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ABSTRACT 

Eosinophils recruited to the lungs, in response to respiratory syncytial 

virus (RSV) infection, have been associated with, the pathophysiological sequel 

of infection and more recently, with accelerated virus clearance. Heparan 

sulfates (HS), on the cell surface, are utilised by RSV to initiate infection, 

making HS a potential therapeutics target. As there is no effective RSV vaccine 

currently available, controlling RSV has remained a formidable challenge. 

The aims of this thesis were to investigate: (1) in vitro RSV effect on 

eosinophil morphology and eosinophil antiviral activity against RSV; (2) in vivo 

eosinophil antiviral activity expressed by four distinct mouse models following 

RSV infection and re-infection; and (3) the efficacy of HS mimetics treatment on 

RSV infection in vitro and in vivo. 

Firstly, transmission electron microscopy analysis, major basic protein 

and eosinophil peroxidase assays, eosinophil chemotaxis and RSV kinetics 

assays were used to examine aim 1. In vitro findings indicated human RSV 

pathogen inability to infect murine eosinophils however; eosinophil exposure to 

RSV antigen or RSV infected HEp-2 supernatant resulted in eosinophil 

activation, degranulation and chemotaxis. 

Secondly, four genetically modified BALB/s strains were infected and re-

infected. Analysis of bronchoalveolar lavage (BALF), blood and lung histology 

was used to elucidate aim 2. These in vivo results revealed significant 

eosinophil mediated reduction in viral load following RSV primary infection of IL-

5 Tg and IL-5 Tg Rag 2"/" BALB/c. However, following the RSV re-infection, 

eosinophils in addition to NK cells and type 2 innate lymphoid cells (ILC) were 

unable to provide the same antiviral protection in both, Rag 27" and IL-5 Tg Rag 

27" BALB/c mice. Results of cell adoptive transfer demonstrated a 

significant reduction of viral load recovered from IL-5 Tg Rag 27" BALB/c mice 

re-infected with RSV. 

Lastly, the antiviral potential of 53 HS mimetics was tested in vitro under 

four clinically relevant conditions. Following the in wfro findings, six HS mimetics 

were tested in vivo as a post RSV infection treatment and as a prophylactic 

treatment of RSV infection. Results revealed the first HS mimetic study 

examining and reporting on 53 HS mimetics RSV antiviral activity in vitro 



followed by HS mimetics effect on viral load reduction in vivo. Moreover, HS 

228 was found to be the best performing compound, both, as post RSV 

infection HS treatment and prophylactic treatment of RSV infection, while 

reducing RSV disease pathology in vivo. 

Taken together, the findings of this thesis identify that RSV induced 

eosinophil activation results in targeted eosinophil response in vitro and in vivo; 

however, that eosinophil recruitment and activation following RSV re-infection 

appears to be dependent on stimulation by RSV-specific memory Th2 cells 

and/or sufficient cellular response Involving NK cells and/or type 2 ILCs. In 

addition, exhaustive HS mimetics analysis has resulted in a comprehensive list 

of potential antiviral compounds that could be targeted for RSV therapeutic 

development. Furthermore, HS mimetics tested were found to activate an 

immune response even In the absence of viral infection, suggesting their 

potential in pre-emptive immune activation and modulation. 
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Chapter 1. GENERAL INTRODUCTION 



1.1 RESPIRATORY SYNCYTIAL VIRUS (RSV) 

Respiratory syncytial virus (RSV) is responsible for one of the most 

important pathogenic infections of childhood and is associated with significant 

morbidity and mortality (McNamara and Smyth, 2002). In 2005, RSV was found 

to be responsible for almost 34 million lower respiratory tract infections in 

children under 5 years of age worldwide, with 10% of infections requiring 

hospitalisation and as many as 199,000 deaths (Nair et ai, 2010). 

Approximately 99% of these deaths occur in developing countries, reflecting 

both a greater population of infants and the unjust consequences of inadequate 

resources. These morbidity and mortality numbers are most likely under-

estimated, as RSV testing is generally incomplete and undercounted globally 

(Nair et al., 2010). 

Despite extensive RSV research covering epidemiology, clinical 

manifestations, diagnostic techniques, animal models and the immunobiology of 

infection, there is not yet a convincing and safe vaccine available. Numerous 

approaches to the development of RSV vaccines are being evaluated, as are 

the use of newer antiviral agents to mitigate disease. More research is urgently 

required to elucidate the mechanisms of RSV infection and pathogenesis to 

reduce the worldwide impact of this viral infection. 

1.2 R S V DISEASE 

1.2.1 History and RSV impact on society 
Human RSV was first isolated in 1955 from a captive chimpanzee with 

upper respiratory tract illness (Morris et al., 1956). It was quickly identified as a 

human virus and since 1956 RSV has been defined as a major paediatric 

respiratory pathogen causing serious lower respiratory tract infection in infants 

and young children worldwide (Chanock and Finberg, 1957; Chanock et al., 

1957). RSV also causes disease in adults, particularly in the elderly and in the 

immunocompromised (Walsh, 2011). 

The World Health Organisation (WHO) estimates approximately 4 million 

deaths each year from infections that are transmitted via the respiratory tract, 

most of which occur in childhood (WHO, 2004). Viral infections of the 

respiratory tract are particularly serious during infancy and viral bronchiolitis is 



the most common cause of infantile hospitalisation in the developed world 

(Henrickson et a!., 2004). It has been estimated to cause 91,000 hospital 

admissions per year in the USA alone, with associated hospitalisation costs 

adding up to $300,000,000 per year. RSV accounts for approximately 70% of all 

cases of viral bronchiolitis (Openshaw, 2002). 

1.2.2 Epidemiology and evolution 
RSV is a highly contagious virus and infects an individual multiple times 

throughout the life, resulting In w/orldwide epidemics of respiratory disease each 

year (Graham et al., 2000). Humans are the only natural host for RSV, however 

the virus has been found to infect and cause severe disease in non-human 

primates (Kondgen et al., 2008; Morris et al., 1956). RSV occurs most 

frequently in areas experiencing greater seasonal temperature changes with 

RSV infections peaking in the winter months and extending into the spring 

(Arbiza et al., 2005; Bolisetty et al., 2005; Galiano et al., 2005; Kuroiwa et al., 

2005; Mufson et al., 1991; Wang et al., 1995; Watson et al., 2006; White et al., 

2005). 

Circulating human RSV isolates have been classified into two antigenic 

groups, A and B (Mufson et al., 1985) representing genetic divergence that has 

occurred approximately 350 years ago (Zlateva et al., 2005). Multiple genotypes 

within subgroups A and B have been identified to co-circulate within the same 

season and community, with one or two dominant genotypes being replaced in 

successive years (Cane, 2001; Johnson et al., 1987a). In addition, there can be 

shifts in the predominance of subgroup A versus B occurring in 1-2 year cycles 

(Waris, 1991). This reflects a modest advantage of the heterogeneous strain in 

evading previously induced immunity (White et al., 2005). As a result, the RSV 

evolutionary pattern does not resemble that of influenza A virus, in which a 

strong immune selection dictates the fast replacement worldwide of dominant 

strains in a linear manner. Instead, RSV evolution resembles that of influenza B 

viruses, in which a less strong immune selection favours slower co-evolution of 

several branches of viruses (Rota etal., 1992). 

RSV A and B often co-circulate during an outbreak, however, group A is 

found to be associated with more severe disease (Domachowske and 

Rosenberg, 1999; McConnochie etal., 1990). A study has shown that among all 



infants, RSV strain A was 2.84 times more likely to cause severe disease than 

group B (Walsh et al., 1997). Most children are infected by RSV during the first 

year of life and virtually all are infected by the age of two (McNamara and 

Smyth, 2002). 

Re-infection is frequent during the first few years of life and is 

independent of antigenic differences in RSV isolates. Of the children who had 

been infected during the first year of life, 47% and 45% were re-infected during 

the second and third years of their life, respectively (Glezen etal., 1986). Lower 

respiratory tract infection can occur during the first or second infections; 

however a considerable reduction in disease severity was observed with 

subsequent infections indicative of increasing protective immunity (Henderson 

etal., 1979). 

1.2.3 Groups at risk of RSV Infection 
The incidence of RSV is greatest at the extremes of age, in infants and 

elderly (Openshaw and Tregoning, 2005). Children under 1 year of age are the 

most affected, with peak incidence between 2 to 4 months of age (Openshaw et 

al., 2003). In children younger than 2 years of age, RSV infection is the most 

common cause of asthma attacks and is frequently associated with acute 

wheezing and respiratory distress (Zhao et a!., 2002). A number of factors can 

contribute to the risk of severe RSV disease early in life, including prematurity, 

low titres of maternal antibodies or lack of previous RSV infection (Cunningham 

et al., 1991), underlying cardiopulmonary disease (Groothuis et al., 1988; 

MacDonald et al., 1982) and immunosuppression or immunodeficiency 

disorders (Fishaut etal., 1980; Mcintosh etal., 1984). However, it is important 

to note that more than half of RSV hospitalisations occur in previously healthy, 

full term individuals (Falsey, 2007; Falsey etal., 2005). 

RSV re-infects healthy adults at a rate of approximately 5-10% per year, 

a rate that increases with increased exposure to the virus, such as with health 

care personnel (Falsey, 2007; Falsey et al., 2005). Hospitalisation due to RSV 

in othenwise healthy non-elderly adults is rare, but RSV is considered second 

only to seasonal influenza as a cause of medically significant respiratory tract 

disease in adulthood. Morbidity and mortality due to RSV is substantially 

increased in the elderly, presumably due in part to immune senescence 



(Thompson et al., 2003). In countries that are more affluent, deaths due to RSV 

are more frequent in the elderly than in the paediatric population, whereas in 

less affluent countries the paediatric burden is greater. 

Another group at risk are immunosuppressed individuals, including 

patients with an immune defect (e.g. complement deficiency, human 

immunodeficiency virus (HIV)) and patients who have undergone bone marrow 

transplantation (e.g. leukaemia patients) (Openshaw and Tregoning, 2005). 

Morbidity and mortality due to RSV is substantially increased in adults with 

underlying pulmonary or cardiac disease or immunosuppression (Falsey, 2007; 

Falsey et al., 2005; Whimbey and Ghosh, 2000). In particular, the mortality rate 

associated with severe RSV infection in adults with profound 

immunosuppression due to leukaemia or hematopoietic stem cell transplant can 

be as high as 80-100% (Whimbey and Ghosh, 2000). 

1.2.4 RSV disease and clinical symptoms 
RSV is transmitted by respiratory secretions and by direct contact with 

contaminated surfaces or materials. Viral entry is usually through the 

nasopharynx and the eyes, thus the most common way of RSV transmission is 

by hand-to-hand, hand-to-mouth or hand-to-eye contact (Hall, 1983; Hall et al., 

1976; Tripp, 2004). Infection occurs in the lung epithelial tissue (Adams et al., 

2006; Openshaw, 2002) resulting in upper rather than lower respiratory tract 

infections (Openshaw, 2002). In addition, another path of transmission is 

through viral persistence where the host serves as a reservoir for transmission 

or re-infection. This path of infection contributes to the pathogenesis of asthma 

and chronic wheezing in children who have experienced bronchiolitis 

(Mahalingam et a/., 2006). 

Clinical symptoms of RSV infected young children range from mild 

respiratory problems to severe cough, bronchiolitis and pneumonia (van den 

Hoogen et al., 2001). These symptoms are usually followed by high fever, 

myalgia (muscle pain) and vomiting (van den Hoogen et al., 2001). RSV 

infection is characterised by a slow, progressive increase in viral protein 

synthesis, where viral proteins first become detectable by 8 hours post infection 

and increase to a maximum by 18-24 hours, followed by the peak of virion 

morphogenesis (Collins et al., 1996). Severe RSV infection has been strongly 



associated with childhood asthma and repeated episodes of bronchospastic 
bronchitis which can continue into adulthood (Rosenberg etal., 2007). 

During early months of life, bronchiolitis may cause severe insult to the 
lungs and can cause long-term effects by delaying or preventing normal 
postnatal pulmonary changes. Consequently, this viral infection may lead to 
smaller underdeveloped lungs, which are more susceptible to disease later in 
life. Alternatively, neonatal infection may cause long-lasting changes in host 
immunity (Adams et a!., 2006). 

It is thought that RSV disease arises from both direct viral damage and 
the host immune response, but the relative contributions of each remain 
controversial. However, it is generally accepted that there is a positive 
correlation between the level of virus replication and disease severity 
(DeVincenzo et al., 2010; DeVincenzo et ai, 2005; Karron et al., 1997b; Martin 
et al., 2008), even though this was not observed in some studies (Bennett et al., 
2007; Hall etal., 1976; Wright etal., 2002). 

In in vivo models, duhng an infection of several weeks, there was little 
visible damage to the tissue except that ciliary beating was usually impaired, in 
contrast to the rapid tissue destruction observed with influenza A virus (Wright 
et al., 2005; Zhang et al., 2002). This suggests that RSV is not inherently a 
highly cytopathic virus, although its effect on ciliary function facilitates the 
airway obstruction, which is characteristic of RSV disease. 

RSV has also been shown to exacerbate asthma. Asthma is a chronic, 
episodic inflammatory disease of the airways where inflammation causes airway 
hyperreactivity (AHR) associated with narrowing of the small ainways (known as 
bronchioles) and variable airflow response to triggering events such as 
allergens, viral infections and exposure to airway irritants (Beasley et al., 2001). 
The asthmatic response is characterised by elevated production of 
immunoglobulin (Ig) E, cytokines, mucus hypersecretion, airway obstruction, 
eosinophil infiltration (eosinophilia) and enhanced AHR to spasmogens 
(Rothenberg, 1998; Zimmermann et al., 2003). Episodes of virus induced 
exacerbations of asthma are accompanied by increased numbers of eosinophils 
in respiratory secretions and there is evidence of eosinophil degranulation 
(Handzel et al., 1998). Eosinophil degranulation in ainway tissues is thought to 



significantly contribute to asthma pathogenesis, nasal polyposis, allergic rhinitis 

and eosinophilic pneumonia through the release of cytotoxic proteins (Walsh, 

2001). Overexpression of interleukin (IL)-13 has also been found to induce 

multiple features of asthma, including eosinophilia, mucus overproduction and 

AHR (Pope et a!., 2005). The involvement of eosinophils in RSV infection will be 

discussed in more detail later on in this literature review. 

The incubation period of RSV in vivo is typically 2 to 8 days, with virus 

replication spreading from the upper respiratory tract to the lower respiratory 

tract (Easton et a!., 2004; Wennergren and Kristjansson, 2001). In infants 

suffering from lower respiratory tract infection, signs of infection usually appear 

1-3 days after the onset of rhinorrhoea, representing the viral spread into the 

bronchi and bronchioles. Clinical recovery from RSV bronchiolitis may occur 

during the continuous viral shedding from the upper respiratory tract. However, 

virus shedding stops with the emergence of specific secretory IgA at the time of 

clinical recovery (Domachowske and Rosenberg, 1999). Prolonged virus 

shedding from the respiratory tract is observed in immunocompromised 

individuals, which suggests that functional cell-mediated immunity is very 

important in the clearance of RSV infection (Domachowske and Rosenberg, 

1999). 

1.3 R S V VIRUS AND VIRAL GENOME 

RSV is an enveloped, non-segmented, negative sense single stranded 

ribonucleic acid (RNA), cytoplasmic virus (Domachowske and Rosenberg, 

1999; Olmsted and Collins, 1989; Spann et al., 2004) with a genome of 15.2 

kllobases (kb) in length (Olmsted and Collins, 1989; Teng et al., 2001). The 

genome is comprised of ten genes which encode for eleven viral proteins 

(Collins et al., 1996; Collins and Melero, 2011; Teng et al., 2001) (Figure 1.1). 

These are; the major nucleocapsid (N) protein, phosphoprotein (P), large (L) 

polymerase protein, the non-glycosylated envelope associated matrix (M) 

protein, the fusion (F) glycoprotein, the attachment (G) glycoprotein, non-

structural (NS1 and NS2) proteins, small hydrophobic (SH) membrane protein 

and internal virion protein (M2 (M2-1 and M2-2)) (Collins et al., 1996; Olmsted 

and Collins, 1989). The viral replication cycle in vitro Is relatively long (30-48 

hours) (Collins and Graham, 2008) (Figure 1.2). 
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Figure 1.1. Genome structure of the Respiratory Syncytial Virus (RSV) 

The RSV genome consists of 15,222 nucleotides. RSV ten major genes encode for eleven 

different viral proteins and these are: non-structural (NS1 and NS2) proteins, nucleocapsid (N) 

protein, phosphoprotein (P), matrix (M) protein, small hydrophobic (SH) membrane protein, 

attachment glycoprotein (G), fusion (F) glycoprotein, internal virion protein (M2 (M2-1 and M2-2)) 

and large (L) polymerase protein. Adapted from (McNamara and Smyth, 2002). 

The respiratory syncytial virion is composed of the nucleocapsid 

enclosed within a lipid envelope (Easton etal., 2004; Fields etal., 1996; Smyth, 

2002). The lipid envelope is derived from the plasma membrane of the host cell 

into which the three virus glycoproteins: F, G and SH, are embedded (Figure 

1.2). The F and G proteins contribute to the 10- to 14-nm spikes present on the 

virion surface (Easton et a!., 2004). 
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Figure 1.2. Schematic presentation of respiratory syncytial virus (RSV) 
virion structure and its replication cycle 

A) RSV virion. The nucleocapsid of the RSV genome consists of the nucleocapsid protein (N), 

the phosphoprotein (P) and the large polymerase (L) protein. The nucleocapsid structure is 

surrounded by the matrix (M) protein, which forms a link between the nucleocapsid and the lipid 

membrane of the virus particle. Three virus glycoproteins are embedded in the lipid membrane, 

these are the attachment (G) glycoprotein, the fusion (F) protein and the small hydrophobic (SH) 

protein. B) The RSV replication cycle. The virus enters by direct fusion at the plasma 

membrane, and releases the encapsulated genome ribonucleic acid (RNA) and RNA dependent 

RNA polymerase into the cytoplasm. The polymerase uses the genome as a template to produce 

capped and polyadenylated messenger RNAs (mRNA), which are translated into viral proteins, 

and encapsulated antigenome and genome RNAs. The resulting encapsulated genomes are 

assembled with other viral proteins and bud from the plasma membrane to produce progeny virus 

particles. Adapted from (Bawage et al., 2013; Jianrong and Yu, 2012). 



1.3.1 Viral proteins 

1.3.1.1 Nucleocapsid-associated proteins 

The RSV L protein is thought to be the major component of the viral 

RNA-dependent RNA polymerase complex, responsible for the synthesis of all 

viral RNA, including mRNA, replicative intermediates and the progeny RNA 

genomes. The L protein contains 2,165 amino acids (Easton et a!., 2004). The 

last two RSV genes, M2 and L, overlap by 68 nucleotides. During transcription 

this overlap results in initiation at the L gene-start signal and termination at the 

M2 (M2-1 and M2-2) gene-end signal, yielding a short, truncated L mRNA as 

the major transcription product of the L gene (Fearns and Collins, 1999). 

The M2 gene has two overlapping open reading frames (ORFs), which 

encode for two proteins, M2-1 and M2-2, involved in the viral RNA synthesis 

process (Blondot et al., 2012). The RSV M2-1 is a transcription anti-termination 

factor important for the efficient synthesis of full-length mRNAs (Collins et a!., 

1996). The M2-2 protein accumulates during infection and shifts RNA synthesis 

from transcription to RNA replication (Bermingham and Collins, 1999). 

Therefore, the M2-1 protein is essential for full viral transcription, while the M2-2 

protein is responsible for viral replication (Cheng et al., 2005). 

The P protein is a key component of the viral RNA-dependent RNA 

polymerase complex (Lu et al., 2002). Interaction of the RSV P protein with the 

N, L and M2-1 proteins promotes the formation of a transcriptase complex that 

is essential for viral RNA transcription and replication (Asenjo et al., 2006; 

Garcia-Barreno et a!., 1996; Khattar et al., 2001). As it has been determined 

with other paramyxovirus P proteins, the P protein of RSV likely acts as a 

cofactor that serves both to stabilise the L protein and to place the polymerase 

complex on the N protein RNA template (Horikami et al., 1992). An in vitro study 

has also shown that P protein phosphorylation affects RSV budding and 

replication (Lu et al., 2002). Another study found that interactions of P with M2-1 

and RNA with M2-1 are required for efficient transcription activation by M2-1. 

M2-1 association with P is strictly required for recruitment to the viral RNA 

synthesis site (Blondot et al., 2012). 

The N protein forms an integral part of the nucleocapsid complex of the 

virion and is an essential component of the polymerase complex. It plays a 



critical role in folding the genome into a semi-stable RNA helix. Recent studies 

have revealed novel w/ays that RSV prevents activation of cellular defences in 

response to infection. Studies have revealed that the RSV N protein uses 

multiple novel methods to inhibit induction and signalling of pro-inflammatory 

cytokines, the induction of apoptosis, and other aspects of cellular defence 

against infection (Groskreutz e/ a/., 2010; Valarcher etal., 2003). 

1.3.1.2 Non-structural proteins 

The NS1 and NS2 proteins are relatively small, with the NS1 and NS2 

proteins being 139 and 124 amino acids in length, respectively (Easton et al., 

2004). Deletion of the genes coding for NS1 and NS2, results in reduced viral 

replication in immune cells. These proteins play a very important role in 

attenuating host immune response. The NS1 and NS2 also activate pro-survival 

pathways in the infected cell, prolonging its survival and increasing viral yield 

(Bitko etal., 2007). 

1.3.1.3 Ma trix protein 
The viral nucleocapsid is surrounded by the M protein. Recent study, 

with other members of the Paramyxoviridae family, has shown that M protein at 

the later stages of infection is predominantly accumulated in the cytoplasm 

where it is able to bind to viral RNA. This finding suggests that the M protein 

may be capable of silencing viral RNA synthesis in preparation for packaging 

(Ghildyal et al., 2003) as well as inhibition of the nuclear gene transcription 

(Ghildyal et al., 2005). As previously mentioned the N, P and L proteins were 

also found to be necessary for RNA replication (Collins et al., 1996). 

1.3.1.4 Viral envelope proteins 
The SH protein is a small integral membrane protein. The SH protein of 

RSV is the smallest of all Pneumoviruses, with a length of 64 amino acids 

(Easton et al., 2004; Teng et al., 2001). The function of the SH protein in RSV 

infection Is unclear, however, it has been suggested that its role may be in 

evading the host's immune system or in providing an ancillary role in virus-

mediated cell fusion (Rixon etal., 2005). A study has shown that in the absence 

of G protein, the SH gene has enhanced the rate of virion entry, cell-to-cell 

fusion and plaque size (Techaarpornkul et al., 2001). The SH protein shares 

structural features with a class of small hydrophobic proteins, the viroporins 



(Gonzalez and Carrasco, 2003), that insert themselves into the membrane of 
infected cells and induce permeability to ions and small molecules. In line with 
this hypothesis, SH increases membrane permeability when expressed in 
bacteria (Perez et al., 1997) and when incorporated into artificial membranes it 
forms pentameric and hexameric pore-like structures with cation channel-like 
activity (Carter et al., 2010; Gan etal., 2008). 

The G protein is an attachment protein responsible for binding of RSV to 
the cell (Karron et al., 1997a). The G protein is heavily glycosylated and helps 
the virus to evade host immune response by preventing the virus from being 
recognised as a foreign antigen (Domachowske and Rosenberg, 1999). An un-
glycosylated region in the centre of the protein contains four cysteines held 
together by disulfide bonds in a cysteine noose (Gorman et al., 1997; Johnson 
et al., 1987b; Langedijk et a!., 1996), followed by a heparin-binding domain 
(HBD) (Feldman et al., 2000; Feldman et al., 1999). While in the endoplasmic 
reticulum (ER), RSV G protein is modified by the addition of multiple N-linked 
carbohydrate chains resulting in an increase in the molecular mass of G protein 
from 32 kilodaltons (kDa) to 60kDa. Maturation of the N-linked carbohydrates of 
the G protein occurs in the Golgi compartment, where a large number of O-
linked carbohydrate chains are added, resulting in an 84-92kDa mature protein 
(Fernie etal., 1985; Lambert, 1988; Levine etal., 1987; Wertz etal., 1985). The 
size variation of the G protein is presumed to be, in part, due to the difficulty in 
sizing heavily glycosylated molecules and variations in molecular mass 
markers. It is possible that a sheath of host-specified carbohydrate helps shield 
the G protein from immune recognition. Whether due to carbohydrates, its 
unfolded structure, or some other reason, G is a less efficient neutralisation and 
protective antigen compared to F (Olmsted et al., 1986), and most individual 
monoclonal antibodies against G do not neutralise infectivity (Martinez et al., 
1997). The N- and 0-linked glycosylation sites are clustered in two regions of 
the G protein, with amino acid content reminiscent of mucins. These two mucin-
like domains in G are highly variable and contain multiple epitopes that are 
poorly conserved between strains. These two domains are separated by a 
central region to which conserved epitopes have been mapped (Martinez et al., 
1997). This conserved region includes a segment of 13 highly conserved amino 
acids that overlaps with a segment containing four closely spaced, invariant 
cysteine residues that are disulfide-bonded to form a cysteine noose (Gorman 



et a/., 1997; Johnson et al., 1987b). The downstream pair of cysteine residues 
conform to a CX3C motif that is embedded to the CXC3 chemol<ine fractalkine 
sequence (Tripp et al., 2001). 

Studies in the mouse model comparing wild type with a mutant RSV 
lacking the CX3C motif revealed that fractalkine mimicry reduces the pulmonary 
influx of immune cells involved in innate and adaptive responses to RSV 
infection (Harcourt et al., 2006; Tripp et al., 2000; Tripp et al., 2001). In addition, 
the cysteine-rich domain of G was shown to inhibit activation of toll-like receptor 
(TLR)-2, 4, and 9 in human monocytes, thus suppressing innate immune 
response (Polack et al., 2005). In addition to these immune evasion strategies 
G protein in its secreted form, functions as an antigen decoy to help the virus 
escape neutralising antibodies and reducing antibody-mediated clearance by 
immune cells (Bukreyev et al., 2008). Taken together these immune evasion 
strategies benefit not only virus replication but also viral persistence (Li et al., 
2006). 

The F protein fuses the viral envelope with the host membrane, allowing 
the entrance of the viral nucleocapsid into the cell cytoplasm. It is also 
responsible for cell-to-cell fusion and the formation of syncytia (Walsh and 
Hruska, 1983). Syncytia are a mass of cytoplasm within a cell membrane, 
containing multiple nuclei and resulting from cell-to-cell fusion. Fusion of the 
virus to the cell membrane and formation of syncytia, are characteristic 
cytopathic effect of RSV, and are mediated by the viral F protein. It is still 
unclear what advantage RSV gains from forming syncytia through cell-to-cell 
fusion. However, it is believed that RSV may use syncytium formation to enable 
quick spread to neighbouring cells and/or to evade host defence mechanisms 
(Gower et al., 2005). While penetrating through the cell membrane, RSV causes 
changes in the surface morphology of infected cells (Krzyzaniak et al., 2013). As 
a result, the cell surface is covered with filamentous protrusions, which are 
coated with the viral envelope proteins F and G, suggesting a potential role for 
both proteins in forming cell-to-cell contact and syncytium formation (Gower et 
al., 2005; Yao and Compans, 2000). The RSV F protein is necessary for 
infection, as mutant RSV lacking F protein cannot Infect cells on Its own but 
rather requires a helper virus to gain entry into cells (Batonick et al., 2008). The 
F protein is post-synthetically cleaved and has other structural similarities to the 



F proteins of other paramyxoviruses. In addition, some monoclonal antibodies 

directed to the F protein inhibit syncytium formation (Walsh and Hruska, 1983), 

confirming its role in fusion. The RSV-F protein has been shown to interact with 

intercellular adhesion molecule (ICAM)-1 expressed on the cell surface. 

Al though it has not been definitively shown to be essential in viral fusion, ICAM-

1 has been reported to bind the F protein and as such may still have a role in 

fusion (Behera etal., 2001). 

1.3.2 RSV receptors 
RSV binding and entry is hypothesised to be a two-step process: the first 

involving the attachment of the virus to the cell membrane, which may be 

enhanced by electrostatic interactions with cellular glycoproteins/heparin and 

the viral G protein, and the second involving fusion to the cell membrane 

mediated by the viral F protein and a specific cellular fusion receptor (Tayyarl et 

al., 2011). Proposed RSV receptors Include ICAM-1 (Behera et ai, 2001), 

heparin (Krusat and Streckert, 1997), annexin II (Krusat and Streckert, 1997), 

TLR-4 (Marr and Turvey, 2012) and fractalkine receptor, CX3CR1 (Harcourt et 

al., 2006). 

Binding of viral G protein in an electrostatic fashion to the cell surface 

may be the first step in efficient viral attachment prior to fusion via nucleolin. 

First described in 1973, nucleolin is a multifunctional protein found throughout 

the cell and primarily localised within the nucleolus (Bugler et al., 1982; Orrick et 

al., 1973). Nucleolin is involved in diverse biological processes including cell 

proliferation, growth, cytokinesis, replication, embryogenesis and nucleogenesis 

and is considered necessary for cell survival and proliferation (Srivastava and 

Pollard, 1999). Al though nucleolin is typically thought of first and foremost as an 

intranuclear protein (Tajrishi et al., 2011), there is abundant evidence that it can 

also be found within the cytoplasm and on the cell surface and may play the 

role of a "molecular shuttle" between these compartments (Hovanesslan et al., 

2010; Srivastava and Pollard, 1999). The actin cytoskeleton modulates the 

entry of substances via nucleolin into the cytoplasm (Hovanesslan et al., 2010). 

Nucleolin also plays a role In viral replication and intracellular trafficking of viral 

components. For example nucleolin is required for herpes simplex virus (HSV) 1 

DNA replication (Calle et al., 2008) and also for trafficking of the herpes simplex 



virus US11 protein (small HSV phosphoprotein) out of the nucleus (Greco et al., 

2012). 

Viruses initially activate the innate immune system, which recognises 

viral components such as genomic DNA, single-stranded RNA and viral proteins 

through pattern-recognition receptors (PRRs) (Diebold et al., 2004; Hell et al., 

2004). One group of PPRs involved in RSV infection are TLRs that are 

important for the production of type I interferons (IFNs) (Edelmann et al., 2004; 

Ishii et al., 2006; Stetson and Medzhitov, 2006). Detection of viral components 

by TLRs in immune cells activates intracellular signalling cascades result which 

in turn in secretion of type I IFNs, proinflammatory chemokines and increased 

expression of costimulatory molecules such as CD (cluster of differentiation) 40, 

CD80 and CD86 (Hochrein etal., 2004; Hoebe etal., 2003; Honda etai, 2003). 

TLRs can be divided into subfamilies primarily recognising related pathogen-

associated molecular patterns; TLR-1, TLR-2, TLR-4, and TLR-6 recognise 

lipids, whereas TLR-3, TLR-7, TLR-8, and TLR-9 recognise nucleic acids (Akira 

et al., 2006; Latz et al., 2007). Intriguingly, some TLRs are endowed with the 

capacity to recognise structurally and biochemically unrelated ligands, as 

exemplified by the ability of TLR-4 to recognise such divergent structures such 

as liposaccharide, the fusion protein of RSV (Akira et al., 2006). The most 

important cell types expressing TLRs are antigen presenting cells (ARCs), 

including macrophages, dendritic cells (DCs) and B lymphocytes (Janssens and 

Beyaert, 2003). Recently, transcripts encoding TLR-1, TLR-4, TLR-7, TLR-9, 

and TLR-10, all of which coordinate innate and acquired immune responses, 

were shown to be expressed constitutively by eosinophils (Nagase et al., 2003) 

which as previously mentioned play very important role in RSV infection. 

Although TLR-3 and TLR-7 both recognise viral RNA, TLR-3 uses toll-

interleukin receptor domain-containing adaptor-inducing IFN-P (TRIF) and does 

not require myeloid differentiation primary response gene 88 (MyD88), while 

TLR-7 signalling is MyDSS dependent (Diebold et al., 2004). These differences 

in adaptor usage, along with the activation of different IFN regulatory factors 

(IRFs), are proposed to provide specificity in functional outcome (O'Neill et al., 

2003). In addition, the molecular characterisation of eosinophils supports the 

concept that these cells may contribute to the regulation of both, the innate and 

the adaptive immunity. As there is only limited direct evidence demonstrating 

eosinophil functional role in controlling of viral infection (Domachowske et al., 



1998a; Rosenberg and Domachowske, 2001), more research is required to 

elucidate the role of eosinophils in RSV infection. 

Feldman et al. (2000) have reported in their study that cp-52, the RSV 

mutant lacking its SH and G genes, binds to glycosaminoglycan (GAGs) on the 

cell surface of the target cell in a manner similar to wild type RSV (Feldman et 

al., 2000). Furthermore, they found that the RSV F protein, like its G protein, 

binds to heparin-agarose, though the relative affinities were not explored. These 

results suggest that in the absence of the G protein, the F protein may be able 

to attach the virion to cellular GAGs initiating viral infection, highlighting the 

importance of heparan sulfate (HS) as an RSV receptor enabling RSV 

propagation. Li et al. (2006) have also show/n that RSV is capable of infecting 

neuronal cells in the lungs of mice, however the RSV infection was reduced in 

the absence of the RSV G protein and the G protein CX3C motif (Li et al., 

2006). 

1.3.2.1 Viral interaction with GAGs 

1.3.2.1.1 Proteoglycans and GAGs 

Proteoglycans (PGs) are important components in the extracellular 

matrix (ECM) and on the cell surface. They are composed of a core protein with 

one or more covalently O-linked GAG chain(s) (Bernfield et al., 1999; Kjellen 

and Lindahl, 1991). GAGs are linear polysaccharide composed of repeating 

disaccharide units (Yamada and Kawasaki, 2005). The GAGs are divided into 

four classes: 1. HS/heparin; 2. Chondroitin sulfate (OS) and dermatan sulfate 

(DS); 3. Keratan sulfate (KS); 4. Hyaluronan (Figure 1.3) (Kjellen and Lindahl, 

1991). 

HS and heparin are composed of repeating disaccharide units of 

hexuronic acid (HexA) and glucosamine (GlcN) in -HexA/1,4-GlcN1,4- structure 

with sulfation at various positions (Lindahl and Li, 2009). Heparin, an 

intracellular GAG, is synthesised and stored in mast cells. Heparin shares high 

similarity with HS in structure, but is more sulfated. The biological functions of 

heparin in mast cells are not entirely clear, however it is known that heparin is 

crucial for expression and storage of histamine, proteases and other 

inflammatory mediators within mast cells granules (Kolset and Zernichow, 

2008). HS is generally attached to core proteins, forming heparan sulfate 



proteoglycan (HSPG). In this form, HS binds to a variety of protein ligands 

regulating a wide variety of biological processes including angiogenesis, blood 

coagulation, tumour metastasis and viral attachment (Jones et a!., 2005; 

Nangia-Makker et al., 2000). 

on HNR' OR HNAc 
Heparan sulfate/Heparin Chondroitin sultate/Dermatan sulfate 

Cf^R CH,OR CĤ OH 

5h m̂ Ac OH HNAc 
Keratan sulfate Hyaluronan 

Figure 1.3. Disaccharide structure of glycoaminoglycans 

R represents H or SO -̂, R' represents H, COCH3 or SO^-; GIcA of heparan sulfate/heparin and 

chondroitin sulfate can be epimerised to IdoA (in grey) (Kjellen and Lindahl, 1991). 

GAGs found in the intracellular vesicles and on the outer face of the 

plasma membrane, are found to act as virus receptors. Several studies have 

show/n that some bacteria and viruses use GAGs, particularly HS for attachment 

to, and entry into, cultured immortalised cells (Baldassarri et al., 2005; 

Bousarghin eta!., 2005; Jones ef a/., 2005; Rue and Ryan, 2002). 

A number of viruses have demonstrated a great affinity for cell HSPGs, 

playing important roles in virus attachment and entry (Lee et al., 2006). HS has 

been shown to bind the RSV G protein (Krusat and Streckert, 1997) on the cell 

surface of the human epidermoid cancer derived (HEp-2) cells, however it turns 

out that human airway epithelium does not express HS on the apical surface, 

the site of RSV attachment and cellular entry (Duan et al., 1998). Therefore, the 

binding to heparin by the G protein may simply serve to demonstrate that the G 

protein has a general affinity for negatively charged carbohydrates on the cell 

surface (Guo et al., 2008). Peptides from a conserved region of the G protein 

bind to heparin and to target cells, partially inhibiting viral infection (Feldman et 

al., 2000). Furthermore, the G protein has been shown to bind immobilised 



heparin (Krusat and Streckert, 1997). These findings further support the idea 
that the G protein is the RSV attachment protein and point to cell surface GAGs 
as the llgand. RSV infection is mediated partly by an initial interaction between 
attachment glycoprotein and highly sulfated heparln-like GAGs located on the 
cell surface (Grim et al., 2007; Techaarpornkul et al., 2002). Also, it has been 
suggested that the presence of cell surface GAGs containing iduronic acid, 
such as HS and chondroitin B, is required for efficient RSV infection in cell 
culture (Dong ef a/., 2013; Hallak etal., 2000b). 

HS mimetics, mimicking the role of heparin and heparan sulfate, have 
the ability to inhibit the virus binding to cells and their antiviral efficiency 
depends on their molecular w/eight and number of sulphated groups present. A 
study has used low molecular weight HS mimetics such as PI-88, a mixture of 
highly sulphated mannose containing di- to hexa-saccharides, to inhibit HSV 
infection of cells and cell-to-cell spread (Nyberg et al., 2004). Heparin, which is 
approximately six times larger than PI-88, appeared to be a better inhibitor of 
HSV infectivity, whilst PI-88 performed more efficiently in reduction of cell-to-cell 
spread of the virus (Nyberg et al., 2004). This is indicative of the importance 
that the size of the HS mimetics compound has on the Inhibition of intracellular 
transmission of HSV. PI-88 appears to inhibit HSV infection of cells by blocking 
the binding of the viral attachment glycoproteins to the cell surface (Nyberg et 
al., 2004). 

RSV interactions with cellular GAGs, cp-52 in particular, share 
similarities with other viruses, including alphaviruses (Byrnes and Griffin, 1998), 
flaviviruses (Chen et al., 1997), and herpes viruses (Neyts et al., 1992). 
Therefore, consideration of the model that was proposed for dengue virus 
binding to cells by Putnak et al. (1997) is appropriate (Putnak et al., 1997). This 
model suggests that the initial interaction of the dengue virus E glycoprotein 
with cell surface GAGs provokes a conformational change allowing E 
glycoprotein to interact with a putative high-affinity receptor, triggering 
endocytosis. In a similar scenario, RSV-F interaction with cellular GAGs could 
result in a conformational change that exposes the fusion peptide or allows 
RSV-F to interact with a putative high-affinity receptor required for fusion. RhoA 
is a small GTPase of the Ras superfamily that has been shown to interact with 
RSV-F both in vitro and in vivo (Pastey et al., 1999). Another study has shown 



that RhoA facilitates virus induced syncytium formation; however, whether 

RhoA is expressed on the cell surface and serves as the RSV receptor, remains 

unclear. Also, their preliminary findings suggest that an RSV mutant lacking G-

protein can still infect CHOpgs>4-745 cells, which are 99% GAG deficient, 

indicating that RSV F protein alone can infect cells by interacting with cellular 

membrane components other than GAGs (Feldman etal., 2000). 

In addition, dengue virus, a human pathogen that has re-emerged as an 

increasingly important public health threat, has been found to use HS for viral 

attachment (Chen et al., 1997). Heparin and the polysulfonate pharmaceutical 

suramin have been found to effectively prevent dengue virus infection of target 

cells, indicating that the envelope protein-target cell receptor interaction is a 

critical determinant of infectivity (Chen et al., 1997). 

Developing pharmaceuticals that inhibit target cell binding to the virus 

may also be an effective strategy for the treatment of RSV infection. These 

could harness the similarities observed in the cell binding mechanisms between 

dengue virus and RSV, specifically the interactions with cellular GAGs (Chen et 

al., 1997). 

1.4 IMMUNE RESPONSE TO R S V INFECTION 

Viral detection, clearance and the process of recovery from viral 

respiratory tract infection (as well as resistance to re-infection) is mediated by 

both the innate and adaptive host immune responses with cellular and humoral 

immune responses, acting directly to orchestrate viral clearance (Braciale et al., 

2012; Graham and Braciale, 1997). In animal models of RSV infection, both 

cytotoxic T cells and antibody responses play a pivotal role in RSV clearance 

from the lung (Braciale et al., 2012; Yoo et al., 2013). 

1.4.1 Adaptive immunity 

1.4.1.1 Cell-mediated immunity and T cell deficiency 
Cell-mediated immune response plays an important role in RSV 

clearance (Domachowske and Rosenberg, 1999). It is classified according to 

the expression of lymphocyte surface antigens into, CD8^ cytotoxic T 

lymphocytes (CTL) and CD4'- T helper (Th) cells. Both types of cells possess 

antiviral and immunogenic capabilities. 



CD4'' Th cells are subdivided into Th1, Th2 and Th17 lymphocytes based 

on their cytokine production profile. The Th1 subset is characterised by the 

production of IFN-y, IL-2, IL-12 and tumour necrosis factor alpha (TNF-a), while 

Th2-cells are characterised by the production of IL-4, IL-5, IL-10 and IL-13 

(McNamara and Smyth, 2002). In the murine model, induction of different CD4'' 

T cell responses may be dependent on the RSV antigen. It has been found that 

when mice are primed with vaccinia expressing F protein, a strong Th1 CTL 

response is induced (Graham etal., 2000). However, when mice are immunised 

with RSV G protein, a Th2 response is generated which is associated with 

eosinophilic infiltration into the lung following subsequent RSV challenge 

resulting in increased clinical disease symptoms (Graham et al., 2000). The 

third subset of 004"^ Th cells, Th17, differs from the other two subsets in terms 

of their requirements for differentiation and expansion factors and in their target 

pathogens. Th17 lymphocyte are characterised by production of IL-17, which is 

known to induce mucus production in the respiratory tract and increase the 

expression of polymeric Ig receptors that facilitate the release of IgA and IgM 

antibodies into the respiratory tract (Jaffar et al., 2009). Of the other cytokines 

produced byTh17 lymphocytes, IL-21 promotes Th17 proliferation and antibody 

production by B lymphocytes (Mitsdoerffer et al., 2010). Th17 lymphocytes are 

present in the respiratory tract and there is evidence that they play a key role in 

responses to fungal infections. These cells, however, also contribute to 

inflammatory disorders that afflict the respiratory tract, such as asthma and 

chronic obstructive pulmonary disease (COPD). Increased production of the 

Th17-related cytokines, such as IL-17A, IL-22 and IL-23 in COPD patients 

reflects the involvement of Th17 lymphocytes in initiating and driving the 

disease process (Di Stefano etal., 2009; Vargas-Rojas etal., 2011). In addition, 

excess IL-17 production has been reported in animal models and human 

patients has been associated with neutrophil dominated asthma and with 

cortisone-resistant severe AHR (Wilson et al., 2009; Zhao et al., 2010). Th17 

lymphocytes have also been implicated in effector mechanisms triggered in 

response to RSV and other types of respiratory viral infections (Faber et al., 

2012; Mukherjee et al., 2011). Mukherjee et al. (2011) study found that blocking 

of IL-17 significantly decreased viral load and altered cytotoxic CDS T-cell 

marker expression (Mukherjee et al., 2011). 



CDS"̂  T cells play a critical role in mediating RSV clearance. However, as 

RSV is a leading cause of severe virus induced respiratory disease in 

individuals over the age of 65, it is important to note that immune response 

varies depending on age. While it is clear that T cell immunity declines with age, 

it is not clear to what extent the CDS"̂  T cell response to RSV is altered. A study 

has found a decrease in the capacity of aged mice to induce a high magnitude 

acute CDS"̂  T cell response, resulting in prolonged viral replication. This would 

help explain the increased disease severity of RSV infection observed for aged 

individuals (Fulton et al., 2013). RSV-specific CD8'' lymphocytes are important 

in recovery and pathogenesis of RSV disease, however, a too vigorous 

response can be harmful (McNamara and Smyth, 2002). Therefore, the key to 

effective immunity is in T cells regulation (Braciale et al., 2012; Graham and 

Braciale, 1997). 

In a study of RSV-infected infants, no correlation was found between 

clinical disease parameters and the level of the virus specific CTL response in 

bronchoalveolar lavage (BAL) fluid or blood (Heidema et al., 2007). Moreover, 

only low numbers of T cells were detected in postmortem lung tissues of 

children with lethal RSV infections (Johnson et al., 2007; Welliver et al., 2007). 

In addition individuals with compromised T cell immunity can shed virus for 

months (Hall et al., 1986) with prolonged virus shedding also observed in nude 

or irradiated BALB/c mice (Cannon et al., 1987) and in mice depleted of both 

CD4^ and CD8'' cells (Graham et al., 1991). In wild type mice, an RSV-specific 

CDS'" T cell response provides protection against infection, but the effect is 

short-lived (Connors etal., 1991; Kulkarni etal., 1995). Experiments in the RSV 

mouse model have shown that T cells are necessary and sufficient for virus 

elimination and that T cell mediated immunopathology contributes significantly 

to the disease (Cannon et al., 1988; Graham et al., 1991; Ostler et al., 2002). 

However, RSV is not a natural pathogen of mice, and only a limited respiratory 

infection can be established after intranasal inoculation of virus at high titres 

(>10^ plaque forming units (pfu)) (Graham et al., 1988). The significance of 

these findings for human RSV infection is therefore unclear. 

Infection of mice with pneumonia virus of mice (PVM), a virus of the 

same genus as RSV, is increasingly used as a natural host experimental model 

for human RSV infection (Easton et al., 2004). PVM replicates to high titres in 



the mouse lung, causing a rapid onset of severe, and eventually fatal, 

granulocytic bronchiolitis at doses as low as lO^pfu (Domachowske et a!., 

2000a; Domachowske et al., 2002). Supporting a similarity in clinical 

presentation between RSV and PVM is evident in functional CTL inactivation 

observed in mice after PVM challenge (Bonville et al., 2003; Claassen et al., 

2005; Domachowske et al., 2001). A study using T cell deficient mice 

challenged with PVM showed that mice became chronic virus carriers in the 

absence of acute disease, illustrating the dual role of T cells for virus control 

and immunopathology (Frey et al., 2008). Controlled variation of host and viral 

parameters showed a tight balance between beneficial and detrimental effects 

of T cells but also revealed pathways of disease that appeared to be T cell 

Independent following high dose PVM infection (Frey et al., 2008). Earlier 

studies found that the innate immune response to PVM in C57BL/6 mice 

(Easton et al., 2004) resulted in a very poor pulmonary lymphocyte responses 

(Domachowske et al., 2000b) while in contrast analysis of BALB/c mice at later 

time points following infection showed significant CD8^ T-cell infiltrates 

(Claassen et al., 2005). This data indicates a potential PVM mediated functional 

inactivation of T cells as well varying responses depending on a genetic 

makeup. 

Analysis of the function of PVM specific T cells after re-stimulation with 

PVM infected APCs has resulted in a pulmonary T cell response to PVM that is 

comparable to other murine respiratory virus infections, including RSV (Ostler et 

al., 2001). This supports observations that functional silencing of T cells in the 

alveolar space may not be to impair virus control but represents a physiological 

mechanism to limit pulmonary inflammation rather than a viral escape strategy 

(Ostler and Ehl, 2002; Vallbracht et al., 2006). Frey et al. (2008) also showed 

that T cell deficient or T cell depleted mice could not eliminate PVM15 during an 

observation period of 49 days. They found that persisting virus titres in these 

chronically infected mice were almost 10-fold lower than peak titres, suggesting 

that T cell independent factors, e.g., components of the innate immune 

response, can provide some level of virus control but fail to eliminate the 

pathogen (Frey et al., 2008). These results mirror previous findings in human 

and murine RSV infection in that infants with congenital T cell deficiencies fail to 

eliminate RSV (El Saleeby et al., 2004; Fishaut et al., 1980; Hall et al., 1986), 

and depletion of T cells leads to persistent infection in BALB/c mice (Graham et 



a/., 1991). Adoptive transfer experiments have shown that T cells are necessary 

and sufficient to clear RSV from infected mice (Cannon et al., 1988; Cannon et 

al., 1987; Ostler et al., 2002). Similar to the RSV model (Graham et al., 1991), 

both CD4-' and CDS'" T cells contributed to the clearance of PVM from the lung 

and it w/ould be important to assess if this applies to human model as well. 

Limitations of the cell mediated immune response to RSV seem to be crucial to 

RSV evasion tactics of the immune system, short lived immunological memory 

and partial viral clearance. Further research into RSV infection using T cell 

deficient model is required to assess the degree of RSV inhibition of the 

adaptive immunity as well as if enabling of the enhanced innate immune 

response is able to compensate for the absence of adaptive immune 

components. 

1.4.1.2 Humoral immunity 
Humoral immunity is mediated by B lymphocytes, which are responsible 

for antibody production. The presence of maternal IgA antibodies, within 

colostrum, provides limited protection against RSV in breastfed infants 

(McNamara and Smyth, 2002). The amount of antibodies in the newborn is 

similar to maternal levels and declines slowly during the first month of life. 

Serum and secretory antibodies are produced in response to RSV infection 

however, the total amount of antibodies produced in infants is very low 

(Yamazaki et al., 1994). Antibody responses in young infants are often 

ineffective at neutralising virus as well as short lived compared to older 

individuals (Welliver et al., 1980). Immunologic immaturity contributes to limited 

innate and adaptive responses observed early on in life (Adkins et al., 2004; 

Levy, 2007). For example, the B cell response to RSV infection of young 

infants, which are less than 3 months of age, was found to have a biased 

antibody gene repertoire. Furthermore, it also expressed significantly reduced 

frequency of somatic mutations, limiting the host capacity to respond to new 

foreign antigens. These findings demonstrate how immature immunity 

contributes to the poor neutralising activity characteristic of responses in young 

infants (Williams et al., 2009). Furthermore, the immunosuppression by RSV 

specific maternal serum antibodies, present in young infants, have been shown 

to suppress both serum and secretory antibody responses to RSV infection, but 

did not suppress the cell mediated response or priming for a secondary 



antibody response (Crowe et al., 2001; Murphy et at., 1988). In contrast, a 

recent study examined a cohort of infants of less than 6 months of age with very 

low titres of RSV specific maternal antibodies and found that the titres of RSV 

neutralising serum antibodies, induced by primary RSV infection, were 

indistinguishable from those of individuals of 6-24 months of age (Shinoff et al., 

2008). This showed that, when the immunosuppressive effect of maternal 

antibodies is minimal, wild type RSV could induce a substantial antibody 

response even in young infants. 

1.4.2 Innate immune response 
The innate immunity is non-specific and provides the first line of defence 

against infection (Goldsby et al., 2003). The innate immune response recruits 

effector molecules and phagocytic cells rapidly to the site of infection through 

the release of cytokines and chemokines, however, it lacks immunological 

memory (McNamara and Smyth, 2002). In the lung, pulmonary surfactant is the 

first line of defence producing a surface active complex of lipids and proteins 

that lines the alveolar surface. However, it has been shown that the 

concentration of surfactant proteins (A, B and D) is significantly reduced in 

severe RSV infection (Kerr and Paton, 1999). Surfactant protein A mediates 

processes such as opsonisation and complement activation. In vitro, surfactant 

protein A has been shown to neutralise RSV by binding to the F protein 

(McNamara and Smyth, 2002). 

In RSV infection, the most important cells of the innate immune response 

are neutrophils, macrophages, DCs, eosinophils and natural killer (NK) cells. 

Literature suggests that DCs, as the primary APCs, are the first to encounter 

RSV and are likely to carry viral antigen from the respiratory tract to lymph 

nodes where DCs encounter and activate naive virus specific T cells (Braciale, 

2005). Macrophages and neutrophils are phagocytic cells whose main function 

is to engulf and destroy viruses and other foreign pathogens (Message and 

Johnston, 2001). Macrophages play an important role in controlling the immune 

response to viral infection. Both macrophages and epithelial cells encounter 

RSV in the airways (Kimpen, 2001b). Recent studies in mice showed that 

macrophages provide an immediate response of proinflammatory cytokines 

following RSV infection (Pribul et al., 2008), and are a major producer of type I 

I FN (Kumagai et al., 2007). Macrophages appear to be important both in 



restricting the virus and in clearing debris that othenwise can promote further 

damage and inflammation (Reed et a!., 2008). During RSV infection, 

macrophages secrete cytokines (e.g. IL-1p, IL-6, IL-8, IL-10, IL-12 and TNF-a) 

which further upregulate the immune response, increasing vascular permeabil i ty 

and recruiting and activating lymphocytes, neutrophils, natural killer cells and 

eosinophils to the site of infection (McNamara and Smyth, 2002). These 

activated cells have been found to secrete a number of chemokines whose 

primary function is the movement of cells within tissue and across endothelial 

barriers. Chemokines include monocyte chemoattractant protein (MCP)-3, 

MCP-4, regulated upon activation normal T-cell expressed and secreted 

(RANTES), macrophage inf lammatory protein 1a (MIP-1a) and eotaxin (Foster 

etal., 1996). 

Neutrophils are the predominant airway leukocytes in RSV bronchiolitis 

and they are activated in the presence of infection. A recent study of infants 

hospitalised for severe RSV disease showed that the appearance of neutrophil 

precursors in the peripheral blood, which precedes their influx into the lungs, 

closely fol lowed the peak of virus shedding and was coincident with clinical 

symptoms, implying possible roles both in protection and disease (Lukens etal., 

2010). 

Up until the last decade, NK cells were unique in being the only identified 

innate cell derived from a lymphoid progenitor. Recent developments have now 

classified NK cells as the earliest identified member of a family of hematopoietic 

effector cells termed innate lymphoid cells (ILCs) that are dependent on the 

transcription factor Id2. Currently, ILCs can be broadly classified into three 

groups: (a) NK cells, (b) the retinoic acid receptor-related orphan receptor y t 

(RorYt)-dependent ILCs (lymphoid tissue inducer (LTi) cells, ILC17, ILC22), and 

(c) ILC2 cells. These groups have recently been named ILC1, ILC3 and ILC2 

respectively. These various ILCs have now been implicated in protection 

against infectious organisms, organogenesis of lymphoid tissue, t issue 

remodell ing during wound healing and homeostasis in t issue stromal 

cells.(Cherrier et ai, 2012; Hwang and McKenzie, 2013; Moro et a!., 2010; Neill 

et ai, 2010; Price et al., 2010; Spits and Di Santo, 2011). Because the key 

cytokines secreted by some ILCs mirror those of various T helper cell 

populations, it has been proposed that ILCs may represent the innate 



counterparts of T helper lymphocytes, at least in terms of cytokine production 

(Cherrier et al., 2012; Spits and Di Santo, 2011). NK cells (or ILC1) are 

recruited locally during the initial phases of virus infection (Hussell and 

Openshaw, 1998). NK cells accumulate in the lung in the first few days of RSV 

infection and produce cytokines that activate specific T cells. In addition, NK 

cells are responsible for most of the early production of IFN-y, found to be 

important in preventing the development of lung eosinophilia (Hussel et al., 

1997a; Hussell and Openshaw, 1998). The main function of NK cells is to 

recognise and destroy virus infected cells on the basis of alterations that occur 

on the surface proteins on the normal cell (Message and Johnston, 2001). The 

ILC2 cells were independently discovered in 2010 by three separate groups, 

and were called nuocytes, natural helper cells (NHCs), and innate type 2 helper 

(Ih2) cells (Moro et al., 2010; Neill et al., 2010; Price et al., 2010). Using a 

combination of flow cytometry and microarray analyses, ILC2 cells were shown 

to lack the expression of lineage defining surface markers for T cells, B cells, 

natural killer T (NKT) cells, DCs, macrophages, neutrophils, eosinophils, mast 

cells, basophils, and lymphoid tissue inducer (LTi) cells. ILC2 cells share a 

number of surface and functional similarities (Saenz et al., 2010) and variability 

of surface expression markers may be attributed to the different tissues these 

ILC2 cells have been identified in: lungs, intestine, liver and bone marrow 

(Brickshawana etal., 2011; Chang etai, 2011; Mjosberg etal., 2011; Monticelli 

etal., 2011; Wong etal., 2012; Yasuda etal., 2012). All identified ILC2 cells are 

lineage negative, respond to treatment with either IL-25 and/ or IL-33, and can 

produce type 2 cytokines (IL-5 and/or IL-13). A report of particular interest by 

Mjosberg et al. (2001) characterised a possible human equivalent of mouse 

ILC2 cells (Mjosberg etal., 2011). These human type 2 ILC cells share a similar 

phenotype, function with mouse ILC2 cells, are found in the fetal and adult lung 

and gut tissues. They also found these cells present in the peripheral blood, 

expressing the chemokine receptor type (CCR) 6 however, not producing type 2 

cytokines. This suggests that human ILC2 cells may initially be released into the 

bloodstream in an inactivate form after which they home into the lung and gut 

tissue. There, they may mature, becoming activated in situ to start producing 

type 2 cytokines (Mjosberg et al., 2011). Type 2 cytokines, such as, IL-25 and 

IL-33, are important in ILC2 cells activation and subsequent effector cytokines 

production. IL-25 (IL-17E) is a member of the IL-17 family that is associated 



with Th2-like inflammation and disease (Fort et al., 2001; Lee et al., 2001). IL-
25 mRNA transcripts are produced in Th2 cells and lung epithelial cells while 
the protein has been reported to be produced by alveolar macrophages, mast 
cells, eosinophils, and basophils (Angkasekwinai etal., 2007; Ikeda etal., 2003; 
Kang et al., 2005). IL-25 upregulates the production of type 2 cytokines through 
the activation of eosinophils, mast cells, ILC2 and Th2 cells (Kondo et al., 2008; 
Neilland McKenzie, 2011). 

Eosinophils play a specialised role in innate host defence as the potential 
exists to mediate direct killing via the release of granule associated cytotoxic 
proteins and the eosinophil ribonucleases (RNases). Also, RSV infection of lung 
epithelial cells stimulates the expression of the eosinophil activating cytokines, 
IL-5 and IL-4 secreted by mucosal lymphocytes and chemokines such as 
eotaxin, RANTES and MIP-1 a secreted by RSV-infected epithelial cells 
(Matsuzaki et al., 1996; Olszewska-Pazdrak et al., 1998a). TLRs also play an 
important role in innate immunity and eosinophil activity, with eosinophils 
expressing TLR-1, TLR-4, TLR-7, TLR-9 and TLR-10 (Nagase et al., 2003). 
Figure 1.4 summarises the innate and adaptive immune response to RSV 
primary infection and re-infection, as discussed above. 
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Figure 1.4. Detailed innate immune response following respiratory 
syncytial virus (RSV) infection 

Upon entry into the lungs, RSV virion is met by the first line of immune defence, pulmonary 

surfactants. RSV virion can be eliminated at this point how/ever if it manages to evade this 

defence system, RSV infects epithelial cells. Infection induces the release of cytokines and 

chemokines resulting in eosinophil recruitment from the blood into the lung tissue. In the 

meantime, RSV virion is recognised by dendritic cell or eosinophil via Toll-like receptor (TLR)4 

interactions with RSV glycoproteins. T helper (Th) cells once activated differentiate into Th1 or 

Th2 cell. In the case of RSV infection, this usually leads to Th differentiation into Th2 cell. 

Activated Th2 cells also release cytokines and chemokines, which can be upregulated (in black 

letters) or downregulated (red letters), resulting in activation of other immune cells. This process 

leads to eosinophil degranulation resulting in a granular content release and antiviral activity. 

Abbreviations defined: Regulated on Activation, Normal T Cell Expressed and Secreted 

(RANTES), interleukin (IL), macrophage inflammatory protein (M\P)-: a, granulocyte-macrophage 

colony-stimulating factor (GM-CSF), innate lymphoid cell type 2 (ILC2), monocyte chemotactic 

protein 1 (MCP-l)interferon (IFN), tumour necrosis factor (TNF), eosinophil cationic protein 

(ECP), eosinophil derived neurotoxin protein (EDN), eosinophil peroxidase, major basic protein 

(MBP) and reactive oxygen species (ROS). 

1.5 EOSINOPHILS 

1.5.1 Eosinophil development and function 
Eosinophils are multifunctional leukocytes involved in a wide variety of 

inflammatory responses, as well as being modulators of innate and adaptive 

immunity (Rothenberg and Hogan 2005). These highly motile granulated 

leukocytes have bi-lobed nucleus (Figure 1.5.) and are derived from CD34^ 

haematopoietic progenitor cells in the bone marrow (Rothenberg, 2004). 

Eosinophils play an important role in biological processes such as; post-

pubertal mammary gland development (Gouon-Evans and Pollard, 2001), 

oestrus cycling (Gouon-Evans and Pollard, 2001), organ rejection (Nagral et al., 

1998), and allergic inflammatory responses (Wardlaw et al., 1986) protection 

against viral (Barends et al., 2004) and parasitic infections (Klion and Nutman, 

2004). 
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Figure 1.5. Eosinophil structure 

The bi-lobed structure (in purple) represents the eosinophil nucleus containing the 

deoxyribonucleic acid, involved in transcription of information used for nnaintaining the role of 

eosinophils in innate Immunity. The other structures are cytoplasm, cell surface membrane and 

secretion granules: major basic protein (MBP), eosinophil cationic protein (ECP) eosinophil 

derived neurotoxin (EDN) and eosinophil peroxidase (EPO) (Rothenberg and Hogan, 2005), 

Eosinophils in the bone marrow mature for eight days under the control 

of transcription factors, erythroid transcription factors (GATA-1 and GATA-2) 

and CCAAT-enhancer-binding proteins (C/EBPs) (Rothenberg, 2004). A 

number of other inflammatory mediators have been implicated in regulating 

eosinophil accumulation at the site of infection and these include IL-1, IL-3, IL-4, 

IL-5, IL-13 and granulocyte-macrophage colony-stimulating factor (GM-CSF) as 

well as the chemokines; RANTES, MCP-3, MCP-4, MIP-1a, eotaxin-1, eotaxin-

2, eotaxln-3 and lipid mediators (platelet-activating factor (PAP) and leukotriene 

(LT) C4) (Foster etal., 1996). 

1.5.2 Adhesion and migration 
Recruitment of circulating eosinophils from the blood stream into the 

mucosa involves several steps tightly regulated by chemoattractants, cell 

adhesion molecules (selectins and integrins) and Ig-like adhesion molecules. 

Firstly, eosinophils are recruited from the blood by vascular endothelial selectins 



to the inflamed endothelium. This process is closely followed by the adherence 

of eosinophils to the vascular endothelium through the adhesion molecule 

activation. Eosinophils then migrate to the inflamed site (Desreumaux and 

Capron, 1996). Once recruited to sites of allergic inflammation, eosinophils 

become activated by signals produced through the Th2-mediated cascade and 

are thought to induce disease via the release of proinflammatory molecules and 

granular proteins (Foster et al., 2002). 

Adhesion of eosinophils also occurs in the presence of molecules from 

the integrin family such as very-late-antigen-4 (VLA-4) molecules, pi integrins 

and (32 integrins (Bochner and Schleimer, 1994). VLA-4 is a receptor expressed 

by eosinophils that binds to vascular cell adhesion molecule 1 (VCAM-1) on in 

the endothelium (Symon et al., 1994). VCAM-1 on endothelial cells Is 

upregulated by IL-4 and IL-13. These two cytokines play an Important role in 

allergic inflammation, and their increased expression was found to enhance 

eosinophil recruitment (Kita and Gleich, 1996). IL-13 is particularly important as 

it regulates multiple features of asthma, including IgE production, mucus 

overproduction, eosinophil recruitment and survival, AHR and expression of 

adhesion molecules and chemokines (Pope ef a/., 2005). 

1.5.3 Trafficking of eosinophils 
Of all the cytokines implicated in modulating leukocyte recruitment, only 

IL-5 and eotaxin selectively regulate eosinophil trafficking (Rankin et al., 2000). 

IL-5 regulates growth, differentiation, activation and survival of eosinophils. 

However, both IL-5 and eotaxin provide an essential signal for eosinophil 

expansion and mobilisation from the bone marrow into the lung following 

allergen exposure (Collins et al., 1995). The mature cells shed L-selectin and 

migrate from the bone marrow to the blood (Gleich, 2000). 

The finding that IL-4 and IL-13 are potent inducers of eotaxin by a signal 

transducers and activators of transcription (STAT)-6 dependent pathway 

provides an integrated mechanism to explain eosinophilia associated with Th2 

responses (Kaplan et a!., 1996; Takeda et al., 1996). Currently there is an 

increased focus on the importance of arachidonic acid metabolites, especially 

LTB4, LTC4, LTCD4 and LTE4, and prostaglandin (PG) D2, on eosinophil 

activation. Notably, the LT type 1-receptor antagonists (now approved for 



asthma therapy), have been shown to reduce blood and lung eosinophilia 

(Tager et a!., 2000). A study has shown that mice with the targeted deletion of 

the LTB4 receptor also have markedly reduced allergen-induced eosinophilia 

(Tager et al., 2000). Furthermore, eosinophils were also found to express high 

levels of the high-affinity PGD2 type II receptor. This receptor, also expressed 

by basophils and Th2 cells, appears to co-mediate Th2 cell and 

eosinophil/basophil recruitment. Eosinophils have also been shown to express 

high levels of histamine receptor 4 which mediates eosinophil chemoattraction 

and activation in vitro (O'Reilly etal., 2002). 

1.5.4 Proinflammatory and cytotoxic effects 
Eosinophils are a potent source of proinflammatory mediators. These 

include cytotoxic proteins stored in eosinophil granules, lipid mediators newly 

formed following eosinophil activation, cytokines, chemokines, various 

eosinophil proteases and components of the respiratory burst (rapid release of 

reactive oxygen species), including superoxide and hydrogen peroxide (Walsh, 

2001). 

Eosinophil peroxidase (EPO), an abundant heme protein secreted from 

activated eosinophils, plays a central role in oxidant production by eosinophils 

(MacPherson et al., 2001; Wu et al., 1999). It is a member of the mammalian 

peroxidase subfamily and amplifies the oxidising potential of hydrogen peroxide 

produced during the respiratory burst by using it as a co-substrate to generate 

cytotoxic oxidants (MacPherson etal., 2001; Wu etal., 1999). 

Eosinophil catlonic protein (ECP) Is a major component of the large 

secretory granules of human eosinophilic leukocytes (Domachowske et al., 

1998a). Gleich et al. (1986) were the first to note that the N-terminal of both 

ECP and eosinophil derived neurotoxin (EDN) showed distinct similarities to 

RNase A, a bovine ribonuclease that has since been identified as the prototype 

of the extensive gene superfamily (Beintema, 1997). Therefore, ECP and EDN 

are classified as ribonucleases having both neurotoxic and helminthotoxic 

activities, with EDN being more active than ECP (Gleich et al., 1986; Slifman et 

al., 1986). 

Major basic protein (MBP) is localised to the core of the eosinophil 

granule while EPO, ECP and EDN are localised to the eosinophil granule matrix 



(Gleich, 1996). MBP is a potent toxin which induces damage to various 

parasites, kills bacterial and nnammalian cells, causes histamine release from 

basophils and mast cells, and activates neutrophils, platelets and eosinophils 

themselves (Kita etal., 1995). 

Eosinophil cytotoxic proteins are released through one of the following 

three mechanisms: classical exocytosis, whereby secondary granules fuse 

directly with the plasma membrane of the cell, to release their entire contents 

into the extracellular environment (Nusse et al., 1990); piecemeal degranulation 

(PMD), whereby small vesicles bud from the secondary granules and 

subsequently transport a subset of the granule proteins to the cell surface, 

resulting in the progressive loss of secondary granule constituents (Dvorak et 

al., 1992; Dvorak et al., 1991); and cytolysis, a highly organised process of cell 

death, where loss of the plasma membranes integrity leads to the release of 

cellular contents (Erjefalt et al., 1998). The release of these cationic proteins 

and associated oxidants assists in the clearance of parasitic infection (Barnes et 

al., 1998; Gleich and Loegering, 1984) and may assist in the clearance of viral 

infections. Eosinophils also induce the release of an array of inflammatory 

mediators and cytokines (e.g. IL-2, IL-4, IL-5, and IFN-y) (Table 1.1) from 

epithelial cells, APGs or T cells, leading indirectly to cytotoxicity. 



Table 1.1. Key factors involved in eosinophil-mediated immunity 
Factors Full name of factors Key observations References 

PAF Platelet activating factor 

Enhanced leukotriene 
C4 release resulting in 

eosinophils influx; 
induces eosinophil 

chemotaxis 

(Dimova-Yaneva 
et a!., 2004; 

Wardlaw et al., 
1986) 

IL-2 Interleukin (IL)-2 Induces eosinophilia in 
vivo 

(Barnes etai., 
1998) 

IL-3 Interleukin (IL)-3 

Stimulates colony 
formation in 

eosinophils; induces 
eosinophilia in vivo 

(Foster et al., 
1996) 

IL-4 Interleukin (IL)-4 

Stimulates 
immunoglobulin class 

switching to 
immunoglobulin E; 

involved in elimination 
of parasitic infection; 

eosinophil growth 

(Imai et a/., 2001) 

IL-5 Interleukin (IL)-5 

Induces eosinophil 
growth, differentiation 

and maturation; 
eosinophil release from 
the bone marrow; can 

induce eosinophilia 

(Collins et al., 
1995) 

IL-6, IL-8, 
IL-10, IL-12, 

TNF-a 

Interleukin (IL)-
6;lnterleukin (IL)-8; 
Interleukin (IL)-10; 
Interleukin (IL)-12; 

Tumour necrosis factor 
(TNF)-alpha 

Eosinophil recruitment; 
growth and 

differentiation 

(McNamara and 
Smyth, 2002) 

IL-12, IFN-Y Interleukin (IL); Interferon-
gamma 

Reduces eosinophil 
influx after allergen 

exposure 

(Barnes etai, 
1998) 

IL-13 Interleukin (IL)-13 Eosinophil recruitment 
and survival 

(Pope et al., 
2005) 

RANTES, 
MIP-1 a, 
Eotaxin 

Regulated on Activation, 
Normal T Cell Expressed 
and Secreted (RANTES); 
Macrophage inflammatory 

protein (MlP)-alpha 

Eosinophil activation, 
chemotaxis & 
degranulation 

(Foster et al., 
2002; 

Rothenberg, 
2004) 

C/EBP,GM-
CSF, LTC4 

CCAAT-enhancer-blnding 
protein (C/EBP); 

Granulocyte-macrophage 
colony-stimulating factor 
(GM-CSF); Leukotriene 

(LT) C4 

Eosinophil chemotaxis 

(Foster et al., 
2002; 

Rothenberg, 
2004) 



1.5.5 Eosinophilia 
Eosinophilia occurs in a variety of disorders (Table 1.2.) and can range 

from nnild, to severe. Tlie most common cause of eosinophilia worldwide is 

helminthic infections, and the most common cause in industrialised nations is 

atopic disease such as allergic asthma (Rothenberg, 1998). 

Table 1.2. Disease associated witli eosinophilia (Adapted from Rothenberg, 1998) 

Type of 
Disease 

Eosinophilia 

Examples of Causes 
Type of 
Disease 

Peripheral 
Blood Tissue Examples of Causes 

Type of 
Disease Examples of Causes 

Respiratory Present or 
absent Present Eosinophilic pneumonitis, asthma (Foster et 

ai, 1996) 

Gastrointestinal Present or 
absent Present 

Inflammatory bowel disease, eosinophilic 
gastroenteritis, allergic colitis (Beeken et 

al., 1987; Jose etal., 1994) 

Allergic Present or 
absent Present 

Allergic rhinoconjuctivitis, asthma, eczema 
(Ahlstrom-Emanuelsson etal., 2004; Fauci 

etal., 1982) 

Systemic Present Present Idiopathic hypereosinophilic syndrome, 
vasculitis (Fauci etal., 1982) 

Three processes lead to eosinophilia: eosinophil rolling, adhesion and 

migration however; degranulation, the forth process depicted in Figure 1.6, is a 

result of eosinophilia itself at the site of infection. As described in Table 1.2 

eosinophilia has been associated with several health conditions. Accumulation 

of eosinophils, limited to specific organs, is a characteristic of particular 

diseases, including eosinophilic cellulitis or Well's syndrome. Additionally, 

eosinophilic pneumonias and Loffler's syndrome are also characterised by 

eosinophil infiltration and accumulation in the lung. Shulman's syndrome, which 

typically occurs in young adults, is another disease with characteristic 

eosinophil accumulation, with patients developing scleroderma-like skin 

indurations, predominantly on the extremities with joint contractures (Cottin and 

Cordier, 2005; Mosconi etal., 2002; Van derStraaten etal., 2006). 



o t 
n 
E Progenitor cell 

Growth and Differentiation 

lnterleukin-5 Eosinophil 

Rolling Adhesion 

Leuketrienes , ' ** Chemoldnes 

• • - A ? . 

Extracellular 
matrix 

Interleukin-S 

lnterleuldn-5 

SM -CSF 

Tcell SM-CSF 

Survival and Activation Tissue cells 

Figure 1.6. Processes involved in eosinophilia 

Eosinophilia is initiated by T helper (Tti) 2-mediated and/or innate lympiioid cell type 2 (ILC2) 

signals, namely interleukin-5 and eotaxin, driving tiie proliferation of eosinopiiils via ttie 

differentiation of progenitor cells in tiie bone marrow. Prolonged stimulation induces eosinopiiil 

mobilisation into tiie blood. Eosinophil recruitment from the blood involves rolling, adhesion and 

extravasation through the vascular endothelium, processes mediated by cell-surface integrins, 

selectins and adhesion molecules on the vascular endothelium and Th2-mediated 

chemoattractants. Eosinophils are then directed to the site of inflammation by chemokines and 

leukotrienes and induced to degranulation (Rothenberg, 1998). 



Most importantly, eosinophils are best characterised by their role in 

parasitic infections (Rothenberg, 1998), allergic asthma (Kariyawasam and 

Robinson, 2007) and recently, by their role in tumour eradication (Simson et a!., 

2007). These cells have also been found at the site of viral infection (Barends et 

al., 2004), however w/hether they actively contribute to antiviral immunity or are 

mere bystanders, continues to be a source of debate. 

1.5.6 Role of eosinophils in asthma and AHR 
Eosinophil infiltration into the lung tissue is believed to play a major role 

in promoting the pathophysiology associated with allergic airway disease, 

including inflammation and AHR (Busse and Lemanske, 2001). The release of 

the eosinophil cellular contents in response to allergen challenge in atopic 

asthma has been identified to contribute to AHR, which is an important 

pathophysiological hallmark of asthmatic decease (Ahlstrom-Emanuelsson et 

al., 2004; Kephart etal., 2010). The eosinophil cationic proteins, MBP and EPO 

have been found to induce both bronchoconstriction and AHR in the airways 

(Gundel et al., 1991), with MBP found to play a role in neurogenic inflammation 

contributing to modulation of the smooth muscle response (Fryer et al., 1997). 

Eosinophils are also the main source of LTC4, which undergoes enzymatic 

cleavage to produce two metabolites LTD4 and LTE4. These products can 

induce mucus hypersecretion, AHR, oedema and bronchoconstriction 

(Kariyawasam and Robinson, 2007). These findings suggest that eosinophils 

play an important role in the pathogenesis of asthma. 

1.5.7 Role of eosinophils in RSV infection 
Eosinophils appear to have the potential to clear respiratory viruses, 

however they can also contribute to deleterious effects of viral infection as 

highlighted by their link to allergic ainways disease and asthma (Busse and 

Lemanske, 2001). In addition the clinical similarities between viral bronchiolitis 

and asthma have led to speculation that these two diseases could have similar 

pathophysiological mechanisms, brought about by eosinophils (Domachowske 

and Rosenberg, 1999). 

In the 1960s infants were immunised with formalin-inactivated (FI)-RSV 

vaccine (Kim et al., 1969). Many of the vaccinated children became severely ill 

during a subsequent winter RSV epidemic resulting in several deaths (Olson 



and Varga, 2007). The presence of eosinophils as a result of RSV infection 

became the main histological feature in the lungs and blood of the infants who 

died following FI-RSV vaccination and subsequent RSV infection (Lindemans et 

al., 2006; Openshaw, 1995; Openshaw etal., 2001). Laboratory-based research 

into this phenomenon using a mouse model confirmed that there was increased 

eosinophil influx in the lungs of mice following immunisation with FI-RSV and 

subsequent exposure to RSV (Openshaw et al., 2001). It was unclear whether 

eosinophils were part of the host defence or were a sign of the 

immunopathology observed in response to RSV infection. 

The recruitment of eosinophils to the lungs during RSV infection may be 

an initial immune response designed to reduce viral replication, since eosinophil 

cationic molecules, especially eosinophil RNases, have been shown to possess 

antiviral activity (Domachowske et al., 1998a; Domachowske et al., 1998b; 

Klebanoff and Coombs, 1996). Phipps et al. (2007) found that airway 

eosinophilia present in hypereosinophilic (IL-5 Tg) mice, or via transfer of 

eosinophils directly to the lungs, results in the enhanced clearance of RSV 

virions and a subsequent reduction in mucus hypersecretion and AHR (Phipps 

et al., 2007). Eosinophils have the potential to play a beneficial role in RSV 

disease by clearing viral infections however when over-recruited, they 

exacerbate RSV inflammation, and cause subsequent tissue damage. 

Further research studies have focused on elucidating the role of 

eosinophils in RSV infection and pathology. Studies by Garofalo et al. (1992) 

established that wheezing during RSV infection was associated with increased 

concentrations of LTC4 and ECP in respiratory secretions, both of which are 

mediators produced and secreted by activated eosinophils (Domachowske and 

Rosenberg, 1999; Garofalo et al., 1992). Eosinophils were found to contribute to 

the inflammatory response through their chemokine expression profile 

(Olszewska-Pazdrak et al., 1998a). Olszewska-Pazdrak etal. (1998) examined 

the secretion of chemokines by RSV-infected eosinophils in vitro and found that 

human eosinophils secreted significant amounts of RANTES and MIP-1a 

following their exposure to RSV (Olszewska-Pazdrak et al., 1998a). Rosenberg 

and Domachowske (2001) also showed that eosinophils mediated a dose-

dependent reduction in virus infectivity in the presence of the RSV-containing 

suspensions. They found that a 55kDa polypeptide ribonuclease inhibitor was 



binding to the eosinophil granule proteins, EDN and ECP, with great affinity, 

causing a significant decrease in eosinophil activity and increase in viral 

infectivity (Rosenberg and Donfiachowske, 2001). 

RSV infection induces expansion of virus-specific CD4-' Th2 cells, 

resulting in the release of proinflammatory cytokines that contribute to 

eosinophilic ainways inflammation (Openshaw et al., 1992). A mouse study 

revealed that the RSV viral attachment G glycoprotein was linked to the release 

of Th2 cytokines and the development of eosinophilic pulmonary infiltrates 

(Harcourt et al., 2004). This was also demonstrated by leukocyte chemotaxis 

experiments revealing G proteins ability to modulate the immune response and 

induce leukocyte migration via the CX3CR1-fractallne pathway. CX3CR1 is a 

chemokine receptor primarily expressed at the surface of the cytotoxic cells 

such as T cells, NK cells and monocytes/macrophages (Harcourt et al., 2006). 

The CX3CR1 receptor binds to the chemokine fractalkine in murine and human 

models (Combadiere et al., 1998). As fractalkine binds to the CX3CR1 

chemokine receptor, it causes leukocyte adhesion and migration as well as a 

Th i immune response (Harcourt et al., 2006; Lee et al., 2004). The RSV G 

protein contains a CX3C chemokine motif and it has been found to interact 

directly with the CX3CR1 receptor. Hence, the G protein is competing with 

fractalkine for binding to the CX3CR1 receptor. Upon binding, the RSV G 

protein is believed to modify the CX3CR1-fractalkine interaction resulting in a 

suppression of the Th i response and upregulation of the Th2 immune response 

(Harcourt etal., 2006) ultimately resulting in downstream eosinophil activation. 

1.5.8 Role of eosinophils in PVM infection 
PVM is the only virus of the family Paramyxoviridae and subfamily 

Pneumovirinae, which naturally infects mice and is the rodent pathogen most 

closely related to human RSV (Domachowske etal., 2000a; Garvey etal., 2005; 

Rosenberg and Domachowske, 2001). In 1939, Horsfall and Hahn (1939) were 

the first to identify PVM in mouse lungs (Horsfall and Hahn, 1939). In the 

absence of antiviral therapies, PVM infection results in increased viral 

replication and a profound inflammatory response which can lead to morbidity 

and mortality (Garvey etal., 2005; Rosenberg and Domachowske, 2001). 



Murine studies have found that eosinophils and neutrophils are among 
the earliest cellular responses to PVM infection (Domachowske et al., 2000a; 
Rosenberg and Domachowske, 2001). Pulmonary eosinophilia in mice 
precedes the onset of symptoms but is not detectable once symptoms become 
obvious as it dissipates over time (Harrison et al., 1999). Therefore, eosinophil 
products are more likely detectable earlier in infection (Rosenberg and 
Domachowske, 2001). Furthermore, although IL-5 normally recruits eosinophils 
to the site of infection, PVM infected mice appear to be completely devoid of IL-
5, even in the presence of eosinophilia. Viral challenge of TLR77- mice induces 
all of the cardinal pathophysiologic features of asthma, including tissue 
eosinophilia, mast cell hyperplasia, IgE production, airway smooth muscle 
alterations, and airways hyperreactivity in a memory CD4'' T cell-dependent 
manner (Kaiko et al., 2013). Moreover, as PVM infection induces the release of 
MIP-1a, there appears to be correlation between the released MIP-1a, 
eosinophil infiltration and viral replication (Domachowske et al., 2000a). PVM 
infection in MIP-1a and/or CCR3 deficient mice, which have no eosinophils and 
a reduced number of neutrophils detected in BAL fluid at the time of infection, 
resulted in minimal inflammatory response, increased viral load and accelerated 
mortality (Domachowske et al., 2000a). These results demonstrate e that in the 
absence of eosinophils, MIP-1a/CCR3 deficient mice are overwhelmed by viral 
replication and potential death, thus suggesting the importance of eosinophils 
and neutrophils in antiviral activity. 

Although PVM is the rodent pathogen most closely related to human 
RSV, a recent research study examining the role of eosinophilia in PVM 
infection has revealed some very interesting findings. A mouse study found that 
when mice are vaccinated with PVM they remained protected following virus 
challenge (Percopo et al., 2009). These results indicate that the presence of 
eosinophils in the lung tissue and airways are associated with protection against 
virus infection. The same study repeated the vaccination and challenge protocol 
in eosinophil-deficient mice and found that eosinophil deficiency resulted in no 
change in viral titres and no change in the overall clinical symptoms (Percopo et 
al., 2009). It is unclear as to why eosinophils did not promote viral clearance in 
PVM infection (Percopo et al., 2009), despite evidence that they do promote 
antiviral activity in RSV infection (Phipps et al., 2007). Most recent study by 
Percopo et al. (2014) has found that reduction in PVM viral load is dependent 



on eosinophil activation. This study shows that eosinophils recruited to the 

airways in response to Aspergillus fumigatus (or ovalbumin) sensltisation and 

challenge do not degranulate on their own, but do so in response to subsequent 

activation with PVM (Percopo et al., 2014). It is believed that this occurs in 

response to both, PVM replication in alveolar macrophages and bronchiolar 

epithelial cells as well as production of proinflammatory cytokines (Bern et al., 

2011; Dyer et al., 2012; Rosenberg et al., 2005).This is the first study to show 

that eosinophils have a profoundly antiviral role and promote survival in 

response to an otherwise lethal PVM infection (Percopo et al., 2014). Taken 

together, these studies reveal a very promising and positive role of eosinophils 

in PVM and potentially RSV infection. 

1.5.9 Eosinophils in Rliinovirus (RV) infection 
Rhinoviruses (RV) cause the common cold which, in some cases, results 

in the hospitalisation of infected infants, the development of pneumonia in 

immunosuppressed patients and the exacerbation of asthma (Bartlett et al., 

2008). Currently, there is no effective treatment available for RV infection. 

Clinical studies have shown that RV infection results in the infiltration of 

eosinophils, neutrophils and lymphocytes in nasal and bronchial mucosa, 

causing airway inflammation (Bardin et al., 1995; Levandowski et al., 1988). 

Due to the involvement of RV in the exacerbation of asthma, Bartlett et al. 

(2008) investigated the interactions between RV infection and allergic ainway 

inflammation using a mouse model. This study found that RV infection 

contributes to the exacerbation of eosinophilic ainway inflammation, airway 

hyper-responsiveness, mucus secretion and the production of Th1 and Th2 

cytokines. A Th2 immune response in a human system results in a release of 

cytokines such as IL-4, IL-5, IL-13 and GM-CSF. High levels of these cytokines 

can be correlated with increased eosinophil infiltration and greater disease 

severity (Kato et al., 2011; Sasaki et al., 2007). All of these responses appeared 

to be linked with a rhinovirus-induced exacerbation of asthma (Bartlett et al., 

2008). 

There are approximately 100 different rhinovirus serotypes and about 

90% of these, use the human ICAM-1 for cell attachment and entry. However, 

these viruses do not to bind to mouse ICAM-1 (Bartlett et al., 2008). In a mouse 

study, Sasaki et al. (2007) found that virally infected respiratory epithelial cells 



had increased expression of ICAM-1, resulting In eosinophil infiltration into the 

respiratory area. Moreover, the same study confirmed that the sites lacking 

ICAM-1 expression experienced less eosinophil infiltration (Sasaki eta!., 2007). 

Results from a study investigating ICAM-1 and RSV suggest that the regulation 

of ICAM-1 could potentially be used to inhibit rhinovirus infection (Traub et al., 

2013). Regulation of ICAM-1 could prevent cell adhesion and entry and at the 

same time reduce eosinophil infiltration, hence reducing the respiratory 

epithelium damage caused by cytotoxic proteins (e.g. MBP and EPO) released 

from the eosinophils. 

1.5.10 Eosinophils as antigen presenting cells in viral 

infection 
As early as 1960s, studies began documenting the capacity of 

eosinophils to Internalise administered antigens and rapidly traffic them to 

regional lymph nodes. These studies revealed that within one hour of antigen 

injection, eosinophils containing the labelled antigens were localised within 

regional lymph nodes (Litt, 1964; Roberts, 1966; Shi, 2004). Although these 

studies did not establish that eosinophils were acting as APCs, they did show 

that eosinophils can be Involved in the early uptake of antigen (Shi, 2004). 

Naive T lymphocytes require two signals from APCs to be activated. The 

first signal is provided through the interaction of the T cell receptor (TCR) with 

the MHC-II protein on APCs (Chambers and Allison, 1997; Linsley etal., 1990). 

Although blood eosinophils do not usually express MHC class II protein, they 

have been shown to express MHC II in response to activation (Akuthota et al., 

2012; Linsley et al., 1990). Allergen challenge has been shown to elicit an 

eosinophil influx into the ainways resulting In recruited eosinophils expressing 

human leukocyte antigen (HLA)-DR (MHC II family member), which was not 

found on otherwise activated blood eosinophils (Mengelers et al., 1994; 

Sedgwick et al., 1992; Shi, 2004). Eosinophils in the sputum of asthmatics and 

airway have been found to express HLA-DR, but this expression was not found 

In blood eosinophils in chronic eosinophilic pneumonia patients (Shi, 2004). 

To present antigen, a second co-stlmulatory signal must be provided by 

APCs for the activation of CD28 and inhibition of cytotoxic lymphocyte-

associated antigen (CTLA)-4 receptors on T cells (Shi, 2004). CD28 and CTLA-



4 are expressed by T cells and interact with the B7 molecules B7-1 (CD80) and 

B7-2 (CD86) (Freeman et al., 1993; Linsley et a!., 1990), providing co-

stimulatory signals necessary for T-cell activation. Blood eosinophils have no 

detectable levels of CD80 and CD86 while eosinophils extracted from IL-5 

transgenic (Tg) mice from the peritoneal cavity have been found to express both 

CD80 and CD86 (Tamura et al., 1996; Wang et al., 2007). In vitro incubation of 

these cells with GM-CSF was found to increase CD80 and CD86 expression 

(Wang et al., 2007). Hence, eosinophils appear to have the potential to act as 

APCs in allergic and viral infections. By activating rhinovirus-specific T cells, 

eosinophils may play an important role in the initiation of antiviral T cell 

responses, contributing to enhanced airway inflammation and increased asthma 

symptoms in susceptible individuals (Handzel etal., 1998). 

Although a number of studies support the role of eosinophils as potential 

APCs, there are studies that argue that even with MHC class II protein being 

expressed eosinophils are inefficient in activation of T cells by antigen 

(Mawhorter et al., 1994). Therefore, the role of eosinophils as APCs remains a 

controversial topic debated intensely in the literature. 

1.6 R S V PREVENTION AND TREATMENT 

1.6.1 Prevention 
Prevention is the most important aspect of healthcare; it can lead to 

reduction in morbidity and mortality, and lower the economic burden of RSV 

disease. Currently, there is no effective vaccine against RSV. Direct or indirect 

contact with the nasopharyngeal secretions or droplets (sneezing, coughing and 

kissing), fomites, and food from RSV infected patients can potentially transmit 

RSV as live virus can survive on surfaces for several hours (Hall, 1983; White et 

al., 2005). Several approaches have been considered for developing an 

effective vaccine against RSV, however human immunisation against RSV has 

unfortunately failed (Graham et al., 2000). In the 1960's a number of infants 

were immunised with a FI-RSV vaccine, who following the natural RSV infection 

experienced pulmonary eosinophilia, several deaths and high rate of 

hospitalisation (Graham et al., 2000; Rakes et al., 1999). An efficient RSV 

vaccine would be one with proper balance between immunogenicity and 

protection without any allergic response (Hacking and Hull, 2002). RSV F 



protein has widely been accepted as the vaccine candidate due to its conserved 

nature among various strains as well as among the other paramyxoviruses 

(Hacking and Hull, 2002; Openshaw and Tregoning, 2005; Valarcher and 

Taylor, 2007; van Drunen Littel-van den Hurk etal., 2007). 

Both RSV, fusion and attachment, proteins are glycosylated and 

represent the targets of neutralising antibodies. The RSV F protein is potentially 

a good vaccine candidate due to its conserved and vital role in cell attachment. 

Passive immunisation with the monoclonal antibody specifically neutralising F 

protein has resulted in an effective protection against RSV. This licensed 

monoclonal antibody, named palivizumab (Synagis) is now used to provide 

passive protection for high risk infants from severe RSV (Ottolini et al., 2002). 

Motavizumab, variant of palivizumab, has been found to neutralise RSV by 

binding the RSV fusion protein F following the RSV attachment to the host cell 

but before the viral transcription (Huang et al., 2010). Palivizumab or 

motavizumab treatment is likely able to induce inhibition of cell-to-cell and virus-

to-cell fusion, by preventing the conformational changes in the F protein 

required for viral fusion. The effective use of palivizumab is limited due to the 

cost, therefore its use reserved for infants that are at high risk of bronchiolitis 

(Harkensee et al., 2006). Palivizumab, although effective, is costly and thus is 

not beneficial to the recipients especially during the periods outside RSV 

circulation. A cost effective means of producing RSV F neutralising antibodies 

was experimented in phages and plants. The efficacy of the plant derived 

palivizumab was found to be greater than the mammalian derived palivizumab 

(Zeitlin etal., 2013). 

The RSV genome codes structural and functional proteins that are 

immunogenic; and DNA based vaccines are developed based on these 

proteins. The process involves a DNA fragment coding part or whole protein of 

RSV being inserted into an appropriate expression plasmid vector under a 

constitutive promoter control. The initial work with this approach was successful 

in the expression in cells and in vivo murine models to eliminate the RSV 

infection, but the problem of RSV associated Th2 type immune response was 

persistent. To resolve this problem, Li et al. (200) attempted to manipulate the 

parameters of choice: the protein to be expressed, the expression vector, 

adjuvants, formulations and intracellular stability of the plasmid. Mice 



challenged with the RSV-G construct had balanced systemic and pulmonary 

Th1/Th2 cytokines and RSV neutralizing antibody responses (Li et a!., 2000). 

However, the wild type RSV F protein expressed from DNA plasmid was poorly 

expressed (Ternette et al., 2007) and has had low immunogenicity of F protein, 

the antagonistic activity of RSV for IFN and immunopathology (Martlnez-

Sobrido et al., 2006). Consequently, Wu et al. (2009) developed a DNA 

vaccination strategy against RSV using a mucosal adjuvant (Wu et al., 2009). 

The mice immunised with the DRF-412 vector contained less RSV RNA in lung 

tissue and induced a higher mixed Th1/Th2 cytokine immune response as well 

as better protection than those immunized with the DRF-412-P vector, which 

was confirmed by lung immunohistology studies (Wu et al., 2009). Likewise, 

Mycobacterium bovis Bacillus Calmette-Gue'rin (BCG) vaccine was modified to 

carry RSV N or M2 and was found to establish the Th1 type immunity in RSV 

challenged mice (Bueno et al., 2008). The recombinant vaccine also elicited the 

activation of RSV specific T cells producing IFN-y and IL-2, along with reduction 

in weight loss and lung viral protein load, thus establishing a Th1-polarized 

immune response (Bueno et al., 2008). This approach serves the purpose of 

naturally activating the immunostimulatory responses of the host while 

delivering the DNA vaccine. 

The bitter episode of FI-RSV vaccine has impeded the vaccine 

development and in fact has raised serious concern over the use of native RSV 

or its components. Recently, several applications of nanotechnology have 

appeared in the development of vaccines popularly known as Nanovaccines. 

DNA vaccine is prone to rapid degradation when introduced into an animal 

system; so to increase the retention and increase the efficacy of the DNA 

vaccines, they can be encapsulated into a polymer that will protect and facilitate 

controlled release. Various synthetic or natural polymers are now experimented 

for targeted delivery and controlled release of the carrier (Glenn et al., 2013; 

Smith et al., 2012). Chitosan is a polymer of great interest in respiratory disease 

treatment, because of its mucoadhesive property and biodegradability, which 

balances of longer retention and controlled release of carrier molecules 

encapsulated. Thus, chitosan nanoparticles are being developed against RSV 

(Glenn et al., 2013; Smith et al., 2012). 



In the case of RSV-naive infants and children, it remains to be seen 

whether vaccine candidates will be sufficiently immunogenic in infancy to 

provide effective protection against RSV disease. It seems unlikely that 

complete protection against infection can be achieved however; a substantial 

reduction in RSV replication should be effective in controlling severe disease. 

The recent successful development of live-attenuated paediatric vaccines 

against rotavirus, which faced many of the same obstacles, gives hope for 

success. 

1.6.2 Treatment 
The effect of removing cell surface HS chains, on viral infectivity has 

recently been examined. The in vitro studies have shown that pre-treating of the 

cells with heparinase I results in reduction of the HS iduronic acids units, while 

heparinase II led to lower N-sulfation and heparinase III removed the N-sulfation 

units (Guo et ai., 2008). These findings suggest that low molecular weight 

heparin (LMWH) can inhibit positively charged RSV infection through 

cooperative electrostatic association (Guo etal., 2008). 

There are very limited treatment options available for RSV. However, 

there are many drugs for the symptoms associated with RSV infection. The 

target genes and proteins vital for RSV infection are important for developing 

preventative and treatment measures. The mode of action and potency of a 

drug determines the approach of prophylactic or curative application. 

Considering RSV life cycle, theoretically, there are numerous modes to interfere 

with RSV infection, but not all may be viable research. Replication, transcription 

and fusion are a few target processes for drug development against RSV. A 

focus is therefore on development of potent drug that holds conformity in the 

human trials. 

Ribavirin or 1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-

yl]-1H-1,2,4-triazole-3-carboxamide is a widely used broad spectrum synthetic 

anti-viral drug for both DNA and RNA virus treatment. Oral and nasal 

administration of ribavirin can be used as a treatment of severe lower 

respiratory tract infections caused by RSV and influenza virus (Bocchini et ai., 

2009). Ribavirin is phosphorylated in the cells and has been found to compete 

with adenosine-5'-triphosphate and guanosine-5'-triphosphate, for viral RNA-



dependent RNA polymerases in RNA viruses. The exact mechanism of anti-
viral activity of ribavirin against RNA and DNA viruses is still not clear. The 
usefulness of ribavirin against viruses is believed to be not only due to its anti-
viral activity but also due to its capability to modulate the immune system 
(Langhans et al., 2012). The derivatives of ribavirin such as viramidine, 
merimepodib, and other inhibitory molecules like mycophenolate and mizoribine 
have shown antiviral activity against the hepatitis C virus, and hence, there is 
scope for investigating them as potential anti-RSV drugs (Chapman et al., 2007; 
Gish, 2006). 

A number of small molecule anti-RSV compounds have been described 
over the last 15-20 years. Most of them have been discovered by screening of 
chemical libraries of natural products using classic virology assays, modified for 
high throughput testing. Recent advances in the development of anti-viral drugs 
have seen the rise of fusion inhibitors. The fusion inhibitors are usually synthetic 
compounds or molecules interrupting the fusion of virus with the host cell 
usually by binding the fusion proteins. The fusion inhibitors have been widely 
studied as anti-viral agents in several viruses including henipavirus, hendra 
virus, nipah virus, paramyxovirus, metapneumoviruses, HIV and RSV (Bossart 
et al., 2005; Deffrasnes et al., 2008; Porotto et al., 2007; Porotto et al., 2006; 
Porotto et al., 2010; Wang et al., 2003; Wild et al., 1993; Zhao et al., 2000). The 
first reports of the use of peptide(s) as fusion inhibitors, include the 
development of DP-178, a synthetic peptide based on the leucine zipper region 
of the HIV fusion glycoprotein gp41 (Wild et al., 1993) which achieved a 50% 
inhibition at 0.38 nM against HIV-1. Fusion inhibitors for the paramyxoviruses 
have also been developed based on the conserved region of the F protein. The 
F protein is widely known for its conserved nature among 
the Paramyxoviridae family. Lambert et al. (1996) developed the fusion 
inhibitors belonging to the conserved heptad repeat (MR) domains of F1 region 
of F protein which is analogous to the peptides DP-107 and DP-178 of HIV 
gp41 (Lambert et al., 1996). These fusion inhibitors were tested against RSV, 
human parainfluenza virus (PIV) 3 and measles virus, and showed antiviral 
activity specific to the species of origin. 

A series of benzimidazoles derivatives have been reported to interact 
with the F protein and, although dissimilar in structure, they all seem to bind to a 



hydrophobic pocket of the trimeric coiled-coil made by HRA (amino acids 153-

209) of the F1 chain (Zhao et a!., 2000). Binding to this pocket would interfere 

with the proper interaction of HRA with HRB (amino acids 482-520) and the 

formation of the six-helix bundle structure (6HB) that is required for completion 

of membrane fusion (Melikyan et al., 2000). Diverse array of other 

benzimidazoles (e.g., JNJ-2408068) and chemically unrelated compounds (e.g., 

VP14637) with subnanomolar activities have been described. Interestingly they 

also seem to target the hydrophobic pocket of the 6HB (Douglas et al., 2005; 

Lundin et al., 2010). Other RSV inhibitors have been described besides those 

targeting the F protein. For instance, NMSO3, a sulphated sialyl lipid, has been 

reported to inhibit virus binding, and mutants resistant to this compound had 

mutations in the G protein, identifying it as the presumptive target (Kimura etai, 

2004). Many negatively charged polymers, including heparin and dextran 

sulphate, also interfere with RSV binding, but their inhibitory concentrations are 

too high for application in the clinical setting. 

Sudo et al. (2005) discovered a benzazepine derivative (YM-53404) that 

worked relatively late in the replication cycle and that selected mutations in the 

L gene (Saito et al., 1997). Another benzodiazepine compound (RSV604) that 

worked late in the replication cycle was shown to select mutations in the N 

gene, pointing to this molecule as the drug target (Chapman et al., 2007). 

Interestingly, these mutations were located in the long p hairpin of the RSV N 

structure noted above that may mediate interaction between N protein in the 

ribonucleoprotein (RNP) and the polymerase complex (Tawar et al., 2009). 

There are several novel nonbenzimidazole based compounds, showing 

anti-RSV activity in vitro, but a more polar compound thiazole-imidazole 13 was 

selected due to compound potency, moderate permeability, and low metabolic 

rate in rats, and more detailed in vivo studies are further anticipated (Pryde et 

al., 2013). 

Besides chemical compounds, there are other ways to inhibit RSV 

infectivity. RNA interference (RNAi) which is a normal cellular event has 

become a powerful means of controlling gene regulation. The interference 

mediated by small interfering RNA (siRNA) was used against human 

immunodeficiency virus, poliovirus, hepatitis C and PIV in cell culture (Barik, 

2004; Lee et al., 2002; Zhang et al., 2010). The concept of inhibiting RSV 



infection using targeted antisense mechanism was applied by Jairath et al. 

(1997) by silencing the RSV-NS2 gene (Jairath etal., 1997). Following the RNAi 

approach, Bitko et al. (2005) designed siRNA against the P gene of RSV and 

PIV which protected mice against individual and mixed infections upon 

intranasal administration (Bitko et al., 2005). The effectiveness of siRNA action 

was observed with and without the use of transfection reagents. This approach 

was also effective when targeting the RSV-F gene (Bitko and Barik, 2001). 

Similar work on HEp-2 cell lines was replicated using four siRNA, designed to 

silence RSV F gene, which showed inhibitory action against RSV at various 

concentrations (Vig et a!., 2009). Silencing different RSV genes too had an 

inhibitory action on the RSV, a plasmid encoding siRNA which was complexed 

with chitosan targeting RSV-NS1 gene decreased RSV infection in BALB/c mice 

and Fischer 344 rats and also reduced the associated inflammation (Kumar et 

al., 2002; Zhang et al., 2005). Zhang et al. (2006) showed that siRNA 

nanoparticle targeting RSV NS1 gene resulted in increased IFN-/3and IFN-

inducible genes in A549 cells and in human DCs, and increased differentiation 

of CD4^T cells to Th1 cells (Zhang et al., 2005). In addition, mice treated with 

small interfering NS1 (siNS1) nanoparticles exhibited significant decrease in 

lung viral titres and inflammation. 

Alvarez et al. (2009) came up with a new RSV-NS1 gene specific siRNA 

(ALN-RSV01) having a broad spectrum of antiviral activity that targeted the 

nucleocapsid gene of RSV (Alvarez et al., 2009). In vivo BALB/c murine studies 

demonstrated that intranasal dosing of ALN-RSV01 resulted in a 2.5-3.0 log-unit 

reduction in RSV lung concentration. To scale up this molecule for RSV 

treatment in humans, the safety, tolerability, and pharmacokinetics were tested 

on healthy adults, demonstrating its safety and tolerance in human subjects 

(DeVincenzo et al., 2008). In the clinical trials of ALN-RSV01, healthy subjects 

were administered either, a placebo or ALN-RSV01 nasal spray for RSV. There 

was a 44% reduction in the RSV infection following ALN-RSV01 administration. 

Thus, this study in real terms has established a unique "proof-of-concept" for an 

RNAi therapeutic agent in RSV treatment (DeVincenzo et al., 2010). ALN-

RSV01 proved to be safe and was effective against RSV even in a complex 

clinical situation like lung transplants, which was a remarkable achievement 

(Zamora et al., 2011). ALN-RSV01 has recently completed phase II b clinical 

trials. 



Another approach of RNAi treatment to combat RSV is to decelerate the 

adverse effects of RSV mediated Th2 type immune response as the aggravated 

host immune response can be more harmful than RSV infection itself. 

Particularly in neonates, RSV bronchiolitis increases IL-4 receptor a levels, 

which results in increased Th2 response, so an antisense oligomer was 

synthesised for the local silencing of the IL-4 receptor a gene. Intranasal 

application of the antisense oligomers into a neonatal murine model reduced 

the Th2 type mediated pulmonary pathological signs of inflammation and lung 

dysfunction (Ripple et al., 2010). A combinatorial approach of the anti-sense 

oligomer against RSV and IL-4 receptor a would control RSV infection and the 

adverse effects of RSV mediated inflammation. 

Currently, there is no vaccine and effective treatment against RSV. 

Prevention of RSV infection at present is limited to only high risl< individuals with 

a limited efficacy. New preventive research like DNA vaccines, subunit vaccines 

and nano-vaccines has reached animal trials. In addition, RSV treatment 

approaches using antisense oligomers, fusion inhibitors, and benzimidazole 

drug have proceeded into clinical trials. The challenges associated with RSV 

management are categorically numerous. However, at the current pace of 

scientific research and development and with the implementation of scientific, 

commercial, and program recommendations to develop epidemiological 

strategies, it seems optimistic to have an effective diagnosis, prevention and 

treatment solution for RSV in near future. 



1.7 AIMS OF THIS THESIS 

RSV is one of the most important pathogens of childhood respiratory 

infections (IVIcNamara and Smyth, 2002). Since the failed FI-RSV vaccine trail, 

RSV disease had been characterised by an influx of eosinophils to the site of 

viral infection w/here eosinophils were believed to contribute to RSV 

pathogenesis. None the less, the role of eosinophils in RSV infection has been 

debated vigorously and in 2007, Phipps et al. (2007) demonstrated that 

eosinophils play a crucial role in clearance of RSV infection (Phipps et al., 

2007). In addition, RSV can re-infect the same individual several times 

throughout their life. Re-infection is characterised by an initial influx of NK cells 

followed by recruitment of helper CD4"*̂  and CD8^ lymphocytes to the site of 

infection (Olson et al., 2008; Olson and Varga, 2007; Stevens et al., 2009). To 

complicate matters 004"^ and CDB^ T lymphocyte subsets contribute to clearing 

of the RSV infection, but that both also contribute to RSV disease pathogenesis 

(Graham et al., 1991). A number of viruses have demonstrated to have a great 

affinity for cell HSPGs, playing important roles in virus attachment and entry 

(Lee et al., 2006). HS has been shown to bind the RSV G protein on the cell 

surface of the HEp-2 cells (Krusat and Strecl<ert, 1997). In addition, HS mimetic, 

PI-88, has been shown to inhibit HSV infection of cells by blocking the binding 

of the viral attachment glycoproteins to the cell surface (Nyberg et al., 2004). 

It is important to note that there are several limitations to the previous 

literature findings as well as RSV-induced limitations due to its heterogenic 

nature which provides this virus with an ability to evade previously induced 

immunity (White et al., 2005) as adaptive immunity in response to RSV have 

been found to be limited, incomplete and short lived. As RSV infects mostly 

young children and elderty, it is important to note that a capacity to induce 

appropriate immune response is somewhat reduced at early and late stages of 

life (Adkins et al., 2004; Fulton et al., 2013; Levy, 2007). In addition, the role of 

eosinophils in RSV and viral infections in general is yet to be explored in depth. 

The depth of research into a positive role of eosinophil is still limited with only a 

handful of research groups focusing on the potential of these cells in viral 

clearance. Although there have been extensive studies of epidemiology, clinical 

manifestations, diagnostic techniques, animal models and the immunobiology of 

infection, there is not yet a convincing and safe vaccine available. For RSV the 



effective use of palivizumab treatment is limited due to the cost and thus only 

currently used in infants with high risk of bronchiolitis (Harkensee et a!., 2006). 

Therefore, inexpensive and more widely effective treatments are required 

urgently and as HS involvement in RSV infection is underexplored, it could 

potentially lead to the development of new, more effective and more affordable 

RSV therapeutics. 

Therefore, aims of this thesis are: 

Aim 1: To examine the In vitro effect of RSV on eosinophil morphology, release 

of eosinophil activation markers and eosinophil antiviral activity 

Aim 2: To evaluate eosinophil antiviral activity in four distinct mouse models 

following RSV infection and re-infection. 

Aim 3: To assess the efficacy of HS mimetics treatment on RSV infection in 

vitro and in vivo. 



Chapter 2. GENERAL METHODS 



2.1 HEAT INACTIVATION OF FETAL CALF SERUM 

In this procedure, fetal calf serum (FCS) (Sigma, Australia) is heated to 

56°C in a water bath to destroy heat-labile complement proteins prior to use in 

cell growth medium. 

Bhefly, heat inactivation procedure involves placing a 500 mL bottle of 

FCS from the -80°C freezer in the refrigerator to thaw overnight. The following 

day, completely thawed was placed in a 37°C water bath allowing serum to 

equilibrate at 37°C. The temperature was then raised to 56°C and the bottle of 

serum was incubated for 35 minutes with inversion every 10 minutes. Once 

bath reached 56°C, the serum was incubated for 30 minutes during which the 

bottle was again inverted every 10 minutes. The serum was allowed to cool at 

room temperature for 30 minutes. Heat inactivated (HI)-FCS was then aliquoted 

into 50 mL tubes and stored at -20°C. 

2.2 CELL CULTURE 

Immortal cell lines were used for in vitro experiments. HEp-2 (originally 

derived from an epidermoid carcinoma of the larynx) (ATCC CCL-23) and Vero 

E6 (originally isolated from kidney epithelial cells extracted from an African 

green monkey) (ATCC CRL-1586) cell lines were obtained from the American 

Type Culture Collection (ATCC, USA). Briefly, once cells were 80% confluent, 

culture medium was removed and discarded. The cell monolayer was washed 

twice with phosphate buffer solution (PBS) (ANU, Australia) to remove any 

serum residues. Cells were detached by covehng cell monolayer with 0.25% 

(w/v) Trypsin ((Merck, Australia) with 0.53 mM ethyenediaminetetraacetic acid 

(EDTA) in PBS (ANU, Australia)) and incubating for 5-15 minutes at 37°C. Cell 

suspension was diluted in complete growth medium (Dulbecco's Modified 

Eagle's Medium (Gibco, Australia) supplemented with 5% of HI-FCS (Sigma) 

(Dulbecco's modified eagle's medium (DMEM) with 5% HI-FCS) and usually 

one fifth of the cell suspension was transferred to new culture flask at required 

seeding density. 



2.3 THAWING OF CELLS FROM LIQUID NITROGEN 

STORAGE 

Cells were taken out from the liquid nitrogen storage and rapidly thawed 

in a water bath at 37°C. The cell suspension was transferred to a 10 mL sterile 

tube (Sarstedt, Australia) and media added to dilute the dimethyl sulphoxide 

(DMSO) (Univar, Asia Pacific Specialty Chemicals). Cells were then centrifuged 

at 670 X g (HD Scientific) for 5 minutes, supernatant was removed and fresh 

media added to resuspend the pellet appropriately. The cell suspension was 

then transferred to a T-25 tissue culture flask (Iwaki) and left to incubate at 37°C 

in a humidified atmosphere supplemented with 5% CO2. 

2.4 CRYOPRESERVATION OF CELLS 

Cells were frozen down using freezing medium made up of 95% of 

DMEM with 5% HI-FCS and 5% of DMSO (Univar). Cells were aliquoted into 

sterile cryovials (Iwaki) and stored at -80°C overnight. The following day cells 

were transferred to liquid nitrogen for long-term storage. 

2.5 CELL VIABILITY ASSAY 

Cell viability was tested using trypan blue dye (Invitrogen, Australia). The 

cytoplasm of dead cells is susceptible to trypan blue dye staining, due to cell 

membrane permeability, rendering all unstained cells as viable. The cell sample 

was mixed with 0.4% trypan blue (Invitrogen) solution at 1:1 ratio, the mix was 

then used to fill the haemocytometer chamber. Cells were counted under the 

microscope across four 1 x 1 mm squares of one chamber and the average 

number of cells was determined per square. The following formula was used to 

calculate number of cells per mL of cell suspension: 

. . , , cells Total number ofviable cells counted , ^ N 
Number of viable — — x 2 (dilution factor) x 10 ^ 

mL squares 

Equation 2.1. Calculation of a number of cells per mL of cell suspension 



2 .6 CYTOSPIN PREPARATION 

A cell suspension was prepared at 2 x I C cells/mL final concentration. 

Slides were mounted behind the filter cards (Thermo electron corporation, USA) 

and cuvette in the metal holder of the centrifuge. Approximately 200 |JL of cell 

suspension was loaded in the cuvette and spun at 800 x g (Shandon cytospin 

centrifuge, USA) for 5 minutes. The cuvette and paper were detached from the 

slide without damaging the fresh cytospin, which was then air-dried. Slides were 

stained using the May-Grunwald Giemsa staining procedure for differential 

leukocyte analysis (section 2.7). 

2.7 MAY-GRUNWALD AND GIEMSA STAINING 

Prepared cytospin and blood smear slides were fixed in 100% methanol 

(Scharlau, Spain) for 15 minutes. Slides were incubated in May-Grunwald 

staining solution for 5 minutes. May Grunwald staining solution was prepared by 

mixing equal parts of the May Grunwald stock solution (Australian Biostain, 

Australia) with buffered distilled water. Buffered distilled water was prepared as 

per instructions detailed in Appendix 1. Slides were then transferred into 

Giemsa staining solution for 10 minute Incubation. Giemsa stain was prepared 

by mixing 1 part of Giemsa stock solution (Australian Biostain, Australia) with 9 

parts of buffered distilled water. Subsequently, slides were then washed by 

transferring through three changes of buffered distilled water followed by a final, 

10 minute incubation in the last change to ensure cell differentiation. Slides 

were air-dried and analysed under a light microscope (Nikon) for different 

leukocyte populations present. 

2.8 R S V PROPAGATION 

Approximately 1x10^ Vero E6 cells were seeded in a T-150 flask (Iwaki) 

and left to incubate overnight at 37°C with 5% CO2. The following morning cell 

monolayer was checked for approximately 80% confluence. Once ready, the 

flask was rinsed with 10 mL of Hank's Balanced Salt Solution (HBSS) (ANU, 

Australia) followed by A2 RSV strain (provided by Dr. Ralph Tripp) inoculation at 

MOI of 0.5 prepared in serum free DMEM (Gibco). The cell monolayer was 

allowed to adsorb virus for 2 hours at 37°C with 5% CO2. After 2 hours, 8 mL of 

DMEM with 5% HI-FCS was added to the flask, and cells were incubated for 2-3 

days at 37°C with 5% CO2. The flask was checked daily for signs of syncytia 

56 



formation. The cells were deemed ready for harvest once there was 25-50% 

syncytium present with very little monolayer death. An optimal infection would 

result in syncytia evenly distributed across the entire flask. At the time of the 

harvest, approximately 80% of media was removed from the flask. The cell 

monolayer was scraped with a cell scraper (Thermo Fisher, Australia) and cell 

suspension collected in a pre-chilled 50 mL centrifuge tube. The cell suspension 

was sonicated 5 times for 5 seconds, at 25W in a biosafety cabinet. In between 

each sonication, the tube containing the cell suspension was chilled on ice for 2 

minutes. Cell debris was removed by centrifugation at 3000 rpm for 7 minutes at 

4°C. Supernatant was removed and aliquoted into sterile cryovials (Iwaki). Virus 

stock was stored -80°C until further processing. 

Ultraviolet-inactivated RSV (UV-RSV) was generated by exposing RSV 

to UV radiation (Laftech Bio-Cabinets, Top Safe Class II, Australia) for 40 

minutes. Immunostaining RSV viral titres assay (section 2.10) confirmed the 

absence of viable virus. 

2.9 PREPARATION OF 2 % METHYLCELLULOSE 

In a shott bottle, 75 mL of HBSS (ANU) was added and brought to the 

boil in the microwave. This was then placed on a heated stirring block and 10 g 

of methylcellulose (Sigma, Australia) was slowly added, allowing powder to 

dissolve before adding more. The mixture was autoclaved at 15 psi for 20 

minutes. While autoclaving, HBSS (ANU), HI-FCS (Sigma), DMEM (Gibco) and 

penicillin-streptomycin-neomycin (PSN) (Invitrogen, Australia) were pre-warmed 

in a 37°C water bath. When the autoclave run was finished, the mix was 

allowed cool down to 37°C whilst stirring. Once at 37°C, 40 mL HBSS (ANU), 

10 mL HI-FCS (Sigma) and 10 mL 50X PSN solution was added to the 

methylcellulose mixture. The preparation was finalised with addition of 400 mL 

of serum free DMEM (Gibco). The solution was allowed to mix for at least 30 

minutes at room temperature before being stored at 4°C until required. 

2 .10 IMMUNOSTAINING R S V PLAQUE ASSAY 
Approximately 2 x 10® Vero E6 cells (ATCC) per well were seeded in 24-

well plate (Iwaki) to obtain 80-90% confluence. Vero E6 cells (ATCC) were 

cultured in DMEM (Gibco) with 5% HI-FCS (Sigma) overnight at 37°C with 5% 

CO2. The following day, serial dilutions of RSV samples (10"̂  to 10"®) were 



prepared in serum free DMEM (Gibco) and 200 pL of the corresponding sample 

was loaded in quadruplicates onto the 24-well plate. Inoculated cells were 

allowed to adsorb virus for 1 hour at 37°C with 5% CO2. After 1 hour, 1 mL of 

previously prepared, 2% methylcellulose was added to each well as an overlay 

and cells were left to incubate at 37°C with 5% CO2 for 6 days. On day 6, 

methylcellulose was removed and cell monolayer fixed with 60:40 ice-cold 

acetone (LabScan, Thailand): methanol (Scharlau) for 10 minutes. Plates were 

air dried and blocked with 5% skim milk powder (Diploma, Australia) diluted in 

PBS (AND) for 30 minutes at room temperature on a rocker. The block was 

removed and 200 pL of RSV monoclonal anti-F antibody 131-2A (Merck, 

Australia) was added per well, prepared at 1:1000 dilution in 5% skim milk 

blocking solution. Cells were incubated with primary antibody for 2 hours at 

37°C with 5% CO2. Cell monolayer was rinsed 3 times, 5 minutes each, with 

0.5% Tween20 (Sigma, Australia) in PBS (ANU). Cells were then incubated with 

200 pL/well of secondary antibody, goat anti-mouse IgG-alkaline phosphatase 

(Sigma, Australia) prepared at 1:1000 dilution in 5% skim milk blocking solution. 

Cells were incubated for 1 hour at 37°C with 5% CO2. Cell monolayer was 

rinsed 3 times, 5 minutes each with 0.5% Tween20 (Sigma) in PBS (ANU). Cell 

monolayer was stained for RSV plaques with Vector black alkaline phosphatase 

substrate (Vector Laboratories, Europe). Reaction was stopped with deionised 

water. Stained RSV plaques were counted under a light microscope. To 

calculate total number of plaque forming units (pfu) (or viral titres) per 1 mL of 

RSV sample the following formula was used: 

number of plaques in quadriplicates ^ „ , 
X dilution factor x 5 = plaques per mL 

4 

Equation 2.2. RSV plaques (or viral titres) per 1mL of RSV sample 



2.11 MICE STRAINS 

Male BALB/c mice aged 6 to 8 weeks were obtained from tlie pathogen 

free facilities at the University of Canberra (UC) animal facility and Australian 

National University (ANU) animal services. Animals were housed in approved 

containment facilities and treated in accordance with approved UC animal 

experimentation guidelines. BALB/c mouse strains used were wild type (WT) 

BALB/c, IL-5 Tg BALB/c, Rag 2 knockout (7 ) BALB/c and IL-5 Tg Rag 2 /" 

BALB/c. 

2.12 GENERAL ANIMAL HANDLING PROCEDURES 

2.12.1 Euthanasia 
At the conclusion of the experiment or if mice received a clinical score 

greater than 5, they were euthanised by CO2 asphyxiation procedure. Briefly, 

mice were placed into a tightly closed plastic container connected via a tube to 

CO2 which was slowly turned ON. Once animals would slow down/stopped 

moving, CO2 was turned OFF and container remained closed for another few 

minutes to ensure that the animal has been euthanised properly. Once no pedal 

reflexes were detected, the animal was dissected and samples collected. 

2.12.2 In vivo mouse monitoring procedures 
Mice were monitored daily for any change in body weight and symptoms 

of RSV disease. Clinical scores (Table 2.1) were assigned to each mouse daily 

and if at any point of the experiment mice scored 5 or higher, they were 

euthanised immediately as per protocol outlined previously (section 2.12.1). If 

mice received a clinical score of 3-5, they were provided wetted food on the 

cage floor. 



Table 2.1. Respiratory syncytial virus clinical scores for in vivo studies 

Numerical 
scores Physical symptoms displayed for infected mice 

1 Healthy (no obvious signs of illness) 
2 Barely ruffled fur and active 
3 Ruffled fur, less active than normal 

4 Ruffled fur, less active than normal and less than 20% weight 
loss 

5 Hunched posture 
6 20% weight loss of the starting weight-point of euthanasia 
7 Death 

2.12.3 Daily animal weighing procedure 
Mice were weighed daily and monitored for any signs of weight loss. A 

mouse was gently picked up by the tail and placed inside a plastic container 

sitting on an analytical balance. Weight was recorded and the mouse returned 

to its cage. 

2.12.4 Anaesthesia 
For intranasal inoculation mice were lightly anaesthetised with 

isofluorane (PharmaChem, Australia) using the open drop jar method of 

administration. Approximately 2-3 drops of isofluorane (PharmaChem) were 

applied to a cotton wool placed inside a transparent jar with a lid. To minimise 

mice coming into a direct contact with the anaesthetics and systemic 

absorption, cotton wool was covered by a mesh. Mice were placed over the 

mesh in the jar and removed as soon as consciousness was lost. Once no 

pedal reflexes were detected, we proceeded with intranasal inoculation. 

2.12.5 Intranasal inoculation 
Anaesthetised mice were restrained manually with the head tilted down 

at 35-40° angle. A volume of less than 50 pL of fluid (or RSV stock) was placed 

a drop at a time on the nostril of the mouse causing the mouse to aspirate the 

virus into the nose, throat and lungs while coughing reflex was negated by 

anaesthesia. 



2.12.6 Intraperitoneal inoculation 
The animal was restrained manually and tilted head down at 35-40° 

angle allowing the intestines to fall away from the injection site. A 27-gauge 

needle was inserted into the lower right quadrant of the abdomen, slightly off 

the midline, anterior to the bladder. Mice received 100 |JL Intraperitoneal 

injections of 10 mg/mL/kg HS mimetics previously prepared in sterile saline. 

2.13 IN VIVO SAMPLE COLLECTION 

2.13.1 Bronchoalveolar lavage fluid (BALF) collection 
Lungs were dissected free and the bronchus leading to the left lobe 

(apical, azygous, cardiac and diaphragmatic lobe) was temporarily tied up, while 

the right lobe was cannulated in order to perform BAL. The BALF was collected 

by gentle washing with 3 x 0.5 mL of sterile PBS and the sample placed on ice 

until further processing for differential leukocyte counts through cytospin 

preparation. 

2.13.2 Histological analysis 
The left anatomical lobe of the non-lavaged lung was fixed in 10% 

formalin (Sigma), embedded in paraffin and 3 mm sections stained with periodic 

acid-Schiff (PAS) or chromotrope (CR) stains (processed by A. Prins, John 

Curtin School of Medical Research, Australian National University). Slides were 

scored by an observer, blinded to the treatment groups for: parenchymal 

pneumonia (quantified on a 0 - 5 scale, 0 = none, 1.5 = minimal, 3 = medium 

and 5 = heavy); airways mucus occlusion (quantified on a 0 - 3 scale 0 = no 

occlusion, 1 = small areas of luminal accumulation of mucus, 2 = partial 

occlusion of at least one small airway and 3 = complete occlusion of at least 

one small airway); perivascular infiltrates (percentage of sites) (quantified on a 0 

- 3 scale, 0 = none, 1 = few (< 10%), 2 = many (10-50%) and 3 = majority (> 

50%)); peribronchiolar/bronchial infiltrates (percentage of sites) (quantified on a 

0 - 3 scale, 0 = none, 1 = few (< 25%), 2 = many (25-75%) and 3 = all (> 75%)); 

and quality of peribronchiolar/bronchial infiltrates (quantified on a 0 - 3 scale, 0 

= none, 1 = mild, 2 = moderate and 3 = severe). A combined histopathological 

score (HPS) (out of 17) was determined based on the sum of scores for these 

five observations. Histology slides were also evaluated for goblet cell count 



(average number of goblet cells counted over 10 high power fields per sample) 

and parenchymal eosinophil count (average number of eosinophil counted over 

10 high power fields per sample). 

2.13.3 Homogenising lung tissue 
Lungs were aseptically removed from mice and placed in a 2.0 mL 

microcentrifuge tube containing 1 mL of PBS (ANU) prepared with PSN 

(Invitrogen) (at 1X PSN final concentration) and one 5 mm steel ball (Procureit 

Australia). Tubes were snap frozen and stored at -80°C until further processing 

or were processed the same day. If frozen, the lung samples were partially 

thawed on ice. Samples were loaded into the two TissueLyser adapter blocks 

(pre-chilled at 4°C for at least 2 hours). Once blocks were balanced, samples 

were homogenised for 1 minute at a frequency of 30 Hz followed by 

centrifugation at 1700 x g (Eppendorf, Australia) for 1 minute at 4°C. In a 

biosafety cabinet, the supernatant of each sample was transferred into sterile 

1.5 mL tubes and stored at -80°C until processed using the immunostaining 

RSV plaque assay (Section 2.10). 

2.13.4 Blood smear 
A drop of blood was placed onto a slide and smeared, creating a thin 

layer of blood. Dried slides were fixed in 100% methanol (Scharlau) for 10 

minutes and processed with May-Grunwald and Giemsa staining (section 2.7). 

Leukocyte cell differentiation was performed under a light microscope (Nikon). 

2.13.5 Total leukocyte count 
Following heart puncture, 5 pL of blood was mixed with 95 pL of 

methylene blue (StemCell, Australia). Red blood cells were lysed using red cell 

lysis buffer (BD Pharmingen, Australia) for 5 minutes and total leukocytes were 

counted using haemocytometer. Following differential leukocyte analysis of 

blood smears, total leukocyte count was used to present a number of cells per 

mL of blood sample. 



Chapter 3. EFFECT OF RESPIRATORY SYNCYTIAL VIRUS 
INFECTION ON EOSINOPHIL BIOLOGY 



3.1 INTRODUCTION 

As mentioned in Chapter 1, viral bronchiolitis has been associated with 

eosinophilic inflammation as demonstrated by epidemiological studies linking 

severe RSV bronchiolitis with the development of asthma later on in life. In past, 

accumulation of eosinophils at the site of viral infection has been perceived in a 

negative light however, the specific role played by virus elicited eosinophils-

negative, positive or neutral-remains unclear. As a result, the role of eosinophils 

in RSV infection has been debated vigorously over the past few decades, with 

many researchers taking opposing stands on this issue. The aim of this study 

was to examine the in vitro effect of RSV on eosinophil morphology, release of 

eosinophil activation markers and eosinophil antiviral activity 

RSV is a major cause of viral bronchiolitis and hospitalisation in infants 

under six months of age (Openshaw et a/., 2003). In addition, early RSV 

infection is known to be associated with development of respiratory problems 

such as asthma and wheezing later in life (Openshaw, 2002). RSV disease has 

been characterised by pulmonary eosinophilia elicited in response to primary 

RSV infection; observed in both, human infants and mouse neonates 

(Rosenberg et al., 2009). As eosinophils are considered to be the main line of 

defence against parasites (Costa et al., 1997; Hitoshi et al., 1991) some 

researchers have focused their investigation on eosinophil antiviral ability. 

The first RSV vaccine thai with FI-RSV yielded disastrous results in 

young vaccine recipients, following natural RSV infection during the subsequent 

winter. The vaccine trial resulted in recipients developing enhanced pulmonary 

disease leading to hospitalisation and in some cases, death of a few vaccine 

recipients (Chin et ai, 1969; Fulginiti ef al., 1969; van Hagen et al., 1999). 

Studies with WT BALB/c mice have provided some insight into the mechanisms 

that may have contributed to FI-RSV enhanced pulmonary disease. These 

studies have found that WT BALB/c mice vaccinated with vectors expressing 

RSV G glycoprotein, purified G glycoprotein, or FI-RSV develop extensive 

enhanced pulmonary disease characterised by pulmonary eosinophilia, weight 

loss, exaggerated Th2-type cytokine responses and selective priming of CD4^ T 

cells (Graham et al., 2000; Hancock et al., 1996; Openshaw et al., 2001; Tripp 

et al., 2000; van Hagen et al., 1999; Varga et al., 2001). G glycoprotein was 

also shown to compete with the chemokine, fractalkine for binding to CX3CR1 



receptor, and to inhibit fractalkine mediated leukocyte chemotaxis (Tripp et a!., 

2001). These studies highlight that RSV G glycoprotein has immune modulatory 

activities associated with the CX3C motif. Consequently, based on the findings 

from these FI-RSV studies, eosinophils are believed to contribute to the 

pathology of RSV disease. 

However, very few research groups have focused on elucidating and 

understanding the potential that eosinophils may have in viral clearance. The 

first indication that eosinophils might have the means to function in promoting 

antiviral host defence came from a series of studies performed in the late 

1990s. In this work, it was determined that eosinophils had a potential to reduce 

RSV infectivity of target epithelial cells/n vitro (Domachowske et al., 1998a; 

Soukup and Becker, 2003) as well as inhibit RSV infection in tissue culture 

(Rosenberg et al., 2009). Interestingly, another study also revealed that RSV 

infected AdblGATA mice (eosinophil deficient) exhibited increased clinical 

illness similar to that observed in RSV infected WT BALB/c mice (Castilow, 

Legge, & Varga, 2008). Their findings also suggest that eosinophils are not 

required for increased weight loss, clinical illness and impaired lung capacity, 

the disease parameters most often associated with RSV vaccine enhanced 

disease (Castilow et al., 2008). Finally, Rosenberg and Domachowske (1999 

and 2001) were among the first groups to suggest that eosinophil recruitment 

and activation may lead to a positive host-defence (Domachowske and 

Rosenberg, 1999; Rosenberg and Domachowske, 2001). The possibility that 

eosinophils may be recruited in part to promote primary antiviral host defence is 

a very exciting concept (Rosenberg et al., 2009). 

Previous studies have also shown eosinophil activation in the presence 

of RSV infection (Domachowske et al., 1998a; Phipps et al., 2007). Eosinophil 

activation could result in piecemeal degranulation (PMD), a process known to 

lead to successful clearance of parasitic infections (Shamri et al., 2011) through 

a selective release of eosinophil granule content. Eosinophil granules contain 

four cytotoxic proteins: (1) MBP, which is located in the eosinophil granule core; 

(2) EPO, (3) ECP and (4) EDN found in the matrix of the eosinophil granule 

(Rosenberg et al., 2009). PMD leads to small vesicles budding from the 

secondary granules and subsequent transport of the granule protein subset to 

the cell surface, with a progressive and selective loss of secondary granule 



constituents (Dvorak et al., 1992; Dvorak et al., 1991). This process of 

eosinophil degranulation has been well characterised with the help of 

transmission electron microscopy (TEM) studies. TEM analysis revealed that 

MBP forms crystals characterised by a very regular pattern of electron-dense 

stripes, visualised as a dark line while the other three eosinophil proteins (ECP, 

EDN and EPO) are located in the surrounding matrix, and appear light grey in 

colour (Dvorak ef a/., 1993; Erjefalt etal., 1998; Erjefalt ef a/., 1999). 

RSV clearance may be assisted through a process of eosinophil 

recruitment and migration, involving both, cytoskeletal activation and 

reorganisation (Morales-Ruiz et al., 2000). Eosinophil migration is known to 

involve the formation of unique and highly dynamic adhesion structures called 

podosomes (sites of extravasation of the plasma membrane) (Siddiqui et al., 

2012). Podosomes are comprised of a core of short actin filaments and actin-

associated proteins, enabling eosinophil migration from the blood into a tissue 

(Linder et al., 2000). Migration is also enabled by activation of the microtubular 

network which can be visualised though fluorescence microscopy analysis 

(Remijsen et al., 2011). 

The activation of an immune response resulting in a positive resolution of 

RSV infection remains the most desired mechanism for the prevention and 

inhibition of RSV disease. This chapter aimed to examine the in vitro effect of 

RSV on eosinophil morphology, release of eosinophil activation markers and 

eosinophil antiviral activity. As previous studies have looked into RSV-induced 

eosinophil degranulation, in terms of ECP protein release only (Garofalo et al., 

1992; Olszewska-Pazdrak et al., 1998b; Saito et al., 1997), this chapter has 

focused on investigating early signs of eosinophil degranulation using MBP as 

the marker of eosinophil degranulation. In addition, extending on from the 

studies by Phipps et al. (2007) investigating eosinophil activation using EPO as 

the activation marker (Phipps et al., 2007), in this study, the effect of RSV on 

eosinophil chemotaxis, through the activation of the eosinophil cytoskeletal 

components, a-tubulin and F-actin was examined. Furthermore, the effect of 

RSV on eosinophil morphology with an in depth TEM analysis as well as the 

RSV kinetics in mouse eosinophils was also examined. 



3.2 METHODS 

3.2.1 Eosinophil fluorescence activated cell sort 
The leukocyte population was collected from IL-5 Tg BALB/c mice by 

peritoneal lavage. Mice were sacrificed by CO2 asphyxiation (section 2.12.1) 

and the peritoneal cavity exposed by an incision through the abdominal skin. 

The cavity was washed 3 times with 5 mL of sterile HBSS (ANU) using an 18-

gauge needle (Terumo, Australia). Lavage was collected and centrifuged at 240 

X g (Sigma 3-16 PK) for 5 minutes. The supernatant was discarded and the cell 

pellet resuspended in red blood cell lysing buffer (BD Pharmingen, Australia) for 

5 minutes. Cells were re-centrlfuged at 240 x g (Sigma 3-16 PK) for 5 minutes 

followed by removal of supernatant and resuspended in sterile HBSS (ANU), 

with a maximum density of 1 x 10^ cells/mL. All cell clumps and debris were 

removed prior to sorting, by filtration through a cell strainer (40 pm) (BD, 

Australia), then transferred into sterile 4 mL FACS tubes (BD Labware, Europe) 

and placed on ice prior to cell sorting. 

The fluorescence activated cell sorter (FACS) (BD Biosciences 

FACSVantage SE, USA) was used to sort mature eosinophils from the 

peritoneal cell mix, based on forward (FSC) and side scatter (SSC) parameters 

and polarised light as well as green (FL1) and red (FL2) fluorescence 

measurements. Polarised light is especially important in sorting eosinophils as 

measuring depolarised light scattering (dSSC) in combination with normal SCC, 

enables eosinophils to be sorted with high precision. Electronic gates were set 

in order to include eosinophils only, achieving approximately 97% cell purity. 

Eosinophils were sorted into DMEM (Gibco) with 30% HI-FCS (Sigma) and kept 

on ice prior to use. 



3.2.2 Eosinophil transmission electron microscopy 

(TEM) analysis 
Approximately 6 x 10® freshly sorted eosinophils (per sample) were 

treated with Vero E6 cell lysate (negative control) or RSV at multiplication of 

infection (MOI) of 1. RSV was allowed to adsorb for 2 hours, followed by 

change of RSV containing supernatant for fresh media. Samples were collected 

at 3, 6, 12, 18, 24 or 48 hours post incubation and fixed using 2% 

glutaraldehyde/O.IM Sodium cacodylate (Sigma, Australia) overnight at 4°C 

followed by further processing at the Microscopy and Cytometry Resource 

Facility (Ms C. Gillespie, The Microscopy and Cytometry Resource Facility, 

JCSMR, ANU) In accordance with detailed protocol described in Appendix 2. 

Briefly, following primary fixation with 2% glutaraldehyde in 0.1 M Sodium 

cacodylate (Sigma) for at least 2 hours, samples were secondary fixed with 1% 

Osmium textroxide (PriSciTech, Australia) for 1.5 hours followed by three 15 

minute washes with 0.1M Sodium cacodylate and one 15 minute wash with 

distilled water. Samples were then dehydrated in acetone (Univar) 

(concentrations included: 15 minutes in each 30, 50, 70, 90, 95% acetone and 

three 15 minute lots at 100% acetone), followed by embedment in Spurr's resin 

(PriSciTech, Australia). Sections of each sample were cut and stained with 2% 

uranyl acetate (PriSciTech, Australia) and Reynold's lead citrate (PriSciTech, 

Australia). Samples were analysed and photographed using a Hitachi H7000 

transmission electron microscope at 75kV. 

Secondary granules of each eosinophil in TEM sample were counted and 

classified into four categories (type I, intact; type II, loss of crystal core; type III, 

loss of matrix; and type IV, loss of crystal core and matrix). The extent of 

degranulation was quantified by calculating the percentage of degranulating 

cells using the following Equation 3.1: 

no. of activated granules (type II - IV) 
0/0 of degranulating cells total no. of granules 

Equation 3.1. Quantification of degranulating eosinophils 



3.2.3 Eosinophil degranulation assay 
The eosinophil degranulation assay was performed in 24-well tissue 

culture plates (Iwaki) as previously described by Clark (2004). Plates were 

coated with 2.5% w/v bovine serum albumin (BSA) (Fraction V) (Sigma, USA) 

diluted in PBS (ANU) (100 pL/weil) and incubated overnight at 37°C with 5% 

CO2. The next day, 250 pL of purified eosinophils (section 3.2.1) prepared in 

DMEM (Gibco) at 5 x 10® cells/mL concentration, was added to each well, 

followed by the same volume of stimulus (Vero E6 cell lysate (negative control), 

UV-RSV (additional negative control), 0.1 mM (final concentration) phorbol 

myristate acetate (PMA) (Sigma, Australia) or RSV at an MOI 1 (Sigma). The 

plates were incubated at 37°C with 5% CO2 for 4 hours, after which, they were 

spun down at 240 x g (Sigma 3-16 PK) for 5 minutes. The supernatants were 

collected into sterile eppendorf tubes and stored at -80°C, until assayed for 

MBP. 

3.2.3.1 Eosinophil major basic protein detection assay 
The samples collected for eosinophil degranulation were tested for MBP 

activity in the culture supernatant using a dot-blot assay as previously described 

by Hogan (1998). Briefly, polyvlnylidene difluoride (PVDF) (Millipore, USA) 

membrane was soaked in 100% methanol (Scharlau) for 1 minute, followed by 

Tris-buffed saline (TBS) (Sigma, Australia) for 5 minutes. The membrane was 

placed onto a dot blot manifold (Schleicher & Schuell, Germany) to ensure 

uniform distribution of protein for each sample, and 100 pL of the culture 

supernatant was added to the appropriate wells on the apparatus. After 

incubation for 1 hour, each well was washed 3 times with 200 pL of TBS. 

followed by removal from the apparatus and transfer into a blocking solution, 

containing 1% BSA (Fraction V) (Sigma) in TBST (TBS supplemented with 

0.1% Tween-20 (Sigma, Australia) overnight at 4°C. The membrane was then 

washed twice with TBST for 10 minutes followed by incubation with Rabbit anti-

murine MBP monoclonal antibody (50 pg/L) (Santa Cruz Biotechnology, 

Australia) at a dilution of 1:2500 in 1% BSA (Fraction V) (Sigma) in TBST for 2 

hours at room temperature. The membrane was washed three times with TBST 

for 15 minutes. Subsequently, the membrane was incubated with alkaline 

phosphatase-conjugated goat anti-rat antibody at a dilution of 1:1000 in 1% 

BSA in TBST (Sigma, Australia) for 1 hour at room temperature. Finally, the 



membrane was washed 3 times with TEST for 15 minutes each, followed by two 

10 minutes TBS washes. The process was finalised with a 5 minute 

development of the blot by addition of the Western blue-stabilised substrate 

(Promega, USA). The reaction was stopped by rinsing the membrane in distilled 

water for 10 minutes. The membrane was placed onto paper towel and covered 

with aluminium foil where it was left to dry. The dot-blot (image available in 

Appendix 3) was digitised by densitometry and image analysed using Multi 

Gauge Version 2.2 (Fujifilm, Japan). 

The following formulas were used to calculate percentage increase and 

decrease: 

(new number - original number) 
Percentage increase = 100 x 

Percentage decrease = 100 x 

original number 

(original number - new number) 

original number 

Equation 3.2. Percentage increase and decrease formula 

3.2.4 Eosinophil RSV kinetics 
Purified eosinophils (3x10® cells/well) were treated with RSV at an MOI 

1. The infection was set up in 24-well plates (Iwaki) and cells incubated at 37°C 

with 5% CO2 for 3, 6, 12, 24 or 48 hours. Following the incubation, cells and the 

supernatant were collected and assayed for viral titres using the 

immunostaining RSV plaque assay (section 2.10). 

3.2.5 Eosinopliil activation - EPO release assay 
To analyse eosinophil activation, 96-well plates (Iwaki) were prepared by 

coating each well with 60 pL of fibronectin (Sigma, Australia) solution (20 |jg/mL 

in PBS) overnight at 4°C. Wells were washed twice with PBS (ANU) and all 

non-coated sites were blocked with 0.1% (w/v) BSA (Fraction V) (Sigma) for 60 

minutes at 37°C with 5% CO2. Plates were then washed twice with PBS (ANU) 

and quickly air-dried. Purified eosinophils (5 x lO'* cells/well) were resuspended 

in Roswell Park Memorial Institute medium (RPMI)-1640 (Gibco, Australia) 

containing 4% HI-FCS (Sigma) and treated with Vero E6 cell lysate (negative 

control), UV-RSV (additional negative control), 0.1 mM (final concentration) 



PMA (Sigma) (positive control) or RSV at a MOI of 1. Samples were prepared in 

five replicates and incubated for 90 minutes at 37°C with 5% CO2. Following 

incubation, non-adhered cells were removed, and the remaining cells were 

washed twice with PBS (ANU) and lysed using 0.22% cetyl trimethylammonium 

bromide (CTAB) (Sigma, Australia) in 10 mM HEPES (pH 8) (Gibco, Australia). 

Cell lysates were serially diluted across an uncoated 96-well plate and 

100|iL/well of 0-phenylenediamine dihydrochloride substrate (40 mg substrate 

dissolved in 32 mL 1mM HEPES, pH 8) (Sigma, Australia) was added, followed 

by for 30 minute incubation in dark at room temperature. The reaction was 

stopped by adding 50 pL/well of 4M H2S04(Univar) and the product analysed at 

490 nm using a colorimetric plate reader (BioRad, USA). The number of 

adhered cells was calculated based on a standard curve generated by a known 

number of untreated eosinophils. Cells were lysed with 0.22% CTAB and 

processed in the same manner as the unknown samples. Readings from the 

negative control (eosinophils treated with Vero E6 cell lysate) were used as a 

baseline. 

3.2.6 Eosinophil activation with an agonist 
Eosinophil chemotaxis assay is based on the experimental set up by 

Olszewska et al. (1998) (Olszewska-Pazdrak et a!., 1998a). Approximately 2 x 

10® HEp-2 cells/well was seeded in a 24-well plate (Iwaki). Cells were incubated 

with Vero E6 cell lysate, UV-RSV or RSV at an MOI of 1 for 24 hours at 37°C 

with 5% CO2. RSV was allowed to adsorb for 2 hours, followed by change of 

RSV containing supernatant for fresh media. Following day, Costar transwell 

filters (Corning, USA) were coated with 50 ng/mL fibronectin for 2 hours at 37°C 

and rinsed twice with serum free RPMI-1640 (Gibco, USA). Freshly purified 

eosinophils were loaded in the top chamber of the transwell filter (5 x lO"* 

cells/well) and allowed to adhere for 20 minutes at room temperature. 

Supernatant (agonist) collected from Vero E6 cell lysate treated HEp-2 cells 

(negative control), UV-RSV treated HEp-2 cells (additional negative control), 0.1 

|JM PMA (Sigma) with 100 ng/mL eotaxin (Invitrogen, Australia) (positive 

control) or RSV infected HEp-2 cells (at an MOI 1) was placed in the bottom 

chamber of the transwell plate. Eosinophils were allowed to migrate for 10 

minutes towards the agonist at room temperature. Cells were fixed 4% 

paraformaldehyde (Sigma, Australia) for 10 minutes. Transwell filters were 



excised and placed in the bottom of a 24-well plate (Iwaki) for 

immunohistochemistry staining of the primary eosinophils for cytoskeletal 

components (section 3.2.6.1). 

3.2.6.1 Immunohistochemistry assay for cytoskeletal 
components in primary eosinophils 

Fixed cells were rinsed three times for 5 minutes with 0.1% Triton X-100 

(Sigma, Australia) pH 7.4 in PBS. Cells were permeabilised for 10 minutes with 

0.5% Triton X-100 (Sigma) pH 7.4 in PBS and rinsed again three times for 5 

minutes with 0.1% Triton X-100 (Sigma) pH 7.4 in PBS. Cells were then 

incubated for 2 hours at room temperature with blocking solution, 2% goat 

serum (Life technologies, Australia) in PBS (ANU) to eliminate any non-specific 

binding. This was followed by incubation with primary antibody, anti-F-actin or 

anti-a-tubulin at 1-10 pg/mL (Invitrogen, Australia) at 4°C overnight in a sealed 

plate or 1 hour at room temperature. Slides were rinsed five times for 5 minutes 

with 0.1% TritonX-100 (Sigma) in PBS (ANU) at room temperature. Secondary 

antibody, Texas red-phalloidin or boron-dipyrromethene (BODIPY)-FL 

(Invitrogen, Australia)) was prepared at 1:1000 in the blocking solution. Slides 

were incubated in the secondary antibody solution at 4°C overnight. Slides were 

rinsed five times for 5 minutes with 0.1% TritonX-100 (Sigma) in PBS (ANU) at 

room temperature. Slides were mounted using a small drop of 4',6-diamidino-2-

phenylindole (DAPI) antifade (Invitrogen, Australia). The filter (containing 

adhered eosinophils) from the bottom of the 24-well plate (Iwaki) was harvested 

and inverted onto a drop of DAPI antifade placed on a coverslip and sealed with 

nail polish. Slides were analysed for actin polymerisation and a-tubulin 

activation using a confocal microscope (Nikon Eclipse Ti). 



3.3 RESULTS 

3.3.1 RSV-induced changes to eosinophil 

morphology 
As eosinophils are found to play an important role in RSV infection, 

electron microscopy analysis of eosinophils was used to determine the extent of 

cellular activation following RSV treatment (Figure 3.1). Eosinophils showed 

signs of the granule protein release, mostly via a process of PMD (Figure 3.1). 

As seen in Figure 3.1 A, following 3 hour incubation untreated eosinophils 

(negative control) contained primarily type I granules with highly electron-dense 

crystals (core intact) and vesicles (matrix intact) (arrow and inset in A) with only 

20% of type II granule (thick arrows) present. As seen in Figure 3.1 B-D, the 

number of type II granules present in untreated eosinophils (negative control) 

increased over time (6-18 hours), from 30 to 50%, determined by a progressive 

increase in a number of electron-lucent crystals and accompanied by electron-

lucent vesicles. Moreover, at 24 hours post incubation untreated eosinophils 

displayed signs of type III granules (inset in E) (thin arrows), with the overall 

cellular structure still intact (Figure 3.1 E). 

In contrast, RSV-treated eosinophils incubated for 3 hours (Figure 3.1 F) 

contained a greater proportion of activated eosinophils undergoing PMD, with 

50% of type II granules present (indicative of loss of core content, thick arrows; 

inset in F). At 6 hours of incubation, RSV-treated eosinophils contained equal 

parts of type II and type III granules, approximately 50% each; while at 12 and 

18 hours post incubation, RSV-treated eosinophils contained close to 90% of 

granules that had lost their core, matrix or both granule constituents (Figure 3.1 

H and I). Following a 24 hour incubation period, the secondary granules of 

RSV-treated eosinophils were surrounded by small empty vesicles, type IV 

granules (arrow head), showing signs of apoptotic nucleus, cellular degradation 

(loss of membrane) and the release of the cellular contents into the surrounding 

(Figure 3.1 J). 
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Figure 3.1. Respiratory syncytial virus (RSV) induced changes to 
eosinophil morphology (A-J) 

Electron photomicrographs (EM) of mouse eosinophils following 3, 6, 12, 18 and 24 hours 

treatment with Vero E6 cell lysate (untreated eosinophils; negative control) (A-E) or RSV at a 

multiplicity of infection of 1 (F-J). Following the incubation, cells were collected and processed for 

transmission electron microscopy. Eosinophil multilobed nucleus is labelled N on each EM image. 

Arrows indicate different signs of eosinophil degranulatlon (loss of core and/or matrix) and cellular 

integrity as described in the text. Samples were analysed and photographed using a Hitachi 

H7000 transmission electron microscope at 75kV. Data are representative of five replicate 

samples taken for each time point. 

3.3.2 Quantification of RSV-induced eosinophil 

activation 
in conjunction witti TEM analysis of eosinophils, RSV-induced eosinophil 

activation was quantified (Figure 3.2) by transforming data into the percentage 

of activated cells, determined by the number of type ll-IV granules present 

within eosinophils. Distinct differences in the degree of eosinophil activation 

were observed for untreated eosinophils (negative control) compared to RSV-

treated eosinophils. Following 3-18 hours post incubation, untreated eosinophils 

contained predominantly type I granules, with type II granules (partial loss of 

core) becoming more prominent over time, increasing from 20% at 3 hours post 

incubation to 55% by 18 hours post incubation. At 24 hours post incubation, 

untreated eosinophil granule content appeared to be made up of equal parts of 

type II and III (partial loss of matrix) granules, making approximately 90% of 

eosinophil granule content. 

In contrast, incubation of RSV treated eosinophils for 3 hours resulted in 

more than 50% of type II granules present, compared to untreated eosinophils 

(p < 0.0001). At 6, 12 and 18 hours post incubation, RSV treated eosinophils 

had 28, 38 and 36% respectively, greater proportion of type II and type III 

granules present compared to untreated eosinophil control at the corresponding 

incubation times (p < 0.005). Finally, at 24 hours post incubation, RSV treated 

eosinophils contained 100% type IV granules with a complete loss of eosinophil 

granule protein content (loss of core and matrix) and cellular integrity. 
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Figure 3.2. Quantification of respiratory syncytial virus (RSV) induced 
eosinophil activation 

Freshly isolated eosinophils from interleukin-5 transgenic BALB/c mice were incubated with Vero 

E6 cell lysate (untreated eosinophils; negative control) or RSV at a multiplicity of infection of 1 

and the percentage of degranulating cells was determined using transmission electron 

microscopy assay following 3, 6 ,12 ,18 and 24 hours incubation. The data is represented as the 

mean percentage of type ll-IV granules present in eosinophils (n = 10) ± standard deviation. 

Significant differences as determined by TWO-way ANOVA with Sidak's multiple comparison test 

(GraphPad Prism version X7), were seen in RSV treated samples compared to the corresponding 

untreated eosinophil samples ( " , p < 0.005 and p < 0.0001). 



3.3.3 RSV-induced eosinophil degranulation 
Eosinophil degranulation is indicative of eosinophil activation in the 

presence of an agonist. MBP was used as an eosinophil degranulation marker. 

Untreated eosinophils (treated with Vero E6 cell lysate; negative control) and 

UV-RSV treated eosinophils (additional negative control) displayed low levels of 

eosinophil degranulation (100 density/pixel^) (Figure 3.3). On the other hand, 

treatment with 0.1 pM (final concentration) PMA (positive control) induced a 

significant increase (p < 0.0001) in eosinophil degranulation with a reading of 

165 density/pixel^' corresponding to a 75% increase as compared to the 

negative control (Figure 3.3). However, RSV treatment of eosinophils induced 

degranulation with a reading of approximately 185 density/pixel^ suggesting an 

80% increase compared to the negative control (p < 0.0001). 
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Figure 3.3. Respiratory syncytial virus (RSV) induced eosinophil 
degranulation 

Freshly isolated eosinophils, from interleukin-5 transgenic BALB/c mice were incubated with Vero 

E6 cell lysate (untreated eosinophils; negative control - white bar), ultraviolet-inactivated RSV 

(UV-RSV) (additional negative control - light grey bar), 0.1 pM phorbol myristate acetate (PMA) 

(positive control - dark grey bar) or RSV (black bar) at multiplicity of infection of 1 for 4 hours. 

Samples were assessed for eosinophil degranulation using a major basic protein as a 

degranulation marker. Data is represented as the mean density/pixel^ (n = 5) ± standard 

deviation. Data was analysed using ONE-way ANOVA with Dunnet multiple comparison test 

(GraphPad Prism version X7) ( " " , p < 0.0001 compared to the negative control). 



3.3.4 Eosinophil RSV antiviral activity 
To investigate eosinophil antiviral activity, purified eosinophils isolated 

from IL-5 Tg BALB/c mice were treated with Vero E6 cell lysate (untreated 

eosinophils; negative control), UV-RSV (additional negative control) or RSV at 

an MO! of 1 for 0, 3, 6, 12, 18, 24 and 48 hours (Figure 3.4 A). Samples were 

collected and assayed for RSV litres. No viral titres were recovered from 

untreated (negative control) or UV-RSV (additional negative control) treated 

eosinophils. 

At 0 hours post incubation, RSV treated eosinophils received 

approximately 500 x 10^ pfu of RSV per sample. By 3 hours post incubation, the 

viral titre had decreased significantly (p < 0.0001) to 100 x 10^ pfu/mL. The viral 

titres continued to decrease over time, from 75 x 10^ pfu/mL at 6 hours post 

RSV treatment, down to 45 x 10^ pfu/mL at 12 hours. At 24 hours post RSV 

treatment a count of 25 x lO^pfu/mL was observed. At the experimental end 

point of 48 hours post RSV treatment, the viral titres had significantly decreased 

to 15 x 103 pfu/mL (Figure 3.4 A). 

Cell viability of purified eosinophils treated with Vero E6 cell lysate 

(untreated eosinophils; negative control), UV-RSV (additional negative control) 

or RSV at an MOI of 1 for 0, 3, 6, 12, 18, 24 and 48 hours was also assessed 

(Figure 3.4 B). Both, untreated (negative control) and UV-RSV (additional 

negative control) treated eosinophils induced a similar cell viability trend, with 

cell viability remaining above 85% for the first 6 hours of incubation for both 

treatment groups. However, by 12 hours post incubation, cell viability dropped 

to 38%, with a further decrease to 15% and 5% by 24 and 48 hours post 

incubation respectively for both, untreated and UV-RSV treated eosinophil 

groups. 

RSV treatment of eosinophils resulted in a significant reduction in cell 

viability over time, compared to the negative controls (p < 0.05). Within the first 

6 hours of incubation, RSV treated eosinophil cell viability decreased from 97% 

to 60% (p < 0.05). Only 20% of the RSV treated eosinophils were viable at 12 

hours post incubation (p < 0.0001) with continued decline to 10% and 0% by 24 

and 48 hours post incubation, respectively. 
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Figure 3.4. Eosinophils antiviral activity against respiratory syncytial virus 
(RSV; in vitro 

Freshly isolated eosinophils from interleukin-5 transgenic BALB/c mice were incubated with Vero 

E6 cell lysate (untreated eosinophils; negative control), ultraviolet-inactivated RSV (UV-RSV) or 

RSV at a multiplicity of infection of 1 for 0, 3, 6, 12, 24 and 48 hours at 37°C with 5% CO2. A) 

R S V replication kinetics in m o u s e eosinophi ls . Eosinophils and supernatant were collected 

and assayed for viral titres (plaque forming units (pfu)/mL). Initial RSV inoculum is represented by 

the grey bar. Samples are represented as a mean of RSV pfu/mL (n = 5) ± standard deviation. B) 

E o s i n o p h i l cel l viabil ity. Cell viability was measured using trypan blue exclusion assay. 

Samples are represented as a mean percentage cell viability (n = 5) ± standard deviation. Data 

was analysed using ONE-way ANOVA with Dunnet multiple comparison test (GraphPad Prism 

version X7). Asterisks denote significant decrease in RSV viral titres over time and cell viability 

compared to untreated eosinophils (*, p < 0.05 and p < 0.0001). 



3.3.5 Eosinophil migration 

3.3.5.1 Eosinophil activation - EPO release 
EPO was used as an eosinophil activation marker (Figure 3.5). Untreated 

eosinophils (treated with Vero E6 cell lysate; negative control) and UV-RSV 

treated eosinophils (additional negative control) induced low levels of eosinophil 

activation (0.5 optical density (OD)) (Figure 3.5). Eosinophil treatment with 0.1 

pM PMA (positive control) resulted in an increase in eosinophil activation with a 

reading of approximately 2 OD obtained (p < 0.001) (Figure 3.5) as well as 

300% increase in eosinophil activation compared to the negative control. 

However, RSV treatment of eosinophils induced eosinophil activation with a 

reading of approximately 3 OD indicating a 500% increase in eosinophil 

activation compared to the negative control (p < 0.001). 
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Figure 3.5. Respiratory syncyt ia l v i rus (RSV) induced eosinophi l activation 

Freshly isolated eosinophils, from interleukin-5 transgenic BALB/c mice were incubated with Vero 

E6 cell lysate (untreated eosinophils; negative control - white bar), ultraviolet-inactivated RSV 

(UV-RSV) (additional negative control - light grey bar), 0,1 | jM phorbol myristate acetate (PMA) 

(positive control - dark grey bar) or RSV (black bar) at a multiplicity of infection of 1 for 90 

minutes. Samples were assessed for eosinophil activation using an eosinophil peroxidase as an 

activation marker. Data is represented as the mean optical density (OD) (n = 5) ± standard 

deviation. Data was analysed using ONE-way ANOVA with Dunnet multiple comparison test 

(GraphPad Prism version X7) (* " , p < 0,001 compared to the negative control), 



3.3.5.2 Activation of alpha-tubulin 

Freshly sorted eosinophils, from IL-5 Tg BALB/c mice were allowed to 

migrate for 10 minutes towards Vero E6 cell lysate treated HEp-2 cells 

supernatant (untreated eosinophils; negative control) (Figure 3.6 A and B), UV-

RSV treated HEp-2 cells supernatant (additional negative control) (Figure 3.6 C 

and D), 0.1 |JM (final concentration) PMA with 100 ng/mL of eotaxin (positive 

control) (Figure 3.6 E and F) or supernatant collected following 24 hour RSV 

treatment of HEp-2 cells at an MOI of 1 (Figure 3.6 G and H). 

Untreated eosinophils migrating towards either Vero E6 cell lysate 

treated HEp-2 cells supernatant (negative control) or UV-RSV treated HEp-2 

cells supernatant (additional negative control) had punctate and non-

polymerised a-tubulin localised radially from the microtubules organising centre 

(MTOC) and around the peripheral cell membrane (Figure 3.6 B and C). The 

addition of an agonist induced rapid a-tubulin polymerisation and a formation of 

a distinct radial microtubular network, most prominent following eosinophil 

migration towards a mixture of 0.1 pM PMA with 100 ng/mL eotaxin (positive 

control) (Figure 3.6 F) This was also observed with eosinophils migrating 

towards RSV infected HEp-2 supernatant (Figure 3.6 H). The MTOC in 

migrating eosinophils remained localised at the centre of the elongated nucleus, 

anterior towards the leading pseudopodia (Figure 3.6 F and H). Controls of the 

BODIPY-labelled secondary antibody were also run to ensure the specificity of 

binding to the primary antibody only (data not shown). 





Figure 3.6. Respiratory syncytial virus (RSV) activation of eosinophil a-
tubulin 

Eosinophils migrating towards Vero E6 cell lysate treated HEp-2 cells supernatant (untreated 

eosinophils; negative control) (A and B), ultraviolet-inactivated (RSV) (UV-RSV) treated HEp-2 

cells supernatant (additional negative control) (C and D), 0.1 |JM phorbol myristate acetate (PMA) 

with 100 ng/mL of eotaxin (positive control) (E and F) or supernatant collected following 24 hour 

RSV treatment of HEp-2 cells at a multiplicity of infection of 1 (G and H) were stained with DAPI 

(A, C, E and G) and anti-a-tubulin and BODIPY-labelled secondary antibody (B, D, F and H) for 

detection of the microtubular network. Images were taken using the Nikon Eclipse Ti confocal 

microscope. Images are representative of two separate experiments with samples prepared in 

triplicates. 



3.3.5.3 Activation of F-actin 

Freshly sorted eosinophils, from IL-5 Tg BALB/c mice were allowed to 

migrate for 10 minutes towards Vero E6 cell lysate treated HEp-2 cell 

supernatant (untreated eosinophils; negative control) (Figure 3.7 A and B), UV-

RSV) treated HEp-2 cell supernatant (additional negative control) (Figure 3.7 C 

and D), 0.1 pM (final concentration) PMA with 100 ng/mL of eotaxin (positive 

control) (Figure 3.7 E and F) or supernatant collected following 24 hour RSV 

treatment of HEp-2 cells at a multiplicity of infection of 1 (Figure 3.7 G and H). 

Untreated eosinophils either migrating towards Vero E6 cell lysate 

treated HEp-2 cells supernatant (negative control) or towards UV-RSV treated 

HEp-2 cells supematant (additional negative control) had F-actin primarily 

localised and adjacent to the peripheral membrane (Figure 3.7 B and C). The 

addition of an agonist induced cell polarisation and accumulation of F-actin 

towards the leading pseudopod observed in eosinophils migrating towards a 

mix of 0.1 pM PMA with 100 ng/mL eotaxin (positive control) (Figure 3.7 F). 

Similar observations were made for eosinophil migration towards RSV infected 

HEp-2 supernatant (Figure 3,7 H). Thick arrows indicate leading edge 

formation, while thin arrows point towards direction of eosinophil migration 

(Figure 3.7 F and H). Controls of the Texas red anti-phalloidin-labelled 

secondary antibody were also run to ensure the specificity of binding to the 

primary antibody only (data not shown). 





Figure 3.7. Respiratory syncytial virus (RSV) activation of eosinophil F-
actin 

Eosinophils migrating towards Vero E6 cell lysate treated HEp-2 cells supernatant (untreated 

eosinophils; negative control) (A and B), ultraviolet-inactivated RSV (UV-RSV) treated HEp-2 

cells supernatant (additional negative control) (C and D), 0.1 |JM phorbol myristate acetate (PMA) 

with 100 ng/mL of eotaxin (positive control) (E and F) or supernatant collected following 24 hour 

RSV treatment of HEp-2 cells at a multiplicity of infection of 1 (G and H)were stained with DAPI 

(A, C, E and G) and anti-F-actin and Texas red anti- phalloidin for the detection of F-actin (B, D, F 

and H). Images were taken using the Nikon Eclipse Ti confocal microscope. Thick arrows depict 

leading edge formation, while thin arrows indicate direction of eosinophil migration. Images are 

representative of two separate experiments with samples prepared in triplicates. 



3.4 DISCUSSION 

Since the unsuccessful RSV vaccine trial in 1956 (Morris et al., 1956) 
numerous studies have tried to understand why the vaccine trial failed (Becker, 
2006; Olson et al., 2008; Wans et al., 1996). The consensus has been that 
eosinophilia, described by an Influx of eosinophils into the lung tissue, 
contributed to RSV disease pathology and therefore, became the hallmark of 
RSV disease (Rosenberg and Domachowske, 2001). Consequently, eosinophils 
were characterised as leukocytes contributing to RSV disease pathology and 
their presence during RSV infection or therapeutic interventions was deemed 
undesirable (Openshaw etal., 2003). 

Although some studies have concentrated on elucidating the role of 
eosinophils in viral infection (Adamko et al., 1999; Domachowske et al., 1998a; 
Phipps et al., 2007; Rosenberg and Domachowske, 2001), there are limitations 
to the knowledge and understanding that these studies offer. One of the major 
limitations of the previous electron microscopy analysis is that ssRNA was used 
to stimulate eosinophils (Phipps et al., 2007). As such, this provides a very 
limited view of RSV effect on eosinophil morphology. These findings could be 
expanded further by including a wider range of time points as well. It would 
enable a better understanding of RSV-induced changes to eosinophil 
morphology while characterising the eosinophil degranulation kinetics over time. 
In addition, previous eosinophil degranulation studies have only focussed on 
levels of ECP in tissue culture and nasopharyngeal secretions from human 
infants (Olszewska-Pazdrak et al., 1998b; Saito et al., 1997). However, these 
studies have failed to note that, as ECP is located in the matrix of the eosinophil 
granule its release is preceded by the release of MBP from the core. In addition, 
there is a difference in opinion whether RSV can infect eosinophils (Dyer et al., 
2009; Kimpen, 2001a) and therefore promote antiviral host defence. This 
controversy is under explored and requires further investigation. Finally, 
previous studies have only examined eosinophil activation using EPO, as the 
activation marker however expanding on these findings would enable us to 
generate a bigger picture of RSV-induced activation by also examining 
eosinophil cytoskeleton involvement in subsequent processes such as 
migration. 



In vitro results from the electron microscopy analysis revealed a 
significant (p < 0.005) RSV-induced effect on eosinophil morphology over time 
(Figure 3.1 and Figure 3.2). TEM results indicate RSV-induced eosinophil 
activation as demonstrated by the release of eosinophil granule content into the 
external cell environment. The release was mainly characterised by partial and 
complete loss of eosinophil granule core contents following the RSV treatment 
of eosinophil for 6, 12 and 18 hours (Figure 3.1 G, H and I). RSV-induced 
changes to eosinophil morphology became even more evident following 24 
hours post RSV incubation of eosinophils. At this time, eosinophil granules were 
completely devoid of core and matrix content and apoptotic nuclei became the 
hallmark of RSV treatment (Figure 3.1 J). These findings for the first time 
demonstrate clearly RSV-induced changes to eosinophil morphology over time 
as a result of RSV treatment of eosinophils. Previous findings by Phipps et al. 
(2007) support described TEM findings in this chapter, as they have also 
showed that a ten minute treatment of eosinophils with ssRNA results in a loss 
of the eosinophil crystal core content as demonstrated by TEM analysis (Phipps 
et al., 2007). The study conducted by Clark et al. (2004) also revealed similar 
changes to eosinophil morphology observed in an allergic asthma model using 
TEM (Clark et a!., 2004). Together, these novel findings demonstrate how RSV 
treatment of eosinophils has detrimental effect on eosinophil morphology and 
integrity over time, resulting in granule content and subsequent cytotoxic protein 
release via process of PMD and concluding in a loss of cellular structure and 
cell apoptosis. It is important to note that the use of eosinophil survival factor 
was not required in the expehment examining RSV-induced changes to 
eosinophil morphology as appropriate eosinophil controls (untreated 
eosinophils) were used at each time point. Trypan blue viability test was the 
only test performed assessing the cell health status. Although this may be 
perceived as a limitation of this study, it is consistent with other research groups 
who have not used eosinophil survival factors in experiments similar to the one 
described in this study (Phipps et al., 2007; Rosenberg and Domachowske, 
2001). 

The current studies suggest for the first time that presence of MBP may 
not be a by-product of cellular degenerative processes but rather result directly 
in response to RSV-mediated eosinophil activation. Earlier studies examining 
RSV-induced eosinophil degranulation, found high levels of ECP present in the 



lung epithelial tissue culture (Olszewska-Pazdrak et al., 1998b) and 

nasopharyngeal secretions of human infants (Saito et al., 1997). However, the 

importance of eosinophil degranulation in response to respiratory viral infection 

has yet to be fully elucidated, with studies yet to examine early signs of 

eosinophil degranulation. The degranulation study in this chapter examined 

early signs of eosinophil degranulation using MBP as the degranulation marker. 

MBP is located in the core of eosinophil granule and is the first granular protein 

to be released following eosinophil activation. Results showed a significant 

increase (p < 0.0001) in eosinophil degranulation following RSV treatment of 

eosinophils (Figure 3.3). It is important to highlight the potential of RSV-

mediated eosinophil activation as these results indicate that eosinophils have 

the potential to generate a targeted response to RSV infection. 

Together, these findings are suggestive of eosinophil ability to play a role 

in antiviral activity. These observations were supported further by the in vitro 

study showing a significant decline (p < 0.0001) in RSV titres over time, 

following 3, 6, 12, 18 and 24 hours RSV treatment of eosinophils compared to 

the initial RSV inoculum (time 0 hours) (Figure 3.4 A). These results are in 

agreement with previous studies demonstrating eosinophil antiviral activity 

following RSV infection of the epithelial cells ;n v/fro (Domachowske et al., 

1998b; Soukup and Becker, 2003). In addition, the current antiviral study 

implies RSV inability to infect murine eosinophils and to establish active 

replication within, as indicated by a reduction in viral titres recovered. Similarity, 

TEM analysis of RSV treated eosinophils also revealed no RSV viral particles 

present inside the eosinophils following RSV treatment, suggesting that RSV 

may be unable to infect murine eosinophils. Taking into account previous 

studies, which showed that RSV could infect human eosinophils and that PVM 

can infect mouse eosinophils (Dyer et al., 2009; Kimpen et al., 1996), these 

results may be a result of incompatibility between RSV as a human respiratory 

pathogen and the mouse purified eosinophils used in the in vitro studies. 

Despite similar morphology, human and mouse eosinophils differ from one 

another, and cannot be presumed to function identically in all circumstances 

(Lee etal., 2012a). The mechanism that offers protection of mouse eosinophils 

against RSV infection may offer important insights into preventing human 

infection as well. It is therefore important to explore this mechanism further. 



The current studies found that eosinophils were significantly less viable 
following the RSV treatment (p < 0.05), supporting the concurrent findings that 
dennonstrated RSV-induced eosinophil activation and subsequent degranulation 
followed by the loss of cellular structure and cell apoptosis. However, these 
results contradict previous studies with PVM which showed that virus infection 
has no effect on the cell viability of eosinophils in cell culture (Dyer et al., 2012). 
The difference in findings between PVM versus RSV treatment and eosinophil 
viability could only be due to the interaction between the human pathogen, RSV 
and murine eosinophils as the experimental set up was similar to PVM infection 
of murine eosinophils. Nevertheless, these findings are the first to show that 
RSV has detrimental effect on cell viability resulting in, accelerated cell 
apoptosis. Finally, RSV treatment of eosinophils leads to eosinophil activation, 
cell migration and degranulation; with RSV treated eosinophils showing 
significantly greater number of activated cells present compared to the negative 
control (p < 0.001) (Figure 3.5) as demonstrated by EPO release. These 
findings are in agreement with previous finding by Phipps et al. (2007) who also 
showed an increase in EPO as a result of ssRNA activation of eosinophils 
(Phipps et al., 2007). Furthermore, Olszewska-Pazdrak at al. (1998) study 
found that RSV infection results in the secretion of the proinflammatory C-C 
chemokines RANTES, MCP-1 and MIP-1a from epithelial cells of the human 
lower respiratory tract. They also showed the chemokines produced by RSV-
infected epithelial cells have biological activity relevant to the pathogenesis of 
allergic inflammation, as they exhibit chemotaxis for blood eosinophils 
(Olszewska-Pazdrak et al., 1998a). In our study, we have expanded on 
Olszewska-Pazdrak et al. (1998) findings by examining which cytoskeletal 
components are activated as a result of eosinophil chemotaxis towards 
chemokine containing supernatant, collected from RSV infected HEp-2 cells. 
Eosinophil migration study revealed that eosinophil migration towards RSV 
infected HEp-2 cell supernatant resulted in activation of the microtubular 
network (Figure 3.6) and high polymerisation of F-actin (Figure 3.7). F-actin 
polymerisation led to formation of leading edge pseudopod as well as star-like 
microtubular formation of a-tubulin, indicative of a cell in its migration state. 
Migration study, in addition to eosinophil activation findings, is the first study to 
demonstrate RSV-induced effect on eosinophil cytoskeletal components, 
indicating that eosinophil migration may be a result of targeted response as 



oppose to nonspecific response, which may be crucial in ensuring an effective 

viral clearance. 

In summary, the chapter 3 findings suggest that eosinophils have a 

potential to play a positive role in viral clearance, demonstrated by, what 

appears to be RSV inability to infect murine eosinophils. As previously stated, 

the protection that murine eosinophils enjoy in response to RSV infection is 

worth further exploration. This study also demonstrated RSV-induced changes 

to eosinophil morphology, eosinophil degranulation, activation and migration as 

well as activation of eosinophil cytoskeletal components. Together, these 

findings indicate that eosinophil activation following RSV treatment may be a 

result of targeted response as oppose to nonspecific immune response. 

Although pulmonary eosinophilia is a hallmark response to FI-RSV (Percopo et 

al., 2009), there is no clear indication that eosinophils actually contribute to the 

negative sequel of RSV disease. In addition, while severe primary RSV infection 

is associated with pulmonary eosinophilia and progression to asthma, the 

mechanism by which these two features are linked has not been elucidated 

clearly (Rosenberg et al., 2009). Among the possibilities that have yet to be 

explored, eosinophil function may be less dependent on the number of recruited 

cells and related more closely to the quality and extent of the immune cell 

milieu. These are all issues that are worthy of further consideration. In 

conclusion, it is important to elucidate the role of eosinophils in viral infection, 

both antiviral and pathogenic, as they may be involved in immune 

compensation with assistance from other innate/adaptive immune cells. 



Chapter 4. THE ROLE OF INNATE AND ADAPTIVE 
IMMUNITY IN RESPIRATORY SYNCYTIAL 
VIRUS INFECTION AND RE-INFECTION 



4.1 INTRODUCTION 

Expanding on the in vitro results from Chapter 3, the role of eosinophils 

in RSV infection was examined in the in vivo model. Previous studies examining 

human and murine models revealed that inefficient immune system regulation 

escalates respiratory disease pathology following RSV infection, and can also 

lead to less optimal viral clearance (Culley et a!., 2002; Tasker et ai., 2008; 

Welliver et ai., 2008). Therefore, in order to clear pathogens from the host, the 

immune system must induce balanced release of whatever is required to 

effectively activate and clear the pathogen. Consequently, immune system must 

induce self-regulated responses to prevent unbalanced immunity and 

successive collateral damage of the host tissue. 

As innate immunity is the first line of defence (Goldsby et al., 2003), 

initially its response involves a release of effector molecules and phagocytic 

cells to the site of infection. However, as innate immunity lacks immunological 

memory (IVIcNamara and Smyth, 2002), it induces the same sequence of 

immune cell responses over and over again. Furthermore, RSV infection has 

been associated with skewing of the immune system away from an antiviral Th1 

response towards a Th2 response, which is believed to be undesirable immune 

response leading to disease pathology instead of effective viral clearance 

(Welliver et al., 2008). Nevertheless, important cells of the innate immunity 

involved in response to RSV are DCs, macrophages, neutrophils, eosinophils 

and NK cells as well as the lung epithelial cells. 

DCs, as the primary APCs, are the first to encounter RSV, subsequently 

inducing activation of the naive virus-specific T cells (Braciale, 2005). 

Macrophages play an important role in controlling the immune response to viral 

infection (Kimpen, 2001b) with murine studies showing that macrophages 

provide an immediate response of pro-inflammatory cytokines following RSV 

infection (Pribul et al., 2008). Furthermore, macrophages are a major producer 

of type I IFN (Kumagai et al., 2007) and appear to be important in both, 

restricting the virus and clearing cellular debris later in infection. Without 

clearance, cellular debris can lead to further damage and inflammation (Reed et 

al., 2008). Neutrophils are the predominant airway leukocytes in RSV 

bronchiolitis and they are activated in the presence of infection (Lukens et al., 

2010). 



Eosinophils have been shown to play a specialised role in the innate host 

defence against RSV as the potential exists to mediate direct killing via the 

release of cytotoxic proteins and the eosinophil RNases (Dyer et al., 2009). As 

mentioned in Chapter 3, several studies have found that eosinophils have the 

means to promote antiviral host defence in vitro (Domachowske et al., 1998a; 

Soukup and Becker, 2003). Also, Phipps et al. (2007) study revealed 

accelerated clearance of RSV from the lungs of IL-5 Tg BALB/c mice (Phipps et 

al., 2007) demonstrating eosinophil antiviral role in vivo as well. Furthermore, 

NK cells are recruited locally during the initial phases of virus infection (Hussell 

and Openshaw, 1998) and accumulate in the lung during the first few days of 

RSV infection, producing T cell recruiting cytokines and chemokines, such 

as IL-8, MIP-1a and RANTES (Fauriat et al., 2010; Hussel et al., 1997a; 

Hussell and Openshaw, 1998). In addition, NK cells are responsible for the 

early production of IFN-y and contributing to inhibition of lung eosinophilia 

(Hussel et al., 1997a; Hussell and Openshaw, 1998). The main function of NK 

cells is to recognise and destroy virus-infected cells on the basis of alterations 

that occur on the surface proteins of the normal cell (Message and Johnston, 

2001). Apart from being effector cells, NK cells have a regulatory role during an 

immune response by affecting DCs, macrophages, and mast cells (Moretta et 

al., 2005). Recently, the notion that NK cells are truly innate cells has been 

called into question because specific subsets of mouse liver NK cells have been 

described to have the adaptive immunity property of lasting memory against 

specific viral antigens (Gillard et al., 2011; Vivier et al., 2011). In addition, 

recently discovered ILC2 cells, play a very important role in the innate immunity. 

In adult mice, ILC2 cells are a rare population that expands in response to IL-25 

or IL-33 or during helminthic infection (Neill et al., 2010). They represent a chief 

source of IL-13, a pleiotropic cytokine that mediates a variety of effects, 

including suppression of cytokine production by monocytes (Minty et al., 1993), 

mucus production by goblet cells and the recruitment of eosinophils by epithelial 

cells (Cohn et al., 1999; Grunig et al., 1998; Pope et al., 2001). ILC2 cells can 

also produce IL-5, which has been linked to eosinophil recruitment, as well as 

IL-9 (Wilhelm et al., 2011), which is prominent during helminthic infections 

(Faulkner et al., 1997; Richard et al., 2000) and has been linked to atopic 

disease (Shimbara et al., 2000). ILC2 cells have been shown to be involved in 

the immunity against helminths as well as in the allergic conditions such as 



asthma and chronic sinusitis (Chang et al., 2011; IVIjosberg et al., 2011; Mora et 

al., 2010; Neill et al., 2010) but are also probably important for maintaining 

tissue homeostasis (Monticelli etal., 2011). Finally, epithelial cells provide a link 

to the initial innate immune response assisting in an adaptive immune system 

activation following RSV infection (Lotz and Peebles, 2012). 

As RSV has been found to re-infect the same individual several times 

throughout its life, understanding the adaptive immune response to RSV re-

infection is imperative to providing long lasting protection against RSV. RSV re-

infection is characterised by an initial influx of NK cells follow/ed by recruitment 

of helper CD4''and cytotoxic CDS'" lymphocytes to the site of infection (Olson et 

al., 2008; Olson and Varga, 2007; Stevens et al., 2009). A mouse study found 

that the CD4''and CD8''T lymphocyte subsets contribute individually to clearing 

of the RSV infection however, both can also contribute to disease pathogenesis, 

especially CD8^ T cells (Graham et al., 1991). Although RSV-specific CD8*T 

cells can provide protection against infection, the effect is short lived (Connors 

etal., 1991; Kulkarni etal., 1995). Nevertheless, there are also a number of risk 

factors that have been found to lead to severe RSV disease early in life, 

including prematurity, low titres of maternal antibodies, lack of previous RSV 

infection (Berkovich, 1964; Cunningham et al., 1991), underlying 

cardiopulmonary disease (Groothuis et al., 1988; MacDonald et al., 1982), 

immunosuppression (especially T cell deficiencies) (Falsey, 2007; Falsey et al., 

2005) (Whimbey and Ghosh, 2000) as well as immunodeficiency disorders 

(Fishaut etal., 1980; Mcintosh etal., 1984). RSV re-infection may also be aided 

by features that help RSV evade host defences. Several factors that allow RSV 

to evade host defence include the secreted form of the G protein (Bukreyev et 

al., 2008), the glycoprotein sheath of the G protein, and the presence of two 

antigenic subgroups (Waris, 1991). Other factors of the immune evasion include 

the tropism of the virus for the superficial layer of the respiratory epithelium and 

its relatively non-invasive nature (Lotz and Peebles, 2012). This may delay and 

reduce the exposure of viral antigen to the host immune system. In addition, the 

lumen of the respiratory tract is poorly accessed by serum antibodies, therefore 

reducing their ability to restrict viral replication. In addition, recent murine 

studies indicate that CD8'' cytotoxic T lymphocytes are functionally down-

regulated in the lung, which may be a host mechanism to reduce tissue damage 

however this also would result in reduced immune protection (DiNapoli et al., 



2008; Vallbracht et al., 2006). Thus, both, host and viral factors are believed to 

contribute to reduced efficacy of RSV immune control. 

Previous research into RSV-induced innate and adaptive immunity has 

highlighted that RSV infection skews the immune system towards an 

undesirable Th2 response (Welliver etal., 2008). Also, until recently eosinophils 

were believed to contribute to RSV disease pathology (Haynes et al., 2003) and 

that RSV infection does not induce a long memory response (Connors et al., 

1991; Kulkarni et al., 1995). With recent findings by Phipps et al. (2007) 

demonstrating the positive role of the eosinophil in RSV clearance in vivo, it is 

important to expand on this finding further. 

The aim of this chapter was to evaluate eosinophil antiviral activity in four 

distinct mouse models following RSV infection and re-infection. These BALB/c 

mice were WT, IL-5 Tg and/or Rag 27" animals. As such, the history of these 

genetic modifications is important to be discussed, including the development of 

the humanised models and their application. 

Decades ago, IL-5 transgenic mice were produced in a way so the 

transcription of the IL-5 gene is under the influence of the dominant control 

region (DCR) of the gene encoding human CD2 (a T cell surface antigen) (Lang 

et al., 1988). The use of the CD2 DCR ensures constitutive expression by T 

cells (Gleich and Adolphson, 1986; Lang et al., 1988; Sanderson et al., 1988). It 

seems remarkable that these animals with such high levels of potentially 

damaging leukocytes remain normal; suggesting that eosinophils require other 

factors for degranulation and subsequent tissue damage. As eosinophils play a 

role in allergic disease, these animals provide a model for testing modifiers of 

eosinophil production (Dent et al., 1990). Furthermore, Rag 27" mice were 

designed through the deletion of Rag 2 recombination activating gene, resulting 

in the arrest of rearrangement of the B (immunoglobulin production) and the T 

cell receptors; and the absence of the T and B cell differentiation. These mice 

have high levels of NK-cell activity but do not show Ig leakiness and they are 

less sensitive to radiation compared to SCID mice. The main applications of 

Rag 21- mice are in the investigation of lymphocyte gene function in 

differentiation, HIV and other immune deficiency diseases, the immune 

system's role in tumourgenesis and metastasis, and autoimmune and infectious 

diseases (Shinkai et al., 1992; Shultz et al., 2007). Loss of Rag 2 function in 



vivo results in total inability to initiate V(D)J rearrangement with Rag 2 function 
and V(D)J recombinase activity found to be only required by no other cells than 
lymphocytes (Shinkai et a!., 1992). As IL-5 Tg Rag 2-1- BALB/c was a new 
mouse model, recently developed by our group, it was novel to examine: if each 
of these genetic mutations continue to function as intended or if they would 
inhibit each other's function in some way. 

Therefore, the hypothesis that eosinophils may have the capacity to 
provide immune compensation in the absence of the mature T (CD4^ and 
CD8'') and B cells following RSV re-infection was assessed; as well as 
eosinophil RSV antiviral potential to inhibit RSV infection across all four BALB/c 
strains, especially the eosinophil enriched ones. Furthermore, as CDS'" cells 
have been shown to contribute to disease pathology, CD4'' cell role in viral 
clearance and lung pathology was examined. 



4.2 METHODS 

4.2.1 Mice strains 
Male BALB/c mice aged 6 to 8 weeks were obtained from the pathogen 

free facility at the University of Canberra (UC) Animal facility. Animals were 

housed in approved containment facilities and treated in accordance with UC 

animal experimentation guidelines. BALB/c mouse strains (section 2.12) used 

were WT, IL-5 Tg, Rag 27" and IL-5 Tg Rag 27" BALB/c. Genotype and 

phenotype differences are outlined in the Table 4.1 below. 

Table 4.1. BALB/c strains genotypes and phenotypes 

BALB/c 
strains 

Innate 
immunity 

Adaptive 
immunity 

Gene 
Mutation 

BALB/c 
strains 

WT complete Complete N/A N/A 

IL-5 Tg complete Complete 
homozygous 

IL-5 gene 
knock-in 

eosinophil 
overexpression 

Rag 27- complete Incomplete 
homozygous 
Rag 2 knock-

out 

fail to produce 
mature 

T and B cells 

IL-5 Tg 
Rag 27- complete Incomplete 

homozygous 
IL-5 gene 

knock-in and 
Rag 2 knock-

out 

eosinophil 
overexpression 
with failure to 

produce mature 
T and B cells 

4.2.2 RSV infection of mouse strains 
On day 0, mice were lightly anesthetised with isofluorane (PharmaChem) 

(section 2.12.4) and infected with RSV by intranasal inoculation (50 pL of 1 x 

10^ pfu/mL = 5 X lO^pfu/mouse). On day 5, mice were euthanised by CO2 

asphyxiation (section 2.12.1) and samples collected for further processing 

(sections 2.13). 

4.2.3 RSV infection of BALB/c mutants followed by 

RSV re-infection 
On days 0 and 12 mice were lightly anesthetised with isofluorane 

(PharmaChem) (section 2.12.4) and infected with RSV by intranasal inoculation 

(50 pL of 1 X 10^ pfu/mL = 2 x 10® pfu/mouse). On day 17, mice were 



euthanised by CO2 asphyxiation (section 2.12.1) and samples collected for 

further processing (sections 2.13). 

4.2.4 Adoptive transfer of 604"^ cells 
CD4'' T cells were harvested from spleens of WT BALB/c mice, and 

transferred into IL-5 Tg Rag 27" BALB/c mice as described previously 
(Plotnicky-Gilquin et al., 2002). Briefly, spleens of WT BALB/c mice were 
removed, mashed and filtered through a cell strainer (BD, Australia). Red blood 
cells were removed using lysing buffer (BD Pharmingen). CD4^ cells were 
purified from the resulting lymphocyte population using MagCellect Mouse 
Naive CD4^T cell isolation kit (R&D Systems, USA) according to the 
manufacturer's protocol. IL-5 Tg Rag 27" BALB/c mice received 3 x 10® 
CD4'' cells/ mouse via tail-vein injection 4 days prior to the first RSV inoculation 
(Figure 4.1). 

CD4* cell adoptive 
transfer by 

intravenous route 

I 
I I I I I I 

days -4 -3 - 1 0 1 11 12 13 14 15 16 17 

\ / t 
* r Sannple 

intranasal inoculation »/ith collection 
2 X 10® plaque forming units/mouse 

Figure 4.1. Experimental timeline of CD4^ T cell adoptive transfer followed 
by respiratory syncytial virus (RSV) re-infection of interleukin-5 transgenic 
Rag 2 knockout (IL-5 Tg Rag 2 /•) BALB/c 

Purified CD4^T cell were adoptively transferred into IL-5 Tg Rag 2f mice intravenously 4 days 

prior to RSV primary infection on day 0 (intranasal inoculation w/ith 5 x 10^ plaque forming units 

(pfu)/mouse). Mice were re-infected with RSV (5 x 10^ pfu/mouse) on day 12 and samples 

collected on day 17. 

4.2.5 Statistical analysis 
Data are presented as mean ± standard deviation. A ONE-way or TWO-

way ANOVA was used to determine statistical significance. Data were analysed 

using GraphPad Prism version X7. A p value of less than 0.05 was considered 

statistically significant. 



4 . 3 RESULTS 

4.3.1 Primary RSV infection in BALB/c mice 

Primary RSV infection was set up in four different BALB/c mouse strains 

with their genotype and phenotype make up contributing to the variations in the 

innate immune response. The outcome of primary RSV infection in vivo was 

assessed by examination of lung viral titres, BAL and blood leukocyte 

population infiltrates as well as lung histopathology. 

4.3.1.1 Viral titres in BALB/c mice following primary RSV 

infection 
No viral titres were recovered from the lung samples of Vero E6 cell 

lysate (negative control) or UV-RSV (additional negative control) inoculated WT, 

IL-5 Tg, Rag 27" and IL-5 Tg Rag 27" BALB/c mice, following immunostaining 

RSV plaque assay (data not shown). Highest viral titres were recovered from 

the lung of RSV inoculated WT and Rag 2 /" BALB/c mice. RSV inoculated IL-5 

Tg and IL-5 Tg Rag 2 /" BALB/c had the lowest viral loads recovered (Figure 

4.2). In addition, RSV infection of IL-5 Tg and IL-5 Tg Rag 2"/" BALB/c mice 

yielded 90% and 75% less viral titres, respectively, compared to RSV infected 

WT and Rag 2"/" BALB/c mice (p < 0.0001). There was no statistically significant 

difference in viral titres recovered between RSV infected IL-5 Tg BALB/c and to 

IL-5 Tg Rag 2 /" BALB/c mice. 



WT IL-5 Tg Rag 27 • IL-5 Tg Rag 27 

Figure 4.2. Eosinophil overproduction leads to accelerated viral clearance 
in the lung of the BALB/c mice 

Wild type (WT), interleukin-5 transgenic (IL-5 Tg), Rag 2 knockout (Rag 2 / ) and IL-5 Tg Rag 21-

BALB/c mice were infected with Vero E6 cell lysate, ultraviolet-inactivated respiratory syncytial 

virus (UV-RSV) or RSV at 5 x 10^ plaque forming units (pfu)/mouse on day 0, by intranasal 

inoculation. Lungs were harvested 5 days after infection and viral titres enumerated using a RSV 

immunohistochemistry viral titre assay. Titres are represented as pfu/gram of lung tissue. Data is 

representative of mean (n = 5) ± standard deviation. Data was analysed using a ONE-way 

ANOVA with Tukey's multiple comparison test (GraphPad Prism version X7) with *, p < 0.0001 for 

IL-5 Tg mice compared to WT and Rag 2f ; also for IL-5 Tg Rag 2/- compared to WT and Rag 2-

/•mice. 



4.3.1.2 Bronchoalveolar lavage fluid (BALF) leukocyte 
population in BALB/c mice following primary RSV 
infection 

BAL leukocyte cell analysis revealed no significant difference in 
macrophage (Figure 4.3 A), lymphocyte (Figure 4.3 B), eosinophil (Figure 4.3 
C) and neutrophil (Figure 4.3 D) numbers between all Vero E6 cell lysate 
(negative control) and corresponding UV-RSV inoculated mice. There was also 
no significant difference in macrophage (Figure 4.3 A) or lymphocyte (Figure 4.3 
B) numbers following RSV infection of WT, IL-5 Tg, Rag 27" and IL-5 Tg Rag 27" 
BALB/c mice compared to their corresponding negative controls. 

Although RSV infection of WT, Rag 27" and IL-5 Tg Rag 27" BALB/c mice 
revealed no significant change in eosinophil numbers (Figure 4.3 C) compared 
to their corresponding negative controls, RSV infection of IL-5 Tg did induce a 
significant decrease in the number of eosinophils compared to the IL-5 Tg 
negative control (p < 0.0001). There was no statistical difference in the number 
of eosinophils recovered from BAL between IL-5 Tg and IL-5 Tg Rag 27" mice 
infected with RSV. However, there was a significant decrease in the number of 
eosinophil infiltrates following RSV infection of IL-5 Tg and IL-5 Tg Rag 27" mice 
compared to Rag 2"/" mice (p < 0.005) (Figure 4.3 C). 

Neutrophil numbers (Figure 4.3 D) decreased slightly following RSV 
infection of WT BALB/c mice compared to WT negative control while a slight 
increase in numbers was observed following RSV infection of IL-5 Tg and IL-5 
Tg Rag 27" BALB/c mice compared to their corresponding negative control. 
Neutrophil numbers were significantly higher (p < 0.001) following RSV 
infections of Rag 2 /" BALB/c mice compared to the negative control. In addition, 
neutrophil numbers were significantly higher for RSV infected Rag 2 /" BALB/c 
mice compared to RSV inoculated IL-5 Tg and IL-5 Tg Rag 2"/" BALB/c mice (p 
< 0.005). 
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Figure 4.3. Leukocyte population in bronchoalveolar lavage fluid (BALF) 
following primary respiratory syncytial virus (RSV) infection in vivo 

Wild type (WT), interleukin-5 transgenic (IL-5 Tg), Rag 2 knockout (Rag 2-/-) and IL-5 Tg Rag 2-/-

BALB/c mice were inoculated with Vero E6 cell lysate (negative control), ultraviolet-inactivated 

RSV (UV-RSV) RSV (5 x 10^ pfu/mouse) on day 0 and samples collected on day 5 post RSV 

infection. Leukocyte population was determined by the number of macrophages (A), lymphocytes 

(B), eosinophils (C) and neutrophils (D) present in BALF (number of cells x IC/mL). Data is 

representative of mean (n = 5) ± standard deviation. Data was analysed using a ONE-way 

ANOVA with Tukey's multiple comparison test (GraphPad Prism version X7) (*, p < 0.005 

compared to corresponding negative control, #, p < 0.05 compared to the RSV infected WT 

BALB/c). 

4.3.1.3 Peripheral blood leukocyte population in BALB/c mice 

following primary RSV infection 

Leukocyte analysis revealed no significant change in monocyte (Figure 

4.4 A), lymphocyte (Figure 4.4 B), eosinophil (Figure 4.4 C) and neutrophil 

(Figure 4.4 D) numbers between Vero E6 cell lysate (negative control) and UV-

RSV inoculated mice for all strains. Also, no change in monocyte numbers 

(Figure 4.4 A) was observed following RSV infection of WT, Rag 27" and IL-5 Tg 

Rag 2i- BALB/c mice compared to their corresponding negative controls. In 

contrast, monocyte numbers decreased significantly following RSV infection of 

IL-5 Tg BALB/c mice compared to the corresponding negative control (p < 

0.001). Similar trend was also observed for the number of lymphocytes and 

eosinophils present in blood for all mice strains (Figure 4.4 B and C). No 

change in lymphocyte and eosinophil numbers was observed following RSV 

infection of WT, Rag 27" and IL-5 Tg Rag 27" BALB/c mice compared to the 

corresponding negative controls; while significant decrease was observed in 

RSV infected IL-5 Tg BALB/c compared to IL-5 Tg negative control (p < 0.005). 

Neutrophil numbers (Figure 4.4 D) remained unchanged following RSV infection 

of WT, IL-5 Tg, IL-5 Tg Rag 27" and Rag 27" BALB/c mice compared to their 

corresponding negative controls. The number of neutrophils from IL-5 Tg Rag 2 

/- BALB/c mice was significantly higher compared to RSV infected Rag 27" 

BALB/c mice (p < 0.0001). 
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Figure 4.4. Leukocyte population in blood following primary respiratory 
syncytial virus (RSV) infection in vivo 

Wild type (WT), interleukin-5 transgenic (IL-5 Tg), Rag 2 knocl<out (Rag 21) and IL-5 Tg Rag 21-

BALB/c mice were inoculated with Vero E6 cell lysate (negative control), ultraviolet-inactivated 

RSV (UV-RSV) RSV (5 x 10^ pfu/mouse) on day 0 and samples collected on day 5 post RSV 

infection. Leukocyte population was determined by the number of macrophages (A), lymphocytes 

(B), eosinophils (C) and neutrophils (D) present in blood (number of cells x lO'i/mL). Data is 

representative of mean (n = 5) ± standard deviation. Data was analysed using a ONE-way 

ANOVA with Tukey's multiple comparison test (GraphPad Prism version X7) (*, p < 0.005, p < 

0.001 and p < 0.0001 compared to corresponding negative control). 

4.3.1.4 Lung histopathology in BALB/c strain mice following 
primary RSV infection 

Following a Vero E6 cell lysate (negative control), UV-RSV (additional 

negative control) or RSV inoculation of BALB/c mice strains, lungs were 

assessed for ain/vays mucus occlusion, degree of parenchymal pneumonia, 

peribronchial infiltrates, quality of peribronchial infiltrates, perivascular infiltrates, 

histopathological score, number of goblet cells and eosinophil tissue Infiltrates. 

4.3.1.4.1 Descriptive analysis 

Lung pathology of, Vero E6 cell lysate (negative control) and UV-RSV 

(additional negative control) inoculated WT, IL-5 Tg, Rag 27" and IL-5 Tg Rag 2" 

/" BALB/c mice, show clear alveoli (Figure 4.5 squares) and minimal 

inflammatory infiltrates present around bronchioles (thin arrows) as well as 

blood vessels (thick arrows) indicating the absence of viral infection. An 

inflammatory response was observed on day 5 post RSV infection in all BALB/c 

mice. The extent of inflammation was different for each BALB/c strain. WT 

BALB/c mice showed signs of moderate parenchymal pneumonia, presence of 

goblet cells (circle), moderate airway occlusion and leukocyte infiltration around 

bronchioles and blood vessels. RSV infection of IL-5 Tg BALB/c mice resulted 

in mild signs of parenchymal pneumonia and leukocyte infiltrates around 

bronchioles and blood vessels while RSV infection of Rag 27" and IL-5 Tg Rag 

27" BALB/c resulted in the same pathological signs as WT BALB/c however with 

increased goblet cells present (Figure 4.5). 
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Figure 4.5. Hypereosinophilic (IL-5 Tg) BALB/c mice alleviate pathological 
signs of primary respiratory syncytial virus (RSV) infection 

Wild type (WT), IL-5 Tg, Rag 2 knockout ( f ) and IL-5 Rag 2-/-BALB/c were infected intranasally 

with Vera E6 cell lysate (negative control), ultraviolet-inactivated RSV (UV-RSV) or RSV (5 x 10^ 

plaque forming units/mouse). A) WT negative control (i and ii), WT UV-RSV (ill and iv) and WT 

RSV (V and vi). B) IL-5 Tg negative control (i and ii), IL-5 Tg UV-RSV (ill and iv) and IL-5 Tg RSV 

(v and vi). C) Rag 2-/-negative control (i and ii). Rag 27-UV-RSV (ill and iv) and Rag 2-/-RSV (v 

and vi). D) IL-5 Tg Rag 2/-negative control (i and ii), IL-5 Tg Rag 2/-UV-RSV (ill and iv) and IL-5 

Tg Rag 2-/- RSV (v and vi). Lungs were collected on day 5 and processed for histology using 

periodic acid Schiff (PAS) stain. Arrows, squares and circles indicate the different signs of 

inflannmation in mice as described in the text. Magnification (i, ill and v) was 100X and (ii, iv and 

vi) 400X including the eyepiece. Images are representative of each group (n = 5). 



4.3.1.4.2 Numerical (score) analysis 

Vero E6 cell lysate (negative control) compared to UV-RSV (additional 

negative control) inoculated groups for all BALB/c strains showed no statistical 

differences across all pathological scores. RSV infection of WT, IL-5 Tg, Rag 

27" and IL-5 Tg Rag 27" BALB/c, has resulted In a significant increase in airway 

mucus occlusion (Figure 4.6 A), parenchymal pneumonia (except for IL-5Tg 

Rag 27 ) (Figure 4.6 B), peribronchial infiltrates (Figure 4.6 C) and quality of 

peribronchial infiltrates (Figure 4.6 D) compared to the corresponding Vero E6 

cell lysate and UV-RSV inoculated BALB/c strains (p < 0.05). Perivascular 

infiltration analysis revealed statistically significant increase in leukocyte 

infiltration around blood vessels for RSV infection of WT BALB/c mice only (p < 

0.05) (Figure 4.6 E). Combined HPS analysis revealed a significant Increase in 

HPS for all RSV infected BALB/c strains with HPS ranging between 9-11 out of 

17 compared to the corresponding Vero E6 cell lysate and UV-RSV controls 

with HPS ranging between 1-5 out of 17 (p < 0.0001) (Figure 4.6 F). 

Additionally, RSV infection of WT and IL-5 Tg BALB/c mice compared to 

their Vero E6 cell lysate and UV-RSV groups, has resulted in no significant 

increase in goblet cell numbers; while RSV infection of Rag 2 /" and IL-5 Tg Rag 

2-1- induced a significant increase in the number of goblet cells recovered 

compared to Vero E6 cell lysate and UV-RSV controls (Figure 4.6 G). Primary 

RSV infection of IL-5 Tg and IL-5 Tg Rag 2 /" mice induced an increase in the 

number of eosinophils present in the lung tissue (p < 0.005) compared to 

negative controls, while no significant change was observed for RSV infected 

WT and Rag 2/" mice compared to their negative controls (Figure 4.6 H). 
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Figure 4.6. Histopathological score (HPS) assessment of mouse lungs 
following 

Wild type (WT), IL-5 Tg, Rag 2 knockout ( f ) and IL-5 Rag 2-/-BALB/C were infected intranasally 

witti Vero E6 cell lysate (negative control), ultraviolet-inactivated respiratory syncytial virus (UV-

RSV) or RSV (5 x 10^ plaque forming units /mL final concentration) on day 0 and lungs tissue 

collected and processed for histopathology. Lungs w/ere analysed for: A) Airways mucus 

occlusion, B) Parenchymal pneumonia, C) Peribronchial infiltrates, D) Quality of peribronchial 

infiltrates, E) Perivascular infiltrates, F) Combined HPS, G) Goblet cell count and H) Eosinophil 

count in the lung tissue. Data is representative of mean (n = 5) ± standard deviation. Data was 

analysed using ONE-way ANOVA with Tukey's multiple comparison test (GraphPad Prism 

version X7) (*, p < 0.05, p < 0.005, p < 0.001 and p < 0.0001 compared to 

corresponding negative control). 

4.3.2 RSV re-infection of BALB/c mice 
Following primary RSV infection, four BALB/c mouse strains we re-

infected with RSV; and the effect of their genotype and phenotype on adaptive 

immunity was assessed by examining the lung viral titres, BAL and blood 

leukocyte population infiltrates, as well as lung histopathology. Adoptive transfer 

of T lymphocytes into IL-5 Tg Rag 27" mice was performed to assess 

aspects of innate and/or adaptive immunity involved in RSV re-infection. 

4.3.2.1 Viral titres in BALB/c strain mice following RSV re-

infection in vivo 
No viral titres were recovered from the lung samples of Vero E6 lysate 

(negative control) and UV-RSV (additional negative control) inoculated WT, IL-5 

Tg, Rag 27" and IL-5 Tg Rag 27" BALB/c mice, following RSV 

immunohistochemistry viral titres assay (data not shown). 

RSV re-infection of WT and IL-5 Tg BALB/c mice resulted in a significant 

reduction of viral titres compared to titres recovered following RSV re-infection 

of the Rag 27" and IL-5 Tg Rag 2 /' mice (p < 0.0001) (Figure 4.7). RSV re-

infection of WT and IL-5 Tg mice resulted in 70 and 83% lower viral titres, 

respectively, compared to Rag 27" mice and IL-5 Tg Rag 27" (p < 0.0001). IL-5 

Tg Rag 27" and Rag 2 /" resulted in a similar number of viral titres recovered 
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Wild type (WT), interleul<in-5 transgenic (IL-5 Tg), Rag 2 knockout (Rag 2f) and IL-5 Tg Rag 2i-

BALB/c mice were infected intranasally with Vera E6 cell lysate (negative contral), ultraviolet-

inactivated RSV (UV-RSV) or RSV (5 x 10^ plaque forming units (pfu)/mouse) on day 0 and re-

infected with Vera E6 cell lysate (negative control), ultraviolet-inactivated RSV (UV-RSV) or RSV 

(5 X 105 pfu/mouse) on day 12. CD4-cells (3 x 10^/ mouse) were isolated from WT mice spleen 

and adoptively transferred intravenously into IL-5 Tg Rag 2f mice 4 days prior to day 0 

inoculation. Lungs were harvested 17 days post infection, and viral titres enumerated using a 

RSV immunohistochemistry viral titre assay. Titres are represented as pfu/gram of lung tissue. 

Data is representative of mean (n = 5) ± standard deviation. Data was analysed using a ONE-

way ANOVA with Tukey's multiple comparison test (GraphPad Prism version X7) (*, p < 0.0001 

compared to Rag 27-and IL-5 Tg Rag 2"/-; #, p < 0.0001, compared to Rag 2 /-and IL-5 Tg Rag 

27-; +, p < 0.0001, compared to IL-5 Tg Rag 2f with CD4-^ cells adoptive transfer). 



4.3.2.2 Analysis of BALF leukocyte population in BALB/c 
strain mice following RSV re-infection in vivo 

Following re-infection with RSV there was no significant difference in 
macrophage (Figure 4.8 A), lymphocyte (Figure 4.8 B), eosinophil (Figure 4.8 
C) and neutrophil (Figure 4.8 D) numbers between the corresponding Vero E6 
cell lysate (negative control) and UV-RSV (additional negative control) 
inoculated BALB/c mice. 

BAL leukocyte cell analysis revealed no change in macrophage numbers 
(Figure 4.8 A) following RSV re-infection of IL-5 Tg, Rag 27" and IL-5 Tg Rag 27" 
BALB/c mice compared to their corresponding negative control; while 
macrophage numbers decreased following RSV re-infection of WT BALB/c mice 
compared to its negative control (p < 0.001). In addition, RSV re-infection of WT 
BALB/c mice resulted in lower macrophage numbers compared to each RSV re-
infected IL-5 Tg, Rag 27" and IL-5 Tg Rag 27" BALB/c mice (p < 0.0001). 

RSV re-infection also resulted in an increase in lymphocyte numbers for 
WT and IL-5 Tg BALB/c mice (p < 0.001) compared to the corresponding 
negative controls while numbers remained unchanged for Rag 27" and IL-5 Tg 
Rag 27" BALB/c mice compared to their negative controls (Figure 4.8 B). RSV 
re-infection of WT and IL-5 Tg BALB/c mice induced an increase in lymphocyte 
numbers compared to all other RSV re-infected BALB/c strains (p < 0.0001). 

RSV re-infection of IL-5 Tg BALB/c mice resulted in a decrease in 
eosinophil numbers compared to its negative control (p < 0.001) while 
eosinophil numbers remained unchanged following RSV re-infection of WT, Rag 
2"/" and IL-5 Tg Rag 2"/" BALB/c mice compared to the corresponding negative 
controls (Figure 4.8 C). RSV re-infection of WT BALB/c mice resulted in 
significantly lower number of eosinophils compared to RSV re-infected IL-5 Tg 
and Rag 2"/" BALB/c mice (p < 0.0001). Neutrophil numbers (Figure 4.8 D) 
remained unchanged for all RSV re-infected BALB/c mice strains compared to 
their corresponding negative controls. 

CD4+ adoptive transfer into IL-5 Tg Rag 2 /" BALB/c mice followed by 
RSV re-infection resulted in no change in macrophage numbers, significant 
increase in lymphocyte and neutrophil numbers as well as a decrease in 
eosinophil numbers compared to its negative control (p < 0.05). CD4'' adoptive 



transfer into IL-5 Tg Rag 2 /" BALB/c mice followed by RSV re-infection has 

resulted in a significant increase in lymphocyte numbers compared to RSV re-

infected Rag 27" and IL-5 Tg Rag 27- BALB/c mice. In addition, CD4'' adoptive 

transfer into IL-5 Tg Rag 27" BALB/c mice followed by RSV re-infection has 
induced significant increase in eosinophil numbers compared to RSV re-
infected WT and IL-5 Tg Rag 27" BALB/c mice (p < 0.0001). 
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Figure 4.8. Leukocyte population in bronchoalveolar lavage fluid (BALF) 
following respiratory syncytial virus (RSV) re-infection in vivo 

Wild type (WT) , interleukin-5 transgenic (IL-5 Tg), Rag 2 knockout (Rag 2f). IL-5 Tg Rag 2 f a n d 

IL-5 Tg Rag 2 f B A L B / c with CD4-^ nnice were infected by intranasal inoculation with RSV (5 x 10^ 

plaque forming units (pfu)/mouse) on day 0 and re-infected with RSV (5 x 10® ptu/mouse) on day 

12. CD4* cells (3 x 10^ cells/mouse) were isolated from WT mice spleen and adoptively 

transferred intravenously into IL-5 Tg Rag 2 /-mice 4 days prior to day 0 inoculation. On day 17, 

BALF was collected and analysed for the number of macrophages (A), lymphocytes (B), 

eosinophils (C) and neutrophils (D) present in BALF. Data is representative of mean (n = 5) ± 

standard deviation. Data was analysed using a ONE-way ANOVA with Tukey's multiple 

comparison test (GraphPad Prism version X7) (*, p < 0.05, p < 0.001 and * " * , p < 0.0001 

compared to Vero E6 cell lysate inoculated group for each corresponding mouse strain). 

4.3.2.3 Peripheral blood leukocyte population following RSV 

re-infection 
Blood leukocyte cell analysis revealed no significant difference between 

corresponding Vero E6 cell lysate (negative control) and UV-RSV (additional 

negative control) inoculated BALB/c strains for monocyte (Figure 4.9 A), 

lymphocyte (Figure 4.9 B), eosinophil (Figure 4.9 C) or neutrophil (Figure 4.9 D) 

numbers. 

Differential cell analysis of blood revealed no change overall In monocyte 

numbers (Figure 4.9 A) following re-infection of WT, Rag 27" and IL-5 Tg Rag 

27" BALB/c mice compared to their negative controls. In contrast, the number of 

monocytes decreased following RSV re-infection of IL-5 Tg BALB/c mice 

compared to the corresponding negative control. 

No change in lymphocyte numbers was observed for RSV re-infection of 

all BALB/c mice (except for IL-Tg BALB/c) (Figure 4.9 B) compared to the 

corresponding negative controls. RSV re-infection of IL-5 Tg BALB/c resulted in 

significant increase in lymphocyte numbers compared to negative control (p < 

0.0001). Additionally, RSV re-infection of IL-5 Tg BALB/c resulted in significantly 

greater eosinophil numbers compared to RSV re-infected WT, IL-5 Tg, Rag 27" 

and IL-5 Tg Rag 2 /" BALB/c mice (p < 0.0001). 



No difference in eosinophil numbers was observed for any BALB/c 

strains re-infected with RSV (Figure 4.9 C) compared to their corresponding 

negative controls. However, re-infection of the IL-5 Tg BALB/c group with Vero 

E6 cell lysate, UV-RSV and RSV has resulted in significantly higher eosinophil 

numbers present in blood compared to all other BALB/s groups (p < 0.0001) re-

infected with Vero E6 cell lysate, UV-RSV and RSV. No change in neutrophil 

numbers was observed for RSV re-infection of any BALB/c strains (Figure 4.9 

C) compared to the corresponding negative controls. 

CD4+ adoptive transfer into IL-5 Tg Rag 27" BALB/c mice followed by 

RSV re-infection resulted in no change in monocyte, lymphocyte, eosinophil and 

neutrophil numbers compared to the corresponding negative controls. 004"^ 

adoptive transfer into IL-5 Tg Rag 27" BALB/c mice followed by RSV re-infection 

has resulted in a significant increase in monocyte numbers compared to RSV 

re-infected WT BALB/c, while monocyte numbers decreased compared to RSV 

re-infected IL-5 Tg BALB/c mice. In addition, adoptive transfer into IL-5 Tg 

Rag 27" BALB/c mice followed by RSV re-infection has induced significant 

decrease in lymphocyte numbers compared to RSV re-infected IL-5 Tg BALB/c 

mice (p < 0.0001) as well as significant increase in eosinophil numbers 

compared to RSV re-infected WT and IL-5 Tg BALB/c mice (p < 0.05). 
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Figure 4.9. Leukocyte population in blood following respiratory syncytial 
virus (RSV) re-infection in vivo 

Wild type ( W T ) , interleukin-5 transgenic (IL-5 Tg), Rag 2 l<nockout (Rag 2 f ) , IL-5 Tg Rag 21-

and IL-5 Tg Rag 27-BALB/c with CD4-^ mice were infected by intranasal inoculation with RSV (5 x 

105 plaque forming units (pfu)/mouse) on day 0 and were re-infected with RSV (5 x 10^ 

pfu/mouse) on day 12. CD4-" cells (3x10® cells/mouse) were isolated from WT mice spleen and 

adoptively transferred intravenously into IL-5 Tg Rag 2 /-mice 4 days prior to day 0 inoculation. 

On day 17, BALF was collected and analysed for the number of macrophages (A), lymphocytes 

(B), eosinophils (C) and neutrophils (D) present in blood. Data is representative of mean (n = 5) ± 

standard deviation. Data was analysed using a ONE-way ANOVA with Tukey's multiple 

comparison test (GraphPad Prism version X7) ( " * * , p < 0.0001 compared to negative inoculated 

group for corresponding mouse strain). 



4.3.2.4 Lung histopathology of BALB/c strain mice following 
RSV re-infection 

Following a Vera E6 cell lysate (negative control), UV-RSV (additional 

negative control) or RSV inoculation of BALB/c mice strains, lungs were 

assessed for airways mucus occlusion, degree of parenchymal pneumonia, 

peribronchial infiltrates, quality of peribronchial infiltrates, perivascular infiltrates, 

histopathological score, number of goblet cells and eosinophil tissue infiltrates. 

4.3.2.4.1 Descriptive analysis 

Lung pathology for Vero E6 cell lysate (negative control) and UV-RSV 

(additional negative control) inoculated WT, IL-5 Tg, Rag 27" and IL-5 Tg Rag 

27" BALB/c mice demonstrates absence of viral infection as per clear alveoli 

(squares) and no/minimal inflammatory infiltrates present around bronchioles 

(thin arrows) or vessels (thick arrows) (Figure 4.10). RSV re-Infection resulted in 

extensive inflammatory response characterised by macrophages, lymphocytes 

and eosinophils infiltrates. On day 17, RSV re-infection of WT and IL-5 Tg 

BALB/c mice induced mild to moderate parenchymal pneumonia and airway 

occlusion while macrophage and lymphocyte infiltration around bronchioles and 

blood vessels was moderate to severe. RSV re-infection of Rag 2 /- and IL-5 Tg 

Rag 2"/" BALB/c mice resulted in moderate parenchymal pneumonia, airway 

occlusion with several goblet cells present as well as cellular infiltrates around 

bronchioles and blood vessels, dominated predominantly by eosinophils and 

macrophages. Pathology of lung collected from IL-5 Tg Rag 2 /" with adoptive 

transfer of cells, shows very high levels of leukocyte infiltrates (mainly 

eosinophils and macrophages) in addition to severe parenchymal pneumonia 

and moderate airway occlusion. 
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Figure 4.10. Importance of a functional adaptive immunity on BALB/c mice 
pathology following respiratory syncytial virus (RSV) re-infection 

Wild type (WT), interleukin-5 transgenic (IL-5 Tg), Rag 2 knockout (Rag 2 f ) , IL-5 Rag 2 f a n d 

were IL-5 Rag 2 /- BALB/c with adoptive transfer of CD4* cells were infected intranasally with Vero 

E6 cell lysate (negative control), ultraviolet-inactivated RSV (UV-RSV) or RSV (5 x 10^ plaque 

forming units/nnouse). A) WT negative control (i and ii), WT UV-RSV (ill and iv) and WT RSV (v 

and vi). B) IL-5 Tg negative control (i and ii), IL-5 Tg UV-RSV (iii and iv) and IL-5 Tg RSV (v and 

vi). C) Rag 2/-negative control (i and ii). Rag 2/-UV-RSV (iii and iv) and Rag 2-/-RSV (v and vi). 

D) IL-5 Tg Rag 2-/-negative control (i and ii), IL-5 Tg Rag 2/-UV-RSV (iii and iv), IL-5 Tg Rag 27-

RSV (v and vi). E) IL-5 Rag 2-/-with CD4-cells negative control (i and ii), IL-5 Rag 2/-with 

CD4" cells UV-RSV (iii and iv) and IL-5 Rag 27-with CD4^ cells RSV (v and vi). Lungs were 

collected on day 17 and processed for histology using periodic acid Schiff (PAS) stain. Arrows, 

squares and circles indicate the different signs of inflamnnation in mice as described in the text. 

Magnification (i, iii and v) was 100X and (ii, iv and vi) 400X including the eyepiece. Images are 

representative of each group (n = 5). 



4.3.2.4.2 Numerical (score) analysis 

Negative control compared to UV-RSV inoculated groups for all BALB/c 

strains showed no statistical differences across all histopathological analyses. 

However, RSV re-infection of WT, IL-5 Tg, Rag 27" and IL-5 Tg Rag 27" resulted 

in a significant increase in ainway mucus occlusion for all BALB/c strains (p < 

0.005) except for WT BALB/c where no change was observed (Figure 4.11 A). 

Increase in parenchymal pneumonia was observed for all BALB/c strains with p 

< 0.05 (Figure 4.11 B). Peribronchial infiltrates and quality of those infiltrates 

mirrored the same trend across all RSV re-infected BALB/c strains, with an 

increase observed in peribronchial infiltrates compared to their negative controls 

(p < 0.005); except for RSV re-infected Rag 27" BALB/c where no change was 

observed compared to its negative control (Figure 4.11 C and D). No change in 

perivascular infiltrates was observed for all RSV re-infected BALB/s strains 

(Figure 4.11 E). Combined HPS analysis revealed significant increase in HPS 

for all RSV infected and re-infected BALB/c mice with HPS ranging between 7-

16 out of 17 compared to the corresponding negative and UV-RSV controls with 

HPS ranging between 1-7 out of 17 (p < 0.05) (Figure 4.11 F). Increase in a 

number of goblet cell was observed for IL-5 Tg, Rag 27" and IL-5 Tg Rag 27" 

BALB/c only (p < 0.005) (Figure 4.11 G). 

RSV re-infection of IL-5 Tg Rag 27" mice and IL-5 Tg Rag 27" mice with 

CD4^ adoptive transfer induced an increase in a number of eosinophils present 

in the lung tissue (p < 0.001) compared to their negative controls while no 

significant change was observed for RSV re-infected WT, IL-5 Tg and Rag 27" 

mice (Figure 4.11 H). The number of eosinophils was also significantly higher in 

IL-5 Tg Rag 2 /" mice following CD4''adoptive transfer (p < 0.0001). 
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Figure 4.11. Histopathological score (HPS) assessment of mice lungs 
following respiratory syncytial virus (RSV) re-infection in vivo 

Wild type (WT), interleukin-5 transgenic (IL-5 Tg), Rag 2 knocl<out (Rag 2-/-), IL-5 Rag 2 / - a n d 

were IL-5 Rag 2-1- BALB/c with adoptive transfer of CD4-" cells were infected intranasally with Vero 

E6 cell lysate (negative control), ultraviolet-inactivated RSV (UV-RSV) or RSV (5 x 10^ plaque 

forming units/mouse) on days 0 and 12. 004-" cells (3 x 10® cells/mouse) were isolated from WT 

mice spleen and adoptively transferred intravenously into IL-5 Tg Rag 27-mice 4 days prior to day 

0 inoculation. Lung tissue was collected and processed for histopathology. Lungs were analysed 

for: A) Airways mucus occlusion, B) Parenchymal pneumonia, C) Peribronchial infiltrates, D) 

Quality of peribronchial infiltrates, E) Perivascular infiltrates, F) Combined HPS, G) Goblet cell 

count and H) Eosinophil count in the lung tissue. Data is representative of mean (n = 5) ± 

standard deviation. Data was analysed using ONE-way ANOVA with Tukey's multiple comparison 

test (GraphPad Prism version X7) (*, p < 0.05, **, p < 0.005, p < 0.001 and p < 0.0001 

compared to Vero E6 cell lysate inoculated group for the corresponding mouse strain; ####, p < 

0.0001 compared to RSV re-infected IL-5 Tg Rag 2-/-BALB/c). 



4.4 DISCUSSION 

To understand the pleiotropic effects of RSV infection on the immune 
response, it is important to acknowledge that infections with different strains of 
RSV, that exhibit significant genetic variability, result in altered virulence and 
subsequent disease pathogenesis (Lotz and Peebles, 2012). The mechanisms 
by which RSV causes disease and is capable of repeated infection in humans 
remain to be determined. As many promising vaccine/therapeutic candidates in 
the animal model were found to be unsuccessful in human trials, it is important 
to continue on building our knowledge and understanding on how RSV interacts 
with humans to cause disease, evade innate immune response and inhibit the 
development of long-term protective immunity. More research is urgently 
needed to bridge this gap. 

Previous studies suggest that RSV infection and re-infection result in 
skewed immunity towards an undesirable Th2 response (Welliver et al., 2008) 
resulting in eosinophilia (Haynes et al., 2003) and a short-term memory 
response (Connors et al., 1991; Kulkarni et al., 1995). In addition to in vitro 
findings (Domachowske et al., 1998a; Soukup and Becker, 2003), murine study 
has shown that eosinophils play a positive role in RSV clearance in vivo (Phipps 
et al., 2007). Consequently, the aim of this chapter was to evaluate eosinophil 
antiviral activity in four distinct mouse models following RSV infection and re-
infection. The hypothesis that eosinophils may have the immune capacity to 
compensate for the absence of the mature T (CD4'' and CDS'") and B cells 
following RSV re-infection was assessed; as well as the potential of the 
eosinophil to inhibit RSV infection across all four BALB/c strains. Furthermore, 
as CDS"̂  cells have been shown to contribute to disease pathology, the role of 
CD4'' cells in viral clearance and lung pathology was also examined. A greater 
understanding of the role of the innate and adaptive immunity in RSV infection 
and re-infection could assist in the development of a successful RSV vaccine 
and/or therapeutic. 

As previously mentioned innate immunity is the first line of defence in 
RSV infection (Goldsby et a!., 2003). Expanding on the study by Phipps et al. 
(2007), the antiviral role of the eosinophil in RSV infection was examined using 
a murine RSV model. The infection study results revealed a significant 
reduction (p < 0.0001) in viral titres following RSV infection of IL-5 Tg and IL-5 



Tg Rag 27" BALB/c compared to RSV infected WT and Rag 2"/" BALB/c mice 

(Figure 4.2). Furthermore, it is important to note that WT and Rag 27" BALB/c 

mice had the same viral load present suggesting that adaptive immunity does 

not contribute to viral clearance in RSV primary infection. Together, these 

results are in agreement with findings by Phipps et al. (2007) who found that 

following ssRNA treatment of IL-5 Tg BALB/c, a significant reduction in viral 

infection was observed (Phipps et al., 2007), demonstrating eosinophil driven 

viral inhibition in IL-5 Tg mice. In addition, eosinophil involvement in antiviral 

activity against RSV could also be responsible for observed reduction (p < 

0.001) in eosinophil numbers present in the BALF and blood of IL-5 Tg BALB/c 

subsequent to RSV infection. Through a process of degranulation, eosinophils 

could become apoptotic, accounting for the reduction in eosinophil numbers 

observed. It is interesting that although, RSV inoculation of IL-5 Tg Rag 27" 

BALB/c Induced 70% reduction in viral load compared to the RSV inoculated 

WT BALB/c; RSV inoculation of IL-5 Tg BALB/c induced 90% compared to the 

RSV inoculated WT BALB/c (Figure 4.2). This 20% difference in viral inhibition 

could be a result of the Rag 2 deletion in IL-5 Tg Rag 2 /" BALB/c and therefore 

a result of humanised model limitation. As t h e transcription of the IL-5 gene is 

under the influence of the DCR of the gene encoding CD2, expressed at the cell 

surface of T cells (Gleich and Adolphson, 1986; Lang ef a/., 1988; Sanderson et 

al., 1988), it is possible that Rag 2 deletion has an effect on eosinophil 

recruitment numbers or even the rate at which eosinophils are recruited. This is 

noted as the number of eosinophils present in BALF (Figure 4.3) and blood 

(Figure 4.4) following a primary infection of IL-5 Tg Rag 2 /" BALB/c did not 

reflect the same eosinophil response following a primary infection of IL-5 Tg 

BALB/c. In contrast, RSV infected IL-5 Tg Rag 2 /" BALB/c had significantly (p < 

0.0001) higher number of eosinophils present in the lung tissue (Figure 4.6 H) 

compared to RSV infected IL-5 Tg BALB/c. These results suggest that Rag 2 

deletion may affect the rate of eosinophil recruitment, resulting what appears to 

be a slightly delayed response in comparison to IL-5 Tg BALB/c. 

Furthermore, these findings are supported by previous studies which 

show that eosinophils do not play a negative role in viral infections 

(Domachowske et al., 1998a; Phipps et al., 2007; Rosenberg et al., 2009; 

Soukup and Becker, 2003) and do not contribute to viral pathology (Castilow et 

al., 2008). In contrast, no eosinophil infiltration observed following RSV infection 
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of the WT and Rag 2"/" BALB/c can be correlated to the absence in viral load 

reduction Figure 4.2). RSV primary infection of WT and Rag 27" BALB/c also 

reveals that eosinophil immune response is dependant not only on the 

transcription of the IL-5 but also the presence of mature T cells to enable 

eosinophil recruitment. Taken together with the study by Phipps et al. (2007), 

these results demonstrate the importance of a prompt and effective eosinophil 

recruitment. Interestingly, in uninfected IL-5 Tg BALB/c mice, eosinophils 

normally contribute to over 30% of the leukocyte population In blood and BALF 

while in WT and Rag 27" BALB/c, eosinophils constitute for only about 1-3% of 

leukocyte population in blood and BALF. If eosinophils are the key to viral 

clearance, then the prophylactic treatment with immune modulatory 

therapeutics may facilitate eosinophil induced viral clearance necessary to clear 

RSV infection in WT and Rag 2 /- BALB/c mice. However, it is important to 

highlight that the key to eosinophil beneficial role most likely lies in the close 

regulation of the eosinophil recruitment. 

RSV infection in the first two years of life is believed to lead to long-term 

deficiencies In protective immunity to RSV (Welliver, 2003). As such, the 

hypothesis that the eosinophil may be involved in the immune compensation in 

the absence of the mature T (CD4^ and CD8^) and B cells was investigated. 

Furthermore, as CDS"̂  cells have been shown to contribute to disease 

pathology, the role of CD4'' cells in viral clearance and disease pathology was 

also examined. RSV re-infection of IL-5 Tg BALB/c and WT BALB/c mice 

(Figure 4.7), has resulted in the highest reduction (p < 0.0001) of viral load 

compared to the RSV re-infected Rag 2"/" and IL-5 Tg Rag 2 /" BALB/c. BALB/c 

strains containing Rag 2 deletion exhibited the highest viral load present 

following RSV re-infection. These results demonstrate importance of the mature 

T and B cells in secondary viral infections. Furthermore, these results are also 

indicative of blurred line existing between innate and adaptive immunity 

especially in terms of their involvement in primary and secondary infections. 

This is especially important when examining the effect of RSV re-infection on 

the Rag 2 /" BALB/c strains. Therefore, as Rag 2 /" BALB/c have NK and ILC2 

cells present despite the lack of mature T and B cells, it is important to reflect on 

how these cells could be involved in the immune response following RSV re-

infection. Recently, the notion that NK cells are truly innate cells has been 

called into question because specific subsets of mouse liver NK cells have been 
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described to have the adaptive immunity property of lasting memory against 
specific viral antigens (Gillard et al., 2011; Vivier et al., 2011). Furthermore, 
ILC2 cells, present in Rag 27" mice, are responsive to IL-25 and IL-33 during 
helminthic infection. However, their population numbers decrease soon after 
induction and these mice are unable to expel the worm burden effectively (Neill 
et al., 2010). This suggests that T cells play a role in ILC2 cells maintenance, 
and in addition, boost the type 2 immune response by producing more type 2 
cytokines. Respiratory infections with rhinovirus or respiratory syncytial virus are 
known to promote type 2 responses, and exacerbate allergic asthma. Chang et 
al. (2011) demonstrated that influenza virus-induced asthma is not mediated by 
adaptive immunity, but by IL-33-dependent ILC2 cells (Chang et al., 2011). 
Together, these findings highlight the importance of chapter 4 findings. 
Although, Rag 27" BABL/c strains do not express the mature T and B cells, 
results revealed some lymphocytes present in BALF and blood of IL-5 Tg Rag 
27" BABL/c. These lymphoid cells could be NK cells and/or even ILC2 cells as 
these are known to be present in Rag 2"/" mice. 

Previous depletion studies have demonstrated an importance of adaptive 
immunity in viral infection with studies revealing an increase in morbidity in 
CD8'' and NK cell depleted mice following RSV infection (Bender et al., 1992; 
Graham and Braciale, 1997; Topham and Doherty, 1998) while more recently, 
Lee et al. (2005) showed that mice lacking B cells succumbed to influenza 
H1N1 infection despite the infiltration of a larger number of CDS'" cells (Lee et 
al., 2005). These findings are in agreement with chapter 4 results, which 
indicate that intact adaptive immunity is very important for RSV inhibition. 
Despite its previously described inadequate response, each subsequent RSV 
infection results in an increase in protective immunity (Henderson et al., 1979) 
and reduction in disease severity. 

Although RSV-specific CD8^ T cells have been shown to provide 
protection against infection, their effect is short-lived (Connors et al., 1991; 
Kulkarni et al., 1995). However, depletion of CD4^ cells has been shown to 
result in delayed viral clearance and survival of infected mice following RSV re-
infection (Allan et al., 1990; Mozdzanowska et al., 2000). Also, H1N1 infection 
of mice lacking CD4^ cells resulted in mice recovering from infection in a similar 
fashion to the WT mice (Lee et al., 2005). Therefore, the role of CD4^ T cells 



and their effect on viral clearance and disease pathology was examined in more 
detail. T lymphocytes adoptive transfer into IL-5 Rag 27" BALB/c followed 
by RSV re-infection, resulted in over 80% viral titres reduction (p < 0.0001) 
(Figure 4.7) and an increase in eosinophil tissue infiltrates compared to RSV re-
infected IL-5 Rag 27" BALB/c (p < 0.0001) (Figure 4.11). These results mimic 
the trend of the immune response observed in BALF and blood following RSV 
re-infection of IL-5 Tg BALB/c mice. However, the main difference is in the HPS 
results, where CD4'' T lymphocytes adoptive transfer into IL-5 Tg Rag 27" 
BALB/c induced the highest HPS scores across the board. These results 
confirm the importance of CD4'' T cells in viral inhibition which is supported by 
previous study showing that the CD4^ and CD8^ T lymphocyte contribute 
individually to clearing of the RSV infection (Graham et at., 1991). The lack of 
eosinophil numbers present in BALF (Figure 4.8) and blood (Figure 4.9) 
following RSV re-infection of IL-5 Tg Rag 27" BALB/c, demonstrates the 
importance of T cells role in a T cell-driven prompt eosinophil response to a viral 
infection. This result is similar to those following primary RSV infection of IL-5 
Tg Rag 27" BALB/c in terms of eosinophil recruitment to BALF and blood. As 
such, primary and secondary RSV infection of IL-5 Tg Rag 2 /- BALB/c reveal 
significant increase (p < 0.0001) in eosinophil tissue infiltrates, suggesting that a 
delay in eosinophil immune response may be a result of T cell deficiency 
present in Rag 2/" mice. However, this issue appears to be overcome at a much 
slower rate potentially through the signalling the innate cells such as ILC2 cells. 
Furthermore, an increase (p < 0.0001) in eosinophil tissue infiltration (Figure 
4.11 H) was also observed following the RSV re-infection of IL-5 Rag 27" 
BALB/c with CD4'' T cells adoptive transfer, supporting the hypothesis that T 
cells are very important in eosinophil recruitment process. Also, these findings 
demonstrate for the first time that accelerated viral clearance in IL-5 Tg BALB/c 
is dependent on a presence of at least one component of adaptive immunity (in 
this case CD4^ T lymphocytes), hence indicating that eosinophil antiviral activity 
may be dependent on a degree of T cell response. Furthermore, 004"^ T 
lymphocytes adoptive transfer into IL-5 Rag 27" BALB/c has also resulted in an 
increase (p < 0.0001) in HPS scores compared to RSV re-infected IL-5 Tg Rag 
27" BALB/c (Figure 4.11). These findings suggest that although CD4^ T cells 
have been shown to play an important role in viral clearance following RSV re-
infection, they also contribute to RSV disease pathology. These findings are in 



agreement with a previous study by Graham et al. (1991) which showed that 

both, CD4-' and CD8'' lymphocytes contribute to RSV disease pathology 

(Graham et al., 1991). However, recent study by Lee et al. (2012) also found 

that vaccine-elicited effector anti-RSV CDS"̂  T cells protected mice against RSV 

infection and pathogenesis (Lee etal., 2012b). Based on the findings of chapter 

4 study and previous studies by other research groups, it appears that more 

work is required to elucidate the role of T lymphocytes in RSV infection and 

disease pathology. 

In summary, eosinophils have been shown to play a very positive role in 

viral clearance following RSV infection and re-infection. However, their antiviral 

activity appears to be modulated by the number of cells recruited to lungs in 

response to viral infection. This has been especially evident with Rag 27" mice, 

which are lacking the T and B cells, as eosinophil recruitment has been shown 

to depend on IL-5 production; tightly regulated by the CD2 expressed on the T 

cell surface. This regulation appears to extend to eosinophil numbers present in 

BALF and blood. However, in the case of Rag 27" mice, this issue appears 

somewhat overcome through the eosinophil regulation via most likely ILC2 cells 

IL-5 production. Recent study by Roediger et al. (2013) has shown that both NK 

and ILC2 cell express CD2, required for eosinophil recruitment (Roediger et al., 

2013). Furthermore, several studies have shown that RSV infection alters 

functionality of T lymphocytes (Fulton et al., 2008; Gray et al., 2005) resulting in 

inadequate immune response and low T lymphocyte numbers. Although this 

phenomenon has been observed in multiple viral models, the underlying 

mechanisms are still unknown. The impaired function of T lymphocytes in the 

lung during virus infection has been proposed to be the consequence of virus-

induced changes in the lung environment (Gray et al., 2005) as well as virus-

induced immune evasion tactics (Lotz and Peebles, 2012; Moreau et al., 2003). 

Future RSV immunisation strategies should strive to achieve a balanced 

immune response. In addition, to induce a more desirable immune response, a 

focus on blocking RSVs evasion tactics is recommended which could be 

achieved using therapeutics targeting virus itself or by immune modulation. This 

information would be invaluable in facilitating the design of safe and effective 

vaccines against what remains a major human pathogen. 



Chapter 5. HEPARAN SULFATE TREATMENT OF 
RESPIRATORY SYNCYTIAL VIRUS INFECTION 



5.1 INTRODUCTION 

In Chapters 3 and 4, innate and adaptive immunity were examined in 

response to RSV infection {in vitro and in vivo) and re-infection {in vivo). The 

knowledge gained from the previous two chapters could be utilised In the 

development of much needed RSV therapeutics. In Chapter 1, it was shown 

that HS mimetics have a potential to become a therapeutic agent against RSV 

infection and that further in vitro and in vivo investigation is warranted. 

As HSPGs consist of a core protein bearing GAG chains, they are 

composed of unbranched HS chains, structurally related to heparin (Bishop et 

al., 2007). Heparin is a GAG, exclusively synthesised by mast cells and it has a 

crucial role as a depot for various mediators and for the morphology of the 

granules (Forsberg et al., 1999; Humphries et al., 1999). In contrast, HS is 

expressed on the cell surface and ECM of a wide range of cells of vertebrate 

and invertebrate tissues (lozzo and San Antonio, 2001; Kjellen and Lindahl, 

1991). However, both heparin and heparan sulfate play a very important role in 

host immune defence. In 1964, heparin was found to be the first GAG to affect 

virus replication and was shown to limit the growth of HSV (Nahmias and 

Kibrick, 1964). Other viruses have also been found to interact with GAGs, 

including dengue virus (Lee et al., 2006), Sindbis virus (Byrnes and Griffin, 

1998; Klimstra et al., 1998), foot and mouth disease virus (O'Donnell et al., 

2008), human immunodeficiency virus type 1 (De Francesco et al., 2011) and 

vaccinia virus (Ho et al., 2005). At the molecular level, the negatively charged 

sulfated or carboxyl groups of HSPGs or heparin (Hallak et al., 2000b) interact 

with a cluster of positively charged basic amino acids present within the linear 

HBD of RSV G protein (Feldman et al., 1999). Interestingly, a similar putative 

HBD was also identified in RSV F protein (Feldman et al., 2000), suggesting 

that the HSPG-HBD interaction is a common theme for RSV proteins that 

mediate infection, making it a preferred target for the development of antiviral 

compounds against RSV. It is not clear, however, what type of GAGs and GAG 

components are involved, whether the important GAGs are on the virus 

(Bourgeois et al., 1998) or the cell (Krusat and Streckert, 1997), and the 

magnitude of their contribution to the infection (Hallak et al., 2000a). It is 

apparent that they have an important role as demonstrated by previous studies 



which have shown an 80% reduction in RSV infection using GAG deficient cell 

lines (Hallak ef al., 2000a). 

Based on the findings of previous studies, the importance and efficacy of 

HS mimetics treatment on RSV infection was assessed. Viral attachment, cell 

surface interaction and inhibition of viral replication were tested in vitro in the 

presence of 53 HS mimetic compounds at concentrations of 5, 20 and 100 

|jg/mL. Following in vitro studies, six HS mimetics were tested in vivo for their 

efficacy against RSV infection and as a potential candidate for prophylactic 

treatment of RSV infection. 

5.2 METHODS 

5.2.1 HS mimetics 
HS mimetics (Table 5.1) were generously supplied by Dr. C. Freeman 

(John Curtin School of Medical Research (JCSMR), Australian National 

University (AND)). All HS compounds, in their powder form, were stored in a 

desiccated jar at 4°C. Compounds were diluted in sterile saline solution and 

aliquots kept frozen at -20°C until required. 

Table 5.1. List of heparan sulfate mimetics 

Group 1-Heparins and modified heparins (~12kDa) 

201 Mucosal heparin (12.5kDa) 

204 Mucosal heparin glycol split (go) periodate treated/NaBH4 reduced 

205 Mucosal heparin go (pNAc) (part deNS/NAc) 

207 Mucosal heparin go de2S (periodate then lyophilise in 0.1 M NaOH) 

230 Desulfated mucosal heparin 

384 Mucosal heparin gc Nac 

448 
MH-NAc ie deNS, then re acetylate ; loss of 1 anionic charge 
perdisaccharide 

465 Mucosal heparin-gc butyl 

466 Mucosal heparin-gc hexyl 

481 MH-gc-NH 

483 MH-NH ie deNS ie GlcNH+ ; loss of 2 anionic charges per disaccharide 



G r o u p 2 - L o w m o l e c u l a r w e i g h t hepar ins (LMWH) {5kDa and 3kDa) 
and e n o x a p a r i n w i t h / w i t h o u t g l y c o l sp l i t (gc) 

217 Mucosal heparin 5kDa LMWH (Sigma) 

218 Mucosal heparin 5kDa gc split 

219 Mucosal heparin 5kDa gc split part deNS/NAc 

228 Decarboxylated mucosal heparin 

331 Mucosal heparin Sigma 3kDa 

332 Mucosal heparin Sigma 3kDa gc 

333 Mucosal heparin Sigma 3kDa de2S 

394 Enoxaparin 3kDa 

408 Enoxaparin-gc 

416 Mucosal heparinSkDa gc-CHO + Benzhydrazide 

418 Mucosal heparin3kDa gc-CHO + Anthranilic acid (NH2-Q-COOH) 

419 Mucosal heparinSkDa gc-CHO + ANTS (1,3,6 triSOs-aminonaphthaline) 

424 Mucosal heparin with glycol split 3kDa 

G r o u p 3 -Fuco idans and mod i f i ed f u c o i d a n 

259 Fucoidan (Sigma) 

497 Fucoidan Marinova 

498 Fucoidan 30min ascorbate/peroxide 

499 Fucoidan 60min ascorbate/peroxide 

500 Fucoidan 90min ascorbate/peroxide 

501 Fucoidan 120min ascorbate/peroxide 

502 Fucoidan ISOmin ascorbate/peroxide 

G r o u p 4-Car rageenans 

266 lota-carrageenan 

267 Lambda-carrageenan 3S/disacc 

494 lota-carragenan Fe/Ascorbate 

495 Lambda-carragenan Fe II 

496 Lambda-carragenan Fe/ascorbate 



Group 5-Other HS compounds 

81 Cellobiose sulfate 

106 Maltotetraose H -itol (reduced) 

109 Lactose-CO-NH-CH2-C6H4-CH2-NH-CO-lactose (meta linked xylyl) 

111 Lact-C0-NH-(CH2)n-NH-C0-lact n = 12 

229 Pentosan polysulfate 5kDa Sigma 

238 Chondroitin 4-sulfate 

241 Dermatan sulfate 

242 Chondroitin 6-sulfate 

254 Dextran Sulfate 5kDa 

486 Suledexide 5kDa 

510 Polyvinyl sulfate Na+ (Sigma) charcoal treated 

511 A Polyvinyl sulfate Na+ (Sigma) polymerised A 

511 B Polyvinyl sulfate Na+ (Sigma) polymerised B 

512 D Polyvinyl sulfate Na+ (Sigma) polymerised D 

512 E Polyvinyl sulfate Na+ (Sigma) polymerised E 

PI-88 A mixture of highly sulfated, monophosphorylated mannose 
oligosaccharides 

Suramin A polyanionic compound- contains eight benzene rings, four amide 
groups, one urea and six sulfonate groups 

Table 5.1 legend: 

The following legend is provided to explain abbreviations used in the 

table above. Abbreviations listed refer to chemical and/or structural 

modifications present in the corresponding HS mimetic compounds. 

• gc = periodate treated (glycol split); opens ring; makes it more flexible; no 
anticoagulant activity 

• de2S = 2 sulfate (S) groups removed; low/no anticoagulant activity 

• gs/de2S = glycol split; then 2 sulfate (S) groups removed; it makes it less 
likely to bind to other proteins 

• pNAc = part deNS, replace with NAc; even less sulfation and binding to 
other proteins 

• CR = decarboxylated (not an anti-coagulant, reduces binding to many 
compounds)-COOH » - C H 2 O H 



5.2.2 Mouse strain 
Male WT BALB/c mice aged 6 to 8 weeks were obtained from the 

pathogen free animal facility at the University of Canberra (UC). Animals were 

housed in approved containment facilities and treated in accordance with UC 

animal experimentation guidelines. 

5.2.3 HS cytotoxicity assay 
HS mimetic compounds were evaluated for cell cytotoxicity in vitro. The 

AlamarBlue assay (Invitrogen, Australia) was used to assess cell health and 

viability following incubation with HS mimetics. The assay was set up in a 96-

well plate. Vero E6 cells were prepared in Opti-MEM (Gibco, Australia) with 5% 

PCS (Sigma) and plated at 6000 cells/well. All samples were prepared in 

quadruplicates. Cells in the 96-well plate were allowed to Incubate and adhere 

for 4 hours at 37°C and 5% CO2. Following the 4 hour incubation, 100 pL of 

each HS mimetic at 100 (jg/mL (final concentration) was added to appropriate 

set of quadruplicates. Plate was incubated for 24 hours at 37°C and 5% CO2, 

following which, 10X AlamarBlue reagent (Invitrogen) was added to each well at 

IX final concentration and the plate incubated for 4 hours at 37°C and 5% CO2. 

Samples was analysed using a spectrophotometer (SPECTROstar Omega, 

BMG Labtech) at dual wavelength of 570 and 600 nm. Vero E6 cells (ATCC) 

were used as a standard for the cell proliferation assay. Standards were serially 

diluted 1 in 2 with concentrations ranging from 12000 to 94 cells per well. 

Standards were included in the assay to enable determination of cell 

concentration of unknown samples (Vero E6 cells incubated with HS mimetics). 

5.2.4 HS mimetics treatment of RSV infection in vitro 
The effect of HS mimetics on RSV infection was tested in vitro. All 

compounds were tested at 100 pg/mL, while a selected number of compounds 

were tested at 20 and 5 pg/mL concentration. All samples were processed for 

immunostaining RSV plaque assay (section 2.10). Compounds were tested 

under four different conditions and variations were as follows: Condition A-

incubating Vero E6 cell lysate (negative control), UV-RSV (additional negative 

control) or RSV (200 pfu) with HS mimetics for 10 minutes at 37''C and 5% CO2; 

Condition B- incubating Vero E6 monolayer with HS mimetics for 10 minutes at 

37°C and 5% CO2; Condition C- incubating Vero E6 cell lysate (negative 



contro l ) , U V - R S V (add i t iona l negat ive contro l ) or R S V (200 pfu) w i th the cel l 

m o n o l a y e r fo r 10 m inu tes (a l lowing v i rus to adhere ) at 37 °C and 5 % C O 2 ; and 

C o n d i t i o n D- i ncubat ing V e r o E6 cel l lysate (negat ive control) , U V - R S V 

(add i t iona l negat ive cont ro l ) o r R S V (200 pfu) w i th the cell mono laye r for 1 hour 

(a l lowing v i rus to adhe re ) at 3 7 ° C and 5 % C O 2 . T h e exper imen ta l des ign Is 

deta i led in F igure 5.1. 

Condition A 
RSV (200 pfu/well) 
and HS compound 

I 
Incubate for 10 

minutes at 37 °C 
and 5% CO2 

Add the mixture to 
the cell (Vero E6) 

monolayer 

Incubate for 1 
hour at 37 °Cand 

5% CO2 

Condition B Condition C 
Add HS compound 

to the cell (Vero 
E6) monolayer 

Add RSV (200 pfu/ 
well) to cell (Vero 

E6) monolayer 

i 
Incubate for 10 

minutes at 37 °C 
and 5% CO2 

Incubate for 10 
minutes at 37 °C 

and 5% CO2 
* i 

Add RSV (200 pfu/ 
well) to cell 
monolayer 

Add HS compound 
to cell monolayer 

Incubate for 1 
hour at 37 °Cand 

5% CO2 

Incubate for 1 
hour at 37 °Cand 

5% CO2 

Condition D 
Add RSV (200 pfu/ 
well) to cell (Vero 

E6) monolayer 

Incubate for 1 
hour at 37 °Cand 

5% CO2 

X 

Add HS compound 
to cell monolayer 

I 

Add 1 mL of methylcellulose 

i 
Incubate for 6 days at 

37 °C and 5% CO2 

i 
Process as per 

immunostaining RSV plaque 
assay (refer to section 2.10) 

Figure 5.1. H e p a r a n sul fate (HS) mimet ics in vitro exper imenta l des ign 

HS treatment of respiratory syncytial virus (RSV) (200 plaque forming (pfu)/well) infection under 

four conditions: Condition A- incubating RSV with HS for 10 minutes at 37°C and 5% CO2; 

Condition B- incubating Vero E6 monolayer with HS mimetics for 10 minutes at 37°C and 5% 

CO2; Condition C- incubating RSV (allowing virus to adhere) with the cell monolayer for 10 

minutes at 37°C and 5% CO2; and Condition D- incubating RSV (allowing virus to adhere) with 

the cell monolayer for 1 hour at 37°C and 5% CO2. Viral litres were determined by 

immunostaining RSV plaque assay. 



5.2.5 HS mimetics treatment of RSV infection in vivo 
Following in vitro studies, the best performing HS compounds were 

selected for in vivo studies. The selected HS mimetics were: HS 228 (carboxyl 

reduced mucosal heparin), HS 259 (fucoidan-sulfated polysaccharide), HS 267 

(lambda carrageenan (200kDa)) and HS 424 (mucosal heparin with glycol split 

(3kDa)). HS 230 (desulfated heparin) and HS 254 (dextran sulfate (5kDa)) were 

included as HS negative and positive controls, respectively. Treatment groups 

are listed in the Table 5.2 below. 

Table 5.2. In vivo treatment groups 

Treatment Inoculum 
Saline (negative control) Vero E6 cell lysate 

Saline (additional control) UV-RSV 

HS 230 (negative HS control) Vero E6 cell lysate 

HS 254 (positive HS control) Vero E6 cell lysate 

HS 228 Vero E6 cell lysate 

HS 259 Vero E6 cell lysate 

HS 267 Vero E6 cell lysate 

HS424 Vero E6 cell lysate 

Saline (positive control) RSV at 200 pfu/well 

HS 230 RSV at 200 pfu/well 

HS 254 RSV at 200 pfu/well 

HS 228 RSV at 200 pfu/well 

HS 259 RSV at 200 pfu/well 

HS 267 RSV at 200 pfu/well 

HS 424 RSV at 200 pfu/well 

Selected HS mimetics were tested for the RSV inhibition under following 

two conditions: HS mimetics treatment of RSV infection and prophylactic HS 

treatment of RSV infection. 

The effect of HS mimetics on RSV infection, in vitro and in vivo was 

assessed by calculating the percent inhibition of viral infection. This was done 

using the formula below: 

Inhibition = 100 x (Original Number - New Number) / Original Number 

Equation 3.1. Formula for the percent Inhibition of RSV infection 



5 . 2 . 5 . 1 HS mimetics treatment of RSVinfection 
On day 0 WT BALB/c mice were lightly anesthetised with isofluorane 

(PharmaChem) (section 2.12.4) and intranasally inoculated with either Vero E6 

cell lysate, UV-RSV or RSV (50 (jL of 1 x 10^ pfu/mL = 5 x 10® pfu/mouse). On 

days 1-4, mice were treated with selected HS mimetics at 10 mg/mL/kg (100 |JL 

intraperitoneal injections) (Figure 5.2). On day 5 mice were euthanised by CO2 

asphyxiation (section 2.12.1) and samples collected (sections 2.13). 

Intraperitoneal Injection of 100 nL of heparan 
sulfate mimetics at 10 mg/mL/kg concentration 

days 0 

t t 
intranasal inoculation w i th 

2 X 10® plaque forming units/mouse 
Sample 

collection 

Figure 5.2. Heparan sulfate (HS) mimetic treatment of respiratory syncytial 
virus (RSV) infection experimental timeline 

On day 0, wild type BALB/c mice were inoculated with RSV and receiving daily HS mimetics 

treatment at 10 mg/mL/kg on days 1-4. On day 5, mice were sacrificed and samples collected. 

5.2.5.2 Prophylactic HS treatment of RSV infection 
WT BALB/c mice received daily HS mimetics treatment at 10 mg/mL/kg 

(100 |JL intraperitoneal injections), starting 48 hours prior to intranasal 

inoculation and continuing until 4 days after the inoculation. On day 0 WT 

BALB/c mice were intranasally inoculated with either Vero E6 cell lysate, UV-

RSV or RSV (50 pL of 1 x 10^ pfu/mL= 5 x 10^ pfu/mouse) (Figure 5.3). On day 

5 mice were euthanised by CO2 asphyxiation (section 2.12.1) and samples 

collected (sections 2.13). 
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Figure 5.3. Prophylactic heparan sulfate (HS) treatment of respiratory 
syncytial virus (RSV) infection experimental timeline 

WT BALB/c mice received daily HS mimetics treatment at 10 mg/mL/kg (100mL intraperitoneal 

injections), starting 48 hours prior to intranasal inoculation and continuing until 4 days after. On 

day 0, WT BALB/c mice were intranasally inoculated with either Vero E6 cell lysate, ultraviolet-

inactivated RSV (UV-RSV) or RSV infected with RSV (5 x 10^ plaque forming units/mouse) by 

intranasal inoculation. On day 5, mice were sacrificed and samples collected. 

5.2.6 Statistical analysis 
Data are p resented as m e a n + s tandard deviat ion. A O N E - w a y or T W O -

w/ay A N O V A w a s used to de te rm ine stat ist ical s igni f icance. Data w e r e ana lysed 

us ing G r a p h P a d Pr ism vers ion X7. A p va lue of less than 0.05 was cons idered 

stat ist ical ly s igni f icant. 



5.3 RESULTS 

5.3.1 HS cytotoxicity study 
HS mimetics were tested at 100 |jg/mL for cellular cytotoxicity using Vero 

E6 cells. It was found that HS mimetics are not toxic (Appendix 4). 

5.3.2 HS mimetics treatment of RSV infection in vitro 
Vero E6 cell lysate (negative control - data not shown) and UV-RSV 

(additional negative control-data not shown) inoculated samples that received 

either saline or tested HS mimetics were assessed for viral titres using RSV 

immunohistochemistry plaque following all four testing conditions and no viral 

titres were recovered. In addition, in vitro results of only 27 out of 53 tested HS 

mimetics are represented in this result chapter. These compounds were 

selected based on their antiviral activity, chemical and structural variations; 

representing an average HS mimetics performance, at three different 

concentrations and under four different conditions, for the group that they are 

representing. Graphs of other compounds can be found in Appendix 5. 

5.3.2.1 HS induced RS V inhibition in vitro 

5.3.2.1.1 Condition A 

HS 230 (negative HS control) showed no reduction of RSV infection 

while HS 254 (positive HS control) induced 90 and 50% inhibition of RSV 

infection (p < 0.001) at 100 and 5|jg/mL, respectively. Overall, group 1 HS 

mimetics, the heparins and modified heparins (~12kDa), induced a 60-80% 

reduction in RSV plaques (Figure 5.4 A). HS 201 was found to inhibit RSV 30% 

better (p < 0.001) at 100 ^g/mL concentration compared to 5 (jg/mL. HS 204, 

HS 205 and HS 207 did not inhibit RSV at any of the three tested HS 

concentrations. 

Group 2 (low molecular weight heparins (5kDa and 3kDa) and 

enoxaparin with/without glycol split) HS mimetics showed more dose dependant 

RSV inhibition (Figure 5.4 B). HS 218 and HS 219 induced 80% RSV inhibition 

at 5 and 100 pg/mL concentrations resulting in almost 20% greater (p < 0.005) 

inhibition compared to 20 pQ/mL dose. HS 331 and HS 332 RSV inhibition 

increased from 60-90% following an increase in HS mimetics concentration 



from 5 to 100 ^ig/mL. In contrast, HS 416 and HS 424 RSV inhibition was 

improved from 65-85% (p < 0.005) by reducing HS mimetics concentration from 

100 to 5 |jg/mL. HS 217 and HS 333 achieved 80% and 40% RSV inhibition, 

respectively, and were unaffected by change in HS mimetic concentration. 

HS 259, belonging to group 3 (fucoidans and modified fucoidans) HS 

mimetics, showed almost 100% RSV inhibition at 5, 20 and 100 |jg/mL 

concentrations (Figure 5.4 C). All Group 4 (carrageenans) HS mimetics were 

found to induce 100% RSV inhibition in at least one of the concentrations 

examined. HS 266 induced 100% RSV inhibition (p < 0.0001) at 100 and 20 

pg/mL while only 60% inhibition at 5 p/mL (p < 0,0001). HS 267 inhibited RSV 

100% (p < 0.0001) irrespective of the HS mimetics concentration (Figure 5.4 D). 

Several group 5 (other) HS mimetics were found to perform better at 

lower concentrations (Figure 5.4 E). HS 111, HS 238, HS 241, HS 242, PI-88 

and suramin showed a significant RSV inhibition (60-80%) (p < 0.005) at 5 

and/or 20 pg/mL while RSV inhibition was reduced to 0% at 100 pg/mL 

concentration. HS 81, HS 106 and HS 109 induced 60%, 90% and 70% RSV 

inhibition (p < 0.005) respectively, irrespective of the HS mimetic concentration. 
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Figure 5.4. Heparan sulfate (HS) in vitro (Condition A) treatment of 
respiratory syncytial virus (RSV) infection 

The assay was carried out in 24-well flat bottom plate. Group 1 (heparins and modified heparins (-

12kDa)) (A), Group 2 (low molecular weight heparins (LMWH) (5kDa and 3kDa) and enoxaparin 

with/without glycol split) (B), Group 3 (fucoidans and modified fucoidan) (C), Group 4 

(carrageenans) (D) and Group 5 (other) (E) HS mimetics were tested at 100, 20 or 5 | jg/ml-

Briefly, 100 fjl/well of HS mimetics was incubated with RSV (200 plaque forming units/well) for 10 

minutes at 37°C and 5% CO2. Following the incubation, HS with RSV mixture was added to Vero 

E6 cell monolayer and allowed to incubate for 1 hour at 37°C and 5% CO2. Plate was processed 

by immunostaining RSV plaque assay (section 2.10). Data are represented as a mean of RSV 

plaques recovered (n = 4) ± standard deviation. HS compounds 230 (negative) and 254 (positive) 

were used as HS mimetic controls. For each graph, the controls HS 230, HS 254 and RSV results 

are presented in boxed area for comparison. Data were analysed using a ONE-way ANOVA with 

Tukey's multiple comparison test (GraphPad Prism) (**, p < 0.005, p < 0.001 and ** " , p < 

0.0001). 



5.3.2.1.2 Condition B 

The hypothesis that HS mimetics may bind to the negatively charged 

sulfate and carboxyl groups of the glycosaminoglycan chains of HS on the cell 

surface of Vero E6 cells was tested. HS 230 (negative HS control) did not 

induce RSV inhibition while HS 254 (positive HS control) exhibited 

approximately 75% inhibition at all three tested HS concentrations. Treatment 

with group 1 HS mimetics (heparins and modified heparins (~12kDa)) (Figure 

5.5 A) resulted in a 30-80% reduction in RSV plaques recovered. HS 201 was 

found to be almost 40% more effective against RSV at the 20 and 100 |jg/mL 

concentrations than at 5 pg/mL (p < 0.0001). HS 204, 205 and 207 achieved 65, 

30% and 45% inhibition, respectively, and were unaffected by HS 

concentrations (Figure 5.5 B). 

The Group 2 (low molecular weight heparins (5kDa and 3kDa) and 

enoxaparin with/without glycol split) HS mimetics 217, HS 218 and HS 228 

induced approximately 80% RSV inhibition and their efficacy was found to be 

unaffected by change in HS concentration (Figure 5.5 C). HS 219, HS 331 and 

HS 332 induced 75-80% RSV inhibition at 5 and 20 pg/mL compared to only 35-

45% inhibition at 100 pg/mL (p < 0.05). HS 416 and HS 424 showed the 

opposite trend with an increase in RSV inhibition from 65-90% as the 

concentration increased from 5-100 pg/mL. HS 333 induce the lowest level of 

RSV inhibition, only 30%, at all three tested HS concentrations. 

Group 3 (fucoidans and modified fucoidans) HS 259 showed an average 

of 90% RSV inhibition at 5, 20 and 100 pg/mL concentrations (Figure 5.5 C). In 

contrast. Group 4 (carrageenans) HS mimetics RSV inhibition decreased with 

reduction in HS mimetic concentrations. HS 266 induced 100%, 90% and 60% 

RSV inhibition at 100, 20 and 5 pg/m, respectively (p < 0.0001). HS 267 

induced 100% RSV inhibition at 10 and 20 pg/mL while only 70% at 5 pg/mL 

(Figure 5.5 D). 

Most of the group 5 (other) HS mimetics performed best at 5 and/or 20 

pg/mL concentration (Figure 5.5 E). HS 81, HS 111, HS 238, HS 241, HS 242, 

PI-88 and suramin showed a significant increase (65-90%) in RSV inhibition at 

5 and/or 20 pg/mL compared to only 0-20% at 100 pg/mL (p < 0.05). HS 106 

and HS 109 induced close to 85% and 65% RSV inhibition respectively, 

irrespective of the HS mimetic concentrations. 
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Figure 5.5. Heparan sulfate (HS) in vitro (Condition B) treatment of 
respiratory syncytial virus (RSV) infection 

The assay was carried out in 24-well flat bottom plate. Group 1 (heparins and modified heparins 

(~12kDa)) (A), Group 2 (low molecular weight heparins (LMWH) (5kDa and 3kDa) and 

enoxaparin with/without glycol split) (B), Group 3 (fucoidans and modified fucoidan) (C), Group 4 

(carrageenans) (D) and Group 5 (other) (E) HS mimetics were tested at 100, 20 or 5 pg/mL and 

100 |jl/well of HS mimetics was incubated with Vero E6 cell monolayer for 10 minutes at 37°C 

and 5% CO2. Following the incubation, RSV (200 plaque forming units/well) was added to Vero 

E6 cell monolayer with HS mimetics and allowed to incubate for 1 hour at 37°C and 5% CO2. 

Plate was processed by immunostaining RSV plaque assay (section 2.10.). Data are represented 

as a mean of RSV plaques recovered (n = 4) ± standard deviation. HS 230 (negative) and 254 

(positive) were used as HS mimetic controls. For each graph, the controls HS 230, HS 254 and 

RSV results are presented in boxed area for comparison. Data were analysed using ONE-way 

ANOVA with Tukey's multiple comparison test (GraphPad Prism) (*, p < 0.05, p < 0.005, p 

<0.001 and " * * , p < 0.0001). 



5.3.2.1.3 Condition C 

The ability of the HS mimetics to compete with RSV for the cell surface 

HS binding site, following the RSV incubation with Vero E6 cells for 10 minutes 

at 37°C and 5% CO2, was assessed under condition C. HS 230 (negative HS 

control) did not inhibit RSV infection while HS 254 (positive HS control) 

treatment inhibited RSV by 80% and 60% at 100 and 5 |jg/mL, respectively (p < 

0.05). Group 1 HS mimetics (heparins and modified heparins (~12kDa)) 

induced an increase in RSV Inhibition from 50% to 80% by increasing HS 

concentration from 5-100 pg/mL (p < 0.05) (Figure 5.6 A). HS 204, HS 205 and 

HS 207 performed the best at 5 pg/mL concentration achieving 70%, 85% and 

80% RSV inhibition, respectively (p < 0.05). 

The group 2 (low molecular weight heparins (5kDa and 3kDa) and 

enoxaparin with/without glycol split) HS mimetics exhibited a more pronounced 

dose dependant effect on RSV inhibition (Figure 5.6 B). HS 217 performed the 

best at 5 and 100 (jg/mL inducing over 80% RSV inhibition compared to only 

60% at 20 pg/mL (100 pg/mL versus (vs.) 20 pg/mL, p < 0.05). HS 218 and HS 

219 showed similar inhibition trends achieving 80%, 50% and 55% at 100, 20 

and 5 pg/mL, respectively (100 pg/mL vs. 20 pg/mL, p < 0.05). HS 228 

performed best at 5 and 100 pg/mL inducing over 80% RSV inhibition compared 

to only 45% at 20 pg/mL (100 pg/mL vs. 20 pg/mL; 100 pg/mL vs. 5 pg/mL, p < 

0.0001). HS 331, HS 332 and HS 424 inhibited RSV at 80%, 70% and 80% 

respectively at all three tested HS concentrations. HS 333 and HS 416 inhibited 

RSV by 70% at 20 pg/mL. 

The group 3 (fucoidans and modified fucoidans) HS 259 inhibited RSV 

by 90% at 5, 20 and 100 pg/mL concentrations (Figure 5.6 C). The Group 4 

(carrageenans) HS mimetic, 266, inhibited RSV by 80% at 5 and 20 pg/mL in 

contrast to only 65% at the higher dose of 100 pg/mL (p < 0.001). HS 267 

induced 90% RSV inhibition at 5 and 100 pg/mL while only 70% at 20 pg/mL (p 

<0.0001) (Figure 5.6 D). 

The group 5 (other) HS mimetics HS 81, HS 238, HS 241 and HS 242 

induced approximately 70% inhibition of RSV irrespective of the HS mimetic 

concentration. HS 106, HS 111, PI-88 and suramin performed best at 5 and 100 

pg/mL inhibiting RSV by 75-90% compared to 20-45% at 20 pg/mL (p < 0.05) 

(Figure 5.6 E). 
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Figure 5.6. Heparan sulfate (HS) in vitro (Condition C) treatment of 
respiratory syncytial virus (RSV) infection 

The assay was carried out in 24-well flat bottom plate. RSV (200 plaque forming units/well) was 

added to Vero E6 cell monolayer and allowed to incubate for 10 minutes at 37°C and 5% CO2. 

Following ttie incubation, 100 |jl/well of Group 1 (heparins and modified heparins (~12kDa)) (A), 

Group 2 (low molecular weight heparins (LMWH) (5kDa and 3kDa) and enoxaparin with/without 

glycol split) (B), Group 3 (fucoidans and modified fucoidan) (C), Group 4 (carrageenans) (D) and 

Group 5 (other) (E) HS mimetics were added at 100, 20 or 5 pg/mL to Vero E6 cell monolayer 

treated with RSV and incubated for 1 hour at 37°C and 5% CO2. Plate was processed by 

immunostaining RSV plaque assay (section 2.10.). Data are represented as a mean of RSV 

plaques recovered (n = 4) ± standard deviation. HS 230 (negative) and 254 (positive) were used 

as HS mimetic controls. For each graph, the controls HS 230, HS 254 and RSV results are 

presented in boxed area for comparison. Data were analysed using ONE-way ANOVA with 

Tukey's multiple comparison test (GraphPad Prism) (*, p < 0.05, **, p < 0.005, p < 0.001 and 

" " , p < 0.0001). 



5.3.2.1.4 Condition D 

The HS mimetics were also assessed for their ability to compete with 

RSV for the cell surface HS binding site following RSV incubation with Vero E6 

cells for 1 hour at 37°C and 5% CO2 and HS for potentially inhibiting the cell-to-

cell spread of RSV under condition D. This condition represents the most 

clinically relevant in vitro experimental set up. 

HS 230 (negative HS control) showed no viral inhibition while HS 254 

(positive HS control) inhibited RSV by 80% at 100 pg/mL (p < 0.005). The group 

1 HS mimetics (heparins and modified heparins (~12kDa)) induced 40-65% 

reduction in RSV plaques at 100 pg/mL while less than 10% at 5 and 20 MQ/mL 

(Figure 5.7 A). 

The group 2 (low molecular weight heparins (5kDa and 3kDa) and 

enoxaparin with/without glycol split) HS mimetics induced dose dependant RSV 

inhibition with HS 217, HS 218, HS 219 and HS 228 inhibiting RSV by 60-65% 

at 100 pg/mL while at 5 and 20 pg/mL these HS mimetics had minimal effect on 

RSV inhibition (Figure 5.7B). HS 331 induced 40% RSV inhibition at all three 

HS mimetics concentrations while treatment with HS 332 resulted in 40 and 

50% RSV inhibition at 20 and 5 pg/mL, respectively. HS 333, HS 416 and HS 

424 RSV inhibition improved with an increase in HS concentrations, resulting in 

20-80% inhibition (p < 0.0001). 

The group 3 (fucoidans and modified fucoidans) HS mimetic HS 259 

inhibited RSV by 30% at all three concentration, 100, 20 and 5 pg/mL (Figure 

5.7 C). Group 4 (carrageenans) HS mimetic, HS 266, inhibited RSV by 20% at 5 

and 20 pg/mL and by 40% at the higher dose of 100 pg/mL (Figure 5.7D). HS 

267 induced 55% and 40% RSV inhibition at 5 and 20 pg/mL and 60% at 100 

pg/mL. 

Group 5 (other) HS mimetics HS 81, HS 106, HS 109, HS 238, HS 241 

and HS 242 induced approximately 35-40% inhibition of RSV and was 

unaffected by the HS mimetic concentration. HS 111, PI-88 and suramin 

performed best at 20 and 100 pg/mL inhibiting RSV by 35% compared to less 

than 10% at 5 pg/mL (p < 0.0001) (Figure 5.7E). 
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Figure 5.7. Heparan sulfate (HS) in vitro (Condition D) treatment of 
respiratory syncytial virus (RSV) infection 

The assay was carried out in 24-well flat bottom plate. RSV (200 plaque forming units/well) as 

added to Vero E6 cell monolayer and allowed to incubate for 1 hour at 37°C and 5% CO2. 

Following the incubation, 100 pl/well of Group 1 (heparins and modified heparins (~12kDa)) (A), 

Group 2 (low molecular weight heparins (LMWH) (5kDa and 3kDa) and enoxaparin with/without 

glycol split) (B), Group 3 (fucoidans and modified fucoidan) (C), Group 4 (carrageenans) (D) and 

Group 5 (other) (E) HS mimetics were added at 100, 20 or 5 pg/mL to Vero E6 cell monolayer 

treated with RSV. Plate was processed as per Immunostaining RSV plaque assay (Section 2.7.). 

Data are represented as a mean of RSV plaques recovered (n = 4) ± standard deviation. HS 230 

(negative) and HS 254 (positive) were used as HS mimetic control. For each graph, the controls 

HS 230, HS 254 and RSV results are presented in boxed area for comparison. Data were 

analysed using ONE-way ANOVA with Tukey's multiple comparison test (GraphPad Prism) ( " , p 

<0.005 and " " p < 0.0001). 



5.3.3 HS mimetlcs treatment of RSV infection in vivo 
Following in vitro HS screening, the four best performing compounds 

across all four conditions A, B, C and D, in addition to the positive and negative 

HS controls, were tested for their antiviral ability in vivo. The selected 

compounds were: HS 228 (carboxyl reduced mucosal heparin), HS 259 

(fucoidan - sulfated polysaccharide), HS 267 (lambda carrageenan (200kDa) 

and HS 424 (mucosal heparin with glycol split (3kDa) with the negative HS 

control, HS 230 (desulfated heparin) and the positive HS control, HS 254 

(dextran sulfate (5kDa). It is important to note that preliminary in vivo results 

(data not shown) revealed that HS mimetic treatment could not be delivered 

intranasally to the RSV-inoculated mice. Intranasal HS mimetic treatment 

evoked an excessive immune response in the mucosal surfaces of the nose, 

throat and lungs of RSV-inoculated mice, resulting in death within the 24-48 

hours of the HS mimetic treatment. Consequently, through another pilot study, 

an i.p. delivery of HS mimetlcs to RSV-inoculated mice for both, post and 

prophylactic treatment of RSV-infection, resulted in an effective immune 

response and successful recovery from the RSV infection. As a result, HS 

treatment was delivered via i.p. route to all RSV-inoculated mice involved in the 

in vivo studies discussed in this chapter. It is important to note that i.p. delivery 

route was also used by several studies treating HSV and dengue infections, and 

proteinuria with HS mimetlcs (Lee et al., 2006; Levidiotis et al., 2004; Nyberg et 

al., 2004). 

5.3.3.1 Weight and RSV clinical scores 
There were no significant changes in weights of mice for Vero E6 cell 

lysate (negative control), UV-RSV (additional negative control) or RSV 

inoculated conditions (data not shown). RSV inoculated mice showed signs of 

RSV infection as described in the section 2.12.2, RSV clinical scores reaching a 

maximum score of 4. There was no statistically significant difference in the 

clinical scores recorded for Vero E6 cell lysate, UV-RSV or RSV inoculated HS 

treated groups (data not shown). 

5.3.3.2 Viral titres 
RSV immunohistochemistry plaque assay analysis of Vero E6 cell lysate 

(negative control - data not shown) and UV-RSV (additional negative control-



data not shown) inoculated groups following a treatment with saline, revealed 

no viral titres present (data not shown). Treatment of RSV inoculated groups 

with HS 230 (negative HS control) and 254 (positive HS control) did not have 

any effect of RSV infection compared to treatment of RSV inoculated group with 

saline (positive control). Only compounds HS 228 (carboxyl reduced mucosal 

heparin) and HS 259 (fucoidan) induced a statistically significant reduction (p < 

0.05) in RSV titres compared to the positive control (Figure 5.8). HS 228 and 

HS 259 RSV inhibition was also significant (p < 0.05) compared to the treatment 

of RSV inoculated groups with HS 230 (negative HS control) and HS 254 

(positive HS control) (Figure 5.8). HS 267 and HS 424 appeared to inhibited 

RSV infection marginally however the reduction was not statistically significant. 

800 

RSV RSV + 230 RSV + 254 RSV + 228 RSV + 259 RSV + 267 RSV + 424 

Figure 5.8. Post respiratory syncytial virus (RSV) infection treatment with 
heparan sulfate (HS) mimetics induced viral titres reduction in vivo 

On day 0, wild type BALB/c mice were infected by intranasal inoculation with RSV (dark grey bar) 

( 5 x 1 0 ® plaque forming units (pfu)/mouse). On days 1-4, mice received daily HS mimetics (228, 

230, 254, 259, 267 and 424) treatment at 10 mg/mL/kg concentration by intraperitoneal injections 

(100 pL). On day 5, mice were euthanised and samples collected. Titres are represented as 

pfu/gram of lung tissue. Data are represented as mean (n = 5) ± standard deviation. HS 230 

(negative) (white bar) and 254 (positive) (light grey bar) were used as HS mimetic controls. Data 

were analysed using a ONE-way ANOVA with Tukey's multiple comparison test (GraphPad 

Prism) (* p < 0.05 compared to saline treatment of RSV inoculated group). 



5.3.3.3 Leukocyte population in a BALF 

Analysis of the leukocyte population present in BALF revealed a 

significantly lower (7.5 x I C macrophages/mL of BALF) number of 

macrophages present, following the Vero E6 cell lysate (negative control) or 

UV-RSV (additional negative control) inoculation of saline treated groups 

compared to treatment of RSV inoculated group with saline (positive control) 

(21 X 10'' macrophages/mL of BALF) (p < 0.0001) (Figure 5.9 A). Treatment of 

Vero E6 cell lysate inoculated groups with HS 230 (negative HS control) or HS 

254 (positive HS control) resulted in a significant reduction (p < 0.0001) of 

macrophages present in BALF compared to the negative control. Reduction in 

macrophages numbers present in BALF was also observed following treatment 

of Vero E6 cell lysate inoculated groups with HS 259 or HS 267 (p < 0.0001) 

compared to the negative control. In contrast, treatment of Vero E6 cell lysate 

inoculated group with HS 424 resulted in a significant increase in macrophages 

present in BALF (p < 0.0001) compared to the negative control. Moreover, 

treatment of Vero E6 cell lysate inoculated group with HS 424 also induced an 

increase in a number of macrophages (p < 0.0001) compared to Vero E6 cell 

lysate inoculated groups treated with HS 230, HS 254, HS 228, HS 259 or HS 

267. Interestingly, treatment of RSV inoculated groups with any of the six HS 

mimetics resulted in a reduction (2.5-7.5 x 10" macrophages/mL of BALF) (p < 

0.0001) in macrophage numbers present in BALF compared to the positive 

control (21 x 10" macrophages/mL of BALF). However, treatment of RSV 

inoculated group with HS 230 (negative HS control) and HS 254 (positive HS 

control) induced an increase in a number of macrophages (p < 0.0001) 

compared to the corresponding HS treated Vero E6 cell lysate inoculated 

groups. In contrast, treatment of RSV inoculated groups with HS 228, HS 267 or 

HS 424 resulted in a decrease (p < 0.0001) in a number of macrophages 

compared to the corresponding HS treatment of Vero E6 cell lysate inoculated 

groups. 

Lymphocyte BALF analysis revealed a significantly lower (0.25-0.5 x 10" 

lymphocytes/mL of BALF) number of lymphocytes present in the BALF following 

Vero E6 cell lysate (negative control) or UV-RSV (additional negative control) 

inoculation of saline treated groups compared to the positive control (1.5 x 10" 

lymphocytes/mL of BALF) (p < 0.0001) (Figure 5.9 B). Treatment of Vero E6 cell 



lysate inoculated groups with HS 230 (negative HS control) or HS 254 (positive 

HS control) resulted in no change in lymphocyte numbers compared to the 

negative control. In addition, treatment of Vero E6 cell lysate inoculated groups 

with HS 228, HS 259, HS 267 or HS 424 also induced no change to lymphocyte 

numbers compared to the negative control. Similarly, treatment with HS 230 

(negative HS control), HS 254 (positive HS control) or HS 228 of RSV 

inoculated group has resulted in no change in lymphocyte numbers compared 

to the lymphocyte numbers from the positive control group. However, treatment 

with HS 259, HS 267 and HS 424 following RSV inoculation resulted in a 

reduction (p < 0.0001) in lymphocytes present in BALF compared to the 

lymphocyte numbers recovered from the positive control. In addition, treatment 

of RSV inoculated groups with HS 230 (negative HS control) or HS 254 

(positive HS control) resulted in an increase (p < 0.05) in the number of 

lymphocytes compared to Vero E6 cell lysate inoculated groups treated with the 

corresponding HS mimetic. Treatment of RSV inoculated groups with HS 228 

induced an increase (p < 0.05) in the number of lymphocytes compared to Vero 

E6 cell lysate inoculated groups treated with HS 228. Finally, treatment of RSV 

inoculated groups with HS 259, HS 267 or HS 424 resulted in no change in 

lymphocyte numbers compared to Vero E6 cell lysate inoculated groups treated 

with the corresponding HS mimetic. 

No significant difference in eosinophil numbers was observed between 

saline treatments of Vero E6 cell lysate (negative control) or UV-RSV (additional 

negative control) inoculated groups (Figure 5.9 C). In addition, treatment of 

Vero E6 or UV-RSV inoculated group with HS mimetics (applies for all six 

tested HS mimetics) showed no significant difference in eosinophil numbers 

between groups. RSV inoculation of the saline treated group (positive control) 

induced a significant trafficking of eosinophils into BALF (p < 0.0001) compared 

to the negative control. Treatment of RSV inoculated groups with HS 230 

(negative HS control) and HS 254 (positive HS control) resulted in no change in 

eosinophil numbers compared to the positive control (Figure 5.9 C). In contrast, 

treatment of the RSV inoculated groups with HS 228, HS 259 or HS 424 has 

resulted in lower (p < 0.0001) eosinophil numbers compared to the eosinophil 

numbers present in BALF of the positive control. Treatment of the RSV 

inoculated group with HS 230 (negative HS control) resulted in a significant 

increase (p < 0.0001) in a number of eosinophils in BALF compared to the 



group treated with HS 230 following Vero E6 cell lysate inoculation. However, 

eosinophil increase following treatment of the RSV inoculated groups with HS 

254 (positive HS control), HS 228, HS 259 or HS 424 was not statistically 

significant compared to Vero E6 cell lysate inoculated groups treated with 

corresponding HS mimetics. In the RSV inoculated group treated with HS 267, 

a significant increase (p < 0.0001) in a number of eosinophils in BALF was 

observed compared to the group treated with HS 267 following Vero E6 cell 

lysate inoculation. 

Finally, no significant difference in neutrophil numbers was observed 

between saline treatments of, Vero E6 cell lysate (negative control) or UV-RSV 

(additional negative control) inoculated groups (Figure 5.9 D). In addition, 

treatment of Vero E6 or UV-RSV inoculated group with HS mimetics (applies for 

all six tested HS mimetics) showed no significant difference in neutrophil 

numbers between groups. RSV inoculation of the saline treated group (positive 

control) resulted in no change in neutrophil numbers present in BALF compared 

to the negative control. Treatment of Vero E6 cell lysate inoculated groups with 

HS 230 (negative HS control), HS 254 (positive HS control), HS 228, HS 259, 

HS 267 or HS 424 resulted in no change in neutrophil numbers compared to 

negative control (Figure 5.9 D). In addition, treatment of RSV inoculated groups 

with HS 230 (negative HS control), HS 254 (positive HS control), HS 228, HS 

259, HS 267 or HS 424 resulted in no change in neutrophil numbers compared 

to positive control (Figure 5.9 D). 
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Figure 5.9. Differential leukocyte count in bronchoalveolar lavage fluid 
(BALF) following HS treatment of respiratory syncytial virus (RSV) 
infection in vivo 

Wild type BALB/c mice were infected with Vera E6 cell lysate (white bar), ultraviolet-Inactivated 

RSV (UV-RSV) (grey bar) or RSV (black bar) (5 x 10^ plaque forming units (pfu)/mouse) on day 

0, On days 1-4, mice received daily treatment of saline or HS mimetics (228, 230, 254, 259, 267 

and 424) at 10 mg/mL/kg concentration by intraperitoneal injections (100 pL). On day 5, mice 

were sacrificed and BALF was collected. BALF was assessed for differential leukocyte counts 

using cytospin preparations. Following May-Grunwald and Giemsa staining of the BALF 

cytospins, leukocyte differential counts were performed using a light Nikon microscope and 

macrophage (A), lymphocyte (B), eosinophil (C) and neutrophil (D) counts were determined. Data 

are represented as mean (n = 5) + standard deviation. HS compounds 230 (negative) and 254 

(positive) were used as HS mimetic controls. Data were analysed using TWO-way ANOVA with 

Tukey's multiple comparison test (GraphPad Prism) ( " " , p < 0.0001 compared to Vero E6 cell 

lysate inoculated and saline treated group (negative control); ##, p < 0.005 and ####, p < 0.0001 

compared to RSV inoculated, saline treated group; +, p < 0.05 and ++++, p < 0.0001 compared to 

corresponding Vero E6 cell lysate Inoculated HS treated group). 

5.3.3.4 Differential analysis of leukocyte population in blood 

Analysis of the leukocyte population present in blood revealed no change 

in the number of monocyte Infiltrates following Vero E6 cell lysate (negative 

control) or UV-RSV (additional negative control) inoculation of saline treated 

groups compared to treatment of RSV inoculated groups with saline (positive 

control) (Figure 5.10 A). Treatment of Vero E6 cell lysate inoculated groups with 

HS 230 (negative HS control) or HS 254 (positive HS control) induced no 

change in monocyte infiltrates in blood compared to the negative control. 

Additionally, no change in monocyte numbers was observed following HS 

treatment of Vero E6 cell lysate inoculated groups compared to the negative 

control. Reduction in monocyte numbers present in blood (1 x 10" 

monocytes/mL) was observed following treatment of RSV inoculated groups 

with HS 424 (p < 0.0001) when compared to Vero E6 cell lysate inoculated 

groups treated with HS 424 (5x10® monocytes/mL). 

Lymphocyte blood analysis revealed a significantly higher (23 x 10® 

lymphocytes/mL) number of lymphocytes following Vero E6 cell lysate (negative 

control) or UV-RSV (additional negative control) inoculation of saline treated 

164 



groups compared to the positive control (10x10® lymphocytes/mL) (p < 0.0001) 

(Figure 5.10 B). Treatment of Vero E6 cell lysate inoculated groups with HS 230 

(negative HS control) or HS 254 (positive HS control) resulted in an increase (p 

< 0.0001) in lymphocyte numbers compared to the negative control. Moreover, 

Vero E6 cell lysate inoculated groups treated with HS 228, HS 259, HS 267 or 

HS 424 also showed an increase (p < 0.0001) in lymphocyte numbers 

compared to the negative control. Treatment with HS 230 (negative HS control), 

HS 254 (positive HS control), HS 228, HS 259, HS 267 or HS 424 following 

RSV inoculation resulted in an increase (p < 0.0001) in lymphocytes present in 

blood compared to the lymphocyte numbers present in the positive control. 

However, treatment of RSV inoculated groups with HS 230 (negative HS 

control) or HS 254 (positive HS control) resulted in a reduction (p < 0.0001) in 

the number of lymphocytes compared to treatment with corresponding HS 

mimetics in Vero E6 cell lysate inoculated groups. In addition, HS 228 and HS 

424 treatment of RSV inoculated groups induced a reduction (p < 0.0001) in the 

number of lymphocytes compared to the Vero E6 cell lysate inoculated groups 

treated with corresponding HS mimetics. Treatment of RSV inoculated groups 

with HS 259 resulted in no change in lymphocyte numbers compared to Vero 

E6 cell lysate inoculated groups treated with HS 259. However, treatment of 

RSV inoculated groups with HS 267 resulted in an increase (p < 0.005) in 

lymphocyte numbers compared to Vero E6 cell lysate inoculated groups treated 

with HS 267. 

No significant difference in eosinophil numbers was observed between 

Vero E6 (negative control) and UV-RSV (additional negative control) inoculated 

groups treated with either, saline or HS mimetics. RSV inoculation of saline 

treated groups also resulted in no change in eosinophil trafficking compared to 

the negative control. Similarly, treatment of the RSV inoculated groups with HS 

230 (negative HS control) or HS 254 (positive HS control) resulted in no change 

in the number of eosinophils compared to the positive control. Treatment of 

RSV inoculated groups with HS 228 or HS 424 also resulted in no change in a 

number of eosinophils. In contrast, treatment of the RSV inoculated groups with 

HS 259 or HS 267 induced an increase (p < 0.0001) in eosinophil numbers 

compared to the positive control (Figure 5.10 C). Treatment of the RSV 

inoculated groups with HS 230 (negative HS control) or HS 254 (positive HS 

control) resulted in no change in the number of eosinophils present in blood 



compared to Vero E6 cell lysate groups treated with HS 230 or HS 254. In 

addition, treatment of RSV inoculated groups with HS 228 or HS 424 induced 

no change to the number of eosinophils present in blood compared to treatment 

of Vero E6 cell lysate inoculated group with corresponding HS mimetics. On the 

contrary, treatment of RSV inoculated groups with HS 259 or HS 267 resulted in 

higher (p < 0.0001) eosinophil numbers compared to Vero E6 cell lysate 

inoculated groups treated with HS 259 or HS 267. 

In addition, no significant difference in neutrophil numbers was observed 
between saline treatments of, Vero E6 cell lysate (negative control) or UV-RSV 
(additional negative control) inoculated groups (Figure 5.10 D). In addition, 
treatment of Vero E6 or UV-RSV inoculated group with HS mimetics (applies for 
all six tested HS mimetics) showed no significant difference in neutrophil 
numbers between groups. Positive control resulted in no change in neutrophil 
numbers present in blood compared to the negative control. Treatment of Vero 
E6 cell lysate inoculated groups with HS 230 (negative HS control), HS 254 
(positive HS control), HS 228, HS 259, HS 267 or HS 424 resulted in no change 
in neutrophil numbers compared to negative control (Figure 5.10 D). In addition, 
treatment of RSV inoculated groups with HS 230 (negative HS control), HS 254 
(positive HS control), HS 228, HS 259, HS 267 or HS 424 resulted in no change 
in neutrophil numbers compared to positive control (Figure 5.10 D). 
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Figure 5.10. Differential leul^ocyte count in blood following heparan 
sulfate (HS) treatment of respiratory syncytial virus (RSV) infection in vivo 
Wild type BALB/c mice were infected with Vera E6 cell lysate (white bar), ultraviolet-inactivated 
RSV (UV-RSV) (grey bar) or RSV (black bar) (5 x 10̂  plaque forming units (pfu)/mouse) on day 
0. On days 1-4, mice received daily treatment of saline or HS mimetics (228, 230, 254, 259, 267 
and 424) at 10 mg/mL/kg concentration by intraperitoneal injections (100 |JL). On day 5, mice 
were euthanised and blood was collected by cardiac puncture. Total number of leukocytes was 
determined by haemocytometer count of 5 |JL of blood mixed with 95 pL of methylene blue. 
Differential leukocyte counts was done through a light microscope (Nikon) analysis of May-
Grunwald and Giemsa stained blood smears on a glass slides. Monocyte (A), lymphocyte (B), 
eosinophil (C) and neutrophil (D). Data are represented as mean (n = 5) ± standard deviation. HS 
compounds 230 (negative) and 254 (positive) were used as HS mimetic controls. Data were 
analysed using TWO-way ANOVA with Tukey's multiple comparison test (GraphPad Prism) (**", 
p < 0.0001 compared to Vero E6 cell lysate inoculated and saline treated group (negative 
control); mm, p < 0.0001 compared to RSV inoculated, saline treated group; ++, p < 0.005 and 
++++, p < 0.0001 compared to corresponding Vero E6 cell lysate inoculated HS treated group). 

5.3.3.5 Lung histopathology following HS mimetics treatment 
of RSV infection 

Following treatment (saline or HS) of Vero E6 cell lysate (negative 
control), UV-RSV (additional negative control) or RSV inoculated BALB/c mice, 
lungs were assessed for airways mucus occlusion, degree of parenchymal 
pneumonia, peribronchial infiltrates, quality of peribronchial infiltrates, 
perivascular infiltrates, histopathological score, number of goblet cells and 
eosinophil tissue infiltrates. 

5.3.3.5.1 Descriptive analysis 
Lung samples recovered from Vero E6 cell lysate or UV-RSV (histology 

images not shown) inoculated mice treated with saline (Figure 5.11 A (i and ii) 
were characterised by clear alveoli (square) and absence of inflammatory 
infiltrates around bronchioles and blood vessels. In contrast, five days post RSV 
inoculation saline treated group (Figure 5.11 A (iii and iv) lung samples showed 
signs of inflammatory response characterised by parenchymal pneumonia 
(square), airway mucus occlusion (arrow head) and extensive infiltration 
dominated by an excess of lymphocytes and macrophages surrounding both 
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bronchioles (thin arrow) and pulmonary blood vessels (thick arrow). The arrow 

heads indicate airways occlusion and the circles show the presence of goblet 

cells within bronchi. HS 230 (negative HS control) treatment of Vero E6 cell 

lysate inoculated mice resulted in minimal parenchymal pneumonia (square) 

and mild inflammatory infiltrates present around bronchioles (thin arrows) and 

blood vessels (thick arrow). However, treatment with HS 254 (positive HS 

control) of Vero E6 cell lysate inoculated mice showed no signs of parenchymal 

pneumonia (square) or inflammatory infiltrates around bronchioles (thin arrows) 

or blood vessels (thick arrow). Treatment with HS compounds, HS 228, HS 259, 

HS 267 and HS 424 of Vero E6 cell lysate inoculated mice was characterised 

by minimal parenchymal pneumonia (square) and mild infiltration dominated by 

lymphocytes and macrophages surrounding both, bronchioles (thin arrows) and 

pulmonary blood vessels (thick arrows) (Figure 5.11 D, E, F and G (i and ii)). 

Treatment with compound HS 230 (negative HS control) of RSV 

inoculated mice (Figure 5.11 B (iii and iv)) induced medium parenchymal 

pneumonia (square) and airway occlusion (arrow head) with goblet cells present 

within bronchioles (circle). However, treatment of RSV inoculated mice with 

compound 254 (positive HS control) was characterised by mild-medium 

parenchyma, mild airway mucus occlusion, moderate perivascular (thick 

arrows) and peribronchiolar infiltrates (thin arrows) (Figure 5.11 C (iii and iv)). 

Treatment of RSV inoculated mice with compound 228 was also characterised 

by mild-moderate parenchyma (square), mild airway mucus occlusion (arrow 

head) with the presence of several goblet cells (circle), moderate perivascular 

infiltrates (thick arrows) and moderate peribronchiolar infiltrates (thin arrows) 

(Figure 5.11 D (iii and iv)). Finally, treatment with compounds HS 259, HS 267 

and HS 424 of RSV inoculated mice (Figure 5.11 B (iii and iv)) resulted in 

moderate parenchymal pneumonia (square) and airway occlusion (arrow head) 

with goblet cells present within bronchioles (circle) and moderate perivascular 

(thick arrows) and peribronchiolar infiltrates (thin arrows). 
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Figure 5.11. Effect of heparan sulfate (HS) treatment on respiratory 
syncytial virus (RSV) infected mice lung histology 

Wild type (WT) BALB/c mice were infected intranasally with Vera E6 cell lysate (i and ii) or RSV 

(5 X 105 plaque forming units (pfu)/mouse) on day 0 (iii and iv). On days 14, mice received daily 

treatment of saline (A) or HS mimetics: 230 (negative HS control) (B), 254 (positive HS control) 

(C), 228 (D), 259 (E), 267 (F) and 424 (G) at 10 mg/mL/kg concentration by intraperitoneal 

injections (100 |JL). Lungs were collected on day 5 and processed for histology using periodic 

acid Schiff (PAS) stain. Arrows, squares and circles indicate the different signs of inflammation in 

mice as described in the text. Magnification (i and ii) was 100X and (iii and iv) 400X including the 

eyepiece. Images are representative of each group (n = 5). 



5.3.3.5.2 Numerical (score) analysis 

No significant difference was observed between negative control and 

UV-RSV (histology images not shown) inoculated groups treated with saline 

(additional negative control) (Figure 5.12), in terms of scores allocated to airway 

mucus occlusion (A), peribronchial infiltrates (C), quality of peribronchial 

infiltrates (D), perivascular infiltrates (E), goblet cell count (G) and eosinophil 

tissue infiltrates (H). The only difference found between these two groups was 

that UV-RSV inoculated groups treated with saline had greater parenchymal 

pneumonia (p < 0.05) and combined HPS score (p < 0.0001) compared to Vero 

E6 cell lysate Inoculated group treated with saline (Figure 5.12 B and F). 

Saline treatment of RSV inoculated groups resulted in a significant 

increase in scores (p < 0.05) allocated to all eight assessed measurements 

(Figure 5.12, A-H) compared to the negative control. Similarly, treatment of 

Vero E6 cell lysate inoculated group with HS 230 (negative HS control), induced 

a significant increase (p < 0.005) in airway occlusion (A), parenchymal 

pneumonia (B) and combined HPS score (F) when compared to the negative 

control, however, no change was observed for peribronchial infiltrates (C), 

quality of peribronchial infiltrates (D), perivascular infiltrates (E), goblet cell 

count (G) and eosinophil tissue infiltrates (H) (Figure 5.12). In addition, 

treatment of Vero E6 cell lysate inoculated group with HS 254 (positive HS 

control), has induced significant increase (p < 0.05) in airway occlusion (A), 

peribronchial infiltrates (C), quality of peribronchial infiltrates (D) and combined 

HPS score (F) compared to the negative control; while no change was observed 

for parenchymal pneumonia (B), perivascular infiltrates (E), goblet cell count (G) 

and eosinophil tissue infiltrates (H) following HS 254 treatment of the Vero E6 

cell lysate inoculated group compared to negative control (Figure 5.12). 

Furthermore, treatment of Vero E6 cell lysate inoculated groups with HS 

259, HS 267 or HS 424 resulted in an increase (p < 0.05) in airway occlusion 

(A), parenchymal pneumonia (B) (for HS 228 as well), peribronchial infiltrates 

(C) and quality of peribronchial infiltrates (D) compared to the negative control 

(Figure 5.12). Treatment with HS 228 of Vero E6 cell lysate inoculated groups 

showed no difference in airway occlusion (A), peribronchial infiltrates (C) and 

quality of peribronchial infiltrates (D) compared to the negative control. Also, 

treatment with compounds HS 259, HS 267 or HS 424 of Vero E6 cell lysate 



inoculated groups showed greater (p < 0.0001) combined HPS (5-7 out of 17) 

compared to the negative control (1 out of 17) (Figure 5.12 F). Treatment with of 

Vero E6 cell lysate inoculated groups with HS 228 showed no difference in 

combined HPS (score out of 17) compared to the negative control. There was 

no significant difference in goblet cell count following the HS (applies to all six 

HS mimetics) treatment of Vero E6 cell lysate compared to the negative control. 

Treatment with HS 267 and HS 424 of Vero E6 cell lysate inoculated groups 

induced an increase (p < 0.05) in eosinophil tissue infiltrates compared to the 

negative control (Figure 5.12 H). 

Treatment of RSV inoculated groups with HS 230 (negative HS control) 

resulted In an increase (p < 0.05) in airway mucus occlusion (A), peribronchial 

infiltrates (C), quality of peribronchial infiltrates (D) and perivascular infiltrates 

(E) compared to HS 230 treated Vero E6 cell lysate inoculated groups (Figure 

5.12). Parenchymal pneumonia score remained the same following treatment of 

RSV inoculated groups with HS 230 (negative HS control) compared to HS 230 

treated Vero E6 cell lysate inoculated group (Figure 5.12 B). Treatment of RSV 

inoculated group with HS 254 induced no change in airway mucus occlusion 

compared to HS 254 treated Vero E6 cell lysate inoculated groups; while 

parenchymal pneumonia (B), peribronchial infiltrates (C), quality of peribronchial 

infiltrates (D) and perivascular infiltrates (E) scores increased (p < 0.05) 

following treatment of RSV inoculated groups with HS 254 (positive HS control) 

compared to HS 254 treated Vero E6 cell lysate inoculated group (Figure 5.12). 

In contrast, treatment of RSV inoculated groups HS 228 and HS 259 has 

resulted in an increase (p < 0.05) in airway mucus occlusion compared to the 

corresponding HS treated Vero E6 cell lysate inoculated groups (Figure 5.12 A). 

However, treatment with HS 267 and HS 424 induced no change in airway 

mucus occlusion compared to the corresponding HS treated Vero E6 cell lysate 

inoculated groups. Parenchymal pneumonia score (B), peribronchial infiltrates 

(C), quality of peribronchial infiltrates (D) and perivascular infiltrates (E) only 

increased (p < 0.05) following the treatment of RSV inoculated groups with HS 

228 while these remained unchanged following the treatment of RSV inoculated 

groups with HS 259, HS 267 and HS 424 compared to the corresponding HS 

treated Vero E6 cell lysate inoculated groups (Figure 5.12). HS treatment of 

(except for HS 424) RSV inoculated groups induced an increase (p < 0.0001) in 



the HPS combined score compared to the corresponding MS treated Vero E6 

cell lysate inoculated group. In contrast, treatment with HS 424 of RSV 

inoculated groups had resulted in a reduced (p < 0.0001) combined HPS score 

compare to the HS 424 treated Vero E6 cell lysate inoculated group (Figure 

5.12 F). Goblet cell count increased (p < 0.05) following the treatment of RSV 

inoculated groups with HS 228 and HS 259 compared to corresponding HS 

treated Vero E6 cell lysate inoculated groups (Figure 5.12 G). However, goblet 

cell count remained unchanged following the treatment of RSV inoculated 

groups with HS 267 compared to HS 267 treated Vero E6 cell lysate inoculated 

group. Treatment of RSV inoculated group with HS 424 has resulted in a 

decrease (p < 0.05) in a number of goblet cells compared to its corresponding 

HS treated Vero E6 cell lysate inoculated group (Figure 5.12 G). Treatment of 

RSV inoculated group with HS mimetics had no effect on eosinophil tissue 

infiltration compared to the corresponding HS treated Vero E6 cell lysate 

inoculated group (Figure 5.12 H). 

Treatment with HS 230 of RSV inoculated group resulted in no effect on 

any of the eight pathological measurements compared to the positive control. 

Treatment of RSV inoculated group with HS 424 resulted in a decrease (p < 

0.05) in parenchymal pneumonia (B), quality of peribronchial infiltrates (D) and 

combined HPS score (F) compared to the positive control (Figure 5.12). 

Treatment with compounds HS 254 (positive HS control), HS 259, HS 267 or 

HS 424 of RSV inoculated groups showed lower (p < 0.0001 combined 

histopathological score (5-9 out of 17) compared to saline treated RSV 

inoculated control (positive control) (11 out of 17). In contrast, treatment of RSV 

inoculated group with HS 228 did not reduce combined HPS score compared to 

the positive control (11 out of 17). Additionally, treatment of RSV inoculated 

group with HS 254 (positive HS control) resulted in a reduction (p < 0.05) of 

goblet cell numbers compared to the positive control. 
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F igure 5 .12 . H i s t o p a t h o l o g i c a l s c o r e ( H P S ) a s s e s s m e n t of m ice lungs 
f o l l o w i n g h e p a r a n su l fa te ( H S ) m i m e t i c s t r e a t m e n t of resp i ra tory syncyt ia l 
v i rus ( R S V ) in fect ion 

Wild type BALB/c mice were inoculated with either Vero E6 lysate (white bar), ultraviolet-

inactivated RSV (UV-RSV) (grey bar) or RSV (black bar) and then treated with saline or HS 

mimetics (228, 230, 254, 259, 267 or 424). On day 5 post inoculation, lungs were collected and 

processed for histopathology. Lungs were analysed for: A) Airways mucus occlusion, B) 

Parenchymal pneumonia, C) Peribronchial infiltrates, D) Quality of peribronchial infiltrates, E) 

Perivascular infiltrates, F) Combined HPS and G) Goblet cell count. Data are represented as 

mean (n = 5) ± standard deviation. HS 230 (negative) and HS 254 (positive) were used as HS 

mimetic controls. Data were analysed using ONE-way ANOVA with Tukey's multiple comparison 

test (GraphPad Prism) (*, p < 0.05, p < 0.005, p < 0.001 and p < 0.0001 compared to 

Vero E6 cell lysate inoculated and saline treated group (negative control); #, p < 0.05 and ####, p 

< 0.0001 compared to RSV inoculated, saline treated group; +, p < 0.05, ++, p < 0.005, +++, p < 

0.001 and ++++, p < 0.0001 compared to corresponding Vero E6 cell lysate inoculated HS 

treated group). 



5.3.4 Prophylactic HS treatment of RSV infection in 

vivo 

5.3.4.1 Weight and RS V clinical scores 

There were no significant changes in weights for Vero E6 cell lysate 

(negative control), UV-RSV (additional negative control) or RSV inoculated mice 

(data not shown). RSV inoculated mice showed signs of RSV infection as 

described in the section 2.12.2 (RSV clinical scores); reaching a maximum 

score of 4. There was no significant difference in the clinical scores recorded for 

Vero E6 cell lysate, UV-RSV or RSV inoculated HS treated groups (data not 

shown). 

5.3.4.2 Effect of HS prophylactic treatment on viral titres 

following RSV infection In vivo 
No viral titres were recovered following the RSV immunohistochemistry 

plaque assay analysis of Vero E6 cell lysate (negative control-data not shown) 

or UV-RSV (additional negative control-data not shown) inoculated lung 

samples treated with saline. Treatment of RSV inoculated groups with HS 230 

(negative HS control) and 254 (positive HS control) did not inhibit RSV infection 

compared to saline treatment of RSV inoculated groups (positive control) 

(Figure 5.13). Prophylactic treatment of the RSV inoculated group with HS 228 

(carboxyl reduced mucosal heparin), HS 259 (fucoidan), HS 267 (lambda 

carrageenan (200kDa) or HS 424 (mucosal heparin with glycol split (3kDa) 

induced a significant reduction (p < 0.05) in RSV titres compared to the positive 

control (Figure 5.13). Treatment of RSV inoculated group with compounds HS 

228, HS 259, HS 267 and HS 424 also inhibited RSV infection significantly (p < 

0.05) compared to the treatment of RSV inoculated group with HS 230 

(negative HS control). 
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Figure 5.13. Prophylactic lieparan sulfate (HS) treatment of respiratory 
syncytial virus (RSV) infection induced reduction in titres in vivo 

Starting 48 hours prior to intranasal inoculation and continuing daily for 4 days after, wild type 

BALB/c mice received treatment with saline or HS mimetics (228, 230, 254, 259, 267 and 424) at 

10 mg/mUkg concentration by intraperitoneal injections (100 pL). On day 0, mice were infected 

by intranasal inoculation with RSV (black bar) (5 x 10^ plaque forming units (pfu)/mouse). On day 

5, mice were euthanised and samples collected. Titres are represented as pfu/gram of lung 

tissue. Data are represented as mean (n = 5) ± standard deviation. HS 230 (negative) (white bar) 

and 254 (positive) (light grey bar) used HS mimetic controls. Data were analysed using a ONE-

way ANOVA with Tukey's multiple comparison test (GraphPad Prism). 



5.3.4.3 Leukocyte population in a bronchoaiveolar iavage fiuid 

(BALF) 

Analysis of the leukocyte population present in BALF revealed a 

significantly lower (7.5 x 10" macrophages/mL of BALF) number of 

macrophages present in BALF, following the Vero E6 cell lysate (negative 

control) or UV-RSV (additional negative control) inoculation of saline treated 

groups when compared to the RSV inoculated and saline treated group (21 x 

10" macrophages/mL of BALF) (p < 0.0001) (Figure 5.14 A). Treatment of the 

Vero E6 cell lysate inoculated groups with HS 230 (negative HS control) or HS 

254 (positive HS control) induced no change in the number of macrophages 

present in BALF compared to negative control. Treatment of Vero E6 cell lysate 

inoculated groups with HS 228 or HS 267 also induced no change in a number 

of macrophages compared to the negative control. However, reduction in 

macrophage numbers present in BALF was observed following treatment of 

Vero E6 cell lysate inoculated groups with HS 259 (p < 0.0001) compared to 

negative control. In contrast, treatment of Vero E6 cell lysate inoculated group 

with HS 424 resulted in significant increase in macrophages present in BALF (p 

< 0.0001) compared to negative control (Figure 5.14 A). Interestingly, treatment 

of RSV inoculated group with HS 230 (negative HS control) or HS 254 (positive 

HS control) induced an increase in a number of macrophages (p < 0.001) 

compared to the corresponding HS treated Vero E6 cell lysate inoculated 

groups (Figure 5.14 A). Also, treatment of RSV inoculated groups with HS 228 

or HS 267 resulted in an increase (p < 0.0001) in the number of macrophages 

compared to the corresponding HS treated Vero E6 cell lysate inoculated 

groups. In contrast, treatment of RSV inoculated group with HS 259 did not 

induce a change in macrophage numbers while treatment of RSV inoculated 

group with HS 424 induced a decrease (p < 0.0001) in macrophage numbers in 

BALF compared to corresponding Vero E6 cell lysate inoculated controls 

(Figure 5.14 A). HS treatment of RSV inoculated group resulted in no change in 

macrophage numbers present in BALF compared to positive control. 

Lymphocyte BALF analysis revealed no difference in a number of 

lymphocytes present following Vero E6 cell lysate (negative control) or UV-RSV 

(additional negative control) inoculation of saline treated groups compared to 

the RSV inoculated and saline treated group (positive control) (Figure 5.14 B). 



In addition, treatment of Vera E6 cell lysate inoculated groups with any of the 

HS compounds: HS 230 (negative HS control), HS 254 (positive HS control), 

HS 228, HS 259, HS 267 or HS 424 resulted in no change in lymphocyte 

numbers compared to the negative control. Additionally, treatment of RSV 

inoculated groups with HS 230 (negative HS control), HS 254 (positive HS 

control), HS 259, HS 267 and HS 424 induced no change in lymphocyte 

numbers compared to both, positive control and corresponding HS treated Vero 

E6 cell lysate inoculated groups (Figure 5.14 B). Treatment of RSV inoculated 

groups with HS 228 induced an increase (p < 0.0001) in the number of 

lymphocyte infiltrates compared to both, positive control and corresponding HS 

228 treated Vero E6 cell lysate inoculated group (Figure 5.14 B). 

Saline treatment of Vero E6 (negative control) and UV-RSV (additional 

negative control) inoculation resulted in no change in eosinophil numbers 

compared to the saline treatment of RSV inoculated group (positive control) 

(Figure 5.14 C). Treatment of Vero E6 cell lysate inoculated groups with any HS 

mimetic compound (HS 230 (negative HS control), HS 254 (positive HS 

control), HS 228, HS 259, HS 267 or HS 424) did not induce change in 

eosinophil numbers present in BALF compared to negative controls. Treatment 

with HS 230 (negative HS control) of RSV inoculated groups also resulted in no 

change in the number of eosinophils in BALF compared to HS 230 treated 

group following Vero E6 cell lysate inoculation. In contrast, treatment of the 

RSV inoculated group with HS 254 (positive HS control) resulted in an increase 

(p < 0.005) in eosinophil numbers compared to the HS 254 treatment of the 

Vero E6 cell lysate inoculated group (Figure 5.14 C). Treatment of RSV 

inoculated groups with HS 228 and HS 424 resulted in a significant increase (p 

< 0.0001) in eosinophil numbers compared to both, corresponding HS treatment 

of RSV inoculated groups and positive controls (Figure 5.14 C). Treatment of 

RSV inoculated groups with HS 267 also induced an eosinophil influx (p < 0.05) 

compared to HS 267 treatment of RSV inoculated groups (Figure 5.14 

C).Treatment of RSV inoculated group with 259 did not induce any change to 

eosinophil numbers compared to positive controls (Figure 5.14 C). 

Furthermore, no significant difference in neutrophil numbers was 

observed between saline treatments of, Vero E6 cell lysate (negative control) or 

UV-RSV (additional negative control) inoculated groups (Figure 5.14 D). In 



addition, treatment of Vero E6 or UV-RSV inoculated group with HS mimetics 

(applies for all six tested HS mimetics) showed no significant difference in 

neutrophil numbers between groups. Positive control resulted in no change in 

neutrophil numbers present in BALF compared to the negative control. 

Treatment of Vero E6 cell lysate inoculated groups with HS 230 (negative HS 

control), HS 254 (positive HS control), HS 228, HS 259, HS 267 or HS 424 

resulted in no change in neutrophil numbers compared to negative control. In 

addition, treatment of RSV inoculated groups with HS 230 (negative HS 

control), HS 254 (positive HS control), HS 228, HS 259, HS 267 or HS 424 

resulted in no change in neutrophil numbers compared to positive control. 
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Figure 5.14. Differential leukocyte count in bronchoalveolar lavage fluid 
(BALF) following heparan sulfate (HS) prophylactic treatment of 
respiratory syncytial virus (RSV) infection in vivo 

Starting 48 hours prior to intranasal inoculation and continuing daily for 4 days after, wild type 
BALB/c mice received a treatment of saline or HS mimetics (228, 230, 254, 259, 267 and 424) at 
10 mg/mL/kg concentration by intraperitoneal injections (100 pL). Mice were infected with Vero 
E6 cell lysate (white bar), ultraviolet-inactivated RSV (UV-RSV) (grey bar) or RSV (black bar) (5 x 
105 plaque forming units (pfu)/mouse) on day 0. On day 5, mice were euthanised and BALF was 
collected by lavage with PBS. BALF was used for differential leukocyte counts though cytospin 
preparations. Following May-Grunwald and Giemsa staining of the BALF cytospins, leukocyte 
differential counts were performed using a light Nikon microscope and macrophage (A), 
lymphocyte (B), eosinophil (C) and neutrophil (D) counts were determined. Data are represented 
as mean (n = 5) ± standard deviation. HS compounds 230 (negative) and 254 (positive) were 
used as HS mimetic controls. Data were analysed using TWO-way ANOVA with Tukey's multiple 
comparison test (GraphPad Prism) (**", p < 0.0001 compared to Vero E6 cell lysate inoculated 
and saline treated group (negative control); mm, p < 0.0001 compared to RSV inoculated, saline 
treated group; +, p < 0.05, ++, p < 0.005, +++, p < 0.001 and ++++, p < 0.0001 compared to 
corresponding Vero E6 cell lysate inoculated HS treated group). 

5.3.4.4 Differential analysis of leukocyte population in blood 
Analysis of the leukocyte population present in blood revealed no change 

in the number of monocyte infiltrates present, following Vero E6 cell lysate 
(negative control) or UV-RSV (additional negative control) inoculation of saline 
treated groups compared to saline treatment of RSV inoculated group (positive 
control) (Figure 5.15 A). Treatment of Vero E6 cell lysate inoculated groups with 
HS 230 (negative HS control) or HS 254 (positive HS control) also induced no 
change in monocyte infiltrates in blood compared to the negative control. In 
addition, treatment of Vero E6 cell lysate inoculated groups with HS 228, HS 
259, HS 267 or HS 424 induced no change in monocyte infiltrates in blood 
compared to the negative control. Also, treatment of RSV inoculated groups 
with HS 230 (negative HS control) or HS 254 (positive HS control) induced no 
change in monocyte infiltrates in blood compared to both, the corresponding HS 
treatment of Vero E6 cell lysate inoculated groups and positive control. Finally, 
treatment of RSV inoculated groups with HS 228, HS 259, HS 267 or HS 424 
also induced no change in monocyte infiltrates in blood compared to both, the 



corresponding HS treatment of Vero E6 cell lysate inoculated groups and 

positive control. 

Lymphocyte blood analysis revealed no significant change in lymphocyte 

numbers following Vero E6 cell lysate (negative control) or UV-RSV (additional 

negative control) inoculation of saline treated groups compared to the positive 

control (Figure 5.15 B). However, treatment of Vero E6 cell lysate inoculated 

groups with HS 230 (negative HS control) or HS 254 (positive HS control) 

resulted in an increase (p < 0.0001) in lymphocyte numbers compared to the 

negative control. In addition, treatment of Vero E6 cell lysate inoculated groups 

with HS 228, HS 259, HS 267 and HS 424 induced an increase (p < 0.0001) in 

a number of lymphocytes compared to the negative control. On the contrary, 

treatment of RSV inoculated group with HS 230 (negative HS control) resulted 

in a decrease (p < 0.0001) in lymphocyte numbers compared to HS 230 

treatment of Vero E6 cell lysate inoculated groups. Treatment of RSV 

inoculated group with HS 254 (positive HS control) did not Induce any change to 

lymphocyte numbers present in blood compared HS 254 treatment of Vero E6 

cell lysate inoculated group. In contrast, treatment of RSV inoculated group with 

HS 228 resulted in a decrease (p < 0.0001) in lymphocyte numbers compared 

to HS 228 treatment of Vero E6 cell lysate inoculated groups. In addition, 

treatment of RSV inoculated group with HS 267 has resulted in an increase (p < 

0.0001) in lymphocyte numbers compared to the Vero E6 cell lysate inoculated 

group treated with HS 267. Treatment of RSV inoculated groups with HS 259 or 

HS 424 did not induce any change in lymphocyte numbers present in blood 

compared to the corresponding HS treatment of Vero E6 cell lysate inoculated 

groups (Figure 5.15 C). Finally, treatment with HS mimetics (HS 259, HS 267 

and HS 424) following RSV inoculation has resulted in an increase (p < 0.0001) 

in lymphocytes present in blood compared to the lymphocyte numbers 

recovered from the positive control samples. 

Vero E6 (negative control) and UV-RSV (additional negative control) 

inoculation of saline treated groups did not have any effect on eosinophil 

infiltrates into blood compared to the positive control (Figure 5.15 C). No 

change in eosinophil numbers were observed following HS 230 (negative HS 

control) or HS 254 (positive HS control) treatment of the Vero E6 cell lysate 

inoculated groups compared to the negative control. Treatment with all HS 



compounds (except HS 267) of Vero E6 cell lysate inoculated groups did not 

induce a change in eosinophil numbers compared to the negative control. In 

contrast, treatment of the Vero E6 cell lysate inoculated group with HS 267 has 

resulted in an increase (p < 0.0001) in eosinophil numbers compared to the 

negative control. HS 230 (negative HS control) or HS 254 (positive HS control) 

treatment of RSV inoculated groups did not have any effect on eosinophil 

numbers in blood compared to both, the corresponding HS treatment of Vero 

E6 cell lysate inoculated groups and positive control. Additionally, treatment 

with all HS compounds (except HS 267) of RSV inoculated groups did not 

induce a change in eosinophil numbers compared to both, corresponding HS 

treatment of Vero E6 cell lysate inoculated groups and positive control. Also, 

treatment of the RSV inoculated group with HS 267 resulted in higher (p < 

0.0001) eosinophil numbers compared to both, Vero E6 cell lysate inoculated 

group treated with HS 267 and positive control (Figure 5.15 C). 

Finally, no significant difference in neutrophil numbers was observed 

between saline treatments of, Vero E6 cell lysate (negative control) or UV-RSV 

(additional negative control) inoculated groups (Figure 5.15 D). In addition, 

treatment of Vero E6 or UV-RSV inoculated group with HS mimetics (applies for 

all six tested HS mimetics) showed no significant difference in neutrophil 

numbers between groups. Positive control resulted in no change in neutrophil 

numbers present in blood compared to the negative control. Treatment of Vero 

E6 cell lysate inoculated groups with HS 230 (negative HS control), HS 254 

(positive HS control), HS 228, HS 259, HS 267 or HS 424 resulted in no change 

in neutrophil numbers compared to negative control. In addition, treatment of 

RSV inoculated groups with HS 230 (negative HS control), HS 254 (positive HS 

control), HS 228, HS 259, HS 267 or HS 424 resulted in no change in neutrophil 

numbers compared to positive control. 
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Figure 5.15. Dif ferent ial leukocyte coun t in b lood fo l low ing heparan 
sul fate (HS) prophy lac t ic t reatment o f respi ra tory syncyt ia l v i rus (RSV) 
in fec t ion in vitro 

At 48 hours prior to intranasal inoculation and then dally for 4 days after, mice received a 

treatment with intraperitoneal injections (100 |JL) of saline or HS mimetics (228, 230, 254, 259, 

267 and 424) at 10 mg/mL/kg concentration. Wild type BALB/c mice were inoculated with Vero 

E6 cell lysate (white bar), ultraviolet-inactivated RSV (UV-RSV) (grey bar) or RSV (black bar) (5 x 

105 plaque forming units (pfu)/mouse) on day 0. On day 5, mice were euthanised and blood was 

collected by cardiac puncture. Differential leukocyte counts were done by light microscope 

(Nikon) analysis of May-Grunwald and Giemsa stained blood smears on glass slides. Monocyte 

(A), lymphocyte (B), eosinophil (C) and neutrophil (D) counts were determined. Data are 

represented as mean (n = 5) ± standard deviation. HS compounds 230 (negative) and 254 

(positive) were used as HS mimetic controls. Data were analysed using TWO-way ANOVA with 

Tukey's multiple comparison test (GraphPad Prism) (*"* , p < 0.0001 compared to Vero E6 cell 

lysate inoculated and saline treated group (negative control); mm, p < 0.0001 compared to RSV 

inoculated, saline treated group; ++++, p < 0.0001 compared to corresponding Vero E6 cell lysate 

inoculated HS treated group). 

5.3.4.5 Lung histopathology following prophylactic treatment 
of RSV infection with HS mimetics 

Treated (saline or HS) and inoculated (Vero E6 cell lysate (negative 

control), UV-RSV (additional negative control) or RSV) BALB/c mice lungs were 

assessed for airways mucus occlusion, degree of parenchymal pneumonia, 

peribronchial infiltrates, quality of peribronchial infiltrates, perivascular infiltrates, 

HPS, number of goblet cells and eosinophil tissue infiltrates. 

5.3.4.5.1 Descriptive analysis 

The lungs from Vero E6 cell lysate or UV-RSV (histology images not 

shown) inoculated groups treated with saline (Figure 5.16 A (i and ii)) were 

characterised by clear alveoli (square) and no inflammatory infiltrates present 

around bronchioles and blood vessels. In contrast, five days post RSV 

inoculation saline treated group (Figure 5.16 A (iii and iv) lungs showed signs of 

inflammatory response characterised by parenchymal pneumonia (square), 

ainways mucus occlusion (arrow head) and extensive infiltration. Infiltrates were 

dominated by lymphocytes and macrophages, which surrounded both 



bronchioles (thin arrow) and pulmonary blood vessels (thick arrow). The arrow 

heads indicates ainway occlusion and the circles show the presence of goblet 

cells within bronchi. HS 230 (negative HS control) treatment of Vero E6 cell 

lysate inoculated groups resulted in minimal parenchymal pneumonia (square) 

and mild inflammatory infiltrates present around bronchioles (thin arrows) and 

blood vessels (thick arrow) (Figure 5.16 B (i and ii)). Treatment with HS 254 of 

Vero E6 cell lysate inoculated groups showed no signs of parenchymal 

pneumonia (square), or inflammatory infiltrates around bronchioles (thin arrows) 

and blood vessels (thick arrow) (Figure 5.16 C (i and Ii)). Treatment with HS 

compounds, HS 228, HS 259, HS 267 and HS 424 of Vero E6 cell lysate 

inoculated mice was characterised by minimal parenchymal pneumonia 

(square) and mild infiltration dominated by lymphocytes and macrophages 

surrounding both, bronchioles (thin arrows) and pulmonary blood vessel 

infiltrates (thick arrows) (Figure 5.16 D, E, F and G (i and ii)). 

Treatment with compound HS 230 (negative HS control) of RSV 

inoculated groups (Figure 5.16 B (iii and iv)) induced moderate parenchymal 

pneumonia (square) and airways occlusion (arrow head) with goblet cells 

present within bronchioles (circle). Treatment with compound 254 (positive HS 

control) of RSV inoculated group was characterised by mild-moderate 

parenchyma, mild airway mucus occlusion, moderate perivascular (thick 

arrows) and peribronchial infiltrates (thin arrows) (Figure 5.16 C (iii and iv)). 

Treatment with compound HS 228 of RSV inoculated group was also 

characterised by mild-moderate parenchyma (square), mild airway mucus 

occlusion (arrow head) with several goblet cells present (circle), moderate 

perivascular (thick arrows) and peribronchial infiltrates (thin arrows) (Figure 5.16 

D (iii and iv)). Finally, treatment with compounds HS 259, HS 267 and HS 424 

of RSV inoculated group (Figure 5.16 B (iii and iv)) resulted in moderate 

parenchymal pneumonia (square) and airway occlusion (arrow head) with 

goblet cells present within bronchioles (circle), as well as, moderate 

perivascular (thick arrows) and pehbronchial infiltrates (thin arrows). 
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Figure 5.16. Effect of prophylactic heparan sulfate (HS) treatment on 
respiratory syncytial virus (RSV) infected mouse lung histology 

Starting 48 hours prior to intranasal inoculation and continuing daily for 4 days after, wild type 

BALB/c mice received a treatment of saline (A) or HS mimetics: 230 (negative HS control) (B), 

254 (positive HS control) (C), 228 (D), 259 (E), 267 (F) and 424 (G) at 10 mg/mL/kg concentration 

by intraperitoneal injections (100 |JL). Mice were infected with Vero E6 cell lysate (i and ii) or RSV 

(5 X IQs plaque forming units (pfu)/mouse) on day 0 (iii and iv). Lungs were collected on day 5 

and processed for histology using periodic acid Schiff (PAS) stain. Arrows, squares and circles 

indicate the different signs of inflammation in mice as described in the text. Magnification (i and ii) 

was 100X and (iii and iv) 400X including the eyepiece. Images are representative of each group 

(n = 5). 

5.3.4.5.2 Numerical (score) analysis 

No difference between Vero E6 cell lysate inoculated saline treated 

(negative control) and UV-RSV (additional negative control-histology images not 

shown) saline treated (additional negative control) (Figure 5.17) groups were 

observed in terms of scores allocated to airway mucus occlusion (A), 

peribronchial infiltrates (C), quality of peribronchial infiltrates (D), perivascular 

infiltrates (E), goblet cell count (G) or eosinophil tissue infiltrates (H). The only 

difference found between these two groups was that the UV-RSV inoculated 

saline treated group had greater parenchymal pneumonia (p < 0.05) and 

combined HPS score (p < 0.0001) compared negative controls (Figure 5.17 B 

and F). Saline treatment of RSV inoculated groups (positive control) induced a 

significant increase in (p < 0.05) ainway occlusion (A), parenchymal pneumonia 

(B), peribronchial infiltrates (C), quality of peribronchial infiltrates (D), 

perivascular infiltrates (E) and combined HPS score (F) compared to the 

negative controls (Figure 5.17, A-F). In addition, treatment of Vero E6 cell lysate 

inoculated group with HS 230 (negative HS control) or HS 254 (positive HS 

control) induced a significant increase (p < 0.05) in airway occlusion (A), 

parenchymal pneumonia (B), pehbronchial infiltrates (C), quality of peribronchial 

infiltrates (D) and combined HPS score (F) compared to the negative control. 

However, no change was observed for perivascular infiltrates (E), goblet cell 

count (G) and eosinophil tissue infiltrates (H) following HS 230 or HS 254 

treatment of the Vero E6 cell lysate inoculated group compared to the negative 

control (Figure 5.17). 



Treatment of Vero E6 cell lysate inoculated groups with HS 228, HS 259, 

HS 267 or HS 424 resulted in a significant increase (p < 0.001) in ainway mucus 

occlusion compared to the negative control (Figure 5.17 A). Treatment of Vero 

E6 cell lysate inoculated groups with HS 228, HS 259, HS 267 and HS 424 

resulted in a significant increase (p < 0.005) in parenchymal pneumonia score 

compared to negative control (Figure 5.17 B). Additionally, treatment of Vero E6 

cell lysate inoculated groups with HS 228, HS 267 and HS 424 resulted in an 

increase (p < 0.005) in peribronchial infiltrates compared to negative controls 

(Figure 5.17 C). Treatment of Vero E6 cell lysate inoculated groups with HS 

228, HS 259, HS 267 and HS 424 resulted in an Increase (p < 0.05) in quality of 

peribronchial infiltrates compared to negative control (Figure 5.17 D). In 

contrast, treatment of Vero E6 cell lysate inoculated groups with HS 228, HS 

259, HS 267 and HS 424 did not induce any change to perivascular infiltrates 

compared to negative controls (Figure 5.17 E). Treatment with compounds HS 

228, HS 259, HS 267 and HS 424 of Vero E6 cell lysate inoculated groups had 

greater (p < 0.0001) combined HPS (score out of 17) compared to negative 

control (Figure 5.17 F). There was no change in goblet cell count and eosinophil 

tissue Infiltrates following HS treatment of Vero E6 cell lysate Inoculated groups 

compared to negative control. 

Treatment of RSV inoculated groups with HS 230 (negative HS control) 

or 254 (positive HS control) did not induce change to any of the eight 

histopathological measurements assessed in this study compared to the 

corresponding HS treatment of Vero E6 cell lysate inoculated groups. 

Additionally, RSV inoculation of HS (HS 228, HS 259, HS 267 or HS 424) 

treated groups did not have any effect on ainway mucus occlusion compared to 

the corresponding HS treatment of Vero E6 cell lysate inoculated groups. RSV 

inoculation of HS 228, HS 259 and HS 424 treated groups also did not have any 

effect on parenchymal pneumonia compared to the corresponding HS treatment 

of Vero E6 cell lysate inoculated groups. However, RSV inoculation of HS 267 

treated groups has exacerbated (p < 0.001) parenchymal pneumonia compared 

to HS 267 treatment of Vero E6 cell lysate inoculated group. RSV inoculation of 

HS 228 and HS 424 treated groups did not have any effect on peribronchial 

infiltration compared to the corresponding HS treatment of Vero E6 cell lysate 

inoculated groups. However, RSV inoculation of HS 259 and HS 267 treated 

groups has induced an increase (p < 0.05) in peribronchial infiltrate numbers 



compared to the corresponding HS treatment of Vero E6 cell lysate inoculated 

groups. RSV inoculation of HS 228, HS 267 and HS 424 treated groups did not 

have any additional effect on quality of peribronchial infiltration compared to the 

corresponding HS treatment of Vero E6 cell lysate inoculated groups. However, 

RSV inoculation of HS 259 treated groups has resulted in an increase (p < 0.05) 

in quality of peribronchial infiltration compared to the corresponding HS 

treatment of Vero E6 cell lysate inoculated groups. RSV inoculation of HS 228, 

HS 267 and HS 424 treated groups did not have any effect on perivascular 

infiltration compared to the corresponding HS treatment of Vero E6 cell lysate 

inoculated groups. However, RSV inoculation of HS 259 treated groups has 

induced (p < 0.05) perivascular infiltration compared to the corresponding HS 

treatment of Vero E6 cell lysate inoculated groups. Also, treatment with 

compounds HS 254, HS 259, HS 267 and HS 424 of RSV inoculated groups 

induced an increase (p < 0.0001) in combined HPS compared to the 

corresponding HS treated Vero E6 cell lysate inoculated groups. However, 

there was no change in goblet cell count following HS treatment (except HS 

254) of RSV inoculated groups compared to corresponding HS treatment of 

Vero E6 cell lysate inoculated groups. Treatment of RSV inoculated group with 

HS 254 (positive HS control) resulted in an increase (p < 0.0001) in goblet cell 

count compared to the HS 254 treated Vero E6 cell lysate inoculated group 

(Figure 5.17 G). However, there was no change in eosinophil tissue influx 

following HS treatment of RSV inoculated groups compared to corresponding 

HS treatment of Vero E6 cell lysate inoculated groups. 

Finally, treatment of RSV inoculated groups with HS mimetics (HS 228, 

HS 259, HS 267 or HS 424) did not have any additional effect on airway mucus 

occlusion (A), parenchymal pneumonia (B), peribronchial infiltration (C), quality 

of peribronchial infiltrates (D), perivascular infiltrates (E), goblet cell count (G) 

and eosinophil tissue infiltrates (H) compared to the positive control. All HS 

treated (except for HS 267) RSV inoculated groups showed no change in HPS 

combined score compared to the saline treatment of RSV inoculated group 

(positive control). In contrast, treatment with HS 267 of RSV inoculated groups 

resulted in an increase (p < 0.0001) in combined HPS score compare to the 

positive control (Figure 5.17 F). 
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Figure 5.17. Histopathological score (HPS) assessment of mice lungs 
following prophylactic heparan sulfate (HS) mimetics treatment of 
respiratory synovial virus (RSV) infection 

Starting 48 hours prior to intranasal inoculation and continuing daily for 4 days after, wild type 

BALB/c mice received a treatment with saline or HS mimetics (228, 230, 254, 259, 267 or 424) at 

10 mg/mL/kg concentration by intraperitoneal injections (100 |JL). Mice were Inoculated with Vero 

E6 lysate (white bar), ultraviolet-inactivated RSV (UV-RSV) (grey bar) or RSV (black bar) on day 

0. On day 5 post inoculation, lungs were collected and processed for histopathology. Lungs were 

analysed for: A) airway mucus occlusion, B) parenchymal pneumonia, C) peribronchial infiltrates, 

D) quality of peribronchial infiltrates, E) perivascular infiltrates, F) combined HPS, G) goblet cell 

count and H) eosinophil tissue infiltrates. Data are represented as mean (n = 5) ± standard 

deviation. HS compounds 230 (negative) and 254 (positive) were used as HS mimetic controls. 

Data were analysed using ONE-way ANOVA with Tukey's multiple comparison test (GraphPad 

Prism) (*, p < 0.05, p < 0.001 and p < 0.0001 compared to Vero E6 cell lysate inoculated 

and saline treated group (negative control); +, p < 0.05, ++, p < 0.005, and ++++, p < 0.0001 

compared to corresponding Vero E6 cell lysate inoculated HS treated group). 



5.4 DISCUSSION 

While there is an ample of evidence demonstrating that the binding of 
RSV to cultured cells involves an interaction between the viral envelope 
glycoproteins (G and F) and the cell surface HSPGs (Bourgeois et al., 1998; 
Escribano-Romero et al., 2004; Feldman et al., 2000; Feldman et al., 1999; 
Hallak et al., 2000a; Harris and Werling, 2003; Karger et a!., 2001; Krusat and 
Streckert, 1997; Martinez and Melero, 2000; Techaarpornkul et al., 2002), only 
recently has the cellular protein nucleolin been identified as a specific receptor 
for RSV (Tayyari et al., 2011). Tayyarl et al. (2001) proposed that RSV binds to 
the cell surface proteoglycans to allow the RSV fusion protein to interact with 
nucleolin (Tayyari et al., 2011). The interactions between the RSV and the cell 
surface HSPGs are required for the RSV attachment and entry into the host 
cell, and therefore, represent a valid target for the inhibition of RSV infection. 

An effective and inexpensive treatment against RSV is urgently required, 
especially since motavizumab, a variant of palivizumab, which was expected to 
replace palivizumab for the prevention of RSV infection in infants, was recently 
denied approval by the U.S. Food and Drug Administration (FDA) due to 
concerns about safety and allergic reactions (Donalisio et al., 2012). Currently, 
no vaccine for RSV is available as previous vaccine attempts have failed to 
elicit a long-lasting protective immune response (Castilow et al., 2008) and the 
approval of a new RSV vaccine is not expected before 2020 (Donalisio et al., 
2012). Considering the high burden of RSV disease worldwide on both the 
population and healthcare systems, further antiviral research and development 
is critical (Storey, 2010). 

A key limitation of previous studies examining the RSV interaction with 
GAGs is that all studies to date have been performed in vitro only. Therefore, a 
key focus of this chapter was to elucidate the role of HS mimetics in viral 
inhibition in vitro and in vivo, testing the anti-viral activity of 53 HS mimetics in 
vitro while facilitating the selection of 6 HS mimetics for in vivo testing. This 
extensive HS mimetics assessment included compounds from five, chemically 
and structurally different groups: group 1- heparins and modified heparins 
(12kDa), group 2- low molecular weight heparins (3kDa and 5kDa) and 
enoxaparin with/without glycol split, group 3- fucoidans and modified fucoidan, 
group 4- carrageenans and group 5- other HS compounds. 



It is important to note that HS compounds cytotoxicity on the Vera E6 
cells was the only cytotoxicity assay performed. As no cytotoxicity was detected 
following the HS mimetic incubation with Vero E6 cells, it was concluded that 
any changes observed in terms of viral load recovery would likely be due to HS 
effect on RSV viral load as opposed to the cell death in the presence of HS 
mimetics and RSV. In addition, positive infection control (RSV infected Vero E6 
cells with saline treatment) was used in all of the Chapter 5 experimental work. 
Therefore, all HS treated and RSV infected Vero E6 results were compared to 
the positive infection control. Furthermore, if there was any cell death due to 
RSV infection, it was taken into account by using the positive infection control 
and comparing all of RSV infected and HS treated samples to it. 

Following the incubation of RSV with HS mimetics in vitro for 10 minutes 
(condition A), 20 out of 53 tested HS mimetic compounds were found to induce 
80-100% RSV inhibition (p < 0.005); with 11 out of those 20 showing over 90% 
RSV inhibition (Figure 5.4). Findings from this study demonstrate HS mimetics 
antiviral potential against RSV. The best performing compound in this study was 
HS 267 (lambda carrageenan), achieving 100% (p < 0.0001) RSV inhibition at 
all three HS mimetic concentrations. These results are in agreement with 
previous studies reporting that pre-incubation of RSV with certain GAGs (e.g. 
heparin) inhibited virus infectivity (Krusat and Streckert, 1997; Martinez and 
Melero, 2000). The mechanism behind the viral inhibition exhibited by tested HS 
compounds could involve an interaction of HS mimetics with RSV glycoproteins 
(G or F) and the formation of an RSV glycoprotein-HS complex. This complex 
could inhibit RSV binding to the HS at the cell surface, resulting in a reduction of 
RSV cell infectivity. The proposed mechanism requires further investigation to 
elucidate the interaction between HS mimetics and RSV, providing a better 
understanding, which could be utilised in vaccine design. 

Furthermore, the hypothesis that HS mimetics may bind to the negatively 
charged sulfate and carboxyl groups of the GAG chains on the cell surface was 
tested by pre-incubating HS mimetics with Vero E6 cell monolayer for 10 
minutes (condition B). Findings indicate that 20 out of 53 tested HS mimetic 
compounds inhibited RSV infection at a rate of 80-100% (p < 0.0001) (Figure 
5.5). Moreover, six out of these 20 HS mimetics induced over 90% RSV 
inhibition following the pre-incubation of HS mimetics with the Vero E6 cell 



monolayer. The best performing compound under this testing condition was 

again HS 267 (lambda carrageenan), achieving 100% (p < 0.0001) RSV 

inhibition at all three HS mimetic concentrations. Previous studies examining 

the effect of HEp-2 cells pre-treatment with GAGs (condition B), prior to RSV 

inoculation, have also shown that this treatment approach results in reduced 

binding efficiency of RSV infection (Donalisio et a!., 2012; Donalisio et al., 2010; 

Hallak et al., 2000b). The efficacy of this treatment condition suggests the 

potential for the development of a specific and targeted RSV inhibiting 

therapeutic while rendering the GAGs unavailable for RSV glycoprotein binding. 

A short incubation of RSV with the Vero E6 cells (condition C), resulted 

in 21 out of 53 tested HS mimetic compounds inducing 80-95% RSV inhibition 

(Figure 5.6). Ten out of these 21 HS mimetics showed over 90% RSV inhibition. 

Results from this study suggest that HS mimetics may be able to compete with 

RSV for the HS interaction on the cell surface of the Vero E6 cells as long as 

RSV pre-incubation with the cell monolayer is kept to a very short period (e.g. 

10 minutes). A longer incubation period (1 hour - condition D) had detrimental 

effect on viral inhibition. Nevertheless, the best performing compound under 

condition C was HS 267 (lambda carrageenan), achieving 95% (p < 0.0001) 

RSV inhibition at 5 (jg/mL. Previous studies have shown that sulfated 

polysaccharides can mimic HS chains and interact with viral glycoproteins, 

blocking viral attachment to cell surface HS through competitive inhibition 

(Rusnati and Urbinati, 2009; RusnatI etal., 2009). Similarly, studies have shown 

SB105-A10 (peptide-derlvatised dentridimer) exerts antiviral activity by 

competing with glycoprotein G or F for binding to cell surface HS (Donalisio et 

al., 2012). Other studies have also shown that pre-incubatlon of RSV with 

heparin inhibited virus Infectivity (Krusat and Streckert, 1997; Martinez and 

Melero, 2000). 

Under the final testing condition, pre-incubation of RSV with the Vero E6 

cell monolayer for 1 hour (clinically the most relevant condition), resulted in 15 

out of 53 HS mimetic compounds inducing 50-90% RSV inhibition at 100 pg/mL 

(Figure 5.7). These results suggest the HS mimetics have an ability to compete 

with RSV for interaction with HS on the cell surface as well as reduce RSV 

replication by inhibiting cell-to-cell spread. The best performing compound 

under this condition was HS 424 (mucosal heparin with glycol split SkDa), 



achieving 65% (p < 0.0001) RSV inhibition at the highest HS concentration of 

100 |jg/mL. As sulfated polysaccharides have been studied extensively as 

broad-range antiviral compounds, some of them [e.g. heparin (Hallak et a!., 

2000b), chondroitin sulfate (Hallak et al., 2000a), and dextran sulfate (Kimura et 

at., 2004)] have already been shown to inhibit RSV successfully. To elucidate 

the mechanism underlying conditions C and D, more work is required to gain a 

better understanding of resulting competitive inhibition as well as potential ways 

to enhance HS efficacy while reducing cell-to-cell spread of the virus. Broader 

analysis should involve assessment of HS-RSV glycoprotein and HS-cell 

surface interactions, as these are part of an overarching HS driven RSV 

inhibition mechanism of competitive inhibition. 

Taken together, the in vitro HS mimetic studies have generated a list of 

compounds with great antiviral potential. The best performing compounds 

across all four conditions are outlined in Table 5.3 demonstrating compounds 

that achieved viral inhibition between 50-100%, depending on a testing 

condition. Furthermore, in vitro results demonstrate significant RSV inhibition 

achieved following a pre-treatment of the virus with HS mimetics, pre-treatment 

of the cells with HS mimetics and HS treatment of RSV infection. Results from 

chapter 5 in vitro studies are in an agreement with those of Hallak et ai. (2000) 

who reported that RSV infection was reduced significantly by pre-treatment of 

the virus with soluble GAGs, pre-treatment of the cells with GAG-binding 

molecules, pre-treatment of the cells with GAG-destroyIng enzymes or in cells 

genetically deficient in GAGs (Hallak et al., 2000a). Krusat and Streckert (1997) 

also showed that pre-incubation of virus with heparin, or enzymatic digestion of 

cell surface GAGs, inhibited virus infectivity. 



Table 5.3. List of the best performing heparan sulfate (HS) mimetics in vitro under four testing conditions, arranged in 
descending order, from most viral inhibition to least viral inhibition 

Condition A Condition B Condition C Condition D 

465, 466, 494, 495, 496, 497, 
502, 267, 500, 229, 266, 499, 

501,259, 511 A, 510,424, 498, 
511B, 512D, 416 

466, 495, 497, 500, 267, 494, 
499, 266, 511 A, 496, 229, 465, 
498, 502, 510, 259,416,5120, 

501 

266 

394, 419, 418,408, 106, 486, 
448, 384, 201,483,217, 481, 

218,254 
51 IB, 424, 419, 217, 486, 201 259,424 

204, 228, 109 106,218, 408,384, 448, 394, 
418, 512E,481, 254 

254,408,267, 416, 481,494, 
242, 511A, 448, 512E, 418, 

511B, 384, 106, 419, 483, 241, 
510, 333, 332 

512E, 331,PI-88, 205,207, 81, 
332 109, 204, 228, PI-88, 483 81, 486, 238, 502, 394, 217, 

496, 495, 465, 331, 51D, 201 424 

Suramin, 219, 111 111, Suramin 218, 497, 501, 204, 230, 229, 
500,219,498,466 207, 228, 267, 394 
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The best performing compounds list across four testing conditions: A (respiratory syncytial virus (RSV) 10 minute pre-lncubation witti HS), B (HS mimetic 10 

minute pre-incubation with cell surface), C (short RSV pre-incubation with cell surface) and D (1 hour RSV pre-incubation with cell surface). Colours denote 

different degrees of inhibition, in 10% increments, from 50-100%. 



An analysis of the large data set generated from the in vitro HS mimetic 

revealed a novel trend emerging. In vitro studies showed that all group 3 

(fucoidans and modified fucoidan) and group 4 (carrageenans) HS mimetic 

compounds induced over 80% RSV inhibition under conditions A (RSV 10 

minute pre-incubation with HS) and B (HS mimetic 10 minute pre-incubation 

with cell surface) (Table 5.4), demonstrating a potential Involvement of these 

compounds at earlier stages of viral infection, e.g. attachment. These findings 

suggest that group 3 (fucoidans and modified fucoidan) and group 4 

(carrageenans) may be good candidates for prophylactic RSV treatment. In 

addition, as demonstrated previously, there was a significant difference in viral 

inhibition observed following a short and long RSV incubation with the cell 

monolayer. Keeping these results in mind, the most effective HS mimetic group 

under condition D (1 hour RSV pre-incubation with cell surface; the most 

clinically relevant condition) was group 2 (low molecular weight heparins (3kDa 

and 5kDa) and enoxaparin with/without glycol split) followed by group 1 

(heparins and modified heparins (12kDa). This finding indicates the importance 

of heparin modified compounds in RSV competitive inhibition while also 

highlighting the potential importance of HS mimetic size (3 or 12kDa) in 

successful viral inhibition. Although, almost all HS mimetics in group 3 and 

group 4 performed the best under conditions. A, B and C, these groups 

performed poorly under condition D. Results suggest that groups 1 and 2 are 

the most suited for competitive RSV inhibition and cell-to-cell spread, while 

groups 3 and 4 are the best suited to inhibit RSV by interacting with the cell 

surface HS and RSV glycoproteins. The proposed and arising trends should be 

investigated further with some HS compounds showing a great potential for 

prophylactic treatment while others appear to be the best suited for post RSV 

infection treatment. 



Table 5.4. The average respiratory syncyt ia l v i rus (RSV) inhibi t ion across 
f ive heparan sulfate (HS) mimet ic groups 

Percentage of HS compounds that achieved an average RSV 
inhibition levels under specific testing condition 

HS mimetic 
groups 

Condition A 
> 80% 

Condition B 
> 80% 

Condition C 
> 50% 

Condition D 
> 50% 

Group 1 63.6 27.3 81.8 36.4 
Group 2 61.5 38.5 92.3 53.8 
Group 3 100.0 100.0 85.7 14.3 
Group 4 100.0 100.0 100.0 20.0 
Group 5 47.1 41.2 76.5 23.5 

Five HS mimetic groups: group 1- heparins and modified heparins (12l<Da), group 2- low 

molecular weight heparins (3kDa and 5kDa) and enoxaparin with/without glycol split, group 3-

fucoidans and modified fucoidan, group 4- carrageenans, and group 5-other HS compounds. 

Four testing condition in vitro: Conditions A (RSV 10 minute pre-incubation with HS), B (HS 

mimetic 10 minute pre-incubation with cell surface), C (short RSV pre-incubation with cell 

surface) and D (1 hour RSV pre-incubation with cell surface). Data is represented as an average 

RSV inhibition and expressed in percentages. Average RSV inhibition differed across the four test 

conditions; hence, data presented for condition A is above 80%, condition B above 80%, 

condition C above 50% and condition D above 50%. 

It is important to note that some HS compounds performed best at the 

highest (100 pg/mL) and/or lowest (5 pg/mL) HS concentrations, whilst other 

were unaffected by the change in HS concentration (Figures 5.4-5.7). 

Unexpectedly, in vitro study analysis revealed that 10 out of 53 tested HS 

compounds achieved an average of 65-90% RSV inhibition across the four test 

conditions at the lowest, 5 pg/mL, HS concentration. Similar findings were also 

observed following amantadine antiviral treatment of influenza A virus, which 

blocks the influenza A M2 protein ion channels (Jefferson et a!., 2004). The 

proton channel formed by M2 protein, transports protons from the endosome to 

the inside of the influenza A virion (Hay etal., 1985; Pinto etal., 1992; Wang et 

a!., 1993). As a weakly basic substance, amantadine binds protons in the 

endosome itself, thereby making them impossible to flow inside the virion. This 

way, both the interaction of the matrix M1 protein and release of the virion 

nucleus into the host cell environment, are prevented (Hay etal., 1985; Pinto et 

al., 1992; Wang et al., 1993). This process has been found to be the most 



effective at lower concentrations of amantadine (e.g. 1 |jg/mL) (Nguyen et a!., 

2009). In contrast, high concentrations of amantadine are believed to contribute 

to enhanced viral replication, with amantadine, itself, becoming a source of 

protons, leading to an increase in proton flow towards the virion while enabling 

viral uncoating and viral replication (Nguyen etal., 2009; Nguyen etal., 2012). 

A similar mechanism may be behind HS-induced RSV inhibition at low 

HS concentrations. However, until recently, none of the RSV glycoproteins were 

known as a proton-selective ion channel proteins; which is a main characteristic 

of influenza A M2 protein. The role played by SH protein during RSV infection is 

still unknown and SH ion channel potential was not Investigated until few years 

ago. Gan et al. (2008) have provided experimental evidence that the 

transmembrane domain of SH protein forms pentameric a-helical bundles that 

form cation-selective ion channels in planar lipid bilayers (Gan et al., 2008). 

This suggests that SH may act as a proton-selective ion channel protein, 

transporting protons from the outside to the inside of the RSV virion. At low 

concentrations, HS mimetics could bind protons while inside the SH-proton 

channel, thereby making it impossible for protons to flow inside the virion. As a 

result, RSV uncoating would be blocked and viral replication would be inhibited 

(Figure 5.18). In contrast, in some instances high concentrations of HS 

mimetics have resulted in enhanced viral replication in vitro. This finding could 

be a result of HS mimetics acting as protons themselves at high concentrations, 

with an increase in proton flow towards the virion enabling viral uncoating and 

viral replication. This study highlights the importance of dose dependant viral 

inhibition and the need to evaluate a range of concentrations, including lower 

concentrations. Drugs performing well at lower concentrations have the 

potential to control tissue toxicity and any drug related side effects; much 

desired characteristics of any effective therapeutic. 
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Figure 5.18. Proposed mechanism of heparan sulfate (HS) mimetics 
induced inhibition of respiratory syncytial virus (RSV) replication at low 
HS concentration 

RSV small hydrophobic (SH) protein acts as a proton-selective ion channel protein, transporting 

protons (H+) to the inside of the RSV virion. At low concentrations HS mimetics bind protons while 

Inside the SH-proton channel, thereby blocking the protons from entering the virion, inhibiting 

uncoating and release of free ribonucleoprotelns Into the cytoplasm. Adapted from (FocosI, 2001-

2013). 

Previous studies have shown that mucosal heparin, dextran sulfate, 

fucoidan and/or lambda carrageenan have good antiviral activity against RSV, 

hepatitis C, human T-lymphotropic virus type-1, HIV, influenza A and Newcastle 

disease virus (Araya et a!., 2011; Crim et al., 2007; Elizondo-Gonzalez et a!., 

2012; Hayashi et al., 2013; Ito et al., 1987; Malhotra et al., 2003; Mori et al., 

2012). Furthermore, studies have found that fucoidans and carrageenans can 

exhibit the antioxidant activity and that this is related to the molecular weight 

and sulfate content of fucoidan. The in vitro model suggested that the ratio of 

sulfate content/fucose was an effective indicator to antioxidant activity of the 

samples (Rocha de Souza et al., 2007; Wang et al., 2008). As antioxidants are 

the compounds, which terminate the attack of reactive species and reduce the 



risk of diseases, the fact that fucoidans exhibit this activity is a very positive role 

in decreasing the effect of RSV infection on lung pathology. In conjunction with 

in vitro results detailed in table 5.5 and the current literature on relevant in vitro 

studies, six HS mimetic compounds were selected for testing in an in vivo 

mouse model. The compounds selected were: HS 230 (desulfated mucosal 

heparin-negative HS control), HS 254 (dextran sulfate- positive HS control), HS 

228 (variation of mucosal heparin), HS 259 (fucoidan), HS 267 (lambda 

carrageenan) and HS 424 (variation of mucosal heparin). Table 5.5 summarises 

the in vitro RSV inhibition levels across all four tested conditions and at all three 

concentrations of the selected compounds. These compounds, excluding the 

negative and positive HS control, represent a selection of four chemically (e.g. 

sulfation, carboxylation) and structurally (e.g. open or closed ring, size 

difference (3 or 200kDa) different compounds which may provide insight into the 

importance of these characteristics in viral inhibition. This study is the first to 

assess HS mimetics antiviral potential against RSV in vivo. 

Table 5.5. In vitro inhibition levels of selected HS mimetics for in vivo 
study across all four conditions 

Average RSV inhibition levels {%) 

Test 
conditions 

Heparan sulfate 
(HS) concentrations 

HS 
230 

HS 
254 

HS 
228 

HS 
259 

HS 
267 

HS 
424 

Condition 
A 

5 |jg/mL 8 59 74 91 100 93 
Condition 

A 20 |jg/mL 8.5 74 63 99 100 89 Condition 
A 

100 |jg/mL 22 97 70 98 100 74 

Condition 
B 

5 pg/mL 2 80 65 96 67 72 
Condition 

B 20 |jg/mL 0 78 78 98 100 78 Condition 
B 

100 |jg/mL 4 76 76 96 100 87 

Condition 
C 

5 pg/mL -8.7 57 83 85 97 67 
Condition 

C 20 |jg/mL 13 76 39 91 72 79 Condition 
C 

100 Mg/mL 0 83 74 87 92 65 

Condition 
D 

5 pg/mL -19.5 2.1 24 22 53 22 
Condition 

D 20 pg/mL -24 0 0 22 35 30 Condition 
D 

100 pg/mL -11 83 63 25 52 65 

Greyed out areas denote the best RSV inhibition levels for the corresponding HS compounds at 

the specified concentration under the specified test condition. 



In vivo post (therapeutic) RSV infection treatment with HS 228 (carboxyl 

reduced mucosal heparin) and HS 259 (fucoidan) has resulted in a statistically 

significant reduction (p < 0.05) in RSV titres compared to the RSV inoculated 

saline treated group (positive control) (Figure 5.8). These results demonstrate 

HS 228 and HS 259 antiviral activity against RSV and potential involvement in 

competitive as well as cell-to-cell spread inhibition. It is hypothesised that these 

compounds could be used as therapeutic candidates utilising a proposed 

mechanism of competitive inhibition previously described. These results are in 

agreement with earlier in vitro studies which have demonstrated the importance 

of HS compounds in RSV inhibition, with compounds such as heparan sulfate, 

dextran sulfate, heparin and chondroitin sulfate B inducing effective RSV 

inhibition (Hallak et at., 2000a; Hallak et al., 2007; Hallak et a!., 2000b; Karger 

et al., 2001). In addition, a study using dengue virus and flavlviral encephalitis 

mouse model found that PI-88 (a mixture of highly sulfated, 

monophosphorylated mannose oligosaccharides) had a significant and 

beneficial effect in disease outcome (Lee etal., 2006). 

Although, post RSV infection treatment with HS mimetics resulted in only 

two HS compounds effectively reducing RSV infection, their performance in vivo 

is in agreement with previously suggested trend extrapolated from the HS in 

vitro studies (previously described in Tables 5.4 and 5.5). HS 228 

(decarboxylated mucosal heparin) belongs to group 2 of HS mimetics tested in 

vitro. Group 2 HS mimetics were found to perform, on average, better under 

condition D in vitro (RSV pre-incubation with a cell monolayer for 1 hour) which 

is closely related to post RSV infection HS treatment in vivo, in terms of 

experimental set up. The in vitro proposed trend translated well to in vivo study 

showing that HS 228 (group 2 HS mimetic) induced a reduction in RSV titres 

following post RSV infection treatment with HS 228. However, HS 259 

(fucoidan) belongs to group 3 of HS mimetics tested in vitro. Group 3 HS 

mimetics were proposed to perform the best under conditions A (RSV 10 minute 

pre-incubation with HS mimetics) and B (HS mimetic 10 minute pre-incubation 

with cell surface), while not so well under C (short RSV pre-incubation with cell 

surface) and D (1 hour RSV pre-incubation with cell surface). In vivo HS 259 

performed well, inducing statistically significant reduction in viral tires following 

post RSV infection HS 259 treatment; however this unexpected result, 

demonstrates that some HS compounds individual antiviral effect may deviate 



from the group classification proposed by in vitro findings. HS 254 (group 5), HS 

267 (group 4) and HS 424 (group 2) did not induce statistically significant 

reduction in viral titres. Based on the in vitro study proposed trend, this was an 

expected result for HS 254 and HS 267, however it was unexpected finding for 

HS 424 which belongs to group 2 of HS mimetics and was predicted to be more 

effective. A plausible explanation for this finding could be related to HS 424 

chemical structure. HS 424 has a glycol split and there is a lot to be noted about 

a glycol split modification on any compound. Firstly, most of the attempts to 

modulate protein binding and biological properties of heparin have been made 

by the modulation of the sulfation patterns of the GAG backbone and enhance 

of chain flexibility of the GAG by the glycol splitting of C2-C3 bonds of 

nonsulfated GIcA and IdoA residues. Both the degree of sulfation (charge 

density) and the appropriate distribution of N-sulfate and N-acetyl groups 

(charge distribution) along the heparin molecule is determinant in its biological 

properties (VIodavsky et al., 2007). For example, the strongest protein binding 

was observed for 'fully sulfated' heparin and extra-sulfate groups potentiated 

this interaction. IdoA-containing sequences are considered to facilitate the 

appropriate orientation of substituents for the suitable interaction (Casu et a/., 

2002a; Casu et ai., 2002b). Additional local flexibility was obtained by glycol 

splitting that act as flexible joints along the heparin chain were conformation 

changes can be induced by the protein interaction. Chain flexibility is thought to 

play a key role in heparin-protein interactions (Ritchie et ai., 2011). The most 

important result of glycol split modification is that glycol split of heparin 

drastically reduces the anticoagulant activity normally associated with heparin. 

(Conrad and Guo, 1992; VIodavsky et ai., 2007). Taking all of these findings 

together, the benefits of glycol split are apparent and maybe HS 424 inactivity is 

simply a result of HS 424 inability to act as a treatment for RSV infection. 

However, HS 424 structure may be more favourable for prophylactic treatment. 

On the other hand, prophylactic HS treatment of the RSV inoculated 

group, with HS 228 (carboxyl reduced mucosal heparin), HS 259 (fucoidan), HS 

267 (lambda carrageenan (200kDa) or HS 424 (mucosal heparin with glycol 

split (3kDa) induced a statistically significant reduction (p < 0.05) of RSV viral 

titres compared to the positive control (Figure 5.13). Prophylactic treatment with 

HS mimetics resulted in all tested compounds demonstrating their antiviral 

potential by, either, HS mimetic interaction with the HS at the cell surface or HS 



mimetics interaction with RSV glycoproteins. Cliaracterising the proposed 

mechanisms could help determine which of the tested HS mimetic has the 

potential to become prophylactic RSV infection treatment candidate. These 

results are supported by chapter 5 in vitro findings, with each of the tested HS 

mimetics also performing very well in vivo. Condition B (HS mimetic 10 minute 

pre-incubation with cell surface) experimental set up is equivalent to the one for 

prophylactic HS treatment of RSV infection. Enhanced RSV inhibition achieved 

following prophylactic treatment of RSV infection is possibly due to the HS 

mimetics interaction with the cell surface HS where HS mimetics were not 

required to compete for the binding site, it was available to them prior to RSV 

infection. Structurally, HS 259 and HS 267 belong to groups 3 and 4, 

respectively, and as proposed by in vitro results, these are the best suited for 

prophylactic treatment. HS 254 belongs to group 5 of HS mimetics, which 

remained uncharacterised; however, in the in vivo model, HS 254 appears to be 

promising prophylactic treatment candidate. Finally, HS 228 and HS 424 belong 

to group 2 of HS mimetics, which was found to perform the best as a 

therapeutic for RSV infection during an in vitro study, however, in vivo, HS 228 

and HS 424 were found to perform well as prophylactic candidates against RSV 

infection. As suggested earlier HS 424 efficacy as prophylactic compound may 

be due to its open ring structure, however HS 228 has proven to be HS 

compound performing well as a therapeutic treatment following RSV infection 

and as prophylactic treatment of RSV infection. HS 228 should be tested further 

in vivo at different concentrations to elucidate its antiviral ability against RSV. 

Table 5.6 compares the in vitro and in vivo findings. It outlines RSV 

inhibition levels induced by HS 230, HS 254, HS 228, HS 259, HS 267 and HS 

424 following their in vivo treatment of RSV infection compared to condition D in 

vitro and prophylactic in vivo HS treatment of RSV infection compared to 

condition B in vitro. The comparison of in vitro and in vivo results is possible as 

the in vitro concentration of 100 pg/mL is equivalent to the 10 mg/mL/kg HS 

concentration used in vivo. The result analysis revealed an emerging trend from 

the in vitro study allowing prediction of HS mimetic inhibition of RSV in vivo by 

taking a 50% of its in vitro inhibition value. This trend could be used to 

determine the most suited compound for in vivo study based on its in vitro 

results, hence reducing the number of compounds required for in vivo testing. In 

contrast, in vitro anti-flaviviral effectiveness of the HS mimetics did not reliably 



predict their in vivo therapeutic activity (Lee et al., 2006) suggesting that caution 

must be exercised when eliminating compounds at the in vitro stage. 

Table 5.6. Comparison of in vitro and in vivo RSV inhibition 

Average RSV inhibition levels (%) 

Test 
condit ions 

Heparan sulfate (HS) 
concentrations 

HS 
230 

HS 
254 

HS 
228 

HS 
259 

HS 
267 

HS 
424 

Post RSV 
infection HS 
treatment/ 

Condition D 

10 mg/mL/kg -1.7 0 37 38 24 19 
Post RSV 

infection HS 
treatment/ 

Condition D 100 pg/mL -11 83 63 25 46 87 

Prophylactic HS 
treatment of 

RSV infection/ 
Condition B 

10 mg/mL/kg 0 37 54 52 52 48 
Prophylactic HS 

treatment of 
RSV infection/ 
Condition B 100 pg/mL 4 76 76 96 100 87 

Post RSV infection treatment with HS mimetics resulted in measured 

immune response in BALF (Figure 5.9) and blood (Figure 5.10), leading to 

reduction in combined HPS (Figure 5.12). The measured immune response 

observed here, suggests HS mimetics immunomodulatory effect on RSV viral 

load while preventing immune overreaction. These results are supported by 

findings that sulfated polysaccharides, have been shown to possess 

immunomodulatory activities that may be of potential application in stimulating 

the immune response or in controlling immune cell activity to mitigate 

associated negative effects such as inflammation (Chen etai., 2008; Parish et 

al., 2001). Fucoidans and carrageenans specifically have been found to be 

involved in immune modulation, playing a very positive role in inflammation 

(Blondin et al., 1994; Senni et al., 2006). Therefore, further investigation into the 

mechanism behind this immune modulation is required to gain better 

understanding of, the HS effect on the immune response and targeted immune 

response using HS mimetics. 

Prophylactic treatment of RSV infection demonstrates for the first time 

that prophylactic treatment with HS mimetics results in a similar immune 

response as observed following the RSV re-infection in the absence of HS 

mimetics (chapter 4). Consequently, it can be hypothesised that prophylactic 

HS treatment induces innate immune response, which is followed by adaptive 

immune activation once RSV inoculation is administered. This study has not 



characterised which adaptive immune cells are present following the 
prophylactic HS treatment of RSV infection; as such, this hypothesis is solely 
based on an increase in lymphocyte numbers, in BALF and blood. These 
results also differ from those observed in a previous section on post RSV 
Infection HS treatment, where a decrease in lymphocyte numbers present in 
BALF was observed (Figure 5.14). Finally, prophylactic treatment of RSV 
infection with HS 259 and HS 267 resulted in significant increase (p < 0.0001) in 
combined HPS compared to the positive control; while HS 288 prophylactic 
treatment of RSV infection resulted in a decrease (p < 0.05) in combined HPS 
compared to the positive control (Figure 5.17). This finding contributes to ever 
growing evidence that an increase in eosinophil infiltration In BALF does not 
contribute to combined HPS. HS 228 prophylactic treatment of RSV infection 
resulted in an increase in eosinophil numbers present in BALF while it reduced 
combined HPS. This is a novel finding demonstrating HS mimetics effect on 
RSV infection in vivo and Immune modulation. 

In addition, in vivo findings indicate for the first time that HS may have a 
direct effect on immune response even in the absence of viral infection. A pre-
primed immune response may lead to more efficient viral clearance and may be 
a useful treatment for infants and elderly who may be highly susceptible to viral 
infection and could benefit from already activated immunity. Also, groups like 
HIV patients, medical staff working in infectious disease units and 
immunodeficient patients (e.g. lacking IgA) could benefit from this treatment, as 
it can be administered as a preventative measure. Currently, some therapies 
are already in use as prophylactic treatments for asthma, multiple sclerosis and 
other diseases. XOLAIR (omallzumab) Is a monoclonal antibody targeting 
circulating IgE, preventing them from making a contact with its receptor on the 
effector cell. XOLAIR is recommended for people with allergic asthma who still 
have asthma symptoms even though they are taking inhaled steroids and It 
seems to work well (Norman et a!., 2013). Also, the therapy of relapsing-
remitting multiple sclerosis is also based on the use of immune-modulating 
treatments with drugs such as, IFN-|3, glatiramer acetate, natallzumab etc. 
(Clerico et al., 2008). As demonstrated, immune modulating treatment is widely 
used and HS mimetics pose as potential immune modulating candidate to be 
used in RSV Infection while HS production costs are kept low. 



It has been reported that efficient RSV infection requires the intact G 

protein (Kwilas et al., 2009). However, most laboratory-derived RSV stock, 

including the stock used in this study, is propagated through Vero cells which, 

according to Kwilas et al. (2009), results In the formation of truncated G protein 

(Kwilas et al., 2009). The truncated form of the G protein is believed to be 

dysfunctional in terms of viral attachment to the cell surface HS based on the in 

vitro findings (Kwilas et al., 2009). This loss of attachment function is believed to 

also result in poor infection initiation in vivo, potentially negatively impacting on 

both animal experiments and attenuated-vaccine studies with volunteers 

(Kwilas et al., 2009). This limitation was not directly addressed in this present 

study, however it should be noted that RSV infection in the mouse model was 

achieved and this was consistent with other studies using a laboratory derived 

viral stock (Tripp et al., 2000; Waris et al., 1996). Currently there are no in vivo 

studies that have compared truncated and non-truncated virus forms, therefore, 

repeating the in vivo studies using a virus with a non-truncated form of G 

protein, would be required to assess the effect on viral attachment and RSV 

interaction with GAGs. 

In conclusion, this is the first HS mimetic study that has examined and 

reported on 53 HS mimetic compounds antiviral activity against RSV in vitro. In 

addition, this study is the first to perform in vivo studies with HS mimetics using 

RSV mouse model, and compare post RSV infection HS treatment with 

prophylactic HS treatment of RSV infection. Together, findings from in vitro and 

in vivo studies demonstrate the antiviral potential of HS mimetics against RSV. 

HS 228 was found to be the best performing compound, both, as post RSV 

infection HS treatment and prophylactic treatment of RSV infection, while 

reducing RSV disease pathology. In addition, HS mimetics were found to 

activate an immune response even in the absence of viral infection, suggesting 

their potential in pre-emptive immune activation and immune modulation. The 

development of an effective and safe RSV vaccine has remained elusive to 

date, making HS mimetics true contenders in this race. 



Chapter 6. GENERAL DISCUSSION AND CONCLUSIONS 



6.1 INTRODUCTION 

In 2010, RSV was found to be responsible for the majority of 2.8 million 

infantile lower respiratory tract infections (Lozano et al., 2012). The virus infects 

nearly all children by three years of age and is a leading cause of infant 

hospitalisation and childhood wheezing (Hall et al., 2009; Shay et al., 1999). 

Globally, RSV accounts for 6.7% of deaths among infants, one month to one 

year old, which is more than any other single pathogen except malaria (Lozano 

et al., 2012). The only intervention currently available is passive administration 

of the licensed monoclonal antibody palivizumab (Beeler and van Wyke 

Coelingh, 1989; Johnson et al., 1997). However, this treatment is very 

expensive and is reserved for high risk patients only. Therefore, controlling RSV 

has remained a formidable challenge and more work is urgently required, to 

understand the role of innate and adaptive immunity in RSV infection and in the 

development of new therapeutics. 

6.2 RESEARCH OUTCOMES 

6.2.1 Effect of RSV infection on eosinophil biology 
Since, the first FI-RSV vaccine trial yielded disastrous results with young 

recipients, pulmonary eosinophilia elicited in response to primary RSV infection 

became the hallmark of RSV disease (Chin et al., 1969; Fulginiti et al., 1969; 

Rosenberg et al., 2009; van Hagen et al., 1999). Subsequent FI-RSV studies 

have led to the conclusion that eosinophils contribute to the pathological 

cascade of RSV disease and their presence was deemed undesirable (Graham 

etal., 2000; Hancock etal., 1996; Openshaw etal., 2001; Tripp etal., 2000; van 

Hagen et al., 1999; Varga et al., 2001). In the late 1990s, several studies have 

focused on elucidating the beneficial role of eosinophils in viral infection 

(Adamko et al., 1999; Domachowske et al., 1998a; Phipps et al., 2007; 

Rosenberg and Domachowske, 2001) which was further elucidated in the 

chapter 3 in vitro study. 

Eosinophil treatment with RSV has resulted in eosinophil activation as 

evaluated by degranulation, activation and migration assays. The eosinophil 

degranulation study revealed RSV-induced increase in MBP release (Figure 

3.3) suggesting that MBP release results from the targeted activation of 



eosinophils as opposed to a cellular degeneration process. Moreover, RSV 

treatnnent of eosinophils also resulted in increased eosinophil activation (Figure 

3.5) and activation of the eosinophil cytoskeleton, as illustrated by a-tubulin and 

F-actin (Figure 3.6 and 3.7). These results suggest that eosinophil migration 

and recruitment may also result from a targeted response as opposed to a 

nonspecific immune response. Together these findings contribute to the 

hypothesis that an effective viral clearance may be determined by the activation 

of targeted cellular response when and where required. This approach would 

yield controlled immune response with a very specific purpose - viral clearance. 

Earlier studies are in agreement with chapter 3 degranulation findings as high 

levels of ECP were also found present in the lung epithelial tissue culture 

(Olszewska-Pazdrak et a!., 1998b) and nasopharyngeal secretions of human 

infants (Saito et al., 1997). Similarly, RSV-induced eosinophil activation results 

confirm finding by Phipps et al. (2007) who also showed an increase in EPO as 

a result of RSV activation of eosinophils (Phipps et al., 2007), demonstrating 

RSV-induced eosinophil activation. The current migration study is the first to 

report on the RSV-induced activation of the eosinophil cytoskeleton. 

The RSV kinetics study revealed the potential for eosinophils to induce 

viral inhibition, with a reduction in viral titres observed over 0-24 hours period 

(Figure 3.4). In contrast, previous studies have revealed that RSV can infect 

human eosinophils while PVM was shown to infect murine eosinophils (Dyer et 

al., 2009; Kimpen et al., 1996); however, this was not the case following a 

treatment of murine eosinophils with RSV. This contradictory in vitro finding 

could be a result of incompatibility between RSV as a human respiratory 

pathogen and murine eosinophils. However, the mechanism that provides 

protection for mouse eosinophils against RSV infection, may offer a novel 

insight into prevention of human infection and as a result, it should be explored 

further. Finally, RSV treatment of eosinophils has demonstrated for the first time 

that RSV has detrimental effect on eosinophil morphology overtime (0, 3, 6, 12, 

18 and 24 hours) (Figure 3.1 and Figure 3.2). This was confirmed by the 

continuous release of cytotoxic proteins and loss of cellular integrity over the 24 

hour incubation period. Previous findings by Phipps et al. (2007) are in 

agreement with described RSV-induced eosinophil morphological changes, as 

Phipps et al. (2007) have also showed that a ten minute treatment of 

eosinophils with ssRNA results in eosinophil morphological changes as 



demonstrated by a loss of eosinophil crystal core content (Phipps et a!., 2007). 

Current study demonstrates for the first time that RSV treatment has an 

increasingly detrimental effect on eosinophil morphology over time, with 

apoptosis becoming a hallmark of RSV-induced effect on eosinophil structure at 

24 hours post incubation. This finding supports chapter 3 results highlighting 

that eosinophil response to RSV is a targeted response to viral infection, with 

focus on viral clearance through the release of eosinophil cytotoxic proteins. 

6.2.2 The role of innate and adaptive immunity in RSV 

infection and re-infection 
RSV infection in the first two years of life is believed to lead to long-term 

deficiencies in protective immunity to RSV (Welliver, 2003). Inadequate 

immunity in response to RSV re-infection leads to limited viral clearance 

(Welliver et al., 2008) characterised by the infiltration of NK cells and 

subsequent recruitment of helper CD4* and cytotoxic CDS'" lymphocytes to the 

site of infection (Olson et al., 2008; Olson and Varga, 2007; Stevens et al., 

2009). Although RSV-specific CD8'' T cells can provide protection against 

infection, the effect is short-lived (Connors et al., 1991; Kulkarni et al., 1995). 

Therefore, further investigation into long lasting RSV adaptive immune 

response is urgently required, leading to more effective vaccine development. 

Primary infection and re-infection study results confirm eosinophil 

involvement in RSV clearance as demonstrated by a reduction in viral titres 

following RSV infection of eosinophil overproducing mice (IL-5 Tg BALB/c) 

(Figures 4.2 and 4.7). Previous studies by Phipps et al. (2007) had also 

demonstrated accelerated RSV clearance from the lungs of the IL-5 Tg BALB/c 

(Phipps et al., 2007). Our current studies imply that eosinophil antiviral activity 

may be modulated through the availability of T cells and/or T cell counterparts 

such as ILC2 cells in the immune system. This was especially evident with Rag 

27" mice, lacking T and B cells, where eosinophil recruitment was regulated by 

the CD2 expressed on the T cell surface. The absence of T cells in the Rag 27" 

humanised model has resulted in a reduced eosinophil recruitment into the 

BALF and blood following RSV infection and re-infection. In addition, this issue 

appears somewhat overcome in the IL-5 Tg Rag 27" mice, through the 

eosinophil regulation via most likely, ILC2 cells IL-5 production. Recent study by 



Roediger et al. (2013) has shown that both NK and ILC2 cell express CD2, 

required for eosinophil recruitment (Roediger et al., 2013). Adoptive transfer of 

CD4'' cell into adaptive immunity deficient mice induced a reduction in RSV 

infection (Figure 4.7). An increase in eosinophil tissue infiltration was observed 

following CD4''adoptive cell transfer, correlating to the viral clearance observed 

(Figure 4.11). These results suggest that CD4'' cells are required for eosinophil 

recruitment following RSV re-infection, demonstrating eosinophil potential to 

assist in viral clearance. Although the adoptive transfer of CD4'' cells assisted in 

RSV re-infection viral titres reduction, their presence was found to exacerbate 

RSV disease as demonstrated by an increase in combined HPS. RSV disease 

pathology observed appears to be due to CD4^ cell transfer as oppose to 

eosinophil tissue infiltration. This is in agreement with previous antibody 

depletion study of mouse lymphocytes which revealed that the CD4'' and CDS'" 

T lymphocyte contribute individually to clearing of the RSV infection, but that 

both also contribute to disease, especially CDS"̂  T cells (Graham et al., 1991). 

Furthermore, several studies have shown that RSV infection alters functionality 

of T lymphocytes (Fulton et al., 2008; Gray et al., 2005) resulting in inadequate 

immune response and low T lymphocyte numbers. The impaired function of T 

lymphocytes in the lung during virus infection has been proposed to be the 

consequence of virus-induced changes in the lung environment (Gray et al., 

2005) as well as virus- induced immune evasion tactics (Lotz and Peebles, 

2012; Moreau et al., 2003). Future RSV immunisation strategies should strive to 

achieve a balanced Immune response. 

6.2.3 HS treatment of RSV infection 
It is well documented that the interaction between RSV and cell surface 

HSPGs are required for RSV attachment and entry into host cells, consequently 

it is a preferential target for the development of antiviral compounds against 

RSV (Feldman et al., 2000). It is not clear, however, what type of GAGs and 

GAG components are involved, whether the important GAGs are on the virus 

(Bourgeois et al., 1998) or the target ceil (Krusat and Streckert, 1997), and the 

magnitude of their contribution to the infection (Hallak et al., 2000a). 

Nevertheless, an effective and inexpensive treatment against RSV is urgently 

required. In 2012, motavizumab, a variant of palivizumab, was denied approval 

by the U.S. FDA due to concerns about safety and allergic reactions (Donalisio 



et al., 2012). Currently, no vaccine for RSV is available. Considering the high 

burden of RSV disease worldwide on both the population and healthcare 

systems, further antiviral research and development is critical (Storey, 2010). 

HS mimetics have a great potential as antiviral candidates. Unlike previously 

tested drugs, which were found to be unsafe and very expensive, HS mimetics 

are highly effective against RSV as demonstrated by current study findings and 

with no/low cellular toxicity and the low cost of production. Therefore, HS 

mimetics could be the antiviral therapeutics that we have been waiting for the 

last six decades. 

The incubation of RSV with HS mimetics in vitro for 10 minutes (condition 

A), pre-incubation of HS mimetics with Vero E6 cell monolayer for 10 minutes 

(condition B) and a short incubation of RSV with the Vero E6 cells (condition C) 

have resulted in 20 out of 53 tested HS mimetics inducing 80-100% RSV 

inhibition {p < 0.005) (Figures 5.4-5.6). The best performing compound under 

conditions A, B and C was HS 267 (lambda carrageenan), inducing 90-100% 

RSV inhibition. These results are in agreement with previous studies who 

reported that pre-incubation of RSV with certain GAGs (e.g. heparin) inhibited 

virus infectivity (Krusat and Streckert, 1997; Martinez and Melero, 2000) as well 

as that HEp-2 cells pre-treatment with GAGs, prior to RSV inoculation, results in 

reduced efficiency of RSV infection (Donalisio et al., 2012; Donalisio et al., 

2010; Hallak et al., 2000b). These results suggest that there may be a 

mechanism behind the interaction of HS mimetics with RSV glycoproteins (G or 

F) with formation of RSV glycoprotein - HS complex resulting in reduction of 

RSV cell infectivity. In addition, HS mimetics interaction with HS on the cell 

surface may involve HS mimetic binding to the HS on the cell surface. 

Consequently the cell surface HS would become unavailable for RSV 

glycoprotein interaction resulting in RSV inhibition. The proposed mechanisms 

require further research to elucidate the exact interaction between HS mimetics 

and RSV as well as HS mimetics and HS on the cell surface; enabling a more 

specific and targeted RSV inhibition and production of therapeutic and/vaccine 

candidates with much specified role. Under final testing condition, pre-

incubation of RSV with the Vero E6 cell monolayer for 1 hour (clinically the most 

relevant condition, condition D), resulted in 15 out of 53 HS mimetic compounds 

inducing 50-90% RSV inhibition (Figure 5.7). The best performing compound 

under condition D was HS 424 (mucosal heparin with glycol split 3kDa), which 



induced 90% RSV inhibition. Previous studies have shown that sulfated 

polysaccharides can mimic HS chains and interact with viral glycoproteins, 

blocking viral attachment to cell surface HS through competitive inhibition 

(Rusnati and Urbinati, 2009; Rusnati et al., 2009). Other studies have also 

shown that pre-incubation of RSV with heparin Inhibited virus infectivity (Krusat 

and Streckert, 1997; Martinez and Melero, 2000). These results demonstrate 

HS mimetic antiviral potential, specifically in competitive RSV inhibition. 

Characterisation of the best performing compounds is essential for the 

elucidation of HS mimetics with competitive inhibition potential are fully 

elucidated in vivo followed by clinical trials if found to be successful as RSV 

antiviral therapeutics. 

It is important to note that some HS compounds performed best at the 

highest (100 MQ/mL) and/or lowest (5 pg/mL) HS concentrations, whilst other 

were unaffected by change In HS concentration (Figures 5.4-5.7). In vitro study 

analysis revealed that 10 out of 53 tested HS compounds achieved an average 

of 65-90% RSV inhibition across the four test conditions at the lowest, 5 pg/mL, 

HS concentration. It was proposed that a mechanism behind RSV inhibition 

following a HS treatment at low HS concentrations involved a proton-selective 

ion channel protein. In 2008, Can et al. (2008) provided experimental evidence 

that the transmembrane domain of SH protein forms pentameric a-helical 

bundles that form cation-selective ion channels in planar lipid bilayers (Gan et 

al., 2008). This suggests that SH may act as a proton-selective ion channel 

protein, transporting protons from the outside to the inside of the RSV vihon. At 

low concentrations, HS mimetics could bind protons while inside the SH-proton 

channel, thereby making it impossible fOor protons to flow inside the virion. As a 

result, RSV uncoating would be blocked and viral replication would be inhibited 

(Figure 5.18). In contrast, in some instances high concentrations of HS 

mimetics have resulted in enhanced viral replication in vitro. This finding is 

hypothesised to be a result of HS mimetics acting as protons themselves at 

high concentrations, with an increase in proton flow towards the virion enabling 

viral uncoating and viral replication. The current study highlights the importance 

of dose dependant viral Inhibition and the need to evaluate a range of 

concentrations, including lower concentrations essential in development of any 

therapeutic. Figure 6.1 summarises proposed mechanisms of RSV inhibition 

discussed so far. 



Figure 6.1. Heparan sulfate (HS) mimetics inhibition of respiratory 
syncytial virus (RSV) infection initiation 

A) HS mimetics blocl< the influx of protons (H-" ions) through the SH (small hydrophobic protein) -

proton channel, Inhibiting uncoating and release of free ribonucleoproteins into the cytoplasm; B) 

HS mimetics interaction with the RSV G attachment protein, preventing virus binding to the 

glycosaminoglycans (GAGs) on the cell surface; and C) HS mimetics bind to GAGs on the cell 

surface blocking the virus interaction with GAGs on the cell surface. 

In vivo post (therapeutic) RSV infection treatment with HS 228 (carboxyl 

reduced mucosal heparin) and HS 259 (fucoidan) resulted in a statistically 

significant reduction (p < 0.05) in RSV titres compared to the RSV inoculated 

saline treated group (positive control) (Figure 5.8). These results demonstrate 

HS 228 and HS 259 antiviral role in RSV infection with potential involvement in 

competitive and cell-to-cell spread inhibition. Prophylactic HS treatment of RSV 

inoculated group, with HS 228 (carboxyl reduced mucosal heparin), HS 259 

(fucoidan), HS 267 (lambda carrageenan (200 kDa)) or HS 424 (mucosal 

heparin with glycol split (3kDa)) induced a statistically significant reduction (p < 

0.05) of RSV viral titres compared to the positive control (Figure 5.13). This 

finding demonstrates HS mimetic antiviral potential again and it could be a 

result of either, HS mimetic interaction with the HS at the cell surface or the 

interaction of HS mimetics with RSV glycoproteins. Characterising the proposed 

mechanisms could help determine which of the tested HS mimetics have the 

potential to become prophylactic RSV infection treatment candidates. These 



results are in agreement with previous in vitro studies which have demonstrated 

the importance of HS compounds in RSV inhibition, with compounds such as 

heparan sulfate, dextran sulfate, heparin and chondroitin sulfate B inducing 

effective RSV inhibition (Hallak et ai., 2000a; Hallak et a!., 2007; Hallak et al., 

2000b; Kargeref a/., 2001). In addition, a study using dengue virus and flaviviral 

encephalitis mouse model found that PI-88 (a mixture of highly sulfated, 

monophosphorylated mannose oligosaccharides) had a significant and 

beneficial effect in disease outcome (Lee etal., 2006). 

Leukocyte recruitment results contribute to the growing evidence that an 

increase in eosinophil infiltration in BALF (following prophylactic HS treatment) 

or in blood (following post RSV infection HS treatment) does not contribute to 

the combined HPS. Post RSV infection HS treatment with HS 259, HS 267 and 

HS 424 has resulted in a reduced (p < 0.0001) combined HPS compared to the 

positive control (Figure 5.12) while HS 228 prophylactic treatment of RSV 

infection resulted in a reduced combined HPS. This novel finding supports the 

antiviral role of HS mimetics in RSV infection in vivo, as well as highlighting their 

potential role in immune modulation. A pre-primed immune response may 

contribute to more effective viral clearance in high-risk patients such as infants 

and the elderly. Also, HIV patients, medical staff working in infectious disease 

units and immune-deficient patients (eg. lacking IgA) could benefit from this 

treatment, as HS mimetics could be administered as a preventative measure. 

Currently, there are some therapies that are used as prophylactic treatments 

(for asthma, multiple sclerosis etc.). XOLAIR (omalizumab) is a monoclonal 

antibody targeting circulating IgE, preventing IgE from making a contact with its 

receptor on the effector cell. XOLAIR is recommended for people with allergic 

asthma who have atopic symptoms even though they are taking inhaled 

steroids (Norman et ai., 2013). As demonstrated by the current studies, the use 

of HS mimetics as prophylactic therapeutics may provide a low cost and high 

efficacy treatment of RSV infection as well as prevention of subsequent ainways 

disease. 

In conclusion, this is the first HS mimetic study that has examined and 

reported on the anti-viral activity of 53 HS mimetic compounds in vitro against 

RSV. In addition, this study is the first to perform in vivo studies with HS 

mimetics using RSV mouse model, and compare post RSV infection HS 



treatment with prophylactic HS treatment of RSV infection. Together, findings 

from in vitro and in vivo studies demonstrate the anti-viral potential of HS 

mimetics against RSV with HS 228 characterised as the best performing 

compound for post RSV infection HS treatment and prophylactic treatment of 

RSV infection, while reducing RSV disease pathology. In addition, HS mimetics 

were found to activate immune response even in the absence of viral infection, 

suggesting their potential in pre-emptive immune activation and immune 

modulation. 

6.2.4 Vaccine candidates and therapeutic agents on 

the edge of success 
Major barriers to vaccine development to date have included: the early 

age of primary RSV infection; the capacity of RSV to evade innate immunity; the 

failure of RSV-induced adaptive immunity to prevent re-infection; the history of 

RSV vaccine-enhanced disease; and the lack of an animal model fully 

permissive to human RSV infection (Graham, 2011). These biological 

challenges, safety concerns, and practical issues, have significantly impeded 

RSV vaccine development progress (Graham, 2011). Nevertheless, recently the 

pre-fusion state of RSV F protein was identified as a target of most RSV-

neutralising activity in human sera; however, its metastability has hindered 

characterisation. To overcome this obstacle, a study has identified prefusion-

specific antibodies that were substantially more potent than the prophylactic 

antibody palivizumab (McLellan et al., 2013). This finding could potentially lead 

to successful vaccine development in the near future. In addition, a clinical-

stage biopharmaceutical company, Okairos, has evaluated its RSV vaccine 

candidate in well-established preclinical models and found that it stimulates 

both a strong neutralising antibody and a robust T-cell response (Okairos, 

2014). Okairos' vaccine candidate has also been shown to provide complete 

protection against RSV infection in challenge experiments in both cotton rats 

and neonatal calves, as well as having an excellent safety profile, both before 

and after challenge (Okairos, 2014). 

Unfortunately, all of these vaccine candidates are antibody based and 

just like previously mentioned XOLAIR (omalizumab), their application may be 

limited to a certain age. Currently XOLAIR can be used only in children over 12 



years of age, which is beyond the age of the high risl< RSV patients (1 month- 2 

years). Also, the production of these therapeutics remains costly as previously 

seen with palivizumab and therefore their application is likely to be highly 

restrictive and out of reach of the general community. 

In contrast, the therapeutic use of HS mimetics has the potential to 

overcome the issues faced by previous monoclonal antibody-based vaccines. 

Firstly, HS mimetics are cheap and easy to produce. Results from this thesis 

demonstrate that HS mimetics induce viral clearance, in vitro and in vivo. In 

addition, HS mimetic have been shown to Induce an immune response even in 

the absence of viral infection, suggesting that they may have a role in immune 

modulation. The fact that HS mimetics have the potential to be used in antiviral 

treatment is supported by patent submitted in 2013 for iota-carrageenan HS 

compound. In early 2013 a patent titled "Antiviral composition comprising a 

sulfated polysaccharide: iota-carrageenan" was submitted by Marinomed 

Biotechnologie GmbH and published on 27th of May 2013. In their patent 

Marinomed Biotechnologie GmbH suggest that iota-carrageenan can be used 

as an active antiviral ingredient in medication for the prophylactic or therapeutic 

treatment of a symptom, condition or disease caused by or associated with an 

infection by a respiratory virus selected from the group consisting of 

paramyxovirus (human parainfluenza virus (HPV) type 1, HPV type 2, HPVtype 

3, HPV type 4 and RSV), human influenza A virus, and adenovirus of subtype 

B. Their results show that iota-carrageenan reduces plaque formation of 

parainfluenza virus 3 in Hep-2 cells by 75% inhibition at lOOpg/ml. Also, iota-

carrageenan pre-treatment of HeLa cells results in 65% reduction of plaque 

formation of parainfluenza virus 3 at 400 pg/ml. Finally, they also show that iota-

, kappa-, lambda-carrageenan and fucoidan induce reduce plaque formation of 

influenza A H5N1 virus in epithelial cells by 80% inhibition at 400 pg/ml (IFI 

CLAIMS Patent Services, 2012). These findings are supported by chapter 5 in 

vitro results where lambda- and iota-carrageenans were found to perform very 

well across all four testing conditions with approximately 60-100% RSV 

inhibition achieved. The in vivo analysis provided by the current studies further 

illustrates the anti-viral potential of HS mimetics. In summary, the in vivo results 

revealed HS 228 (carboxyl reduced mucosal heparin) as the best performing 

compound in vivo following by HS 424 (mucosal heparin with glycol split 



(3kDa)). Further in vivo analysis of HS mimetics is required to elucidate their 

vaccine and therapeutic potential. 

6.3 CONCLUSIONS 

RSV is an important viral pathogen that causes significant morbidity, 

utilisation of health care resources, and impact on secondary disease 

processes. While there are significant biological and historical barriers that have 

delayed vaccine development, continued evaluation of new vaccine and 

therapeutic candidates, such as HS mimetics, indicate the potential for a safe 

and efficacious therapeutic treatment to reduce the disease burden induced by 

RSV. Research to-date highlights that the success of any therapeutic will hinge 

on the generation of an appropriate immune response within the patient, hence, 

continued research towards understanding the innate and adaptive immune 

responses Involved in RSV infection and re-infection is essential. 

Findings from this thesis have advanced current understanding and 

knowledge regarding RSV infection specifically in terms of the role of 

eosinophils in RSV infection, innate and adaptive immune responses to RSV as 

well as potential therapeutic candidates against RSV. The role of eosinophils in 

RSV infection has been expanded on with study findings suggesting that RSV is 

unable to infect mouse eosinophils and that RSV infection induces eosinophil 

activation resulting in eosinophil-mediated and targeted immune response. 

Innate and adaptive immune studies of RSV infection and re-infection advanced 

current knowledge on eosinophil antiviral potential under both experimental 

conditions. Furthermore, eosinophil recruitment is believed to be regulated 

through the expression of CD2 on the T cell surface. Limited eosinophil 

recruitment in the Rag 27" model following RSV infection and re-infection is 

suggestive of T cell regulation. However, this regulation does not seem to be 

limited to T cells only, as recent study by Roediger et al. (2013) has shown that 

both NK and ILC2 cell express CD2, required for eosinophil recruitment 

(Roediger et ai., 2013). As both of these cells are present in the Rag 27" model, 

it is possible that the delay in the eosinophil recruitment observed following RSV 

infection and re-infection of IL-5 Tg Rag 27" mice, is a result of NK and ILC2 

regulation of eosinophil recruitment in the absence of T cells. This novel finding 

could be immune cell regulation, instrumental in the early stages of life when 

dealing with underdeveloped immunity. In vitro and in vivo studies using HS 



mimetics reported for the first time data from over 53 HS mimetic compounds 

demonstrating HS treatment results in RSV inhibition following a pre-incubation 

of RSV with HS mimetics, pre-incubation of HS mimetics with cell surface or 

pre-incubation of RSV with cell surface. HS mimetics also showed antiviral 

potential in vivo as a therapeutic and prophylactic treatment of RSV infection. 

Also, a mechanism for RSV inhibition at low HS mimetic concentrations was 

proposed to utilise interaction between using RSV SH protein and HS mimetics. 

Finally, novel findings that HS mimetics induce immune response in the 

absence of viral infection suggest their potential in immune modulation. 

In conclusion, novel HS mimetics have been identified as potential 

prophylactic or post-infection therapeutic candidates for RSV infection. HS 

mimetics have been shown to have the potential to inhibit viral attachment 

directly or to induce an immune modulation response, further inhibiting the viral 

infection. A modulated immune response could be used to induce a targeted 

antiviral response with eosinophils demonstrating a therapeutic role in RSV 

infection and re-infection. However, in the absence of effective immunisation 

against RSV, the focus needs to remain on reducing prenatal and 

environmental risk factors, including prematurity, smoking and improved 

hygiene practices. In the meantime, search for RSV vaccine and effective 

therapeutic agent continues. 

6.4 FUTURE WORK 

Following the investigations described in this thesis, there are a number 

experiments that should be undertaken as part of the future work. As RSV, 

human respiratory pathogen was found to be unable to infect murine 

eosinophils, it was suggested that a mechanism that offers protection for mouse 

eosinophils against RSV infection should be examined further. Although, mouse 

and human eosinophils are similar, these cells generate different responses to 

RSV infection. To elucidate this mechanism, a FACS analysis of the eosinophil 

(human and mouse) cell surface receptors following the RSV treatment should 

be undertaken. This may identify a cell surface receptor(s) present and used by 

one type of eosinophil in eosinophil-RSV interaction that enables RSV infection. 

Moreover, the contribution of eosinophils to RSV clearance appears to 

be of high importance and the modulation of eosinophil recruitment may be the 



key to RSV inhibition. HS mimetics, in the absence of viral infection, have been 

found to induce immune modulation. Several experiments could assess this 

finding and fine-tune the immune response. Initially, an in vitro migration study 

can be done to assess the effect of HS mimetics on leukocyte chemotaxis. In 

addition, real time migration study can be performed using a TAXIScan machine 

examining eosinophil migration towards HS mimetics as an agonist. 

Furthermore, a dose dependant HS mimetics study could be performed to 

characterise the ability of HS mimetics to induce greater viral inhibition at lower 

concentrations as observed in in vitro studies. 

As CD4'' adoptive transfer into IL-5 Tg Rag 2 /" BALB/c mice has resulted 

in the reduction of viral load, it would be useful to assess: if CD4'' adoptive 

transfer into Rag 2-/- BALB/c; and CDS"' adoptive transfer into Rag 27- and IL-5 

Tg Rag 2i- BALB/c mice would also, result in the same viral titre reduction. In 

addition, 004"^ and CDS"̂  adoptive transfer effect on lung pathology in response 

to RSV infection. This would be of interest as cells are believed to 

contribute to more RSV disease pathology compared to the CD4'' cells. 

Furthermore, as eosinophils have been found to be regulated by T cells and 

potentially T cell innate counterparts, the focus of future studies should be on 

elucidating the cell population involved in the regulation process. Furthermore, 

any future work should also utilise assays described in chapter 3 

(degranulation, activation and chemotaxis) which could assist in elucidating the 

difference in eosinophil response observed between primary and secondary 

RSV infection. 

As mentioned in chapter 5, it is imperative to understand the interaction 

between RSV, HS mimetics and/ or HS at the cell surface, so this knowledge 

can be used and applied to vaccine and therapeutic designs. Therefore, wild 

type RSV could be assessed for its ability to utilise HS-mediated viral replication 

by performing an in vitro attachment experiments. These experiments would 

involve characterising RSV G or F protein interaction with HS at the cell surface 

by removing RSV receptors one at the time using WT BALB/c model and 

blocking RSV receptors. If results were promising from this study the next step 

should involve investing into developing genetically modified BALB/c mice 

lacking specific RSV receptors. Similar approach could be applied while 

characterising HS mimetics and cell surface HS interaction using WT BALB/c 



model and blocking the cell surface receptors one at a time in vivo. These 
experiments would facilitate a better understanding of RSV attachment and 
fusion requirements, and hence, enable the development and characterisation 
of novel HS mimetics to inhibit RSV to target cell binding. In parallel, expanding 
on previous studies by Gan et al. (2008) through a series of structural studies 
aimed to characterise SH potential as cation-transport channel protein, w^ould 
be worthwhile in elucidating the role of SH protein in RSV infection as well as 
RSV and HS interaction. 

The HS mimetic studies, in vitro and in vivo, have generated a number of 
potential therapeutic/vaccine candidates. It was beyond the scope of this study 
to test all the candidates in vivo; however, future work should focus on 
characterising more HS mimetic compounds, specifically group 1 - modified 
mucosal heparins (~12kDa) with a glycol split (HS 204, HS 205), group 2 -
modified mucosal heparin (3kDa) (HS 331, HS 332) and group 5 - other HS 
compounds (HS 238, HS 241, HS 242, PI-88 and Suramin) as these were found 
to be the most efficient at lower concentrations of 5 and/or 20 pg/mL across all 
four testing conditions. Therefore, these compounds should be tested further in 
vitro at 1 pg/mL and 0.1 pg/mL concentrations to assess if their RSV antiviral 
efficacy can be improved at these concentrations. These compounds should be 
tested in an in vivo model, as many of them are promising anti-RSV candidates. 
Furthermore, as HS mimetics were delivered i.p. in the in vivo studies, it is 
important to assess how much of the HS dose would actually make it to its 
destination, lungs. There appears to be several experimental approaches 
available and future work should focus on answering this crucial question 
arising from the chapter 5 findings. Experiments proposed could entail 
monoclonal antibody detection of HS present in lungs (David et al., 1992), 
fluorophore labelling (Skidmore et a!., 2009) and/or radioactive isotope 
labelling. All of these would enable quantification of HS present in lungs. 

Finally, it is worth repeating some of the studies presented in this thesis 
using RSV clinical isolates, to address the importance of truncated G protein. 
Clinical isolates express full length G protein and studies using these isolates 
could help alleviate any doubt inferred by G protein truncation following the RSV 
derivation in the laboratory. 



APPENDICES 

APPENDIX 1 

Buffered Distilled Water 

Sorensons Buffer 

• Solution A: 0.2 M sodium di-hydrogen orthophosphate 

(MW = 156 g/mol) =3.12 g in 100 ml distilled water 

• Solution B: 0.2 M di-sodium hydrogen orthophosphate 

(anhydrous) (MW 142) = 2.83 g in 100 ml distilled water 

pH 6.8 Stock Solution: 25.5 ml Solution A and 24.5 ml Solution B 

Make up to 100ml with distilled water. 

Working Solution: 50 ml Stock pH 6.8 diluted to 1 litre with distilled 

water. 



APPENDIX 2 

Transmission Electron Microscopy Protocol 

1. Primary fixation: 2% giutaraldehyde in 0.1 M sodium cacodylate for 2 hours 

2. Buffer washes: 2 x 0.1IVI Sodium cacodylate for 15 minutes each 

3. Secondary fixation: 1 % Osmium textroxide for 1.5 hours 

4. Buffer washes: 2 x 0.1 IVI Sodium cacodylate for 15 minutes each 

5. Samples were rinsed in distilled water twice for 5 minutes each 

6. Dehydration in acetone 

• 15 minutes each in 30, 50, 70, 90, 95% acetone and then 3 x 100% 

acetone 

7. Embedded in Spurr's resin as follows: 2 hours in 50:50 - resin: acetone, 2 

hours in 100% resin, overnight in 100% resin, 2 hours in 100% resin, 

overnight in fresh 100% resin to embed at 70°C 

8. Sections approximately 80nm thick were cut 

• Sections were stained with 2% uranyl acetate and Reynold's lead citrate 

9. Samples were photographed using a Hitachi H7000 transmission electron 

microscope at 75k\/ 



Appendix 3 

Negative control ^ ^ ^^ 

UV-RSV V 
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Figure A.1. Respiratory syncytial virus (RSV) induced eosinophil 
degranulation - dot blot membrane 

Freshly isolated eosinophils from interleukin-5 transgenic BALB/c mice were incubated with Vero 

E6 cell lysate (untreated eosinophils; negative control), ultraviolet-inactivated RSV (UV-RSV) 

(additional negative control), 0.1 pM phorbol myristate acetate (PMA) (positive control) or RSV at 

multiplicity of infection of 1 for 4 hours and assessed for eosinophil degranulation using major 

basic protein as a degranulation marker. Dots represent five individual samples tested for each 

sample type. 



APPENDIX 4 

Heparan sulfate cytotoxicity study 

Control 81 106 109 111 229 238 241 242 254 486 510 511A 511B 512D 512E Pl-88Sutainin 



Figure A.2. Heparan sulfate (HS) treatment results in no cellular toxicity 

Assay was prepared in 96-well plate with 6000 Vero E6 cells seeded per well. Once adhered to 

the plate, Vero E6 cell were treated with saline (negative control- white bar) or HS mimetics 

(black bar) at 100 pg/mL final concentration. Following the 24 hour incubation at 37°C, cells were 

analysed for signs of cellular toxicity using AlamarBlue assay. Samples are represented as a total 

of viable cells (n = 4) ± standard deviation. Data was analysed using ONE-way ANOVA with 

Dunnet multiple comparison test (GraphPad Prism version X7). 
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Figure A.3. Heparan sulfate (HS) in vitro (Condition A) treatment of 
respiratory syncytial virus (RSV) infection 

The assay was carried out in 24-well flat bottom plate. Group 1 (heparins and modified heparins ( -

12kDa)) (A), Group 2 (low molecular weight heparins (LMWH) (5kDa and 3kDa) and enoxaparin 

with/without glycol split) (B), Group 3 (fucoidans and modified fucoidan) (C), Group 4 

(carrageenans) (D) and Group 5 (other) (E) HS mimetics were tested at 100, 20 or 5 Mg/mL. 

Briefly, 100 [jl/well of HS mimetics was incubated with RSV (200 plaque forming units/well) for 10 

minutes at 37°C and 5% CO2. Following the incubation, HS with RSV mixture was added to Vero 

E6 cell monolayer and allowed to incubate for 1 hour at 37°C and 5% CO2. Plate was processed 

by immunostaining RSV plaque assay (section 2.10). Data are represented as a mean of RSV 

plaques recovered (n = 4) ± standard deviation. HS compounds 230 (negative) and 254 (positive) 

were used as HS mimetic controls. For each graph, the controls HS 230, HS 254 and RSV results 

are presented in boxed area for comparison. Data were analysed using a ONE-way ANOVA with 

Tukey's multiple comparison test (GraphPad Prism) ( * " , p < 0.001 and p < 0.0001). 



Condition B 

A ) A ) 
260-

1 
200' 

C 
3 ? 160 
1 
O 100 
« 

1 
Q. 60 

230 2&4 RSV 384 465 466 481 483 
- Group 1 • 

B ) 

250 

•J 

200 

1 at c 160 

1 
o 

100 

1 
a 60 

0 

M 

ULUi 
C) 

230 2S4 RSV 394 408 416 418 419 
» Group 2 

£ 100 « I 
i 60 

X-x 

D ) 

260 

E 
200 

1 150' 

o 
• 100 
J 
1 60 

0 

• 5 ( i g / m L 

C D 2 0 n g / m L 

H 1 0 0 ) i g / m L 

230 264 RSV 497 498 499 600 601 602 

Group 3 -i 

230 264 RSV 494 496 496 

Group 4 

E) 260 

E 200 
•i 

1 
160 

c 

1 100 

1 M 
a GO 

0 

Jn 

i ii . . . . 1 
230 264 RSV 229 486 610 611A 611B 6120 6126 

Group 5 < 



Figure A.4. Heparan sulfate (HS) in vitro (Condition B) treatment of 
respiratory syncytial virus (RSV) infection 

The assay was carried out in 24-well flat bottom plate. Group 1 (heparins and modified heparins 

(~12kDa)) (A), Group 2 (low molecular weight heparins (LMWH) (5kDa and 3kDa) and 

enoxaparin with/without glycol split) (B), Group 3 (fucoidans and modified fucoidan) (C), Group 4 

(carrageenans) (D) and Group 5 (other) (E) HS mimetics were tested at 100, 20 or 5 pg/mL and 

100 [jl/well of HS mimetics was incubated with Vero E6 cell monolayer for 10 minutes at 37°C 

and 5% CO2. Following the incubation, RSV (200 plaque forming units/well) was added to Vero 

E6 cell monolayer with HS mimetics and allowed to incubate for 1 hour at 37°C and 5% CO2. 

Plate was processed by immunostaining RSV plaque assay (section 2.10.). Data are represented 

as a mean of RSV plaques recovered (n = 4) ± standard deviation. HS 230 (negative) and 254 

(positive) were used as HS mimetic controls. For each graph, the controls HS 230, HS 254 and 

RSV results are presented in boxed area for comparison. Data were analysed using ONE-way 

ANOVA with Tukey's multiple comparison test (GraphPad Prism) ( * " , p < 0.001 and " * * , p < 

0.0001). 
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Figure A.5. Heparan sulfate (HS) in vitro (Condition C) treatment of 
respiratory syncytial virus (RSV) infection 

The assay was carried out in 24-well flat bottom plate. RSV (200 plaque forming units/well) was 

added to Vero E6 cell monolayer and allowed to incubate for 10 minutes at 37°C and 5% CO2. 

Following the incubation, 100 pl/well of Group 1 (heparins and modified heparins (~12kDa)) (A), 

Group 2 (low molecular weight heparins (LMWH) (5kDa and 3kDa) and enoxaparin with/without 

glycol split) (B), Group 3 (fucoidans and modified fucoidan) (C), Group 4 (carrageenans) (D) and 

Group 5 (other) (E) HS mimetics were added at 100, 20 or 5 pg/mL to Vero E6 cell monolayer 

treated with RSV and incubated for 1 hour at 37°C and 5% CO2. Plate was processed by 

immunostaining RSV plaque assay (section 2.10.). Data are represented as a mean of RSV 

plaques recovered (n = 4) ± standard deviation. HS 230 (negative) and 254 (positive) were used 

as HS mimetic controls. For each graph, the controls HS 230, HS 254 and RSV results are 

presented in boxed area for comparison. Data were analysed using ONE-way ANOVA with 

Tukey's multiple comparison test (GraphPad Prism) (*, p < 0.05,*", p < 0.001 and p < 

0.0001). 
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Figure A.6. Heparan sulfate (HS) in vitro (Condition D) treatment of 
respiratory syncytial virus (RSV) infection 

The assay was carried out in 24-well flat bottom plate. RSV (200 plaque forming units/well) as 

added to Vero E6 cell monolayer and allowed to incubate for 1 hour at 37°C and 5% CO2. 

Following the incubation, 100 pl/well of Group 1 (heparins and modified heparins (~12kDa)) (A), 

Group 2 (low molecular weight heparins (LMWH) (5kDa and 3kDa) and enoxaparin with/without 

glycol split) (B), Group 3 (fucoidans and modified fucoidan) (C), Group 4 (carrageenans) (D) and 

Group 5 (other) (E) HS mimetics were added at 100, 20 or 5 pg/mL to Vero E6 cell monolayer 

treated with RSV. Plate was processed as per immunostaining RSV plaque assay (Section 2.7.). 

Data are represented as a mean of RSV plaques recovered (n = 4) + standard deviation. HS 230 

(negative) and HS 254 (positive) were used as HS mimetic control. For each graph, the controls 

HS 230, HS 254 and RSV results are presented in boxed area for comparison. Data were 

analysed using ONE-way ANOVA with Tukey's multiple comparison test (GraphPad Prism) (**, p 

<0.005 and "** , p < 0.0001). 
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bind dendritic cells and colocalize w îth langerin in Langerhans cells. J Gen 
Virol 86, 1297-1305. 

Braciale, T.J., 2005. Respiratory syncytial virus and T cells: interplay betw/een 
the virus and the host adaptive immune system. Proc Am Thorac Soc 2, 
141-146. 

Braciale, T.J., Sun, J., Kim, T.S., 2012. Regulating the adaptive immune 
response to respiratory virus infection. Nature reviews. Immunology 12, 
295-305. 

Brickshawana, A., Shapiro, V.S., Kita, H., Pease, L.R., 2011. Lineage(-)Sca1+c-
Kit(-)CD25+ cells are IL-33-responsive type 2 innate cells in the mouse 
bone marrow. J Immunol 187, 5795-5804. 

Bueno, S.M., Gonzalez, P.A., Cautivo, K.M., Mora, J.E., Leiva, E.D., lobar, 
H.E., Fennelly, G.J., Eugenin, E.A., Jacobs, W.R., Jr., Riedel, C.A., 
Kalergis, A.M., 2008. Protective T cell immunity against respiratory 
syncytial virus is efficiently induced by recombinant BCG. Proc Natl Acad 
Sci U S A 105, 20822-20827. 

Bugler, B., Caizergues-Ferrer, M., Bouche, G., Bourbon, H., Amalric, F., 1982. 
Detection and localization of a class of proteins immunologically related to 
a 100-kDa nucleolar protein. European journal of biochemistry / FEES 
128, 475-480. 

Bukreyev, A., Yang, L., Fricke, J., Cheng, L., Ward, J.M., Murphy, B.R., Collins, 
P.L., 2008. The secreted form of respiratory syncytial virus G glycoprotein 
helps the virus evade antibody-mediated restriction of replication by acting 
as an antigen decoy and through effects on Fc receptor-bearing 
leukocytes. J Virol 82, 12191-12204. 

Busse, W.W., Lemanske, R.F., Jr., 2001. Asthma. The New England journal of 
medicine 344, 350-362. 

Byrnes, A.P., Griffin, D.E., 1998. Binding of Sindbis virus to cell surface heparan 
sulfate. J Virol 72, 7349-7356. 

Calle, A., Ugrinova, I., Epstein, A.L., Bouvet, P., Diaz, J.J., Greco, A., 2008. 
Nucleolin is required for an efficient herpes simplex virus type 1 infection. 
J Virol 82, 4762-4773. 

Cane, P.A., 2001. Molecular epidemiology of respiratory syncytial virus. 
Reviews in medical virology 11, 103-116. 

Cannon, M.J., Openshaw, P.J., Askonas, B.A., 1988. Cytotoxic T cells clear 
virus but augment lung pathology in mice infected with respiratory 
syncytial virus. J Exp Med 168, 1163-1168. 

Cannon, M.J., Stott, E.J., Taylor, G., Askonas, B.A., 1987. Clearance of 
persistent respiratory syncytial virus infections in immunodeficient mice 
following transfer of primed T cells. Immunology 62, 133-138. 



Carter, S.D., Dent, K.C., Atkins, E., Foster, T.L., Verow, M., Gorny, P., Harris, 
M., Hiscox, J.A., Ranson, N.A., Griffin, S., Barr, J.N., 2010. Direct 
visualization of the small hydrophobic protein of human respiratory 
syncytial virus reveals the structural basis for membrane permeability. 
FEBS letters 584, 2786-2790. 

Castilow, E.M., Legge, K.L., Varga, S.M., 2008. Cutting edge: Eosinophils do 
not contribute to respiratory syncytial virus vaccine-enhanced disease. J 
Immunol 181, 6692-6696. 

Casu, B., Guerrini, M., Naggi, A., Perez, M., Torri, G., Ribatti, D., Carminati, P., 
Giannini, G., Penco, S., Pisano, C., Belleri, M., Rusnati, M., Presta, M., 
2002a. Short heparin sequences spaced by glycol-split uronate residues 
are antagonists of fibroblast growth factor 2 and angiogenesis inhibitors. 
Biochemistry 41, 10519-10528. 

Casu, B., Naggi, A., Torri, G., 2002b. Chemical derlvatization as a strategy to 
study structure-activity relationships of glycosaminoglycans. Seminars in 
thrombosis and hemostasis 28, 335-342. 

Chambers, C.A., Allison, J.P., 1997. Co-stimulation in T cell responses. Current 
opinion in immunology 9, 396-404. 

Chang, Y.J., Kim, H.Y., Albacker, L.A., Baumgarth, N., McKenzie, A.N., Smith, 
D.E., Dekruyff, R.H., Umetsu, D.T., 2011. Innate lymphoid cells mediate 
influenza-induced airway hyper-reactivity independently of adaptive 
immunity. Nature immunology 12, 631-638. 

Chanock, R., Finberg, L., 1957. Recovery from infants with respiratory illness of 
a virus related to chimpanzee coryza agent (CCA). II. Epidemiologic 
aspects of infection in infants and young children. American journal of 
hygiene 66, 291-300. 

Chanock, R.M., Roizman, B., Myers, R., 1957. Recovery from infants with 
respiratory illness of a virus related to chimpanzee coryza agent (CCA): I. 
Isolations, properties and charcterisation. American journal of hygiene 66, 
281-290. 

Chapman, J., Abbott, E., Alber, D.G., Baxter, R.C., Bithell, S.K., Henderson, 
E.A., Carter, M.C., Chambers, P., Chubb, A., Cockerill, G.S., Collins, P.L., 
Dowdell, V.C., Keegan, S.J., Kelsey, R.D., Lockyer, M.J., Luongo, C., 
Najarro, P., Pickles, R.J., Simmonds, M., Taylor, D., Tyms, 3., Wilson, 
L.J., Powell, K.L., 2007. RSV604, a novel inhibitor of respiratory syncytial 
virus replication. Antimicrobial agents and chemotherapy 51, 3346-3353. 

Chen, D., Wu, X.Z., Wen, Z.Y., 2008. Sulfated polysaccharides and immune 
response: promoter or inhibitor? Panminerva medica 50, 177-183. 

Chen, v . , Maguire, T., Hileman, R.E., Fromm, J.R., Esko, J.D., Linhardt, R.J., 
Marks, R.M., 1997. Dengue virus infectivity depends on envelope protein 
binding to target cell heparan sulfate. Nature medicine 3, 866-871. 

Cheng, X., Park, H., Zhou, H., Jin, H., 2005. Overexpression of the M2-2 protein 
of respiratory syncytial virus inhibits viral replication. J Virol 79, 13943-
13952. 

Cherrier, M., Ohnmacht, C., Cording, S., Eberl, G., 2012. Development and 
function of intestinal innate lymphoid cells. Current opinion in immunology 
24, 277-283. 

Chin, J., Magoffin, R.L., Shearer, L.A., Schieble, J.H., Lennette, E.H., 1969. 
Field evaluation of a respiratory syncytial virus vaccine and a trivalent 
parainfluenza virus vaccine in a pediatric population. Am J Epidemiol 89, 
449-463. 



Claassen, E.A., van der Kant, P.A., Rychnavska, Z.S., van Bleek, G.M., Easton, 
A.J., van der Most, R.G., 2005. Activation and inactivation of antiviral CDS 
T cell responses during murine pneumovirus infection. J Immunol 175, 
6597-6604. 

Clark, K., Simson, L., Newcombe, N., Koskinen, A.M., Mattes, J., Lee, N.A., 
Lee, J.J., Dent, L.A., Matthaei, K.I., Foster, P.S., 2004. Eosinophil 
degranulation in the allergic lung of mice primarily occurs in the ainway 
lumen. Journal of leukocyte biology 75, 1001-1009. 

Clerico, M., Rivoiro, C., Contessa, G., Viglietti, D., Durelli, L., 2008. The therapy 
of multiple sclerosis with immune-modulating or immunosuppressive drug. 
A critical evaluation based upon evidence based parameters and 
published systematic reviews. Clinical neurology and neurosurgery 110, 
878-885. 

Cohn, L., Homer, R.J., MacLeod, H., Mohrs, M., Brombacher, F., Bottomly, K., 
1999. Th2-induced airway mucus production is dependent on IL-4Ralpha, 
but not on eosinophils. J Immunol 162, 6178-6183. 

Collins, P.D., Marleau, S., Griffiths-Johnson, D.A., Jose, P.J., Williams, T.J., 
1995. Cooperation between interleukin-5 and the chemokine eotaxin to 
induce eosinophil accumulation in vivo. J Exp Med 182, 1169-1174. 

Collins, P.L., Graham, B.S., 2008. Viral and Host Factors in Human Respiratory 
Syncytial Virus P a t h o g e n e s i s v . J Virol 82, 2040-2055. 

Collins, P.L., Hill, M.G., Cristina, J., Grosfeld, H., 1996. Transcription elongation 
factor of respiratory syncytial virus, a nonsegmented negative-strand RNA 
virus. Proc Natl Acad Sci U S A 93, 81-85. 

Collins, P.L., Melero, J.A., 2011. Progress in understanding and controlling 
respiratory syncytial virus: still crazy after all these years. Virus Res 162, 
80-99. 

Combadiere, C., Salzwedel, K., Smith, E.D., Tiffany, H.L., Berger, E.A., Murphy, 
P.M., 1998. Identification of CX3CR1. A chemotactic receptor for the 
human CX3C chemokine fractalkine and a fusion coreceptor for HIV-1. 
The Journal of biological chemistry 273, 23799-23804. 

Connors, M., Collins, P.L., Firestone, C.Y., Murphy, B.R., 1991. Respiratory 
syncytial virus (RSV) F, G, M2 (22K), and N proteins each induce 
resistance to RSV challenge, but resistance induced by M2 and N proteins 
is relatively short-lived. J Virol 65, 1634-1637. 

Conrad, H.E., Guo, Y., 1992. Structural analysis of periodate-oxidized heparin. 
Advances in experimental medicine and biology 313, 31-36. 

Costa, J.J., Weller, P.F., Galli, S.J., 1997. The cells of the allergic response: 
mast cells, basophils, and eosinophils. JAMA : the journal of the American 
Medical Association 278, 1815-1822. 

Cottin, v., Cordier, J.F., 2005. Eosinophilic pneumonias. Allergy 60, 841-857. 
Crim, R.L., Audet, S.A., Feldman, S.A., Mostowski, H.S., Beeler, J.A., 2007. 

Identification of linear heparin-binding peptides derived from human 
respiratory syncytial virus fusion glycoprotein that inhibit infectivity. J Virol 
81,261-271. 

Crowe, J.E., Jr., Firestone, C.Y., Murphy, B.R., 2001. Passively acquired 
antibodies suppress humoral but not cell-mediated immunity in mice 
immunized with live attenuated respiratory syncytial virus vaccines. J 
Immunol 167, 3910-3918. 

Culley, F.J., Pollott, J., Openshaw, P.J., 2002. Age at first viral infection 
determines the pattern of T cell-mediated disease during reinfection in 
adulthood. J Exp Med 196, 1381-1386. 



Cunningham, C.K., McMillan, J.A., Gross, S.J., 1991. Rehospitalization for 
respiratory illness in infants of less than 32 weeks' gestation. Pediatrics 
88, 527-532. 

David, G., Bai, X.M., Van der Schueren, B., Cassiman, J.J., Van den Berghe, 
H., 1992. Developmental changes in heparan sulfate expression: in situ 
detection with mAbs. J Cell Biol 119, 961-975. 

De Francesco, M.A., Baronio, M., Poiesi, C., 2011. HIV-1 p i 7 matrix protein 
interacts with heparan sulfate side chain of CD44v3, syndecan-2, and 
syndecan-4 proteoglycans expressed on human activated CD4+ T cells 
affecting tumor necrosis factor alpha and interleukin 2 production. The 
Journal of biological chemistry 286, 19541-19548. 

Deffrasnes, C., Hamelin, M.E., Prince, G.A., Boivin, G., 2008. Identification and 
evaluation of a highly effective fusion inhibitor for human 
metapneumovirus. Antimicrobial agents and chemotherapy 52, 279-287. 

Dent, L.A., Strath, M., Mellor, A.L., Sanderson, C.J., 1990. Eosinophilia in 
transgenic mice expressing interleukin 5. J Exp Med 172, 1425-1431. 

Desreumaux, P., Capron, M., 1996. Eosinophils in allergic reactions. Current 
opinion in immunology 8, 790-795. 

DeVincenzo, J., Cehelsky, J.E., Alvarez, R., Elbashir, S., Harborth, J., 
Toudjarska, I., Nechev, L., Murugaiah, V., Van Vliet, A., Vaishnaw, A.K., 
Meyers, R., 2008. Evaluation of the safety, tolerability and 
pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic 
directed against respiratory syncytial virus (RSV). Antiviral Res 77, 225-
231. 

DeVincenzo, J., Lambkin-Williams, R., Wilkinson, T., Cehelsky, J., Nochur, S., 
Walsh, E., Meyers, R., Gollob, J., Vaishnaw, A., 2010. A randomized, 
double-blind, placebo-controlled study of an RNAi-based therapy directed 
against respiratory syncytial virus. Proc Natl Acad Sci U S A 107, 8800-
8805. 

DeVincenzo, J.P., El Saleeby, C.M., Bush, A.J., 2005. Respiratory syncytial 
virus load predicts disease severity in previously healthy infants. J Infect 
Dis 191, 1861-1868. 

Di Stefano, A., Caramori, G., Gnemmi, I., Contoli, M., Vicari, C., Capelli, A., 
Magno, F., D'Anna, S.E., Zanini, A., Brun, P., Casolari, P., Chung, K.F., 
Barnes, P.J., Papi, A., Adcock, I., Baibi, B., 2009. T helper type 17-related 
cytokine expression is increased in the bronchial mucosa of stable chronic 
obstructive pulmonary disease patients. Clin Exp Immunol 157, 316-324. 

Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S., Reis e Sousa, C., 2004. Innate 
antiviral responses by means of TLR7-mediated recognition of single-
stranded RNA. Science 303, 1529-1531. 

Dimova-Yaneva, D., Russell, D., Main, M., Brooker, R.J., Helms, P.J., 2004. 
Eosinophil activation and cysteinyl leukotriene production in infants with 
respiratory syncytial virus bronchiolitis. Clin Exp Allergy 34, 555-558. 

DiNapoli, J.M., Murphy, B.R., Collins, P.L., Bukreyev, A., 2008. Impairment of 
the CD8+ T cell response in lungs following infection with human 
respiratory syncytial virus is specific to the anatomical site rather than the 
virus, antigen, or route of infection. Virology journal 5, 105. 

Domachowske, J.B., Bonville, C.A., Ali-Ahmad, D., Dyer, K.D., Easton, A.J., 
Rosenberg, H.F., 2001. Glucocorticoid administration accelerates mortality 
of pneumovirus-infected mice. J Infect Dis 184, 1518-1523. 

Domachowske, J.B., Bonville, C.A., Dyer, K.D., Easton, A.J., Rosenberg, H.F., 
2000a. Pulmonary eosinophilia and production of MIP-1 alpha are 



prominent responses to infection with pneumonia virus of mice. Cell 
Immunol 200, 98-104. 

Domachowske, J.B., Bonville, C.A., Easton, A.J., Rosenberg, H.F., 2002. 
Differential expression of proinflammatory cytokine genes in vivo in 
response to pathogenic and nonpathogenic pneumovirus infections. J 
Infect Dis 186, 8-14. 

Domachow^ske, J.B., Bonville, C.A., Gao, J.L., Murphy, P.M., Easton, A.J., 
Rosenberg, H.F., 2000b. The chemokine macrophage-inflammatory 
protein-1 alpha and its receptor CCR1 control pulmonary inflammation and 
antiviral host defense in paramyxovirus infection. J Immunol 165, 2677-
2682. 

Domachow^ske, J.B., Dyer, K.D., Adams, A.G., Leto, T.L., Rosenberg, H.F., 
1998a. Eosinophil cationic protein/RNase 3 is another RNase A-family 
ribonuclease with direct antiviral activity. Nucleic Acids Res 26, 3358-
3363. 

Domachowske, J.B., Dyer, K.D., Bonville, C.A., Rosenberg, H.F., 1998b. 
Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as 
an effective antiviral agent against respiratory syncytial virus. J Infect Dis 
177, 1458-1464. 

Domachowske, J.B., Rosenberg, H.F., 1999. Respiratory syncytial virus 
infection: immune response, immunopathogenesis, and treatment. Clinical 
microbiology reviews 12, 298-309. 

Donalisio, M., Rusnati, M., Cagno, V., Civra, A., Bugatti, A., Giuliani, A., Pirn, 
G., Volante, M., Papotti, M., Landolfo, S., Lembo, D., 2012. Inhibition of 
human respiratory syncytial virus infectivity by a dendrimeric heparan 
sulfate-binding peptide. Antimicrobial agents and chemotherapy 56, 5278-
5288. 

Donalisio, M., Rusnati, M., Civra, A., Bugatti, A., Allemand, D., Pirri, G., Giuliani, 
A., Landolfo, S., Lembo, D., 2010. Identification of a dendrimeric heparan 
sulfate-binding peptide that inhibits infectivity of genital types of human 
papillomaviruses. Antimicrobial agents and chemotherapy 54, 4290-4299. 

Dong, L.Q., Wang, X.Q., Guo, Y.N., Wu, J., Li, S., Yu, P., Wang, Z., 2013. HS 
N-sulfation and iduronic acids play an important role in the infection of 
Respiratory Syncytial Virus in vitro. European review for medical and 
pharmacological sciences 17, 1864-1868. 

Douglas, J.L., Panis, M.L., Ho, E., Lin, K.Y., Krawczyk, S.H., Grant, D.M., Cai, 
R., Swaminathan, S., Chen, X., Cihiar, T., 2005. Small molecules VP-
14637 and JNJ-2408068 inhibit respiratory syncytial virus fusion by similar 
mechanisms. Antimicrobial agents and chemotherapy 49, 2460-2466. 

Duan, D., Yue, Y., Yan, Z., McCray, P.B., Jr., Engelhardt, J.F., 1998. Polarity 
influences the efficiency of recombinant adenoassociated virus infection in 
differentiated ainway epithelia. Human gene therapy 9, 2761-2776. 

Dvorak, A.M., Ackerman, S.J., Furitsu, T., Estrella, P., Letourneau, L., Ishizaka, 
T., 1992. Mature eosinophils stimulated to develop in human-cord blood 
mononuclear cell cultures supplemented with recombinant human 
interleukin-5. II. Vesicular transport of specific granule matrix peroxidase, a 
mechanism for effecting piecemeal degranulation. Am J Pathol 140, 795-
807. 

Dvorak, A.M., Furitsu, T., Letourneau, L., Ishizaka, T., Ackerman, S.J., 1991. 
Mature eosinophils stimulated to develop in human cord blood 
mononuclear cell cultures supplemented with recombinant human 



interleukin-5. Part I. Piecemeal degranulation of specific granules and 
distribution of Charcot-Leyden crystal protein. Am J Pathol 138, 69-82. 

Dvorak, A.M., Onderdonk, A.B., McLeod, R.S., Monahan-Earley, R.A., Antonioli, 
D.A., Cullen, J., Blair, J.E., Cisneros, R., Letourneau, L., Morgan, E., et al., 
1993. Ultrastructural identification of exocytosis of granules from human 
gut eosinophils in vivo. International archives of allergy and immunology 
102, 33-45. 

Dyer, K.D., Garcia-Crespo, K.E., Glineur, S., Domachowske, J.B., Rosenberg, 
H.F., 2012. The Pneumonia Virus of Mice (PVM) model of acute 
respiratory infection. Viruses 4, 3494-3510. 

Dyer, K.D., Percopo, C.M., Fischer, E.R., Gabryszewski, S.J., Rosenberg, H.F., 
2009. Pneumoviruses infect eosinophils and elicit MyD88-dependent 
release of chemoattractant cytokines and interleukin-6. Blood 114, 2649-
2656. 

Easton, A.J., Domachowske, J.B., Rosenberg, H.F., 2004. Animal 
pneumoviruses: molecular genetics and pathogenesis. Clinical 
microbiology reviews 17, 390-412. 

Edelmann, K.H., Richardson-Burns, S., Alexopoulou, L., Tyler, K.L., Flavell, 
R.A., Oldstone, M.B., 2004. Does Toll-like receptor 3 play a biological role 
in virus infections? Virology 322, 231-238. 

El Saleeby, C.M., Suzlch, J., Conley, M.E., DeVincenzo, J.P., 2004. 
Quantitative effects of palivizumab and donor-derived T cells on chronic 
respiratory syncytial virus infection, lung disease, and fusion glycoprotein 
amino acid sequences in a patient before and after bone marrow 
transplantation. Clinical infectious diseases : an official publication of the 
Infectious Diseases Society of America 39, e l 7-20. 

Elizondo-Gonzalez, R., Cruz-Suarez, L.E., Ricque-Marle, D., Mendoza-
Gamboa, E., Rodriguez-Padllla, C., Trejo-Avila, L.M., 2012. In vitro 
characterization of the antiviral activity of fucoldan from Cladosiphon 
okamuranus against Newcastle Disease Virus. Virology journal 9, 307. 

Erjefalt, J.S., Andersson, M., Greiff, L., Korsgren, M., Gizyckl, M., Jeffery, P.K., 
Persson, G.A., 1998. Cytolysis and piecemeal degranulation as distinct 
modes of activation of airway mucosal eosinophils. J Allergy Clin Immunol 
102,286-294. 

Erjefalt, J.S., Greiff, L., Andersson, M., Matsson, E., Petersen, H., Linden, M., 
Ansari, T., Jeffery, P.K., Persson, C.G., 1999. Allergen-induced eosinophil 
cytolysis is a primary mechanism for granule protein release in human 
upper airways. Am J Respir Crit Care Med 160, 304-312. 

Escribano-Romero, E., Rawling, J., Garcia-Barreno, B., Melero, J.A., 2004. The 
soluble form of human respiratory syncytial virus attachment protein differs 
from the membrane-bound form in its ollgomeric state but is still capable of 
binding to cell surface proteoglycans. J Virol 78, 3524-3532. 

Faber, T.E., Groen, H., Welfing, M., Jansen, K.J., Bont, L.J., 2012. Specific 
increase in local IL-17 production during recovery from primary RSV 
bronchiolitis. Journal of medical virology 84, 1084-1088. 

Falsey, A.R., 2007. Respiratory syncytial virus infection in adults. Seminars in 
respiratory and critical care medicine 28, 171-181. 

Falsey, A.R., Hennessey, P.A., Formica, M.A., Cox, C., Walsh, E.E., 2005. 
Respiratory syncytial virus infection in elderly and high-risk adults. The 
New England journal of medicine 352, 1749-1759. 

Fauci, A.S., Harley, J.B., Roberts, W.C., Ferrans, V.J., Gralnick, H.R., Bjornson, 
B.H., 1982. NIH conference. The idiopathic hypereosinophilic syndrome. 



Clinical, pathophysiologic, and therapeutic considerations. Annals of 
internal medicine 97, 78-92. 

Faulkner, H., Humphreys, N., Renauld, J.C., Van Snick, J., Grencis, R., 1997. 
lnterleukin-9 is involved in host protective immunity to intestinal nematode 
infection. European journal of immunology 27, 2536-2540. 

Fauriat, C., Long, E.G., Ljunggren, H.G., Bryceson, Y.T., 2010. Regulation of 
human NK-cell cytokine and chemokine production by target cell 
recognition. Blood 115, 2167-2176. 

Fearns, R., Collins, P.L., 1999. Model for polymerase access to the overlapped 
L gene of respiratory syncytial virus. J Virol 73, 388-397. 

Feldman, S.A., Audet, S., Beeler, J.A., 2000. The fusion glycoprotein of human 
respiratory syncytial virus facilitates virus attachment and infectivity via an 
interaction with cellular heparan sulfate. J Virol 74, 6442-6447. 

Feldman, S.A., Hendry, R.M., Beeler, J.A., 1999. Identification of a linear 
heparin binding domain for human respiratory syncytial virus attachment 
glycoprotein G. J Virol 73, 6610-6617. 

Fernie, B.F., Dapolito, G., Cote, P.J., Jr., Gerin, J.L., 1985. Kinetics of synthesis 
of respiratory syncytial virus glycoproteins. J Gen Virol 66 ( Pt 9), 1983-
1990. 

Fields, B.N., Knipe, D.M., Howley, P.M., Chanock, R.M., Melnick, J.L., Monath, 
T.P., Roizman, B., Straus, S.E., 1996. Fields Virology Volume 1, 3rd ed. 
Lipplncott-Raven. 

Fishaut, M., Tubergen, D., Mcintosh, K., 1980. Cellular response to respiratory 
viruses with particular reference to children with disorders of cell-mediated 
immunity. J Pediatr96, 179-186. 

Focosi, D., 2001-2013. Molecular Medicine, Antimicrobials for viruses. Daniele 
Focosi. 

Forsberg, E., Pejier, G., Ringvall, M., Lunderius, C., Tomasini-Johansson, B., 
Kusche-Gullberg, M., Eriksson, I., Ledin, J., Hellman, L., Kjellen, L., 1999. 
Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. 
Nature 400, 773-776. 

Fort, M.M., Cheung, J., Yen, D., Li, J., Zurawski, S.M., Lo, S., Menon, S., 
Clifford, T., Hunte, B., Lesley, R., Muchamuel, T., Hurst, S.D., Zurawski, 
G., Leach, M.W., Gorman, D.M., Rennick, D.M., 2001. IL-25 induces IL-4, 
IL-5, and IL-13 and Th2-associated pathologies in vivo, immunity 15, 985-
995. 

Foster, P.S., Hogan, S.P., Ramsay, A.J., Matthaei, K.I., Young, I.G., 1996. 
Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, 
and lung damage in a mouse asthma model. J Exp Med 183, 195-201. 

Foster, P.S., Hogan, S.P., Yang, M., Mattes, J., Young, I.G., Matthaei, K.I., 
Kumar, R.K., Mahalingam, S., Webb, D.C., 2002. lnterleukin-5 and 
eosinophils as therapeutic targets for asthma. Trends Mol Med 8, 162-167. 

Freeman, G.J., Gribben, J.G., Boussiotis, V.A., Ng, J.W., Restivo, V.A., Jr., 
Lombard, L.A., Gray, G.S., Nadler, L.M., 1993. Cloning of B7-2: a CTLA-4 
counter-receptor that costimulates human T cell proliferation. Science 262, 
909-911. 

Frey, S., KrempI, C.D., Schmitt-Graff, A., Ehl, S., 2008. Role of T cells in virus 
control and disease after infection with pneumonia virus of mice. J Virol 
82, 11619-11627. 

Fryer, A.D., Costello, R.W., Yost, B.L., Lobb, R.R., Tedder, T.F., Steeber, D.A., 
Bochner, B.S., 1997. Antibody to VLA-4, but not to L-selectin, protects 



neuronal M2 muscarinic receptors in antigen-challenged guinea pig 
airways. The Journal of clinical investigation 99, 2036-2044. 

Fulginiti, V.A., Eller, J.J., Sieber, O.F., Joyner, J.W., Minamitani, M., Meiklejohn, 
G., 1969. Respiratory virus immunization. I. A field trial of two inactivated 
respiratory virus vaccines; an aqueous trivalent parainfluenza virus 
vaccine and an alum-precipitated respiratory syncytial virus vaccine. Am J 
Epidemiol 89, 435-448. 

Fulton, R.B., Olson, M.R., Varga, S.M., 2008. Regulation of cytokine production 
by virus-specific CD8 T cells in the lungs. J Virol 82, 7799-7811. 

Fulton, R.B., Weiss, K.A., Pewe, L.L., Harty, J.T., Varga, S.M., 2013. Aged mice 
exhibit a severely diminished CD8 T cell response following respiratory 
syncytial virus infection. J Virol 87, 12694-12700. 

Galiano, M.C., Luchsinger, V., Videla, G.M., De Souza, L., Puch, S.S., Palomo, 
0., Ricarte, C., Ebekian, B., Avendano, L., Carballal, G., 2005. Intragroup 
antigenic diversity of human respiratory syncytial virus (group A) isolated 
in Argentina and Chile. Journal of medical virology 77, 311-316. 

Gan, S.W., Ng, L., Lin, X., Gong, X., Torres, J., 2008. Structure and ion channel 
activity of the human respiratory syncytial virus (hRSV) small hydrophobic 
protein transmembrane domain. Protein science : a publication of the 
Protein Society 17, 813-820. 

Garcia-Barreno, B., Delgado, T., Melero, J.A., 1996. Identification of protein 
regions involved in the interaction of human respiratory syncytial virus 
phosphoprotein and nucleoprotein: significance for nucleocapsid assembly 
and formation of cytoplasmic inclusions. J Virol 70, 801-808. 

Garofalo, R., Kimpen, J.L., Welliver, R.C., Ogra, P.L., 1992. Eosinophil 
degranulation in the respiratory tract during naturally acquired respiratory 
syncytial virus infection. J Pediatr 120, 28-32. 

Garvey, T.L., Dyer, K.D., Ellis, J.A., Bonville, C.A., Foster, B., Prussin, G., 
Easton, A.J., Domachowske, J.B., Rosenberg, H.F., 2005. Inflammatory 
responses to pneumovirus infection in IFN-alpha beta R gene-deleted 
mice. J Immunol 175, 4735-4744. 

Ghildyal, R., Baulch-Brown, C., Mills, J., Meanger, J., 2003. The matrix protein 
of Human respiratory syncytial virus localises to the nucleus of infected 
cells and inhibits transcription. Archives of virology 148, 1419-1429. 

Ghildyal, R., Ho, A., Wagstaff, K.M., Dias, M.M., Barton, C.L., Jans, P., Bardin, 
P., Jans, D.A., 2005. Nuclear import of the respiratory syncytial virus 
matrix protein is mediated by importin betal independent of importin 
alpha. Biochemistry 44, 12887-12895. 

Gillard, G.O., Bivas-Benita, M., Hovav, A.H., Grandpre, L.E., Panas, M.W., 
Seaman, M.S., Haynes, B.F., Letvin, N.L., 2011. Thy1+ NK [corrected] 
cells from vaccinia virus-primed mice confer protection against vaccinia 
virus challenge in the absence of adaptive lymphocytes. PLoS pathogens 
7, e l 002141. 

Gish, R.G., 2006. Treating HCV with ribavirin analogues and ribavirin-like 
molecules. The Journal of antimicrobial chemotherapy 57, 8-13. 

Gleich, G.J., 1996. Eosinophil granule proteins and bronchial asthma. 
Allergology International 45, 35-44. 

Gleich, G.J., 2000. Mechanisms of eosinophil-associated inflammation. J 
Allergy Clin Immunol 105, 651-663. 

Gleich, G.J., Adolphson, C.R., 1986. The eosinophilic leukocyte: structure and 
function. Advances in immunology 39, 177-253. 



Gleich, G.J., Loegering, D.A., 1984. Immunobiology of eosinophils. Annu Rev 
Immunol 2, 429-459. 

Gleich, G.J., Loegering, D.A., Bell, M.P., Checkel, J.L., Ackerman, S.J., 
McKean, D.J., 1986. Biochemical and functional similarities between 
human eosinophil-derived neurotoxin and eosinophil cationic protein: 
homology with ribonuclease. Proc Natl Acad Sci U S A 83, 3146-3150. 

Glenn, G.M., Smith, G., Fries, L., Raghunandan, R., Lu, H., Zhou, 8., Thomas, 
D.N., Hickman, S.P., Kpamegan, E., Boddapati, S., Piedra, P.A., 2013. 
Safety and immunogenicity of a Sf9 insect cell-derived respiratory 
syncytial virus fusion protein nanoparticle vaccine. Vaccine 31, 524-532. 

Glezen, W.P., Taber, L.H., Frank, A.L., Kasel, J.A., 1986. Risk of primary 
infection and reinfection with respiratory syncytial virus. American journal 
of diseases of children (1960) 140, 543-546. 

Goldsby, R.A., Kindt, T.J., Osborne, B.A., Kuby, J., 2003. Immunology, 5th ed. 
W.H.Freeman and Company, New York. 

Gonzalez, M.E., Carrasco, L., 2003. Viroporins. FEBS letters 552, 28-34. 
Gorman, J.J., Ferguson, B.L., Speelman, D., Mills, J., 1997. Determination of 

the disulfide bond arrangement of human respiratory syncytial virus 
attachment (G) protein by matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry. Protein science : a publication of the Protein 
Society 6, 1308-1315. 

Gouon-Evans, V., Pollard, J.W., 2001. Eotaxin is required for eosinophil homing 
into the stroma of the pubertal and cycling uterus. Endocrinology 142, 
4515-4521. 

Gower, T.L., Pastey, M.K., Peoples, M.E., Collins, P.L., McCurdy, L.H., Hart, 
T.K., Guth, A., Johnson, T.R., Graham, B.S., 2005. RhoA signaling is 
required for respiratory syncytial virus-induced syncytium formation and 
filamentous virion morphology. J Virol 79, 5326-5336. 

Graham, B.S., 2011. Biological challenges and technological opportunities for 
respiratory syncytial virus vaccine development. Immunological reviews 
239, 149-166. 

Graham, B.S., Bunton, L.A., Wright, P.F., Karzon, D.T., 1991. Role of T 
lymphocyte subsets in the pathogenesis of primary infection and 
rechallenge with respiratory syncytial virus in mice. The Journal of clinical 
investigation 88, 1026-1033. 

Graham, B.S., Johnson, T.R., Peebles, R.S., 2000. Immune-mediated disease 
pathogenesis in respiratory syncytial virus infection. Immunopharmacology 
48, 237-247. 

Graham, B.S., Perkins, M.D., Wright, P.F., Karzon, D.T., 1988. Primary 
respiratory syncytial virus infection in mice. Journal of medical virology 26, 
153-162. 

Graham, M.B., Braciale, T.J., 1997. Resistance to and recovery from lethal 
influenza virus infection in B lymphocyte-deficient mice. J Exp Med 186, 
2063-2068. 

Gray, P.M., Arimilli, S., Palmer, E.M., Parks, G.D., Alexander-Miller, M.A., 2005. 
Altered function in CD8+ T cells following paramyxovirus infection of the 
respiratory tract. J Virol 79, 3339-3349. 

Greco, A., Arata, L., Soler, E., Gaume, X., Coute, Y., Hacot, S., Calle, A., 
Monier, K., Epstein, A.L., Sanchez, J.C., Bouvet, P., Diaz, J.J., 2012. 
Nucleolin interacts with US11 protein of herpes simplex virus 1 and is 
involved in its trafficking. J Virol 86, 1449-1457. 



Groothuis, J.R., Gutierrez, K.M., Lauer, B.A., 1988. Respiratory syncytial virus 
infection in children with bronchopulmonary dysplasia. Pediatrics 82, 199-
203. 

Groskreutz, D.J., Babor, E.G., Monick, M.M., Varga, S.M., Hunninghake, G.W., 
2010. Respiratory syncytial virus limits alpha subunit of eukaryotic 
translation initiation factor 2 (elF2alpha) phosphorylation to maintain 
translation and viral replication. The Journal of biological chemistry 285, 
24023-24031. 

Grunig, G., Warnock, M., Wakil, A.E., Venkayya, R., Brombacher, F., Rennick, 
D.M., Sheppard, D., Mohrs, M., Donaldson, D.D., Locksley, R.M., Corry, 
D.B., 1998. Requirement for IL-13 independently of IL-4 in experimental 
asthma. Science 282, 2261-2263. 

Gundel, R.H., Letts, L.G., Gleich, G.J., 1991. Human eosinophil major basic 
protein induces ainway constriction and ainway hyperresponsiveness in 
primates. The Journal of clinical investigation 87, 1470-1473. 

Guo, Y., Wang, Z., Dong, L., Wu, J., Zhai, S., Liu, D., 2008. Ability of low-
molecular-weight heparin to alleviate proteinuria by inhibiting respiratory 
syncytial virus infection. Nephrology (Carlton, Vic.) 13, 545-553. 

Hacking, D., Hull, J., 2002. Respiratory syncytial virus-viral biology and the 
host response. The Journal of infection 45, 18-24. 

Hall, C.B., 1983. The nosocomial spread of respiratory syncytial viral infections. 
Annu Rev Med 34, 311-319. 

Hall, C.B., Geiman, J.M., Biggar, R., Kotok, D.I., Hogan, P.M., Douglas, G.R., 
Jr., 1976. Respiratory syncytial virus infections within families. The New 
England journal of medicine 294, 414-419. 

Hall, C.B., Powell, K.R., MacDonald, N.E., Gala, C.L., Menegus, M.E., Suffin, 
S.G., Cohen, H.J., 1986. Respiratory syncytial viral infection in children 
with compromised immune function. The New England journal of medicine 
315, 77-81. 

Hall, C.B., Weinberg, G.A., Iwane, M.K., Blumkin, A.K., Edwards, K.M., Staat, 
M.A., Auinger, P., Griffin, M.R., Poehling, K.A., Erdman, D., Grijalva, C.G., 
Zhu, Y., Szilagyi, P., 2009. The burden of respiratory syncytial virus 
infection in young children. The New England journal of medicine 360, 
588-598. 

Hallak, L.K., Collins, P.L., Knudson, W., Peeples, M.E., 2000a. Iduronic acid-
containing glycosaminoglycans on target cells are required for efficient 
respiratory syncytial virus infection. Virology 271, 264-275. 

Hallak, L.K., Kwilas, S.A., Peeples, M.E., 2007. Interaction between respiratory 
syncytial virus and glycosaminoglycans, including heparan sulfate. 
Methods in molecular biology (Clifton, N.J.) 379, 15-34. 

Hallak, L.K., Spillmann, D., Collins, P.L., Peeples, M.E., 2000b. 
Glycosaminoglycan sulfation requirements for respiratory syncytial virus 
infection. J Virol 74, 10508-10513. 

Hancock, G.E., Speelman, D.J., Heers, K., Bortell, E., Smith, J., Cosco, C., 
1996. Generation of atypical pulmonary inflammatory responses in BALB/c 
mice after immunization with the native attachment (G) glycoprotein of 
respiratory syncytial virus. J Virol 70, 7783-7791. 

Handzel, Z.T., Busse, W.W., Sedgwick, J.B., Vrtis, R., Lee, W.M., Kelly, E.A., 
Gern, J.E., 1998. Eosinophils bind rhinovirus and activate virus-specific T 
cells. J Immunol 160, 1279-1284. 



Harcourt, J., Alvarez, R., Jones, LP. , Henderson, C., Anderson, L.J., Tripp, 
R.A., 2006. Respiratory syncytial virus G protein and G protein CX3C motif 
adversely affect CX3CR1+ T cell responses. J Immunol 176, 1600-1608. 

Harcourt, J.L., Karron, R.A., Tripp, R.A., 2004. Anti-G protein antibody 
responses to respiratory syncytial virus infection or vaccination are 
associated with inhibition of G protein CX3C-CX3CR1 binding and 
leukocyte chemotaxis. J Infect Dis 190, 1936-1940. 

Harkensee, C., Brodlie, M., Embleton, N.D., McKean, M., 2006. Passive 
immunisation of preterm infants with palivizumab against RSV infection. 
The Journal of infection 52, 2-8. 

Harris, J., Werling, D., 2003. Binding and entry of respiratory syncytial virus into 
host cells and initiation of the innate immune response. Cellular 
microbiology 5, 671-680. 

Harrison, A.M., Bonville, C.A., Rosenberg, H.F., Domachowske, J.B., 1999. 
Respiratory syncytical virus-induced chemokine expression in the lower 
ainways: eosinophil recruitment and degranulation. Am J Respir Crit Care 
Med 159, 1918-1924. 

Hay, A.J., Wolstenholme, A.J., Skehel, J.J., Smith, M.H., 1985. The molecular 
basis of the specific anti-influenza action of amantadine. The EMBO 
journal 4, 3021-3024. 

Hayashi, K., Lee, J.B., Nakano, T., Hayashi, T., 2013. Anti-influenza A virus 
characteristics of a fucoidan from sporophyll of Undaria pinnatifida in mice 
with normal and compromised immunity. Microbes and infection / Institut 
Pasteur 15, 302-309. 

Haynes, L.M., Jones, L.P., Barskey, A., Anderson, L.J., Tripp, R.A., 2003. 
Enhanced disease and pulmonary eosinophilia associated with formalin-
inactivated respiratory syncytial virus vaccination are linked to G 
glycoprotein CX3C-CX3CR1 interaction and expression of substance P. J 
Virol 77, 9831-9844. 

Heidema, J., Lukens, M.V., van Maren, W.W., van Dijk, M.E., Otten, H.G., van 
Vught, A.J., van der Werff, D.B., van Gestel, S.J., Semple, M.G., Smyth, 
R.L., Kimpen, J.L., van Bleek, G.M., 2007. CD8+ T cell responses in 
bronchoalveolar lavage fluid and peripheral blood mononuclear cells of 
infants with severe primary respiratory syncytial virus infections. J Immunol 
179, 8410-8417. 

Hell, F., Hemmi, H., Hochrein, H., Ampenberger, P., Kirschning, C., Akira, S., 
Lipford, G., Wagner, H., Bauer, S., 2004. Species-specific recognition of 
single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526-
1529. 

Henderson, F.W., Collier, A.M., Clyde, W.A., Jr., Denny, F.W., 1979. 
Respiratory-syncytial-virus infections, reinfections and immunity. A 
prospective, longitudinal study in young children. The New England journal 
of medicine 300, 530-534. 

Henrickson, K.J., Hoover, S., Kehl, K.S., Hua, W., 2004. National disease 
burden of respiratory viruses detected in children by polymerase chain 
reaction. The Pediatric infectious disease journal 23, S11-18. 

Hitoshi, Y., Yamaguchi, N., Korenaga, M., Mita, S., Tominaga, A., Takatsu, K., 
1991. In vivo administration of antibody to murine IL-5 receptor inhibits 
eosinophilia of IL-5 transgenic mice. International immunology 3, 135-139. 

Ho, Y., Hsiao, J.C., Yang, M.H., Chung, C.S., Peng, Y.C., Lin, T.H., Chang, W., 
Tzou, D.L., 2005. The oligomeric structure of vaccinia viral envelope 
protein A27L is essential for binding to hepahn and heparan sulfates on 



cell surfaces: a structural and functional approach using site-specific 
mutagenesis. Journal of molecular biology 349, 1060-1071. 

Hochrein, H., Schlatter, B., O'Keeffe, M., Wagner, C., Schmitz, F., Schiemann, 
M., Bauer, S., Suter, M., Wagner, H., 2004. Herpes simplex virus type-1 
induces IFN-alpha production via Toll-like receptor 9-dependent and -
independent pathways. Proc Natl Acad Sci U S A 101, 11416-11421. 

Hoebe, K., Janssen, E.M., Kim, S.O., Alexopoulou, L., Flavell, R.A., Han, J., 
Beutler, B., 2003. Upregulation of costimulatory molecules induced by 
lipopolysacchahde and double-stranded RNA occurs by Trif-dependent 
and Trif-independent pathways. Nature immunology 4, 1223-1229. 

Honda, K., Sakaguchi, S., Nakajima, C., Watanabe, A., Yanai, H., Matsumoto, 
M., Ohteki, T., Kaisho, T., Takaoka, A., Akira, S., Seya, T., Taniguchi, T., 
2003. Selective conthbution of IFN-alpha/beta signaling to the maturation 
of dendritic cells induced by double-stranded RNA or viral infection. Proc 
Natl Acad Sci U S A 100, 10872-10877. 

Horikami, S.M., Curran, J., Kolakofsky, D., Moyer, S.A., 1992. Complexes of 
Sendai virus NP-P and P-L proteins are required for defective interfering 
particle genome replication in vitro. J Virol 66, 4901-4908. 

Horsfall, F.L., J r , Hahn, R.G., 1939. A pneumonia virus of Swiss 

mice. Proceedings of the Society for Experimental Biology and Medicine. 
Society for Experimental Biology and Medicine (New York, N.Y.) 40, 684-
686. 

Hovanessian, A.G., Soundaramourty, C., El Khoury, D., Nondier, I., Svab, J., 
Krust, B., 2010. Surface expressed nucleolin is constantly induced in 
tumor cells to mediate calcium-dependent ligand internalization. PloS one 
5, e l 5787. 

Huang, K., Incognito, L., Cheng, X., Ulbrandt, N.D., Wu, H., 2010. Respiratory 
syncytial virus-neutralizing monoclonal antibodies motavizumab and 
palivizumab inhibit fusion. J Virol 84, 8132-8140. 

Humphries, D.E., Wong, G.W., Friend, D.S., Gurish, M.F., Qiu, W.T., Huang, C., 
Sharpe, A.H., Stevens, R.L., 1999. Heparin is essential for the storage of 
specific granule proteases in mast cells. Nature 400, 769-772. 

Hussel, T., baldwin, C.J., O'Garra, A., Openshaw, P.J.M., 1997a. CD8+ T cells 
control Th2-driven pathology during pulmonary respiratory suncytial virus 
infection. Eur J Immunol 27, 3341-3349. 

Husseli, T., Openshaw, P.J., 1998. Intracellular IFN-gamma expression in 
natural killer cells precedes lung CD8+ T cell recruitment during 
respiratory syncytial virus infection. J Gen Virol 79 ( Pt 11), 2593-2601. 

Hwang, Y.Y., McKenzie, A.N., 2013. Innate lymphoid cells in immunity and 
disease. Advances in experimental medicine and biology 785, 9-26. 

Ikeda, K., Nakajima, H., Suzuki, K., Kagami, S., Hirose, K., Suto, A., Saito, Y., 
Iwamoto, I., 2003. Mast cells produce interleukin-25 upon Fc epsilon Rl-
mediated activation. Blood 101, 3594-3596. 

Imai, S., Tezuka, H., Furuhashi, Y., Muto, R., Fujita, K., 2001. A factor of 
inducing IgE from a filarial parasite is an agonist of human CD40. The 
Journal of biological chemistry 276, 46118-46124. 

lozzo, R.V., San Antonio, J.D., 2001. Heparan sulfate proteoglycans: heavy 
hitters in the angiogenesis arena. The Journal of clinical investigation 108, 
349-355. 

Ishii, K.J., Coban, C., Kato, H., Takahashi, K., Torii, Y., Takeshita, F., Ludwig, 
H., Sutter, G., Suzuki, K., Hemmi, H., Sato, S., Yamamoto, M., Uematsu, 
S., Kawai, T., Takeuchi, O., Akira, S., 2006. A Toll-like receptor-



independent antiviral response induced by double-stranded B-form DNA. 
Nature immunology 7, 40-48. 

Ito, M., Baba, M., Sato, A., Pauwels, R., De Clercq, E., Shigeta, S., 1987. 
Inhibitory effect of dextran sulfate and heparin on the replication of human 
immunodeficiency virus (HIV) in vitro. Antiviral Res 7, 361-367. 

Jaffar, Z., Ferrini, M.E., Herritt, L.A., Roberts, K., 2009. Cutting edge: lung 
mucosal Th17-mediated responses induce polymeric Ig receptor 
expression by the airway epithelium and elevate secretory IgA levels. J 
Immunol 182, 4507-4511. 

Jairath, S., Vargas, P.B., Hamlin, H.A., Field, A.K., Kilkuskie, R.E., 1997. 
Inhibition of respiratory syncytial virus replication by antisense 
oligodeoxyribonucleotides. Antiviral Res 33, 201-213. 

Janssens, S., Beyaert, R., 2003. Functional diversity and regulation of different 
interleukin-1 receptor-associated kinase (IRAK) family members. 
Molecular cell 11, 293-302. 

Jefferson, T., Deeks, J.J., Demicheli, V., Rivetti, D., Rudin, M., 2004. 
Amantadine and rimantadine for preventing and treating influenza A in 
adults. The Cochrane database of systematic reviews, CD001169. 

Jianrong, L., Yu, Z., 2012. Messenger RNA Cap Methylation in Vesicular 
Stomatitis Virus, a Prototype of Non-Segmented Negative-Sense RNA 
Virus. 

Johnson, J.E., Gonzales, R.A., Olson, S.J., Wright, P.F., Graham, B.S., 2007. 
The histopathology of fatal untreated human respiratory syncytial virus 
infection. Modern pathology : an official journal of the United States and 
Canadian Academy of Pathology, Inc 20, 108-119. 

Johnson, P.R., Jr., Olmsted, R.A., Prince, G.A., Murphy, B.R., Ailing, D.W., 
Walsh, E.E., Collins, P.L., 1987a. Antigenic relatedness between 
glycoproteins of human respiratory syncytial virus subgroups A and B: 
evaluation of the contributions of F and G glycoproteins to Immunity. J 
Virol 61, 3163-3166. 

Johnson, P.R., Spriggs, M.K., Olmsted, R.A., Collins, P.L., 1987b. The G 
glycoprotein of human respiratory syncytial viruses of subgroups A and B: 
extensive sequence divergence between antigenically related proteins. 
Proc Natl Acad Sci U S A 84, 5625-5629. 

Johnson, S., Oliver, C., Prince, G.A., Hemming, V.G., Pfarr, D.S., Wang, S.C., 
Dormitzer, M., O'Grady, J., Koenig, S., Tamura, J.K., Woods, R., Bansal, 
G., Couchenour, D., Tsao, E., Hall, W.C., Young, J.F., 1997. Development 
of a humanized monoclonal antibody (MEDI-493) with potent in vitro and 
in vivo activity against respiratory syncytial virus. J Infect Dis 176, 1215-
1224. 

Jones, K.S., Petrow-Sadowski, C., Bertolette, D.C., Huang, Y., Ruscetti, F.W., 
2005. Heparan sulfate proteoglycans mediate attachment and entry of 
human T-cell leukemia virus type 1 virions into CD4+ T cells. J Virol 79, 
12692-12702. 

Jose, P.J., Griffiths-Johnson, D.A., Collins, P.D., Walsh, D.T., Moqbel, R., Totty, 
N.F., Truong, O., Hsuan, J.J., Williams, T.J., 1994. Eotaxin: a potent 
eosinophil chemoattractant cytokine detected in a guinea pig model of 
allergic airways inflammation. J Exp Med 179, 881-887. 

Kaiko, G.E., Loh, Z., Spann, K., Lynch, J.P., Lalwani, A., Zheng, Z., Davidson, 
S., Uematsu, S., Akira, S., Hayball, J., Diener, K.R., Baines, K.J., 
Simpson, J.L., Foster, P.S., Phipps, S., 2013. Toll-like receptor 7 gene 
deficiency and early-life Pneumovirus infection interact to predispose 



toward the development of asthma-like pathology in mice. J Allergy Clin 
Immunol 131, 1331-1339.e1310. 

Kang, C.M., Jang, A.S., Ahn, M.H., Shin, J.A., Kim, J.H., Choi, Y.S., Rhim, T.Y., 
Park, C.S., 2005. lnterleukin-25 and interleukin-13 production by alveolar 
macrophages in response to particles. American journal of respiratory cell 
and molecular biology 33, 290-296. 

Kaplan, M.H., Schindler, U., Smiley, S.T., Grusby, M.J., 1996. State is required 
for mediating responses to IL-4 and for development of Th2 cells. 
Immunity 4, 313-319. 

Karger, A., Schmidt, U., Buchholz, U.J., 2001. Recombinant bovine respiratory 
syncytial virus with deletions of the G or SH genes: G and F proteins bind 
heparin. J Gen Virol 82, 631-640. 

Kariyawasam, H.H., Robinson, D.S., 2007. The role of eosinophils in ainway 
tissue remodelling in asthma. Current opinion in immunology 19, 681-686. 

Karron, R.A., Buonagurio, D.A., Georgiu, A.F., Whitehead, S.S., Adamus, J.E., 
Clements-Mann, M.L., Harris, D.O., Randolph, V.B., Udem, S.A., Murphy, 
B.R., Sidhu, M.S., 1997a. Respiratory syncytial virus (RSV) SH and G 
proteins are not essential for viral replication in vitro: clinical evaluation 
and molecular characterization of a cold-passaged, attenuated RSV 
subgroup B mutant. Proc Natl Acad Sci U S A 94, 13961-13966. 

Karron, R.A., Wright, P.P., Crowe, J.E., Jr., Clements-Mann, M.L., Thompson, 
J., Makhene, M., Casey, R., Murphy, B.R., 1997b. Evaluation of two live, 
cold-passaged, temperature-sensitive respiratory syncytial virus vaccines 
in chimpanzees and in human adults, infants, and children. J Infect Dis 
176, 1428-1436. 

Kato, M., Tsukagoshi, H., Yoshizumi, M., Saitoh, M., Kozawa, K., Yamada, Y., 
Maruyama, K., Hayashi, Y., Kimura, H., 2011. Different cytokine profile 
and eosinophil activation are involved in rhinovirus- and RS virus-induced 
acute exacerbation of childhood wheezing. Pediatr Allergy Immunol 22, 
e87-94. 

Kephart, G.M., Alexander, J.A., Arora, A.S., Romero, Y., Smyrk, T.C., Talley, 
N.J., Kita, H., 2010. Marked deposition of eosinophil-derived neurotoxin in 
adult patients with eosinophilic esophagitis. The American journal of 
gastroenterology 105, 298-307. 

Kerr, M.H., Paton, J.Y., 1999. Surfactant protein levels in severe respiratory 
syncytial virus infection. Am J Respir Crit Care Med 159, 1115-1118. 

Khattar, S.K., Yunus, A.S., Collins, P.L., Samal, S.K., 2001. Deletion and 
substitution analysis defines regions and residues within the 
phosphoprotein of bovine respiratory syncytial virus that affect 
transcription, RNA replication, and interaction with the nucleoprotein. 
Virology 285, 253-269. 

Kim, H.W., Canchola, J.G., Brandt, C.D., Pyles, G., Chanock, R.M., Jensen, K., 
Parrott, R.H., 1969. Respiratory syncytial virus disease in infants despite 
prior administration of antigenic inactivated vaccine. Am J Epidemiol 89, 
422-434. 

Kimpen, J.L., 2001a. Management of respiratory syncytial virus infection. Curr 
Opin Infect Dis 14, 323-328. 

Kimpen, J.L., 2001b. Respiratory syncytial virus and asthma. The role of 
monocytes. Am J Respir Crit Care Med 163, S7-9. 

Kimpen, J.L., Garofalo, R., Welliver, R.C., Fujihara, K., Ogra, P.L., 1996. An 
ultrastructural study of the interaction of human eosinophils with 
respiratory syncytial virus. Pediatr Allergy Immunol 7, 48-53. 



Kimura, K., Ishioka, K., Hashimoto, K., Mori, S., Suzutani, T., Bowlin, T.L., 
Shigeta, S., 2004. Isolation and characterization of NMS03-resistant 
mutants of respiratory syncytial virus. Antiviral Res 61, 165-171. 

Kita, H., Abu-Ghazaleh, R.I., Sur, S., Gleich, G.J., 1995. Eosinophil major basic 
protein induces degranulation and IL-8 production by human eosinophils. J 
Immunol 154, 4749-4758. 

Kita, H., Gleich, G.J., 1996. Chemokines active on eosinophils: potential roles in 
allergic inflammation. J Exp Med 183, 2421-2426. 

Kjellen, L., Lindahl, U., 1991. Proteoglycans: structures and interactions. Annual 
review of biochemistry 60, 443-475. 

Klebanoff, S.J., Coombs, R.W., 1996. Virucidal effect of stimulated eosinophils 
on human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 12, 
25-29. 

Klimstra, W.B., Ryman, K.D., Johnston, R.E., 1998. Adaptation of Sindbis virus 
to BHK cells selects for use of heparan sulfate as an attachment receptor. 
J Virol 72, 7357-7366. 

Klion, A.D., Nutman, T.B., 2004. The role of eosinophils in host defense against 
helminth parasites. J Allergy Clin Immunol 113, 30-37. 

Kolset, S.O., Zernichow, L., 2008. Serglycin and secretion in human monocytes. 
Glycoconjugate journal 25, 305-311. 

Kondgen, S., Kuhl, H., N'Goran, P.K., Walsh, P.D., Schenk, S., Ernst, N., Biek, 
R., Formenty, P., Matz-Rensing, K., Schweiger, B., Junglen, S., Ellerbrok, 
H., Nitsche, A., Briese, T., Lipkin, W.I., Pauli, G., Boesch, C., Leendertz, 
F.H., 2008. Pandemic human viruses cause decline of endangered great 
apes. Current biology : CB 18, 260-264. 

Kondo, Y., Yoshimoto, T., Yasuda, K., Futatsugi-Yumikura, S., Morimoto, M., 
Hayashi, N., Hoshino, T., Fujimoto, J., Nakanishi, K., 2008. Administration 
of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia 
in the lungs in the absence of adaptive immune system. Intemational 
immunology 20, 791-800. 

Krusat, T., Streckert, H.J., 1997. Heparin-dependent attachment of respiratory 
syncytial virus (RSV) to host cells. Archives of virology 142, 1247-1254. 

Krzyzaniak, M.A., Zumstein, M.T., Gerez, J.A., Picotti, P., Helenius, A., 2013. 
Host cell entry of respiratory syncytial virus involves macropinocytosis 
followed by proteolytic activation of the F protein. PLoS pathogens 9, 
e l 003309. 

Kulkarni, A.B., Collins, P.L., Bacik, I., Yewdell, J.W., Bennink, J.R., Crowe, J.E., 
Jr., Murphy, B.R., 1995. Cytotoxic T cells specific for a single peptide on 
the M2 protein of respiratory syncytial virus are the sole mediators of 
resistance induced by immunization with M2 encoded by a recombinant 
vaccinia virus. J Virol 69, 1261-1264. 

Kumagai, Y., Takeuchi, O., Kato, H., Kumar, H., Matsui, K., Morii, E., Aozasa, 
K., Kawai, T., Akira, S., 2007. Alveolar macrophages are the primary 
interferon-alpha producer in pulmonary infection with RNA viruses. 
Immunity 27, 240-252. 

Kumar, M., Behera, A.K., Lockey, R.F., Zhang, J., Bhullar, G., De La Cruz, C.P., 
Chen, L.C., Leong, K.W., Huang, S.K., Mohapatra, S.S., 2002. Intranasal 
gene transfer by chitosan-DNA nanospheres protects BALB/c mice 
against acute respiratory syncytial virus infection. Human gene therapy 13, 
1415-1425. 

Kuroiwa, Y., Nagai, K., Okita, L., Yui, I., Kase, T., Nakayama, T., Tsutsumi, H., 
2005. A phylogenetic study of human respiratory syncytial viruses group A 



and B strains isolated in two cities in Japan from 1980-2002. Journal of 
medical virology 76, 241-247. 

Kwilas, S., Liesman, R.M., Zhang, L., Walsh, E., Pickles, R.J., Peeples, M.E., 
2009. Respiratory syncytial virus grown in Vero cells contains a truncated 
attachment protein that alters its infectivity and dependence on 
glycosaminoglycans. J Virol 83, 10710-10718. 

Lambert, D.M., 1988. Role of oligosaccharides in the structure and function of 
respiratory syncytial virus glycoproteins. Virology 164, 458-466. 

Lambert, D.M., Barney, S., Lambert, A.L., Guthrie, K., Medinas, R., Davis, D.E., 
Bucy, T., Erickson, J., Merutka, G., Petteway, S.R., Jr., 1996. Peptides 
from conserved regions of paramyxovirus fusion (F) proteins are potent 
inhibitors of viral fusion. Proc Natl Acad Sci U S A 93, 2186-2191. 

Lang, G., Wotton, D., Owen, M.J., Sewell, W.A., Brown, M.H., Mason, D.Y., 
Crumpton, M.J., Kioussis, D., 1988. The structure of the human CD2 gene 
and its expression in transgenic mice. The EMBO journal 7, 1675-1682. 

Langedijk, J.P., Schaaper, W.M., Meloen, R.H., van Oirschot, J.T., 1996. 
Proposed three-dimensional model for the attachment protein G of 
respiratory syncytial virus. J Gen Virol 77 ( Pt 6), 1249-1257. 

Langhans, B., Nischaike, H.D., Arndt, S., Braunschweiger, I., Nattermann, J., 
Sauerbruch, T., Spengler, U., 2012. Ribavirin exerts differential effects on 
functions of Cd4+ Th i , Th2, and regulatory T cell clones in hepatitis 0. 
PloS one 7, e42094. 

Latz, E., Verma, A., Visintin, A., Gong, M., Sirois, C.M., Klein, D.C., Monks, 
B.G., McKnight, C.J., Lamphier, M.S., Duprex, W.P., Espevik, T., 
Golenbock, D.T., 2007. Ligand-induced conformational changes 
allosterically activate Toll-like receptor 9. Nature immunology 8, 772-779. 

Lee, B.O., Rangel-Moreno, J., Moyron-Quiroz, J.E., Hartson, L., Makris, M., 
Sprague, F., Lund, F.E., Randall, T.D., 2005. CD4 T cell-independent 
antibody response promotes resolution of primary influenza infection and 
helps to prevent reinfection. J Immunol 175, 5827-5838. 

Lee, E., Pavy, M., Young, N., Freeman, C., Lobigs, M., 2006. Antiviral effect of 
the heparan sulfate mimetic, PI-88, against dengue and encephalitic 
flaviviruses. Antiviral Res 69, 31-38. 

Lee, F.H., Haskell, C., Charo, I.F., Boettiger, D., 2004. Receptor-ligand binding 
in the cell-substrate contact zone: a quantitative analysis using CX3CR1 
and CXCR1 chemokine receptors. Biochemistry 43, 7179-7186. 

Lee, J., Ho, W.H., Maruoka, M., Corpuz, R.T., Baldwin, D.T., Foster, J.S., 
Goddard, A.D., Yansura, D.G., Vandlen, R.L., Wood, W.I., Gurney, A.L., 
2001. IL-17E, a novel proinflammatory ligand for the IL-17 receptor 
homolog IL-17Rh1. The Journal of biological chemistry 276, 1660-1664. 

Lee, J.J., Jacobsen, E.A., Ochkur, S.I., McGarry, M.P., Gondjella, R.M., Doyle, 
A.D., Luo, H., Zellner, K.R., Protheroe, C.A., Willetts, L., Lesuer, W.E., 
Colbert, D.C., Helmers, R.A., Lacy, P., Moqbel, R., Lee, N.A., 2012a. 
Human versus mouse eosinophils: "that which we call an eosinophil, by 
any other name would stain as red". J Allergy Clin Immunol 130, 572-584. 

Lee, N.S., Dohjima, T., Bauer, G., Li, H., Li, M.J., Ehsani, A., Salvaterra, P., 
Rossi, J., 2002. Expression of small interfering RNAs targeted against 
HIV-1 rev transcripts in human cells. Nature biotechnology 20, 500-505. 

Lee, S., Stokes, K.L., Currier, M.G., Sakamoto, K., Lukacs, N.W., Cells, E., 
Moore, M.L., 2012b. Vaccine-Elicited CD8+ T Cells Protect against 
Respiratory Syncytial Virus Strain A2-Line19F-lnduced Pathogenesis in 
BALB/c Mice. J Virol 86, 13016-13024. 



Levandowski, R.A., Weaver, C.W., Jackson, G.G., 1988. Nasal-secretion 
leukocyte populations determined by flow cytometry during acute 
rhinovirus infection. Journal of medical virology 25, 423-432. 

Levidiotis, V., Freeman, C., Punier, M., Martinello, P., Creese, B., Ferro, V., van 
der Vlag, J., Berden, J.H., Parish, C.R., Powder, D.A., 2004. A synthetic 
heparanase inhibitor reduces proteinuria in passive Heymann nephritis. 
Journal of the American Society of Nephrology : JASN 15, 2882-2892. 

Levine, S., Klaiber-Franco, R., Paradiso, P.R., 1987. Demonstration that 
glycoprotein G is the attachment protein of respiratory syncytial virus. J 
Gen Virol 68 ( Pt 9), 2521-2524. 

Levy, O., 2007. Innate immunity of the newborn: basic mechanisms and clinical 
correlates. Nature reviews. Immunology 7, 379-390. 

Li, X., Sambhara, S., Li, C.X., Ettorre, L., Switzer, I., Gates, G., James, O., 
Parrington, M., Oomen, R., Du, R.P., Klein, M., 2000. Plasmid DNA 
encoding the respiratory syncytial virus G protein is a promising vaccine 
candidate. Virology 269, 54-65. 

Li, X.Q., Fu, Z.F., Alvarez, R., Henderson, C., Tripp, R.A., 2006. Respiratory 
syncytial virus (RSV) infects neuronal cells and processes that innervate 
the lung by a process involving RSV G protein. J Virol 80, 537-540. 

Lindahl, U., Li, J.P., 2009. Interactions between heparan sulfate and proteins-
design and functional implications. International review of cell and 
molecular biology 276, 105-159. 

Lindemans, C.A., Kimpen, J.L., Luijk, B., Heidema, J., Kanters, D., van der Ent, 
C.K., Koenderman, L., 2006. Systemic eosinophil response induced by 
respiratory syncytial virus. Clin Exp Immunol 144, 409-417. 

Linder, S., Hufner, K., Wintergerst, U., Aepfelbacher, M., 2000. Microtubule-
dependent formation of podosomal adhesion structures in primary human 
macrophages. Journal of cell science 113 Pt 23, 4165-4176. 

Linsley, P.S., Clark, E.A., Ledbetter, J.A., 1990. T-cell antigen CD28 mediates 
adhesion with B cells by interacting with activation antigen B7/BB-1. Proc 
Natl Acad Sci U S A 87, 5031-5035. 

Litt, M., 1964. STUDIES IN EXPERIMENTAL EOSINOPHILIA. 7. 
EOSINOPHILS IN LYMPH NODES DURING THE FIRST 24 HR 
FOLLOWING PRIMARY ANTIGENIC STIMULATION. J Immunol 93, 807-
813. 

Lotz, M.T., Peebles, R.S., Jr., 2012. Mechanisms of respiratory syncytial virus 
modulation of airway immune responses. Curr Allergy Asthma Rep 12, 
380-387. 

Lozano, R., Naghavl, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., 
Abraham, J., Adair, T., Aggarwal, R., Ahn, S.Y., Alvarado, M., Anderson, 
H.R., Anderson, L.M., Andrews, K.G., Atkinson, C., Baddour, L.M., Barker-
Collo, S., Bartels, D.H., Bell, M.L., Benjamin, E.J., Bennett, D., Bhalla, K., 
Bikbov, B., Bin Abdulhak, A., Birbeck, G., BIyth, F., Bolliger, I., Boufous, 
S., Bucello, C., Burch, M., Burney, P., Carapetis, J., Chen, H., Chou, D., 
Chugh, S.S., Coffeng, L.E., Colan, S.D., Colquhoun, S., Colson, K.E., 
Condon, J., Connor, M.D., Cooper, L.T., Corriere, M., Cortinovis, M., de 
Vaccaro, K.C., Couser, W., Cowie, B.C., Criqui, M.H., Cross, M., 
Dabhadkar, K.C., Dahodwala, N., De Leo, D., Degenhardt, L., 
Delossantos, A., Denenberg, J., Des Jarlais, D.C., Dharmaratne, S.D., 
Dorsey, E.R., Driscoll, T., Duber, H., Ebel, B., Erwin, P.J., Espindola, P., 
Ezzati, M., Feigin, V., Flaxman, A.D., Forouzanfar, M.H., Fowkes, F.G., 
Franklin, R., Fransen, M., Freeman, M.K., Gabriel, S.E., Gakidou, E., 



Gaspari, F., Gillum, R.F., Gonzalez-Medina, D., Halasa, Y.A., Haring, D., 
Harrison, J.E., Havmoeller, R., Hay, R.J., Hoen, B., Hotez, P.J., Hoy, D., 
Jacobsen, K.H., James, S.L., Jasrasaria, R., Jayaraman, S., Johns, N., 
Karthikeyan, G., Kassebaum, N., Keren, A., Khoo, J.P., Knowlton, L.IVI., 
Kobusingye, O., Koranteng, A., Krishnamurtlii, R., Lipnicl<, M., Lipshultz, 
S.E., Ohno, S.L., Mabweijano, J., Maclntyre, M.F., Mallinger, L., March, L., 
Marl<s, G.B., Marl<s, R., Matsumori, A., Matzopoulos, R., Mayosi, B.M., 
McAnulty, J.H., McDermott, M.M., McGrath, J., Mensah, G.A., Merriman, 
T.R., Michaud, C., Miller, M., Miller, T.R., Mock, C., Mocumbi, A.O., 
Mokdad, A.A., Moran, A., Mulholland, K., Nair, M.N., Naldi, L., Narayan, 
K.M., Nasseri, K., Norman, P., O'Donnell, M., Omer, S.B., Ortblad, K., 
Osborne, R., Ozgediz, D., Pahari, B., Pandian, J.D., Rivero, A.P., Padilla, 
R.P., Perez-Ruiz, F., Perico, N., Phillips, D., Pierce, K., Pope, C.A., 3rd, 
Porrini, E., Pourmaiek, F., Raju, M., Ranganathan, D., Rehm, J.T., Rein, 
D.B., Remuzzi, G., Rivara, F.P., Roberts, T., De Leon, F.R., Rosenfeld, 
L.C., Rushton, L., Sacco, R.L., Salomon, J A , Sampson, U., Sanman, E., 
Schwebel, D.C., Segui-Gomez, M., Shepard, D.S., Singh, D., Singleton, J., 
Sliwa, K., Smith, E., Steer, A., Taylor, J.A., Thomas, B., Tieyjeh, I.M., 
Towbin, J.A., Truelsen, T., Undurraga, E.A., Venketasubramanian, N., 
Vijayakumar, L., Vos, T., Wagner, G.R., Wang, M., Wang, W., Watt, K., 
Weinstock, M.A., Weintraub, R., Wilkinson, J.D., Woolf, A.D., Wulf, S., 
Yeh, P.H., Yip, P., Zabetian, A., Zheng, Z.J., Lopez, A.D., Murray, G.J., 
AIMazroa, M.A., Memish, Z.A., 2012. Global and regional mortality from 
235 causes of death for 20 age groups in 1990 and 2010: a systematic 
analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095-
2128. 

Lu, B., Ma, C.H., Brazas, R., Jin, H., 2002. The major phosphorylation sites of 
the respiratory syncytial virus phosphoprotein are dispensable for virus 
replication in vitro. J Virol 76, 10776-10784. 

Lukens, M.V., van de Pol, A.C., Coenjaerts, F.E., Jansen, N.J., Kamp, V.M., 
Kimpen, J.L., Rossen, J.W., Ulfman, L.H., Tacke, C.E., Viveen, M.C., 
Koenderman, L., Wolfs, T.F., van Bleek, G.M., 2010. A systemic neutrophil 
response precedes robust CD8(+) T-cell activation during natural 
respiratory syncytial virus infection in infants. J Virol 84, 2374-2383. 

Lundin, A., Bergstrom, T., Bendrioua, L., Kann, N., Adamiak, B., Trybala, E., 
2010. Two novel fusion inhibitors of human respiratory syncytial virus. 
Antiviral Res 88, 317-324. 

MacDonald, N.E., Hall, C.B., Suffin, S.C., Alexson, C., Harris, P.J., Manning, 
J.A., 1982. Respiratory syncytial viral infection in infants with congenital 
heart disease. The New England journal of medicine 307, 397-400. 

MacPherson, J.C., Comhair, S.A., Erzurum, S.G., Klein, D.F., Lipscomb, M.F., 
Kavuru, M.S., Samoszuk, M.K., Hazen, S.L., 2001. Eosinophils are a 
major source of nitric oxide-derived oxidants in severe asthma: 
characterization of pathways available to eosinophils for generating 
reactive nitrogen species. J Immunol 166, 5763-5772. 

Mahalingam, S., Schwarze, J., Zaid, A., Nissen, M., Sloots, T., Tauro, S., 
Storer, J., Alvarez, R., Tripp, R.A., 2006. Perspective on the host response 
to human metapneumovirus infection: what can we learn from respiratory 
syncytial virus infections? Microbes and infection / Institut Pasteur 8, 285-
293. 

Malhotra, R., Ward, M., Bright, H., Priest, R., Foster, M.R., Hurle, M., Blair, E., 
Bird, M., 2003. Isolation and characterisation of potential respiratory 



syncytial virus receptor(s) on epithelial cells. Microbes and infection / 
Institut Pasteur 5, 123-133. 

Marr, N., Turvey, S.E., 2012. Role of human TLR4 in respiratory syncytial virus-
induced NF-kappaB activation, viral entry and replication. Innate immunity 
18, 856-865. 

Martin, E.T., Kuypers, J., Heugel, J., Englund, J.A., 2008. Clinical disease and 
viral load in children infected with respiratory syncytial virus or human 
metapneumovirus. Diagnostic microbiology and infectious disease 62, 
382-388. 

Martinez-Sobrido, L., Gitiban, N., Fernandez-Sesma, A., Cros, J., Mertz, S.E., 
Jewell, N.A., Hammond, S., Piano, E., Durbin, R.K., Garcia-Sastre, A., 
Durbin, J.E., 2006. Protection against respiratory syncytial virus by a 
recombinant Newcastle disease virus vector. J Virol 80, 1130-1139. 

Martinez, I., Dopazo, J., Meiero, J.A., 1997. Antigenic structure of the human 
respiratory syncytial virus G glycoprotein and relevance of hypermutation 
events for the generation of antigenic variants. J Gen Virol 78 ( Pt 10), 
2419-2429. 

Martinez, I., Meiero, J.A., 2000. Binding of human respiratory syncytial virus to 
cells: implication of sulfated cell surface proteoglycans. J Gen Virol 81, 
2715-2722. 

Matsuzaki, Z., Okamoto, Y., Sarashina, N., Ito, E., Togawa, K., Saito, I., 1996. 
Induction of intercellular adhesion molecule-1 in human nasal epithelial 
cells during respiratory syncytial virus infection. Immunology 88, 565-568. 

Mawhorter, S.D., Kazura, J.W., Boom, W.H., 1994. Human eosinophils as 
antigen-presenting cells: relative efficiency for superantigen- and antigen-
induced CD4+ T-cell proliferation. Immunology 81, 584-591. 

McConnochie, K.M., Hall, C.B., Walsh, E.E., Roghmann, K.J., 1990. Variation in 
severity of respiratory syncytial virus infections with subtype. J Pediatr 
117, 52-62. 

Mcintosh, K., Kurachek, S.C., Cairns, L.M., Burns, J.C., Goodspeed, B., 1984. 
Treatment of respiratory viral infection in an immunodeficient infant with 
ribavirin aerosol. American journal of diseases of children (1960) 138, 305-
308. 

McLellan, J.S., Chen, M., Leung, S., Graepel, K.W., Du, X., Yang, Y., Zhou, T., 
Baxa, U., Yasuda, E., Beaumont, T., Kumar, A., Modjarrad, K., Zheng, Z., 
Zhao, M., Xia, N., Kwong, P.D., Graham, B.S., 2013. Structure of RSV 
fusion glycoprotein trimer bound to a prefusion-specific neutralizing 
antibody. Science 340, 1113-1117. 

McNamara, P.S., Smyth, R.L., 2002. The pathogenesis of respiratory syncytial 
virus disease in childhood. Br Med Bull 61, 13-28. 

Meiikyan, G.B., Markosyan, R.M., Hemmati, H., Delmedico, M.K., Lambert, 
D.M., Cohen, F.S., 2000. Evidence that the transition of HIV-1 gp41 into a 
six-helix bundle, not the bundle configuration, induces membrane fusion. J 
Cell Biol 151, 413-423. 

Mengelers, H.J., Maikoe, T., Brinkman, L., Hooibrink, B., Lammers, J.W., 
Koenderman, L., 1994. Immunophenotyping of eosinophils recovered from 
blood and BAL of allergic asthmatics. Am J Respir Crit Care Med 149, 
345-351. 

Message, S.D., Johnston, S.L., 2001. The immunology of virus infection in 
asthma. The European respiratory journal 18, 1013-1025. 

Minty, A., Chalon, P., Derocq, J.M., Dumont, X., Guillemot, J.C., Kaghad, M., 
Labit, C., Leplatois, P., Liauzun, P., Miloux, B., et al., 1993. lnterleukin-13 



is a new human lymphokine regulating inflammatory and immune 
responses. Nature 362, 248-250. 

Mitsdoerffer, M., Lee, Y., Jager, A., Kim, H.J., Korn, T., Kolls, J.K., Cantor, H., 
Bettelli, E., Kuchroo, V.K., 2010. Proinflammatory T helper type 17 cells 
are effective B-cell helpers. Proc Natl Acad Sci U S A 107, 14292-14297. 

Mjosberg, J.M., Trifari, S., Crellin, N.K., Peters, C.P., van Drunen, C.M., Piet, 
B., Fokkens, W.J., Cupedo, T., Spits, H., 2011. Human IL-25- and IL-33-
responsive type 2 innate lymphoid cells are defined by expression of 
CRTH2 and GDI61. Nature immunology 12, 1055-1062. 

Monticelli, L.A., Sonnenberg, G.F., Abt, M.C., Alenghat, T., Ziegler, C.G., 
Doering, T.A., Angelosanto, J.M., Laidlaw, B.J., Yang, C.Y., 
Sathaliyawala, T., Kubota, M., Turner, D., Diamond, J.M., Goidrath, A.W., 
Farber, D.L., Collman, R.G., Wherry, E.J., Artis, D., 2011. Innate lymphoid 
cells promote lung-tissue homeostasis after infection w/ith influenza virus. 
Nature immunology 12, 1045-1054. 

Morales-Ruiz, M., Fulton, D., Sowa, G., Languino, L.R., Fujio, Y., Walsh, K., 
Sessa, W.C., 2000. Vascular endothelial growth factor-stimulated actin 
reorganization and migration of endothelial cells is regulated via the 
serine/threonine kinase Akt. Circulation research 86, 892-896. 

Moreau, J.M., Dyer, K.D., Bonville, C.A., Nitto, T., Vasquez, N.L., Easton, A.J., 
Domachowske, J.B., Rosenberg, H.F., 2003. Diminished expression of an 
antiviral ribonuclease in response to pneumovirus infection in vivo. 
Antiviral Res 59, 181-191. 

Moretta, A., Marcenaro, E., Sivori, S., Delia Chiesa, M., Vitale, M., Moretta, L., 
2005. Early liaisons between cells of the innate immune system in 
inflamed peripheral tissues. Trends in immunology 26, 668-675. 

Mori, N., Nakasone, K., Tomimori, K., Ishikawa, C., 2012. Beneficial effects of 
fucoidan in patients with chronic hepatitis C virus infection. World journal 
of gastroenterology : WJG 18, 2225-2230. 

Moro, K., Yamada, T., Tanabe, M., TakeuchI, T., Ikawa, T., Kawamoto, H., 
Furusawa, J., Ohtani, M., Fujii, H., Koyasu, S., 2010. Innate production of 
T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid 
cells. Nature 463, 540-544. 

Morris, J.A., Blount, R.E., Savage, R.E., 1956. Recovery of cytopathogenic 
agent from chimpanzees with coryza. Proceedings of the Society for 
Experimental Biology and Medicine. Society for Experimental Biology and 
Medicine (New York, N.Y.) 92, 544-550. 

Mosconi, S., Streit, M., Bronimann, M., Braathen, L.R., 2002. Eosinophilic 
fasciitis (Shulman syndrome). Dermatology 205, 204-206. 

Mozdzanowska, K., Malese, K., Gerhard, W., 2000. Th cell-deficient mice 
control influenza virus infection more effectively than Th- and B cell-
deficient mice: evidence for a Th-independent contribution by B cells to 
virus clearance. J Immunol 164, 2635-2643. 

Mufson, M.A., Akerlind-Stopner, B., Orvell, C., Belshe, R.B., Norrby, E., 1991. A 
single-season epidemic with respiratory syncytial virus subgroup 82 during 
10 epidemic years, 1978 to 1988. J Clin Microbiol 29, 162-165. 

Mufson, M.A., Orvell, C., Rafnar, B., Norrby, E., 1985. Two distinct subtypes of 
human respiratory syncytial virus. J Gen Virol 66 ( Pt 10), 2111-2124. 

Mukherjee, S., Lindell, D.M., Berlin, A.A., Morris, S.B., Shanley, T.P., 
Hershenson, M.B., Lukacs, N.W., 2011. IL-17-induced pulmonary 
pathogenesis during respiratory viral infection and exacerbation of allergic 
disease. Am J Pathol 179, 248-258. 



Murphy, B.R., Olmsted, R.A., Collins, P.L., Chanock, R.M., Prince, G.A., 1988. 
Passive transfer of respiratory syncytial virus (RSV) antiserum suppresses 
the immune response to the RSV fusion (F) and large (G) glycoproteins 
expressed by recombinant vaccinia viruses. J Virol 62, 3907-3910. 

Nagase, H., Okugawa, S., Ota, Y., Yamaguchi, M., Tomizawa, H., Matsushima, 
K., Ohta, K., Yamamoto, K., Hirai, K., 2003. Expression and function of 
Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J 
Immunol 171, 3977-3982. 

Nagral, A., Ben-Ari, Z., Dhillon, A.P., Burroughs, A.K., 1998. Eosinophils in 
acute cellular rejection in liver allografts. Liver Transpl Surg 4, 355-362. 

Nahmias, A.J., Kibrick, S., 1964. Inhibitory effect of heparin on herpes simplex 
virus. Journal of bacteriology 87, 1060-1066. 

Nair, H., Nokes, D.J., Gessner, B.D., Dherani, M., Madhi, S.A., Singleton, R.J., 
O'Brien, K.L., Roca, A., Wright, P.P., Bruce, N., Chandran, A., 
Theodoratou, E., Sutanto, A., Sedyaningsih, E.R., Ngama, M., Munywoki, 
P.K., Kartasasmita, C., Simoes, E.A., Rudan, I., Weber, M.W., Campbell, 
H., 2010. Global burden of acute lower respiratory infections due to 
respiratory syncytial virus in young children: a systematic review and 
meta-analysis. Lancet 375, 1545-1555. 

Nangia-Makker, P., Baccarini, S., Raz, A., 2000. Carbohydrate-recognition and 
angiogenesis. Cancer metastasis reviews 19, 51-57. 

Neil!, D.R., McKenzie, A.N., 2011. Nuocytes and beyond: new insights into 
helminth expulsion. Trends in parasitology 27, 214-221. 

Neill, D.R., Wong, S.H., Bellosi, A., Flynn, R.J., Daly, M., Langford, T.K., Bucks, 
C., Kane, C.M., Fallon, P.G., Pannell, R., Jolin, H.E., McKenzie, A.N., 
2010. Nuocytes represent a new innate effector leukocyte that mediates 
type-2 immunity. Nature 464, 1367-1370. 

Neyts, J., Snoeck, R., Schols, D., Balzarini, J., Esko, J.D., Van Schepdael, A., 
De Clercq, E., 1992. Sulfated polymers inhibit the interaction of human 
cytomegalovirus with ceil surface heparan sulfate. Virology 189, 48-58. 

Nguyen, J.T., Hoopes, J.D., Smee, D.F., Prichard, M.N., Driebe, E.M., 
Engeithaler, D.M., Le, M.H., Keim, P.S., Spence, R.P., Went, G.T., 2009. 
Triple combination of oseltamivir, amantadine, and ribavirin displays 
synergistic activity against multiple influenza virus strains in vitro. 
Antimicrobial agents and chemotherapy 53, 4115-4126. 

Nguyen, J.T., Smee, D.F., Barnard, D.L., Julander, J.G., Gross, M., de Jong, 
M.D., Went, G.T., 2012. Efficacy of combined therapy with amantadine, 
oseltamivir, and ribavirin in vivo against susceptible and amantadine-
resistant influenza A viruses. PloS one 7, e31006. 

Norman, G., Faria, R., Paton, F., Llewellyn, A., Fox, D., Palmer, S., Clifton, I., 
Paton, J., Woolacott, N., McKenna, C., 2013. Omalizumab for the 
treatment of severe persistent allergic asthma: a systematic review and 
economic evaluation. Health technology assessment (Winchester, 
England) 17, 1-342. 

Nusse, O., Lindau, M., Cromwell, O., Kay, A.B., Gomperts, B.D., 1990. 
Intracellular application of guanosine-5'-0-(3-thiotriphosphate) induces 
exocytotic granule fusion in guinea pig eosinophils. J Exp Med 171, 775-
786. 

Nyberg, K., Ekblad, M., Bergstrom, T., Freeman, C., Parish, C.R., Ferro, V., 
Trybala, E., 2004. The low molecular weight heparan sulfate-mimetic, Pl-
88, inhibits cell-to-cell spread of herpes simplex virus. Antiviral Res 63, 15-
24. 



O'Donnell, V., Larocco, M., Baxt, B., 2008. Heparan sulfate-binding foot-and-
mouth disease virus enters cells via caveola-mediated endocytosls. J Virol 
82, 9075-9085. 

O'Neill, L.A., Fitzgerald, K.A., Bowie, A.G., 2003. The Toll-IL-1 receptor adaptor 
family grows to five members. Trends in immunology 24, 286-290. 

O'Reilly, M., Alpert, R., Jenkinson, S., Gladue, R.P., Foo, S., Trim, S., Peter, B., 
Trevethick, M., Fidock, M., 2002. Identification of a histamine H4 receptor 
on human eosinophils-role in eosinophil chemotaxis. J Recept Signal 
Transduct Res 22, 431-448. 

Okairos, 2014. Okairos initiates Phase I clinical trial evaluating vaccine against 
RSV infections. 

Olmsted, R.A., Collins, P.L., 1989. The 1A protein of respiratory syncytial virus 
is an integral membrane protein present as multiple, structurally distinct 
species. J Virol 63, 2019-2029. 

Olmsted, R.A., Elango, N., Prince, G.A., Murphy, B.R., Johnson, P.R., Moss, B., 
Chanock, R.M., Collins, P.L., 1986. Expression of the F glycoprotein of 
respiratory syncytial virus by a recombinant vaccinia virus: comparison of 
the individual contributions of the F and G glycoproteins to host immunity. 
Proc Natl Acad Sci U S A 83, 7462-7466. 

Olson, M.R., Hartwig, S.M., Varga, S.M., 2008. The number of respiratory 
syncytial virus (RSV)-specific memory CDS T cells in the lung is critical for 
their ability to inhibit RSV vaccine-enhanced pulmonary eosinophilia. J 
Immunol 181, 7958-7968. 

Olson, M.R., Varga, S.M., 2007. CD8 T cells inhibit respiratory syncytial virus 
(RSV) vaccine-enhanced disease. J Immunol 179, 5415-5424. 

Olszewska-Pazdrak, B., Casola, A., Saito, T., Alam, R., Crowe, S.E., Mei, F., 
Ogra, P.L., Garofalo, R.P., 1998a. Cell-specific expression of RANTES, 
MCP-1, and MlP-lalpha by lower airway epithelial cells and eosinophils 
infected with respiratory syncytial virus. J Virol 72, 4756-4764. 

Olszewska-Pazdrak, B., Pazdrak, K., Ogra, P.L., Garofalo, R.P., 1998b. 
Respiratory syncytial virus-infected pulmonary epithelial cells induce 
eosinophil degranulation by a CD18-mediated mechanism. J Immunol 
160, 4889-4895. 

Openshaw, P.J., 1995. Immunity and immunopathology to respiratory syncytial 
virus. The mouse model. Am J Respir Crit Care Med 152, S59-62. 

Openshaw, P.J., 2002. Potential therapeutic implications of new insights into 
respiratory syncytial virus disease. Respir Res 3 Supp11, SI 5-20. 

Openshaw, P.J., Clarke, S.L., Record, F.M., 1992. Pulmonary eosinophilic 
response to respiratory syncytial virus infection in mice sensitized to the 
major surface glycoprotein G. International immunology 4, 493-500. 

Openshaw, P.J., Culley, F.J., Olszewska, W., 2001. Immunopathogenesis of 
vaccine-enhanced RSV disease. Vaccine 20 SuppI 1, S27-31. 

Openshaw, P.J., Dean, G.S., Culley, F.J., 2003. Links between respiratory 
syncytial virus bronchiolitis and childhood asthma: clinical and research 
approaches. The Pediatric infectious disease journal 22, S58-64; 
discussion S64-55. 

Openshaw, P.J., Tregoning, J.S., 2005. Immune responses and disease 
enhancement during respiratory syncytial virus infection. Clinical 
microbiology reviews 18, 541-555. 

Orrick, L.R., Olson, M.O., Busch, H., 1973. Comparison of nucleolar proteins of 
normal rat liver and Novikoff hepatoma ascites cells by two-dimensional 



polyacrylamide gel electrophoresis. Proc Natl Acad Sci U S A 70, 1316-
1320. 

Ostler, T., Davidson, W., Ehl, S., 2002. Virus clearance and immunopathology 
by CD8(+) T cells during infection with respiratory syncytial virus are 
mediated by IFN-gamma. European journal of immunology 32,2117-2123. 

Ostler, T., Ehl, S., 2002. Pulmonary T cells induced by respiratory syncytial 
virus are functional and can make an important contribution to long-lived 
protective immunity. European journal of immunology 32, 2562-2569. 

Ostler, T., Hussell, T., Surh, C.D., Openshaw, P., Ehl, S., 2001. Long-tenn 
persistence and reactivation of T cell memory in the lung of mice infected 
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