. High levels of circulating IFN-y, increased expression of IFN-y 

and IFN-yR signaling pathway related genes such as IL-12 and STAT1, and 
--

increased IFN-y-producing CD4+ T cells have been documented in blood and/or 

kidney tissue of MRL'Pr mice309
-
312

• 
314

-
317

, 
391

· 
392

. Also, deficiency of IFN-y or IFN-yR 

s_ignaling in MRLi~r mice has been shown to reduce autoantibodies and 

. glomerulonephritis318
-
320

· 
338

. Furt~ermore, de.pletion of IFN-y using cDNA encoding 

IFN-y/Fc receptor _is· sufficient to control the progression of SLE disease325
. Since 

excessive IFN-y enhances Bcl-6 expression, this may as~ist stabilising the Tfh cell 

fate and promoting persistence of Tfh celrs in GC particularly in the context of 

autoimmunity. It will be important to determine IFN-y-production by single pre-Tfh 

cells in autoimmune-prone mice and examine the location of IFN-y-producing. cells in 

secondary lymphoid tissues. IFN-y and Bcl-6 dual r.eporter mice would be required 

for precise analysis. Also, improved phenotypic markers to identify pre-Tfh cells 

would be needed. 
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Does IFN-y secreted by other cell types contribute to 

sanroque pathology? 

Besides T cells, it is possible that B cells and NK cells are other important sources of 

IFN-y in sanroque mice. Although sanroque CD4+ T cell transfer alone into RAG 

mice lead to increased Tfh cells in recipient mice compared with transfers of wild­

type CD4+ T cells, formal investigation of potentially additive effects of B or NK cell­

derived IFN-y was not undertaken. The role of B cells in modulating immunity to 

pathogens by means other than via antibody production has been controversial. 

Some studies have shown that B cells are dispensable for the generation and 

maintenance of antigen-specific T cells responses393
• 

394
. Nevertheless, there is 

accumulating evidence that B cells play important roles in T cell maturation. In this 

-
thesis, I have summarised the evidence that B cells promote differentiation of Tfh 

cells via provision of SLAM-family members6
· 

405
' 

172 and ICOS ligands 185
. Also, IFN-y 

produced by B cells has been shown to promote T cell priming395
: follicular B cells 

_ produce IFN-y when stimulated with TLR ligands or during infection with 

Sa/mone//a396
. In mixed bone marrow chi"meras in which only B cells lack MyD88 

. 
signaling, secretion of IFN-y by -Th1 cells was reduced and GC formation was 

impaired, suggesting that production of IFN-y by B cells triggered by My088 signals 
. . . 

is required for generating an optimal IFN-y-secreting effector T cell and GC 

responses395
. To date, it is unknown to what exten~ IFN-y produced by B cells is 

. 
required for Tfh cell formation including maximal expression and/or stabilization of 

· Bcl-6. 
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In the context of autoimmunity, important roles for B cells in autoantigen presentation 

to T cells have been demonstrated in NOD mice397
• 

398
. Recent clinical data has 

shown that B cell depletion with rituximab (anti-CD20 mAB) is an effective therapy 

for several T cell-mediated autoimmune diseases including multiple sclerosis, type 1 

diabetes, rheumatoid arthritis and others399
. The efficacy of B cells depletion therapy 

does not always correlate with changes in the levels of autoantibodies; this suggests 

suggesting additional roles for B cells in the regulation of T cell-mediated immune 

responses independently of autoantibody production. Thus, it is plausible that IFN-y 

produced by B cells may also contribute to the sanroque phenotype. 

The role of DCs in SLE remains uncertain. Some studies have shown a critical role 

of myeloid cells for development of autoimmunity in lupus mice models including Lyn-

1-, Fas-1
- and c-me(1

- (mice lacking the memberane tyrosine kinase c-mer) and 

B6.Sle3 mice, mainly attributed to their ability to present antigen to autoreactive T 

cells, secrete pro-iri_flammatory cytokines, promote of B cell autoantibody formation 
. . 

· and phagocytose apoptotic cells360
• 

400
-
402

. A recent study by Teichmann et al. 

showed that in MRL1
P' mice, DCs are dispensable for the initial activation of B and T 

cells, but are reqµired to promote expansion _and differentiation of T cells as the 

disease progresse~; the net effect of DC depletion ·was amelioration of disease403
. 

Myeloid cell dysregulation is likely to play a role in sanroque pathology, if only 

because of the extensive expansion of . DCs, monocytes and macrophages in 

sanroque. There· is also an intriguing link describ~d between IFN-y, myeloid cell 

activation and lupus. IFN-y can stimulate myeloid cells to release BAFF334
, a well­

known trigger of B cell activation and lupus disease 120
. In turn, BAFF can induce the 

differentiation of T helper cells to release more IFN-y .. lFN-y, in a positive feedbac~ 
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loop, is likely to sustain myeloid cells proliferation/activation and BAFF production334
· 

360
. In lupus-like Lyn-1

- mice, IFN-y and BAFF further amplify activation and survival of 

self-reactive B cells clones leading to autoimmunity and organ damage360
· 

404
• 

405
. 

However, Lyn-1- mice do not show increased Tfh cells (Tarlinton, unpublished data), 

suggesting that IFN-y signaling in myeloid cells may exacerbate but cannot initiate 

an overactive Tfh pathway. 

IFN-y/lFN-yR signaling lower the threshold for T cell 

differentiation to Tfh eel Is 

Sanroque pre-Tfh and Tfh cells cells express Bcl-6 above the amounts seen in wild­

type T cells, and this Bcl-6 overexpression is dependent on IFN-y signaling. Thus we 

concluded that excessive IFN-y signaling could enhance Tfh differentiation. It is 

unclear if physiolqgical levels of IFN-y seen in the context of · immunization or 

. . 

irif~ction play a role in promoting Tfh respon~es. Our in vitro cultures with IFN-y mAb 

confirms and extenqs previous w·ork showing rlFN-y could induce Bcl-6 expression in 

vitro in Jurkat cells and in human . ex vivo T cell cultures374
, but whether this is of 

relevance in vivo remains u.nknown. Adoptive transfer of sanroque T cells sufficient 
. 

or deficient in IFN-yR into Rag1-1
- mice demonstrated a requirement for IFN-y to 

sustain Bcl-6 expression in vivo. Nevertheless, we only observed_ minimal reduction 

in Tfh formation _when we immunized IFN-f'- mice with a foreign antigen - SRBC . 

' 
-. During chronic LCMV infection, it has been shown that Th1 cells could convert into 

Tfh cells suggesting that chronic antigen exposure led to prolonged TCR stimulation 

and sustained Bcl-6 expression406
. In an analogous manner we could speculate· that 
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in the presence of persistent self-antigens (i.e. continued antigenic stimulation), 

excess IFN-y produced by sanroque T cells enhances Bcl-6 expression, leading to 

more na"ive T cells being primed to differentiate into Tfh cells. This lowered threshold 

for Tfh cell differentiation would in turn promote the anti-self B cell response. It is 

possible that similar effects might be observed in response to viruses that elicit 

potent IFN-y responses, but not in response to antigens that may not reach the 

threshold levels of IFN-y production to increase Bcl-6 levels. It would be interesting 

to compare the total amount of IFN-y produced by recently activated T cells in 

response to a range of immunogens and adjuvants. 

We also observed that IFN-y promotes proliferation of all effector cells. sanroque 

lfngt1- mice showed decreased proliferation of na·ive and effector cells in_cluding Tfh 

precursors. Nevertheless, and for reasons we do not fully understand, deficiency in 

IFN-y did not reduce T cell survival as shown by comparable percentages of pro­

apoptotic cells amongst the different CD4+ T cell subsets. 

Why do sanroque . mice but not Roquin·1- mice develop 
. 

autoimmunity? 

Unlike homozygosity for Roquinsan, genetic ablation ·of the entire ROQUIN protein 
. . 

-(comprised of RING and ROQ domains; a CCCH-type zinc finger and a praline-rich 

domain) does not cause an autoimmune phenotype254
. Why does a single 

substitution within ROQUIN's RNA-binding ROQ domain - M199R - cause such 

severe dysregulation of Tfh cells and autoimmunity thpt cannot be recapitulated by 
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the loss of ROQUIN protein? Previous work including that from our laboratory 

showed that ROQUIN localized to cytoplasmic stress granules and P-bodies to bind 

to target mRNAs such as to promote mRNA degradation248
• 

249
• 

253
. ROQUINM199

R can 

still localize to stress granules, but it fails to repress its target mRNA leading to 

overexpression of some mRNAs including ICOS and IFN-y, which contribute to the 

lupus-causing accumulation of Tfh cells. We hypothesize that "san" allele may 

represent a "niche-filling" loss- of-function allele that selectively inactivates the 

normal mRNA-regulating function of ROQUIN but preserves its scaffold function, 

thus preventing MNAB (encoded by Rc3h2) protein, the only ROQUIN paralogue in 

mammals, from compensating and repressing shared target mRNAs407
. We have 

recently-generated mice lacking the RING domain of ROQUIN. These RoquinRtNGLEss 

mice express a truncated ROQUIN protein that fails to localize to stre~s granules 

and are phenotypically similar to Roquin-1
- mi~e. Unlike the M199R ROQ mutation, 

RoquinRtNGLEss exerts a minimal effect on /cos mRNA stability and does not increase 

Tfh cell numbers407
. We have also generated MnabRtNGLEss mice; MNAB RING 

deficiency alone does not caus~ an observable T cell phenotype407
. By contrast, 

mice doubly defe,ctive in ROQUIN and MNAB in T cells (MNAB and ROQUIN 

RINGLESS) failed to repress ICOS mRNA and had elevated numbers of Tfh cells 

and GCs407
. ROQUIN and MNAB appear · to be ·overlapping functions and can 

compensate for each other. The RING --deleted form of ROQUIN in RoquinRtNGLEss 

mice fails to localize to stress granules and allows compensation by MNAB. By 

contrast, Roquinsan still locanzes to stress granules, . and despite being unable to 

degrade mRNA,-we speculate that it retains important protein scaffold functions that 

prevent MNAB compensation. 
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Another piece in the puzzle is our recent observation of ROQUIN's ability to interact 

with and inhibit AMP-activated protein kinase (AMPK), resulting in mTOR 

activation408
. Unrestrained AMPK activation in RoquinRINGLESS mice significantly 

dampens Tfh formation. Presumably, given that sanroque mice express an intact 

RING domain, it is possible that ROQUIN M199R preserves the AMPK inhibitory 

function, further amplifying the aberrant Tfh formation. 

Roquinsan failed repression of lfng mRNA leads to excessive IFN-y production. 

Although I have not tested the direct interaction of lfng mRNA with ROQUIN due to 

time constraints, I would expect that lfng mRNA is repressed by ROQUIN via a 

mechanisms analogous to that described for /cos - through direct binding and 

induction of mRNA decay. Increases in both lfng and /cos mRNA transcripts are 

likely to contribute to the excessive Tfh phenotype. It will be important nevertheless 

to test experimentally that ROQUIN binds to lfng mRNA and represses it directly. 

Plasticity of Tfh and Th1 ~.ells 

Amongst the important questions in this field is whether Tfh cells represent a T cell 
. . 

subset derived directly from a na"ive T cell , or whether they develop from other 

effector subsets ·such as Th 1, Th2 and Th 17 that have received appropriate 
. 

additional signals from B cells. Two recent studies have shown that Tfh 
. ' 

--differentiation starts very early - at the first or second cell division ·of _cp4+ T cells (2 

days after LCMV infection), immediately after DC priming and facilitated by DC­

derived ICOS signals 164
• 

165
. These results suggest that Tfh cells are derived directly 
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from na·1ve T cells and that Tfh differentiation starts concurrently with other cell 

lineages 164
· 

165
. Nevertheless, it is still possible that some Tfh cells emerge from other 

T cell effectors; this would be consistent with the growing appreciation that Tfh cells 

are heterogeous and can secrete large amounts of the signature cytokines of Th 1 

and Th2 effectors, such as IFN-y and IL-4, respectively, in the context of infections291
• 

409
• 

410
. Some support for the existence of plasticity between Tfh and other T cell 

subsets has also been provided by recent ChlP-Seq analysis, showing positive 

epigenetic markings on Tbx21, Gata3 and Rare in ex vivo Tfh cells and vice versa 

(on bc/6 in non-Tfh cells)411
. This suggests that Bcl-6 was induced in Th1, Th2 and 

Th17 cells and that these cells could be reprogrammed or converted into Tfh cells. In 

human . peripheral blood, CXCR5+ Tfh cells also express chemokine receptors that 

are characteristic of different T cell subsets: CXCR3, CCR4, and CCR6, 

characteristic of Th 1, Th2 and Th 17 cells, respectively 158
. An example of T cell 

conversion has also been shown in the gut: Treg cells can convert to Bcl6+ Tfh cells 

under inflammatory conditions in Peyer's patch412
, downregulating FoxP3. Th1 cells 

. . 

have also been shown to convert into Tfh cells in the context of chronic LCMV 

infection406
. 

Further examples .of coexpression of different effector cytokines and conversion of 

one T cell subset to another have also .been demonstrated in autoimmune models. 

For example, purified Th17 cells could switch .to Th1 cells (expressing T-bet and 

· secreting IFN-y) when transferred into NOD/~CID mice upon induction of 

autoimmune diabetes413
. IL-17 and IL-4-producing Th2 cells that coexpress GATA3 

and RORyt have been identified in the influx of inflammatory .leukocytes and 

implicated in the exacerbation of chronic allergic asthma414
. Therefore, the 
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relationship between Tfh cells and other T cell subsets appears complex and 

modulated by multiple factors including tissues analyzed, tolerance status and 

microenvironment in general. 

Clinical use of monoclonal antibodies against IFN-y 

Systemic autoimmune disease such as lupus and rheumatoid arthritis are 

progressive, leading to severe organ dysfunctions, and commonly associated with 

increased mortality. Effective therapies for these diseases are limited, one of the 

major obstacles being disease heterogeneity. There are different mechanisms for 

SLE disease initiation with various effector T cell subsets being implicated in different 

pathogenic routes. Thus, it is likely that different subsets of patfents may b~ 

responsive to different therapeutic strategies: For example, IL-6, IL-17, IL-23 and IL-

21 derived from Th1 ?-associated cells have been implicated in SLE pathogenesis258
· 

· 
415 

. . Here, we propose a mechanism by which excessive IFN-y triggers SLE by 

promoting pathogenic accumulation of Tfh · cells and driving spontaneous GC 

formation that leads to autoantibody formation. It is noteworthy that our blockade '. 

experiments using anti-lFN-y (Chapter 4) had therapeutic benefit in sanroque mice. 

Anti-lFN-y mAb are currently in Phase I clinical trials for SLE. Likewise, ICOSL, 

CD40-CD40L, and IL21 R-Fc blocking treatments in mice and human patients 
' . 

showed a certain therapeutic beneficial with some improvement in disease activity; 

- the main effects were a · decreased in pathogenic autoantibody formation and 

immune-complex mediated glomerulonephritis. All these treatments have direct or 

indirect blocking effects on Tfh cell numbers or function (i.e. the delivery of Tfh­

derived signals to B cells), strongly sugges-ting a causative role of Tfh in SLE 
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development259
· 

416
-
419

. Given the prominent role for IFN-y in fighting infection, great 

caution is also needed because complete I FN-y blockade may cause 

immunodeficiency and inability to clear viruses and intracellular bacteria. For 

example, patients with genetic deficiencies in IFN-yR develop disseminated 

tuberculosis or atypical mycobacterial infections. Deficiencies in STAT1 also lead to 

disseminated mycobacteriosis early in life along with several mycobacterial and viral 

infections such as Bacillus Calmette-Guerin (BCG) infection, herpetic skin infection 

and interstitial pneumonia by cytomegalovirus420
-
422

. 

This study provides new insights on how blocking IFN-y may act to delay progression 

in lupus patients. An understanding of the underlying molecular mechanisms of 

dysregulation of cytokine signaling in lupus disease will allow us to--identify nove_l 

biomarkers to stratify SLE patients accoraing to the disease-causing signaling 

pathways and predict responses to different treatments. Circulating Tfh-like cells and 

~erum I FN-y may turn out to be useful bi~markers for identification of SLE patients 

with an overactive Tfh/GC pathway, -which appears to correlate with disease 

severity232
. The insights gained in this thesis into novel mechanisms by which IFN-y .. 

. 
contributes to SLE dev~lopment may help to refine the readouts and patient 

. . 
selection in SLE clinical trials using I FN-y blockade. 
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Appendix 

Supplementary table for Chapter 1 

Appendix 1.1. Criteria for the classification of SLE. 

The proposed classification is based on 11 criteria. For the purpose of identifying 

patients in clinical studies, a person shall be said to have SLE if any 4 or more of the 

11 criteria are present, serially or simultaneously, during any interval of observation. 

Criteria 

1 Malar rash 

2 Discoid rash 

Definition 

Fixed erythema, flat or raised, over the malar eminences, 

tending to spare the nasolabial folds. 

--
Erythematous raised patches with adherent keratotic scaling and 

follicular plugging; atrophic scarring may occur in older lesions. 

3 Photosensitivity I Skin rash as a result of unusual reaction to sunlight, by patient 

4 I Oral ulcers 
\ 

5 I Arthritis 

6 Serositis 

-· _ _:., _ __ ~~ 'ti 

• 

history or physician observation. 

Oral or nasopharyngeal ulceration, usually painless, observed by 

physician. 

Nonerosive arthritis involving 2 or more peripheral joints; 

characterized by tenderness, swelling, or effusion. 

a) Pleuritis--convincing history of pleuritic pain or rubbing heard . 
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Renal disorder 

Neurologic 

disorder 

Hematologic 

disorder 

' 

• 

by a physician or evidence of pleural effusion 

OR 

Appendix 

b) Pericarditis--documented by ECG or rub or evidence of 

pericardia! effusion. 

a) Persistent proteinuria greater than 0.5 grams per day or grater 

than 3+ if quantitation not performed 

OR 

b) Cellular casts--may be red cell, hemoglobin, granular, tubular, 

or mixed. 

a) Seizures--in the absence of offending drugs or known 

metabolic derangements; e.g., uremia, ketoacidosis, or 

electrolyte imbalance 

OR 

b) Psychosis--in the absence of offending drugs or known 

metabolic derangements, e.g., uremia, ketoacidosis, or 

electrolyte imbalance. 

a) Hemolytic anemia--with reticulocytosis 

OR 

b) Leukopenia--less than 4,000/mm<>3<> total on 2 or more 

occasions 

OR 
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10 I Immunologic 

disorder 

11 Antinaclear 

antibody 
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Appendix 

c) Lyphopenia--less than 1,500/mm<>3<> on 2 or more 

occasions 

OR 

d) Thrombocytopenia--less than 1 00,000/mm<>3<> in the 

absence of offending drugs. 

a) Positive LE cell preparation 

OR 

b) Anti-DNA: antibody to native DNA in abnormal titer 

OR 

c) Anti-Sm: presence of antibody to Sm nuclear antigen 

OR 

d) False positive serologic test for syphilis known to be positive 

for at least 6 months and confirmed by Treponema pallidum 

immobilization or fluorescent treponemal antibody absorption 

test. 

An abnormal titer of antinuclear antibody by 

immunofluorescence or an equivalent assay at any point in tin1e 

and in the absence of drugs known to be associated with "drug­

induced lupus" syndrome . 
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Appendix 

Supplementary table-°for Chapter 2 

Appendix 2.1. Scoring of nephritis severity. 

Kidney nephritis was scored according to the indicated scale of disease severity. 

Score 

0 

1 

2 

... 3 

4 

Glomeruli 

Cells 

NAO 

Hypercellularity only 

Matrix 

NAO 

Mesangial 

matrix increase 

Proliferative or fibrinoid GN Mild scarring 

without crescents 

GN with fibrinoid or crescents Moderate 

in < 50% of glomeruli scarring 

GN with fibrinoid · or crescents Fibrous 

in > 50% of glomeruli obliteration 

NAO, no abnormality detected 
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Tubulointerstitium 

Cells Matrix 

NAO NAO 

Very mild Very mild 

Mild Mild 

Moderate Moderate 

Severe Severe 
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