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Abstract 

Anthracyclines, such as doxorubicin and daunorubicin, are powerful chemotherapy 

agents, whose use is limited due to the onset of potentially fatal cardiotoxic side effects. 

This cardiotoxicity is complex, manifesting as arrhythmogenesis and heart failure. 

Several proteins important in intracellular Ca2
+ signalling have been identified as drug 

binding targets, including the cardiac ryanodine receptor Ca2
+ release channel (RyR2), 

the Ca2
+ binding protein calsequestrin (CSQ2) and the Sarco/Endoplasmic Reticulum 

Ca-ATPase (SERCA2A). The drug metabolites are believed to be important in the 

devastating cardiac effects of these drugs but their actions have been poorly 

characterized. Previous work showed that the anthracycline daunorubicin modulates 

RyR2 and that its effects were attributable to ligand binding and thiol oxidation. 

The functional effect of doxorubicin and its metabolite, doxorubicinol on RyR2 was 

assessed by adding clinically relevant drug concentrations to single RyR2 channels in 

lipid bilayers. Both drugs caused biphasic modulation of RyR2 activity where there was 

an early increase in channel activity followed by an inhibitory phase which persisted for 

the lifetime of the experiment. RyR2 channel activation, but not inhibition, could be 

reversed by drug washout, typical of a ligand binding effect. This was supported by 

affinity chromatography experiments showing that doxorubicin and doxorubicinol bind 

to RyR2. Conversely, the irreversible nature of the inhibitory effect suggested a non

ligand binding effect. Treatment with doxorubicin/doxorubicinol reduced the number of 

thiols on RyR2, indicative of a drug-induced thiol-modification such as oxidation. 

Together, these results support the earlier hypothesis that initial activation of RyR2 by 

anthracyclines is due to ligand binding, while the inhibitory effect is due to direct thiol

oxidation. 

In addition to modulating RyR2, doxorubicinol was found to alter other aspects of SR 

Ca2
+ handling. For the first time, the effect of doxorubicinol on the luminal 

Ca
2
+ sensitivity of single RyR2 channels has been assessed. Doxorubicinol abolished 

the response of RyR2 to changes in luminal Ca2
+. Additional experiments revealed that 

the abolition of luminal Ca2
+ sensing was due to an interaction between doxorubicinol 

and CSQ2. Furthermore, in intact SR vesicles, a decrease in the Ca2
+ uptake rate 

showed that doxorubicinol inhibits the function of SERCA2A. This effect could be 

prevented by pre-treatment with the thiol protective agent dithiothreitol , indicating that 
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Abstract 

doxorubicinol ' s inhibition of SERCA2A was due to thiol oxidation. Hence 

doxorubicinol causes substantial dysfunction of SR Ca2+ handling proteins, affecting 

both Ca2+ release and Ca2+ uptake pathways. 

To determine the effects of doxorubicinol in an intact cell, cardiomyocytes were 

isolated from adult mouse hearts and loaded with the Ca2+ indicator Fluo-4 AM. Pre

treatment with doxorubicinol reduced cytoplasmic Ca2+ transients, depleted SR load and 

inhibited SERCA2A and the Na+- Ca2+ exchanger. Furthermore, doxorubicinol-treated 

myocytes exhibited more spontaneous Ca2+ release events and had a higher resting Ca2+ 

concentration. These effects resulted in an overall impairment in contractile function . 

This project provides novel insight into the cellular mechanisms of anthracyclines and is 

the most thorough characterization of the effects of these drugs on cardiomyocyte 

Ca2+ handling to date. The results suggest that by targeting multiple Ca2+ handling 

proteins, anthracyclines severely disturb cardiomyocyte Ca2+ homeostasis and that these 

effects may have an important role in the onset of anthracycline-mediated arrhythmia 

and heart failure. 
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Chapter One 

1.1 Muscle function 

There are 3 types of muscle, including skeletal, cardiac and smooth, which together 

make up approximately 50% of the body's total mass. The muscular system performs 

four core functions including 1) skeletal movement, 2) maintenance of posture and joint 

stabilization, 3) storage and movement of substances through the body and 4) heat 

generation. The ability of muscle tissue to perform these functions relies on several 

innate characteristics including excitability, contractility, extensibility and elasticity. 

Although all three muscle types share these core characteristics, they differ in their 

location, anatomy and in their control by the nervous and endocrine systems. Some of 

the defining characteristics and specific functions of the three muscle types are as 

follows: 

Cardiac muscle: Cardiac muscle is striated and is located in the heart. The purpose of 

cardiac muscle is to allow the heart to effectively function as a pump, distributing 

oxygen-enriched blood to the systemic circulation. Cardiac muscle is not under 

voluntary control but rather contains a subset of specialized fibres that are autorhythmic 

and facilitate the rapid spread of excitation through the heart. This process can be 

influenced by neural and endocrine factors. 

Skeletal Muscle: Like cardiac muscle, skeletal muscle is striated. It is primarily found 

attached to the bones of the skeleton, functioning in body movement, posture and joint 

stabilization. Skeletal muscle is voluntarily controlled via the somatic nervous system, 

though some fibres, for example those involved in posture and joint stabilization, are 

under subconscious control. 

Smooth Muscle: Smooth muscle lacks striations. It is found in the lining of hollow 

organs and other structures like blood vessels and respiratory airways. Like cardiac 

muscle, smooth muscle is autorhythmic and is not under voluntary control. Smooth 

muscle is also regulated by various neural and endocrine factors. 

The primary focus of this thesis will be cardiac muscle, although some aspects of 

skeletal muscle physiology, mainly at the cellular level, will be discussed occasionally. 
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1.2 Cardiac anatomy 

The heart is located in the thoracic cavity (Figure 1. lA), enclosed within a double 

walled sac called the pericardium. The outer layer of the pericardium is the fibrous 

pericardium, a layer of dense connective tissue which anchors the heart in place, 

limiting its range of motion and preventing the heart from over filling. The inner layer, 

or serous pericardium, is itself composed of two layers, between which lies the 

pericardial cavity. The inner layer of the serous pericardium is continuous with the 

epicardium, which is the most superficial layer of the heart itself. Both the epicardium 

and endocardium, the inner most layer of the heart, are primarily composed of 

connective tissue. Sandwiched between them is the myocardium which constitutes the 

bulk of the heart and is the layer that actually contracts and relaxes during the heartbeat 

(Figure 1. lB). The myocardium is extensively vascularized by the coronary circulation, 

which provides the heart with the persistent blood supply it requires to function (Katz, 

2006) . The physiology and function of the contractile muscle that makes up the central 

myocardial layer of the heart is the subject of this thesis. 

1.3 

1.3.1 

Cardiac physiology 

The intrinsic cardiac conduction system 

The anatomy of cardiac muscle favours rapid intercellular communication. Individual 

fibres are connected in series and in parallel by intercalated discs which provide a 

mechanical linkage between the cells. Gap junctions facilitate electrical coupling 

between cells by providing a low-resistance passage for ions. Electrical coupling allows 

the cells of a chamber to act as a syncytium, ensuring an entire chamber will contract at 

once rather than pockets of cells within a chamber responding at difference time points. 

This synchronicity is a vital aspect of cardiac function. 

While the gap junctions permit coordinated contraction of the chambers, the sequence of 

contraction and the actual generation of excitation are attributable to the specialized 

fibres of the cardiac conduction system (Figure 1.2A). The action potential originates in 

the autoryhythmic cells of the sinoatrial node (SA node). These cells are termed 

autorhythmic because they are self-excitable, not requiring any external stimulus to 

undergo depolarization. 

3 



.j::,, 

A 

Left ventricle 
I 

Pulmonary artery 

B 

Epicardium 

Myocardium 
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While such cells exist in other regions of the heart, including the atrioventricular node 

(AV node), the SA node has the fastest rate of depolarization and therefore sets the 

frequency of excitation in the heart, or heart rate (Bers, 2001). The ionic currents 

contributing to SA node activity and other cardiac action potentials will be discussed in 

more detail in Section 1.3.3. From the SA node the depolarization travels throughout the 

atria before reaching the AV node. Due to the slower conduction speed of the AV node 

there is a brief pause here before the signal moves rapidly through the AV bundle, the 

right and left bundle branches and finally the Purkinje fibres from where it propagates 

through the ventricular contractile fibres causing contraction of the ventricles (Figure 

1.2A). 

1.3.2 Blood flow through the heart 

The sequence of excitation set by the cardiac conduction system (Section 1.3.1) means 

that in a normal heart, immediately following SA node depolarization the atria are 

stimulated, followed rapidly by ventricular stimulation (Figure 1.2B). Atrial stimulation 

causes the two atria to contract, ejecting blood into the ventricles. The pause in signal 

conduction at the AV node, reportedly about 0.16 s, allows the atria to finish contracting 

before ventricular contraction is initiated (Hall , 2010). This is important since early 

ventricular stimulation would cause contraction of the ventricles before they are fully 

refilled. Coordinated ventricular contraction causes 1) from the right ventricle, 

deoxygenated blood to travel to the pulmonary circulation to be oxygenated and unload 

carbon dioxide and 2) from the left ventricle, oxygenated blood to travel through the 

systemic circulation where it delivers oxygen and collects carbon dioxide from all the 

tissues of the body. In essence then, the heart is actually composed of both an atrial 

syncytium and a ventricular syncytium. For the heart to effectively supply blood to the 

entire circulation it is essential that this coordinated and synchronous contraction is 

maintained. Abnormalities in the electrical signalling pathway can alter the rhythm and 

synchronicity of the heart, with severe consequences for cardiac function . 

1.3.1 Cardiac action potentials 

Cardiac action potentials result from the complex gating of many different types and 

subtypes of ion channels, principally involving the movement of Na+, Ca2+ and K+ ions 

across the sarcolemmal. 
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Figure 1.2 - Cardiac physiology (A) Cardiac conduction system. (1) The action potential 

originates in the sinoatrial node and propagates along the atrial muscle fibres, before arriving 

at the atrioventricular node (2). Here there is a brief pause, delaying signal conduction 

through the ventricles. From the AV node the signal moves through the atrioventricular 

bundle (3), along the right and left bundle branches ( 4) and finally the Purkinje fibres (5) 

before propagating along ventricular muscle fibres (Germann and Stanfield, 2004). (B) 

Blood flow in the cardiac cycle (i) Diastole - chambers are relaxed, deoxygenated blood 

returning from the body via the vena cava enters the right atrium. Oxygenated blood from 

the lungs enters the left atrium via the pulmonary veins. (ii) In systole, the atria contract first 

forcing the blood from the atria into the ventricles. (iii) Ventricles contract pumping blood 

through the pulmonary and systemic circulations via the pulmonary artery and aorta, 

respectively (OpenStax College). 

6 



B 

1 

.• 

A 

G) Sinoatrial (SA)---....__ 
node (pacemaker) 

lnternodal pathway 

@ Atrioventricu lar ----i. 
(AV) node 

@Atrioventricular (AV) 
bundle (bundle of His) 

@ Right and lett ---===::s;~=--=----~ !"lo= 
bundle branches 

11 

Chapter One 

-------Aorta 

------ Superior vena cava 

Right ventricle 

111 

7 



Chapter One 

Any discussion of cardiac action potentials is complicated by the fact that the waveform 

of the action potential varies substantially, depending on the region of the heart being 

discussed (Figure 1.3). For simplicity, in this thesis only the action potential waveforms 

of the SA node and the myocardial layer of the ventricular muscle tissue will be 

discussed. 

1.3.1.1 Sinoatrial node action potential 

The principle function of the SA node is the initiation of the action potential, hence it 

has practically no contractile ability (Difrancesco, 2010). The resting membrane 

potential of these cells is approximately -60 m V. However, unlike non-autorhythmic 

fibres of the heart (in ventricular muscle for example), SA node cells do not have a 

stable, resting membrane potential. Instead, following repolarization there is gradual 

depolarization of the cell caused by Na+ and K+ influx via a "funny" current (11). Ir is 

activated upon repolarization of the cell (reviewed in Hille, 2001; Baruscotti et al., 

2010; Difrancesco, 2010), causing slow depolarization until threshold is reached for the 

opening of firstly, T-type Ca2+ channels and secondly, L-type-Ca2+ channels (LTCC). 

Upon activation of LTCC, the threshold for action potential generation is reached with a 

large influx of Ca2+ (phase 0) (Figure 1.3). Repolarization occurs when outward K+ 

channels open and there is inactivation or reduced permeability of LTCC and 11 (Katz, 

2006) . Because the length of 11 sets the duration between action potentials, and therefore 

between heart beats, it is also referred to as the pacemaker current and it is regulated by 

the autonomic nervous system. 

1.3.1.2 Ventricular action potential 

The resting membrane potential of ventricular myocytes is more negative than SA node 

cells, at approximately -90 m V, due to K+ channels being open at this time (-90m V is 

close to the reversal potential for K+) (phase 4) (Figure 1.3B). Initiation of an action 

potential requires sufficient depolarization, most likely from an adjacent cell, to increase 

the membrane potential to about -70 mV, the threshold for opening of Na+ channels. As 

Na+ channels open the membrane potential becomes further depolarized, which activates 

more Na+ channels in a positive feedback mechanism. At the same time, K+ channels 

are shut off. Together, these effects cause the rapid upstroke of phase 0 of the 

ventricular action potential. 
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As the membrane potential depolarizes to positive values, it approaches the reversal 

potential for Na+ and moves away from the reversal potential for K+, reducing the 

driving force for Na+ entry and increasing the driving force for K+ efflux. At the action 

potential peak, inward current and outward current are equal (Bers, 2001). 

Phase 1, or early repolarization, occurs as more Na+ channels are shut and there is a 

brief activation of two repolarising currents including a transient outward K+ current 

and a er current. The initial repolarization phase ends with the inactivation of these 

repolarizing currents and the membrane potential plateaus (phase 2) . During this time 

there is influx of Ca2+ via the LTCC and efflux of K+ via delayed rectifier channels 

meaning that inward and outward current are approximately equal, causing the plateau 

in membrane potential (Figure 1.3B). Late repolarization occurs as there is deactivation 

of LTCC and further increase in outward current via the K+ channels causing 

repolarization of the cell back to resting membrane potential. 

Once an action potential has occurred there is a refractory period in which a new action 

potential cannot be initiated. During the absolute refractory period, which includes 

phases 1, 2 and most of phase 3 of the action potential, no stimulus of any magnitude is 

able to initiate an action potential. As phase 3 progresses and the membrane potential is 

more repolarized there is a relative refractory period. At this time an action potential can 

be initiated but it requires a larger stimulus to reach threshold then what is required at 

the end of phase 4. The presence of such a long refractory period, that exists for almost 

the entire period of contraction is likely to be a protective mechanism, preventing the 

heart from beating prematurely before the chambers have finished refilling. The 

refractory period is also important in preventing the propagation of aberrant electrical 

signals (re-entry) which may be arrhythmogenic. 

1.4 Ultrastructure of cardiac muscle fibres 

Depending on the species and the region of the heart, approximately 45-60 % (Bers, 

2001) of the total cardiomyocyte volume consists of myofilaments, the contractile 

machinery of the cell. These proteins, including myosin (thick filaments) and actin (thin 

filaments) are what give skeletal and cardiac muscle their striated appearance. Filaments 

are arranged within a sarcomere, the functional contractile unit of striated muscle 

(Figure 1.4 ). A sarcomere extends the distance between two Z-discs, with the different 

shading within a sarcomere reflecting the arrangement of thin and thick filaments (Katz, 
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2006). The darker area is the anisotropic (A) band and corresponds to the length of the 

thick filaments. Within the A-band there are areas where the thick filament overlaps 

with the thin filaments, and a central area (H-zone) where there is no overlap (Figure 

1.4B). The outer, lighter coloured area is the isotropic (I) band which is composed only 

of thin filaments (Jenkins et al., 2006). The M-line at the centre of each sarcomere 

contains various supporting proteins which connect neighbouring thick filaments. The 

structural protein titin, extends through the thick filament, from the M-line to the Z-line 

(Bers, 2001; Katz, 2006). 

The next largest component of cardiomyocytes is mitochondria which occupy about 

35% of the total cell volume (Bers, 2001; Katz, 2006), reflecting the fact that cardiac 

muscle relies almost exclusively on aerobic metabolism for its energy demands. 

Another prominent feature of the cardiomyocyte is the sarcoplasmic reticulum (SR). 

The SR is a muscle specific, Ca2
+ storage organelle. This membrane bound 

compartment comes in close contact to, but is not continuous with, the surface and t

tubular membranes. The region of the SR which forms junctions with the t-tubule or, to 

a lesser extent, the sarcolemmal membrane is the junctional SR with the remainder 

mainly existing as extended or corbular SR (Jorgensen et al., 1993). 

1.4.1 Mechanism of force generation in EC coupling 

First described in 1954 (Huxley and Niedergerke, 1954; Huxley and Hanson, 1954) the 

sliding filament theory proposes that muscle tension is created when there is an increase 

in the overlap between thick and thin filaments, causing the sarcomeres to draw closer 

together and leading to cell shortening, or contraction. During this process the physical 

length of the filaments does not change, only the overlap between the two. This is 

facilitated by crossbridge formation between myosin and actin. During relaxation, the 

binding site on actin for myosin heads is obscured by the tropomyosin protein, which 

itself is bound to a complex of 3 troponin proteins (Katz, 2006). Ca2
+ released from the 

SR, binds to troponin, altering its interaction with tropomyosin. This shifts tropomyosin 

from its site on actin, allowing myosin heads to access binding sites on actin. The 

interaction of actin and myosin permits crossbridge cycling, where the myosin heads 

rotate and pull the actin protein toward the M-line, causing the sarcomere to shorten 

(Figure 1.4B) (Huxley, 2004). 
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Figure 1.4 - Cardiac muscle contractility (A) Ultrastructure of cardiac muscle fibres. 

One full sarcomere is displayed centrally (bordered by z-lines) with adjacent sarcomeres on 

each end. Thin filaments (blue shading) and thick filaments ( orange shading) are distinct by 

their lighter and darker shading, respectively. Modified from (Fawcett and McNutt, 1969) 

(B) Sliding filament theory of striated muscle contraction. Increasing overlap between thin 

and thick filaments is shown as the muscle progressively contracts from (a) total relaxation 

to (c) maximal contraction (Jenkins et al., 2006) 
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When the cytoplasmic Ca2
+ concentration decreases, Ca2

+ no longer binds to the 

troponin complex and tropomyosin returns to its site blocking the interaction between 

actin and myosin. Since the myosin heads can no longer interact with their binding site 

on actin, the filaments return to their original positions, causing the sarcomere to re

lengthen and the muscle fibre to relax. 

A relationship exists between the length of the sarcomere at rest and the maximum force 

which can be generated. At an optimal sarcomere length, the maximal number of 

myosin crossbridges can form and maximal force will be generated upon stimulation 

(Gordon et al., 1966). In skeletal muscle, most resting muscle fibres are maintained at 

the optimal length (between 2 and 2.2 µm as depicted in Figure 1.5) by their attachment 

to the bone. In the heart however, such an arrangement does not exist. Rather, the 

resting length of cardiac sarcomeres is dictated by the amount of blood in the chamber 

just before contraction (i.e. the end-diastolic volume) (Katz, 2006). Healthy cardiac 

muscle only operates on the ascending limb of the length-tension curve because the high 

parallel elasticity of the sarcomeres prevents them from lengthening to the same extent 

as in skeletal muscle (Bers, 2001; Vinten-Johansen et al., 2004). Because the resting 

sarcomere length is shorter than the optimal length, the heart can respond dynamically 

to variation in the end-diastolic volume. Additionally, as sarcomere length increases, the 

myofilaments display an increased sensitivity to Ca2
+, thereby potentiating the length

tension relationship (Allen and Kentish, 1985). These factors and others allow the heart 

to respond accordingly when there is an increased demand for oxygen delivery to the 

systemic circulation, during exercise for example. 

1.5 Excitation-contraction coupling in cardiac muscle 

As stated in Section 1.3.2, rapid electrical signalling via the cardiac conduction system 

precedes the coordinated contraction of cardiomyocytes, causing the heart to beat. The 

process linking the electrical signal with the contractile event, is excitation-contraction 

(EC) coupling and it consists of a complex cascade of events (reviewed in Bers, 2002b ). 

An overview of EC coupling is presented below, but many aspects of the process will 

be discussed in greater detail later in this chapter. 
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Figure 1.5 - Length-tension relationship in striated muscle. In skeletal muscle (black 

line), as the sarcomere length increases to - 2µm there's an optimal degree of overlap 

between actin and myosin which will allow maximum crossbridge formation and muscle 

tension. As the sarcomere is stretched there's less overlap between actin and myosin with 

subsequent loss of tension. Under physiological conditions cardiac muscle (green line) only 

operates on the ascending limb of the curve. The steeper curve for cardiac muscle, 

particularly at between 80 and 100% maximum tension (dashed lines) is thought to be due to 

increased myofilament Ca2
+ sensitivity in cardiac muscle. Adapted from (Bers, 2001). 
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After an action potential is generated in the SA node, it travels along the signal 

conduction pathway before spreading from the Purkinje fibres into the wall of the 

ventricles (Figure 1.6). For simplicity, from this point the process will be discussed in 

the context of a single ventricular myocyte. The action potential depolarises the 

sarcolemrna, and spreads down the transverse (t) tubule invaginations of this membrane, 

into the muscle fibre interior. The spread of depolarization activates the voltage gated, 

LTCC. Activation of the LTCC causes an inward Ca2+ current Uca) which activates the 

ryanodine receptor (RyR), a ligand-gated Ca2+ channel positioned on the junctional face 

of the SR Ca2+ store. Binding of Ca2+ to an activation site on the cytoplasmic domain of 

RyR causes the channel to open and release a large amount of Ca2+ into the cytoplasm 

in a process called Ca2+ -induced Ca2+ release (CICR). 

This raises the cytoplasmic Ca2+ concentration ([Ca2+]) from nanomolar to micromolar 

levels which is sufficient to activate the contractile apparatus (Bers, 2002b; Vinten

Johansen et al., 2004). Since cardiomyocytes work as a syncytium, contraction of one 

cell coincides with contraction of the entire chamber and heart (in the sequence outlined 

above) . When the cytoplasmic [Ca2+] is reduced the muscle can relax. This is primarily 

achieved by the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) which 

pumps the majority of the cytoplasmic Ca2+ back into the SR. Ca2+ extrusion via Na+ -

Ca2+ exchangers (NCX) in the sarcolemrna also significantly contributes to relaxation of 

the cell (Figure 1.6) (Bers, 2002b). The Ca2+ cycle is generally divided into two periods 

known as systole and diastole. The systolic period encompasses the time in which 

ventricular myocardium contracts and ejects the contents of the ventricle. During the 

diastolic period, the ventricular muscle relaxes and the chamber refills. In this time the 

membrane potential remains repolarized and Ca2+ is either taken back into the SR to be 

available for the next release phase, or extruded across the sarcolemrna via NCX. 

Skeletal EC coupling occurs by a similar process, in that activation of contractile 

proteins relies on a large efflux of Ca2+ from the SR, however this is not initiated by a 

process of CICR. Rather, when the LTCC senses depolarisation of the t-tubule 

membrane it undergoes a conformation change and communicates with the RyR via a 

direct protein-protein interaction. This activates the RyR and allows Ca2+ release from 

the SR to facilitate muscle contraction (Rios and Brum, 1987). 
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Figure 1.6 - Cardiac Excitation-Contraction Coupling. An illustration of a 

cardiomyocyte and the movement of Ca2+ during EC coupling (Bers, 2001). An action 

potential (originating in the SA node) spreads along the sarcolernrna and down the t-tubules 

where it depolarises the DHPR. A small influx of extracellular Ca2+ (red) activates RyR2 

and there is a large efflux of lurninal Ca2+ (blue) into the cytoplasm where it activates the 

contractile proteins. For relaxation to occur the cytoplasmic [Ca2+] (green) must be lowered. 

Most of the Ca2+ is pumped into the SR by the SER CA and some is removed from the 

myocyte by the NCX. Inset compares timescales of the cardiac action potential (AP), the 

intracellular Ca2+ transient ([Ca]i) and contraction of the cell . /ca = DHPR, dihydropyridine 

receptor; RyR2, cardiac ryanodine receptor; ATP, Ca 2+ ATPase (SERCA); NCX, Na+/Ca2+ 

exchanger 
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1.6 Sarcolemmal Ca2
+ fluxes 

In cardiomyocytes, there are a large number of ion channels, pumps and transporters 

located on the surface and t-tubule membrane, including several that contribute to Ca2+ 

movement in and out of the cell. 

1.6.1 

1.6.1.1 

L-type Ca2
+ channel 

Structure and function 

While there are several types of voltage gated Ca2+ channels, the two predominantly 

expressed in the heart are the T-type Ca2+ channel and LTCC. While the T-type channel 

is more prominent in pacemaker regions and in the signal conduction pathway, the 

LTCC predominates in ventricular myocytes. LTCCs are named for their large 

conductance and long lasting channel openings (Bers, 2001; Hille, 2001). These 

characteristics permit the large influx of Ca2+ that contributes to phase 2 of the action 

potential and activates RyR2 on the intracellular SR membrane. Other defining 

characteristics include their activation at more positive resting-membrane potentials, and 

their sensitivity to 1,4-dihydropyridines, hence their alternate name, dihydropyridine 

receptors. 

The cardiac LTCC contains 2171 amino acids with a molecular weight of 

approximately 240 kDa and has a moderate homology of 66% with the skeletal isoform 

(Mikami et al ., 1989). It is composed of four subunits, with the a 1 subunit being the 

largest and constituting the pore forming region of the channel. This subunit also 

contains the voltage-sensing segment of the channel and carries the majority of binding 

sites for regulatory agents, including second messengers and drugs (Hool and Corry, 

2007). The a1 subunit also contains binding sites for other subunits including the~. a2-

8 and y subunits. While many details are known about the interactions and specific roles 

of these auxillary subunits, this will not be discussed any further as they are beyond the 

scope of this thesis. 

The LTCC is activated by depolarization of the sarcolemma, whereas inactivation 

primarily depends on the presence of cytoplasmic Ca2+, in a Ca2+-induced inactivation 

mechanism. This is strongly supported by studies in which the rate of inactivation is 

reduced in the presence of Ca2+ chelators, or Ba2+, which has a greater conductance than 

Ca2+ when used as the current carrier, but is unable to initiate the inactivation process 
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(Hadley and Hume, 1987; Hille, 2001). It has been hypothesised that an inactivation 

mechanism mediated by Ca2+ may also serve as a defence mechanism, preventing 

pathological Ca2+ overload (Bers, 2008). Ca2+ dependent inactivation also depends on 

the presence of calmodulin (CaM) which associates via a binding site on a 1 (Zuhlke et 

al., 1999; Bers, 2008). 

1.6.1.2 L-type Ca2
+ channel modulation 

The LTCC has long been exploited as a target of antihypertensive and antiarrhythmic 

drugs including dihydropyridines (e.g. nifedipine), phenylalkylamines (e.g. verapamil) 

and benzothiazipines (e.g. diltiazem) (Mukherjee and Spinale, 1998). The channel is 

also regulated by several cellular factors. Most notably, it is a principle substrate for~

adrenergic signalling. Activation of ~-adrenergic receptors initiates a signalling cascade 

increasing the level of cyclic AMP, which in turn activates protein kinase A (PKA) 

(Lohse et al., 2003). PKA phosphorylates residues on the~ and a 1 subunits of LTCC 

which increases lea and shifts the voltage dependence of channel activation and 

inactivation to more negative values which has the effect of increasing lea (Mukherjee 

and Spinale, 1998; Bers, 2001). The functional outcomes of ~-adrenergic signalling on 

whole cell function will be discussed in more detail in Section 1.11. 

1.6.2 The Sodium-Calcium Exchanger 

The NCX is a major pathway of Ca2+ extrusion from the cytoplasm to the extracellular 

space and hence has an important role in facilitating muscle relaxation. There are three 

isoforms which have approximately 70% homology, including NCXl (which is highly 

expressed in the heart), NCX2 and NCX3 (Linck et al., 1998). NCXl is the most 

studied of the three isoforms due to its long recognized role in cardiac function (Nicoll 

et al., 1990). The full length protein contains 938 amino acids, with nine transmembrane 

regions and a large loop comprised of nearly 550 amino acids which extends into the 

cytoplasm (reviewed in Philipson and Nicoll, 2000). In cardiac muscle, NCXl appears 

to be located on all surface membranes including the t-tubules (Blaustein and Lederer, 

1999). 

NCXl current is reversible, as the exchanger works in a forward mode (Ca2+ efflux) and 

a reverse mode (Ca2+ influx). In forward mode there is an influx of three Na+ in 

exchange for one Ca2+ that is extruded from the cell, resulting in a net inward current 

ClNa1ca), In reverse mode, there is an efflux of 3 Na+ in exchange for one Ca2+ and hence 
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a net outward current. Since NCXl is electrogenic it can influence, and be influenced 

by, the sarcolernrnal membrane potential. According to (Bers, 2001) high intracellular 

Ca2+ and more negative membrane potentials (relative to the reversal potential for INa1ca) 

favour Ca2+ extrusion (forward mode). Conversely, more positive membrane potentials 

and high intracellular Na+, conditions that may occur at the peak of the action potential, 

favour Ca2+ influx (Philipson and Nicoll, 2000; Bers, 2002b). Generally NCXl appears 

to function in forward mode with its primary role being to extrude Ca2+ that had entered 

via LTCC and in conjunction with Ca2+ uptake to the SR, facilitate muscle relaxation 

(Philipson and Nicoll, 2000; Bers, 2001). The potential role of NCX in pathological 

situations will be discussed Section 1.11. 

1.7 

1.7.1 

1.7.1.1 

Sarcoplasmic Reticulum Ca2
+ fluxes 

The sarcoplasmic/endoplasmic reticulum Ca2
+ -ATPase 

Isoforms 

The SERCA pump is a member of the P-type ATPase family of ion transporters, which 

also includes the Na/K-ATPase, sarcolernrnal Ca-ATPase and the H/K-ATPase. The 

protein has a molecular weight of 110 kDa and the cardiac isoform is made up of 997 

amino acids. There are three genes encoding SERCA, including SERCAl, SERCA2 

and SERCA3 which produce at least 10 isoforms via alternative splicing (reviewed in 

Periasamy and Kalyanasundaram, 2007). SERCAl and SERCA2 products are present in 

muscle whilst SERCA3 isoforms are only known to be present in non-muscle cells. In 

adult skeletal muscle, SERCAlA is the predominant form in fast twitch muscle while 

SERCA2A predominates in slow twitch muscle. SERCA2A is the predominant isoform 

of cardiac muscle and structurally and functionally similar to SERCAlA, with about 

84% homology in their amino acid sequences (Lytton et al., 1992). 

1.7.1.2 Structure 

The first high resolution crystal structure of a SERCA pump was obtained by 

Toyoshima and colleagues (2000), illustrating the structure of SERCAlA at a resolution 

of 2.6 A. SERCA pumps are composed of 3 cytoplasmic domains which are named for 

their role in the Ca2+ transportation reaction (Figure 1.7 A). These domains include the 
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Figure 1.7 - SERCA structure and function. (A) Key features include the 3 cytoplasmic 

domains including the Phosphorylation (P) and Nucleotide (N) Binding domains, which 

together form the catalytic site of the pump. The Actuator (A) domain is thought to have a role 

in protein conformational changes. The Ca2
+ binding sites are located in the transmembrane 

(M) domain. Structure of SERCA2B from (MacLennan and Green, 2000), based (Toyoshima et 

al., 2000) (B) SERCA conformational changes during Ca2
+ translocation (MacLennan and 

Green, 2000). SERCA transitions between a high energy conformation (E1) and a low energy 

conformation (E2). At the start of cycle (1) SERCA already carries a bound ATP molecule and 

so is in the E2 conformation and is non-phosphorylated. (2) Ca2
+ binds to high affinity binding 

sites in triggering ATP hydrolysis. SERCA is in the E1 conformation. (3) ATP hydrolysis and 

subsequent phosphorylation in the P domain (E1-P) induces occlusion of the Ca2
+ binding sites. 

(4) The pump transitions to the low energy conformation (ErP) and there's a reduction in Ca2
+ 

affinity (5), allowing Ca2
+ to be released to the SR lumen. (6) Water enters the catalytic site 

from the SR lumen and hydrolyses the phosphorylated residue (E2). (1) ATP once again binds 

in the cytoplasmic N domain, converting the pump back to the E 1 conformation. 
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phosphorylation (P) domain, the nucleotide binding (N) domain and the actuator or 

anchor (A) domain (MacLennan and Green, 2000; Kuhlbrandt, 2004). Together the N 

and P domain form the catalytic site of the pump while the A domain is thought to have 

a role in the transmission of major conformational changes that occur during the 

transport of Ca2
+. The pump is anchored to the SR membrane via a membrane (M) 

domain which consists of 10 transmembrane helices and contains the binding sites for 

two Ca2
+ ions (Toyoshima et al., 2000). 

1.7.1.3 Mechanism of Ca2
+ Uptake 

SERCA transitions between a high energy conformation (E1) and a low energy 

conformation (E2), both of which are also phosphorylated during the Ca2
+ translocation 

cycle, in which two Ca2
+ ions are transported for each ATP molecule that is used. At the 

start of the cycle, SERCA already carries a bound ATP molecule and so is in the high 

energy conformation and is non-phosphorylated. A summary of the transportation 

reaction is as follows (MacLennan and Green, 2000; Katz, 2006; Periasamy and 

Kalyanasundaram, 2007) (Figure 1.7B): 

1. Two Ca2
+ ions bind to high affinity binding sites in the cytoplasmic region, 

triggering ATP hydrolysis. SERCA is in the E1 conformation. 

2. ATP hydrolysis and subsequent phosphorylation of an aspartic acid residue in 

the P domain (E1-P) induces occlusion of the Ca2
+ binding sites which are then 

inaccessible to the cytoplasmic environment. 

3. The pump transitions to the low energy conformation (E2-P) and there's a 

reduction in Ca2
+ affinity, allowing Ca2

+ to be released to the SR lumen. 

4. Water enters the catalytic site from the SR lumen and hydrolyses the 

phosphorylated residue (E2) 

5. ATP once again binds in the cytoplasmic N domain, converting the pump back 

to the E 1 conformation. 

The reduction in Ca2
+ affinity is essential in allowing Ca2

+ to be released to the SR 

lumen where there is still a higher [Ca2+] then in the cytoplasm (Bers, 2002b ). 

1.7.1.4 SERCA in excitation-contraction coupling 

The vast majority of the SR membrane reportedly contains SERCA pumps, including 

the terminal cisternae (Bers, 2001) . Hence, the SERCA pump is believed to be present 
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at a 170 fold greater concentration than Ca2
+ release channels (Katz, 2006). While 

SERCA2A isn't the only method of Ca2
+ removal from the cytoplasm, it is the 

predominant form, accounting for 70% of Ca2
+ removal in rabbit and 92% in rat 

myocytes. The remainder of the Ca2
+ is predominantly extruded by the NCX (28% in 

rabbit, 7% in rat) or the sarcolemmal Ca2
+ ATPase and mitochondrial uniporter (which 

together only account for 1-2% of Ca2
+ extrusion in any species). The situation in 

humans is thought to be similar to that in rabbit (Bassani et al., 1992, 1995b and 

reviewed in Bers, 2001). Clearly then, SERCA2A has an essential role in facilitating 

muscle relaxation. SERCA2A can also function in a backflux mode where Ca2
+ is 

transported from the SR to the cytoplasm and ATP is produced (Takenaka et al., 1982). 

While SERCA backflux is quite high, it usually does not exceed Ca2
+ uptake by 

SERCA, rather the two exist in equilibrium in which net Ca2
+ uptake is favoured 

(Shannon et al., 2002). 

1.7.1.5 SERCA regulation 

Ca2
+ uptake by SERCA2A is under the control of several regulatory proteins including 

phospholamban, sarcolipin and the histidine rich Ca2
+ binding protein. In this section, 

only phospholamban will be discussed as these other proteins are outside the focus of 

the current research. SERCA2A is also vulnerable to several post-translational 

modifications, including oxidation which will be discussed in Section 1. 10. 

1.7.1.5.1 Phospholamban 

A key distinction between skeletal and cardiac muscle is the regulation of SERCA2A by 

phospholamban which is only found in cardiac muscle. Phospholamban is a 6.2 kDa 

transmembrane protein that colocalizes with SERCA2A in the SR membrane, its 

principle effect being inhibition of Ca2
+ uptake by SERCA2A. It is expressed 

predominantly in cardiac muscle and in slow twitch skeletal muscle, though it has also 

been found at low levels in smooth muscle (MacLennan and Green, 2000). Each 

phospholamban monomer is composed of 52 amino acids and includes a cytosolic 

domain (residues 1 - 30) and a transmembrane domain (residues 31 - 52). The cytosolic 

domain includes two important phosphorylation sites at Ser-16, which is a 

phosphorylation site for PKA and at Thr-17, which is a phosphorylation site for 

CaMKII (Fujii et al., 1986; Wegener et al., 1989). Phospholamban also forms a 
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homopentamer which is thought to be stabilized by a cysteine residue in the 

transmembrane domain (Karim et al., 1998). 

Phospholamban inhibition of SERCA2A is mediated by direct interactions between the 

non-phosphorylated, monomeric form of phospholamban and the pump (Figure 1.8). 

Phospholamban has the greatest affinity for SERCA2A in its low energy (E2) 

conformation (James et al., 1989), prolonging the time spent in this conformation. This 

results in an overall 2 - 3 fold inhibition of Ca2
+ uptake (MacLennan and Kranias, 

2003), due to the E2 conformation promoting the lowest affinity for Ca2
+. 

Phospholamban is dissociated either when it is phosphorylated, or when SERCA2A 

binds ca2+, causing a transition from the E2 to E1 conformation (James et al., 1989). 

Thus under basal conditions, phospholamban limits SERCA2A activity and reduces the 

pool of SR Ca2
+ available for release. Phosphorylation via ~-adrenergic stimulation 

relieves the inhibitory effect of phospholamban on SERCA2A, enhancing Ca2
+ uptake 

which increases the pool of Ca2
+ available for release for CICR. The increased Ca2

+ 

transient causes a subsequent increase in myocyte contractility. 

1.7.1.6 SERCA in cardiac pathology 

A reduction in SERCA2A function is well documented in several forms of cardiac 

pathology, including dilated cardiomyopathy (Arai et al., 1993; Hasenfuss et al., 1994; 

Studer et al. , 1994; Meyer et al., 1995; Schwinger et al., 1995; Schmidt et al., 1998), 

idiopathic cardiomyopathy (Hasenfuss et al ., 1994; Schmidt et al., 1998), pulmonary 

hypertension (Arai et al., 1993) and ischemic heart disease (Arai et al. , 1993). In studies 

that tested samples from two or more of these pathologies there was no difference in the 

extent of SERCA2A inhibition in different diseases, demonstrating the ubiquitous 

nature of SERCA2A inhibition in cardiac dysfunction. While a reduction in SERCA2A 

rnRNA levels were found in all of these studies (and in Mercadier et al. , 1990), this did 

not always correspond with a decrease in protein expression. In these studies there was 

evidence of a reduced basal phosphorylation level of phospholamban, an effect which 

would enhance the inhibition of Ca2
+ uptake (Schwinger et al. , 1995; Schmidt et al. , 

1998). If this effect were to occur in combination with an increased ratio of 

phospholamban to SERCA (as measured in Meyer et al., 1995), the result would be 

drastically inhibited SERCA uptake function (reviewed in MacLennan and Kranias, 

2003). It should be noted that whilst a few studies report reduction in phospholamban 
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Figure 1.8 - Mechanism of phospholamban inhibition of SERCA2A. Phospholamban 

(PLN) binds to the E2 (low energy, low Ca2
+ affinity) conformation of SERCA2A. Only the 

monomeric, non-phosphorylated form of phospholamban binds to SERCA2A, prolonging the 

time the pump spends in the E2 state, thereby inhibiting Ca2
+ uptake. Phospholamban is 

released either when it is phosphorylated or when SERCA2A binds Ca2
+. Figure from 

(MacLennan and Kranias, 2003). 
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mRNA/protein expression (Arai et al., 1993) other studies report no change (Meyer et 

al., 1995; Schmidt et al., 1998). 

1.7.2 The Ryanodine Receptor 

The RyR is a ligand-gated Ca2
+ release channel whose role is to release Ca2

+ from the 

SR during EC coupling. It is named for its ability to bind the plant alkaloid ryanodine 

with high affinity and high specificity (Inui et al., 1987a, b ). RyR is essential for 

survival, as demonstrated in RyR knockout mice which die in utero or soon after birth 

(Takeshima et al., 1995; Takeshima et al., 1998). 

1.7.2.1 Localization 

In striated muscle RyRs are clustered in the junctional SR, the area of the SR that comes 

in close contact with either the t-tubule or sarcolemmal surface membrane. In electron 

micrographs, RyR appear as electron-dense "feet" that span the gap between the SR 

membrane and the sarcolemmal membrane (either in the surface or t-tubule) (Franzini

Armstrong and Protasi, 1997). In the surface membrane are clusters of LTCC's which 

form couplons or Ca2
+ release units with RyRs in the opposing SR membrane (Flucher 

et al., 1993). In cardiac muscle, the ratio of RyR:LTCC is between 4-10 RyR for every 

LTCC, depending on the species. This is in marked contrast to skeletal muscle, where 

there is thought to be one RyR for every two LTCC (Bers and Stiffel, 1993; Franzini

Armstrong and Protasi, 1997). This difference likely reflects the differential 

mechanisms of RyR activation in the two muscle types, where in skeletal muscle RyRl 

activation requires a mechanical interaction with the LTCC (Dulhunty, 2006), while in 

cardiac muscle RyR2 is activated by CICR. In some species, a moderate proportion of 

RyR2 are "uncoupled", located in parts of the cardiac SR that do not form junctions 

with any component of the surface membrane (J or gen sen et al., 1993). It is current! y 

unclear whether RyR2 localised in this extended or corbular SR has a role in 

physiological EC coupling. 

1.7.2.2 Ry R isoforms and tissue distribution 

RyR shares several structural and functional characteristics with inositol 1,4,5-

triphosphate receptors (IP3R), the other ligand-gated, intracellular Ca2
+ channel 

(Hakamata et al., 1992; Yuchi and Van Petegem, 2011). Although the cardiac isoform 

(IP3Rl) is also found in the SR of cardiac myocytes, it is not believed to play a major 
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role in EC coupling, due to a low level of expression and low conductivity compared to 

RyR2 (reviewed in Marks, 1997). Thus RyR2 is thought to be more functionally 

relevant to EC coupling and is the primary conduit of SR Ca2
+ release. 

There are three isoforms of RyR; RyRl, RyR2 and RyR3, all encoded by different 

genes. Although it is evident that all 3 isoforms are expressed to some extent in a 

variety of tissues, RyRl is known to be the predominant isoform in skeletal muscle and 

RyR2 is the predominant form in cardiac muscle (but is also expressed in significant 

amounts in the brain) (Nakai et al., 1990; Hakamata et al., 1992). RyR3 is expressed at 

moderate levels in a variety of tissues including smooth muscle and certain regions of 

the brain (Ledbetter et al., 1994 and reviewed in Franzini-Armstrong and Protasi, 1997; 

Lanner et al., 2010). 

1.7.2.3 Structure 

The RyR is the largest known ion channel, consisting of four identical subunits each 

approximately 560 kDa in size. In humans each RyR2 monomer is 4967 amino acids in 

length (Tunwell et al., 1996), about 80% of which forms a large, cytoplasmic "foot" 

domain, while the remainder is located in the SR lumen and as transmembrane 

segments (Figure 1.9) (Liu et al., 2002). RyR is reported to have high inter-species 

homology with 88% homology between rabbit, pig and human RyRl and 98.6% 

homology between human and rabbit RyR2 (Tunwell et al., 1996). Comparing the 

homology of the three isoforms, while some regions have up to 90% homology in their 

amino acid sequence, on average there's a 67 - 70% homology with the greatest 

similarity being between RyR2 and RyR3 (70%) (Nakai et al. , 1990; Hakamata et al. , 

1992). The reduced overall homology is due to the presence of three regions of higher 

diversity. In reference to the RyR2 sequence, these regions lie between amino acids 

4210 and 4562 (divergent region 1), 1353 - 1397 (divergent region 2), and 1852 - 1890 

(divergent region 3) (Figure 1.9A) (Rossi and Sorrentino, 2002). Mutations in these 

regions have been associated with a form of inherited arrhythmia (Koop et al., 2008) 

and with changes in the channel's response to ligands such as Ca2
+ and caffeine in the 

analogous region of RyRl (reviewed in Lanner et al., 2010). 

While high resolution crystal structures of small segments of RyR have been solved, 

structural studies of the full-length RyR have been notoriously difficult, due to the 

proteins large size, instability and transmembrane domain. Studies using cryoelectron 
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Figure 1.9 - Schematic diagram of RyR2 (A) Predicted transmembrane segments and large 

N-terminal domain are shown, including proposed locations of divergent regions (DRl , DR2 

and DR3), binding sites for FK 506 binding proteins (FKBP, dashed grey line) and 

calmodulin (CM), CPVT mutation clusters (black dashed line) and important 

phosphorylation sites (P2808 and P2030). Calsequestrin is shown bound in the luminal 

domain (CSQ). Figure from Blayney and Lai (2009). (B) Surface representations of 3D cryo

EM reconstructions of RyR2 with bound FKBP12.6 (blue). The 3D volume is shown in three 

views: (i), cytoplasmic face; (ii), SR luminal face; (iii), side view. Numbering refers to 

nomenclature of micordomains. Scale bar ~ 100 A. TA, transmembrane assembly (modified 

from Sharma et al., 2006) . 
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microscopy with three dimensional reconstruction (up to 9.6 A resolution) (Ludtke et 

al., 2005) have had some success, reporting that the intact, purified channel forms a 

mushroom shaped complex, with the large, cytoplasmic "foot" domain (280 x 280 x 120 

A) located in the cytoplasm, and a small transmembrane domain ( 120 x 120 x 60 A) that 

anchors the protein into the SR membrane (Figure 1.9B) (Sharma et al., 1998; Lanner et 

al., 2010). The cytoplasmic domain itself contains several structural domains with many 

intervening solvent-filled cavities. Additionally, each of these domains has been divided 

into microdomains, as numbered in Figure 1.9B. In various models, between 4 -12 

transmembrane domains have been proposed though the actual number is unclear. 

Some progress has been made in identifying functionally important domains of RyR2. 

For example, in each corner of the cytoplasmic domain there is an area referred to as the 

"clamp" region, believed to have an important role in channel gating and in binding 

interactions with modulatory proteins (Zhang et al., 2003). Additionally, regional "hot 

spots" of mutations associated with RyR2 pathology have also been mapped to this area 

(Wang et al., 2007), as have two of the Divergent Regions (Zhang et al., 2003; Liu et 

al ., 2004). These aspects of RyR structure are reviewed more thoroughly in (Lanner et 

al., 2010). Recently, a phosphorylation domain was also localized to the clamp region 

(Amador et al., 2013) . It has been proposed that in pathologies where RyR2 is 

excessively active ( or "leaky) that there is an "unzipping" of domain-domain 

interactions between an N-terminal (amino acids 1 - 600) and C-terminal domain 

(amino acids 2000 - 2500) (Tateishi et al., 2009). 

1.8 RyR2 Regulatory ligands 

RyR2 forms the hub of a massive macromolecular complex that regulates SR Ca2
+ 

release during EC coupling (Figure 1.10) (Zhang et al ., 1997; Gyorke et al., 2004) . 

Some of these, including calsequestrin (CSQ), triadin and junctin are localized to the SR 

lumen, while others like the FK506 binding proteins (FKBPs) and calmodulin are found 

in the cytoplasm. RyR2 also carries binding sites for various regulatory ligands, 

including Ca2+, Mg2
+ and ATP. Several other proteins and ligands are known to bind to 

RyR2 with varying influences, but are beyond the scope of the thesis. 
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Figure 1.10 - Assembly of key proteins in the dyad. Some key proteins discussed in this 

chapter are shown in the t-tubule and junctional face SR membrane. The L-type Ca2
+ 

channel (DHPR) is shown allowing a small influx of Ca2
+ into the cell. The bulk of RyR2 ( 

-80 % ) is positioned in the cytoplasmic space while the remainder is embedded in the 

membrane with slight protrusion into the SR lumen. Triadin and junctin both have a short 

cytoplasmic segment and a longer luminal domain which is thought to bind both 

calsequestrin (CSQ2) and, for triadin, the histidine-rich Ca2
+ binding protein (HRC). CSQ2 

is portrayed as monomers and dimers bound to Ca2
+ (red circles). Figure from (Dulhunty et 

al., 2012). 

30 



Chapter One 

1.8.1 Adenosine 5' -triphosphate 

ATP is a potent activator of RyRs in both skeletal and cardiac muscle (Meissner, 2004). 

In skeletal muscle RyR 1 is activated by ATP in the absence ofluminal or cytoplasmic 

Ca2+, however in cardiac muscle ATP requires Ca2+ as a co-agonist to activate RyR2. It 

has been proposed that ATP activates RyR2 in response to luminal Ca2+-induced 

activation and also stabilizes the open-state conformation and destabilizes the closed 

conformation (Laver, 2007). 

1.8.2 Magnesium 

Mg2+ is thought to inhibit RyR2 activity via two independent mechanisms. Type I 

inhibition involves Mg2+ competing with Ca2+ for a high-affinity Ca2+ binding activation 

site (Laver et al., 1997; Liu et al., 1998) while in Type II inhibition, Mg2+ binds to low 

affinity inhibition sites which non-selectively bind Ca2+ and Mg2+. It has also been 

reported that at high cytoplasmic [Ca2+] RyR2 is less sensitive to Mg2+ inhibition (Laver 

et al., 1997; Gyorke and Gyorke, 1998). Mg2+ inhibition of RyR2 is also reduced in the 

presence of oxidising agents (Eager and Dulhunty, 1998; Donoso et al., 2000). 

1.8.3 Calcium 

Ca2+ is a hugely influential modulator of RyR activity in skeletal and cardiac muscle. 

The luminal and cytoplasmic [Ca2+]s are important modulators of SR Ca2+ release due to 

the presence Ca2+ binding sites on both the luminal and cytoplasmic domains of RyR 

(Laver et al., 1995; Gyorke and Gyorke, 1998; Marengo et al., 1998; Gyorke et al., 

2004 ). In the course of the cardiac cycle, the cytoplasmic [Ca2+]' s ranges from 0.1 - 1 

µM while the luminal [Ca2+] reportedly cycles between 1- 1.5 mM and - 0.3 mM during 

diastole and systole, respectively (Chen et al., 1994; Bers, 2002b; Shannon et al., 

2003a). At a constant luminal [Ca2+] of 1 mM, RyR2 is activated by cytoplasmic 

[Ca2+]'s up to 1 mM, whilst concentrations> 1 mM inhibit the channel (Laver et al. , 

1995). It should be noted also that others have measured inhibition with concentrations 

as low as 100 µM cytoplasmic Ca2+ (Gyorke and Gyorke, 1998). Conversely, luminal 

Ca2+ is generally found to activate RyR2 at concentrations >0.1 mM. Some studies find 

that activation peaks at 1 mM while others find that concentrations as high as 53 mM 

can further activate the channel (Gyorke et al., 2004; Tencerova et al., 2012; Chen et al., 

2013). This biphasic modulation has been attributed to the existence of high-affinity 

activation sites and low-affinity inactivation sites in the cytoplasmic domain of RyR2 
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Study MgATP Cytoplasmic Luminal Ca2+ range and response of 
[Ca2+] (µM) RyR2 

Sitsapesan & 
0.01 - 2 mM activated RyR2, required 

- 10 sulmazole Williams, 1994 
Activation due to increase in Ta 

Lukyanenko et 
0.2- 20 mM activated RyR2, required ATP. 

3mMATP 0.1 - 1 EC50 = 2.6 mM al, 1996 
Activation due to increase in Ta 

Gyorke & 
3 mMATP 1 

0.2- 20 mM activated RyR2, required ATP 
Gyorke, 1998 

3mM 0.02 - 5 mM activated native RyR2, no 

Gyorke et al, 
MgATP change in purified RyR2 

Total 2-6 Activation due to increase in Fa and decrease 2004 [Mg2+] = in Tc 
0.9 mM 

0.01 - 10 mM. Bell shaped dependence, 
2:0.05 - 1 mM activate native RyR2,> 1 mM 

Qin et al, 2008 - 1 
inhibited. CSQ2 stripped channels had no 
response. CSQ2 mutants caused either 
enhanced activation (R33Q) or abolished 
response (L 167H) 
0.01 - 2 mM. Bell shaped dependence, 0.01 -

Laver, 2007 2mMATP 0.1 0.1 mM activated RyR2, 0.1 - 2 mM 
inhibited. Required ATP for response. 
45 nM- 1 mM activated RyR2 

Jiang et al 2.5 mM 
0.045 

RyR2 mutant A4860G mutant had no 
2007 ATP response between 45 nM - 1 mM, > 1 mM -

30 mM caused minor activation 

Chen et al, 
1 mMMg+ 0.1 - 1 mM. In presence of MgATP, no 

2013 
5 mMATP 10 response in channels with either WT, CSQ 

knockout or CSQ R33Q knockin mutants . 

Table 1.2 - Summary of studies that have examined RyR2 luminal Ca2
+ sensitivity and 

some key experimental conditions. 
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(Liu et al., 1998; Laver, 2007). The luminal Ca2
+ dependence is known to vary 

depending on the cytoplasmic [Ca2+] and the presence of Mg2+ and ATP (Table 1.2). SR 

store load (determining the free luminal [Ca2+]) is an important determinant of cardiac 

muscle function, having roles in termination of SR Ca2
+ release, muscle contractility 

and facilitation of Ca2
+ uptake by SERCA2A (reviewed in (Bers, 2002b; Gyorke and 

Terentyev, 2008; Radwanski et al., 2013). Additionally luminal Ca2
+ actively regulates 

RyR2, activating the channels up to millimolar concentrations (as discussed above) and 

sensitizing RyR2 to activation by cytoplasmic Ca2
+ (Fabiato and Fabiato, 1978; Laver, 

2007; Qin et al., 2009). It is generally acknowledged that RyR2 gating is regulated by 

luminal Ca2
+, however the mechanism is unknown and is controversial. One theory is 

that luminal Ca2
+ induced activation occurs by a "feed through" mechanism, whereby 

Ca2
+ binds to a luminal site on RyR2 causing brief activation. This would allow Ca2

+ to 

move through to the cytoplasm and activate high affinity activation sites causing 

prolonged channel openings (Laver, 2007). Other studies however have indicated that 

luminal Ca2
+ acts distinctly at binding sites in the luminal domain of RyR2 to activate 

the channel (Gyorke and Gyorke, 1998). The mechanism of luminal Ca2
+ regulation of 

RyR2 will be discussed more in Section 1.9.3. 

1.9 RyR2 Interactions with Cytoplasmic and Luminal 

Proteins 

1.9.1 FK-506 binding proteins 

The FKBPs are a family of proteins that bind the immunosuppressive drugs FK506 and 

rapamycin. There are two isoforms expressed in striated muscle, including the 12 kDa 

FKBP12 and the 12.6 kDa FKBP12.6. FKBPs are reported to bind to RyR in a 4: 1 

stoichiometry in both skeletal and cardiac muscle (Timerman et al., 1993; Timerman et 

al., 1996), although the degree of occupancy of these sites is less certain (Guo et al., 

2010; Zissimopoulos et al., 2012). 

The role of FKBPs in muscle physiology is controversial. There is substantial evidence 

that FKBPs stabilise the closed state of the channel by strengthening intersubunit 

interactions (Ahem et al., 1994a; Mayrleitner et al., 1994; Ahem et al. , 1997; Xiao et 
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al., 1997; Marx et al., 2000). The effects of FKBP dissociation on Ca2
+ handling have 

been linked to cardiac disorders (Yano et al., 2000; Xin et al., 2002; Wehrens et al., 

2005; Huang et al., 2006), while FKBP12.6 overexpression was cardio protective 

(Gellen et al., 2008) and normalized cellular Ca2
+ handling (Prestle et al., 2001). There 

is some evidence linking FKBP12.6 dissociation with RyR2 phosphorylation (Marx et 

al., 2000) and more recently, oxidation (Zissimopoulos and Lai, 2005; Shan et al., 

2012). This topic is controversial though as other investigators have been unable to find 

any effect of RyR2 phosphorylation on FKBP12.6 dissociation (Xiao et al., 2004; Guo 

et al., 2010). 

Until recently it was generally considered that RyR2 was only regulated by FKBP12.6 

and that RyRl was regulated FKBP12 (Timerman et al., 1996). However, recent 

evidence has suggested that the 12kDa isoform may have a more prominent role in 

cardiac muscle than previously thought (Galfre et al., 2012; Zissimopoulos et al., 2012). 

While the specific role of each FKBP isoform in cardiac muscle physiology and 

pathology is still to be elucidated, it is clear that these proteins are important for normal 

cardiac muscle function. 

1.9.2 Calmodulin 

Another protein that modulates RyR2 activity is the Ca2
+ binding protein calmodulin 

which has an inhibitory effect on RyR2, measured by [3H] ryanodine binding and in 

single channel experiments (Balshaw et al., 2001; Meissner, 2004). RyR2 binding 

affinity for calmodulin is decreased under oxidising conditions and this enhances RyR2 

sensitivity to cytoplasmic Ca2
+. Calmodulin has also been shown to influence LTCC 

activity in cardiac muscle and thus has an important role in cardiac EC coupling 

(Hamilton et al., 2000; Balshaw et al., 2001) . 

1.9.3 Calseq uestrin 

CSQ is the major SR Ca2
+ binding protein in skeletal and cardiac muscle. It is localized 

close to the junctional face membrane, anchored to the RyR by the proteins triadin and 

possibly junctin (see below) which themselves are bound to RyR2 (Figure 1. 10) (Zhang 

et al., 1997). CSQ binds Ca2
+ with low affinity (Kd = 1 mM) and in high capacity (35-80 

mol/mol) (MacLennan and Wong, 1971; Slupsky et al., 1987; Wang et al., 1998b; Beard 

et al., 2004; Park et al., 2004). There are two CSQ isoforms which are encoded by 
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different genes. CSQl is found exclusively in skeletal muscle while CSQ2 is found in 

the heart and in slow twitch skeletal muscle. In humans, the two isoforms have 84% 

homology. CSQ2 also has high inter-species homology, ranging from 87 - 98% (Beard 

et al., 2004 ). CSQ 1 and CSQ2 consist of three almost identical domains, which contain 

thioredoxin-like folds, characterized by four a-helices which border a central P-sheet 

(Wang et al., 1998a). It is thought that CSQ2 polymerization occurs via Ca2+-dependent 

dimer and subsequently tetramer formation (Beard et al., 2004). 

Several important differences exist between the two CSQ isoforms. At 1 rnM luminal 

Ca2+ only relatively small amounts of CSQ2 are associated with the RyR2 complex and 

at this physiological [Ca2+], CSQ2 exists mainly as monomers (although it can 

polymerise at higher [Ca2+]) (Wei et al., 2009b; Murphy et al., 2011). In contrast, under 

the same conditions CSQl is mostly polymerized and has greater Ca2+ binding capacity 

than CSQ2 (Beard et al., 2008). The two isoforms also have specific effects on RyR in 

different muscle types. In skeletal muscle CSQl inhibits RyRl (Beard et al., 2002; Wei 

et al., 2006), while in the heart the effect of CSQ2 on RyR2 appears to depend on the 

presence of MgATP. In the presence of both Mg+ and ATP CSQ2 inhibits RyR2 (Chen 

et al., 2013), whilst in the absence of these factors CSQ2 activates RyR2 (Qin et al., 

2008; Wei et al., 2009b). 

1.9.3.1 Calsequestrin function 

CSQ2 is the primary Ca2+ buffer in the SR and changes in CSQ2 expression cause 

corresponding changes in SR Ca2+ content (Terentyev et al., 2003; Rizzi et al., 2008). In 

a CSQ2 knockout mouse, SR Ca2+ content, as assessed by caffeine induced transients in 

intact cardiomyocytes, was preserved but coincided with an approximate 50% increase 

in SR volume (Knollmann et al., 2006). Even though CSQ2 can polymerize at very high 

luminal [Ca2+], it was recently proposed that CSQ2 mainly exists in a monomeric form, 

which binds only <10 Ca2+ ions per monomer (Murphy et al., 2011) . The authors 

suggest that the monomeric form of CSQ may permit faster Ca2+ binding/unbinding and 

promote favourable conditions for Ca2+ uptake (Murphy et al., 2011). These effects 

would be important in facilitating Ca2+ release and uptake throughout the cardiac cycle. 

1.9.3.2 Luminal Ca2
+ sensing by CSQ2 

In addition to its role as a Ca2+ buffer, CSQ2 is thought to have an important role 

communicating store load to RyR2. This is supported by several lines of evidence. In 
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single channels where CSQ2 was selectively dissociated, RyR2 was unable to respond 

to changes in luminal Ca2
+ (unless cytoplasmic Ca2

+ was increased to 100 µM, a 

concentration unlikely to be encountered physiologically) (Qin et al., 2008) . In another 

example, purified RyR2 (lacking CSQ2, triadin and junctin) did not respond when trans 

Ca2
+ was increased from 20 µM to 5 mM, whilst addition of exogenous CSQ2 restored 

luminal Ca2
+ sensing, but only if triadin and junctin were also present (Gyorke et al., 

2004) . These results may imply that CSQ solely confers luminal Ca2
+ sensitivity to 

RyR2. However other studies support only a regulatory role for CSQ2. In single 

channels CSQ2 stripped channels remained reactive to changes in luminal ca2+, but this 

response was more sensitive (Dulhunty et al. , 2012). In cardiomyocytes from CSQ2 

knockout mice, there was a non-linear relationship between SR Ca2
+ leak and SR Ca2

+ 

load (Knollmann et al., 2006). That this relationship was not linear, and was actually 

steepe in the absence of CSQ2 than it was in myocytes from wildtype mice, implies that 

RyR2 itself ( or another accessory protein) retains an innate ability to respond to luminal 

Ca2
+. CSQ2 has also been shown to influence the cytosolic Ca2

+ response of RyR2 with 

CSQ2 dissociation increasing single channel sensitivity to activation by cytoplasmic 

Ca2
+ (Qin et al., 2008 ; Chen et al., 2013). 

1.9.3.3 Calsequestrin and arrhythrnogenesis 

The importance of CSQ in regulating SR Ca2
+ release is evidenced by studies 

employing CSQ2 knockdown or knockout. Reduced levels of CSQ2 are associated with 

decreased SR load, increased amplitude of spontaneous Ca2
+ waves, enhanced 

restitution of Ca2
+ release sites (i.e. reduced refractoriness of Ca2

+ release) and Ca2
+ 

oscillations (Terentyev et al., 2003; Kubalova et al., 2004). Such enhancement of 

diastolic Ca2
+ release is likely to be atThythmogenic, since Ca2

+ release at this time 

activates the inward mode NCX (see Section 1.11 .2). It is well established that CSQ2 is 

anti-aIThythmic. Moderate reductions of CSQ2 increased susceptibility to stress induced 

aIThythmias in mice (Chopra et al., 2007) . In humans, a number of mutations in the 

CSQ2 gene are linked to catecholaminergic polymorphic ventricular tachycardia 

(CPVT), a hereditary arrhythmogenic disease characterized by exercise or stress

induced syncope and sudden cardiac death (reviewed in Faggioni and Knollmann, 2012; 

Fernandez-Velasco et al., 2012). In murine models of CPVT, animals exhibit 

aIThythmia upon adrenergic stimulation. At the cellular level, this aIThythmogenesis is 

associated with severe changes in Ca2
+ handling including reduced SR load, 
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spontaneous Ca2
+ release and Ca2

+ oscillations, similar to the changes caused by CSQ2 

knockdown/knockout (Knollmann et al., 2006; Rizzi et al., 2008; Alcalai et al., 2011). 

While the mechanisms underlying this disease are not completely understood, CPVT 

has been linked to a lack of, or alteration in, normal CSQ2-mediated channel 

modulation by luminal Ca2
+ (Terentyev et al., 2003; Rizzi et al., 2008; Faggioni and 

Knollmann, 2012). Additionally, CSQ is a target for some pharmacological agents 

including trifluoperazine, tricyclic antidepressants and anthracyclines ( discussed further 

in Section 1.12.3). These agents are able to diffuse into the SR (Kim et al., 2005b; Park 

et al., 2005b) and it is thought that CSQ2 contains a binding site for all three drug 

classes. 

1.9.4 Triadin and J unctin 

The RyR2 accessory proteins triadin and junctin were originally thought to have 

identical roles, which was to anchor CSQ2 to RyR2. It is now known that they have a 

far more dynamic role in EC coupling and that they independently influence this 

process. For simplicity, they will be discussed concurrently here. 

1.9.4.1 Structure 

Triadin and junctin span the SR membrane in skeletal and cardiac muscle and are 

thought to interact in the SR lumen with each other, with CSQ and with the RyR (Figure 

1. 10) (Zhang et al., 1997) Three cardiac specific isoforms of triadin have been identified 

(35, 40 and 75 kDa), with the 40 kDa, triadin-1 isoform the most abundant. A 

distinguishing feature of triadin-1 is its existence as a disulphide linked oligomer. 

Junctin is smaller than triadin-1 at 26 kDa, but shares sequence similarity with the N

terminal residues of triadin-1. Both proteins consist of a short cytoplasmic N-terminal 

segment, a single membrane spanning segment and a long, highly charged C-terminal 

tail (Zhang et al., 1997; Gyorke and Terentyev, 2008). 

1.9.4.2 Function 

It has been demonstrated that triadin and junctin bind to both CSQ and RyR and are 

thought to serve as anchoring proteins, connecting CSQ to the RyR. In addition, triadin-

1, and to a smaller extent junctin, play a crucial role in maintaining the ultrastructure of 

the sarcoplasmic reticulum (Chopra et al., 2009; Boncompagni et al., 2012). It is 

thought that the combined presence of triadin-1, junctin and CSQ2 are essential in 
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maintaining proper EC coupling (Zhang et al., 1997; Gyorke et al., 2004; Beard et al., 

2009). Identifying the specific roles of triadin-1 , junctin and CSQ2 in knockout mouse 

models is complicated by coexisting changes in expression levels of other SR proteins. 

Commonly, knockout of one of these proteins also alters the expression of the other two 

(Chopra et al., 2007), in addition to RyR2, junctophilin, SERCA2A and FKBP12.6 

(Chopra et al., 2009; Boncompagni et al., 2012). 

Single channel studies have provided some insight into the function of triadin and 

junctin, although at present much more work has been done in skeletal then in cardiac 

preparations (reviewed in Beard et al., 2009). Junctin alone was found to mediate the 

inhibitory effect of CSQl on RyRl, suggesting independent roles for triadin and junctin 

in skeletal muscle EC coupling (Wei et al., 2009a). Earlier work in cardiac muscle 

suggested that the presence of all three proteins (i.e. triadin, junctin and CSQ2) is 

essential in conferring RyR2 responsiveness to changes in luminal Ca2
+ (Gyorke et al., 

2004). Recently, it was found thatjunctin can influence the luminal Ca2
+ response of 

RyR2. Single channels from junctin knockout mice revealed a luminal Ca2
+ dependent 

role for junctin, where at low luminal Ca2
+ ( <1 rnM) junctin activates RyR2, while at 

higher luminal [Ca2+] junctin inhibits RyR2 (Altschafl et al. , 2011). The physiological 

implications of such regulation are unclear and it is possible that the results of this study 

were partially attributable to a loss of CSQ regulation of RyR2 (Dulhunty et al., 2012). 

1.9.4.3 Roles in cardiac pathology 

Studies using transgenic mice overexpressing triadin are also supportive of a more 

complex function for this protein. Overexpression of triadin in cardiomyocytes 

stimulated RyR2 activity, enhancing its sensitivity to activation by Ca2
+ and increasing 

predisposition to arrhythmias (Terentyev et al., 2005). In another triadin overexpression 

model, myocytes exhibited cardiac hypertrophy, impaired response to ~-adrenergic 

stimulation and altered Ca2
+ transients (Kirchhefer et al., 2007). Severe SR 

restructuring, including a 50% reduction in dyad formation and stress induced 

arrhythmia, are observed in a triadin knockdown mouse model (Chopra et al. , 2009). 

The clinical relevance of triadin knockdown and overexpression mouse models to 

humans has been indicated recently by the identification of 3 triadin mutations that 

cause CPVT (Roux-Buisson et al., 2012). 
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Changes in junctin expression also cause detrimental changes in cardiac phenotypes. 

Overexpression of junctin led to depressed myocyte contractility and altered SR Ca2
+ 

release (Fan et al., 2007). Junctin knockout (without changes in expression of other SR 

proteins) also caused aberrant Ca2
+ handling, increasing the SR load and inducing fatal 

arrhythmia (Yuan et al., 2007). While the precise roles of CSQ2, junctin and triadin are 

not fully understood, it is quite clear that the presence of all three proteins in complex 

with RyR2 and that the optimal functioning of each is vital in maintaining proper EC 

coupling. 

1.10 

1.10.1 

Redox regulation of excitation-contraction coupling 

Cardiomyocyte redox environment 

The transfer of electrons in redox ( oxidation/reduction) reactions provides the energy 

needed to build and maintain cellular structures. Electrons are transferred between 

oxidising agents (electron acceptors) and reducing agents (electron donors), hence in an 

oxidation reaction there is a loss of electrons as they are transferred from the moiety 

being oxidized to the oxidizing agent. The cellular redox environment is determined by 

the balance between oxidizing agents and antioxidant/reducing agents. In 

cardiomyocytes there are several redox buffer systems which maintain the cellular 

redox environment. These include the thioredoxin buffer system (Trx(SH)2ffrxSS), the 

nicotinamide adenine dinucleotide phosphate system (NADPH/NADP+) and the 

glutathione system (2GSH/GSSG) (reviewed in Schafer and Buettner, 2001; Filomeni et 

al., 2002). Each couple consists of an oxidised member and a reduced member and these 

exchange electrons with each other and with other cellular components such as enzymes 

and proteins. The relative amount of each redox buffer drives the cell toward a more 

oxidised or a more reduced redox environment. Since GSH is present in concentrations 

100 - 1000 fold greater than either the TRX or NADPH system, it is considered to be 

the principal cellular redox buffer system (Schafer and Buettner, 2001) . 

Redox state depends on the redox potential (tendency to gain or lose electrons) and the 

reducing capacity (number of electrons available for transfer) of a substance. In 

cardiomyocytes, the cytoplasm has a more reducing redox potential of approximately 

-220 m V, maintained by a large ratio of ~30: 1 of GSH to GSSG, which acts as an 

important defence against oxidation. In contrast, the reduction potential of the SR lumen 
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is significant! y more oxidised with a redox potential of - l 80m V, maintained by a ratio 

of just 3: 1 GSH to GSSG. The maintenance of these ratios that favour a more reduced 

cytoplasm is vital in protecting cellular components, including DNA, lipids and proteins 

against oxidative damage (Hwang et al., 1992; Feng et al., 2000; Pessah et al., 2002) . 

Aside from the oxidized members of the redox buffer systems (e.g. GSSG), the 

principle cellular oxidants are reactive oxygen species (ROS) which include hydrogen 

peroxide (H20 2), superoxide anions (02-) and hydroxyl radicals (OH-) and peroxynitrite 

anion (ONOO-) a reactive nitrogen species (RNS) . These agents are produced in several 

sites in cardiomyocytes by enzyme-mediated electron addition to molecular oxygen or 

nitric oxide. A schematic outlining the main sites and sources of ROS/RNS production 

is shown in Figure 1.11. The site of action of these molecules depends on the site of 

production and their stability and diffusion characteristics (Hool and Corry, 2007). 

Traditionally, ROS/RNS have been viewed as being detrimental to cardiac health as 

their accumulation is implicated in the pathogenesis of many diseases including 

ischaemia-reperfusion injury and cardiac hypertrophy (reviewed in Hool and Corry, 

2007; Hidalgo and Donoso, 2008; Santos et al., 2011). However, there is increasing 

evidence that low-moderate levels of ROS/RNS are important in many cell signalling 

pathways. Therefore, it is essential that a balance is maintained between ROS/RNS 

production and elimination. Cardiac muscle possesses several antioxidant defences 

which work at different stages of ROS/RNS production and elimination pathways, as 

outlined in Figure 1.11. In cardiomyocytes the most important of these defence systems 

are superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase and GSH 

(Singh et al., 1995; Zima and Blatter, 2006; Hidalgo and Donoso, 2008). As a substrate 

for GPX, GSH acts as an electron donor to neutralize hydrogen peroxide (H20 2) and 

also functions as a scavenger of ROS , thereby protecting cellular targets from oxidation 

by these agents (Leichtweis and Ji , 2001; Dickinson and Forman, 2002). 

1.10.2 Protein thiol modifications 

The thiol groups ( -SH) of cysteine residues are the most common targets on proteins for 

redox modification. Under physiological conditions, thiols have a high pKa which 

promotes their existence in the protonated state and are therefore relatively inert. A 

small number of thiols are more reactive, having a lower pKa which promotes their 

existence in the deprotonated state as thiolate anions (RS-). 
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Figure 1.11 -Main pathways of ROS formation and breakdown. Using molecular 

oxygen (02) as a substrate, reactive oxygen species (ROS) including superoxide anion (0 2-

) and hydrogen peroxide (H2O2), are generated by the mitochondrial respiratory chain and 

NADPH-oxidases (NOX). Additionally nitric oxide, produced from nitric oxide synthases 

(NOS) combine with superoxide to produce peroxynitrite (OONo--). Superoxide 

dismutase (SOD) dismutates superoxide to hydrogen peroxide which undergoes the 

Fenton reaction with ferrous iron (Fe2+) to produce the highly reactive and unstable 

hydroxyl radical COH). Hydrogen peroxide is converted to water via either catalase or the 

glutathione peroxidase (GPX) pathways. Adapted from (Hidalgo and Donoso, 2008; 

Santos et al., 2011). 
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This substantially enhances the reactivity of these groups making them vulnerable to 

oxidative modification by ROS, reactive disulphides, quinones and other redox active 

molecules (Donoso et al., 201 la; Burgoyne et al., 2012; Wall et al., 2012). Depending 

on the oxidizing agent these reactive thiols can undergo various reversible or 

irreversible modifications, including 8-nitrosylation, 8-glutathionylation and disulphide 

formation which are all examples of reversible thiol modifications (Figure 1.12). These 

may require initial oxidation of the thiol to a sulfenic acid by ROS. If an appropriate 

substrate such as GSH or NO ( or adjoining neighbouring thiol group) is not available 

for formation of a reversible modification, the sulfenic group may undergo subsequent 

oxidation to a sulfinic acid and finally a sulfonic acid, which is an irreversible 

modification (Aracena-Parks et al., 2006; Hidalgo and Donoso, 2008; Donoso et al., 

201 la). Thiol modifications alter the structure and function of the protein and have been 

shown to modulate Ca2
+ channels and transporters, NMDA receptors and IP3R (Zable et 

al., 1997; Dickinson and Forman, 2002; Zima and Blatter, 2006). 

1.10.3 Redox modification of Ry R2 

It is well recognised that RyRs are sensitive to redox active agents. These include 

anthracyclines and other quinone-containing compounds (Abramson and Salama, 1989; 

Ondrias et al., 1990; Pessah et al., 1990), ROS (Hidalgo et al., 2002; Feng et al., 2000; 

Oba et al., 2002), RNS (Xu et al., 1998; Hart and Dulhunty, 2000; Durham et al., 2008; 

Cutler et al., 2012) endogenous redox agents (including GSH, GSSG, NAD+, NADH) 

(Zable et al., 1997; Cherednichenko et al., 2004; Hidalgo et al., 2005), and thiol-reactive 

agents (Zaidi et al., 1989; Eager et al., 1997). RyR2 contains 89 cysteine residues 

including 21 that contain unbound thiols and therefore vulnerable to redox active 

agents. A relationship is thought to exist between RyR channel activity and the number 

of available thiol groups (Sun et al., 2001; Zima and Blatter, 2006; Zissimopoulos and 

Lai, 2006). Generally, oxidising agents have a stimulatory effect on RyR activity, 

thought to be associated with their oxidation of thiol groups, whilst reducing agents 

have an inhibitory effect (Zaidi et al., 1989; Zable et al., 1997; Eager and Dulhunty, 

1998; Hidalgo et al., 2002). There is however, evidence that RyRl and RyR2 contain 

multiple classes of thiol groups which are thought to mediate the time and concentration 

dependent, biphasic modulation (activation followed by inhibition) of RyR caused by 
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some agents (Liu et al., 1994; Eager et al., 1997; Eager and Dulhunty, 1999). It is 

thought that the the early activation phase is caused by oxidation of more reactive 

stimulatory thiols, while the later inhibitory phase is attributed to oxidation of the less 

reactive inhibitory thiols (Liu et al., 1994; Aghdasi et al., 1997; Eager et al., 1997; Sun 

et al., 2001). 

Studies in skeletal muscle indicate that RyRl contains a small number of highly reactive 

cysteine residues, the oxidation of which constitutes a possible mechanism for the 

channels high sensitivity to redox active agents (Liu et al., 1994). These residues are 

thought to act as a transmembrane redox sensor and have a defined redox potential, 

which allow RyR to adjust its activity in response to changes in the local redox 

potential. Ca2+, Mg+ and caffeine are able to alter the redox potential of these thiols, 

causing subsequent changes in channel activity (Feng et al., 2000; Xia et al., 2000). 

Additionally, the redox state of these thiols has been found to determine the response to 

channel modulators such as ca2+, Mg+, caffeine, adenine nucleotides and CLIC-2 

(Donoso et al., 2000; Xia et al., 2000; Oba et al., 2002; Jalilian et al. , 2008b). The 

majority of these studies were done on skeletal SR vesicles and to date, an equivalent 

class of hyperreactive cysteines in RyR2 has not been defined. Alternatively, it has been 

hypothesized that modulation of RyR2 gating in response to changes in local redox 

potential are mediated by electron transfer between redox active agents and the reactive 

thiols of RyR2 (Pessah et al., 2002; Marinov et al., 2007). Changes in RyR2 gating 

depending on this redox sensitivity are thought to be potentiated in times of oxidative 

stress in the heart (Feng et al., 2000; Pessah et al., 2002). 

It is becoming increasingly evident that redox modifications could contribute to RyR2 

dysfunction. Indeed, several studies have found that RyR2 oxidation is elevated in 

pathological conditions including various modes of heart failure (Terentyev et al. , 2008 ; 

Belevych et al., 2009; Belevych et al., 2011), in CPVT (Shan et al., 2012) and atrial 

fibrillation (Vest et al., 2005). Recently it has been revealed that ~-adrenergic 

stimulation promotes mitochondrial ROS production upon electrical pacing of rabbit 

cardiomyocytes. The authors were able to attribute the onset of spontaneous Ca2+ waves 

with ROS induced oxidation of RyR2 (Bovo et al., 2012). This finding is important as it 

suggests that some of the effects of chronic ~-adrenergic stimulation previously 

attributed to phosphorylation may be at least partially due to oxidation. While an 

association between luminal Ca2+ sensitivity and RyR2 oxidation has been observed in 
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these pathological settings there are only limited studies directly testing the dependence 

of activation by luminal Ca2
+ on redox modification of RyR2. 

Redox modification of RyR shifts the channel 's cytoplasmic Ca2
+ sensitivity. (Marengo 

et al., 1998) found that regardless of the RyR isoform, the presence of reducing agents 

decreased channel activity and allowed the channel to be inhibited with addition of 

cytoplasmic Ca2
+. Conversely, oxidation increased RyR2 activity and enhanced the 

sensitivity of the channel to activation by cytoplasmic Ca2
+. Similar studies utilising 

GSH:GSSG ratios to set a defined redox potential, conditions promoting thiol oxidation 

(more positive redox potentials) caused an increase in sensitivity to activation by 

cytoplasmic Ca2
+ (Xia et al., 2000; Oba et al., 2002). 

1.10.4 Redox modification of SERCA2A 

SERCA2A contains 26 cysteine residues, the majority of which reside in the 3 

cytoplasmic domains of the protein. It has long been known that SERCA is vulnerable 

to redox agents including H20 2 (Morris and Sulakhe, 1997; _Kaplan et al., 2003), NEM 

(Yoshida and Tonomura, 1976; Yamada and Ikemoto, 1978) peroxynitrite (Sharov et 

al., 2006), DTNB (Morris and Sulakhe, 1997) and hydroxyl radical (Xu et al., 1997) 

which cause substantial inhibition of Ca2
+ uptake (reviewed in Zima and Blatter, 2006; 

Hidalgo and Donoso, 2008). On the other hand, in the presence of GSH, low 

concentrations of peroxynitrate promoted S-glutathionylation of key cysteine residues 

which stimulated SERCA2A activity in smooth muscle (Adachi et al., 2004). It is 

thought that as few as 1 - 3 thiols of the total 26 in SERCA2A ( or 24 thiols in 

SERCAlA) are important for mediating the functional effects of oxidizing agents on 

SERCA function (Yoshida and Tonomura, 1976; Adachi et al., 2004; Sharov et al., 

2006). The mechanisms of oxidation-induced changes in SERCA function are unclear. 

It has been found that inhibition of Ca2
+ uptake by DTNB and H20 2 is due to a 

reduction in the maximal velocity of Ca2
+ uptake, with no effect on Ca2

+ affinity 

(Morris and Sulakhe, 1997; Kaplan et al., 2003). Since these key residues (particularly 

Cys-674) are not localized near the Ca2
+ binding sites on SERCA2A, it has been 

suggested that the effects of thiol oxidation are due to general effects on protein 

structure which uncouple ATP hydrolysis from Ca2
+ translocation (Sharov et al., 2006). 
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1.10.5 Redox modification of L TCC 

LTCC are also vulnerable to oxidation. The a I subunit contains 48 cysteine residues 

(Hool and Corry, 2007), though as few as 10 may be available for redox modification 

(Zima and Blatter, 2006). The functional effects of oxidation and reduction of these 

cysteines is variable and complex. Some investigators have found that oxidation inhibits 

lea (Lacampagne et al., 1995) while others find that oxidizing agents enhanced l ea 

(Campbell et al., 1996 and reviewed in Zima and Blatter, 2006; Hool and Corry, 2007). 

The variation in functional outcomes found by these and other investigators could be 

due to differences in the type of oxidizing agent and the concentration and duration of 

exposure. Interestingly, the redox state of LTCC cysteines has been found to mediate 

hypoxia induced increases in channel sensitivity to ~-adrenergic stimulation (Hool, 

2000). Hence, while the direct functional effects of oxidative modification of LTCC are 

unclear, it is evident that redox regulation of this channel could have an important role 

in EC coupling. 

1.11 

1.11.1 

Ca2
+ signalling in health and disease 

Whole cell Ca2
+ signalling 

It is important to consider Ca2
+ handling in the context of whole cell Ca2

+ signalling, 

given that RyR2 activity is regulated by so many cytoplasmic and luminal factors. The 

open probability of RyR2 must be high during systole for maximal Ca2
+ release and 

very low during diastole for efficient Ca2
+ accumulation in the SR and to avoid 

promoting arrhythmogenesis (see Section 1.11.2). The cytoplasmic [Ca2+] ranges from 

0.1 - 1 µM while the luminal [Ca2+] cycles between - 0.3 mM and 1 - 1.5 mM (Bers, 

2002b; Shannon et al., 2003a) during systole and diastole, respectively. It has been 

shown that there is a steep relationship between SR load and both systolic (Bassani et 

al., 1995b; Shannon et al., 2000) and diastolic Ca2
+ release (Shannon et al. , 2002). The 

higher RyR activity at increased SR Ca2
+ loads is thought to arise from enhanced 

sensitivity of RyR2 to luminal Ca2
+ (Shannon et al., 2000; Shannon et al., 2003a). A 

study by Bode and colleagues (2011) found that reduced SERCA activity caused a 

drastic decrease in RyR Ca2
+ release, despite only a minor reduction in SR content. The 

authors hypothesised that this was due to the steep dependence of RyR Ca2
+ release on 

SR load. That is , only a small decrease in SR content is required to reduce SR Ca2
+ 
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release so that SR Ca2
+ release matches the lower SR Ca2

+ uptake (Bode et al., 2011, 

reviewed in Eisner et al., 2013). 

Elemental Ca2
+ release occurs as sparks (Cheng et al., 1993). When a Ca2

+ spark occurs 

there is a depletion of Ca2
+ from the release site inside the junctional SR. Measurement 

of these local depletions, or blinks, have revealed that diffusion of Ca2
+ through the SR 

is relatively fast, which limits regions of Ca2
+ depletion or accumulation under normal 

conditions. However, with increased spontaneous Ca2
+ release there can be significant 

variability in Ca2
+ diffusion at local release sites, and an arrhythmogenic substrate may 

develop. That is, there is an increased potential for arrhythmic activity (Picht et al., 

2011). It has been found that once SR [Ca2+] falls to 0.3 - 0.5 mM or 40 - 50 % of its 

diastolic volume, neither Ca2
+ sparks or stimulated Ca2

+ release occur (Shannon et al., 

2003a; Zima and Blatter, 2006; Guo et al., 2010) indicating RyR Ca2
+ release terminates 

well before the SR is depleted. These data illustrate the sensitivity of RyR2 regulation 

by luminal Ca2
+. As discussed (Section 1.9.3 and 1.9.4), several factors in the SR lumen 

have a substantial effect on RyR2 channel activity, including accessory proteins, redox 

potential and the SR Ca2
+ load. 

It can be said that there are two Ca2
+ cycles in cardiomyocytes, one involving Ca2

+ 

movement across the sarcolemma and another involving Ca2
+ movement in and out of 

the SR (Katz, 2006). Under normal conditions, a balance is maintained so Ca2
+ that 

enters via the LTCC upon depolarization is removed via the NCX during diastole. 

Similarly, the amount of Ca2
+ that is released from the SR by RyR2 during systole is 

equivalent to what it taken up via SERCA during diastole (Trafford et al., 2000). Thus 

in the healthy heart, cellular Ca2
+ homeostasis is maintained with no net change in 

[Ca2+] in any of the cellular compartments from one beat to the next. 

It should be noted though that the actions of sarcolemmal ion channels influence the 

activity of SR ion channels (for example in CICR) and vice versa. This is evident in the 

way the SR [Ca2+] is 'autoregulated', so that if Ca2+ flux through one channel or 

transporter is altered, other Ca2
+ fluxes will compensate, and overall Ca2

+ flux balance 

is maintained (Dibb et al., 2007). The mechanisms contributing to this process were 

quantified by Trafford & colleagues (2000) who showed that in the presence of the 

RyR2 agonist caffeine, Ca2
+ release is only enhanced temporarily before returning to 

baseline levels. The initial enhanced release via RyR activates NCX, causing an overall 
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loss of Ca2
+ from the cell and from the SR. A reduction in store load causes the 

following Ca2
+ transients to be decreased in size until the SR load can recover. This is 

facilitated by Ca2
+ influx via LTCC, which is increased to balance the increased Ca2

+ 

efflux via NCX (Trafford et al., 2000). Thus, Ca2
+ homeostasis is re-established. 

Conversely, conditions that alter multiple targets involved in Ca2
+ signalling are thought 

to alter the set point at which Ca2
+ flux balance occurs (reviewed in Eisner et al., 2013). 

Modifications that increase this set point would be likely to increase contractile function 

but have an increased risk of arrhythmogenesis and cell death due to Ca2
+ overload, 

while modifications that reduce the set point would reduce contractility. Some of the 

effects of altered Ca2
+ homeostasis in pathological conditions are discussed below. 

1.11.2 Changes in Ca2
+ handling in cardiac disease 

In recent years there has been a huge amount of evidence suggesting altered RyR2 

function and changes in SR Ca2
+ handling in general are important in several 

pathological conditions including heart failure, sudden cardiac death and several forms 

of arrhythmia. In the context of the SR autoregulation discussed in the previous section, 

altered RyR2 activity alone would be unlikely to cause any sustained change in cardiac 

function. Indeed, there are many examples of human and animal models of the 

aforementioned conditions, where altered RyR2 function coexists with changes in 

protein expression, post-translational modifications or altered protein-protein 

interactions. 

Heart failure is an excellent example of such a condition, where there are changes in 

protein expression, combined with chronic ~-adrenergic signalling and altered RyR2 

function. Common findings of heart failure include (but are not limited to) impaired 

contractility, reduced peak systolic Ca2
+ release, increased diastolic Ca2

+ release and 

reduced SR store load. The exact mechanisms underlying these changes are complex 

and in some cases controversial. It is generally agreed that RyR2 undergoes some form 

of protein modification causing a reduced threshold for RyR2 activation by luminal 

Ca2
+ (Kubalova et al. , 2005) and enhanced diastolic leak (Shannon et al., 2003b). 

Whether this increased sensitivity though is caused by CaMKII (Ai et al. , 2005; Fischer 

et al., 2013) or PKA (Marx et al ., 2000; Wehrens et al., 2003) mediated 

phosphorylation, increased oxidation (Terentyev et al. , 2008; Belevych et al., 2011), 

impaired nitrosylation (Gonzalez et al. , 2007), FKBP dissociation (Marx et al., 2000) or 
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a combination of several of these effects is a contentious area of research. It is possible 

that differential results may arise from different animal models, aetiologies and 

experimental protocols. The observation that the SR Ca2+ load decreases in heart failure 

is consistent with the fact that RyR2 leak is increased during diastole. This is 

compounded by changes in SERCA and NCX expression. As detailed in Section 

1.7.1.6, in the failing heart, it is often found that SERCA is downregulated, contributing 

to the reduced ability of the SR to accumulate ca2+, and the NCX is upregulated. As a 

consequence the NCX/SERCA extrusion balance is altered, and as such a greater 

fraction of cytoplasmic Ca2+ is extruded from the cell via NCX (Bers, 2008). As 

mentioned previously (Section 1.7.1.6) there may also be a reduction in the expression 

or phosphorylation status of phospholamban both of which would promote SERCA2A 

inhibition. 

As well as contractile failure, many of the aforementioned changes in Ca2+ handling are 

associated with arrhythmia, which is a prevalent cause of sudden death in patients with 

heart failure . This is believed to occur as a result of enhanced diastolic activity, which 

greatly increases cytosolic [Ca2+], activating the forward mode NCX (Ca2+ efflux) 

(Pogwizd et al., 2001). The influx of Na+ depolarizes the surface membrane and if great 

enough triggers a delayed afterdepolarization (DAD). These events are associated with 

aberrant diastolic Ca2+ release and cytoplasmic Ca2+ overload (Bers, 2001). A similar 

mechanism has also been proposed for certain types of early afterdepolarizations 

(EADs). EADs are more likely to occur though with prolonged action potentials. While 

certain types of EADs are associated with NCX and Ca2+ overload mechanisms, other 

types are associated with reactivation of lea (Figure 1.13) (Xie et al., 2013). These 

afterdepolarizations cause uncoordinated action potentials and arrhythmia. 

Afterdepolarisations are also implicated in CPVT which is linked to mutations in RyR2, 

CSQ2 and (most recently discovered) triadin (Jiang et al., 2005; Faggioni and 

Knollmann, 2012; Roux-Buisson et al., 2012). In CPVT, arrhythmia arises following 

exercise or stress-induced ~-adrenergic stimulation. Mutations in proteins of the Ca2+ 

release complex are thought to lower the threshold for RyR2 activation (Jiang et al., 

2004; Lehnart et al., 2004) or cause SR overload (Kashimura et al., 2010), the effects of 

which, at rest, appears to be asymptomatic. ~-adrenergic stimulation induces enhanced 

Ca2+ signalling, resulting in increased store load and excess diastolic Ca2+ release which 

greatly increases cytosolic [Ca2+], activating the forward mode NCX (Pogwizd et al., 

2001) and causing DADs. 
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Figure 1.13 -Triggered activity in cardiomyocytes. Afterdepolarizations occur 

following the ventricular action potential and may occur after the membrane potential has 

completely repolarized but before the next action potential (delayed afterdepolarization , 

DAD), or before the completion of repolarization (early afterdepolarization, EAD) . The 

cellular basis of these differs, with DADs more associated with SR Ca2
+ overload resulting 
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In some CSQ2-linked CPVT mutations, the SR buffering capacity is reduced or its 

ability to regulate RyR2 activity is compromised. It is evident that normal protein

protein interactions within the lumen of the SR are essential for the precise regulation of 

RyR2 during diastole that maintains and fine tunes the Ca2
+ release processes essential 

for normal cardiac function. The central role of RyR2 in arrhythmogenesis makes it a 

potential target for antiarrhythmic therapy (McCauley and Wehrens, 2011). 

1.12 

1.12.1 

Anthracyclines 

History and clinical use 

Anthracyclines are a class of cytotoxic agents first isolated from cultures of 

Streptomyces var. Peucetius in the 1960s. Since then, anthracyclines, including 

doxorubicin and daunorubicin, have come to be recognized as some of the most 

effective chemotherapeutic agents ever developed. According to the National Cancer 

Institute, doxorubicin is approved either alone or in combination for the treatment of 

acute lymphoblastic leukaemia, acute myelogenous leukaemia, breast cancer, gastric 

cancer, hodgkin lymphoma, neuroblastoma, non-hodgkin lymphoma, ovarian cancer, 

small cell lung cancer, soft tissue and bone sarcomas, thyroid cancer, transitional cell 

bladder cancer and Wilms tumor. Daunorubicin on the other hand has a much lower 

spectrum of activity, primarily used for acute nonlymphocytic leukemia or lymphocytic 

leukaemia in children. 

Administration of anthracyclines via bolus intravenous injection results in initial plasma 

concentrations of approximately 5 µM, which declines rapidly to submicromolar 

concentrations in in less than 1 hour (Gewirtz, 1999). While the plasma concentration 

dissipates relatively quickly, anthracyclines have a long half-life in tissues of the body, 

accumulating in certain organs, including the heart, and attaining concentrations many 

fold higher than those measured in the plasma (Cusack et al., 1995). This long half-life 

is promoted by the anthracycline structure. Daunorubicin and doxorubicin are small, flat 

and amphipathic compounds that are very similar in structure and are known to easily 

cross cell membranes (Regev and Eytan, 1997). A tetracyclic ring, consisting of 

adjacent quinone and hydroquinone groups, and a daunosamine sugar moiety constitute 

the bulk of the structure (Figure 1.14). 
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Figure 1.14 - Half-life and structural characteristics of anthracyclines and their 

metabolites. (A) Comparison of clearance of doxorubicin and doxOL from a strip of human 

atrial tissue over time (from Menna et al., 2012) (B) Two electron reduction of the carbonyl 

side chain (solid green box) of daunorubicin yields the secondary alcohol metabolite 

daunorubicinol and doxorubicinol (dashed green boxes). These metabolites have been shown to 

be more potent in impairing SR function and are able to accumulate in the heart. The quinone 

moiety (solid blue box) of daunorubicin and doxorubicin is known to be essential in mediating 

the cardiotoxic effects of these drugs. The daunorubicin analogue, 5-irninodaunorubicin has an 

irnine ( dashed blue box) in place of the quinone and is less potent in reducing cardiac 

contractility and disrupting SR Ca2
+ handling than the parent compound. Chemical structures 

created by (ChemIDplus). 
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Only a difference in side chains differentiates the two drugs, with the doxorubicin side 

chain terminating with a primary alcohol and the daunorubicin side chain with a methyl 

group (Minotti et al., 2004; Menna et al., 2007a). This minor difference is thought to 

account for the different spectrum of activities of the two drugs (Sacco et al., 2003). 

1.12.2 Mechanism of cytotoxicity 

Despite their use as chemotherapeutic agents for several decades, the detailed 

mechanism of their cytotoxicity is uncertain. Much of the research is complicated by the 

use of high drug concentrations that are not clinically relevant. In a comprehensive 

review of literature regarding the antitumour mechanism of anthracyclines it was 

suggested that any studies using anthracycline concentrations 2'.: 2 - 4 µM should be 

interpreted cautiously (Gewirtz, 1999). These values reflect the maximum concentration 

of drugs achieved in the plasma after bolus administration. Additional confusion is 

created by the heterogeneity of cell models used for these types of studies. Therefore, 

the specific mechanisms of anthracycline cytotoxicity are unclear. Strong evidence 

supports roles for DNA intercalation, interference with DNA strand separation (via an 

interaction with DNA helicase), oxidative damage to DNA, and perhaps the best 

supported pathway, inhibition of topoisomerase II, with subsequent prevention of DNA 

repair (reviewed in Gewirtz, 1999; Minotti et al., 2004; Barrett-Lee et al., 2009). 

1.12.3 Anthracycline-induced cardiotoxicity 

1.12.3.1 Presentation 

Like other chemotherapeutic agents, anthracyclines have many side effects including 

nausea, immunological impairment and poor wound healing (Asmis et al., 2005). 

However, these effects do not limit the use of the drugs. Rather the therapeutic index of 

anthracyclines is reduced by the existence of a potentially fatal cardiotoxicity that 

affects both adults and children. Acute cardiotoxicity can occur during the drug 

administration and usually presents as ECG abnormalities (often asymptomatic) and 

arrhythmias. These effects are generally minor and resolve themselves without 

intervention and as such are not cause for ceasing treatment (Horenstein et al., 2000; 

Pfeffer et al., 2009). The dose limiting effects of anthracyclines include dilated 

cardiomyopathy and impaired contractility, which first presents as reduced left 

ventricular ejection fraction. These effects are precursors to congestive heart failure and 

constitute late onset or chronic anthracycline cardiotoxicity. There is a large variation in 
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Figure 1.15 - Progression and risk of anthracycline-induced cardiotoxicity (A) As the 

cumulative dose of doxorubicin increases above 500 mg/m2 there is a drastic increase in the 

risk of chronic heart failure. The graph also shows that patients < 15 yrs or >60 years of age are 

at increased risk. Figure from (Barrett-Lee et al., 2009) (B) As the duration of patient 

monitoring after completion of anthracycline treatment increases, there 's an increased 

occurrence of cardiac dysfunction, measured by % fractional shortening i.e. contractile 

function, with a pronounced increase in patients with severe contractile impairment (blue 

·columns). Figure from (Pfeffer et al., 2009). 
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the onset and severity of symptoms with cardiac dysfunction appearing anywhere from 

several months to years after cessation of treatment (Steinherz et al ., 1991; Barrett-Lee 

et al., 2009) . The observation in one study that the incidence of reduced fractional 

shortening increased over time highlights the need for prolonged follow up periods with 

careful assessment of cardiac function (Figure 1.15B) (Steinherz et al ., 1991). 

Additional risk factors for anthracycline toxicity include age ( < 15 and> 60 years) (see 

Figure 1.15), co-administration with certain drugs (e.g. paclitaxel and trastuzumab) , 

concurrent radiotherapy, the existence of co-morbidities such as hypertension, liver 

disease, pre-existing cardiac conditions and the total cumulative dose of drug received 

(Figure 1.15) (Barrett-Lee et al., 2009; Pfeffer et al. , 2009) . Because of these effects, the 

use of anthracyclines is restricted and it is current practise to limit cumulative doses to 

500mg/m2 in total and not to administer these to anyone with a pre-existing heart 

condition. These factors limit the dosage of the drugs and the number of eligible 

patients (Airoldi et al. , 2011 ; Octavia et al ., 2012). 

In children, doses as low as 100 mg/m2 have been associated with cardiac abnormalities 

(Menna et al. , 2008) and there is a striking increase in the incidence of heart failure 

when the cumulative anthracycline dose is increased above 250 - 300 mg/m2 (Kremer et 

al., 2001 ; Mulrooney et al., 2009). That symptoms can develop decades after the end of 

treatment means survivors of childhood cancer who receive anthracyclines face a high 

risk of developing cardiac symptoms as young adults (Mulrooney et al. , 2009; 

Trachtenberg et al., 2011). 

1.12.3.2 Proposed mechanisms of anthracycline cardiotoxicity 

Although there have been decades of research investigating the underlying cause, there 

is no consensus on a molecular mechanism for anthracycline cardiotoxicity. The 

structural characteristics of the drugs enable them to have a long half-life in the body 

(Cusack et al ., 1995). Many cellular components have been hypothesised to have a role 

in anthracycline cardiotoxicity. Some of these include: cal pain-induced dystrophin 

disruption (Campos et al ., 2011 ) and titin degradation and necrosis (Lim et al. , 2004); 

RyR modulation (Ondrias et al. , 1990; Olson et al. , 2000; Hanna et al. , 2011 ); 

SERCA2A inhibition (Boucek et al ., 1987; Olson et al. , 1988); Na/K ATPase inhibition 

(Boucek et al ., 1987); NCXl inhibition (Boucek et al. , 1987); altered CSQ2 function 

(Park et al. , 2004; Kim et al. , 2005b); mitochondrial dysfunction (Boucek et al ., 1987; 

Olson et al. , 2000; Kuznetsov et al., 2011 ); altered ~-adrenergic signalling (Calderone et 
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al., 1991; Nagami et al., 1997; Fajardo et al., 2006) and induction of apoptotic 

signalling pathways (reviewed in Minotti et al., 2004; Sawyer et al., 2010). Many of 

these factors can be linked to two central themes: oxidative stress and altered Ca2
+ 

handling, which are discussed in more detail below. 

1.12.3.2.1 Anthracyclines and oxidation 

Oxidative stress-mediated cell damage is the most cited hypothesis of anthracycline 

induced cardiotoxicity. The quinone moiety of anthracyclines readily undergoes redox 

cycling (Figure 1.16), which can be catalysed by many enzymes including cytochrome 

P-450, xanthine dehydrogenase and NADH dehydrogenase (Minotti et al., 2004). One 

electron addition to the quinone converts the drug to a semiquinone derivative, which 

regenerates the parent compound by reducing 0 2 to 0 2- and H2O2 (Davies et al., 1983; 

Berthiaume and Wallace, 2007; Simunek et al., 2009). 

The role of ROS in anthracycline-induced cardiotoxicity is supported by experiments 

showing that antioxidant treatment in rodents attenuated the cardiotoxic side effects of 

these drugs (Bast et al., 2007) and by studies using transgenic mice overexpressing 

cellular antioxidants (Cole et al., 2006). ROS production by anthracyclines has been 

repeatedly demonstrated in vivo, commencing immediately with anthracycline exposure 

and continuing in a time-dependent manner (Davies and Doroshow, 1986; Kim et al., 

2006; Sag et al., 2011). The heart has low levels of antioxidant enzymes, particularly 

catalase which has been reported to be expressed at levels 50 - 150 times lower in the 

heart than in other organs. Thus cardiac muscle is particularly susceptible target to 

anthracycline induced ROS formation (Doroshow et al., 1980; Chen et al., 1994). 

In further support of a ROS based mechanism is the finding that cardiotoxic side-effects 

of anthracyclines depend on the presence of the quinone moiety (Menna et al., 2007b ). 

Studies comparing the effects of daunorubicin to its quinone-deficient analogue 5-

iminodaunorubicin (5-ID, Figure 1.13) found that daunorubicin was far more potent in 

impairing contractility and stimulating Ca2
+ release from SR vesicles (Shadle et al., 

2000a) and modulating RyR2 activity (Pessah et al., 1990; Olson et al., 2000). 

Anthracyclines also generate ROS through iron-mediated pathways. As shown in Figure 

1.11, ferrous iron is a substrate for the Fenton reaction, in which OH- are produced from 

H2O2. Normally iron is complexed with the storage protein ferritin, however 02-, as 

produced from redox cycling of anthracyclines, can promote the release of iron. 
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Figure 1.16 - Redox cycling of anthracyclines. One electron reduction of the quinone 

group in anthracyclines, such as doxorubicin (included for reference) yields a serru

quinone derivative. Oxidation of the serru-quinone with molecular oxygen regenerates 

the parent compound and produces superoxide anion (02-) and hydrogen peroxide 

(H2O2). Formation of the hydroxyl radical (Off) via the Fenton reaction is promoted by 

the release of iron from its complex with ferritin. Iron complexed with anthracyclines can 

also act as a substrate in the Fenton reaction. Figure modified from (Minotti et al., 2004) 
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Additionally, anthracyclines can form complexes with ferric iron, which can be reduced 

to ferrous iron and, as above, act as a substrate for the Fenton reaction. The importance 

of iron-mediated ROS formation is supported by the efficacy of the cardioprotective 

drug dexrazoxane. This drug acts as an iron chelator and is believed to prevent cardiac 

side-effects by binding free iron and preventing the formation of iron-anthracycline 

complexes. Dexrazoxane is approved by the United States Food and Drug 

Administration and the European Medicines Agency as a preventative treatment for 

cardiomyopathy and is the only officially approved treatment for anthracycline 

cardiotoxicity. However, a review of clinical trials found that a third of patients who 

were administered dexrazoxane still developed heart failure, suggesting the existence of 

non-ROS based mechanisms (van Dalen et al., 2006). Furthermore, it is not approved 

for use in paediatric patients and is only recommended for use in patients with advanced 

or metastatic breast cancer who have received a cumulative doxorubicin dose of 300 

mg/m2
. 

There are important caveats in the oxidative stress hypothesis. The cardioprotective 

effects of antioxidants in rats and mice were not replicated in large animals or humans 

(Menna et al., 2007a). This may relate to differences in the models of cardiotoxicity, 

though are consistent with the disappointing outcomes of clinical trials investigating the 

efficacy of antioxidant supplements and cardiovascular disease in humans (Kris

Etherton et al., 2004). Furthermore, Shadle and colleagues (2000) found that 

daunorubicin induced SR Ca2
+ release and impaired cardiac contractility in a ROS

independent mechanism, while in other studies daunorubicin-induced inhibition of SR 

Ca2
+ release was not prevented by pre-treatment with DTT (although this did occur in 

single channel experiments - see below) (Olson et al., 2000). Furthermore, the time 

course of cardiac dysfunction does not appear to correlate with a ROS based 

mechanism, but relate more to increasing concentrations of the primary metabolites 

(Olson and Mushlin, 1990). While this evidence doesn't exclude a ROS-based 

mechanism, it points to a need for a better understanding of the mechanisms and targets 

of anthracycline-induced ROS formation. 

Anthracyclines also promote oxidation through non-ROS based pathways. Doxorubicin 

and other quinone containing compounds have repeatedly been shown to modify RyR 

thiols, promoting the formation of intra- or inter-molecular disulphides in a ROS 

independent manner (Abramson et al. , 1988; Feng et al., 1999; Marinov et al., 2007), 
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possibly by promoting deprotonation of the thiol groups ( see Section 1.10 .1). Abramson 

and colleagues (1988) suggested that anthracyclines disrupt Ca2
+ release by directly 

oxidising a component of the SR Ca2
+ release complex, since addition of catalase and 

SOD was unable to prevent the effects of doxorubicin on the RyR. The same theory was 

proposed by Ondrias and co-workers (1990) and Hanna et al (2011) who prevented 

anthracycline-induced inhibition of single RyR2s in lipid bilayers by pre-treating with 

DTT. This has been suggested to occur via an electron exchange mechanism between 

anthracyclines, which act as electron acceptors, and the reactive thiol groups (Marinov 

et al., 2007). These findings warrant further investigation of the ROS independent 

aspect of anthracycline-induced protein oxidation. 

1.12.3.2.2 Altered Ca2
+ handling 

Anthracycline treatment causes severe ultrastructural changes to cardiac muscle, with 

typical effects including progressive disarray and loss of myofibrils , mitochondrial 

swelling, vacuolization and SR dilation (Lim et al., 2004 reviewed in Singal et al., 2000; 

Sawyer et al., 2010) . These changes are evident in both animal models and in an 

endomyocardial samples from human patients. Functional studies using skeletal and 

cardiac preparations have found that anthracyclines disrupt SR function , reducing its 

storage capacity and modulating the release of Ca2
+ into the cytoplasm (see below 

1.12.3.2.3) (Ondrias et al., 1990; Feng et al., 1999; Olson et al., 2000; Charlier et al., 

2005; Kim et al. , 2005a). Additional disruptions to cardiac Ca2
+ handling include 

decreased SR Ca2+ content and increased cytoplasmic [Ca2+] during diastole. It has been 

suggested that these changes are associated with the increased CaMKII activity that 

occurs in the presence of anthracyclines (Sag et al. , 2011) or as a result of an interaction 

between anthracyclines and CSQ2 (Kim et al., 2005b). The structural characteristics of 

the drugs (see above) enable them to easily move across lipid membranes such as the 

plasmalemma and SR membrane and as mentioned above, several SR and sarcolemmal 

proteins have been indicated as binding targets , including RyR2, CSQ2, NCXl, 

SERCA2A and Na/K ATPase (see Section 1.12.3.2), some of which are addressed in 

more detail below. 

1.12.3.2.3 Anthracycline effects on RyR function 

RyR2 is the most studied cardiomyocyte binding target of anthracyclines. Its central 

role in Ca2
+ handling and cardiac function, and its particular sensitivity to oxidative 
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modification, make RyR2 an especially likely target of anthracyclines. Similar to other 

quinone containing compounds, anthracyclines have been found to both stimulate and 

inhibit RyR Ca2
+ release in both cardiac and skeletal muscle (Abramson et al., 1988; 

Pessah et al., 1990; Olson et al., 2000; Kim et al., 2005b) . Biphasic modulation of RyR2 

has been reported in experiments using single RyR2 channels in lipid bilayers, with an 

initial activation followed by a later, irreversible inhibition of activity with cytoplasmic 

exposure to low micromolar (2.5 - 10 µM) doxorubicin (Ondrias et al., 1990) and 

daunorubicin (Hanna et al., 2011) . Olson and co-workers (2000) also reported that 

daunorubicin in micromolar concentrations inhibited Ca2
+ release from populations of 

SR vesicles. The authors found that 5-ID (the quinone-deficient analogue of 

daunorubicin) had little impact and that inhibition depended upon the extent of SR Ca2
+ 

loading. 

1.12.3.2.4 Anthracycline effects on CSQ2 

Anthracyclines bind to CSQ with micromolar affinity (Kim et al., 2005b). It has been 

proposed that CSQ2 binding drugs such as anthracyclines and trifluoperazine target a 

ligand binding site thought to consist of a hydrophobic cleft positioned within each of 

the thioredoxin-like domains in CSQ2's structure (see Section 1.1.3.2) (Park et al., 

2005a). Binding at this site may inhibit the Ca2
+ binding capacity of CSQ2 and/or alter 

protein conformation with subsequent reductions in SR Ca2
+ release and reduced SR 

Ca2
+ storage capacity (Charlier et al., 2005; Kim et al. , 2005a; Park et al., 2005a). 

Considering the high concentration of CSQ2 in the SR lumen and the solubility 

characteristics of anthracycline molecules, it is likely that even low concentrations of 

anthracyclines may accumulate in the SR and bind to CSQ2, disrupting Ca2
+ 

homeostasis (Charlier et al., 2005; Kim et al., 2005a; Park et al., 2005a). Although 

inhibition of CSQ2 is thought make a substantial contribution to SR dysfunction, 

interactions between anthracyclines and other SR proteins could not be ruled out by the 

aforementioned experiments (Charlier et al., 2005). 

1.12.3.3 Anthracycline metabolites 

Daunorubicin and doxorubicin are metabolized to the hydroxyl derivatives 

daunorubicinol (daunOL) and doxorubicinol (doxOL) by two electron reduction of the 

carbonyl side chain (Figure 1.14) (Mordente et al., 2003; Menna et al., 2007b). DaunOL 

has been found to stimulate and inhibit Ca2
+ release from SR vesicles and could do so at 
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:::;50% lower concentrations then the parent compound (Olson et al.; Charlier et al., 

2005). Cardiac muscle preparations from rabbits treated with a single dose of 

daunorubicin (15 mg/kg) exhibited a ~30 fold ratio of daunOL to daunorubicin 3-4 days 

after drug administration and had impaired contractile function. DaunOL, at a similar 

concentration to what was measured ex vivo (approximately 10 µM) could inhibit 

SERCA2A function whilst daunorubicin, at an equivalent concentration had no effect 

(Cusack et al., 1993b). DaunOL and daunorubicin do however bind to CSQ2 with 

similar affinities (Charlier et al., 2005). Similar findings have been made for doxOL 

which could inhibit SERCA2A, Na/KATPase and the mitochondrial proton pump, 

while doxorubicin either had no effect or required concentrations 100-fold to cause 50% 

as much inhibition as the metabolite. DoxOL, but not doxorubicin, also caused a 4-fold 

increase in myocardial stiffness though this required relatively high concentrations of 

~90 µM which could be considered higher than clinically attainable (Boucek et al., 

1987; Olson and Mushlin, 1990). A later study found that both doxorubicin and doxOL 

could impair SR Ca2
+ release, decrease contractility and increase muscle stiffness. The 

severity of some of these effects was found to increase in a time dependent manner, 

which was correlated with increasing levels of doxOL ( due to doxorubicin metabolism 

in cardiac tissue) (Mushlin et al., 1993). The authors suggested then that time-dependent 

changes in cardiac function are attributable to doxOL, rather than doxorubicin, and that 

doxOL potentiates the early, acute effects of doxorubicin. The results of these studies 

should be interpreted carefully however, as very high drug concentrations (up to 175 

µM) were used to treat the isolated muscle preparations. 

The limited body of published data suggest that anthracycline metabolites have the 

potential to cause significant cardiac dysfunction and do so with far greater potency 

then the parent compounds. To date there have been no studies investigating the effects 

of doxOL on the specific function of the two major binding targets , namely RyR2 and 

CSQ2. This is an important gap in the literature as the drug metabolites are likely to 

have an important role in the development of the chronic component of anthracycline

induced cardiotoxicity, possibly as a consequence of their prolonged half-life in the 

body compared to the parent compounds (Cusack et al ., 1995, for a review see Menna et 

al., 2007a) . This difference is illustrated in Figure 1.14A, comparing the clearance of 

doxorubicin and doxOL from a strip of human atrial tissue (Menna et al. , 2012). An 

important role for the metabolites is also indicated by the findings that 1) over 

expression of the carbonyl reductase (which catalyses doxorubicin to form doxOL) 
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accelerates the development of cardiomyopathy (Forrest et al., 2000) and 2) knockdown 

of the carbonyl reductase gene protected mice against acute cardiotoxicity (Olson et al., 

2003, reviewed in Menna et al., 2012). Given that metabolites accumulate in the heart 

it's difficult to firstly, determine what level of metabolites might be found in human 

cardiac tissue following anthracycline treatment, particularly months or years after 

treatment completion, and secondly, predict what concentration of the metabolites 

actually cause cardiac dysfunction. As Olson & Mushlin (2000) point out, isolated 

muscle preparations exhibit quite severe dysfunction after as little as one dose of 

anthracyclines, while in humans, cardiac symptoms may not appear for months or even 

years after cessation of treatment. 

1.12.3.4 Reduced gene expression with chronic anthracycline treatment 

Anthracyclines and their metabolites have been shown to reduce the mRNA expression 

of several SR Ca2
+ handling proteins. Reduced gene expression of RyR2, PLB, 

SERCA2A and CSQ2 was measured in rabbits after completion of long-term (8 weeks) 

anthracycline administration. Although SERCA2A protein expression was reduced, the 

authors did not check protein levels of any other SR proteins (Arai et al., 1993). In a 

more recent study utilizing a similar model of anthracycline-induced cardiotoxicity, 

protein levels of RyR2, SERCA2A, CSQ2 and NCXl were decreased (Olson et al., 

2005) . In both studies depressed cardiac function was measured following the 

completion of anthracycline treatment, suggesting that expression of Ca2
+ handling 

proteins may contribute to the chronic component of anthracycline-induced 

cardiotoxicity. RyR2 mRNA expression has been reduced in other studies, however 

protein expression was not investigated (Burke et al., 2000; Gambliel et al., 2002). In 

one case, the decreased mRN A expression could be prevented by dexrazoxane pre

treatment, while in the other it was found that an analogue of doxorubicin that cannot be 

metabolized by carbonyl reductase (therefore no doxOL production) had no effect on 

RyR2 expression. These studies suggest that doxOL has an important role in 

doxorubicin-associated changes in RyR2 gene expression, and that dexrazoxane could 

ameliorate these changes (Burke et al. , 2000; Gambliel et al., 2002). 

1.13 Summary and aims of thesis 
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Optimal cardiac function relies on rapid electrical signalling in the heart, which is 

facilitated by a specialized signal conduction pathway and the highly interconnected 

nature of cardiomyocytes. At the cellular level, the translation of the electrical signal to 

the mechanical contraction of the muscle fibres involves a complex signal conduction 

pathway in a process known as excitation-contraction coupling. Intrinsic to this process 

is the movement of ca2+, which is intricately involved in all aspects of cardiac function 

including excitation, muscle contraction, relaxation and rhythmicity. Therefore it is 

essential that Ca2
+ homeostasis is maintained. Altered function or regulation of ion 

channels and transporters involved in EC coupling, including LTCC, NCXl, RyR2 and 

SERCA2A has devastating consequences on cardiac function, including arrhythmia, 

heart failure and sudden cardiac death. 

Severe cardiac dysfunction would likely require concurrent modulation of several of 

these targets. There is evidence that the anthracycline compounds can cause such 

effects, with evidence from studies over the last 20 - 30 years suggesting that these 

drugs may target multiple links in the EC coupling pathway. Considering anthracyclines 

can promote oxidative stress by both ROS dependent and ROS-independent pathways 

(see Section 1.12.3.2.1) it seems likely that a redox mechanism is involved in drug

induced cardiotoxicity in some capacity. This is supported by the efficacy of 

dexrazoxane as a cardioprotective agent. Unfortunately, attempts to attenuate 

anthracycline cardiotoxicity by targeting ROS pathways, either by treatment or 

prophylaxis with antioxidants has proven unsuccessful. Also, dexrazoxane has been 

found to have no benefit in a third of cases. Given the caveats in the oxidative stress 

theory of anthracycline cardiotoxicity (see Section 1.12.3.2.1), there is a clear need to, 

firstly, better characterize the effects of anthracycline mediated oxidation on 

cardiomyocyte function and secondly, identify other potential mechanisms. 

There is already significant evidence supporting a role for altered Ca2
+ homeostasis in 

anthracycline cardiotoxicity. However there is a need to better describe how clinical 

concentrations of anthracyclines affect Ca2
+ handling in the heart. It is also important to 

address the deficiency in information regarding the anthracycline metabolites. DoxOL 

and daunOL have a greater half-life in the heart then the parent compounds, and the 

limited number of studies on the metabolites indicates that they are also more potent 

than the parent compounds. 

Therefore, the primary aims of this thesis were to: 
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1. Characterize the effects of anthracyclines and their metabolites on Ca2
+ 

handling in the heart 

2. Determine the mechanisms underlying any functional changes, assessing the 

role of anthracycline induced oxidation 

3. Interpret these changes in terms of whole cardiomyocyte function 

Fulfilling these aims will contribute novel information on the molecular mechanism of 

anthracycline-induced cardiotoxicity. It is considered that the cardiotoxic effects of 

anthracyclines are distinct from their cytotoxic effects, allowing the possibility that 

cardiotoxic effects can be attenuated without lessening the efficacy of the drugs as 

chemotherapeutic agents. This knowledge will significantly enhance efforts to design 

co-treatments with a view to improving the therapeutic index of these valuable 

chemotherapeutic agents. 
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Chapter Two 

Materials and Methods 
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2.1. Materials 

Tween-20, Tris, Glycine and MOPS were from Amresco (Solon, USA). Methanol and 

ethanol were from Merck (Parmstadt, Germany). Readymatic developer and fixer were 

from Kodak Dental (Stuttgart, Germany). Immobilon-P PVDF membrane and Amicon 

concentrators were from Millipore (Billerica, USA) . Western blot filter paper and ECL 

reagents were from Thermo Scientific (Rockford, USA). Protein standards for 

electrophoresis were from Bio-Rad (Gladesville, Australia). The primary antibodies 

anti-RyR and anti-SERCA2A were from Abeam (Cambridge, UK) and Badrilla (Leeds, 

UK), respectively. The IgG-HRP conjugated secondary antibodies goat anti-mouse and 

goat anti-rabbit were from Santa Cruz Biotechnology Inc. (Dallas, United States). 

Glacial acetic acid and glucose were from VWR (Murrarie, Australia). DaunOL and 

doxOL were from Toronto Research Chemicals (North York, Canada). Natural mouse 

laminin was from Life Technologies (Mulgrave, Australia). Potassium phosphate, 

monobasic was from Mallinckrodt (Paris, USA) . Glycerol and hydrochloric acid were 

from Ajax Chemicals (Sydney, Australia). Sodium pentobarbitone was from Troy 

Laboratoties (Smithfield, Australia). Lipids were purchased from A vanti Polar Lipids 

(Alabama, United States). Fluo-4 AM, Alexa Fluor 647 and Pluronic F-127 were from 

Molecular Probes (Life Technologies, Mulgrave, Australia). Collagenase Type 2 was 

from Worthington Biochemical Corporation (New Jersey, USA). All other chemicals 

were purchased from Sigma-Aldrich (Castle Hill, Australia). 

2.2. Overview 

The methods presented in this chapter are detailed accounts of the general experimental 

techniques used for the research presented in the results chapters of this thesis. Specific 

protocols are presented in the methods section of the relevant chapters. Experiments 

were conducted at room temperature 23±2 °C unless otherwise stated. Unless otherwise 

stated, all solutions were prepared using high grade, ultra pure water obtained using 

Milli-Q filtration units (Millipore Corporation, Billerica, USA). The vast majority of 

experiments conducted for the research presented in this thesis used SR vesicle 

preparations from sheep cardiac muscle. Functional assays using these vesicles include 

measurement of single RyR2 channel activity (Section 2.6), and Ca2
+ uptake studies 

using populations of SR vesicles to assess SERCA2A function (Section 2.7). SR 
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vesicles, either solubilized or native, were also used for affinity chromatography to 

assess drug-protein interactions (Section 2.8) and an assay of thiol oxidation on RyR2 

and SERCA2A (Section 2.9). To determine the effects of the drugs in a more intact 

system, cardiomyocytes were isolated from mouse hearts (Section 2.10) and the effects 

of anthracyclines on global Ca2
+ transients were assessed. 

2.3. 

2.3.1. 

Cardiac SR vesicle preparation 

Crude SR preparation 

Preparation of all SR vesicles was carried out by Suzy Pace and Joan Stivala, The John 

Curtin School of Medical Research, Canberra, Australia. 

Cardiac SR vesicles were prepared as described by (Chamberlain and Fleischer, 1988). 

Hearts were excised from anaesthetized ewes (5% intravenous (I.V.) pentobarbitone 

followed by oxygen/halothane) and immediately rinsed in ice cold phosphate buffered 

saline (PBS) with 2 mM EGT A to remove blood. The atria were removed and the 

ventricles trimmed of fat. Ventricles were cut into small pieces in homogenizing buffer 

which consisted of: (mM) 290 sucrose, 10 imidazole, 0.5 DTT, 3 NaN3 and the 

standard protease inhibitors leupeptin (1 µM), pepstatin A (1 µM), benzamide (1 mM) 

and PMSF (0.7 mM) (pH 6.9). Tissue was homogenized in a Waring blender (3 x 10 s 

on high speed) and the homogenate was centrifuged at 11,000 g for 20 min. The 

resultant supernatant was filtered through four layers of cotton gauze and filtrate was 

collected and centrifuged at 110,000 g for two h. The pellet was resuspended in 

homogenizing buffer plus 0.65 M KCl, pH 6.7, in a Potter homogenizer (Edwards 

Instrument Company; Narellan, Australia) and placed on ice for 30 min before being 

centrifuged at 7000 g for 10 min to remove insoluble particles. The supernatant was 

centrifuged at 180,000 g for 100 min and the final pellet, containing crude SR vesicles 

was resuspended in homogenizing buffer plus 0.65 M KCl, pH 6.7, snap frozen and 

stored in liquid nitrogen in 1 rnL aliquots or at -80°C in 20 µL aliquots for daily use. All 

procedures were carried out at 4 °C. 

The presence of RyR2 was confirmed by its protein profile on SDS Page and 

subsequent silver stain, and by Western Blot with anti-RyR antibody. Calcium flux 
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assays were carried out to test RyR2 and SERCA2A function. The protein concentration 

was usually between 10 - 20 mg/rnL. 

2.3.2. Purification of RyR2 

Cardiac RyRs were purified from native SR vesicles using the methods of (Lai et al., 

1988) as described in (Dulhunty et al., 2005). Vesicles were thawed and homogenized 

in a Potter homogenizer, on ice for 30 - 60 min in solubilisation buffer containing (mM) 

25 Na-PIPES (piperazine-N,N'-bis(2-ethanesulfonic acid), 1 000 NaCl, 1 DTT, 0.5% 

CHAPS/5% PC (phosphatidyl choline), 0.1 EGTA, 0.92 CaCb, 0.5 AMP, pH 7.4, and 

standard protease inhibitors (see Section 2.3.1). During the incubation, vesicles were 

homogenized for 1 min every 10 min. After centrifugation for 15 min at 100,000 g to 

remove insoluble membrane fragments, the solubilized SR were loaded onto a 

continuous 5 - 20% sucrose gradient (5 - 20% sucrose dissolved in solubilisation 

buffer) and centrifuged at 70,000 g for 14 - 16 h. Two rnL fractions were collected and 

subjected to SDS-PAGE (see Section 2.4) and immunoblot (see Section 2.5). Fractions 

enriched in RyR were collected and dialysed against 0.5 mM NaCl, 10 mM Na-PIPES, 

1 mM DTT and 1.5 mM PMSF, pH 7.4. Purified RyR was concentrated to 1 mg/rnL and 

stored at -70 °C in single use aliquots. Before use, each batch of purified RyR 

underwent immunoblot and probe with anti-CSQ2, anti-junctin and anti-triadin to check 

for contamination. 

2.4. 

2.4.1. 

Electrophoresis 

SOS-PAGE 

Polyacrylamide gel electrophoresis was performed under denaturing conditions 

according to (Laemmli, 1970; Towbin et al., 1992b) using the Invitrogen NuPAGE 

SDS-PAGE gel system (Life Technologies, Mulgrave, Australia). Proteins were 

separated on 4 - 12 % NuPage precast bis-tris polyacrylamide gels. Proteins were 

diluted at a 1: 1 (vol/vol) ration in Milli-Q water and sample buffer (mM) 200 Tris-HCl, 

40 EDTA, 588 2-Mercaptoethanol, 8% SDS, 40% glycerol and 0.08% bromophenol 

blue, pH 6.8) so that 5 - 15 µg of crude SR or 1 µg of purified RyR2 was loaded per 

lane. Standards (5 µL of Bio-rad Dual Colour Protein Standard) and protein samples 

were loaded and electrophoresis was conducted at a constant voltage of 200 V in 
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running buffer (mM) 50 MOPS, 50 Tris base, 0.1 % SDS and 1 EDTA) until the dye 

front reached the end of the gel. 

2.4.2. Protein stains 

Generally to visualize total protein, gels were incubated in a Coomassie stain containing 

0.1 % Coomassie Brilliant Blue, 40% ethanol and 10% glacial acetic acid, for 30 - 60 

min with gentle agitation. Excess stain was removed by washing the gel overnight with 

a destaining solution, containing 40% ethanol and 10% glacial acetic acid, with 1 - 2 

solution changes. The destaining procedure was continued until the gel background was 

minimized. 

2.5. Western blot 

2.5.1. Transfer 

Western blot procedures were completed according to the method of (Towbin et al., 

1992a), using a Bio-Rad transfer system (Gladesville, Australia). Upon completion of 

electrophoresis (Section 2.4), the gel and transblot components (fibre pads, filter paper 

and a PVDF membrane), was equilibrated for 15-30 min at 4 °C in transfer buffer (pH 

-8.2) consisting of 37 mM Tris, 140 mM glycine and 20% methanol before being 

transferred to a transblot cassette. Due to the hydrophobic nature of the PVDF 

membrane, it was activated first by exposure to 100% methanol for one minute, before 

being soaked in transfer buffer. The transblot sandwich was assembled under partial 

submersion in cold transfer buffer as follows: a filter paper was place on top of a fibre 

pad, followed by the gels and then careful placement of the PVDF membrane so that no 

bubbles formed between the gel and membrane. The sandwich was completed by 

placing another filter paper on top of the PVDF, followed by another fibre pad. The 

cassette was clamped in place in an electrophoresis tank filled with transfer buffer 

which contained an ice pack and stir bar. Proteins were transferred at 100 V for 60 min 

and then -150 V so that the current was 0.5 - 0.6 A for the final 30 min of transfer. 

Increasing the current assisted in transferring the high molecular weight RyR monomer. 

Once transferred, the membrane was blocked in blocking buffer (5 % skim milk in PBS) 

for 1 hour with rotation to prevent non-specific binding. Following a 15 min wash step 

in TPBS (PBS with 0.05% Tween-20), membranes were incubated overnight at 4 °C in 
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a primary antibody solution, containing appropriate antibodies in TPBS, to a total 

volume of 2.5 - 5 mL. After washing in TPBS (5 x 5 min), membranes were incubated 

with secondary antibody solutions for two hours at room temperature. Secondary 

antibody solutions contained the horseradish peroxidase (HRP) conjugated, species

relevant antibody, diluted in TPBS. Excess secondary antibody was removed by 

washing 5 x 5 min in TPBS, followed by one wash in PBS. 

2.5.2. Visualization 

HRP-conjugated antibodies were visualized using an enhanced chemiluminescence 

method. After removal of excess wash solution, the membrane was exposed to 

SuperSignal West Pico Chemiluminescent substrate for 1 - 2 min . Membrane was 

exposed to autoradiographic medical X-ray Film (Fujifilm, Tokyo, Japan) in a 

hypercassette (Amersham International, Buckinghamshire, England) for between 5 s - 5 

min, before being developed using sequential 1 min washes of Readymatic developer 

and fixer. Films were allowed to dry and then imaged using the Bio-Rad Geldoc XR 

system (Gladesville, Australia), and quantified using the associated Quantity One 

software. 

2.6. 

2.6.1. 

Single Channel Lipid Bilayers 

Overview of lipid bilayer setup 

The system for recording single channel activity using lipid bilayer methods was setup 

as described previously (Ahern et al., 1994b; Laver et al., 1995). Artificial lipid bilayers 

were formed across the 150 nM aperture of a 1 mL delrin cup. The wall of the cup 

separated two chambers within a teflon block referred to as cis and trans, to which stock 

solutions were added (Figure 2.1). The aperture was visualized under 20x magnification 

and illuminated by LED lights (Figure 2.1). The entire setup was housed inside a 

Faraday cage to minimize electrical and vibrational noise. 

Current across the bilayer was monitored by silver chloride-coated (AgCl) silver 

electrodes, connected to the headstage of an Axopatch 200B amplifier (Axon 

Instruments, Foster City, United States) or a Warner BC-525 Bilayer clamp amplifier 

(Warner Instruments, Hamden, United States). Contact between the electrodes and 

solutions was made via agar salt bridges (2% w/v, see Section 2.3.2). 

71 



Chapter Two 

The chamber to which SR vesicles were added was defined as the cis chamber and was 

voltage-clamped for all experiments alternating between +40 m V and -40 m V at 30 s 

intervals, while the trans chamber was held at virtual ground. Current was filtered at 1 

kHz with a lowpass 8-pole Bessel filter and sampled at 5 kHz using the in-house 

analogue/digital conversion program BLM. These parameters give a sampling interval 

of 200 µs, or one point every 200 µs . Additional digital filtering allowed the channel to 

be visualized in real time with a computer using BLM. 

2.6.2. Silver-chloride coated silver electrodes and agar bridges 

New electrodes were made by cutting silver wire to the desired length and cleaning by 

light rubbing with sandpaper. Cleaned electrodes were immersed in domestic bleach 

overnight then wiped and connected to the amplifier headstage. Over time, the chloride 

coating dissolves, requiring used electrodes to be cleaned, sanded and re-chlorided 

regularly to maintain their sensitivity and avoid baseline drift during experiments. 

Agar bridges were positioned on the ends of the electrodes an~ were the contact point 

between the electrodes and the solution to minimise liquid junction potentials (Sakmann 

and Neher, 2009) . Bridges were made by dissolving 0.4 g of agar in 20 mL of 250 mM 

CsCl (2% agar w/v) and heating the solution on a hotplate. The warmed solution was 

pushed into 20-30 cm sections of tubing (Dow Corning Corporation, Midland, USA) 

using a warmed pipette. The agar was cooled and allowed to set, and the tubing was cut 

into 1 cm lengths and stored in 250 mM CsCh at 4 °C. A fresh set of agar bridges was 

used each day. 

2.6.3. Bilayer solutions 

Pending SR vesicle incorporation, solution compositions were: cis: 230 mM CsCH3O3S 

(Caesium Methane Sulfonate, CsMS) 20 mM CsCl, 1 mM CaCh and 10 mM TES and 

trans: 30 mM CsMS , 20 mM CsCl, 1 mM CaCh and 10 mM TES. The free Ca2
+ 

concentration in the solutions was measured with a Ca2
+ electrode (Radiometer 

Analytical, Villeurbanne Cedex, France). All solutions were adjusted to pH 7.4 with 

CsOH using a digital pH meter and stored at 4 °C. 
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Figure 2.1 - Single Channel Lipid Bilayer Apparatus (A) The Teflon bilayer chamber was 

positioned inside a custom built stage with a built in stirrer, LED lights and perfusion control. 

The aperture separating the two chambers was visualized with a light microscope and the 

whole system was housed on an inflated base inside a Faraday cage to minimize electrical, 

acoustic and vibrational noise. (B) A 1 mL delrin cup was positioned inside a Teflon bilayer 

chamber so that two compartments were formed. Compartments are defined as being either 

the cis chamber or trans chamber and platinum electrodes from the _amplifier headstage, 

carrying agar bridges, are positioned in each. Perfusion tubes are inserted or withdrawn as 

needed. (C) SR vesicles are added to the cis chamber. The wall of the cup separating the 

chambers contains a 150 nm aperture, across which lipids are applied to form bilayers. With 

stirring, SR vesicles incorporate themselves in such a way that the cytoplasmic domain of the 

RyR2 complex faces the cis chamber and the luminal domain faces the trans chamber. The 

trans is grounded and voltage ( + or -40 m V) is applied to the cis chamber. Current flow 

alternates with voltage changes, travelling toward the more negatively charged chamber. 
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Caesium was used as the current carrying ion, firstly because Cs+ conductance through 

RyR2 is higher than that of Ca2+, resulting in a higher signal to noise ratio and secondly, 

because Cs+ is a weak modulator of RyR2 compared to Ca2+ (Laver et al., 1995). 

Furthermore Cs+ blocks K+ channels which are enriched in muscle SR (Cukierman et 

al., 1985). Methanesulfonate was used as the major anion to avoid contaminating 

current from er channels that are also present in the SR. The er channels are 

impermeable to methanesulfonate (Laver et al., 1995). 

2.6.4. Bilayer formation and channel incorporation 

Artificial bilayers were formed using a mixture of phosphatidylethanolamine, 

phosphatidylserine, and phosphatidylcholine (5:3:2 w/w). The lipids were mixed in the 

desired ratio, chloroform was removed under a stream of nitrogen gas and the dried 

lipid mixture was redissolved in n-decane at a final concentration of 50 mg/ml (Ahern et 

al., 1994a). Lipids were applied to the aperture of the delrin cup using a flame polished 

glass rod to form a lipid barrier separating the two chambers. Initially the lipid is thick 

and then it forms a bilayer with two monolayers separated by n-decane. Pressure 

generated from the solutions in each chamber forces drainage of the solvent and the 

bilayer thins (Miller, 1986; Laver et al., 1995). The bilayer thickness and stability was 

assessed by monitoring changes in the membrane capacitive current by applying a 1 V /s 

triangular ramp. An increase in capacitance (and therefore an increase in current 

amplitude since I= C * (dV/dt) indicates a thinning of the bilayer 

SR vesicles were added to the cis chamber at a final concentration of -50 µg/mL and 

stirred until incorporation occurred. Our laboratory has shown that the accessory 

proteins triadin, junctin and CSQ2 remain associated with RyR2 in the experimental 

conditions (Wei et al., 2009a). Vesicle fusion is promoted by an osmotic gradient across 

the bilayer and by millimolar cis Ca2+ (Miller and Racker, 1976; Laver, 2001). Channels 

were therefore incorporated into the bilayer in a cis solution containing 1 mM Ca2+ and 

an osmotic gradient was created across the bilayer using cis 250 mM Cs+ salt and trans 

50 mM Cs+ salt (see Section 2.6.3 for all components of bilayer solutions). Channel 

incorporation into the bilayer was indicated by a sudden increase in conductance or 

appearance of channel openings, indicating ion channel activity. Following 

incorporation, cis Ca2+ was reduced to the more physiological concentration of 1 µM 

with addition of 1.32 mM of the fast Ca2+ chelator l ,2-bis(2-aminophenoxy)ethane-
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N,N,N,N-tetraacetic acid (BAPTA). Concentrations of BAPTA required to adjust the 

free [Ca2+] were calculated using the program Bound and Determined (Brooks and 

Storey, 1992) and free [Ca2+] confirmed using a Ca2+ electrode. Two hundred rnM Cs+ 

was added to the trans chamber (250:250 rnM Cs+ in trans:cis) to prevent further 

vesicle incorporation during the experiment and to provide symmetrical [Cs+], so that 

there was no ionic gradient across the bilayer. Therefore when a voltage of +40 m V was 

applied: 

V applied = V cis - V trans 

V applied = 40 - 0 

With this configuration, current would flow from the cis to the trans chamber, while 

with -40 m V current would flow from the trans to the cis chamber. 

It has been shown that vesicle incorporation occurs such that in 99% of cases, the 

channel orients so that the cytoplasmic portion of RyR2 faces the cis chamber and the 

luminal portion faces the trans chamber (Figure 2.1 C) (Miller-and Racker, 1976). In this 

study, channel orientation was confirmed by testing the response of RyR2 to changes in 

cytoplasmic [Ca2+] at the beginning of the experiment and by addition of 20 µM 

ruthenium red, an RyR-specific antagonist which irreversibly blocks RyRs (Ma, 1993). 

2.6.5. Solution exchange 

Solution exchange of the trans chamber was achieved using a back-to-back perfusion 

set-up. Syringes were positioned with their plungers placed back to back so that fresh 

solution from one syringe could flow into the chamber at the same rate as original 

solution was removed by the second syringe. Using this setup, the chamber was 

perfused with 7 - 10 volumes of fresh solution (resulting in dilutions of -1000 times) 

allowing reversibility of a drug's effects on a single RyR2 to be assessed, without any 

abrupt change in chamber volume that might break the bilayer. 

2.6.6. Single channel recording and analysis 

Immediately following channel incorporation, reagents were added to the cis or trans 

solutions with 15 - 20 s stirring to ensure total dispersion of reagents throughout the 

solution. Control conditions were maintained and 3 - 4 min of stable control activity 

was recorded, alternating between +40 m V and - 40 m V every 30 s. 
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Channel activity was quantified using single channel parameters, measured using the in-

house program Channel 2 (developed by P.W. Gage and M. Smith, JCSMR), Canberra, 

Australia). The measurements of RyR2 activity were from several segments of current 

recordings (between 60 and 90 s) at each potential. The measurements were: n, the 

number of openings; open time (OpenT), the total time spent by the channel in the open 

state (ms); close time (CloseT), the total time spent by the channel in the closed state 

(ms) and total time (TT) is the total duration of the recording (ms), I' is mean current, 

the average of all data points of a tracing (pA) and I max is the maximal current of the 

tracing (pA): 

Open probability (P 0 ) = 

Mean open time (T0 ) = 

Mean close time (Tc) = 

Open frequency (F0 ) = 

Fractional Mean Current (I' F) = 

OpenT 

TT 

OpenT 

n 

CloseT 

n 

n 

TT 

I' 

Open probability (P 0 ) was measured as fractional mean current (/' F) or as the fraction of 

time that the channel was open using threshold discriminators . Fractional mean current 

is approximately equal to the PO measured by threshold discrimination. Where 

experiments had only one channel opening, PO could be measured directly by setting an 

open threshold discriminator at - 30% of the maximum amplitude, while the closed 

threshold discriminator was set slightly outside the noise level of the baseline (-10% of 

the maximum amplitude). Currents exceeding the open threshold were detected as 

channel openings. Accurate measures of P0 and J'F rely on having a stable baseline over 

the entire recording period. Therefore, the in-house program Baseline (developed by 

D.R. Laver, University of Newcastle, Australia) was used to correct significant baseline 

drift. 

Activity is expressed as the average P0 of 60 - 90s of representative activity recording at 

each potential. Data from +40 m V and -40 m V was pooled if there was no significant 

difference between each potential. Because of the intrinsic variability in control RyR 
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channel activity (Wei et al., 2009a), effects of drugs or reagents on RyR2 were 

evaluated by comparing the P 0 of each condition to the P 0 of control activity from the 

same channel. Control P0 was measured from 60 - 90 s of stable control activity prior to 

drug/reagent addition. 

The following reagents were all added from the following stock solutions (stock 

concentration indicated) to the cis or trans chambers while stirring for 10 -15 se: 

doxorubicin (2 rnM), doxOL (2 rnM), daunorubicin (2 rnM) , daunOL (10 rnM), 4,4 ' -

dithiodipyridine (4 '4-DTDP, 4 rnM), NEM (200 rnM), ruthenium red (1 rnM), CaCh 

(100 rnM), BAPTA (100 rnM), DTT (500 rnM) , CsMS (2 M). The pH of the CsMS , 

CaCh and ruthenium red was adjusted to 7.4 with CsOH. Addition of the other 

compounds at the concentrations used did not cause any change in pH. DoxOL and 

daunOL, were dissolved in ethanol. The ethanol was:::; 0.1 % which has been shown not 

to affect RyR2 activity (Eager et al. , 1997). Ruthenium red, CaCh and CsMS were 

stored at 4 °C, all others compounds were stored at -20 °C. Redox agents 

(anthracyclines , NEM, 4,4 ' -DTDP and DTT) were stored in daily use aliquots and 

thawed as required. 

2.7. 

2.7.1. 

Ca2
+ uptake in SR vesicles 

Ca2
+ uptake assays 

The method used to assay Ca2+ uptake into SR vesicles in shown in Figure 2.2. A Cary 

3 spectrophotometer (Varian, Sydney, Australia) was used to monitor extravesicular 

Ca2+ at 710 nm, using the Ca2+ indicator antipyrylazo ill (Dulhunty et al. , 1999 ; Jalilian 

et al. , 2008a). A calibration curve was generated at the start of each day by measuring 

changes in absorbance that occurred with 4 consecutive additions of 12.5 µM Ca2+ 

additions of CaCh (Eager and Dulhunty, 1999). By measuring the change in absorbance 

that occurs with addition of known amounts of c a2+, the extra vesicular Ca2+ could be 

calculated: 

ca-+ Calibration = 
25 µMCa 2 + 

fladsorbance 
(Chu et al. , 1988a) 

The calibration curve was repeated at least 3 times to ensure consistent values were 

obtained. The calibration was not altered by addition of anthracyclines, DTT, nor 
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ruthenium red. Changes in absorbance as a function of time were observed using the 

Kinetics program (Varian, Sydney, Australia). 

Vesicles were pre-incubated for 20 min with the relevant compounds. Preincubated SR 

vesicles (200 µg) were added to a solution containing 100 mM KH2PO4, 0.2 mM 

antipyrylazo III, 1 mM Na2ATP and 1 mM MgCb. Temperature was maintained at 25 

~C and solutions were continually stirred throughout the experiment. The SR was 

partially loaded with 3 additions of 7.5 µM Ca2+. Uptake of Ca2+ from the bathing 

solution into the SR was evidenced by a decrease in optical density (Figure 2.2). Three 

min was allowed between each addition of Ca2+ so that absorbance could return to 

baseline. Ruthenium red was then added to block RyR2 before a final addition of 

Ca2+ was made. The uptake of this final, fourth addition of Ca2+ was measured, as RyR2 

had been blocked and this would be a measure specifically of Ca2+ uptake. 

2.7.2. Calculation of rate of Ca2
+ uptake from SR vesicles 

Rate of Ca2+ uptake was determined by measuring the rate of ~hange in optical density 

of the 15 s immediately following addition of Ca2+. This initial rate was the most rapid 

Ca2+ uptake per unit time (Olson et al., 2000) . The Kinetics program was used to 

measure the slope of this uptake curve, giving the change in absorbance that occurred 

with Ca2+ release. This was used in the following formula to measure the slope of Ca2+ 

release: 

2+ !iabsorbance 
Slope of Ca Release = -----

time (min) 
(Chu et al., 1988b) 

Using this value and the value obtained for the Ca2+ calibration (see Section 2.7.1), the 

rate of Ca2+ uptake in nmol Ca2+/mg protein/min was calculated by the following 

formula: 

slope of Ca 2
+ release x Ca 2

+ calibration 
Rate of Ca2+ Release= --------------- (Chu et al., 1988b) 

protein (mg) 

An ATP regenerating system was not used. These protocols were strictly adhered to , so 

that the timing of CaCh and drug additions was made at the same timepoints in each 

experiment to ensure consistency. 
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Figure 2.2 - A representative Ca2
+ uptake experiment. Changes in absorbance as a function of time (total time= 15 min). Changes in extra vesicular Ca2

+ at 

710 nm were monitored using antipyrylazo III. Cardiac SR vesicles were added (orange arrow) and the solution was allowed to equilibrate for 3 min, as any 

extravesicular Ca2
+ was taken up by SERCA2A. Vesicles were loaded with 22.5 µM Ca2

+ added in 3 x 7.5 µM aliquots (blue arrows). With 3 min equilibration 

allowed for each addition. Ruthenium red was added (red arrow) to block RyR2 shortly after the 3rd aliquot of CaC!i. A final addition of Ca2
+ was made which 

was used for assessment of Ca2
+ uptake rate in the presence or absence of anthracyclines. Comparison of uptake before (a) and after (b) ruthenium red showed 

that the uptake was faster when RyR2 was blocked, as would be expected if Ca2
+ was being released via RyR2 (which would reduce the gross uptake rate (b). 
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It is assumed that ATP was used at the same rate in every experiment and that ATP 

concentration at the time of measurement was the same in each experiment, so 

difference in ATP availability would be unlikely to be an influential factor in the results 

(Hewawasam et al., 2010). Experiments were conducted so that the order of controls 

and experiments at each drug concentration were alternated to minimize any influence 

of time-dependent changes in Ca2
+ absorbance, although no such variability were 

evident. SR vesicles were thawed immediately before use and stored on ice during the 

drug incubation period. 

2.8. Anthracycline-coupled cyanogen-bromide activated 

sepharose 

An interaction between anthracyclines and RyR2 or SERCA2A was confirmed by 

affinity chromatography, using modifications of the methods described in (Gambetta et 

al., 1983) and (Jayaraman et al., 1992). 

2.8.1. Matrix activation 

The anthracycline coupled cyanogen-bromide activated sepharose method utilizes a 

matrix of cyanogen-bromide (CNBr) activated sepharose which is supplied as a freeze

dried resin stabilized by the presence of additives (e.g. lactose). To activate the resin 

and remove additives, sepharose was washed in cold, low pH solution to preserve the 

reactivity of binding sites which hydrolyse at high pH. Sepharose was activated 

according to the manufacturer's instructions. In brief, 0.075 g of CNBr-activated 

sepharose was washed and swelled in a total of 50 rnL cold, 1 mM HCl. Acid was added 

in several aliquots and the supernatant was aspirated between additions (total time of 30 

mins). The resin was then washed in 5 x 10 rnL of distilled water. During this time 

anthracyclines were dissolved in coupling buffer. Doxorubicin or doxOL (0.2 mg) was 

dissolved in 0.2 rnL of coupling buffer (0.1 M NaHCO3, 0.5 M NaCl pH 8.3) and set 

aside. 

2.8.2. Anthracycline coupling to activated sepharose 

After the final wash of distilled water, the activated resin was placed into a 2 rnL 

polypropylene tube. Following removal of the wash solution, 1 rnL of coupling buffer 
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was added to the resin. Anthracyclines were then immediately added to the resin and 

incubated with rotation for 24 h at 4 °C. Control samples were also prepared, where 

resin was incubated with coupling buffer containing no anthracyclines. 

2.8.3. Pre-clearing protein samples 

Protein samples were pre-cleared before addition to the anthracycline-coupled resin to 

minimise non-specific binding. Proteins were incubated with a second batch of 

activated resin (which has not been coupled with anthracyclines). Unbound protein was 

collected and added to the anthracycline coupled resin (prepared on day 1, see Section 

2.8.2). Pre-clearing the protein sample helps to ensure that any binding between the 

anthracycline-coupled resin and the protein reflects an interaction between the protein 

and the drug itself, not the resin. Proteins were pre-cleared as follows. 

Purified RyR vesicles (Section 2.3) were diluted to 0.5 mg/rnL in 50 mM Tris-HCl (pH 

8), added to activated resin (Section 2.8.1) and incubated for 2 hat 4 °C. The supernatant 

(containing unbound protein) was gently aspirated and set aside until needed (see 

Section 2.8.4) . 

2.8.4. Blocking unreacted resin sites and incubation with 

precleared proteins 

Excess anthracycline was removed by extensive washing in coupling buffer. Unreacted 

binding sites on the resin were blocked by saturating the binding sites . This was 

achieved by washing the resin with 0. lM Tris HCl, pH 8 at room temperature for 2 h. 

Blocking solution was removed by washing with 4 - 5 cycles of alternating high pH 

solution (contained 0. lM Tris HCl and 0.5 M NaCl (pH 8.0)) and low pH solution (0.1 

M sodium acetate and 0.5 M NaCl (pH 4.0)). After the final wash, the supernatant was 

aspirated and pre-cleared protein was added to the resin and incubated with rotation, 

overnight at 4 °C. 

2.8.5. SOS-PAGE of protein samples and immunodetection 

To remove unbound protein, the resin was washed 5 times with 10 volumes of 50 mM 

Tris-HCl. To elute bound proteins, a sample of beads was boiled for 1 min in sample 

buffer (1: 1 ratio, see Section 2.4). Eluted proteins were separated by SDS-PAGE, 
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subject to western blot and irnmunodetected with anti-RyR and anti-SERCA2A 

(Sections 2.4 and 2.5). 

2.9. Alexa Fluor thiol assay 

To determine the relative degree of thiol modification caused by drug treatment, SR 

vesicles were exposed to anthracyclines and known redox agents, and the level of thiol 

modification caused by each of these was compared to untreated vesicles. Thiol 

modification was assessed using the thiol specific fluorophore, Alexa Fluor 647. Like 

other maleimides, Alexa Fluor 647 binds to cysteine thiol groups in the following 

reaction mechanism (Life Technologies Corporation, 2010): 

0 

R - ~ 
0 

Maleimide 

A SH 

0 

R - N~_- -

rsR2 
0 

Thioe her 

The double bond of the maleimide reacts with the cysteine thiol group to yield a stable 

thioether product. Excitation of Alexa Fluor 64 7 at 645 nm emits light at a wavelength 

of 670 nm which is imaged and quantified. By expressing the detected level of thiol 

modification to the relative amount of total protein, this method allows a comparison of 

the ability of different treatments to modify thiol groups. 

2.9.1. Alexa thiol assay following anthracycline treatment 

SR vesicles were incubated with anthracyclines and known redox agents, including 

doxOL (0.01 mM), doxorubicin (0.01 mM), tris-(2-carboxyethyl)phosphine (TCEP, a 

reducing agent, 5 mM) and GSSG (an oxidizing agent, 2 mM). TCEP was used rather 

than DTT because it does not contain thiol groups that could conjugate with the Alexa 

Fluor maleimide. The reaction mixture was made in PBS and incubated for 30 min at 
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room temperature. Untreated samples contained PBS only. Proteins were then incubated 

with rotation, with a 20 molar excess of the thiol-reactive probe Alexa Fluor 647 

maleimide in the dark for 2 h. All subsequent steps were completed in the dark. After 

washing in 10 x volume of PBS, protein were sedimented by centrifugation at 9500 g 

for 50 - 60 min in a 3 kDa Amicon concentrator (Millipore Corporation, Billerica, 

USA), until the volume of Alexa-conjugated protein was 20 µls (maximum volume per 

well is 30 µls). Proteins were heated at 60°C for 10 min in non-reducing sample buffer 

(187.5 mM Tris-HCl, 15% glycerol and bromophenol blue (pH 6.8)) and separated by 

SDS PAGE. 

2.9.2. Protein stain and visualization 

To account for any variation in protein loading between samples, total protein was 

assessed with Sypro Orange protein stain and the amount of Alexa Fluor maleimide 

fluorescence per unit of total protein was calculated for each sample. Sypro Orange was 

used rather than Coomassie Brilliant Blue as it is reportedly more sensitive, and since it 

is a fluorophore, could be detected concurrently with Alexa Fluor 647 with sequential 

scans of the gel. 

Sypro Orange was diluted to 1 :5000 in 7 .5 % acetic acid and the gel was stained for 45 

min in the dark with gentle rocking and then rinsed for 1 min in fresh 7 .5% acetic acid 

to remove excess dye. Fluorescence imaging was done on a Typhoon FLA 9000 (GE 

Healthcare, Uppsala, Sweden) fluorometer in the Biomolecular Resource Facility (John 

Curtin School of Medical Research, Canberra, Australia). Total protein content was 

measured by Sypro Orange fluorescence at 300 nM and thiol content was measured by 

Alexa Fluor 647 fluorescence at 645 nM. The order in which Alexa Fluor or Sypro 

Orange was imaged did not alter results Fluorescence was quantified by densitometry of 

the protein bands using the ImageQuant TL software (GE Healthcare, Uppsala, 

Sweden). 

2.10. Ca2
+ transients in adult mouse cardiomyocytes 

2.10.1. Overview 

Analysis of Ca2
+ transients in adult mouse cardiomyocytes requires a multi-step 

protocol including 1) digestion of cardiac connective tissue by Langendorff enzyme 
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perfusion, 2) isolation and processing of cardiomyocytes, including Ca2
+ reintroduction 

and plating of myocytes, 3) imaging of Ca2
+ transients via confocal microscopy and 4) 

analysis of Ca2
+ transients. This was a newly established technique in our laboratory, as 

such, parameters of the perfusion and cell isolation were optimized from methods 

reported by literary sources (Liao and Jain, 2007; O'Connell et al., 2007; Guatimosim et 

al., 2011; Louch et al., 2011) and personal communication with Dr Victoria Benson 

(University of Sydney, Sydney, Australia) and Dr Michael Watson (University of 

Queensland, Brisbane, Australia). 

Perfusion and experimental solutions were prepared fresh on the day of experiment, the 

contents of which are listed in Table 2.1. All solutions were equilibrated with Carbo gen 

(95% Oi/5% CO2) for 20 min prior to experiments. Solutions were adjusted to pH 7.4 

with NaOH using a digital pH meter. Mice were obtained from the Australian 

Phenomics Facility (Australian National University, Canberra, Australia). 

2.10.2. Langendorff apparatus 

Intact cardiomyocytes were isolated by retrograde perfusion of adult mouse hearts with 

enzyme solutions. Perfusion solutions were maintained at 37 °C in a circulating water 

bath and pumped through water jacketed glassware before entering the cannula and 

perfusing the heart (Figure 2.3). The heart rested on the base of water jacketed chamber 

(Custom Blown Glassware, Sydney, Australia) and maintained at 37 °C by constant 

circulation of warm water from the water bath (Figure 2.3) . Warm water also circulated 

through a water jacketed coil through which the perfusate travelled before entering the 

heart, thus maintaining the perfusate at 37 °C. Minimal distance was maintained 

between the water jacketed coil and the heart, to minimise cooling of the perfusate 

before it entered the heart. 

2.10.3. Laminin-coated coverslips 

Laminin stock (1 mg/rnL in 50 mM Tris-HCl and 0.15 M NaCl (pH 7.4)) was stored in 

daily use aliquots at -20 °C, and thawed at 4 °Con the day of experiment. Immediately 

before use, laminin was dissolved to a working concentration of 10 µg/rnL in PBS 

(O'Connell et al., 2007). One rnL of diluted laminin was applied to each 28 mM 

coverslip (Sarstedt Australia Pty. Ltd., Technology Park, Australia) and allowed to pool 
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on the surface of the coverslips for 2:30 min. Solution was removed by aspiration 

immediately before myocyte plating so that the laminin coating did not dry. 

2.10.4. Mouse heart perfusion 

All animal procedures were approved by the Australian National University animal 

ethics committee. Male, 8 week old C57 /Bl6Ncrl mice were injected with heparin 

(l00U) via intra peritoneal (i.p.) injection to a lower abdominal quadrant. Animals were 

weighed, and 60 mg/kg Na-pentobarbitone was administered via i.p. injection. Depth of 

anaesthesia was determined by corneal and pedal reflexes. Once in the surgical plane of 

anaesthesia, a transverse incision was made below the rib cage and the thoracic cavity 

was exposed by making bilateral incisions along the dorsal margin of the ribcage, from 

the last to first ribs. The heart was gently withdrawn from the thoracic cavity before 

cutting any vasculature and connective tissue attached to heart. To preserve the 

maximum length of aorta attached to the heart, the aorta was cut as far from the 

proximal end as possible. The heart was held briefly in a beak~r of ice cold Myocyte 

Perfusion Buffer (Table 2.1) to remove blood before being placed on a petri dish of 

frozen buffer covered by a thin layer of liquid buffer to prevent the heart freezing on to 

the solid buffer. Fat and connective tissue were removed and the aorta was located. 

The heart was placed in the heated chamber and the aorta was cannulated. Silk thread 

(Dynek, Hendon, Australia) was tied to secure the aorta to the cannula (Figure 2.4). For 

viable cells, the heart had to be cannulated within 4 min of excision, with better 

isolation (i.e. a higher yield of healthy cells) with faster cannulation times. The heart 

was perfused at a constant rate of 2 rnL/min, first with Myocyte Perfusion Buffer (see 

Table 2.1) for 5-6 min to remove blood, and then with Myocyte Enzyme Buffer (see 

Table 2.1) for approximately 15 min to digest connective tissue. Due to batch variation 

in collagenase quality, the enzyme perfusion time was optimized for the batch of 

collagenase being used. As digestion proceeded, the heart became pale and pulpy to the 

touch and at completion of the enzyme perfusion, the heart was cut from the cannula 

below the atria, so that only ventricular tissue was obtained. 
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2.10.5. Cardiomyocyte isolation 

Ventricles were placed in a petri dish containing 5 - 6 mL of Myocyte Stop Buffer 

(Myocyte Buffer with 1 % BSA and 0.02 mM CaCh) and cut into small pieces using 

spring loaded iridectomy scissors. Tissue was placed in a round-bottom tube, and 

myocytes were dissociated by flicking the tube with intermittent, gentle trituration. 

Tissue settled and the supernatant was aspirated and collected (wash 1). 2,3-

Butanedione monoxime (BDM) has been used in the isolation of adult mouse 

cardiomyocytes with improvements in the yield of healthy cardiomyocyte (O'Connell et 

al., 2007; Louch et al., 2011). However, during the optimization process it became 

evident that BDM was having detrimental effects on myocyte yield and responsiveness 

to stimuli. Therefore, BDM was only included in the Myocyte Enzyme Buffer and was 

not included in the Myocyte Stop Buffer Tissue was washed with 5 mL of fresh 

Myocyte Stop Buffer and the dissociation process was repeated 4 times, so 5 

supernatants were collected. A sample of each wash was viewed under 20X 

magnification to assess the health and yield of myocytes, classified as healthy if they 

were rod-shaped, had visible striations and were quiescent. With each sequential 

supernatant (i.e. from washes 1 - 5), there was an increase in myocyte quality, with 

Wash 1 containing the lowest ratio of healthy-to-unhealthy cells and wash 5 containing 

the highest ratio of healthy-to-unhealthy cells. As such, wash 4 and wash 5 were 

generally considered the highest quality and were most often used for experimental 

procedures. Myocytes were allowed to settle for 10 min before the supernatant was 

removed and the pellet was resuspended in 1 mL of fresh Myocyte Stop Buffer. If 

myocytes from both washes were healthy, wash 4 and wash 5 were combined (total 

suspension volume now was 2 mL). 

Myocytes were rendered Ca2
+ tolerant by stepwise additions of CaCh to the cell 

suspension (initial [Ca2+] of 0.02 mM). The total [Ca2+] was increased to 0.1 mM, 0.2 

mM, 0.5 mM and finally 1 mM, by aliquot addition and mixed by gently flicking the 

tube. Ten - 15 min was allowed between each addition of Ca2
+. The pellet was 

resuspended by gentle trituration and myocytes were plated on laminin-coated 

coverslips (see Section 2.10.3). After a 10 min attachment period, the health and yield 

of myocytes was checked under 20X magnification. Cells were usually stable for 4 - 6 

hours after isolation. 
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(A) Myocyte Perfusion Buffer (B) Myocyte Enzyme Buffer 
Chemical Molarity (mM) Myocyte Perfusion Buffer (A) + 

NaCl 113 
KCI 5.4 

MqS04 1.2 
NaH2P04 1.2 
HEPES 10 

Collagenase II 1 mg/ml 
Protease from 0.65 mg/ml 

Streptomyces griseus 
Type XIV 

Glucose 20 
Taurine 20 

SOM 10mM 

Na-Pyruvic acid 5 
NaHC03 5 

BSA 0.1% 

pH 7.4 with NaOH -

(C) Myocyte Stop Buffer (D) Modified Tyrodes Buffer 

Myocyte Perfusion Buffer (A) + Chemical Molarity (mM) 

BSA I 1% NaCl 113 

KCI 5.4 

MgS04 1.2 

HEPES 10 

Glucose 20 

CaCl2 1.8 

BSA 0.1% 

pH 7.4 with NaOH 

Table 2.1 - Solutions used for cardiomyocyte isolation and measurement of Ca2
+ 

transients. Composition of solutions used for mouse heart digestions (A -B), cardiomyocyte 

isolation (C) and Ca2
+ transient stimulation (D). Values in right hand columns are final 

concentrations/dilutions of chemicals and enzymes. BDM, 2,3-butanedione monoxime, BSA, 

bovine serum albumin. 
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Figure 2.3 - Schematic of Langendorff apparatus. Perfusion solutions ((A) and (B) from 

Table 2.1) were stored in a water bath (1) set at 42 °C. Solutions were circulated (blue lines) 

via a peristaltic pump (2) from the waterbath, through the heating coil (3) and into the heart 

which rested against the base of a water jacketed organ chamber (inset, green box) (4) . After 

exiting the heart, Myocyte Perfusion Buffer which usually contained blood from the heart was 

discarded (dashed line). Myocyte Enzyme Buffer could be recirculated if it was free of blood. 

Warm water from the circulating water bath was pumped (red lines) through the water 

jacketed heating coil and the water jacketed organ chamber. This ensured that the circulating 

perfusate and the heart were kept at 37 °C. The water bath was set at 42 °C to allow for 

cooling of the circulating water as it was pumped through the water jacketed glassware. 

Arrows show the direction of circulation. 
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A B 

Aor1ic v lv 

Figure 2.4 - Method for cannulation of the aorta and perfusion of coronary 

arteries (A) Fine-tipped forceps are used to grip the sides of the aorta and hold it open 

as it is pulled over the cannula, as depicted in figure (B). The heart is held in place 

with silk thread and circulation of the perfusate is initiated. With correct cannulation, 

the aortic valve closes and the perfusate moves through the coronary arteries. If the 

cannula is inserted too far it will prevent the aortic valve closing and the heart will not 

be adequately perfused to ensure full digestion of the connective tissue, leading to 

poor cardiomyocyte yields. Figure modified from (Louch et al ., 2011). 
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2.10.6. Calcium imaging 
2.10.6.1. Calcium transient recording 

Chapter Two 

The Ca2
+ indicator Fluo-4 AM was used for Ca2

+ transient recording. To aid in 

dispersion of the dye and prevent intracellular compartmentalization, the surfactant 

Pluronic F-127 was added to Fluo-4 stocks immediately before use, at a final 

concentration of 0.02%. Coverslips containing at least 60 - 70 % healthy cells per field 

of view were chosen for Ca2
+ imaging. Fluo-4 was diluted to a final concentration of 5 

µMin Tyrode's buffer (see Table 2.1) and added to plated myocytes. Cells were 

incubated in the dark for 20 min at room temperature. The Fluo-4 solution was carefully 

aspirated and fresh Tyrodes buffer was added to wash away excess dye and a further 20 

min was allowed to complete dye de-esterification. In experiments using doxOL, the 

drug was added at the beginning of the Fluo-4 washout phase, allowing a 20 min 

preincubation before transient recording. 

Coverslips were transferred to a custom built delrin chamber (Research School of 

Physics and Engineering, Canberra, Australia) containing perfusion ports and platinum 

electrodes for field stimulation. The two electrodes were placed parallel to each other 

along the longitudinal axis of the chamber, 3 - 4 mm apart. Electrodes were connected 

to a constant voltage isolated stimulator (Digitimer, Hertfordshire, United Kingdom) 

and pacing was set using a pulse generator (Digitimer, Hertfordshire, United Kingdom). 

Perfusion ports were connected to an external, perfusion system, allowing superfusion 

of the cells and solution exchange after caffeine perfusion. The chamber was held in an 

open perfusion micro-incubator (Warner Instruments, Hamden, United States). 

Imaging was conducted using a Leica TCS SP5 confocal microscope (Leica, 

Mannheim, Germany) in line scan (x-t) mode (512 pixels/line, 2.1 ms per line, 0.12 µm 

per pixel) with a 40X oil-immersion objective. Fluo-4 was excited using the 488 nm line 

of an argon ion laser. Emission was collected at> 510nm using a HyD detector (Leica, 

Mannheim, Germany). The line scan was positioned parallel to the longitudinal axis of 

the cell. Cells were paced at 0.5 Hz using a voltage approximately 30% above the 

stimulation threshold and steady-state Ca2
+ transients were recorded for 12 s before an 8 

s stimulation free period to detect any spontaneous activity. Separate coverslips were 

used for control and doxOL-treated cells and were alternated so that recordings done in 

the presence or absence of doxOL were made at similar time points through the day. In 

experiments where SR load was measured, 10 mM caffeine was applied by positioning 
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rigid perfusion tubing in immediate proximity to the cell, and caffeine was added to the 

bathing solution by a gravity feed system. Caffeine was removed between recordings by 

superfusion of the chamber solution. 

2.10.6.2. Calcium transient analysis 

Data was acquired using the Leica Application Suite Advanced Fluorescence software 

and was analysed using either Axograph X (Axograph, Berkeley, United States) for 

Ca2
+ transient analysis or IrnageJ (National Institutes of Health, Bethesda, United 

States) for contractility measurements. Linescans were corrected for background 

fluorescence. Fluorescence values (F) were normalized to the basal fluorescence (F0 , a 

region of the recording before electrical stimulation) to obtain the fluorescence ratio: 

F-F0 
Relative fluorescence= ---

Fa 

Ca2
+ transient kinetics were measured for each cell including, peak amplitude, time to 

peak, time to 50% decay. For each cell, the average value of each parameter was 

calculated from 6 stimulated transients. 

2.10.7. Contractility measurements 

Coverslips were placed in a custom built chamber and positioned in a microincubator, 

and cells were paced at 0.5 Hz as above (Section 2.10.3.1). Myocyte contractions were 

recorded using a JVC video camera (KY/F550, Wayne, United States) attached to a 

TE2000-U microscope (Nikon Australia, Sydney, Australia). Video image sequences 

were analysed in IrnageJ and length measurements were made during systole (most 

contracted) and diastole (most relaxed). Average % fractional shortening (FS) was 

calculated for each cell from 5 contractions. Alternate coverslips were preincubated for 

20 min with 2.5 µM doxOL and % FS was compared to untreated cardiomyocytes. 

2.11. Statistics 

Average data are presented as mean ± SEM. The significance of differences between 

control and treated results was tested using a single factor analysis of variance test 

(ANOV A) or a student's t-test as appropriate. A p-value < 0.05 was considered 

significant for all tests. 
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Anthracyclines and their 
Metabolites Modulate 
RyR2 and SERCA2A 
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3.1. Introduction 

The anthracyclines doxorubicin and daunorubicin are among the most effective 

chemotherapeutic drugs available. Unfortunately, the full potential of these drugs can' t 

be harnessed, as their use is accompanied by a potentially fatal cardiotoxicity which 

affects both adults and children. After decades of research, the mechanism of 

anthracycline-induced cardiotoxicity remains ambiguous. While there is evidence of an 

oxidative stress mechanism, efforts to treat or prevent cardiotoxicity by targeting this 

pathway have had limited success. This failure highlights the need for an improved 

understanding of how these drugs affect the redox environment of cardiomyocytes and 

has led to the search for coexisting mechanisms. 

As detailed in Chapter 1, substantial evidence now exists to suggest changes in Ca2
+ 

homeostasis play a prominent role in the effects of these drugs on the heart. 

Anthracyclines modulate RyR2 activity in single channel studies (Ondrias et al., 1990; 

Feng et al., 1999), cardiomyocytes (Wang et al., 2001; Sag et al., 2011), Ca2
+ release 

assays (Olson et al., 2000; Shadle et al., 2000a) and [3H] ryanodine binding assays 

(Pessah et al., 1990; Kim et al., 2006). RyR2 is not the only SR protein affected though, 

with CSQ2 identified as a binding target (Park et al., 2004; Kim et al., 2005b). 

Anthracyclines reduce the CSQ2 Ca2
+ binding capacity and as a result, are thought to 

inhibit SR Ca2
+ release and reduce SR Ca2

+ load (Charlier et al., 2005; Kim et al., 

2005b; Park et al., 2005b). Anthracycline-induced changes in RyR2 coexist with 

depressed cardiac function, including decreased ejection fraction and fractional 

shortening (Cusack et al., 1993a; Shadle et al., 2000a). 

The anthracycline metabolites doxOL and daunOL also cause substantial impairment of 

cardiac function. Effects include depressed contractility and increased the resting 

tension of cardiac muscle preparations (Olson et al. , 1988; Mushlin et al. , 1993). Both 

doxOL and daunOL can inrubit the SERCA2A pump (Boucek et al. , 1987; Olson et al. , 

1988; Mushlin et al., 1993; Olson et al., 2000), although drug concentrations in some of 

these studies were too high to be clinically relevant. Despite strong evidence 

demonstrating the efficacy of both metabolites in disrupting cardiac function, there are 

few studies specifically investigating the effects of these compounds on RyR2. 

However, Olson and colleagues (2000) found that daunOL could both stimulate and 
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inhibit Ca2
+ release from SR vesicles. To date, there are no reports testing the effects of 

anthracycline metabolites on single RyR2 channels. 

In my Honours studies I performed an in depth characterization of the effects of 

daunorubicin on RyR2 channels. Daunorubicin could both stimulate and inhibit Ca2
+ 

release from SR vesicles. Application of 0.01 - 10 µM daunorubicin to single RyR2 

channels caused significant activation of RyR2, which was reversed upon washout. 

With higher daunorubicin concentrations (2.5 - 10 µM) the early RyR2 activation was 

followed by secondary channel inhibition. While this inhibitory effect was not reversed 

by washout, it was preventable by preetreatment with dithiothreitol (DTT, 1 mM). 

Together, these results suggested that the activation of RyR2 by daunorubicin was 

caused by ligand binding while the inhibitory effect was caused by thiol oxidation 

(Hanna et al., 2011). 

The fact that doxorubicin is the more commonly used of the two drugs, led to the focus 

of the present experiments on doxorubicin and doxOL. While the current chapter 

contains some information on daunorubicin and daunOL, the-majority of the results 

concentrate on doxorubicin and doxOL. This direction has allowed more thorough 

investigation of the functional effects of these drugs, and the mechanisms underlying 

these functional effects. 

Aim: 

The primary aim of the experiments detailed in this chapter was to characterize the 

functional effects of anthracyclines on RyR2 and SERCA2A, focusing on drug 

concentrations which are known to accumulate in the heart. A secondary aim was to 

determine whether these functional effects were reversed when the drug was removed. 

This was the initial step in identifying the mechanism of action of these drugs, the 

results of which are the basis for all experiments carried out in subsequent chapters. 
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3.2.1. 

Materials and Methods 

SR vesicle isolation and RyR2 purification 

Chapter Three 

As detailed in Section 2.3, cardiac SR vesicles were prepared from sheep heart (Laver et 

al., 1995) and RyRs were solubilised and purified from SR as described by (Dulhunty et 

al., 2005). 

3.2.2. Anthracycline-protein interactions 

In brief, doxorubicin or doxOL was coupled to CNBr-activated Sepharose 4B according 

to the manufacturer's instructions (Section 2.8) . Precleared, purified SR vesicles (0.5 

mg/ml) were incubated with anthracycline-coupled beads overnight at 4 °C with 

rotation. Unbound RyR2 was removed and proteins bound to the anthracycline-coupled 

CNBr activated Sepharose 4B were eluted by boiling for 1 min in sample buffer. The 

resultant supernatant was separated by SDS-PAGE, subject to western blot and 

immunoprobed with anti-RyR2 or anti-SERCA2A antibodies. Since triadin, junctin and 

CSQ2 associate with RyR2 it was necessary to use a solubilised SR vesicle preparation. 

In a crude SR preparation it would not be possible to determine whether the drug had 

bound to RyR/triadin/junctin or CSQ2 since all three accessory proteins would be eluted 

along with RyR2. In our solubilised SR protein preparations none of these accessory 

proteins are present, therefore we can be confident that the presence of RyR 

immunostaining is indicative of an interaction between the drug and RyR2 itself. 

3.2.3. Single channel recording and analysis 

The method for single RyR2 channel recordings is described in detail in Section 2.6. 

Stable control activity was recorded for 3 - 4 min before anthracyclines added to the 

trans chamber. It is unlikely that the drugs only acted at the luminal face of the RyR2 as 

anthracyclines are lipid soluble, and would cross the bilayer. In washout experiments, 

drugs were removed by perfusing the trans chamber with drug-free solutions. For 

anthracyclines, PO in the 60 - 90 s record showing highest activity was defined as 

Maximal Activation and the 60 - 90 s record with the lowest activity was defined as 

Maximal Inhibition. 
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3.2.4. SR Ca2
+ uptake assay 

The method used to measure Ca2
+ uptake into SR vesicles is shown in Figure 2.2 and 

3.10. Vesicles were pre-incubated for 20 min with anthracyclines (or with vehicle buffer 

alone for control experiments) before they were added to the cuvette. The concentration 

of anthracycline in the cuvette was adjusted to the incubation concentration. Rate of 

Ca2
+ uptake was determined by measuring the rate of change in optical density of the 15 

s immediately following addition of Ca2
+. To account for day-to-day variability multiple 

controls and multiple drug experiments were done each day. Drug experiments were 

compared to the average control value for the same day. 

3.3. 

3.3.1. 

Results 

RyR2 response to pharmacological modulators 

The response of RyR2 to modulatory agents such as ATP, Mg2+, Ca2
+ and ruthenium 

red has been well characterized and can be used to confirm the identification and 

orientation of RyR2 channels in lipid bilayers (Meissner, 1994 ). In this thesis the 

response to cis Ca2
+ adjustment to physiological levels at the beginning of an 

experiment, established both the orientation of the channel and identified the channel as 

a RyR. At completion of an experiment ruthenium red was added for additional 

confirmation. Channels were also identified as being RyR2 by single channel 

characteristics, such as conductance. 

3.3.1.1. Ruthenium Red 

Ruthenium red is an RyR antagonist which is routinely used in single channel 

experiments using SR vesicle preparations, to identify the ion channel as an RyR (Ma, 

1993; Xu et al., 1999). Because ruthenium red irreversibly blocks RyR2 channels, it was 

added only upon completion of the full experiment. Addition of 20 µM ruthenium red to 

the cis chamber reduced channel open probability (P 0 ) to levels approaching zero at 

both +40 and -40 m V (Figure 3. lA). RyR2 block occurred within -30 s of adding 

ruthenium red to the cis chamber. 
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3.3.1.2. Cytoplasmic Ca2
+ 

Cytoplasmic Ca2+ is a biphasic modulator of RyR2, which between 1 µMand 1 mM 

activates the channel, while concentrations above 1 mM inhibit (Laver et al. , 1995). 

Following RyR2 incorporation, standard control recording ionic conditions were 

established by reducing the cytoplasmic [Ca2+] from 1 mM to 1 µM by the addition of 

the Ca2+ chelator BAPTA to the cis solution (1.32 mM). A reduction in activity to sub

maximal levels was observed shortly after addition of BAPTA (Figure 3. lB). This 

change in activity occurred at both +40 m V and -40 m V and in most cases, stabilized 

within 1 - 2 min, thus confirming the channels identity as RyR2. Additionally, the 

channel sensitivity to cytoplasmic Ca2+ differs to its luminal Ca2+ sensitivity (Laver, 

2007; Qin et al. , 2008). With 1 mM cytoplasmic Ca2+ and in the absence of ATP, 

reducing the luminal [Ca2+] from 1 mM to 1 µM would be expected to cause only a 

minor change in P0 • Thus, the response of RyR2 to changes in cis Ca2+ could be used to 

confirm the orientation of the channel. 

3.3.1.3. Channel conductance 

In addition to decreasing cis [Ca2+] from 1 mM to 1 µM , the establishment of control 

conditions involved setting symmetrical [Cs+], which was achieved by increasing the 

trans [Cs+] from 50 mM to 250 mM. Ion channel conductance (G) is directly influenced 

by the maximum current flowing through the channel (/) and the voltage (V) being 

applied: 

I 
G=

V 

Thus, at 0 mV, Cs+ current was zero, as expected under symmetrical ionic strength 

(250/250 mM Cs+). Under these conditions, in a random sample of single channel 

experiments, the average single channel current was 11.71 ± 0.52 pA at +40 m V (n = 

28) and 11.13 ± 0.58 pA at -40 mV (n = 23). These values correspond to average 

conductances of 292.75 ± 7.2 pS at +40 mV and 278.25 ± 8.52 pS at - 40 mV (Figure 

3 .1). This yields two important pieces of information. Firstly, that channel conductance 

was approximately equal at both +40 m V and -40 m V under control conditions and 

secondly, that under these conditions, Cs+ conductance is similar to those reported 

previously under identical experimental conditions (Ahem et al., 1994a; Dulhunty et al., 

2001). 
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As detailed in Section 2.6.3, Cs+ was used as the current carrier in all single channel 

experiments. While a RyR2 Cs+ conductance of 440 ± 8 pS has been reported (Tinker 

and Williams, 1992), those experiments were done in the absence of divalent cations 

(such as Ca2+). Since RyR2 favours the passage of divalent cations over monovalent 

cations (like Cs+) it is expected that millimolar trans Ca2+ would competitively displace 

Cs+ from the putative binding site in the RyR2 channel pore (Tinker and Williams, 

1992; Ahern et al., 1994a; Tu et al., 1994 ). An example of this effect is shown in Figure 

3. lB where the conductance increases when cytoplasmic Ca2+ is reduced from 1 mM to 

1 µM. Since the trans chamber still contained 1 mM ca2+, the conductance increase was 

not as great as it would be with a lower trans [Ca2+]. None of the experimental 

compounds used in this study have been reported to influence RyR2 conductance. No 

changes in RyR2 conductance upon treatment with anthracyclines, redox agents or any 

other pharmacological agents used during this project were evident. 

3.3.2. Anthracycline binding to RyR2 and SERCA2A 

Before testing for any functional effect of anthracyclines on RyR2 or SERCA2A it was 

necessary to first determine whether a ligand binding interaction between the drugs and 

proteins of interest existed. Binding of doxOL with CSQ2 has been demonstrated (Kim 

et al., 2005; Park et al. , 2005), however the metabolites binding to RyR2 and 

SERCA2A has not previously been invertigated biochemically. The interaction of 

doxorubicin and doxOL with RyR2 and SERCA2A was probed using affinity 

chromatography, with any proteins 'pulled down ' by doxorubicin and doxOL eluted and 

subject to SDS PAGE and western blot. Substantial immunostaining (using primary 

antibodies anti-RyR and anti-SERCA2A) indicated that doxorubicin and doxOL can 

bind to both RyR2 and SERCA2A (Figure 3.2). Since triadin, junctin and CSQ2 are not 

present in our purified RyR2 preparations, we can be confident that the RyR2 

immunostaining was indicative of an interaction between anthracyclines and RyR2 

itself, not an associated protein. SERCA2A is however present in our purified vesicles 

but is known not to associate with RyR2. In some experiments, control samples, where 

beads were not coupled with anthracyclines displayed some non-specific binding but 

this was only minor. These results demonstrate that in our sheep heart preparations, both 

RyR2 and SERCA2A are binding targets of anthracyclines. 
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Figure 3.1- RyR2 regulation by cytoplasmic Ca2
+ and ruthenium red. (A) - (B) Three 

second recordings of RyR2 activity. Left panels Channels are opening downward from zero 

current (c, solid line) to maximum open conductance (o, dashed line). Right panels Channels 

are opening upward from zero current (c, solid line) to maximum open conductance (o, 

dashed line) (A) Channel activity with symmetrical [Cs+] of 250 mM. Twenty µM 

ruthenium red was added to the cis chamber (lower recordings), abolishing activity at both 

+40 mV and -40 mV. (B) RyR2 activity at cis [Ca2+] from 1 mM (upper traces) and at cis 1 

µM (lower traces) with the addition of 1.32 mM BAPT A. Traces are representative of 

changes in RyR2 activity that occur with the known pharmacological agonists ruthenium red 

(A) and Ca2+ (B) in single channel experiments conducted during this project. Maximum 

conductance values (G) were measured from the recordings displayed. 
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Anthracyclines cause biphasic modulation of single channel 

activity 

After confirming binding between anthracyclines and RyR2 and SERCA2A, the aim 

was to determine the functional effect of the drugs on these proteins. Drug effects on 

SERCA2A will be discussed at length in Section 3.3.5. The isolated environment of the 

single channel system allows analysis of the specific functional effects of the drug on 

RyR2. Due to the inherent variability in basal RyR2 activity, data is often expressed in 

relative terms. This is particularly beneficial when comparing multiple sets of data. 

3.3.3.1. Anthracyclines activate RyR2 

This project began with my honours investigation of the anthracycline daunorubicin 

which was completed in June 2009 and therefore not included in this PhD thesis. Those 

results were also published in 2011, with additional experiments that are presented in 

Section 4.3.1.1 (Hanna et al., 2011). The results detailed in Chapters Three and Four of 

this thesis build on that earlier work with daunorubicin and sbow that daunorubicin, 

doxorubicin and their primary metabolites can modulate RyR2 channels. 

Addition of 0.01 µM doxorubicin caused a significant 3.11±0.78 fold increase in 

channel open probability (Po; Figure 3.3). Higher concentrations of doxorubicin also 

induced RyR2 activation. Addition of 0.5 µM, 1 µMand 2.5 µM doxorubicin induced a 

3.91±0.34, 4.35 ±1.08 and 3.28±0.67 fold increase in activity, respectively (p~0.05; 

Figure 3.3). To more easily compare the effects of different drugs, from here in, all P0 

changes are expressed relative to control activity unless stated otherwise. Although the 

increase in P0 was significant across all concentrations, the degree of activation was 

never significantly higher than that caused by 0.01 µM doxorubicin. This suggests that 

the activation by doxorubicin is saturated by concentrations as low as 0.01 µM. 

The doxorubicin metabolite, doxOL, elicited similar effects on RyR2. There was a 3.70 

± 0.77 fold increase in P0 after addition of 0.01 µM doxOL (Figure 3.4). The greatest 

effect was caused by 0.5 µM doxOL, with a 6.41 ± 0.92 fold increase in activity, a 

significantly greater increase than with 0.01 µM doxOL. Higher doxOL concentrations 

did not evoke any further activity increase, uggesting that 0.5 µM doxOL is a 

saturating concentration. 
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Figure 3.2 - Doxorubicin and doxOL bind to RyR2 and SERCA2A. Western blot 

showing RyR2 (n = 3 - 5) (A) and SERCA2A (n = 3 - 5) (C) bound to CNBr-activated 

Sepharose in the absence of doxorubicin/doxOL (non-specific binding; lane 1), to 

doxorubicin coupled CNBr-activated Sepharose (lane 2) and doxOL coupled CNBr-activated 

Sepharose (lane 3). Average density of RyR2 (B) and SERCA2A (D) from control (bin 1), 

doxorubicin coupled CNBr-activated Sepharose (bin 2) and doxOL-coupled CNBr-activated 

Sepharose (bin 3). Asterisk(*) indicates a significant difference in arbitrary densitometry 

units between the control and anthracycline coupled CNBr-activated Sepharos. The blots 

presented in (A) and (C) are taken from the same experiment. 
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There was a trend for the time to activation to be reduced as higher drug concentrations 

were used, but this was not significant. Maximal activity was seen after exposure to 

doxorubicin at: 5.2 ± 0.8 min (with 0.01 µM doxorubicin), 3.2 ± 0.4 (0.5 µM 

doxorubicin), 5.7 ± 1.2 (1 µM doxorubicin) and 4.1 ± 0.9 min (2.5 µM doxorubicin) 

(Table 3.lA). Similarly, doxOL activation began within 7.8 ± 1.8 min (with 0.01 µM), 

4.9 ± 1 .4 (0.5 µM), 4.1 ± 1.2 (1 µM) and 2.3 ± 0.6 min (2.5 µM) of drug addition (Table 

3. lB). Comparing doxorubicin and doxOL, there was no significant difference in the 

time taken to cause maximal activation of RyR2 after addition of either drug to the trans 

chamber. 

Whilst the effect of daunorubicin on RyR2 was detailed in my Honours thesis, the effect 

of daunOL on single channels has not been investigated. However, since the focus of 

this project was doxorubicin (and its metabolite), daunOL was only tested in the range 

of 0.5 - 2.5 µM. Addition of 0.5 µM daunOL caused a significant 4.3±1 .2 fold increase 

in P0 _ Higher concentrations activated RyR2 to a similar extent with 2.5 µM daunOL 

causing a maximal 5.35 ± 1.32 fold increase in P0 (Figure 3.5). This was not 

significantly different from the results with lower daunOL concentrations , illustrating 

that saturation had been achieved with 0.5 µM. The saturating concentration may have 

been lower than 0.5 µM (as it was with doxorubicin), but due to time constraints this 

was not explored. The time to activation by daunOL was comparable to that of the other 

anthracyclines tested. Following daunOL addition to the trans chamber, channel 

activation began within 3.6 ± 1.7 min (with 0.5 µM daunOL), 4.5 ± 1.6 min (1 µM 

daunOL) and 1.9 ± 0.4 min with 2.5 µM daunOL (Table 3. lD). For comparison, the 

time to maximal activation for daunorubicin ranged from 8.5 ± 2.2 min with 0.5 µM to 

5.7 ± 2 min with 2.5 µM (Table 3. lC, (Hanna et al., 2011 ). 

3.3.3.2. Anthracyclines inhibit Ry R2 

Lower concentrations (0.01 - 0.05 µM) of anthracyclines induced channel activation 

which lasted for the lifetime of the experiment, up to 30 min post drug addition. A 

secondary inhibitory effect was observed in a minority of channels treated with 0.01 µM 

doxorubicin (see below). Higher doxorubicin concentrations (1 - 2.5 µM) consistently 

caused sustained inhibition of channel activity, which occurred immediately following 

the activation phase (Figure 3.6). 
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Figure 3.3 Doxorubicin activates native RyR2 channels. (A) Running histogram of 

experimental strategy. RyR2 channel open probability (Po) was measured every 10 s 

throughout an experiment before (white bins) and after (black bins) the addition of 0.5 µM 

doxorubicin at +40 mV. (B) Threes recordings of native RyR2 channel activity at +40 mV. 

Channels open upward from zero current (C, continuous line) to maximum open conductance 

(0, dashed line) . Top panel, control recording of native RyR2 activity in the absence of 

doxorubicin; middle and bottom panel, after the addition of 0.5 µM doxorubicin to the trans 

chamber. Maximal RyR2 activity was first measured at 2 min in this channel (middle panel), 

with no further change in activity recorded for 22 min after doxorubicin addition (bottom 

panel). (C) Combined data from measurements of P0 at +40 mV and -40 mV (n = 9 - 16). 

Data is presented as average P0 during the activation phase (relative to control). Asterisk (*) 

indicates a significant difference from the control P0 recorded before adding doxorubicin. 
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Figure 3.4 - DoxOL causes biphasic modulation of native RyR2 channels. (A) Running 

histogram, where native RyR2 channel Pa was measured every 10 sat +40 mV throughout an 

experiment before (white bins) and after (black bins) the addition of 2.5 µM doxOL. (B). Three 

s traces of native RyR2 channel activity at -40 mV. Channels open downward from zero current 

(C, continuous line) to maximum open conductance (0, dashed line). Left panel , control 

recording of native RyR2 activity in the absence of doxOL; centre and right panel, after the 

addition of 2.5 µM doxOL to the trans chamber. Maximal RyR2 activity was first measured at 

1 min after addition of doxOL (centre panel) and maximal RyR2 inhibition measured at 4 min 

after doxOL addition (right panel). (C) - (D) Combined data from measurements of Pa at +40 

mV and -40 mV (n = 7 -18 at each concentration). Data is presented as average relative Pa. 

Average relative Pa during the activation phase (relative to control) shown in (C) and average 

relative P0 during the inhibitory phase (relative to activity during control) shown in (D). 

Asterisk (*) indicates a significant difference from the control PO recorded before adding 

doxOL. 
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Figure 3.5 - DaunOL causes biphasic modulation of native RyR2 channels. (A) Three s 

recordings of native RyR2 channel activity at +40 mV. Channels open upward from zero 

current (C, continuous line) to maximum open conductance (0, dashed line). Left panel, control 

recording of native RyR2 activity in the absence of daunOL; centre and right panel, after the 

addition of 2.5 µM daunOL to the trans chamber. Maximal RyR2 activity was first measured at 

1.5 min after addition of daunOL (middle panel) and maximal RyR2 inhibition was measured 

7.5 min after daunOL addition (bottom panel). (B) - (C) Combined data from measurements of 

P0 at +40 mV and - 40 mV (n = 6 - 14). Average data is presented s P0 relative to control 

activity. Relative P0 during activation shown in (B) and relative P0 during inhibition shown in 

(C). Asterisk(*) indicates a significant difference from the control P0 recorded before adding 

daunOL. Crosshatch(#) indicates a significant difference from activity during the activation 

phase. 107 
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On average, the activity of channels treated with 1 µM and 2.5 µM doxorubicin was 

reduced to 71 % and 48% of control P0 , respectively (Figure 3.6C). This mimicked the 

effects of daunorubicin (Hanna et al., 2011). On average, inhibition began 11.25 ± 2 

min after doxorubicin addition and was sustained for the lifetime of the experiment 

(Table 3.lA). Given that 10- 15% of channels treated with 0.01 - 0.5 µM doxorubicin 

exhibited an inhibitory phase, it is likely that lower concentrations of doxorubicin were 

capable of inhibiting RyR2, but that it was generally not observed in the time frame of 

the experiment. 

In the first major distinction between the parent compounds and metabolites, doxOL 

was a more effective inhibitory agent then doxorubicin, as all tested concentrations of 

doxOL caused significant inhibition of channel activity (Figure 3.4D). P0 fell to 69 % of 

control with 0.01 µM doxOL and to 24% of control with 2.5 µM doxOL. Even though 1 

- 2.5 µM doxorubicin did inhibit RyR2, the equivalent concentrations of doxOL caused 

more drastic reductions in P0 • As a percentage of control activity, there was a 19% 

decrease in PO induced by doxorubicin compared with a 60% decrease with doxOL 

(p<0.05). Similarly, 2.5 µM doxorubicin caused a 52% reduction in P 0 , whilst the 

equivalent dose of doxOL caused a 76% decrease (p<0.05). On average, doxOL

induced inhibition began 13.9 ± 2.1 min following drug addition and was fastest with 

2.5 µM doxOL, when inhibition occurred within 8 min (Table 3. lB). 

All tested concentration of daunOL also inhibited RyR2. This indicates an enhanced 

efficacy of the metabolite, since daunorubicin required at concentrations 2:2.5 µM to 

cause significant inhibition. Unexpectedly, the lower concentrations of 0.5 and 1 µM 

daunOL were significantly more effective at inhibiting RyR2 then the higher 

concentration of 2.5 µM. P0 was reduced to 34% and 11 % of control with 0.5 and 1 µM 

daunOL (respectively) , whereas the average lowest activity measured with 2.5 µM was 

67% of control activity (Figure 3.5). Still , this was a significant reduction in P0 

compared with activity during the activation phase. The time to maximal inhibition 

ranged from 12 ± 0.7 min with 2.5 µM to 15.4 ± 0.9 with 0.5 µM daunOL (Table 3. lD). 

It is curious that lower concentrations of daunOL caused more severe inhibition than the 

highest daunOL concentrations, as this is inconsistent with results obtained with other 

anthracyclines where there was a trend for the extent of inhibition to increase with 

higher drug concentrations. 
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Figure 3.6 - High concentrations of doxorubicin inhibit RyR2 (A) Running histogram of 

experimental strategy. RyR2 channel Pa was measured every 10 s throughout an experiment 

before (white bins) and after (black bins) the addition of 2.5 µM doxorubicin at +40 mV . 

(B)Three second traces of native RyR2 channel activity at +40 mV. Channels open upward 

from zero current (C, continuous line) to maximum open conductance (0, dashed line). Top 

panel, control recording of native RyR2 activity in the absence of doxorubicin ; middle and 

bottom panel, after the addition of 2.5 µM doxorubicin to the trans chamber. Maximal RyR2 

activity was first measured at 2.5 min in this channel (middle panel), and maximal RyR2 

inhibition was recorded 16 min after doxorubicin addition (bottom panel). (C) Combined data 

from measurements of Pa at +40 mV and -40 mV (n = 8 - 17). Average data is presented as 

Pa during the inhibitory phase (relative to activity during control). Asterisk(*) indicates a 

significant difference from the control Pa recorded before adding doxorubicin. 

109 



Chapter Three 

The cause of this anomaly was not pursued but may be due to the unusually low control 

activity of the channels used for this set of data. The control PO for channels that were 

treated with 2.5 µM daunOL was 0.0080 ± 0.003 compared to 0.017 ± 0.01 for 0.5 µM 

and 0.0254 ± 0.01 for 1 µM. 

3.3.3.3. Cytoplasmic addition of anthracyclines cause biphasic modulation of 

RyR2 

In the majority of experiments in this project, drugs were added to the trans chamber as 

one of the original aims of the project was to analyse the effects of the drugs on luminal 

SR proteins . Since the drug is highly lipid soluble, it is expected that anthracyclines 

would cross the lipid bilayer within the timeframe of the experiment. Therefore, it was 

expected that drug addition to the cis chamber would induce activation and inhibition of 

RyR2 activity to a similar degree as trans addition of matched concentrations. This was 

tested using 1 µM doxOL and 1 µM daunOL, since these concentrations should reliably 

produce both activation and inhibition (as detailed above). 

As expected, cis addition of both doxOL and daunOL yielded similar results as with 

trans addition, causing activation of RyR2 that was followed by channel inhibition 

(Figure 3.7). The only statistically significant difference was in the extent of inhibition 

by daunOL. Compared to control activity, cis addition of daunOL caused a 15% 

reduction in P 0 , while trans addition induced a more drastic 89% reduction in P 0 • 

DaunOL also activated RyR2 more quickly with trans addition (6.5 ± 1.3 min) than 

with cis addition (10.6 ± 2.1 min), though the time to inhibition was approximately 

equal (14.1±2.2 min with trans vs. 13 .8±1.3 min with cis addition) (Table 3.1D). These 

results suggest that daunOL may be acting at a luminal or transmembrane domain of 

RyR2 at a site that is equally accessible to both cis and trans solutions. Conversely, with 

1 µM doxOL the time to maximal effect (activation and inhibition) was always fas ter 

with cis addition than with trans addition. Since cis addition would allow doxOL to 

access the cytoplasmic region faster than it had when added to the trans chamber (Table 

3. lB) it is possible that doxOL is acting at a cytoplasmic region of RyR2. The 

possibility that the two drugs are acting at different sites is interesting but no further 

experiments were done to investigate this possibility. 
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Figure 3.7 - Cis and trans addition of DoxOL and DaunOL induce similar effects on 

RyR2 channel activity. RyR2 average relative P0 where drugs were added to either cis 

(blue bins) or trans (red bins) solutions. After addition of doxOL (n = 6) (A) or daunOL (n 

= 9) (B), RyR2 activity was sampled from the phase of maximal activity (Activation) or 

minimal activity (Inhibition). Asterisk(*) indicates significant difference from control (p < 

0.05) or between cis and trans additions as indicated. Crosshatch (#) indicates significant 

difference to previous phase (p < 0.05). 
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(A) 
Doxorubicin 

Time to Time to 
Activation (min) Inhibition (min) 

10 nM 5.2 ± 0.8 

500 nM 3.2 ± 0.4 

1 µM 5.7±1 .2 11.3 ± 2.7 

2.5 µM 4.1 ± 0.9 11.2 ± 1.3 

(B) 
Time to Time to 

DoxOL Activation (min) Inhibition (min) 

trans cis trans cis 

10 nM 7.8 ± 1.8 17 ± 2.3 

500 nM 4.9 ± 1.4 14.4 ± 1.1 

1 µM 4.1 ± 1.2 2.3 ± 0.8 16.4 ± 0.8 10.3 ± 1.5 

2.5 µM 2.3 ± 0.8 7.7 ± 1.2 

(C) 
Daunorubicin 

Time to Time to 
Activation (min) Inhibition (min) 

10 nM 15.7 ± 2.4 

500 nM 5.8 ± 1.8 

1 µM 5.2 ± 0.8 12.6 ± 4.3 

2.5 µM 2.4 ± 0.5 11.9±1.7 

(D) 
Time to Time to 

DaunOL Activation (min) Inhibition (min) 

trans cis trans cis 

500 nM 3.6 ± 1.7 13.6 ± 0.2 

1 µM 4.5 ± 1.6 6.3 ± 1.1 12.6 ± 1.8 12.2±1.91 

2.5 µM 1.9±0.4 8.3 ± 0.7 

Table 3.1 - Time to anthracycline-induced RyR2 activation and inhibition. Average 

time to RyR2 activation and time to RyR2 inhibition are presented for all tested 

concentrations of (A) doxorubicin (n = 8 - 17), (B) doxOL (n = 7 - 18) and (D) daunOL (n 

= 6 - 14). Data for daunorubicin (n = 6 - 10) (C) are presented for comparison (Hanna et al 

2011). The time to effect reflects the time from when the drug was added to the chamber, to 

the beginning of the activation or inhibition effect. All times are for addition of drug to the 

trans chamber unless otherwise specified. 
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Reversal of anthracycline induced effects on RyR2 

The results from Section 3.3.3 demonstrated anthracyclines could cause significant 

biphasic modulation of RyR2 activity. To go beyond characterizing the effects of the 

drugs on RyR2 gating and to gain an understanding of the mechanism of activation and 

inhibition, two sets of perfusion experiments were done to test the reversibility of these 

effects . Drug washout from the bathing solutions of single channels is a valuable 

experimental technique and has not been attempted with anthracyclines previously. 

3.3.4.1. Reversal of activation 

For these experiments, 0.5 µM doxorubicin was used as it induced sustained activation 

without causing later inhibition (see Figure 3.3 and 3.6) . Doxorubicin was first added to 

the trans chamber and stable activation observed. The chamber was then perfused with 

drug-free trans solution and RyR2 activity was compared before and after drug washout 

(Figure 3.8A). Almost immediately after washout of doxorubicin, Pa was significantly 

reduced from 0.226 ± 0.06 to 0 .074 ± 0.03 (Figure 3.8A). This low Pa was maintained 

for the lifetime of the experiment, up to 15 min after perfusion. Similar results were 

observed for 0.5 µM doxOL, where drug addition caused a 5-fold increase in Pa, which 

fell to a level comparable with control after drug washout (Figure 3.8B). This decrease 

in Pa is likely due to washout of the drug and not doxOL induced inhibition (see Section 

3.3.3.2) because perfusion was completed within 6 - 8 min of drug addition, whereas 

RyR2 inhibition by 0.5 µM doxOL took 14.4 ± 1.1 min. Reversal of drug-induced 

activation is characteristic of low-affinity ligand binding and is also seen with 

daunorubicin-induced activation (Hanna et al., 2011). As doxorubicin/doxOL CNBr

activated sepharose assays showed that both forms of the drugs bind to RyR2 (Figure 

3.2A, B) , it is likely that doxorubicin and doxOL activate RyR2 by ligand binding. 

3.3.4.2. Reversal of Inhibition 

In contrast to the activation effect, the effects of anthracycline-induced RyR2 inhibition 

were not reversed by washout. RyR2 were first treated with 2.5 µM doxorubicin or 2.5 

µM doxOL, concentrations that had the fastest time for induction of RyR2 inhibition. 

After inhibition was observed, the trans chamber was perfused with drug-free solution, 

and RyR2 activity was compared before and after wash out of the drug. 
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Figure 3.8 - Anthracycline-induced activation is reversible upon removal of the drug. 

Threes recordings of native RyR2 channel activity at -40 mV (A) and +40 mV (C) . 

Channels open downward (A) or upward (C) from zero current (C, continuous line) to 

maximum open conductance (0, broken line) . Top panel, control native RyR2 recording in 

the absence of doxorubicin (dox) (A) and doxOL (C); middle panel , after the trans chamber 

addition of 0.5 µM dox (A) and doxOL (C) . Maximal Po was measured 8 (A) or 4 (C) mins 

after dox addition and 4 min after doxOL addition; bottom panel , after the trans chamber was 

perfused with drug free solution. (B) and (D) Average combined data from measurements of 

Pa at +40 mV and -40 mV (n = 6 - 10 ). Average Pa before 0.5 µM doxOL addition, during 

the activation phase and after washout of doxorubicin are shown in (B). Average Pa before 

0.5 µM doxOL addition, during activation and after washout of doxorubicin are shown in (D). 

Asterisk (*) indicates a significant difference from the control Pa recorded before adding 

dox/doxOL. Crosshatch(#) indicates a significant difference between Pa in the presence of 

dox/doxOL and after drug washout. 114 



Chapter Three 

Addition of 2.5 µM doxorubicin caused an initial activation, followed by inhibition, 

with PO decreasing from an average of 0.0832±03 during control (i.e. before drug 

addition), to 0.0043±0.002 (Figure 3.9A - B). Washout of the drug failed to reverse 

channel inhibition, with P0 remaining at 0.0067 ± 0.003, which was not significantly 

different to the channel PO before washout. This low PO was sustained for the remainder 

of the experiment, up to 10 min following perfusion. Similarly, perfusion did not 

reverse doxOL-induced inhibition (Figure 3.9C - D). Indeed P0 actually fell 

significantly from 0.0119±0.003 before washout to 0.0021±.001 after washout. These 

results compare well with daunorubicin perfusion experiments, where daunorubicin

induced inhibition was not reversed upon drug washout (Hanna et al., 2011). 

The difference in the reversibility of drug induced activation and inhibition indicates the 

two effects are mediated by different mechanisms. The irreversible nature of the 

inhibitory effects may be due either to the drug binding to RyR2 with very high affinity, 

or to a non-ligand binding mechanism such as an amino acid modification. In the 

isolated environment of the bilayer this modification is most likely to be direct 

oxidation of reactive thiol groups on cysteines. This effect is reminiscent of the 

inhibition of RyR2 induced by higher concentrations of daunorubicin which was shown 

to be due to the oxidation of thiol groups (Hanna et al., 2011). 

3.3.5. Anthracyclines inhibit SERCA2A uptake 

Anthracyclines have been reported to compromise SERCA2A function (Cusack et al., 

1993a). To assess the effects of doxorubicin and doxOL on SERCA2A, SR Ca2
+ uptake 

was measured in cardiac SR vesicles. SERCA2A uptake rate was faster in the presence 

of ruthenium red (compare last transient in Figure 3.10 with preceding transients). This 

was expected since in the absence of ruthenium red, Ca2
+ would also be released 

through the RyR2, reducing the net accumulation rate. This observation indicates that 

the vesicles contain intact uptake and release pathways. 

Vesicles were pre-incubated with varying concentrations of doxorubicin or doxOL for 

20 min. In controls for this experiment, vesicles were incubated with buffer. To exclude 

day-to-day variability, control experiments were done each day and results from drug

treated vesicles were compared to the average of control experiments for that day. 
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Figure 3.9 - Anthracycline-induced inhibition is not reversible upon removal of the 

drug. (A) and (C). Threes recordings of native RyR2 channel activity at +40 mV. Channels 

open upward from zero current (C, continuous line) to maximum open conductance (0 , 

broken line). Top panel, control native RyR2 recording in the absence of doxorubicin (dox) 

(A) and doxOL (C) ; middle panel, after the addition of 2.5 µM dox (A) and doxOL (C) to 

the trans chamber minimal activity was measured 5.5 min after dox (A) and doxOL (C) 

addition; bottom panel, after the trans chamber was perfused with drug free solution , re

establishing control conditions. (B) and (D) , Combined data from measurements of P0 at +40 

mV and -40 mV (n = 8 in Band D). Average P0 before 2.5 µM dox addition , during 

inhibition and after washout of dox are shown in B). Average P0 before 2.5 µM doxOL 

addition, during inhibition and after washout of doxOL are shown in (D). In (B) and (D), 

Asterisk (*) indicates a significant difference from the control PO recorded before adding 

dox/doxOL. 116 
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Pre-incubation of SR vesicles with 0.01 µMor 10 µM doxorubicin did not significantly 

change the SERCA2A Ca2
+ uptake rate (Figure 3.10B - C). On the other hand, Ca2

+ 

uptake was inhibited by the metabolite doxOL (Figure 3.10 D - E). Pre-incubation with 

0.01 µMand 10 µM doxOL significantly reduced Ca2
+ uptake to 73% - 75% of the rate 

in SR vesicles that had been exposed to vehicle only. Pre-incubation with the lower 

concentration of 0.001 µM doxOL did not significantly decrease SERCA2A activity. 

Taken together, these results indicate that doxOL, but not doxorubicin, causes inhibition 

of SERCA2A Ca2
+ uptake. 

3.4. Chapter discussion 

In this chapter, new evidence of the mechanisms underlying anthracycline 

cardiotoxicity is presented. The effects of the doxorubicin metabolite, doxOL have been 

characterized on single RyR2 channels and SERCA2A for the first time and the results 

provide a novel understanding of the molecular effects of this compound on Ca2
+ 

handling in the heart. All the results were consistent with our previous work with 

daunorubicin (Hanna et al., 2011), providing further evidence that anthracyclines 

disrupt Ca2
+ homeostasis in the heart, and have the potential to impair cardiac function 

by targeting important Ca2
+ handling proteins. 

3.4.1. 

3.4.1.1. 

RyR2 is regulated by anthracyclines 

Anthracycline effects on RyR2 are likely to be caused by different 

mechanisms 

Anthracyclines caused consistent and effective activation of RyR2, regardless of the 

drug used and the concentration. Channel activation is completely reversible upon 

washout, consistent with the effects of anthracyclines reported earlier (Pessah et al., 

1990; Hanna et al., 2011). The degree of activation for both doxorubicin and doxOL 

peaked at the lower end of the tested concentration range (0.01 µM for doxorubicin and 

0.5 µM for doxOL). This could be either because all the binding sites on RyR2 are 

saturated which has prevented further activation, or that the onset of inhibition (see 

below) masks any further increase in activity. 
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Figure 3.10 - SERCA2A Ca2
+ uptake is inhibited by doxOL. (A) Experimental strategy; 

Ca2
+ uptake from SR vesicles was monitored after addition of antipyrylazo III. The initial 

rate of Ca2
+ uptake was measured for the final addition of Ca2

+ (dashed box) . Traces show 

SERCA2A mediated Ca2
+ uptake from the bathing solution into the SR of vesicles pre

incubated with doxorubicin (B) or doxOL (D). The initial slope of the uptake curve was 

measured (dashed lines) and converted into an uptake rate. Average Ca2
+ uptake rate of 

doxorubicin (C) and doxOL (E) pre-treated vesicles, relative to the uptake rate in the 

absence of anthracycline preincubation. Asterisk (*) indicates significant difference 

compared to untreated vesicles, n = 8 - 10. 
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In contrast to activation, inhibition of RyR2 by doxorubicin and doxOL was not 

reversible by washout. It is possible that the inhibitory effect is caused by a very high 

affinity ligand binding interaction and the drug has remained bound during the 

perfusion process. This possibility is unlikely however, given that it took several 

minutes for anthracycline-induced inhibition to occur, while known, high affinity 

ligands like ruthenium red take less than a minute to inhibit RyR2 (Ma, 1993). Another 

interaction that could potentially underlie RyR2 inhibition by anthracyclines may be 

alkylation of RyR2. Many chemotherapeutic compounds, including several members of 

the anthracyclines, are strong alkylating agents which add a methyl group to lysine or 

arginine residues causing changes in protein function. However, neither doxorubicin nor 

doxOL can form N-alkyl adducts and thus cannot modify RyR2 via this mechanism 

(Tong et al., 1979; Marchini et al., 1995). In theory inhibition could also be mediated by 

phosphorylation, nitrosylation or oxidation, three modifications which are common in 

RyR2. In our SR vesicle preparations, the enzymes or associated co-factors (eg kinases, 

NOS) that are necessary for these modifications are absent or inactive. While in vitro 

application of anthracyclines has not been reported to cause phosphorylation or 

nitrosylation, there is substantial evidence that they can oxidise protein thiol groups, and 

can do so in a ROS independent manner (Abramson et al., 1988; Ondrias et al., 1990; 

Hanna et al., 2011). Hence it is most likely that the inhibitory effect is mediated by 

direct modification of RyR2 thiols by anthracyclines. This possibility will be explored 

more in Chapter 4. 

It is interesting to note that in a small number of channels, activation was not observed 

after treatment with 1 µM and 2.5 µM doxorubicin, doxOL or daunOL. In these 

channels, the highest measured P0 with drug was lower than the control activity, i.e. 

only an inhibition phase was measured. This observation may be important 

mechanistically, as it suggests that either the secondary inhibitory effect can occur 

independently of the activation effect, or that the potent RyR2 inhibition of doxorubicin 

and doxOL at these concentrations masks activation. This may also explain why the 

extent of activation did not increase in a dose dependent manner, but rather, plateaued 

or was even reduced with higher concentrations of all tested drugs. 
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Anthracyclines may have different binding sites on RyR2 or an 

associated protein 

Since anthracyclines are lipid soluble, it is impossible to tell from any of these 

experiments whether the drug is binding in a cytoplasmic, luminal or transmembrane 

domain. The fact that anthracycline-induced activation is reversed within the timeframe 

of the chamber perfusion suggests that the ligand-binding interaction is low affinity and 

not in the transmembrane domain, which would likely be more difficult to reverse. 

Rather, it has been suggested that doxorubicin shares a binding site with caffeine, in the 

large cytoplasmic domain of RyR (Pessah et al., 1990). Some insight into the site of · 

action can be gained by comparing the time to activation and inhibition between cis and 

trans drug addition. DoxOL both activated and inhibited channels more quickly when 

added to the cis chamber then when it was added to the trans chamber, with no 

difference in the severity of either effect regardless of the chamber it was added to. 

Conversely, daunOL activated the channel more quickly when added to the trans 

solution than when added to the cis chamber (Table 3.1). The magnitude of daunOL 

inhibition was also significantly greater when it was added to the trans chamber, 

causing a 15% inhibition when added to cis compared to an 89 % inhibition when added 

to the trans chamber (Figure 3.5 and Figure 3.7). These results suggest that daunOL 

could be acting at a luminal or transmembrane domain of RyR2, or possibly in a 

cytoplasmic microdomain that is more easily accessed from the trans chamber. 

Alternatively the different carbonyl sidechains of the metabolites might alter the ability 

of the drugs to access certain regions on RyR2. While the present results are not 

sufficient to draw any firm conclusions, it is not implausible that two drugs so 

structurally similar would bind to, or access different locations on RyR2. Doxorubicin 

and daunorubicin have equally similar structures yet have a very different spectrum of 

clinical use (Section 1.12.1). An experiment with sequential additions of doxOL and 

daunOL may shed some light on the possibility of separate binding sites, but was not 

undertaken due to time constraints. Additional mechanistic insight may also be gained 

by analysis of the mean open time, mean closed time and frequency of channel 

openings. 

Minor modifications to the core anthracycline structure are associated with differences 

in the drug's affinity for RyR2 (Pessah et al., 1990) . These investigators suggested that 

doxorubicin shares a binding site on RyR2 with caffeine, a well-characterized channel 
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agonist which binds in the cytoplasmic domain of the protein. In 3[H] ryanodine binding 

assays, caffeine was able to reduce the potency of doxorubicin (Pessah et al., 1990), 

whilst pretreatment with caffeine reduced the extent of doxorubicin binding to RyR2 

(Zorzato et al. , 1985). DoxOL may be the more pathologically relevant compound, 

having a longer half-life and causing more severe effects on RyR2 and other 

cardiomyocyte ion channels (Section 1.12.3.3). Thus it may be beneficial to repeat 

similar studies with doxOL to gain understanding of the ligand binding interaction with 

RyR2. With this knowledge, measures to prevent or reduce the cardiotoxicity of 

anthracyclines by blocking the binding of doxOL to RyR2 may be more effective in the 

future. 

In regard to the putative anthracycline binding site/s, the results presented here cannot 

exclude a role for other SR proteins that are in complex with RyR2, such as triadin, 

junctin, CSQ2 or FKBP12/12.6. Previous results demonstrated that daunorubicin could 

activate and inhibit RyR2 in the absence of CSQ2 (Hanna et al., 2011). Given the 

similarities so far between the effects of daunorubicin and doxorubicin, doxOL and 

daunOL, it seems unlikely that CSQ2 would be important in the effects these other 

drugs have on RyR2 gating. However, this does not exclude a role for CSQ2 in the 

effects of anthracyclines on other aspects of SR Ca2
+ handling, nor does this exclude a 

role for triadin, junctin or any other proteins, such as FKBP that remain bound to RyR2 

in our SR vesicle preparations. 

3.4.1.3. Anthracycline metabolites have greater efficacy then the parent 

compounds 

There is a tendency for doxOL to be more efficacious than the parent doxorubicin. This 

is illustrated by doxOL' s ability to inhibit RyR2 at lower concentrations, within a faster 

time frame and to a significantly greater extent than the parent compound. In addition , 

doxOL but not doxorubicin caused significant SERCA2A dysfunction . Rabbit models 

of anthracycline cardiotoxicity have shown that metabolite synthesis occurs within 45 

min of initial treatment, and that the metabolite has an extended half-life in the heart, 

compared with the parent compound (Olson et al., 1988). As detailed in Section 

1.12.3.3, anthracycline metabolites have been shown to bind to numerous 

cardiomyocyte ion channels and transporters at substantially lower concentrations then 

the parent compounds. Furthermore, over expression of the carbonyl reductase that 

catalyses the conversion of doxorubicin to doxOL accelerates the development of 
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cardiomyopathy (Forrest et al., 2000), and knockdown of the carbonyl reductase gene 

protected against acute cardiotoxicity (Olson et al., 2003).These findings , with those 

presented in this chapter, strongly suggest that the metabolites have an important role in 

mediating anthracycline induced cardiac dysfunction. 

3.4.2. SERCA2A regulation by anthracyclines 

The reduced SERCA2A activity observed in these experiments was caused by relatively 

low concentrations of doxOL and were comparable to levels measured in the hearts of 

anthracycline treated animals (0.4 ±0.036 µM, (Olson et al., 2003)) . The results in this 

chapter demonstrate that doxOL can bind to SERCA2A. Whether the regulatory protein 

phospholamban remained bound to SERCA2A in the SR vesicle preparations used for 

the affinity chromatography assay or if anthracyclines have an effect on phospholamban 

was not explored. It must also be considered that since SERCA2A contains several 

accessible thiol residues it is possible that inhibition of SERCA2A function is caused by 

doxOL induced disulphide formation. This prospect will be explored in the following 

chapter. In terms of the cellular dynamics of the effect of doxOL on SERCA2A 

function, a decrease in SR Ca2
+ uptake would be expected to have severe consequences 

on SR Ca2
+ load and subsequent RyR2 Ca2

+ release (see next section). 

3.4.3. Synergistic effects of anthracyclines in the whole heart 

While low concentrations of anthracyclines did stimulate RyR2 activity, this influence 

was transient, with RyR2 inhibition by both the drugs and metabolites being the longer 

lasting effect. Since these experiments are conducted under conditions likely to be 

encountered during systole, they can not be used to predict the influence of the drugs 

on RyR2 during diastole. Such effects will be explored in while cell experiments (see 

Chapter 6) . It is tempting to speculate how alterations in RyR2 and SERCA2A function 

induced by anthracyclines might lead to arrhythmia. The inhibitory effects on RyR2 

may reflect the acute or early phase of anthracycline cardiotoxicity, where two of the 

earliest symptoms are a reduced left ventricular ejection fraction and arrhythmogenesis 

(reviewed in Menna et al., 2012). Inhibition in SR Ca2
+ release and Ca2

+ uptake reported 

in the current chapter could have a prominent role in depressed contractile function and 

impaired relaxation associated with anthracycline use in animal models by 1) reducing 

the amount of Ca2
+ available for release during systole and 2) promoting cytoplasmic 

Ca2
+ overload (Mushlin et al., 1993; Boucek et al., 1997; Shadle et al., 2000b). This is 
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supported by studies at the cellular level where cardiomyocytes treated with 

doxorubicin had reduced Ca2
+ transient amplitudes, increased diastolic Ca2

+ leak and 

depleted SR load (Wang et al., 2001; Sag et al., 2011). 

Loss of RyR2 function (resulting from RyR2 mutation or inducible knockdown) has 

been identified as a factor in certain models of arrhythmia and sudden cardiac death 

(Thomas et al., 2004; Jiang et al., 2007; Bround et al., 2012). The authors proposed that 

loss of function mutations or RyR2 knockout promoted arrhythmia via an alternans 

dependent model, where there is beat to beat variation in Ca2
+ transient amplitude. This 

has previously been demonstrated by Diaz and colleagues (2002) who found that in an 

intact cell, decreasing RyR2 P0 does substantially perturb cardiomyocyte Ca2
+ handling 

by desynchronising SR Ca2
+ release, with subsequent Ca2

+ alternans. Whether or not 

anthracycline-induced RyR2 inhibition similarly leads to Ca2
+ alternans and 

arrhythmogenesis remains to be elucidated. Sustained RyR2 inhibition by doxorubicin 

and doxOL could also induce arrhythmogenic early after-depolarizations, a form of 

triggered activity that occur before cell repolarization is complete (Bers, 2002a). 

Depressed SERCA2A function is an additional factor common in pathological 

conditions and contributes to both systolic and diastolic dysfunction in heart failure 

(Bers et al., 2003). As a consequence of reduced Ca2
+ uptake, SR load would be lower 

and contribute to the dysfunction in Ca2
+ release, further influencing the generation of 

after-depolarisations and impaired contractility. The use of isolated systems (RyR2 

single channels and SR vesicles) provides novel mechanistic insight into such functional 

effects of anthracyclines. The confirmation of multiple mechanisms and the differential 

effects of doxorubicin and its metabolite highlight the complexity of anthracycline 

cardiotoxicity. 

3.5. Conclusion 

In this chapter the functional effects of anthracyclines and their metabolites on RyR2 

and SERCA2A have been characterized. The results demonstrate that these drugs cause 

functional perturbations of the principle Ca2
+ release and uptake pathways of the SR of 

cardiac muscle. Such disruptions of Ca2
+ handling pathways are likely to have 

significant effects on Ca2
+ homeostasis in the whole cell. However, in the interests of 

future design of less cardiotoxic compounds or protective co-treatments it is imperative 

that underlying mechanisms of the changes in Ca2
+ channel/pump function are 
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identified. Therefore, the results presented in this chapter provide an important basis for 

the remainder of this thesis where such mechanisms are explored and other aspects of 

RyR2 function, both at the SR vesicle level and the whole cell level, are probed. 
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4.1. Introduction 

Redox regulation is an essential aspect of cardiomyocyte homeostasis and is defined as 

being the specific, usually reversible, oxidation\reduction modifications of cellular 

signalling pathway components by a reactive species (Forman et al., 2004). A large 

number of proteins respond to changes in the cellular redox environment via 

modifications by redox active molecules to amino acid residues, most commonly 

cysteine thiol groups. In doing so, these proteins are able to act as sensors of the redox 

environment, responding to alterations in redox state with a change in conformation, 

stability, molecular interactions and activity (Burgoyne et al., 2012). 

RyR in both skeletal and cardiac muscle can be considered such a protein, being highly 

susceptible to redox modifications which cause changes in RyR activity. Redox based 

modifications of RyR (and other Ca2
+ handling proteins) means there is significant 

interaction between redox pathways and Ca2
+ signalling, as reviewed in (Hidalgo and 

Donoso, 2008) . In the heart, oxidative stress and subsequent hyper-oxidation of RyR2 

are strongly linked with a number of pathological conditions including heart failure, 

ischaemia-reperfusion injury and atrial fibrillation (Burgoyne et al., 2012). 

There is little doubt that a redox based mechanism has an important role in 

anthracycline induced cardiotoxicity. As detailed in Section 1.12.3.2.2, several lines of 

evidence support a role of oxidative stress in the effects of anthracyclines on the heart. 

These include: 

1 The in vivo generation of ROS by anthracyclines has been demonstrated repeatedly 

(Kim et al. , 2006; Sag et al. , 2011). Cellular ROS production occurs immediately 

after anthracycline exposure, via redox cycling of the quinone moiety, and increases 

in a time-dependent manner. 

2 Cardiotoxic side effects of these drugs are attenuated with antioxidant treatment in 

rodents (Bast et al., 2007) and in transgenic mice overexpressing cellular 

antioxidants (Cole et al. , 2006). 

3 Anthracyclines can directly oxidize protein thiol residues , and therefore can promote 

oxidative stress in a ROS independent manner (Abramson et al., 1988; Ondrias et 

al. , 1990). 
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4 ROS formation and cardiotoxicity are attenuated with the use of 5-

iminodaunorubicin - a quinone deficient analogue of daunorubicin (Shadle et al., 

2000a). 

5 The only proven cardioprotective agent is dexrazoxane. Dexrazoxane is thought to 

work by binding free iron and preventing the formation of iron-anthracycline 

complexes which promote ROS production (Simunek et al., 2009). 

6 Cardiomyocytes are thought to be more susceptible to oxidative stress because of 

poor antioxidant defence mechanisms (Doroshow et al., 1980). 

Despite the wealth of evidence in support of an oxidation mechanism, attempts to either 

treat or prevent anthracycline cardiotoxicity with antioxidants in humans have failed. 

And although dexrazoxane is clinically proved to attenuate cardiotoxicity, at least a 

third of patients who were administered dexrazoxane still developed heart failure (van 

Dalen et al., 2006). Further, the protective mechanism of action of dexrazoxane, as 

summarized above, has been questioned, as stronger iron chelating agents have proved 

unsuccessful in treating cardiac effects of anthracyclines, raising the possibility that 

dexrazoxane works in part by a non ROS based mechanism (Simunek et al., 2009). 

In Chapter 3 the two actions of anthracyclines were linked to two separate mechanisms, 

the first being a low affinity activation that and is most likely the consequence of a 

direct interaction between anthracyclines and the RyR2 complex. The second, inhibitory 

effect appears to be the result of a posttranslational modification of RyR2, as it is not 

reversed by drug washout. Given that anthracyclines are known oxidants (Abramson et 

al., 1988; Ondrias et al., 1990) it was hypothesised that the inhibitory effect of these 

drugs was caused by thiol oxidation. Since SERCA2A also contains a number of 

cysteine thiol groups it is possible that the effects of anthracycline metabolites on this 

protein are also mediated by thiol oxidation. 

Aim: 

The aim of the experiments presented in this chapter was to confirm whether direct 

oxidation of cysteine thiol groups by anthracyclines has a role in the drugs effects on 

RyR2 and SERCA2A, using a combination of functional and biochemical assays. 
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4.2. Materials and Methods 

4.2.1. SR vesicle isolation and RyR2 purification 

As detailed in Section 2.3, cardiac SR vesicles were prepared from sheep heart (Laver et 

al., 1995) and RyRs were solubilised and purified from SR as described by (Lai et al., 

1988; Dulhunty et al., 2005). 

4.2.2. Single channel recording and analysis 

The method for single channel recording and analysis is described in detail in Section 

2.6. The redox agents DTT and N-ethylmaleimide (NEM) were added to the cis 

chamber as the majority of thiol residues on RyR2 are located in the cytoplasmic 

domain. Earlier work showed that only cis addition of DTT could prevent daunorubicin

induced inhibition, with trans DTT having no protective effect. Therefore, redox agents 

were added only to the cis chamber. NEM however is lipid soluble and would be likely 

to equilibrate across the bilayer. Redox agents were stored at -20 °C in single use 
-

aliquots which were thawed daily and then discarded after use. 

4.2.3. Protein thiol assay 

The thiol content of RyR2 and SERCA2A was assessed using the Alexa Fluor 647 

maleimide thiol probe (Section 2.9). Briefly, SR vesicles were incubated with 

anthracyclines and with the known redox agents TCEP, a reducing agent, and GSSG, an 

oxidizing agent. Vesicles were then incubated with Alexa Fluor 647. Excess thiol probe 

was washed out and proteins were subject to SDS PAGE before being stained with the 

total protein stain Sypro Orange. Gels were scanned on a fluorimager at 300 nm and 

645 nm to view total protein and thiol specific fluorescence, respectively. Protein and 

thiol content was quantified by densitometry allowing calculation of thiol content per 

unit of total protein. 

4.2.4. SR Ca2
+ uptake assay 

The method used to measure Ca2
+ uptake into SR vesicles is shown in Figure 4.5. 

Vesicles were pre-incubated for 5 min with DTT, and then for 20 min with 

anthracyclines before they were added to the cuvette. The final concentration of 

anthracycline and DTT in the cuvette was adjusted to the incubation concentration. In 
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control experiments vesicles were preincubated for 5 min with DTT and then with 

vehicle buffer for 20 min. 

4.3. 

4.3.1. 

4.3.1.1. 

Results 

Redox agents prevent anthracycline induced inhibition of 

RyR2 

NEM pretreatment prevents daunorubicin-induced inhibition of RyR2 

Earlier work showed that pretreatment of RyR2 with cis DTT prevented daunorubicin

induced inhibition, suggesting that anthracyclines inhibit the channel by modification of 

thiol groups. Here it was tested whether an alternate thiol modifying reagent, NEM, 

could prevent the inhibitory effect of daunorubicin. NEM is a thiol alkylating agent 

commonly used to irreversibly modify thiol residues, thereby preventing oxidation. 

NEM is highly lipid soluble. In these experiments, NEM was 'added to the cis chamber, 

this could presumably block thiol groups on both the luminal and cytoplasmic domains 

of RyR2, before daunorubicin was added to the trans chamber. 

NEM has been found to have complex, concentration dependent effects on RyR2 

(Aghdasi et al., 1997; Menshikova et al., 2000). Since NEM was to be used as a pre

treatment it was necessary to identify a concentration of NEM that would have 

consistent effects on PO over time, so that the independent effect of NEM could be 

accurately measured and accounted for in the final analysis. Two NEM concentrations, 

5 and 10 mM, were tested. NEM was added to the cis chamber and the PO of 30 s 

segments of activity was measured every 2 - 3 min for the lifetime of the experiment, 

up to 30 min post NEM addition. Five mM NEM caused activation followed by 

inhibition. The time to these effects was highly variable between different channels 

meaning there was no consistent effect in the average data (Figure 4. lA). Conversely, 

the effects of 10 mM cis NEM followed a consistent pattern, with a progressive decline 

in channel activity over the 30 min recording period (Figure 4. lB). This was consistent 

and predictable in all channels (n = 12), indicating that 10 mM was an appropriate 

concentration of NEM to use for pre-treatment experiments. 
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Figure 4.1 - NEM has concentration dependent effects on single channel activity. 

Combined average data from experiments (40 mV and -40 mV) where 5 mM (A, n = 12) 

or 10 mM (B, n = 12) NEM was added to the cis chamber. P0 was measured from 30 s 

segments of single channel activity every 2 -3 min, and was expressed relative to activity 

before NEM was added. With 5 mM NEM, Pa was initially 0.0686±0.04 and peaked after 

20 min at 0.1154±0.07. With 10 mM NEM, Pa was initially 0.1042±0.02 and was 

maximally inhibited after 30 min at 0.0013±0.0003 Asterisk(*) indicates a significant 

difference from control activity (p < 0.05). 
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To avoid the complication of the rapid and more variable initial NEM inhibition, 

daunorubicin was always added 9 mins after NEM, where the decline in channel activity 

due to NEM reached a more constant rate (Figure 4. lB). To evaluate the specific effect 

of daunorubicin on RyR2 activity, Pa in the presence of daunorubicin and NEM was 

normalized to activity in the presence of NEM (alone) immediately prior to 

daunorubicin addition (Figure 4.2B). Normalized, or relative channel activity increased 

above the NEM control 10 min after daunorubicin addition and remained greater than 

NEM control for the life time of the experiment (up to 25 min following daunorubicin 

addition). The decline in activity due to NEM itself was masked by the addition of 10 

µM cis daunorubicin. Ten min after daunorubicin addition (- 20 min after NEM 

addition), the Pa was 3.45 ± 0.46 fold higher than NEM control activity (pre 

daunorubicin addition) (Figure 4.2A). Conversely, in the absence of daunorubicin, at the 

equivalent timepoint there was an 80 % reduction in Pa (Figure 4.lB). The increase in 

relative Pa was reminiscent of the activation phase of anthracycline treatment, seen in 

the absence of NEM (Figure 3.3 - 3.4). 

Relative Pa during activation and inhibition following 10 µM daunorubicin application 

in NEM-alkylated channels and in control channels (no NEM) are compared in Figure 

4.2B. To aid comparison, the Pa with NEM alone was subtracted from A) maximum 

activation by daunorubicin (10 min post daunorubicin addition) and B) the lowest 

measured activity (20 min post daunorubicin addition) following daunorubicin addition. 

The major findings are as follows: 

1. In daunorubicin treated channels, both with and without NEM pre-treatment, there 

is a significant increase in relative Pa with no significant difference in the extent 

of activation between channels treated with NEM and those not. 

2. The daunorubicin-induced inhibition is not seen in the NEM-modified channels . 

Rather, with NEM pre-treatment, the relative Pa measured 20 min after 

daunorubicin addition was still significantly higher than the control activity. 

3. These results are in contrast to channels not pre-treated with NEM, where within 

13.2 ± 1.2 min of daunorubicin addition, channel activity was inhibited (Table 

3.lC and Figure 4.2B) . 
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Figure 4.2 - NEM prevents daunorubicin inhibition of RyR2. A) Average data from 

measurements of Pa at +40 m V and -40 m V. When addition of trans daunorubicin Pa was 

initially 0.0114±0.004 and peaked 10 min later at 0.0474±0.02. The effect of adding 10 µM 

daunorubicin after 10 min exposure to NEM (following completion of the activation phase) (n 

= 14). Data is presented as Pa after adding daunorubicin relative, to Pa with NEM immediately 

prior to adding daunorubicin. Data in B) is presented as relative Pa after adding daunorubicin 

alone (blue bins) (relative to Pa prior to adding daunorubicin), or as P0 after adding 

daunorubicin in the presence of NEM (red bins) (relative to Pa in NEM prior to adding 

daunorubicin). In channels that were not pretreated with NEM, Pa was 0.0403±0.01 before 

daunorubicin was added. Pa was 0.1107±0.02 during maximal activation and 0.0258±0.01 

during maximal inhibition. The NEM pretreated data (red bins) is presented as a subtraction of 

data from ( 4.lB) from the data presented in ( 4.2B) at matched time points, so that the 

independent effect of NEM alone could be subtracted from the effect of daunorubicin in the 

presence of NEM. Data obtained for the effect of daunorubicin alone is included for 

comparison. *, significant difference from control;#, significant difference between activation 

and inhibition; @, significant difference between daunorubicin alone and NEM plus 

daunorubicin. Figures modified from (Hanna et al., 2011). 132 
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Thus, the channel inhibition (but not activation) due to daunorubicin addition appears to 

have been prevented by NEM pre-treatment. This is consistent with the possibility that 

thiol groups that are normally oxidized by daunorubicin to produce inhibition were 

modified by NEM and no longer available to be oxidized by daunorubicin. These 

experiments followed on from the work I conducted during my Honours project (which 

focused only on daunorubicin), and the effects of NEM pre-treatment on doxorubicin or 

doxOL's effects on RyR2 were not tested. 

4.3.1.2. Pre-treatment with DTT prevents doxOL induced inhibition of RyR2 

To support the hypothesis that the anthracycline metabolite doxOL inhibits RyR2 via a 

redox modification (as previously reported for daunorubicin, Hanna et al 2011), 

channels were pre-treated in the bilayer with 1 mM DTT prior to addition of 2.5 µM 

doxOL. Addition of 1 mM DTT did not significantly alter channel activity (Figure 

4.3A). Subsequent addition of 2.5 µM doxOL caused a 2.7 ± 0.6-fold activation (p :S 

0.05), with no secondary inhibition (Figure 4.3). Channel activity remained high for the 

lifetime of the experiment (up to 35 mins after doxorubicin addition; Figure 4.3). These 

results indicate that, like daunorubicin, doxOL inhibits RyR2 via thiol oxidation. 

4.3.2. DoxOL oxidizes RyR2 thiol groups 

The results of the DTT and NEM pre-treatment experiments (Section 4.3.1), provide 

compelling evidence that anthracyclines can alter RyR2 Ca2
+ handling through thiol 

modification. The thiol specific, Alexa Fluor 64 7 maleimide was used to confirm that 

doxorubicin and doxOL modified thiol residues on RyR2. The results were quantified 

using densitometry, as the amount of Alexa 647 fluorescence per unit of total protein 

(total RyR2 protein quantified post Sypro Orange stain). Compared to untreated RyR2, 

10 µM doxorubicin and doxOL caused a ~40% reduction in the relative amount of thiol 

groups on RyR2, showing the drug can directly modify RyR2 thiols (Figure 4.4). The 

data also show that the RyR2 preparations from healthy sheep heart are neither 

maximally reduced or maximally oxidized, verifying their suitability for an assay of 

modification by redox agents. 
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Figure 4.3 - DTT pre-treatment prevents doxOL-induced inhibition of RyR2. (A) 

Threes recordings of multiple RyR2 channel activity. Channels are opening downward 

from zero current to maximum open conductance (0 1, one channel open; 0 2 and 0 3, 

simultaneous opening of two of three channels, respectively). First panel, control recording 

of RyR2; second panel , RyR2 activity following addition of lmM DTT to the cis chamber; 

third and fourth panels , after addition of 2.5 µM doxOL to the trans chamber. In this 

channel, activation was first observed -6 min after addition of doxOL to the trans chamber 

(third panel) and was still evident 24 min after doxOL addition (bottom panel). (B) 

Combined average data from experiments (40 mV and -40 mV (n = 10)), where 1 mM 

DTT was first added to the cis chamber, followed by addition of 2.5 µM doxOL. Where 

more than one channel was incorporated (as in (A)), channel activity was measured as the 

average mean current and combined with measures of open probability, as detailed in 

Section 2.6.6. Data is presented as P0 , relative control activity with DTT, before doxOL 

was added. The average P0 at this time was 0.0706±0.03 Asterisk(*) indicates a 

significant difference from the P0 recorded after addition of DTT, but prior to doxOL 

addition. 134 
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Figure 4.4 - Anthracyclines reduce RyR2 thiol content (A) SR vesicles were treated with 

TCEP, GSSG and anthracyclines and separated by SDS PAGE. Top panel - total protein was 

stained with Sypro Orange. Bottom panel - thiol residues were probed with Alexa 647. (B) 

Average density units of Alexa 647 fluorescence (F)/unit total RyR2, illustrating the number 

of available thiol residues per unit of RyR2 protein. Data is presented as relative to the thiol 

abundance in untreated samples. Asterisk (*) indicates a significant difference from non

treated (control) samples. 
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Incubation with the reducing agent TCEP (5 mM) increased thiol abundance, while 

incubation with the oxidising agent GSSG (2 mM), decreased thiol content (Figure 4.4 ). 

Millimolar GSSG is considered to be a powerful oxidizing agent and would be expected 

to cause near maximal oxidation of exposed thiols on RyR2 (Zable et al., 1997). This 

thiol probe experiment supports our hypothesis that anthracyclines can directly oxidize 

RyR2 thiol residues and illustrates that doxorubicin and doxOL are effective oxidizing 

agents. 

4.3.3. DoxOL enhances SERCA2A uptake in the presence of DTT 

DoxOL also had a functional effect on SERCA2A, inhibiting the Ca2
+ uptake rate at 

concentrations 2:1 µM (Chapter 3). SERCA2A contains 26 cysteine residues, the 

majority of which reside in the three cytoplasmic domains of the protein (Section 

1. 7 .1.2). Reducing agents activate SERCA2A, while oxidizing agents inhibit pump 

function (Zima and Blatter, 2006). To determine whether doxOL inhibits SERCA2A 

(Section 3.3.5) by oxidizing thiol groups, SR vesicles were pre-treated with 1 mM DTT 

for 5 min prior to a 20 min incubation with 0.01 µM doxOL. Vesicles treated with 1 

mM DTT followed by exposure to doxOL-free buffer constituted control experiments. 

The cuvette concentrations of DTT (1 mM) and doxOL (0.01 µM) were adjusted at the 

start of the experiment. Protecting thiol groups with DTT prior to incubation with 

doxOL not only prevented doxOL-induced inhibition, but revealed a significant increase 

in Ca2
+ uptake rate of ~30% (Figure 4.5, compared to uptake in the absence of doxOL). 

Taken together, these data indicate that SERCA2A function is modulated by doxOL in 

two ways . Firstly, an oxidation-dependent decrease in function and secondly, an 

increase in Ca2
+ uptake which is independent of thiol modification. 

4.3.4. Anthracyclines oxidize thiol groups on SERCA2A 

The results above provide strong evidence that, like RyR2, SERCA2A dysfunction is 

related to anthracycline-induced oxidation. To confirm this, the ability of anthracyclines 

to modify SERCA2A thiol groups was compared to known redox agents like TCEP and 

GSSG. Using the Alexa Fluor 647 thiol probe assay, SERCA2A was shown to have a 

basal level of thiol modification, demonstrated by the finding that TCEP could increase 

the abundance of thiols, while GSSG could decrease the number of thiols. The level of 

thiol modification was significantly increased upon incubation with 10 µM doxorubicin 

or 10 µM doxOL (Figure 4.6) demonstrating again that these drugs can act directly on 
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Figure 4.5 - SERCA2A inhibition by doxOL is prevented by DTT. (A) Experimental 

strategy Ca2
+ uptake from SR vesicles was monitored after using antipyrylazo III. The 

initial rate of Ca2
+ uptake was measured for the final addition of Ca2

+ (dashed box) SR 

vesicles were exposed to DTI for 5 min before being incubated with 0.01 µM doxOL for 

20 min. The uptake rate was expressed relative to the uptake rate measured in vesicles pre

incubated with DTI alone. The average uptake rate in the presence of 0.01 µM doxOL is 

included for comparison. Asterisk (*) indicates a. significant difference to non-treated 

vesicles (p<0.05), n = 8 - 10. 
137 



.. 

A 

Ctrl TCEP GSSG DoxOL Dox 

B 

<t: 4 
C\I 
<t: 

* () 
a: 
w 3 
(J) 

.'!:: C 
C 

Q) ::J -- 0 2 - ,.._ 
r--- 0. 
'<:j'" 
c.o 
a:! 
X 1 
Q) 

<t: --LL 
0 

Control TCEP GSSG 

Treatment 

~ SERCA2A 

~ Alexa 
647 

10 µM 10 µM 
doxol dox 

Chapter Four 

Figure 4.6 - Anthracyclines reduce SERCA2A thiol content. (A) SR vesicles were 

treated with TCEP, GSSG and anthracyclines and separated by SDS PAGE. Top panel -

total protein was stained with Sypro Orange. Bottom panel - thiol residues were probed 

with Alexa Fluor 647. (B) Average density units of Alexa 647 fluorescence (F)/unit total 

SERCA2A, illustrating the number of thiol residues per unit of SERCA2A protein. Data is 

presented as relative to the fluorescence density units/unit SERCA2A in the absence of 

· drugs. Asterisk(*) indicates a significant difference from non-treated (control) samples. 
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SERCA2A thiol groups. It is also possible that doxOL modifies free thiols on 

phospholamban which contains 3 cysteine residues (Karim et al., 1998). No Alexa Fluor 

647 binding to phospholamban was able to be measured. As phospholamban has only 

three cysteine residues, it is likely that this assay may not be sensitive enough to detect 

modification of only one to three residues. Regardless of whether doxOL also oxidizes 

phospholamban, the results of Ca2
+ uptake studies and the thiol assay indicate that 

doxOL treatment compromises SERCA2A function via a redox mechanism, which can 

be prevented by DTT treatment. 

4.4. Chapter Discussion 

In the previous chapter, several distinct functional effects of anthracyclines on RyR2 

and SERCA2A were identified. While the activation of RyR2 could be attributed to 

ligand binding, there was insufficient information to identify the mechanisms 

underlying the inhibition of RyR2 and of SERCA2A. In the current chapter, two lines of 

evidence have been presented linking the inhibition of RyR2 and SERCA2A to thiol 

oxidation. Firstly, the thiol probe assay showed a clear reduction in thiol abundance in 

RyR2 and SERCA2A after anthracycline treatment, indicative of thiol oxidation. 

Secondly, the inhibitory effect of these drugs on RyR2 and SERCA2A was prevented 

by pretreatment with DTT and NEM. Together, Chapters 3 and 4 provide new insight 

into the effects of anthracyclines on RyR2 function. 

4.4.1. Anthracyclines directly modify thiol residues on Ry R2 

SERCA2A 

Both doxorubicin and doxOL reduce the number of thiols on RyR2. Since the enzymes 

necessary for ROS production are either not present or inactive in our SR vesicles and 

were not exogenously added, it is highly unlikely that any effects we're seeing on single 

RyR2 channels are ROS dependent. Direct thiol oxidation by these drugs has been 

observed before with skeletal RyR (RyRl) (Feng et al. , 1999) and has been suggested as 

a likely mechanism of anthracycline-induced RyR modulation (Abramson et al., 1988; 

Ondrias et al., 1990; Hanna et al., 2011) . 

Whilst the thiol probe assay illustrates only the relative change in thiol content induced 

by the drugs, the data can further be quantified to provide an estimate of the percentage 
139 



Chapter Four 

of thiol groups modified in the presence of both drugs. To do this, the following 

assumptions were made. 1) An unknown percentage of thiols are buried within the 

protein structure and thus not accessible to oxidizing or reducing agents. 2) Treatment 

with the strong reducing agent TCEP reduces all accessible thiol groups. 3) Treatment 

with GSSG would induce thiol modification/disulphide formation on all exposed thiol 

groups. Given these assumptions, it can be estimated that doxorubicin and doxOL 

modify ~60 and 80% of the accessible thiols in RyR2, respectively, and both drugs can 

be considered relatively strong oxidizing agents. 

The ability of anthracyclines to oxidize SERCA2A appears to be even stronger than 

their ability to oxidize RyR2, with doxorubicin and doxOL inducing a similar degree of 

disulphide formation as GSSG. All three compounds caused an approximate 40% 

decrease in thiol abundance compared to untreated samples. Using the same 

assumptions used for RyR2, it would appear that anthracyclines could oxidize~ 100% of 

accessible thiol groups on the SERCA2A protein. Why anthracyclines appear to have 

been more effective at oxidizing thiols on SERCA2A than on RyR2 is unclear. Like 

RyR2, SERCA2A contains several thiol groups and it is likely for both proteins that the 

accessibility of these thiols is variable, depending on the residue's location. Since 

anthracyclines are hydrophobic it is likely that doxOL could access most thiol residues 

on both proteins with relative ease (Kim et al., 2005b). However given the smaller size 

of the pump (110 kDa) compared to the release channel (2.2 mDa homotetramer/560 

kDa monomer), doxOL may access a greater percentage of thiols on SERCA2A then on 

RyR2. The fact that doxOL induced activation did not have as large an effect on Ca2
+ 

uptake (30% decrease) then it did on Ca2
+ release (76% decrease), may suggest that 

thiol modification is not as influential in SERCA2A function as in RyR2 function. 

While depressed SERCA2A function and/or a decrease in protein expression is a 

common finding in heart failure models (Arai et al. , 1993; Hasenfuss et al., 1994; 

Studer et al., 1994; Meyer et al., 1995; Schwinger et al., 1995; Schmidt et al. , 1998), 

there is less work investigating the influence of SERCA2A oxidation under pathological 

conditions. It is known however, that disulphide formation within SERCA2A leads to 

reduced Ca2
+ uptake rate (see Section 1.10.4, reviewed in (Zima and Blatter, 2006). 

That blocking disulphide formation by pre-treatment with DTT induced a large increase 

in Ca2
+ uptake rate was an unexpected outcome. Coupled with the novel finding that 

doxOL can bind to SERCA2A (Section 3.3.2), it appears that like the activation of 
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RyR2, doxOL enhances SERCA2A function via ligand binding. This outcome of ligand 

binding interactions between doxOL and SERCA2A is in contrast to the inhibitory 

effect of some other drugs with ringed structures, such as cyclopiazonic acid (Seidler et 

al., 1989). In terms of whole cell function, the net effect of doxOL on SERCA2A 

function would likely be a decrease in SR Ca2+ uptake since the inhibitory effect 

masked the activation. This hypothesis will be discussed more in Chapter 6 when 

effects of doxOL on whole cell function are explored. 

4.4.2. Anthracyclines and the cellular redox environment 

That anthracyclines can directly oxidize both RyR2 and SERCA2A and alter function 

could have important ramifications for cardiomyocyte health. The redox environment is 

increasingly recognized as a vital determinant of cardiac function. The activity of both 

the cardiac and skeletal muscle isoforms of RyR responds to changes in either the 

luminal or cytoplasmic redox potential (Feng et al., 2000; Xia et al., 2000; Oba et al., 

2002; Jalilian et al., 2008b). Excess oxidation of RyR2 has been associated with 

functional changes including excess SR leak and with beat to beat variation in the Ca2+ 

transient amplitude (Ca2+ alternans) (Terentyev et al. , 2008 ; Belevych et al. , 2011 ; Shan 

et al., 2012). These effects lead to loss of contractile function and arrhythmogenesis via 

generation of spontaneous Ca2+ waves and subsequent delayed afterdepolarizations. 

Exactly how RyR2 oxidation translates to excess leak and Ca2+alternans isn ' t clear, but 

has been hypothesized to involve enhanced response to luminal Ca2+ during diastole 

(Belevych et al., 2011) . 

The majority of this literature has come from intact cardiomyocyte studies where RyR2 

oxidation has resulted from oxidative stress as a direct result of ROS generation. This 

contrasts greatly with the experimental setup used in this thesis to probe the effects of 

anthracyclines, where oxidation is caused by direct effects of the drugs on protein thiol 

groups. These experimental differences may explain the dissimilar functional outcomes. 

In whole cardiomyocytes, ROS induced RyR2 oxidation is associated with enhanced 

function which manifests as excess SR leak. In contrast, in lipid bilayer experiments, 

anthracycline oxidation of RyR2 caused significant inhibition of single channel activity. 

It is plausible that ROS and anthracyclines affect different classes of thiols groups on 

RyR2, thereby causing different functional effects. It has been shown previously that 

both RyRl and RyR2 contain multiple classes of thiols, with modification of some 
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causing channel activation and modification of others causing inhibition (Liu et al., 

1994; Aghdasi et al., 1997; Sun et al., 2001). In terms of the cellular dynamics of the 

effect of doxOL on SERCA2A function, the overall response would be a potent 

decrease in SR Ca2
+ uptake with severe consequences on SR Ca2

+ load and subsequent 

RyR2 Ca2
+ release likely. 

4.5. Conclusion 

Together chapters 3 and 4 provide novel insight into the complex mechanisms 

underlying the effects of anthracyclines on cardiac function. While the data in both 

chapters have shown that the drugs affect both SERCA2A and RyR2 in at least two 

different ways (i.e. oxidation and ligand binding), it is possible that other aspects of 

their function are compromised. Further investigation of the effects of anthracyclines on 

SERCA2A may be valuable, however due to time constraints no further specific testing 

of SERCA2A function was carried out in this thesis. As detailed in Chapter 1, RyR2 

does not act as a simple channel for Ca2
+ to pass from the SR to cytoplasm during EC 

coupling. Rather, RyR2 gating is a complex process under dynamic control of a plethora 

of other cellular factors. As such, to build on the knowledge obtained in the first two 

chapters, the remaining results in this thesis will focus on 1) whether anthracyclines 

alter the response of RyR2 to luminal Ca2
+ and 2) the effects of anthracyclines on Ca2

+ 

transients in the intact cell. 
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Loss of RyR2 luminal Ca2+ 

sensing with doxOL 
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5.1. Introduction 

The response of RyR2 to changes in cytoplasmic and luminal [Ca2+] is considered a 

vital aspect of RyR2 function and of cardiac muscle performance in general. Altered 

RyR2 response to luminal Ca2
+ has been identified as an important factor in several 

pathological cardiac conditions including sudden cardiac death (Jiang et al., 2005), 

ventricular tachycardia (Jiang et al., 2005), CPVT (Fernandez-Velasco et al., 2009; 

Shan et al., 2012) and heart failure (Kubalova et al., 2005; Belevych et al., 2009). 

Changes in this response include an enhanced sensitivity to activation by luminal Ca2
+ 

(Jiang et al., 2004; Kubalova et al., 2005; Vest et al., 2005; Fernandez-Velasco et al., 

2009; Curran et al., 2010), or less commonly, a decreased sensitivity to luminal Ca2
+ 

(Thomas et al., 2004; Jiang et al., 2007). In these studies, altered channel sensitivity to 

luminal Ca2
+ was associated with enhanced diastolic Ca2

+ leak, spontaneous Ca2
+ 

waves, and Ca2
+ alternans which create an arrhythmogenic substrate. These studies 

demonstrate that in changes in RyR2 sensitivity have profound effects on cardiac 

muscle function and likely to be important in several pathological settings. 

It has emerged that redox modifications of RyR2 could contribute to altered luminal 

Ca2
+ sensitivity. In a canine model of heart failure, RyR2 was more oxidized then in 

healthy hearts and channels had higher basal activity but an impaired ability to respond 

to luminal Ca2
+ (Terentyev et al., 2008; Belevych et al., 2011). Redox modification also 

shifts the cytoplasmic Ca2
+ sensitivity of RyR2. In an environment that promotes thiol 

reduction, channel activity is depressed allowing the channel to be inhibited with lower 

levels of cytoplasmic Ca2
+. Conversely, oxidation of thiols increased channel activity 

and increased the sensitivity of the channel to activation by cytoplasmic Ca2
+ (Marengo 

et al., 1998; Xia et al., 2000). 

Given the increasingly recognized role of luminal Ca2
+ sensing in pathological 

conditions (see above), it was hypothesised that anthracyclines alter the luminal Ca2
+ 

response of RyR2. It was established in Chapter 4 that anthracyclines readily oxidize 

thiol groups on RyR2 and SERCA2A and that anthracycline-induced oxidation of RyR2 

inhibits the channel, causing substantial, irreversible inhibition of P 0 • It is also known 

that anthracyclines bind to CSQ2, and that CSQ2 is influential in the luminal Ca2
+ 

response of RyR2 (Gyorke et al., 2004; Qin et al., 2008; Wei et al., 2009a) . Therefore it 
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was hypothesised that anthracyclines may alter RyR2 luminal Ca2
+ sensing by a 

mechanism involving either 1) RyR2 thiol oxidation or 2) CSQ2 dysfunction. 

While an association between luminal Ca2
+ sensitivity and RyR2 oxidation has been 

observed in several pathological settings, there are no studies directly testing the 

dependence of the luminal Ca2
+ response on redox modification of RyR2 under 

controlled bilayer conditions. Therefore experiments testing RyR2 response to luminal 

Ca2
+ under reducing and oxidizing conditions were done by pretreating channels with 

DTT or 4,4' -DTDP, respectively. These experiments were important for several 

reasons. Firstly, if the hypothesis that anthracyclines alter luminal Ca2
+ sensitivity was 

correct, it would be important to have a positive control for the effects of oxidation. If 

the effects of 4,4 ' -DTDP and anthracyclines on luminal Ca2
+ were similar, it would 

provide a strong indication that any effect of anthracyclines on the luminal Ca2
+ 

response were meditated by thiol oxidation. Secondly, such an oxidation dependent 

effect would have to be confirmed by pre-treating channels with DTT. It would 

therefore by necessary to characterize any influence of DTT itself on luminal Ca2
+ 

response, so that this independent effect could be accounted for in experiments where 

DTT was used in combination with anthracyclines. 

Aim: The primary aim of the experiments presented in this chapter was to determine if 

doxOL could alter the luminal Ca2
+ sensitivity of RyR2. However, as outlined above 

and detailed in Chapter 1, luminal Ca2
+ regulation of RyR2 is complex, and is 

influenced by a number of factors. Therefore, secondary aims were, firstly, to 

characterize the luminal Ca2
+ response under reducing and oxidizing conditions, 

secondly, determine the influence of CSQ2 on the luminal Ca2
+ response and finally, to 

confirm the mechanism underlying any anthracycline induced changes in luminal Ca2
+ 

sensing. 

5.2. 

5.2.1. 

Methods 

SR vesicle isolation and RyR2 purification 

As detailed in Section 2.3, cardiac SR vesicles were prepared from sheep heart (Laver et 

al., 1995). 
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5.2.2. Single Channel Recordings 

To test the luminal Ca2
+ response of RyR2, trans Ca2

+ was reduced from 1 rnM to 0.1 

rnM by perfusing the trans chamber with trans solution containing 0.1 rnM Ca2
+. The 

trans [Ca2+] was then increased in a stepwise manner to 0.5 rnM, 1 rnM and 1.5 rnM, a 

range encountered physiologically in the SR lumen. At least 4 min was allowed 

between each addition of CaCh to ensure sufficient stable, consistent activity was 

available for later analysis (see below). Modifications were made to this protocol so that 

the luminal Ca2
+ response was tested under various experimental conditions. In these 

cases, after control activity was recorded, experimental conditions were established 

before the trans solution was perfused and the luminal Ca2
+ response was tested. These 

conditions are outlined in Table 5 .1. 

All protocols testing the influence of doxOL had the drug included in the perfusion 

solution, to avoid washout of the activation effect. Due to the challenging nature of 

these experiments and time constraints, only the doxorubicin metabolite doxOL was 

used in this series of experiments . DoxOL was chosen as it is likely to be more relevant 

in anthracycline induced cardiotoxicity and a concentration of 2.5 µM was applied as 

this caused the most rapid onset of effects with subsequent stabilization of channel 

activity and is within the range of clinically relevant concentrations (Gewirtz, 1999). 

Earlier work showed that DTT could only protect thiols from daunorubicin-induced 

oxidation when added to the cis chamber. While DTT is not membrane permeable at 

physiological pH (Terentyev et al., 2008; Hanna et al. , 2011), 4,4 ' -DTDP is able to 

cross the lipid bilayer and would presumably target thiols in both the cytoplasmic and 

luminal domains of the channel. The effect of 4,4' -DTDP on RyR2 activity varies with 

4,4' -DTDP concentration, with concentrations~ 0.1 rnM causing an initial activation 

that is followed by inhibition, while lower concentrations simply activate the channels. 

The relatively low concentration of 20 µM 4,4' -DTDP was used to firstly, avoid later 

changes in activity that may complicate the response to changes in luminal Ca2
+ and 

secondly to avoid the irreversible channel closure that occurs with prolonged excess 

oxidation. (Eager et al., 1997; Marengo et al. , 1998; Eager and Dulhunty, 1999; 

Terentyev et al. , 2008). For simplicity, data obtained with P0 and J'F are combined in 

calculations of average PO or as PO relative to the activity with 0.1 rnM trans Ca2
+. 
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(A) Condition tested 
(B) Protocol addition before 

(C) Section altering trans Ca2
+ 

No treatment ( control) None 5.3.1 

Anthracycline 
Add 2.5 µM doxOL, trans 5.3.2 pretreatment 

Reducing environment Add 1 mM DTT, cis 5.3 .3.1.1 

Oxidizing environment Add 20 µM 4,4' -DTDP 5.3.3.1.2 

OTT-pretreatment of Add 1 mM DTT, cis, followed by 
5.3.3.2 

anthracyclines 2.5 µM doxOL, trans 

CSQ2 dissociation 
High ionic strength - add 250 mM 

5.3.4.1 
Cs+, trans to dissociate CSQ2 

Anthracycline High ionic strength - add 25Q mM 
pretreatment with CSQ2 Cs+, trans to dissociate CSQ2, 5.3.4.2 

dissociation followed by 2.5 µM doxOL, trans 

Table 5.1- Experimental protocols used in Chapter 5. (A) The response of RyR2 to 

changes in a luminal Ca2
+ in the range 0.1 - 1.5 mM, was tested under various experimental 

conditions. After recording control activity, the additions specified in (B) were made to the 

cis or trans solutions . The trans solution was exchanged so that trans Ca2
+ was 0.1 mM, and 

sequential additions of CaCh were made to the trans solution so that the total trans [Ca2+] 

were 0.1 mM, 0.5 mM, 1 mM and 1.5 mM. The section of Chapter 5 detailing the results of 

these protocols is specified in (C). 

147 



5.3. 

5.3.1. 

Chapter Five 

Results 

Untreated RyR2 respond to increases in luminal [Ca2+] 

Before testing the effect of doxOL on RyR2 response to luminal Ca2
+, it was essential to 

first characterize the response of untreated RyR2 under our conditions i.e. sheep RyR2 

with 1 µM cis Ca2
+ and no added ATP or Mg2

+. Following channel incorporation, stable 

control activity was recorded for 3 - 4 min before the trans solution was perfused with a 

low trans Ca2+ solution ([Ca2+] = 0.1 mM). Average P0 at this baseline [Ca2+] was 

0.0158±0.003 and was increased maximally to 0.061±0.01 with 1.5 mM trans 

Ca2
+. With each addition of CaCb there was an increase in activity, with the steepest 

response when trans [Ca2+] was increased from 0.5 mM to 1 mM where the effect was 

saturated between 1 and 1.5 mM. 

Further analysis revealed the increase in PO was due to a significant decrease in the 

mean closed time (Tc) which was maximally reduced with 1 mM Ca2
+ to 50% of the 

baseline value (recorded at 0.1 mM Ca2+) (Figure 5.1D). This was accompanied by a 

significant increase in the mean open frequency (F0 ) (Figure 5. lE). As with Tc this 

effect was maximal at 1 mM trans Ca2
+ where there was 2.71±0.74 fold increase in F0 

compared to baseline activity. There was no significant difference in average mean open 

time (T0 ) over the trans [Ca2+] range tested (Figure 5.lC) . The changes in P0 are 

comparable to those measured previously with native RyR2 and comparable 

cytoplasmic [Ca2+] (Table 1.2) (Gyorke and Gyorke, 1998; Gyorke et al. , 2004; Qin et 

al. , 2008; Laver, 2009; Dulhunty et al., 2012). 

5.3.2. Anthracyclines abolish the response of Ry R2 to changes in 

luminal [Ca2+] 

The impact of anthracyclines on luminal Ca2
+ sensitivity of RyR2 was examined by pre

treating channels with 2.5 µM doxOL. Addition of trans 2.5 µM doxOL caused the 

expected significant channel activation that was followed by substantial inhibition of 

RyR2 (Section 3.3.3). On average it took 10 min before sustained inhibition was 

observed. The trans chamber was perfused with trans solution containing 2.5 µM 

doxOL and 0.1 mM Ca2+. Increasing luminal [Ca2+] from 0.1 to 0.5 mM caused only a 

marginal (and insignificant) change in P0 , from 0.0437±0.01 to 0.0398±0.01 (Figure 

5.2). 
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Figure 5.1- Single channel response of untreated RyR2 to changes in luminal (trans) 

Ca2
+ (A) i-iv. 3s records of single channel activity, where channel opening is upward from 

zero current (c, continuous line) to maximum open conductance (o, broken line) at +40mV. 

(i) Baseline activity following trans perfusion. cis and trans [Ca2+] are 1 µMand 0.1 mM, 

respectively. (ii) trans [Ca2+] increased to 0.5 mM. (iii) trans [Ca2+] increased to 1 mM. (iv) 

trans [Ca2+] increased to 1.5 mM. (B - E) Average data for (B) Pa, n = 17 - 24 (C) Ta, n = 12 

- 15. (D) Tc, n = 12 - 17 (E) Fa, n = 12 - 17. Error bars are ±SEM. Average data significantly 

different from baseline activity recorded with 0.1 mM trans Ca2
+ are indicated by (*, p < 

0.05) 

* 

1.5 

149 



Chapter Five 

Further increases in luminal Ca2
+ to 0.5 mM, 1 mM and 1.5 mM Ca2

+ had no significant 

effect on P0 , compared either to baseline activity with 0.1 mM Ca2
+ or with any of the 

higher Ca2
+ concentrations. These results suggest that doxOL has abolished the luminal 

Ca2
+ response and are in drastic contrast to the increase in activity observed with 

untreated RyR2 (Section 5.3.1). 

In the isolated lipid bilayer system there are only a limited number of interactions that 

could account for this lack of response to luminal Ca2
+. Results presented in Chapters 3 

and 4 suggest the hypothesise that the abolition of luminal Ca2
+ sensing by doxOL could 

be caused by 1) oxidation of RyR2 thiols, or 2) ligand binding, to either RyR2 or an 

accessory protein. 

5.3.3. Anthracycline oxidation does not mediate the loss of luminal 

Ca2
+ response 

To determine if doxOL abolishes the luminal Ca2
+ response by modifying RyR2 thiols, 

it was necessary to undertake several sets of experiments. The strategy involved 

protecting thiols with DTT before adding doxOL and testing the luminal Ca2
+ 

sensitivity. This necessitated first testing the effect of DTT itself on the luminal Ca2
+ 

response so that any DTT-induced alteration of RyR2 luminal Ca2
+ sensitivity could be 

taken into account. This would also serve as a positive control for the effect of a 

reducing agent on RyR2 luminal Ca2
+ sensitivity. As a positive control for oxidation

induced changes in luminal Ca2
+ sensing, a second set of experiments were conducted 

where channels were first treated with 20 µM 4,4' -DTDP before the luminal Ca2
+ 

response was tested. Hence this section firstly characterizes the effects of both reducing 

and oxidizing conditions on RyR2 luminal Ca2
+ sensitivity, and secondly, determines 

whether doxOL abolishes luminal Ca2
+ response via oxidation. Several experiments in 

this section (Section 5.3.3) were conducted by Mr Alex Lam, a technician with the 

Muscle Research Group (John Curtin School of Medical Research, Canberra, Australia). 
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Figure 5.2 - DoxOL abolishes response of RyR2 to changes in trans Ca2+_(A) i-iv. 

Records of 3 s of single channel activity, where channel opening is upward from zero current 

(c, solid line) to maximum open conductance (o, dashed line) at +40mV. (i) Baseline activity 

in the presence of 2.5 µM doxOL. Following trans perfusion cis and trans [Ca2+] are 1 µM 

and 0.1 mM, respectively. (ii) trans [Ca2+] increased to 0.5 mM. (iii) trans [Ca2+] increased to 

1 mM. (iv) trans [Ca2+] increased to 1.5 mM. (B) Average data for Pa measured in the 

presence (red line) or absence (black line) of 2.5 µM doxOL (C) Average data for Pa relative 

to activity measured with 0.1 mM trans Ca2
+ in the presence (red line) or absence (black line) 

of 2.5uM doxOL pretreatment. n = 17 - 24. Error bars are ±SEM. Average data significantly 

different from baseline activity recorded with 0.1 mM trans Ca2
+ are indicated by * (p < 

0.05). 
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Redox agents alter the normal Ry R2 response to luminal Ca2
+ 

Thiol reduction reverses RyR2 response to luminal Ca2
+ 

To establish how an increase in thiol abundance might alter the luminal Ca2
+ sensitivity 

of RyR2, channels were exposed to 1 rnM DTT before testing the response of the 

channel to luminal Ca2
+. Addition of cis DTT caused only a minor and insignificant 

decrease in RyR2 P0 from 0.0307±0.01 to 0.0270±0.009 (Figure 5.3A-B). Five - 6 min 

after DTT addition, the trans [Ca2+] was lowered to 0.1 rnM by perfusing the chamber, 

as described above. In contrast to untreated RyR2 (Section 5.3.1), increasing the trans 

[Ca2+] caused a significant decrease in RyR2 activity in DTT treated channels. At 0.1 

mM trans ca2+, P0 was 0.0390±0.01. This was decreased to 0.0265±0.01 with 0.5 rnM 

trans Ca2
+ and was maximally inhibited to 0.0130±.002 when trans Ca2

+ was 1.5 rnM 

(Figure 5.3C). 

As with channels recorded in the absence of DTT (Section 5.3.1), changes in P0 were 

due to changes in Tc and F0 with no significant changes in T0 . Average P0 , Tc and F0 

were maximally decreased with 1.5 rnM trans Ca2
+ (Figure 5.3C-F). The response of 

channels to trans Ca2
+ in a reducing redox environment contrasts greatly with that of 

untreated channels. Instead of a rise in P0 with increasing trans ca2+, more reduced 

channels experienced a 30 - 70% inhibition in P0 (Figure 5.5), demonstrating the 

influence of thiol reduction in RyR2 luminal Ca2
+ sensitivity. Therefore, pre-treatment 

with DTT caused a reversal in the luminal Ca2
+ sensitivity of RyR2. 

5.3.3.1.2. 4,4'-DTDP increases RyR2 sensitivity to low luminal Ca2
+ 

concentrations and basal RyR2 activity. 

To compare how thiol reduction and thiol oxidation each alter the response of RyR2 to 

luminal ca2+, another set of experiments was done where channels were exposed to the 

oxidizing agent 4,4' -DTDP. Addition of 20 µM cis 4,4' -DTDP caused a 2 fold increase 

in P0 from 0.03±0.005 to 0.0601±0.01 (Figure 5.4A-B), and in control experiments thi s 

persisted for up to 30 min. Increasing trans Ca2
+ from 0.1 rnM to 0.5 rnM caused 

approximate 3-fold increase in P0 from 0.0440±0.01 to 0.1196±0.01 (Figure 5.4C). 

However, in contrast to untreated channels (Section 5.3.1 ), additional increases in trans 

Ca2
+ failed to further activate RyR2 (Figure 5.4C). This is in contrast to untreated 

channels where increasing the luminal [Ca2+] caused a dose dependent increase in the 

Pa. 
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[Ca2+] increased to 0.5 mM. (v) trans [Ca2+] increased to 1 mM. (vi) trans [Ca2+] increased to 
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Although the relative increase in activity with each addition of Ca2
+ was less robust, the 

absolute level of activity was significantly higher between 0.1 - 1.5 mM trans Ca2
+ in 

oxidized channels (Figure 5.5A). Baseline activity was 0.0440±0.01 in oxidized 

channels compared to 0.0158±0.003 in untreated channels . Furthermore, oxidized 

channels attained a maximal P0 of 0.1196+0.01 (with 0.5 mM trans Ca2+) whereas 

untreated channels had a maximum P0 of 0.0611±0.01 (with 1.5 mM trans Ca2+) 

implying that oxidized RyR2 are more readily activated by luminal Ca2
+ than untreated 

channels (Figure 5.5A). Similar to OTT-treated and untreated channels (Figure 5.2 and 

5.3), the effects on P0 were due to changes in Tc and F0 , with no significant alteration in 

T0 (Figure 5.4D-F) The decrease in Tc and increase in F0 peaked at 0.5 mM ca2+, with 

no further change brought on by increasing the luminal ca2+, similar to the effect on P 0 . 

Hence 4,4' -DTDP treated channels were more active over the entire range of tested 

[Ca2+] than untreated channels, while the relative response to increasing trans Ca2+ was 

dampened compared to untreated channels (Figure 5.5). The effect is more apparent 

when comparing the relative changes in P0 (Figure 5.5B). 

5.3.3.2. Thiol oxidation does not cause loss of luminal Ca2
+ sensing with doxOL 

treatment 

It was hypothesised that doxOL-induced abolition of luminal Ca2
+ sensing (Section 

5.3.2) may have been due to oxidation of RyR2 thiol residues. Having established the 

independent effect of DTT on RyR2 activity (Section 5.3.3.1.1) and that 1 mM DTT 

reliably blocks doxOL induced RyR2 inhibition (Section 4.3.1.2) , in the next set of 

experiments channels were pre-treated with cis DTT, prior to doxOL exposure and the 

response of RyR2 to luminal Ca2
+ was tested. This was followed by addition of 2.5 µM 

doxOL which caused channel activation as documented in Section 3.3.3. Due to the 

already lengthy duration of these experiments, doxOL induced activity was only 

recorded until sustained activation was observed (usually within 6 - 7 min) before 

perfusing the trans chamber with trans solution containing 2.5 µM doxOL and 0.1 mM 

C 2+ a . 

In the presence of DTT and doxOL, increasing the trans [Ca2+] had little effect on 

RyR2, with no significant difference in average PO between any of the luminal Ca2
+ 

concentrations tested (Figure 5.6). 
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It was possible that DTT-induced changes (Section 5.3.3.1.1) masked the effects of 

doxOL, therefore the decrease in relative P0 caused by DTT alone, was subtracted from 

the average relative PO of channels treated with both DTT and doxOL. This is shown in 

· Figure 5.6B (dashed line). Thus, even taking the inhibitory effect of DTT into account, 

RyR2 channels treated with doxOL remained insensitive to luminal Ca2+. Comparing 

this response (Figure. 5.6B; dashed line) to that of untreated channels (black line), there 

is very little difference in RyR2 responsiveness (or lack thereof) to luminal Ca2+ in the 

presence or absence of DTT. It is clear that DTT cannot prevent the disturbances in 

RyR2 responsiveness to luminal Ca2+ induced by doxOL and strongly indicates that 

thiol oxidation does not underlie the ability of doxOL to abolish luminal Ca2+ sensing 

byRyR2. 

5.3.4. DoxOL binding to CSQ2 abolishes RyR2 sensitivity luminal 

Ca2+ 

It was hypothesized that anthracyclines could abolish luminal Ca2+ sensing by either an 
. 

oxidation mechanism or via a ligand binding mechanism, to either RyR2 or an 

associated protein. The results in Section 5.3.3.2 suggest that thiol oxidation was not 

responsible for the loss of luminal Ca2+ sensitivity, indicating that ligand binding 

underlies the effect. It was plausible that doxOL binding to CSQ2 was the underlying 

cause of the drugs abolition of normal RyR2 luminal Ca2+ sensitivity as CSQ2 is a 

known anthracycline binding target and there is significant evidence linking CSQ2 to 

luminal Ca2+ regulation of RyR2 (Gyorke et al., 2004; Qin et al., 2008) . Thus the role of 

CSQ2 was examined. 

5.3.4.1. CSQ2 alters the luminal Ca2
+ response of Ry R2 

It was necessary to first characterise the effect of CSQ2 dissociation on luminal Ca2+ 

sensing under the current experimental conditions. Following channel incorporation, 

CSQ2 was dissociated by increasing the trans ionic strength with addition of 250 mM 

Cs+ (total [Cs+] is 500 mM trans and 250 mM cis). Activity was observed until there 

was an obvious, sustained decrease in activity, which indicated successful dissociation 

of CSQ2 from the channel (Beard et al., 2008; Wei et al., 2009b). To prevent CSQ2 

from reassociating and to restore symmetrical Cs+ concentrations, the trans chamber 

was perfused with trans solution containing 250 mM Cs+ and 0.1 mM Ca2+. 
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In CSQ2-dissociated channels, increasing trans Ca2
+ from 0.1 rnM to 0.5 rnM caused a 

2.75±0.43 fold increase in P0 from 0.0186±0.014 to 0.0443±0.034. As trans Ca2
+ was 

raised, P0 continued to increase, so that with 1.5 rnM trans Ca2+, channel activity was 

5.63±1.24 fold greater than baseline activity. All of these increases were significant (p < 

0.008) compared to baseline activity with 0.1 rnM trans Ca2
+. In these CSQ2 dissociated 

channels, the relative increases in P0 as trans Ca2
+ increased were significantly greater 

than that measured in native channels across the equivalent [Ca2+] range (Figure 5.7). 

These results suggest that in the absence of CSQ2, RyR2 is more sensitive to luminal 

ca2+, exhibiting an enhanced response to increases in luminal Ca2
+ compared to native 

channels. This finding confirms that CSQ2 does have a significant influence on the 

luminal Ca2
+ response of RyR2. It was never attempted to test the Ca2

+ sensitivity by 

decreasing, rather than increasing trans Ca2+. Although a high luminal [Ca2+] can 

dissociate CSQ2 in single channels (Wei et al., 2009b and reviewed in Gaburjakova et 

al., 2012) the concentrations used are at least 2 - 3 fold higher than the maximal 

concentration used in the present experiments. This has also been demonstrated using 

SDS PAGE (Wei et al., 2009b). Therefore, it would not be expected under the present 

experimental conditions that an initial trans [Ca2+] of 1.5 rnM would influence the 

luminal Ca2
+ sensitivity of RyR2 by dissociating CSQ2. 

5.3.4.2. CSQ2 dissociation restores luminal Ca2
+ sensing in doxOL treated 

channels 

To determine whether CSQ2 mediates the effect of doxOL on RyR2 luminal Ca2
+ 

sensing, channels were treated with 2.5 µM doxOL before CSQ2 was dissociated and 

the luminal Ca2
+ response was tested (Figure 5.8). As in Section 3.3.3 addition of trans 

2.5 µM doxOL increased RyR2 P0 before causing a sustained decrease in activity. In the 

present experiment, once channel activity had stabilized at a decreased level 

(approximately 10 - 12 min after drug addition), CSQ2 was dissociated by the high 

ionic strength protocol (as in Section 5.3.4.1) and the trans chamber was perfused with 

trans solution containing 250 rnM Cs+, 0.1 rnM Ca2
+ and 2.5 µM doxOL. 

Increasing the trans Ca2
+ from 0.1 rnM to 0.5 rnM in the CSQ2-dissociated channels in 

the presence of doxOL caused a 2.84±1.02 fold increase in P0 (Figure 5.8). This was not 

significantly different (p = 0.1) from the 1.21±0.19 fold increase in doxOL treated 

native channels . Further increasing trans Ca2
+ to 1 rnM caused a 4.01±0.69 fold increase 

in activity. This was the maximal P0 attained with no further increase when trans Ca2
+ 
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was raised to 1.5 rnM. Between 0.5 and 1.5 rnM trans Ca2
+, the response of CSQ2-

depeletd RyR2 was significantly greater than the doxOL treated native channels where 

there was little change in P0 as trans Ca2
+ was increased (Figure 5.7). There is no 

significant difference between the two Ca2
+ response curves for CSQ2-stripped 

channels, with and without doxOL (Figure 5.8, dashed lines). Thus, the results provide 

compelling evidence in support of a hypothesis that CSQ2 plays the primary role in the 

loss of RyR2 luminal Ca2
+ sensing caused by doxOL. 

5.4. Chapter Discussion 

In this chapter, several important and novel findings regarding SR Ca2
+ handling have 

been presented. The response of RyR2 to changes in luminal Ca2
+ has been examined 

under a number of conditions which may occur pathologically including oxidative stress 

and anthracycline induced cardiotoxicity. These results provide valuable knowledge on 

the normal physiological function of RyR2 and on factors that influence the ability of 

the channel to respond to luminal Ca2
+. The principle findings were firstly and 

unexpectedly, that doxOL abolishes the luminal Ca2
+ sensitivity of RyR2. Secondly, this 

lack of sensitivity is mediated by doxOL binding to CSQ2, and not via doxOL induced 

thiol oxidation on RyR2. Additionally, it was demonstrated that the redox status of 

RyR2 thiol residues has an important role in regulating RyR2 sensitivity to luminal 

Ca2
+. Reducing and oxidizing conditions resulted in striking differences in the channel's 

response to luminal Ca2
+. Reduced channels were inhibited by luminal Ca2

+ in a dose 

dependent manner, whilst oxidized RyR2 were substantially more active than untreated 

channels but had an impaired ability to respond to changes in luminal Ca2
+. 
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5.4.1. Anthracyclines abolish RyR2 luminal Ca2
+ sensing 

The sensitivity of RyR2 to activation by luminal Ca2
+ is an area of intense study, due to 

its purported role in heart failure, CPVT and atrial fibrillation (Jiang et al., 2005; 

Kubalova et al., 2005; Belevych et al., 2009; Fernandez-Velasco et al., 2009; Shan et 

al., 2012). These conditions are associated with changes in Ca2
+ handling in 

cardiomyocytes, including increased diastolic Ca2
+ leak and generation of spontaneous 

Ca2
+ waves. The leak that causes such effects is thought to result from an increased 

sensitivity of RyR2 to activation by luminal Ca2
+ during diastole. While the cause of 

this heightened sensitivity is controversial, enhanced oxidation is now thought to play 

an important role. Since anthracyclines are powerful oxidizing agents and induce similar 

phenotypic effects as the aforementioned cardiac conditions, it follows that doxOL 

pretreatment may enhance the response of RyR2 to luminal Ca2
+. That doxOL actually 

abolished the luminal Ca2
+ sensing ability of RyR2 was therefore, unexpected. 

In subsequent experiments, the failure of DTT pretreatment to restore the normal Ca2
+ 

response ruled out a role of doxOL-induced oxidation in meaiating the loss of luminal 

Ca2
+ sensitivity. DTT blocked the inhibitory effects of doxOL-induced oxidation on 

channel activity at a constant luminal Ca2
+ concentration of 1 rnM (Section 4.3 .3) and 

would presumably be just as effective in preventing any other functional effect that 

depended on doxOL modification of these thiols . Even accounting for the independent 

effect of DTT on the luminal Ca2
+ response, there was no enhancement in the ability of 

doxOL treated channels to respond to luminal Ca2
+ when oxidation was prevented by 

DTT (Figure 5.6B). We can infer from these results that the oxidative effects of doxOL 

are separate to its ability to modulate luminal Ca2
+ sensing. 
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The difference in effect of doxOL compared to other oxidizing agents that alter luminal 

Ca2+ sensing is likely to be due to differing mechanisms of oxidation. Anthracyclines 

and other quinone containing compounds reportedly promote disulphide formation 

between neighbouring thiol groups via electron exchange reactions between 

anthracyclines and protein thiol groups (Feng et al., 1999; Marinov et al., 2007). In 

contrast, 4,4' -DTDP reacts with thiols to form a covalent disulphide bond between 

DTDP and the protein cysteine (Brocklehurst, 1979). It is well recognized that different 

RyR2 oxidative modifications have differential functional outcomes (reviewed in 

(Hidalgo and Donoso, 2008). Therefore it is plausible that doxOL targets a group of 

thiols that are important in some aspects of RyR2 function, but not in mediating the 

response to luminal Ca2+. 

5.4.2. CSQ2 dissociation restores luminal Ca2
+ sensing of doxOL 

treated Ry R2 

The alternative hypothesis was that the effects of doxOL on luminal Ca2+ sensing were 

due to ligand binding to either RyR2 or CSQ2, since both proteins are established 

binding targets of doxOL. This hypothesis was partly validated when removal of CSQ2 

restored luminal Ca2+sensing to similar levels as observed in the absence of doxOL (i.e. 

CSQ2-stripped RyR2). DoxOL was still present in the solutions after CSQ2 was 

dissociated, so could still bind to RyR2. The exact role of CSQ2 in luminal Ca2+ sensing 

is controversial. CSQ2 is known to be important in SR Ca2+ handling, acting as a SR 

Ca2+ buffer and communicating SR store load to RyR2, possibly via anchoring proteins 

triadin and/or junctin (Section 1.9.3.2) (Gyorke et al., 2004; Qin et al., 2008; Stevens et 

al., 2009; Wei et al., 2009b). However, the control CSQ2 dissociation experiments, 

done in the absence of doxOL (Section 5.3.4.1) suggest that while CSQ2 exerts a 

regulatory role in the channel's response to luminal ca2+, RyR2 does possess an innate 

sensitivity to luminal Ca2+. This is supported by studies in CSQ2 knockout mice where 

a response to SR load was preserved, despite knockout of the CSQ2 protein (Knollmann 

et al., 2006) . What is most likely is that proper luminal Ca2+ sensing requires optimal 

function of all components of the SR Ca2+ release complex. This is highlighted by the 

fact that knockdown, knockout or induced dysfunction of RyR2, triadin, junctin and 

CSQ2 have now all been associated with dysregulated Ca2+ release (Knollmann et al., 

2006; Kashimura et al., 2010; Altschafl et al., 2011; Roux-Buisson et al., 2012). 

Further delineation of the molecular entities responsible for luminal Ca2+ sensing could 
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be made in experiments using a purified RyR2 and then adding back purified SR 

proteins such as triadin, junctin and CSQ2, alone or in combination (as in Wei et al., 

2009a) 

Anthracyclines have been proposed to bind to a site on CSQ2 which lowers the Ca2
+ 

storage capacity of the protein, and to inhibit Ca2
+ dependent polymerization of CSQ2 

(Charlier et al., 2005; Kang et al., 2010). While the presence of CSQ2 is not essential 

for RyR2 to respond to luminal ca2+, CSQ2 is necessary for normal RyR2 luminal Ca2
+ 

sensitivity. That CSQ2 has a vital role in RyR2 sensitivity to luminal Ca2
+ was shown in 

studies on the CPVT linked CSQ2 mutant L167H (di Barletta et al., 2006). It was found 

that this mutant abolished luminal Ca2
+ sensing by RyR2 (Qin et al., 2008). The authors 

attributed this loss of response to a change in the Ca2
+ sensitivity of the interaction 

between CSQ2 and the unglycosylated form of triadin (Qin et al., 2008). While this 

mechanism requires validation, it is possible that an altered interaction between CSQ2 

and triadin and/or junctin could mediate a loss of luminal Ca2
+ sensing. Whether 

anthracyclines alter these protein-protein interactions in a similar manner remains to be 

elucidated. Alternative explanations for the drastic effect of the doxOL-CSQ2 

interaction on luminal Ca2
+ sensing are implicated by past studies. Daunorubicin has 

been found to inhibit the Ca2
+ binding capacity of CSQ2 (Hanna et al., 2011). 

Additionally, the binding of anthracyclines to CSQ2 has been proposed to alter protein 

conformation and aggregation (Park et al., 2004; Charlier et al., 2005; Kim et al., 

2005b; Kang et al., 2010). In the heart, CSQ2 is thought to exist mainly as monomers or 

dimers under physiological conditions (Wei et al., 2009b; Murphy et al., 2011) 

suggesting that inhibition of polymerization by anthracyclines may not necessarily 

impact physiological function of CSQ2. However this doesn't preclude a role for 

anthracycline-induced conformational changes, since these changes could still inhibit 

dimer formation or alter/impede the interaction of CSQ2 with triadin or junctin. Hence, 

while a precise mechanism for the abolition of luminal Ca2
+ sensing is unclear, it may 

involve inhibition or alteration of; 1) Ca2
+ binding capacity of CSQ2, 2) CSQ2 

polymerization or 3) CSQ2 communication with RyR2 via triadin or junctin. 

5.4.3. Effects of thiol modification on RyR2 luminal Ca2
+ sensing 

Upon closer analysis of single channel studies (Marengo et al., 1998; Terentyev et al. , 

2008) where the effect of oxidation has been tested on the luminal Ca2
+ response, it is 
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evident that oxidized channels have had a higher basal activity, with an impaired ability 

to respond to changes in the luminal or cytoplasmic [Ca2+]. This is similar to the 

observations in the current experiments with 4,4' -DTDP (Figure 5.4). Oxidized 

channels were far more active than reduced or untreated channels at matched luminal 

[Ca2+] (Figure 5.5A). This enhanced activity was most significant between 0.1 and 1 

rnM Ca2
+, a range that would be encountered during diastole. Enhanced activity during 

diastole could be deleterious as it enhances RyR2 leak which could be arrhythmogenic 

when it causes spontaneous Ca2
+ waves and subsequent DADs. In some animal models 

of heart failure, diastolic leak is associated with increased RyR2 oxidation (Terentyev et 

al., 2008; Belevych et al., 2009; Bovo et al., 2012). If channels were more active 

following 4,4' -DTDP pre-treatment, then Ca2
+ addition might cause a greater relative 

increase in PO in oxidized channels. This was not the case. There was no significant 

difference between the response of 4,4' -DTDP treated channels and untreated channels, 

relative to the channel activity with 0.1 rnM trans Ca2
+ (Figure 5.5). For reasons 

outlined above (see Section 5.2.2), the relatively mild concentration of 20 µM 4,4' -

DTDP was used. Higher concentrations of 4,4' -DTDP may have alternate, or additive 

effects on the Ca2
+ response properties of RyR2 due to more extensive thiol oxidation. 

In OTT-treated channels there was a 30 - 70% reduction in PO as trans [Ca2+] increased 

from 0.1 - 1.5 rnM, respectively. In oxidized channels, this same increase in trans 

[Ca2+] caused a 2 - 4.3 fold increase in P0 • Hence, while RyR2 does remain sensitive to 

luminal Ca2
+ under reducing conditions, this sensitivity is opposite to that measured in 

untreated and oxidized channels. This mimics the effects of reducing agents or 

promotion of thiol reduction, on the cytoplasmic Ca2
+ dependence of RyR2 (Marengo et 

al) and RyRl (Xia et al., 2000) . 

Given the detrimental effects of hyperactive RyR2 channels during diastole, the effect 

of lowering RyR2 activity by thiol reduction could be a protective mechanism, and may 

explain the existence of the more reducing cytoplasmic redox potential compared to that 

in the SR lumen (Hwang et al., 1992). Besides oxidation, RyR2 is susceptible to 

modification by a plethora of cellular factors including phosphorylation, nitrosylation 

and modulation by several accessory proteins from either the luminal or cytoplasmic 

domain. In the cell, the activity of both the cardiac and skeletal muscle RyR isoforms 

depend in part on the combined redox potentials in the luminal and cytoplasmic 

solutions, which are controlled by several factors, including the GSH:GSSG buffer 
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system (Feng et al., 2000; Jalilian et al., 2008b). The extreme redox potentials created 

by adding either 4,4' -DTDP and DTT to the cytoplasmic side of the bilayer are likely to 

be in excess of that encountered under physiological conditions. However the results 

suggest that under the more reducing conditions normally encountered in the cytoplasm, 

the RyR may be less sensitive to activation by luminal Ca2
+. It should be considered that 

a positive relationship between SR load and the Ca2
+ transient has been well 

documented (Bassani et al., 1995b; Shannon et al., 2000). This positive relationship 

likely manifests from the interplay between numerous cellular factors, in addition to the 

redox state. Nevertheless the finding that in a strong reducing environment the luminal 

Ca2
+ sensitivity is reversed is intriguing and worth exploring more in the future. In an 

oxidative stress environment, RyR2 activity is likely to increase. As detailed above, 

enhanced RyR activity during diastole could have deleterious effects on the rhythmicity 

and contractile performance of the heart. 

5.4.4. Interplay between Ca2
+ sensing and RyR2 thiol oxidation 

It is evident that redox modifications of RyR2 thiols modiffthe response of the channel 

to changes in both luminal and cytoplasmic Ca2
+ (Section 5.3.3 and Marengo et al., 

1998; Xia et al., 2000) . Additionally, the activity of both the cardiac and skeletal muscle 

isoforms of RyR responds to changes in either the luminal or cytoplasmic redox 

potential (Feng et al., 2000; J alilian et al., 2008b ). While these latter studies did not test 

the Ca2
+ dependence of the RyR response to different redox potentials, they provide 

compelling evidence that the redox state of thiols is linked to RyR gating. 

The majority of susceptible thiol residues are on the cytoplasmic domain of the channel. 

DTT exerted a thiol protective effective against anthracycline induced oxidation, only 

when added to the cis side of RyR2 channels (Hanna et al., 2011). However, 4,4 ' -DTDP 

is lipid permeable and therefore can access both cytoplasmic and luminal thiol residues. 

Previous results have suggested that 4,4 ' -DTDP may target different classes of thiols 

located in both the cytoplasmic and luminal domains of RyR2 (Eager and Dulhunty, 

1999). The results of the current project cannot exclude a role for luminal (or 

transmembrane) thiol residues in the effects of 4,4 ' -DTDP on Ca2
+ sensitivity. 

How modification of thiol residues alters luminal Ca2
+ sensing of RyR2 is uncertain. 

RyR2 is susceptible to allosteric modification by a variety of ligands including ca2+, 
Mg2

+ and ATP, whereby binding of one ligand alters the effects of another, either in the 
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same or opposite domain (Radwanski et al., 2013). It has been suggested that a coupling 

exists between a Ca2
+ binding site on RyRl and the redox potential of reactive thiol 

groups (Eager et al., 1997; Xia et al., 2000). The present results, and those of others 

(Marengo et al., 1998) support an analogous mechanism in cardiac muscle. As such, 

cytoplasmic thiol modification may induce a conformational change which alters either 

the access to or affinity of Ca2
+ for either a Ca2

+ activation of Ca2
+ inhibition site. A 

similar mechanism has been proposed to account for oxidation induced changes in 

cytoplasmic Ca2
+ sensitivity (Marengo et al., 1998). While it is clear that redox 

modifications influence both the cytoplasmic and luminal Ca2
+ responses, it is less clear 

whether redox agents simultaneously affect the sites in the luminal and cytosolic 

domains, or whether redox modification of the cytoplasmic domain somehow increases 

sensitivity to activation by the luminal domain. 

5.4.5. Luminal triggered feedthrough 

One theory explaining luminal Ca2
+ control of RyR2 entails direct activation of RyR2 

by a luminal Ca2
+ sensing site, either on RyR2 itself or on arr accessory protein such as 

CSQ2, triadin or junctin. Other theories involve a Ca2
+ feedthrough mechanism 

whereby Ca2
+, after binding at a luminal activation site, travels through the pore and 

causes prolonged channel openings by binding to an activation site on the cytoplasmic 

domain of the channel (Laver, 2009). It is unlikely that the luminal Ca2
+ regulation 

documented here involves luminal feed through as this phenomenon is reportedly only 

detectable in the presence of co-stimulatory agents, such as ATP (Laver, 2007). 

Additionally the changes in P0 (Figure 5.2) were attributable to changes in the mean 

closed time and open frequency, rather than to a change in the mean open time, which 

would be required for significant feed through effect (Gyorke and Terentyev, 2008; 

Laver, 2009). Because the experiments in this thesis were done with symmetrical ionic 

strength in the cis and trans solutions, positive potentials and negative potentials 

promote current flow in the opposite directions. As has been observed previously 

(Gyorke and Gyorke, 1998), and in the current study, luminal Ca2
+ regulation of RyR2 

did not exhibit any dependence on the direction of current flow , reducing the likelihood 

that luminal Ca2
+ feedthrough is occurring under the present conditions. Therefore, it is 

likely that in the present study, luminal Ca2
+ is acting at a luminal site. CSQ2, junctin 

and triadin have all been proposed to have roles in luminal Ca2
+ sensing. Since current 

experiments were done on native RyR2 (i.e. with all associated proteins) the results can 
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not differentiate between a luminal binding site on RyR2 or on an accessory protein 

such as CSQ2, although the CSQ2 stripped channels suggest that RyR2 has an innate 

sensitivity to luminal Ca2
+ that is modified in the presence of CSQ2. 

5.5. Conclusion 

Luminal Ca2
+ sensing is a fascinating aspect of RyR2 function . There is sufficient 

evidence of altered RyR2 Ca2
+ response to make it clear that this dynamic process 

serves a vital physiological function. Many details regarding the molecular mechanisms 

of luminal Ca2
+ sensing remain to be elucidated, including firstly, the identity of the 

luminal Ca2
+ sensors, secondly the importance of various contributing factors including 

oxidation and phosphorylation and thirdly, how each of these factors change under 

pathological conditions such as arrhythmia, heart failure and anthracycline 

cardiotoxicity. It is apparent from the current experiments that the oxidizing effect of 

doxOL is separate from its ability to abolish RyR2 luminal Ca2
+ sensing, with the latter 

appearing to be mainly due to an interaction between the drug and CSQ2. These 

findings add to the already complex nature of the effects of these drugs on Ca2
+ 

handling in the heart. The fact that anthracyclines interact with multiple protein targets , 

via more than one mechanism makes it difficult to extrapolate the results of these 

studies in single channels and SR vesicles to the whole cardiomyocyte. Particularly, as 

multiple Ca2
+ cycling proteins in cardiomyocytes are redox sensitive and in an intact 

cellular environment anthracyclines would also be expected to generate ROS . 

Therefore, in the final chapter, the effects of doxOL on single cardiomyocytes will be 

explored to gain an understanding of how the effects observed in these in vitro 

experiments translate to the whole cell environment. 
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6.1. Introduction 

Experiments addressing pathways of Ca2
+ movement in and out of the SR were 

described in Chapters 3-5. It is clear that many factors in the SR, including luminal 

proteins, the redox potential and the Ca2
+ load itself, dynamically influence RyR2 and 

hence, cardiac function (Gyorke et al., 2004; Hidalgo and Donoso, 2008; Radwanski et 

al., 2013). The cytoplasmic and luminal Ca2
+ concentrations are tightly regulated by a 

combination of Ca2
+ channels and transporters which ensure there is balance between 

Ca2
+ influx and efflux across the sarcolemma and Ca2

+ movement in and out of the SR 

(Dibb et al., 2007; Eisner et al., 2013). This balance is essential in maintaining optimal 

cardiac function, so that the muscle can contract with the necessary force during systole, 

and can fully relax during diastole. Therefore, it is important to consider the role of 

RyR2 in the context of the intact cell, not just as an individual pathway for SR Ca2
+ 

release. 

So far the work in this thesis has established that anthracyclines have functional effects 

on at least three proteins, including RyR2, SERCA2A and CSQ2. The outcomes of 

these interactions include: 

1. inhibited SR Ca2
+ release 

2. reduced SR Ca2
+ uptake 

3. impaired ability of RyR2 to respond to changes in luminal Ca2
+ 

These findings point to an overall dampening of SR Ca2
+ handling in the intact cell. One 

effect of this is likely to be reduced cardiac contractility, since less Ca2
+ would be 

released in CICR during EC coupling. Additionally, these alterations in RyR2 and 

SERCA2A function by anthracyclines may also manifest in the intact cell as erratic 

Ca2
+ release events, such as Ca2

+ altemans or spontaneous Ca2
+ transients (Diaz et al. , 

2002; Thomas et al., 2004; Jiang et al., 2007; Xie et al., 2013). The clinical relevance of 

such effects is indicated by the presentation of anthracycline cardiotoxicity, which is 

first evident as a decrease in left ventricular ejection fraction and as an increase in 

arrhythmogenic events (Bristow et al., 1978; Larsen et al., 1992; Barrett-Lee et al., 

2009). 

The results presented so far in this thesis were all obtained using isolated single 

channels and SR vesicles. While the use of these preparations was vital to gain an 
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understanding of the mechanism of anthracycline-induced dysfunction, many cellular 

factors that also contribute to cardiomyoycte Ca2
+ handling were absent. Thus, it is 

difficult to extrapolate the functional outcome of the identified effects of anthracyclines 

on RyR2 or SERCA2A, to changes in whole cell function. One factor to consider is the 

cellular redox environment. The number of contributing factors and the unstable nature 

of many of the ROS (Hool and Corry, 2007), make it impractical to replicate the 

complex cellular redox environment in single channel studies. It should be considered 

then that redox active compounds like anthracyclines may have effects in the intact cell 

that differ or are additive to what is measured on single channels or SR vesicles . 

Additionally, the functional outcome of interactions between anthracyclines and RyR2 

and SERCA2A could be influenced by other Ca2
+ channels and transporters which can 

alter their activity to compensate for changes in RyR2 and SERCA2A flux (Dibb et al., 

2007). Such compensation may lessen the effect of anthracyclines (at the concentrations 

and exposure times used in these experiments) on whole cell function. Additionally, 

anthracyclines may target proteins located on the sarcolemmal membrane, like the NCX 

or L TCC for example. 

Aim: 

The aim of the experiments in this chapter was to determine the effects of the 

anthracycline metabolite, doxOL, on Ca2
+ handling in an intact cell by assessing global 

Ca2
+ transients, SR load and contractile function. 

6.2. 

6.2.1. 

Methods 

Calcium imaging in adult mouse cardiomyocytes 

As detailed in Section 2.11, intact cardiomyocytes were isolated by retrograde perfusion 

of hearts from 8 week old C57 /NCrl mice. Myocytes were rendered Ca2
+ tolerant by 

sequential additions of CaCb and were plated on laminin-coated coverslips. 

Ca2
+ imaging of Fluo-4 AM loaded myocytes was performed using a Leica SP5 

confocal microscope in line-scan mode. Fluo-4 was excited with the 488 nm line of an 

argon laser and fluorescence was measured at> 510 nm. Myocytes were field

stimulated at 0.5 Hz using a voltage ~30% above the stimulation threshold. In 

experiments where SR load was measured, 10 mM caffeine was rapidly applied by 

positioning rigid perfusion tubing in immediate proximity to the cell. Measurements 
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from control and doxOL-treated myocytes were collected each day, and a minimum of 

three mice were used for each set of data. 

6.2.1.1. Calcium transient analysis 

Ca2
+ transient kinetics measured for each cell include peak amplitude, time to peak and 

time to 50% decay. Due to time constraints and technical limitations, ratiometric 

analysis was not carried out in the present experiments. Rather, data in this chapter is 

based on changes in the relative Fluo-4 fluorescence. For each cell, the average value of 

each parameter was calculated from six electrically evoked transients. 

6.2.2. Contractility measurements 

Coverslips were placed in a custom built chamber positioned in a microincubator, and 

myocytes were paced at 0.5 Hz. Videos were analysed in ImageJ and length 

measurements were made of the myocytes at systole (most contracted) and at diastole 

(most relaxed). Average % fractional shortening (FS) was calculated for each cell from 

5 contractions. Alternate coverslips were pre-incubated for 20 min with 2.5 µM doxOL 

and % FS was compared to untreated cardiomyocytes. 

6.3. Results 

Myocytes were usually stable for up to 6 hours after isolation and were only used if they 

were rod shaped, responsive to stimuli and did not display spontaneous Ca2
+ waves or 

contractions before the stimulation protocol. 

6.3.1. DoxOL alters cytosolic Ca2
+ transients 

The effect of doxOL on whole cell Ca2
+ handling was assessed by measuring 

electrically evoked Ca2
+ transients in intact cardiomyocytes. The stimulation protocol 

was 12 s of stimulation at 0.5 Hz followed by a 6 s stimulation free recording period. 

Representative linescan images and corresponding time-dependent spatial profiles of 

Ca2
+ transients from control myocytes and those pre-treated with 10 µM doxOL are 

shown in Figure 6. lA. Pre-treating myocytes with 2.5 or 10 µM doxOL decreased the 

amplitude of the peak Ca2
+ transient by 30 - 35% compared to transients from control 

myocytes (Figure 6.2A, p < 0.05). These concentrations of doxOL also slowed the 
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Figure 6.1- DoxOL reduces peak amplitude and prolongs Ca2
+ transient kinetics . 

Representative spatially averaged profiles of Ca2
+ transients showing changes in relative 

fluorescence over time. x-t line scans (lower panels) were recorded during field stimulation at 

0.5 Hz of control myocytes (left panel) and myocytes pre-treated for 20 min with 10 µM 

· doxOL-treated myocytes (right panel). 
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Figure 6.2 - DoxOL reduces peak Ca2
+ transient and prolongs transient kinetics. 

Average data for (A) peak amplitude (B) time to peak (s) and (C) time to 50 % decay of Ca2
+ 

transients recorded during 0.5 Hz stimulation of control myocytes and myocytes treated with 

2.5 µM and 10 µM doxOL. Numbers in bars are n numbers for each set of data. Asterisk (*) 

indicates a significant difference between control and doxOL treated myocytes. 
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kinetics of the transient. There was a significant, 64% increase in the time to peak 

amplitude, and 13% increase in time to 50 % decay in myocytes treated with 2.5 µM 

doxOL (p < 0.05). Similarly, 10 µM doxOL caused a significant ~2 fold increase in the 

time to peak amplitude, and a 23 % increase in the time to 50 % decay (p < 0.05) 

(Figure 6.2B-C). 

DoxOL treated myocytes had a significantly higher resting (diastolic) [Ca2+] than 

untreated myocytes. In myocytes pre-treated with 2.5 µM doxOL, resting Ca2
+, as 

indicated by the resting Fluo-4 fluorescence, was almost two-fold that measured 

untreated myocytes, while cells pre-treated with 10 µM doxOL had a 52% higher 

resting Ca2
+ level than untreated myocytes (Figure 6.3A). The initial resting 

fluorescence was not significantly different between the two sets of control cells. 

However, there was a difference between the two sets of doxOL treated cells, with a 

significantly greater resting fluorescence measured in myocytes treated with 2.5 µM 

doxOL than those treated with 10 µM doxOL. Although there is a statistically 

significant increase in resting Ca2
+ in the presence of doxOL, the data should be 

interpreted cautiously as only a change in the resting Fluo-4 fluorescence is measured. 

More quantitative analysis could arise from normalizing the data to the baseline F0 and 

by using a ratiometric dye such as Fura-2. 

To determine if the relatively higher cytoplasmic [Ca2+] in doxOL treated cells 

translated to aberrant functional activity, the occurrence of spontaneous Ca2
+ transients 

during or immediately after a period of stimulation was determined. Myocytes treated 

with 2.5 µM doxOL exhibited a 3.5 fold higher frequency of spontaneous Ca2
+ 

transients than control cells (Figure 6.3C, p < 0.05), as might be expected from the 

higher resting Ca2
+ (Lukyanenko and Gyorke, 1999). While myocytes treated with 10 

µM did exhibit 2.4 fold more spontaneous activity than control cells, this was not a 

significant increase (p = 0.1) . It was surprising that 10 µM doxOL treated myocytes had 

lower resting Ca2
+ and less frequent spontaneous Ca2

+ release then myocytes treated 

with 2.5 µM doxOL. It is possible that the higher drug concentration was having an 

inhibitory effect on the diastolic Ca2
+ release process that was not evident with the 

lower concentration, though this hypothesis requires validation. These results suggest 

that doxOL pretreatment promotes diastolic Ca2
+ release in cardiomyocytes and that the 

mechanisms to extrude Ca2
+ are impaired in doxOL treated myocytes . 
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Figure 6.3 - DoxOL increases resting Ca2
+ and spontaneous transients. (A) Average 

resting fluorescence of untreated (ctrl) and doxOL treated myocytes measured under steady 

state conditions. (B) Fluorescence profiles and corresponding line scan images from a control 

and doxOL (2.5 µM) treated cell displaying spontaneous Ca2
+ transients during voltage pulse 

stimulation at 0.5 Hz. (C) The number of cells displaying spontaneous Ca2
+ transients was 

compared between control and doxOL treated cells. Data is presented as the average 

percentage of control and doxOL treated cells that displayed spontaneous transients . Data is 

averaged across 4 days for 2.5 µM doxOL and 3 days for 10 µM doxOL. Asterisk (*) 

indicates a significant difference between control and doxOL treated myocytes. 
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6.3.2. Doxorubicinol reduces SR store load 

A potential cause of the reduction in peak transient amplitude is a decrease in SR load. 

In a normal electrically evoked action potential, RyR2 are activated and Ca2
+ release 

will depend largely on the amount of Ca2
+ stored in the SR. Hence, the amplitude of the 

global [Ca2
+]i transient depends highly on the SR Ca2

+ load (Gomez et al., 2004). 

Results from the previous three chapters confirm that RyR2 is inhibited by the 

concentration of doxOL that also reduces the peak transient amplitude. Therefore, to 

determine if changes in SR load could be a factor, another series of experiments was 

done where cells were exposed to a maximally activating concentration of 10 mM 

caffeine (Bers, 1987). The Ca2
+ transient evoked by rapid application of caffeine is 

attributed to the release of SR Ca2
+ and thus provides a measure of the total SR Ca2

+ 

content (Shannon et al., 2000). DoxOL caused a 30 % reduction in the caffeine-induced 

Ca2
+ transient, indicating that doxOL treatment does indeed cause a significant decrease 

in SR load (Figure 6.4A - B). Due to time constraints, only the lower concentration of 

2.5 µM doxOL was tested. 

6.3.3. DoxOL inhibits NCX 

The decay phase of the voltage-activated (twitch) transient is primarily due to Ca2
+ 

reuptake into the SR by SERCA2A. In contrast, the decay of the caffeine-induced 

transient is primarily due to Ca2
+ extrusion from the cell by the NCX (Callewaert et al., 

1989). This is because during the Ca2
+ transient evoked in the constant presence of 

caffeine (Figure 6.4 ), RyR2 PO remains high and Ca2
+ reuptake via SERCA2A is 

constant and doesn't contribute to the net decay of the Ca2
+ signal. That is, in the 

presence of caffeine there is no net re-accumulation of Ca2
+ by the SR. Therefore, a 

decrease in the cytoplasmic [Ca2+] can be attributed to NCX mediated extrusion, which 

is unaffected by caffeine (Bassani et al. , 1992; Bers, 2000) . To assess if doxOL had an 

effect on NCX activity, the time to 50 % decay of the caffeine-induced Ca2
+ transient 

was measured. In doxOL treated (2.5 µM) cells, there was a 40 % increase in the time to 

50 % decay of the caffeine-induced Ca2
+ transient compared to control cells indicating 

an increase in the time taken to extrude Ca2
+ across the sarcolemma membrane. This 

suggests that doxOL is inhibiting NCX function, confirming the exchanger as an 

anthracycline target (Boucek et al., 1987). Although there are other pathways of Ca2
+ 

efflux from the cytoplasm (e.g. mitochondria and PMCA), these constitute only 1 % of 
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Figure 6.4- DoxOL reduces store load and inhibits NCX activity. (A) Representative 

caffeine-induced Ca2
+ transients from control and doxOL treated myocytes, (B) Average 

peak amplitude and (C) average time to 50 % decay of caffeine induced Ca2
+ transients. 

Numbers in bars are n numbers for each set of data, which used myocytes from at least three 

mice. Asterisk (*) indicates a significant difference between control and 2.5 µM doxOL 

treated mvocvtes. 
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the total Ca2
+ efflux pathway, compared to (in rodents) 10 % by the NCX and 89 % by 

SERCA2A (Bers, 2001). Therefore, although the present results cannot exclude roles 

for PMCA and the mitochondrial uniporter in the prolonged decay of the Ca2
+ transient, 

doxOL inhibition of NCX is likely to be the primary cause. 

6.3.4. Doxorubicinol reduces cardiomyocyte contractility 

It would be expected that the RyR2 inhibition by anthracyclines reported in Chapters 3 

and 4, along with the reduced Ca2
+ transient peak amplitude (Section 6.3.1) would 

translate to a decrease in myocyte contractility. To confirm this hypothesis, the 

fractional shortening (FS) of doxOL treated myocytes was measured and compared to 

control myocytes. In isolated myocytes stimulated at 0.5 Hz, pre-treatment with 2.5 µM 

doxOL caused an almost 20 % reduction in fractional shortening from 5.46 ± 0.06 % to 

4.45 ± 0.05 % (Figure 6.5). This finding confirms that the altered Ca2
+ handling in 

doxOL treated myocytes is able to cause a decline in cellular function. 

6.4. Chapter Discussion 

Accumulation of anthracyclines in cardiac muscle causes drastic effects on the electrical 

and mechanical properties of the heart, inducing arrhythmogenesis and contractile 

failure. Indications that the anthracycline metabolites doxOL and daunOL could have an 

important role in the cardiotoxic effects of the parent compounds first appeared over 25 

years ago (Boucek et al., 1987; Olson et al., 1988). However, only limited studies have 

further characterised the specific effects of these metabolites at the cellular level (Olson, 

2000 #87; Charlier et al 2005; Cusack, 1993 Mushlin et al 1993). Several of these 

studies used supraclinical concentrations of the metabolites (Olson et al 1988; Mushlin 

et al 1993; Boucek et al 1987; Olson et al 1988) and many more studies focus on redox 

based mechanisms (Davies et al., 1983 ; Cole et al. , 2006; Kim et al 2006; Bast et al., 

2007; Berthiaume and Wallace, 2007 and reviewed in Minotti et al. , 2004 and Simunek 

et al., 2009). The results presented in this chapter show for the first time that even short

term exposure of cardiomyocytes to doxOL has a significant impact on Ca2
+ handling 

and contractility. 
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Figure 6.5 - DoxOL reduces myocyte contractility. (A) Representative images showing 

(i) untreated and (ii) doxOL treated myocytes in their most contracted (systole) and most 

dilated (diastole) states. Measurements are in arbitrary units (A.U.). (B) Average data for % 

fractional shortening of control myocytes and myocytes treated with 2.5 µM doxOL. 

Numbers in bars are n numbers for each set of data. Asterisk (*) indicates a significant 

difference between control and 2.5 µM doxOL treated myocytes. 
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DoxOL inhibits cytosolic Ca2
+ transient amplitude and 

kinetics 

Twenty min pre-treatment with 2.5 or 10 µM doxOL significantly inhibited the 

amplitude of SR Ca2
+ release, and this was associated with an approximate 20% 

decrease in contractility (Figures 6.2A & 6.5) . The reduction in peak Ca2
+ release and 

the increase in time to peak in the presence of doxOL, can be at least partly attributed to 

inhibition of RyR2. In single channels, RyR2 was severely inhibited by doxOL (Section 

3.3.3.2), with a 76% reduction in P0 and an impaired ability to respond to luminal Ca2
+. 

This inhibition was achieved with the same concentrations of doxOL to those used in 

this chapter. Although lower concentrations of doxOL (0.01 - 1 µM) can effectively 

inhibit RyR2, the effects of these on cardiomyocytes were not explored in the current 

project due to time constraints. Nevertheless, these experiments provide the first 

evidence that doxOL can impact RyR2 function in an intact cardiomyocyte system. It is 

possible that the prolongation of the twitch Ca2
+ transient decline was due to diminished 

Ca2
+ dependent inactivation via LTCC (Kubalova et al., 2005), but this possibility was 

not explored. 

Aside from inhibited RyR2 function, other factors could account for the reduced 

amplitude of the twitch Ca2
+ transient, including a depleted SR Ca2

+ load and a 

decreased Ca2
+ influx via LTCC (Bassani et al. , 1995a; Shannon et al. , 2000) . Although 

the latter option could not be explored in the current project due to technical limitations 

(see below, Section 6.4.4) this aspect could be worth exploring in future work. DoxOL 

treated myocytes did have significantly lower SR Ca2
+ loads then control myocytes, as 

assessed by the response to rapid application of caffeine. Therefore, the reduction in SR 

load is likely to be a contributing factor to the decreased amplitude of the Ca2
+ transient 

in doxOL treated myocytes. The relative contributions of 1) inhibition of RyR2 gating 

and 2) the reduced store load, to decreased transients cannot be evaluated from the 

current results. It should also be considered that there is temporal overlap between SR 

Ca2+ release and Ca2
+ uptake, which may truncate the Ca2

+ transient amplitude (Bassani 

et al. , 1993). The extent of the truncation may differ between doxOL-treated and 

untreated cells since Ca2
+ uptake by both NCX and SERCA2A was inhibited in the 

presence of doxOL. This effect of doxOL on SERCA2A and NCX would likely cause 

an underestimation of the inhibitory effect of the drugs on RyR2, since in untreated 

·myocytes SERCA2A and NCX would be able to reduce the Ca2
+ transient amplitude 
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more than they do in doxOL treated cells. This could mean that there is actually a 

greater difference in the amplitude of control and doxOL treated cells than what is 

reflected by the present data. The ambiguity of these results could be resolved by 

measuring the initial rate of Ca2
+ uptake into the SR rather than time to 50% decline 

from the peak of the Ca2
+ transient. 

6.4.2. Mechanisms of SR load reduction 

Despite a reduction in twitch transient Ca2
+ release and in NCX activity, which both 

could be expected to increase Ca2
+ load, the SR load in cardiomyocytes was decreased 

by ~30% in doxOL pre-treated cells. There are several potential explanations for this 

finding, including inhibition of SERCA2A mediated Ca2
+ uptake and increased RyR2 

release during diastole. These possibilities are discussed below. 

DoxOL, but not doxorubicin, was shown to inhibit SERCA2A mediated Ca2
+ uptake in 

SR vesicles at concentrations as low as 0.01 µM (see Section 3.3.5/4.2.4). This was 

attributed to doxOL induced oxidation of SERCA2A thiol residues. Results in the 

current chapter show that that the time to 50% decay of the Ca2
+ transient was 

prolonged in doxOL treated myocytes (Section 6.3.1). In an action potential-induced 

transient, the decay phase is primarily due to Ca2
+ reuptake via SERCA2A (Bassani et 

al., 1995b), illustrating that doxOL inhibits SERCA2A function in whole cells. The 

extent to which this 13% increase in the decay time of the Ca2
+ transient, contributes to 

the almost 30% decrease in SR load is unclear. 

Another potential mechanism of SR load depletion is increased diastolic Ca2
+ release. It 

has been shown that spark and non-spark mediated Ca2
+ release is a prominent form of 

Ca2
+ release via RyR2 and, along with SERCA2A activity, is a primary determinant of 

the SR Ca2
+ concentration (Santiago et al., 2010; Zima et al., 2010). Single channel 

experiments indicated that aside from an initial, transient activation phase, 

anthracyclines caused severe inhibition of RyR2 P0 (Section 3.3.3 and Hanna et al ., 

2011). However, those experiments were done under what would be considered early 

systolic conditions, with 1 µM cis (cytoplasmic) Ca2
+ and 1 mM trans (luminal) Ca2

+. 

Single channel experiments conducted with diastolic cis and trans [Ca2+] would be 

useful in determining if doxOL can actually increase RyR PO during diastole. However 

these will be difficult to perform as previous work in our laboratory and by others has 
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shown that channel activity is very low under such conditions (Chen et al., 2013), 

personal communication Prof. Esther Gallant, Muscle Research Group). 

It was hypothesised in Section 3.4.3 that inhibition of RyR2 by anthracyclines may lead 

to Ca2+ alternans in whole-cell experiments. Such peak-to-peak variation was only 

observed in a minority of cells, possibly due the relatively brief and slow pacing 

protocols used in these experiments compared to other studies where alternans have 

been prevalent (Diaz et al., 2002; Belevych et al., 2009). Myocytes pre-treated with 2.5 

µMor 10 µM doxOL had 60 - 90% higher levels of resting ca2+, respectively then 

untreated myocytes (Figure 6.3A) and this was associated with an increase in the 

percentage of myocytes that exhibited spontaneous Ca2+ transients (Figure 6.3B). It is 

possible that both the spontaneous activity and the increased levels of resting ca2 were 

due to doxOL induced inhibition of NCX activity, rather than enhanced diastolic 

Ca2+ release (Figure 6.4C). More quantitative assessments of SR Ca2+ leak and INcx in 

the presence of doxOL would provide valuable insight into these prospective 

mechanisms. DoxOL has been reported to inhibit the Na/K ATPase, though the effect 

has not been well characterized (Boucek et al., 1989). Inhibiting the Na/KATPase 

would increase the intracellular [Na+] and potentially slow the rate of Na+: Ca2+ 

exchange by NCX (Pogwizd et al., 2001). However, this mechanism would also be 

predicted to increase the SR Ca2+ load and is therefore unlikely to be significant in the 

present experiments, since the SR load was decreased in doxOL treated myocytes 

(Section 6.3.2). Any doxOL-induced change in the backflux of Ca2+ via SERCA2A 

(which could also deplete store load (Shannon et al., 2002)) was not investigated. From 

the data obtained in this chapter, it can be hypothesised that the decrease in store load 

with doxOL pretreatment is caused by a combination of increased diastolic Ca2+ release 

and impaired Ca2+ uptake by SERCA2A. 

6.4.3. Limitations 

Due to time and technical constraints certain aspects of doxOL' s effect on intact 

myocytes could not be tested, leaving several questions to be answered. One limitation 

was that myocytes were not voltage clamped, hence LTCC current was not examined. 

Reduced Ca2+ influx via L TCC could contribute to the decreased amplitude of the Ca2+ 

transient, as there would be less Ca2+ to activate RyR2. This may also result in a 

prolonged time to peak Ca2+ release. Although no direct effects of anthracyclines on the 
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LTCC have been reported previously, investigating this interaction may be beneficial in 

the future. 

The results presented in this chapter also show that doxOL can promote diastolic Ca2
+ 

release and increase the cytoplasmic [Ca2+], an effect that would be expected to promote 

arrhythmogenesis. Therefore, another benefit of voltage clamping the myocytes would 

be the ability to detect DADs and EADs. At present there are no studies investigating 

doxOL-induced arrhythmogenesis at the cellular level. Thus, further experiments testing 

anthracyclines on voltage clamped myocytes would provide valuable information on the 

mechanism of anthracycline cardiotoxicity. 

Experiments detailed in this chapter were conducted on myocytes that were pretreated 

for 20 min with either 2.5 or 10 µM doxOL and paced at a frequency of 0.5 Hz. These 

drug concentrations were chosen as they were used in single channel experiments. 

Given the reported hydrophobicity of anthracyclines (Park et al., 2005) and the 

timeframe of drug-induced effects in chapters 3 - 5, it is likely that a 20 min 

preincubation period is sufficient to allow the drug to equilibrate across the 

sarcolemmal membrane. However, it is possible that the 20 min incubation did not 

allow doxOL to equilibrate in certain subcellular compartments . Experimentation using 

a greater range of drug concentrations and preincubation times would provide a more 

thorough characterization of the concentration dependent effects of anthracyclines. 

Potential arrhythmogenic mechanisms may also be revealed by exploring different 

pacing frequencies. 

It has repeatedly been shown that doxorubicin and doxOL increase cellular ROS 

formation (Kim et al., 2006; Sawyer et al., 2010; Sag et al., 2011). Therefore it is highly 

likely that the effects of doxOL reported in this chapter result from both ROS-dependent 

and ROS-independent mechanisms. Some insight can be gained with the use of 

modification specific reducing agents. It is possible to distinguish between disulphide 

formation, S-nitrosylation and S-glutathionylation (Aracena-Parks et al., 2006; 

Terentyev et al., 2008), all of which may be induced by doxOL treatment in 

cardiomyocytes. However, the results in Chapter 4 of this thesis demonstrate that 

doxOL can directly modify the thiol residues of RyR2 and SERCA2A independent of 

ROS, most likely by promoting disulphide formation. Therefore, distinguishing between 

disulphide formation that is promoted by (A) doxOL induced ROS formation and (B) a 

direct interaction between doxOL and RyR2 and SERCA2A thiols may not be possible. 
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Nevertheless valuable mechanistic insight could be gained by defining ROS-dependent 

and ROS-independent effects of anthracycline in cardiomyocytes. 

6.5. Conclusion 

The results presented in this chapter provide novel information on the cellular 

mechanisms of anthracycline-induced cardiotoxicity. For the first time, it has been 

demonstrated that clinically relevant concentrations of the doxorubicin metabolite, 

doxOL, can induce Ca2
+ handling abnormalities at the whole cell level. These changes 

affected cardiomyocyte contractility and, although membrane potential wasn't 

measured, it is likely that the aberrant Ca2
+ release induced by doxOL would be 

arrhythmogenic. While more quantitative measures of some aspects of doxOL-induced 

dysfunction are necessary, the current findings confirm that doxOL can perturb Ca2
+ 

homeostasis in intact cardiomyocytes. Further exploration of doxOL induced 

impairment of the contractile and electrical components of cardiomyocyte function may 

provide valuable insight into the clinical manifestation of anthracycline induced cardiac 

dysfunction. 
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General Discussion 
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7.1. Summary 

The work presented in this thesis represents the first in-depth characterization of the 

anthracycline doxorubicin and it metabolite, doxOL on Ca2
+ handling in 

cardiomyocytes. The principle findings were as follows: 

1. Anthracyclines modulate RyR2 channel activity. 

Doxorubicin, daunorubicin and their primary metabolites were found to cause a 

pronounced increase in RyR2 P 0 • With higher concentrations of the parent 

compounds and with all concentrations of the metabolites, channel activation 

was followed by sustained inhibition. 

2. Anthracycline-induced activation and inhibition are mediated by different 

mechanisms. 

Anthracycline-induced activation is reversible by washout, suggestive of a 

ligand binding mechanism. In contrast, RyR2 inhibition was not reversed by 
-

washout but was preventable with DTT and NEM, suggesting an oxidative 

mechanism. These thiol modifying reagents had no effect on anthracycline

induced activation of RyR2 

3. CS02 has a role in the RyR2 response to changes in luminal Ca2
+. 

Selective dissociation of CSQ2 caused RyR2 single channels to become more 

sensitive to activation by luminal Ca2
+ compared to native channels. 

4. Redox active agents modulate RyR2 luminal Ca2
+ sensitivity, 

Pre-treatment with reducing agents and pre-treatment with oxidizing agents had 

different effects on the RyR2 response to luminal Ca2
+. DTT exposure, and 

therefore promotion of unmodified thiols, caused RyR2 activity to decrease as 

the luminal [Ca2+] increased. Conversely, oxidation of RyR2 thiols by 4,4 ' -

DTDP caused channels to have a higher P0 but a dampened response to 

activation by luminal Ca2
+. 

189 



Chapter Seven 

5. DoxOL abolishes the luminal Ca2
+ response of RyR2 via an interaction with 

CSO2 

DoxOL treatment abolished normal response of RyR2 to changes in the luminal 

[Ca2+]. This response was restored when CSQ2 was dissociated from doxOL

treated RyR2. 

6. DoxOL inhibits SERCA2A function by thiol oxidation 

Incubation of SR vesicles with doxOL, but not doxorubicin, decreased the Ca2
+ 

uptake rate. With DTT pre-treatment, doxOL actually enhanced Ca2
+ uptake. 

Thus, doxOL inhibits SERCA2A via thiol oxidation but can also activate 

SERCA2A, most likely by a ligand binding interaction. Inhibition of SERCA2A 

is also evident in intact cardiomyocytes, where there was an increase in the 

decline of the cytoplasmic Ca2
+ transient. 

7. DoxOL alters whole cell Ca2
+ signalling and reduces cardiomyocyte 

contractility. 

In adult mouse cardiomyocytes , doxOL pre-treatment reduced the amplitude of 

Ca2
+ transients and prolonged the time to peak and decay time compared to 

untreated myocytes. DoxOL treated myocytes also had a reduced SR Ca2
+ load, 

impaired NCX function, and a higher cytoplasmic [Ca2+] then control myocytes. 

These effects were likely to cause the aberrant diastolic Ca2
+ release and reduced 

contractile function exhibited by doxOL treated myocytes. 

DoxOL was found to interact with multiple proteins that are important for SR Ca2
+ 

handling, including RyR2, SERCA2A and CSQ2. 

7 .2. Consideration of whole cell Ca2
+ handling 

Intact cardiomyocytes treated with doxOL showed reduced Ca2
+ transients, a decrease 

in store load and prolonged decay time of both the twitch transient and caffeine-induced 

transient, suggesting impaired SERCA2A and NCX function , respectively. These 

alterations in myocyte Ca2
+ handling were consistent with the effects of doxOL 

identified in the isolated single channels and in SR vesicles. These functional effects in 

the isolated preparations included changes in RyR2 channel gating, SERCA function 
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and response of the channel to luminal Ca2
+. The long-term, sustained effect of doxOL 

in each of these cases was inhibitory and therefore consistent with the effect of doxOL 

in the whole cell in dampening Ca2
+ signalling and impairing contractile function. 

The changes in Ca2
+ transient kinetics coexisted with an increase in spontaneous 

Ca2
+ release and an increase in resting Ca2

+. The findings suggest that doxOL causes 

RyR2 to be more active during diastole than untreated channels. This is in contrast to 

the results of the single channel experiments, as the same concentration and incubation 

time with doxOL caused pronounced inhibition of RyR2. It must be remembered though 

that the majority of single channel studies were done under conditions more likely to be 

encountered during systole (i.e. with 1 µM cis Ca2+ and 1 mM trans Ca2+). Although the 

measurements of RyR2 luminal Ca2
+ response did temporarily use 0.1 mM trans ca2+, 

these were still done in the presence of 1 µM cis Ca2
+ and so are not a true 

representation of diastolic conditions where cytoplasmic Ca2
+ drops to -l00nM (Bers, 

2008). Future experiments using 1 µM cis Ca2
+ and 0.1 mM trans Ca2

+ would be a more 

accurate way of characterizing the effects of anthracyclines on RyR2 under diastolic 

conditions. As discussed in Chapter 6 however, experiments conducted at these [Ca2+] 

are likely to have low levels of activity making it difficult to accurately measure Pa. 

Based on the finding that doxOL a) inhibited RyR2 and b) abolished luminal Ca2
+ 

sensing it would be expected that the effects of anthracyclines in whole cell systems 

would be arrhythmogenic. There are studies identifying RyR2 inhibition (Diaz et al., 

2002; Braund et al., 2012) or a loss of luminal Ca2
+ sensing (Thomas et al., 2004; Jiang 

et al., 2007; Qin et al., 2008) as a factor in arrhythmogenic Ca2
+ release. This 

phenomenon was most quantitatively explored in intact cardiomyocytes by Diaz and 

colleagues (2002). Inhibition of RyR2 by tetracaine caused spatial and temporal 

desynchronisation of SR Ca2
+ release and prolonged the rise and decay of the Ca2

+ 

transients (Diaz et al. , 2002). In the current study, spontaneous Ca2
+ release occurred 

more frequently in doxOL treated cells (2.5 µM) then in control cells. These 

spontaneous Ca2
+ transients would be expected to cause afterdepolarisations (Pogwizd 

and Bers, 2004), however, due to technical limitations it was not possible to monitor 

changes in membrane potential. It was observed however, that doxOL inhibited NCX 

function, as indicated by the prolonged decay of the caffeine transient. Therefore it is 

more likely that anthracyclines would induce EADs rather than DADs, since the latter 

are more often associated with enhanced NCX function (Pogwizd et al., 2001). 
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However, the present results do not exclude either mechanism. Further explorations of 

these processes may give valuable insight into the mechanisms of anthracycline induced 

arrh ythrno genesis. 

The spontaneous Ca2
+ transients and decreased amplitude and kinetics of the twitch 

transient could be due to altered RyR2 gating or the abolition of luminal Ca2
+ sensing. 

Therefore it is difficult to ascertain whether the loss of luminal Ca2
+ sensing caused by 

doxOL in single channels was translated to the whole cell environment. This would best 

be explored by simultaneous quantitative measurement of the SR Ca2
+ load and 

cytoplasmic Ca2
+ release in intact myocytes to determine if there was a relationship 

between RyR2 function (e.g. fractional release or propensity for spontaneous Ca2
+ 

release) and the SR load, as measured in (Shannon et al., 2000, 2002; Jiang et al., 2005; 

Guo et al., 2007). The absence of such a relationship may indicate that doxOL could 

effectively block RyR2 luminal Ca2
+ sensitivity in a cellular environment. While such 

measurements have been used to confirm an increase in luminal Ca2
+ sensitivity (Guo et 

al., 2007), there are few studies that have quantified such changes in a loss-of-function 

situation (Jiang et al., 2007). This can be attributed to the prevalence of gain-of-function 

mutations associated with arrhythmia, sudden cardiac death and heart failure, compared 

to loss-of-function mutations (reviewed in (Gomez and Richard, 2004). 

Hence, the mechanisms responsible for loss of luminal Ca2
+ sensing remain ambiguous. 

In one example, RyR2 channels carrying a mutation associated with catecholaminergic 

idiopathic ventricular fibrillation had lost the ability to respond to activation by luminal, 

but not cytoplasmic Ca2
+ (Jiang et al., 2007). The mutated residue (A4860G) was 

located in the pore inner helix, a region associated with activation and gating of RyR2. 

In this case, the loss of luminal Ca2
+ sensing was attributed to the location of the 

mutated residue. The effects of anthracyclines on luminal Ca2
+ sensing, on the other 

hand, could be attributed to an interaction between doxOL and CSQ2. This result 

underlines the importance of CSQ2 in determining the characteristics of the RyR2 

response to changes in luminal Ca2
+. How the CSQ2 interaction abolished the ability of 

RyR2 to be activated by luminal ca2 + is unclear from the present experiments. It is 

possible that doxOL modifies the interaction between CSQ2 and another protein like 

triadin and junctin, preventing the communication of the luminal [Ca2+] to RyR2. 

Disruption to this communication pathway was suggested by Qin and colleagues (2008) 

to account for the loss of luminal Ca2
+ sensitivity in RyR2 associated with a CPVT-
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linked CSQ2 mutant. That CSQ2 null myocytes (Knollmann et al., 2006) and CSQ2 

stripped channels (this study, and (Qin et al., 2008) show evidence of luminal Ca2
+ 

sensitivity but that an interaction between doxOL and CSQ2, and a CSQ2 mutant (Qin 

et al., 2008) can abolish luminal Ca2
+ sensitivity demonstrates the necessity of optimal 

protein function and emphasizes the complexity of the luminal Ca2
+ sensing process. 

7.3. 

7.3.1. 

Anthracyclines and protein modifications 

Thiol modification 

It is evident from the results of Chapters 4 and 5 that anthracycline-induced oxidation 

causes substantial modification of SR Ca2
+ handling, inhibiting both RyR2 and 

SERCA2A function. It should be considered what the consequences of anthracycline 

induced ROS and RNS formation might be in the intact cell. The effects characterized 

in this thesis as a result of thiol modification by anthracyclines are likely to (a) be 

additive with additional ROS and RNS-induced effects and (b) could constitute the 

cardiotoxicity pathway in patients treated with dexrazoxane to suppress oxidative 

dysfunction. ROS induced thiol modifications including S-glutathionylation and S

nitrosylation promote arrhythmogenesis and heart failure via RyR2 dysregulation (Yano 

et al., 2005b; Belevych et al., 2009; Donoso et al., 201 lb). Further work is needed to 

elucidate the precise effects of anthracycline-induced ROS/RNS formation on 

cardiomyocyte Ca2
+ handling. This includes determining what reactive species are 

produced in response to anthracycline exposure, the site of production, the specific 

targets of these reactive species and the functional outcome of these interactions. The 

compounded dysregulation induced by production of ROS and RNS may be a 

significant cause of the cardiotoxic side effects observed in patients treated with 

anthracyclines and warrants better characterization. 

Although doxOL could enhance SERCA2A Ca2
+ uptake, this effect was only evident 

when DTT pre-treatment blocked doxOL-induced oxidation of SERCA2A. Therefore, 

physiologically it would be expected that doxOL' s inhibitory effect would mask any 

activation. This is supported by the finding that in cardiomyocytes , doxOL pretreatment 

prolonged the decay of the twitch Ca2
+ transient, a measure of SERCA2A function 

(Bassani et al., 1995b). 
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7.3.2. Anthracyclines and phosphorylation 

RyR2 is also susceptible to phosphorylation by PKA and CaMKII. Evidence from the 

Cardiac and Skeletal Muscle Proteomics Group shows that doxorubicin treated mice 

exhibit a significant! y higher level of phosphorylation at serine residues 2808 and 2814 

(personal communication, Dr Nicole Beard) than untreated mice. While the functional 

role of anthracycline-induced RyR2 phosphorylation is unknown, the detrimental 

effects of hyperphosphorylation in other cardiac pathologies is well documented. In 

several models of heart failure, sudden cardiac death and arrhythmia, RyR2 is 

hyperphosphorylated, usually due to enhanced or chronic ~-adrenergic stimulation. 

Under such conditions RyR2 exhibits a heightened response to Ca2
+, increased diastolic 

leak and spontaneous Ca2
+ waves (Yano et al., 2005a; Belevych et al., 2009; Donoso et 

al., 201 la). The molecular mechanism underlying phosphorylation-induced RyR2 

dysfunction is controversial, hypothesized to involve either a dissociation of FKBP 

(Marx et al., 2000), or a decrease in the threshold for diastolic Ca2
+ release (Jiang et al., 

2005; Venetucci et al., 2007; Curran et al., 2010). Recently _it has been suggested that 

RyR2 oxidation and phosphorylation co-exist, together promoting RyR2 dysfunction. 

Shan and colleagues (2010) found that the oxidation state influenced the extent to which 

PKA phosphorylation was able to dissociate FKBP and cause subsequent spontaneous 

Ca2
+ release. In another study it was found that phosphorylation and oxidation were 

involved at successive stages of heart failure (Belevych et al., 2011). Interestingly, 

CaMKII is itself activated via oxidation in heart failure (Erickson et al., 2008) and in 

cardiomyocytes exposed to doxorubicin (Sag et al., 2011). 

Observations of concurrent or successive RyR2 phosphorylation and/or oxidation are 

consistent with the suggestion that alteration of RyR2 PO alone, by either oxidation or 

phosphorylation for example, may not necessarily induce arrhythmogenic Ca2
+ release 

(Venetucci et al ., 2007; Chelu et al., 2009). In a normal, healthy cardiomyocyte, the 

increase in PO should lead to a decrease in SR Ca2
+ content and thus, reduce PO to lower 

levels (Venetucci et al., 2007). The existence of this autoregulation implies that changes 

in RyR2 P0 may not have a drastic effect on cardiac function under physiological 

conditions. However, it has been suggested that altered RyR2 activity may provide an 

arrhythrnogenic background, which in the presence of an additional insult, could lead to 

spontaneous Ca2
+ waves and arrhythmia (Jiang et al., 2007; Venetucci et al., 2007; 

Chelu et al., 2009; Curran et al., 2010). Additional contributors could include (but are 
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not limited to) changes in protein expression, thiol oxidation and phosphorylation of 

RyR2 or SERCA2A, many of which are seen in heart failure (Shannon et al., 2003a; 

Vest et al., 2005; Curran et al., 2010; Belevych et al., 2011; Shan et al., 2012). An 

analogous situation may occur in people carrying RyR2 mutations associated with 

CPVT, who are asymptomatic without the additional trigger of ~-adrenergic 

stimulation. Such an inter-dependence has been named the "double hit concept" (Chelu 

et al., 2009). 

7.3.3. Nitroso-redox balance 

There is limited evidence indicating that anthracyclines also perturb NO signalling in 

the heart via several pathways (Fogli et al., 2004). Doxorubicin-induced cardiac 

dysfunction has been associated with increased cellular levels of ONOO-, which 

resulted from doxorubicin-induced upregulation of iNOS (Weinstein et al., 2000; 

Pacher et al., 2003). It was also found that doxorubicin can interact with eNOS, which 

promotes redox cycling of the anthracycline quinone moiety with subsequent 0 2-

production (Vasquez-Vivar et al., 1997). In the heart a balance exists between 

nitrosative and oxidative signalling, both of which play important roles in physiological 

Ca2
+ signalling. As shown in Figure 1.11, there is crosstalk between these two systems. 

Superoxide can interact with NO to produce the highly reactive ONOO- which acts as a 

potent oxidant. Additionally, excess oxidation may reduce the number of thiols 

available for S-nitrosylation with subsequent changes in protein function (Fogli et al., 

2004; Hare, 2004). Thus it is likely that anthracyclines severely disrupt the nitroso

redox balance in the heart by effects either on oxidative or nitrosative signalling, or 

both. 

7 .4. Anthracyclines and skeletal muscle 

Muscle fatigue is a common occurrence in patients undergoing treatment with 

chemotherapeutic drugs, including anthracyclines. Fatigue that is induced by 

chemotherapy differs from general muscle fatigue, in that it is not alleviated by a period 

of rest and is described as a whole body affliction that is unrelated to physical activity 

or exertion (Morrow et al., 2002; Gilliam and St Clair, 2011). A review of studies 

investigating the incidence of fatigue in anthracycline-treated patients found that 47% of 
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patients described disabling fatigue that prevented normal physical activity (Gilliam and 

St Clair, 2011). Animal models have consistently found an impairment of skeletal 

muscle function following doxorubicin administration. These effects include a decrease 

in maximum specific force , prolonged relaxation time, impaired fractional shortening 

and severe ultrastructural changes (Doroshow et al. , 1985; Gilliam et al., 2009; van 

Norren et al., 2009; Gilliam and St Clair, 2011; Hydock et al., 2011). 

Skeletal muscle fatigue is thought to have many contributing factors . One of the more 

prominent mechanisms is oxidative stress (Allen et al., 2008; Reid, 2008), and this has 

been identified as a potential mechanism in anthracycline-induced skeletal muscle 

fatigue. In animal models, doxorubicin administration increased ROS generation and 

oxidative protein modifications in skeletal muscle, which were associated with 

decreased contractile function (Gilliam et al., 2011; Smuder et al. , 2011). However, in 

these studies the increase in oxidative stress coexisted with an increase in the levels of 

calpain activity (Smuder et al., 2011) and depended on the route of administration, 

occurring with i.p. but not i.v. dosage (Gilliam et al., 2011). Conversely, overnight 

incubation of skeletal myotubes with doxorubicin found that the effects of the drug on 

Ca2
+ handling were not influenced by oxidative stress (van Norren et al. , 2009). These 

studies highlight a need for an improved understanding of the role of oxidative stress in 

skeletal muscle dysfunction caused by anthracyclines. 

It should be remembered that RyRl is similarly susceptible to oxidative modifications 

as RyR2, containing 100 cysteines in total, of which 12 are vulnerable to redox 

modification (Aracena-Parks et al., 2006). Anthracyclines have indeed been shown to 

stimulate RyRl activity (Abramson et al., 1988; Feng et al. , 1999; Marinov et al., 2007). 

In two of these studies, modulation of RyRl was associated with thiol modification 

(Feng et al. , 1999; Marinov et al., 2007). Thus, it would be surprising if oxidative stress 

had no influence since, like cardiac muscle, skeletal muscle function can be negatively 

affected by excess oxidation. Examples of this dysfunction include fatigue and 

Duchenne Muscular Dystrophy, both of which are thought to be at least partially 

influenced by pronounced ROS formation (Reid, 2008). 
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7.5. Future directions 

While the work presented in this thesis has made a great contribution to the present 

knowledge of anthracycline cardiotoxicity, there are still many avenues of research 

worth exploring. Some of these lead on directly from the results presented here, while 

others are aspects that were outside the scope of the current project but are related to 

cardiomyocyte Ca2
+ handling. 

• It is likely that the oxidative modifications observed in single channel studies are 

ROS/RNS independent, while the results in cardiac myocytes are a combination 

of ROS/RNS -dependent and ROS/RNS-independent effects. Mechanistic insight 

could be gained by determining the relative importance of each in the whole cell 

environment, as well as the sites of ROS (and RNS) production and the specific 

targets of these reactive species. 

• In Chapter 5 it was demonstrated that redox agents significantly influence RyR2 

activation by luminal Ca2
+. However, these results were obtained with high 

concentrations of either oxidizing or reducing agents. Experiments in the Muscle 

Research Group laboratory are currently underway to determine the luminal Ca2
+ 

sensitivity in the presence of physiological and pathological redox potentials set 

by relevant amounts of the glutathione redox buffer system. These experiments 

will yield important information on RyR2 Ca2
+ handling and will aid in our 

understanding of changes in Ca2
+ signalling that occur in cardiac disease. 

• DoxOL increased the percentage of myocytes displaying spontaneous 

Ca2+ transients and increased the resting cytoplasmic [Ca2+]. These findings 

suggest that doxOL may have stimulatory effect on RyR2 at a diastolic 

cytoplasmic [Ca2+]. As detailed in Section 7.1, assessing the impact of doxOL on 

single channel activity using diastolic [Ca2+] in the cis and trans solutions will 

clarify the effect of anthracyclines on diastolic Ca2
+ handling, if such experiments 

are possible (see previous comments). 

• The arrhythmogenic effects of anthracyclines could be better understood using 

voltage clamped cardiomyocytes. In the current project, technical limitations 

prevented measurement of changes in sarcolemmal membrane potential upon 

myocyte stimulation. Thus, while it can be predicted that the spontaneous Ca2
+ 

transients would be arrhythmogenic, such events were not recorded. It would also 
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be beneficial to experiment with different pacing frequencies as the propensity for 

arrhythmogenic activity can increase as pacing frequency in accelerated (Liu et 

al., 2011). 

• Anthracyclines have been shown to activate calpains, Ca2
+ dependent proteases 

which degrade multiple targets in striated muscle. Two proteins that have been 

shown to be affected following doxorubicin-induced calpain activation include 

titin (Lim et al., 2004) and dystrophin (Campos et al., 2011). Calpain induced 

proteolysis of titin was associated with severe disruption of myofilament 

ultrastructure and cellular necrosis, (Lim et al., 2004) whilst delocalization of 

dystrophin occurred with left ventricular contractile impairment (Campos et al. , 

2011). In skeletal muscle, calpain activation is implicated in exercise-induced 

muscle injury (Belcastro et al., 1998), muscle atrophy (Bartoli and Richard, 2005) 

and in muscular dystrophies (Richard et al., 1995; Tidball and Spencer, 2000). 

Furthermore, it has recently been shown that calpain activation degrades 

junctophilin, a protein thought to be important for triad formation in both skeletal 

and cardiac muscle (Murphy et al. , 2013) . These studies suggest that 

anthracycline-induced calpain activation (in either skeletal or cardiac muscle) 

could have as yet unrecognized detrimental effects on muscle function. 

• Finally, preliminary evidence from the Cardiac and Skeletal Muscle Proteomics 

Group indicates that anthracyclines can increase RyR2 phosphorylation at S2808 

and S2814 and reduce FKBP association with RyR2 (personal communication, Dr 

Nicole Beard). Either individually or in combination, these effects have been 

implicated in various forms of cardiac pathology (Marx et al. , 2000; Wehrens et 

al., 2003; Shan et al., 2012), however neither phosphorylation nor FKBP 

dissociation has been implicated in the effects of anthracyclines on the heart. 

Further investigation of these modifications in anthracycline-induced 

cardiotoxicity will give valuable new mechanistic insight. 

7 .6. Conclusion 

This project has provided novel information on the cellular mechanisms underlying 

anthracycline-induced cardiotoxicity. Over the course of this thesis, the focus 

progressed from the effects of the drugs on single RyR2 channels and on the SERCA2A 

pump, to the sensitivity of the channel to luminal Ca2
+. Finally, intact cardiomyocytes 
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were used to assess the effect of doxOL in a whole cell environment. Hence the drugs 

were tested in systems of increasing complexity, from the single channel, to the SR, to 

the intact cardiomyocyte. In each case the drugs dampened proper Ca2
+ movement 

which promoted aberrant, spontaneous Ca2
+ release and reduced myocyte contractile 

function. The results, while representing acute effects of the drugs, are consistent with 

the clinical manifestation of anthracycline-induced cardiotoxicity, which include 

reduced contractility and arrhythmogenesis (Barrett-Lee et al., 2009; Menna et al., 

2012). 

In the course of the project important new information regarding mechanisms of 

physiological SR Ca2
+ handling has been revealed. Of particular interest is the role of 

CSQ2 and redox modifications on the luminal Ca2
+ response of RyR2. These findings 

shed important light on factors affecting RyR2 regulation by luminal Ca2+, building on 

the information already gathered in recent years by others in the field. Knowledge of 

this aspect of cardiac muscle physiology may prove to be important in understanding 

mechanisms of heart failure, sudden cardiac death and arrhythmia and in the subsequent 

design of treatments for these and other cardiac pathologies. 

While there are many aspects of the cellular and whole organ effects of the drugs to be 

elucidated, the present project is the most in-depth characterization of the effects of 

anthracyclines on RyR2 and SR Ca2
+ handling to date. Of particular importance are the 

new details regarding the effects of the metabolite, doxOL. This information may be 

used for future drug design and the testing of better targeted co-treatments which are 

more beneficial in preventing the devastating effects of anthracyclines on the heart 

while allowing their continued use as some of the most efficacious chemotherapeutic 

drugs yet discovered. 
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