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Abstract 
CD8+ T cells play pivotal roles in anti-viral immunity. In particular, CD8+ T cells that 

make high avidity interactions with virus-infected cells are extremely efficient in 

controlling virus infections including human immunodeficiency virus (HIV)-1. 

Therefore, induction of high avidity anti-viral CD8+ T cells following vaccination is 

expected to be beneficial for conferring protection against HIV -1. 

Our laboratory has shown that mucosal HIV -1 recombinant pox viral prime-boost 

vaccination can induce HIV-specific CD8+ T cells with reduced interleukin (IL )-4 and 

IL-13 cytokine expression and higher avidity compared to systemic vaccine delivery. 

To understand how these cytokines regulated CD8+ T cell avidity, the PhD studies 

initially evaluated the expression of receptors for these cytokines on immune cells using 

flow cytometry following a range of viral infections ( e.g. pox viruses and influenza 

virus) in mice. Results indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 

receptor a (IL-4Ra) was significantly down-regulated on anti-viral CD8+ T cells in a T 

cell receptor (TCR) and cognate antigen dependent manner. These studies also showed 

that up-regulation of IL-4Ra on na:ive CD8+ T cells most likely resulting from signal 

transducer and activator of transcription 6 (ST A T6) signaling correlated with poor 

avidity anti-viral CD8+ T cell cytokine responses. Poor avidity anti-viral CD8+ T cells 

that developed in this instance as well as following systemic HIV-1 recombinant pox 

viral prime-boost vaccination expressed lower CD8 co-receptor densities. Interestingly, 

mucosal and IL-13 inbjbitor HIV-1 recombinant pox viral prime-boost vaccination 

strategies prevented significant down-regulation of CD8 densities and enhanced avidity 

of anti-viral CD8+ T cells. Collectively, data suggest that enhancing responsiveness of 

na:ive CD8+ T cells to IL-4 and IL-13 (i.e. up-regulation of IL-4Ra) primes poor avidity 

.. 
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anti-viral CD8+ T cells with reduced CD8 densities during vuus infection and 

recombinant HIV- I pox viral prime-boost vaccination. 

Given the poor capacity of current assays to evaluate CD8+ T cell avidity in vzvo 

following HIV-I vaccination, the current PhD studies also evaluated the use of a 

fluorescent target array (FT A) for this purpose. The FT A assay involves measuring in 

vivo T cell responses against peptide-pulsed splenocytes (targets) that have unique 

fluorescent signatures (e.g. over 200 signatures) after injection into vaccinated mice. 

This assay was utilized to effectively screen for 24 HIV- I recombinant pox viral 

vaccination regimens for the capacity to induce high avidity and epitope variant cross

reactive CD8+ T cells as well as T helper (TH) responses in vivo. Overall, the FTA was 

found to be an extremely versatile assay for screening vaccines that could induce high 

quality T cell responses in vivo using pre-clinical models. 

Currently, the lack of knowledge regarding mechanisms that_ affect CD8+ T cell avidity 

and methods that evaluate CD8+ T cell avidity in vivo is a major barrier for developing 

efficacious HIV -1 vaccines. Therefore, the findings from the PhD research studies 

regarding how IL-4 and IL-13 regulate avidity and the use of a FTA to measure avidity 

in vivo could be exploited to foster future development of more efficacious HIV -1 

vaccines. 
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Introduction 
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1.1 Context of the study 

HIV-1, the causative agent of the acquired immunodeficiency syndrome (AIDS), has to 

date claimed over 25 million lives and over 34 million people are thought to be 

currently infected with this virus globally [UNAIDS World AIDS Day Report, 2012]. 

Although numerous care and treatment programmes including the use of anti-retroviral 

therapy (ART) are currently in place to suppress this global epidemic, the development 

of a vaccine is deemed essential to effectively eradicate HIV-1 [McElrath, 201 OJ. The 

development of a rationale HIV -1 vaccine is mainly impeded by the fact that an exact 

correlate of protection against this virus is unknown owing mainly to the capacity of 

HIV-1 to mutate rapidly and maintain latency [McMichael et al. , 2010]. However, 

several studies have isolated immune correlates that could provide effective resistance 

against HIV-1 [Critchfield et al., 2007; Walker et al. , 2009; Haynes et al. , 2012; Julien 

et al. , 2013; Liao et al., 2013; Turk et al., 2013]. In particular as will be described in 

detail later, developing vaccination strategies that facilitate the development of high 

avidity anti-viral CDS+ T cells are promising given that these cells are extremely 

efficient at controlling virus infections [Virgin and Walker, 201 OJ. 

Our laboratory findings collectively suggest that mucosal compared to systemic HIV-1 

recombinant pox viral prime-boost vaccinations promote the development of high 

avidity anti-viral CDS+ T cells most likely due to lesser induction of avidity dampening 

cytokines IL-4 and IL-13 [Ranasinghe et al., 2007; Ranasinghe et al. , 2009J. This is 

also in agreement with Ranasinghe et al [2013J recent study where mucosal 

vaccinations with novel HIV-1 recon1binant pox viral vectors that co-express an IL-13 

inhibitor protein (soluble IL-13 receptor a2 (IL-13Ra2~10) were shown to enhance 

anti-viral CDS+ T cell avidity. Recombinant pox virus vaccine vectors are commonly 

incorporated in HIV-1 prime-boost vaccination regimens in human clinical trials. ,, 
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Therefore, understanding how IL-4 and IL-13 regulate anti-viral CD8+ T cell avidity 

following pox viral infections and vaccinations is expected to be important for 

developing effective HIV-I prime-boost vaccination regimens. Furthermore, 

engineering screening tools that can effectively evaluate avidity in vivo is also important 

for this purpose especially for HIV- I vaccination regimens that aim to induce high 

avidity anti-viral CD8+ T cells in vivo. 

1.2 The immune system: an overview of innate and adaptive immunity 

1.2.1 Overview 

Many infectious microorganisms (i.e. pathogens) such as viruses need to infect a certain 

host in order to survive. Once pathogens circumvent the numerous host physical barriers 

of infection ( e.g. epithelial surfaces, skin, mucus, saliva, tears, etc.), the functioning of 

the immune system is critical for limiting/eliminating pathogen infections from the host. 

In vertebrates, the immune system is comprised of innate and adaptive components; the 

roles of these components in controlling pathogen infections will be overviewed in this 

section. 

1. 2. 2 Innate immunity: the first line of immune defense against pathogens 

All cells of the blood including the immune system are derived from hematopoietic 

stem cells in the bone marrow through a process referred to as hematopoiesis [Sabin et 

al. , 1936]. During hematopoiesis, various cell types with the potential of exerting 

effector functions and/or initiating adaptive immune responses against pathogens 

emerge (table 1.1). In innate immunity, macrophages, dendritic cells (DCs), 

neutrophils, basophils, mast cells, natural killer (NK) cells, mucosal-associated invariant 

T (MAIT) cells, nuocytes, y6 T cells and NK T (NKT) cells respond immediately (i.e. 

3 



Table 1.1. Key functions of major cell types involved in the immune system. 
Cell type Key functions in immunity Reference 
Macrophages ••• • Destroy pathogens via phagocytosis, rutnc oxide a 

production or anti-microbial peptide production 
••• • Present antigens to T cells to help initiate adaptive 

immunity 
••• • Induce inflammation 1ll response to pathogen 

infections to recruit other immune cells 
DCs ••• • Present antigens to T cells to help initiate adaptive 0 

immunity 
N eutrophils ••• Trap and destroy bacteria 

. 
extrusion of IT • via 

chromatin fibers and phagocytosis 
••• • Induce inflammation 1ll response to pathogen 

infections to recruit other immune cells 
Basophils, ••• • Produce toxic proteins (e.g. histamines) and n 
eosinophils enzymes to destroy parasitic worm infections 
and mast cells ••• • Induce allergic inflammatory reactions in some 

instances such as asthma 
NK cells ••• • Recognize and mediate cytolysis of pathogen- b. 

infected or tumor cells to control infection or 
tumor growth 

NKT cells ••• • Produce immunoregulatory cytokines to help clear ~ 
bacterial/parasitic infections and tumors 

••• • Lysis of tumors 
MAIT cells ••• • Recognize conserved bacterial-derived ligands and YI 

protect hosts against bacterial infections 
Nuocytes ••• • Produce type-2 cytokines such as IL-13 to help Jt 

expel helminth infections 
yb T cells ••• • Produce cytokines such as IFN-y and IL-1 7 and B 

exert cytotoxic responses to help resolve tumors 
and pathogen infections 

Tregs ••• • Remove T cell clones that can react against self so § 
as to prevent autoimmunity 

••• • Shut down 1mmune responses to prevent 
immunopathology 

CDS+ T cells ••• • Adaptive recognition and cytolysis of pathogen- t 
infected cells or tumors to control infection or 
tumor growth 

CD4+ T cells ••• • Produce cytokines that help activate and regulate € 
the function of other immune cells such as B cells, 
macrophages and CD8+ T cells 

B cells ••• • Produce antibodies that prevent infection of cells ¥ 
by pathogens 

••• • Produce antibodies that can opsonize pathogens for 
phagocytosis 

a [Evans et al. , 1914; Murray and Wynn, 2011] 
0 [Steinman and Cohn, 1973; Steinman and Witmer, 1978] 
TI [Page and Good, 1958 ; Kaplan and Radie, 2012] ; n [Rothwell and Dineen, 1972; Akdis, 2012] 
6. [Kiessling et al., 1975 ; Jost and Altfeld, 2013] ; ~ [Sumida et al. , 1984; Godfrey et al. , 2000] 
ri [Le Bour his et al. , 201 OJ ; n [Neill et al. , 201 OJ; f3 [Born et al. , 2006] 
§ [Sakaguchi, 2004] ; t [Cerottini et al. , 1970; Freedman et al. , 1972; Zinkemagel et al. , 1974] 
€ [Cantor and Boyse, 1975 ; Abbas et al. , 1996] ; ¥ [Andersson et al. , 1972; Ahmed and Gray, 1996] 
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within hours) following pathogen exposure to either destroy or limit systemic spread of 

pathogens (table 1.1; figure 1.1). Macrophages and DCs cells are also professional 

antigen presenting cells (APCs) [Mosier, 1967; Steinman and Witmer, 1978]. Following 

pathogen ingestion, these APCs undergo maturation to express costimulatory 

molecules/danger signals (i.e. CD80/CD86) and present pathogen derived peptides on 

major histocompatibility complexes (pMHC) to CD4+ and CD8+ T cells to initiate 

adaptive immune responses (figure 1.1) [Hathcock et al. , 1994]. Furthermore, a group 

of plasma protein forming the complement cascade as well as circulating natural 

immunoglobulin (Ig)M antibodies also function in innate immunity (figure 1.1). These 

proteins help to opsonize pathogens for destruction, induce inflammation to recruit 

other immune cells and induce antibody responses during adaptive immunity against 

pathogens (figure 1.1) [Baugmarth et al., 1999; Sprong et al. , 2004]. 

A seminal feature of all immune responses is the ability to distinguish self from non-self 

pathogen-associated components. Cells of the innate immune system use pattern 

recognition receptors (PRRs) for this purpose [Janeway and Medzhitov, 2002]. PRRs 

recognize evolutionary conserved pathogen-associated molecular patterns (P AMPs) 

such as bacterial lipopolysaccharides (LPS), bacterial flagellin, unmethylated CpG 

dinucleotide motifs, viral single/double-stranded RNA and viral DNA [Kawai and 

Akira, 2010]. Recognition of PAMPs in this instance triggers innate immune cells to 

exert effector functions (table 1.1) and induce inflammation to recruit other immune 

cells such as B and T cells of adaptive immunity to sites of infection [Iwasaki and 

Medzhitov, 2010]. 
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Figure 1.1. Innate immune barriers to pathogen invasion. Once pathogens (i.e. 

bacteria, virus, parasite and fungi) and/or foreign proteins invade a host, the innate 

immune system acts immediately to combat these foreign invaders. Numerous cell types 

illustrated above ( also see table 1.1) together with plasma proteins (i.e. complement and 

IgM) collaboratively act to destroy pathogens and induce inflammation to recruit more 

immune cells. Furthermore, macrophages and DCs also present costimulatory molecules 

(CD80/CD86) and peptides from ingested pathogens on MHC-II or MHC-I to activate 

naYve CD4+ T cells or naYve CD8+ T cells respectively. Presentation of peptide antigens 

in this instance is important for initiating adaptive immune responses. 
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1. 2. 2 Adaptive immunity: lymphocyte selection and T cell activation 

Innate immunity is sufficient to clear most pathogen infections, but a second line of 

immune defense known as adaptive immunity is sometimes required for pathogens to be 

efficiently cleared (table 1.2). Adaptive immunity is mainly comprised of lymphocytes 

such as B cells, helper CD4+ T (TH) cells and CD8+ T cells (figure 1.2; table 1.1). 

Similar to PRRs of innate immune cells, B cells use the B cell receptor (BCR) or T cells 

use the TCR to recognize pathogens [Bentley and Mariuzza, 1996; Schamel and Reth, 

2000]. However, each B or T cell clone has a receptor with a unique specificity to 

antigens and the assembly process of these receptors allow a broader array of antigens 

to be recognized compared to PRRs [Burnet, 1959; Schatz and Swanson, 2011]. To 

eliminate self-reactive clones with the potential of causing autoimmunity BCRs or 

TCRs that recognize self-antigens with high avidity undergo apoptosis during 

development in a process referred to as central tolerance [Burnet, 1959; Miller, 1961 ; 

Derbinski et al. , 2001; Pieper et al. , 2012]. NaYve (i.e. foreign antigen inexperienced) B 

and T cell clones that have bypassed central tolerance then circulate in the periphery 

and drain into secondary lymphoid organs (i.e. spleen and lymph nodes) where mature 

APCs present antigens derived from pathogens. 

For naYve T cells to clonally expand and differentiate into effector cells at least two 

activation signals are required [Lafferty and Cunningham, 1975]. The first signal is 

derived following engagement of the TCR with cognate pMHC class I (pMHC-I) in the 

case of CD8+ T cells or cognate pMHC class II (pMHC-II) in the case of CD4+ T cells 

(figure 1.1). The second signal is derived following engagement of the CD28 co

receptor on T cells with costimulatory molecules (CD80/CD86) on APCs, which is 

usually up-regulated on APCs following recognition of PAMPs (figure 1.1) [Hathcock 

et al. , 1994]. 
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Table 1.2. Key features that distinguish innate and adaptive immunity. 
Feature Innate immunity Adaptive immunity 
Major cell types involved Mast cells, neutrophils, 

...L + 
T (CD4 ' and CD8 ) cells 

in pa tho gen defense macrophages, DCs, and B cells 
basophils, eosinophils, NK 
cells, NKT cells, MAIT 
cells, nuocytes and y6 T 
cells 

Lifespan of cells involved Short Long 
Pathogen recognition and Recognition is fixed Recognition is highly 
adaptability ( evolutionary conserved adaptive (specific 

features of pathogens (i.e. components of pathogens 
PAlvfPs)recognized recognized through TCR 
through PRRs) (T cells) or BCR (B cells)) 

Immunological memory Absent Present 
Speed of pathogen specific Shortly after pathogen Delayed in the absence of 
responses encounter (i.e. within immunological memory 

hours) (i.e. 4-7 days) 
Tolerance to prevent self Absent Present 
reactivity 
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Figure 1.2. Key functions of major cell types involved in adaptive immunity 

against virus (HIV-1) infection. CD4+ T cells, CD8+ T cells and B cells have all been 

known to play an important role in either preventing or limiting HIV-1 infection. B cells 

secrete antibodies with the potential to neutralize this virus. Successful neutralization 

requires antibodies to bind to the protruding viral envelope glycoproteins that are 

crucial for mediating viral entry into target cells. Failure to do so allows HIV-1 to infect 

target cells. Further infections with HIV -1 can be prevented or limited either via 

antibodies that can effectively neutralize newly assembled virions or via effector CD8+ 

T cells that can mediate cytolysis of infected cells following TCR mediated recognition 

of virus pMHC-I complexes. Effector CD4+ T cells provide help for efficient 

mobilization of B cell and CD8+ T cell mediated immune responses against HIV -1. 
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The costimulatory second signal (i.e. danger signal) appears to be required for na1ve T 

cells to up-regulate bcl-xL expression and survive during T cell activation [Boise et al., 

1995]. Interestingly, there are also studies to suggest that a distinct third signal (IL-1 in 

case of CD4+ T cells and type I interferons (IFN-I) or IL-12 in case of CD8+ T cells) is 

also required for optimal clonal expansion and effector differentiation of na1ve T cells 

[Curtsinger et al. , 1999; Curtsinger et al. , 2007]. 

Once na1ve T cells develop into armed effectors, only signal one ( cognate pMHC) is 

required for triggering of effector functions (figure 1.2). Some effector T cells· survive 

long after pathogen is cleared from the infected hosts and are referred to as memory T 

cells [Flynn et al. , 1998; Reinhardt et al. , 2001]. These cells can respond immediately 

after re-exposure with the same pathogen unlike na1ve T cells allowing for even more 

rapid clearance of the pathogen compared to the initial pathogen exposure. 

Overall, the immune system is comprised of a highly specialized network of cells that 

collaborate efficiently and exert various effector functions to eliminate foreign invaders 

(e.g. pathogens). This system is also specialized to distinguish self from non-self 

components allowing infected hosts to specifically destroy pathogens. 

1.3 Adaptive immunity against HIV-1 

1.3.1 Overview 

The hallmark of rationale vaccine design is to identify adaptive immune responses that 

can be protective against a pathogen and induce these responses using safe/attenuated 

vaccine vectors. In this section, the importance of adaptive immune responses involving 
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B cells (antibodies), CD8+ T cells and CD4 + T cells in the control of HIV -1 infections is 

discussed. 

1. 3. 2 Importance of antibodies against HIV-I 

All known viruses including HIV-1 need to infect cells in order to replicate and survive. 

The successful prevention of HIV-1 infections or trans-infection of target cells ( e.g. 

DCs and CD4+ T cells) is mainly reliant on the availability of HIV-1 neutralizing 

antibodies [McDonald et al., 2003; Yu et al., 2008; Mascola and Montefiori, 2010]. To 

infect cells, HIV-1 envelope proteins need to interact with the CD4 receptor and the co

receptor C-C chemokine receptor 5 (CCR5)/CXC-chemokine receptor-4 of cells 

[Dalgleish et al., 1984; Deng et al., 1996; Bleul et al., 1996]. Neutralizing antibodies 

that bind to the viral surface envelope protein usually prevent this interaction and 

infection of cells (figure 1.2) [Lasky et al., 1986; Weiss et al. , 1986]. Binding of 

antibodies to the viral envelope of viruses about to bud out from infected cells could 

also neutralize viruses through activation of NK cell antibody-dependent cellular 

cytotoxicity (ADCC) machinery [Chung et al., 2011; Haynes et al. , 2012; Tomaras et 

al., 2013]. Although HIV-1 neutralizing antibodies are known to occur following 

natural infection with this virus, these antibodies are largely ineffective owing to 

extensive mutations, glycosylation and conformational masking of the envelope protein 

[Kwong et al., 2002; Dhillon et al. , 2007; Mascola and Montefiori, 2010]. Given that 

the ancestor of HIV-1, simian immunodeficiency virus (SIV), can be transmitted as a 

cell-associated form, HIV-1 might also be transmitted in a similar manner in which case 

neutralizing antibodies could be ineffective [Sodora et al., 1998]. Nonetheless, 

numerous research groups have recently identified monoclonal antibodies even during 

natural infections that bind to conserved regions of HIV -1 envelope and neutralize a 

broad spectrum of HIV-1 quasi-species [Zhou et al., 2010; Walker et al. , 2011; Huang 
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et al. , 2012; Julien et al. , 2013; Liao et al. , 2013]. The discovery of these broadly 

neutralizing antibodies has generated much enthusiasm and hope for the development of 

HIV-1 vaccines. 

1. 3. 3 Importance of CD8+ T cells against HIV-I 

If antibodies fail to prevent HIV-1 infection then effector CD8+ T cells play a crucial 

role in limiting further infections (figure 1.2). Upon recognition of cognate pMHC-I, 

effector CD8+ T cells mediate apoptosis of virus-infected cells either through the 

interaction of Fas ligand with Fas on target cells or through the release of cytolytic 

granules (e.g. perforin and granzymes) [Lieberman, 2003]. Lysis of infected cells 

prevents further viral replication and results in the release of immature HIV-1 virions, 

which are rapidly degraded in the extracellular milieu [Walker and Burton, 2008]. To 

date, the best vaccines that confer protection against SIV in simian models are live 

attenuated SIV vaccines [Daniel et al. , 1992]. A recent study by Fukuzawa et al [2012] 

suggests that protection of macaques that were vaccinated with various live attenuated 

vaccines was dependent on effector-differentiated CD8+ T cell responses in the lymph 

nodes. A few studies from the same group where macaques were vaccinated with a 

persistent recombinant rhesus cytomegalovirus prior to SIV challenge also suggest that 

CD8+ T cell responses could protect against SIV challenge [Hansen et al. , 2011; Hansen 

et al. , 2013]. Data from simian models suggest that CD8+ T cells could play pivotal 

roles in protection against HIV-1. The effectiveness of CD8+ T cells in suppressing 

HIV-1 replication appears to be primarily due to responses against internal viral 

epitopes ( e.g. Gag) that are well conserved within and across viral subtypes [Yusim et 

al. , 2002; Robinson, 2002; Kunwar et al. , 2013]. Indeed, as will be discussed in section 

1.4 numerous studies have shown that elite controllers or long-term non-progressors 
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who are resistant to HIV-I following infection exhibit enhanced HIV Gag-specific 

CD8+ T cell activity (e.g. cytotoxicity, avidity and/or polyfunctionality) compared to 

more susceptible individuals [Pontesilli et al. , 1998; Betts et al. , 2006; Almeida et al., 

2007; Critchfield et al. , 2007; Ferre et al. , 201 O; Berger et al. , 2011 ; Turk et al. , 2013]. 

1. 3. 4 Importance of CD4+ T cells against HIV-I 

HIV-specific CD4+ T cells appear to be particularly susceptible for HIV-I infection and 

memory CD4+ T cells given their long life-span are ideal reservoirs for viral latency 

[Douek et al., 2002; Bosque and Planelles, 2009; Perreau et al. , 2013]. Despite this, 

CD4+ T cell activation may yet be more favourable than detrimental to the HIV-I 

infected host [Virgin and Walker, 2010]. This is especially true given that TH cells help 

activate B cells and appear to provide essential help ( e.g. IL-21 secretion, sustaining 

CD8+ T cell cytotoxicity and mucosa! homing) to CD8+ T cells responding against HIV

I [Virgin and Walker, 2010; Chevalier et al. , 2011]. The requirement of CD4+ T cells 

for combating HIV-I is still a controversial issue given that the presence of CD4+ T 

cells at sites of HIV-I infections may fuel virus replication, but CD4+ T cell help is 

known to be required for optimizing B cell and CD8+ T cell responses. 

1.4 CD8+ T cell avidity: definition, mechanisms and importance in HIV-1 control 

CD8+ T cell avidity or functional avidity is classically defined by the amount/strength of 

cognate pMHC-I interaction required to trigger effector responses with high avidity 

cells capable of responding to lower amounts of cognate pMHC-I than low avidity 

counterparts (figure 1.3) [ Alexander-Miller et al. , 1996; Zeh et al. , 1999; Derby et al., 

2001]. High avidity anti-viral CD8+ T cells also appear to produce higher amounts of 

anti-viral cytokines interferon (IFN)-y, tumour necrosis factor (TNF)-a and IL-2 
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Figure 1.3. High avidity COS+ T cells control virus infections more efficiently than 

low avidity COS+ T cells. Early on following viral infection of a target cell, lower 

levels of viral proteins are produced and presented on MHC-I molecules compared to a 

infected target cell at a later phase. Therefore at early stages of infection high avidity 

CD8+ T cells respond against infected cells given that these cells require lower amounts 

of cognate pMHC-I than low avidity CD8+ T cells to trigger effector functions (i.e. 

cytolysis and production/secretion of cytokines ). High avidity CD8+ T cells are also 

polyfunctional and produce/secrete TNF-a, IFN-y and IL-2. Low avidity CD8+ T cells 

can only mediate cytolysis of infected target cells at a later phase where these cells 

express greater amounts of cognate viral pMHC-I than early-infected cells. Hence, low 

avidity CD8+ T cells are poor controllers of virus infection. Low avidity CD8+ T cells 

are also thought to be poorly polyfunctional and produce low levels of IFN-y, but not 

significant levels of TNF-a and IL-2. 
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compared to low avidity anti-viral CD8+ T cells [Almeida et al., 2007; Almeida et al. , 

2009]. Thus, high avidity anti-viral CD8+ T cells are expected to respond against virus

infected cells much earlier during infection and control viral infections more efficiently 

than low avidity anti-viral CD8+ T cells. 

There are several cell-associated components that could regulate the functional avidity 

of CD8+ T cells. Components/molecules that have been reported to enhance the 

functional avidity include: 1) increasing TCR affinity to pMHC-I [Busch and Pamer, 

1999], 2) enhancing expression levels of TCR, CD8 a~ co-receptor and adhesion 

molecules such as CD2 and CD1 la [Springer et al., 1987; Alexander et al. , 1991; Viola 

and Lanzavecchia, 1996], 3) increasing cholesterol content to allow the formation of 

lipid rafts [Fahmy et al., 2001], and 4) amplifying intracellular signalling through 

enhanced expression or activity of molecules such as lymphocytic-specific protein 

tyrosine kinase (lck) [Bachmann et al., 1999; Slifka and Whitton, 2001]. The expression 

levels, affinity or activity of these molecules could also be down-regulated to reduce the 

functional avidity of CD8+ T cells. There are also several inhibitory molecules that 

could serve to reduce the functional avidity of CD8+ T cells. These include CD5 

mediated inhibition of TCR signalling [ Azzam et al., 1998; Perez-Villar et al., 1999] 

and expression of molecules that can exhaust the function of CD8+ T cells such as 

programmed death-I and cytotoxic T lymphocyte-associated antigen-4 [Nakamoto et 

al. , 2009]. 

Despite the knowledge regarding molecules that can regulate functional avidity, the 

mechanisms involved in modulating functional avidity of anti-viral CD8+ T cells are not 

thoroughly understood and appear to be dependent on the virus infection. Following 

lymphocytic choriomenangitis virus (LCMV) infections, enhancing lck expression is a 

feature of LCMV-specific CD8+ T cells undergoing avidity maturation [Slifka and 
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Whitton, 2001]. During pox virus infections enhancement in CD8a~ co-receptor 

densities have been predictive of avidity maturation of anti-viral CDS+ T cells [Oh et 

al., 2004; Xiao et al. , 2007]. Furthermore, qualitative differences in TCR 

assembly/clonotypes (i.e. use of V~7) rather than enhancement in expression of 

molecules such as TCR, CDS, lck, CD 11 a and CD2 are predictive of avidity on 

influenza-specific CDS+ T cells [Kedzierska et al. , 2005; La Gruta et al. , 2006]. There 

are also various other CDS+ T cell extrinsic factors that could regulate anti-viral CDS+ T 

cell avidity. These include Tregs [Pace et al. , 2012] , cytokines (e.g. IL-4, IL-12, IL-13 , 

IL-15 and IFN-I) [Xu et al. , 2003; Oh et al. , 2004; Xiao et al. , 2007; Ranasinghe et al. , 

2009], DC costimulation [Oh et al. , 2003; Hodge et al. , 2005] and DC subsets 

[Ranasinghe et al., 2013]. Overall, regulation of anti-viral CDS+ T cell avidity is 

dependent on the context of virus infection and is multifactorial. 

During HIV-1 infections, high avidity HIV-specific CDS+ T cells appear to be important 

to minimise or prevent the spread of HIV-1 from early-exposed sites ( e.g. genito-rectal 

mucosa) to the gut where the greatest CD4+ T cells depletion occurs [Wijesundara et al. , 

2011]. Several studies in macaques suggest that high avidity anti-viral CDS+ T cells can 

protect against SIV [Belyakov et al., 2001 ; Belyakov et al. , 2006; Belyakov et al. , 

2007]. Furthermore, numerous studies have suggested that resistance to HIV-1 infection 

in elite controllers correlates with enhanced high avidity and polyfunctional HIV-1 Gag

specific CDS+ T cell responses [Pontesilli et al. , 1998; Betts et al. , 2006; Almeida et al. , 

2007; Critchfield et al., 2007; Ferre et al., 2010; Berger et al. , 2011 ; Turk et al. , 2013]. 

High avidity HIV-specific CDS+ T cells also have the capacity to recognize mutant viral 

epitopes and are therefore highly cross-reactive [Mothe et al. , 2012]. Overall, high 

avidity HIV-specific CDS+ T cells appear to play critical roles in protection against 

HIV-1. 

,, 
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1.5 Strategies for developing a functional cure against HIV-1 

1. 5.1 Overview 

Worldwide HIV-1 currently has infected over 60 million people and claims 2.5 million 

new infections every year [UNAIDS Special Report, 2013] . Given the latency capacity 

of this virus it is extremely difficult to develop a complete cure against HIV-1 . 

However, therapeutic or prophylactic approaches that can reduce viral loads to 

undetectable levels and maintain an infected individual ' s health similar to that of an 

uninfected individual are deemed achievable. These approaches are referred to as 

strategies for developing a functional HIV-1 cure [Deeks et al. , 2012]. Here the 

prospects of the three major approaches (stem cell therapy, ART and vaccination) for 

developing a functional cure against HIV -1 are briefly reviewed. 

1. 5. 2 Stem cell therapy against HIV-] 

Some Caucasians express a truncated version of CCR5 (homozygous 32-base-pair 

deletion of CCR5 (CCR5~32)) that allow them to effectively resist HIV-1 infections 

[Samson et al., 1996]. This knowledge was used by a team of transplant surgeons in 

Germany to treat a patient (referred to as the "Berlin Patient") who was suffering from 

leukaemia and HIV-1 infection [Hutter et al. , 2009]. Subsequently, the first ever HIV-1 

cure was announced due to the Berlin Patient receiving allogenic hematopoietic stem 

cell transplantation from a CCR5~32 donor [Hutter et al. , 2009]. However, grand-scale 

therapeutic application of this curative strategy is expected to be limited due to the lack 

of MHC-matched donors, toxicity and cost. To circumvent these issues, researchers are 

currently developing cost-effective gene therapy strategies to knockout CCR5 

expression on T cells and hematopoietic stem cells for autologous transplantation 

purposes [Cannon and June, 2011]. 
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1. 5. 3 Anti-retroviral therapy against HIV-I 

The use of drugs such as ART or combined ART ( cAR T) for inhibiting various stages 

of the virus life cycle ( e.g. inhibiting viral reverse transcriptase, protease and integrase 

activity) have been the most successful strategy to treat HIV-infected individuals 

[Volberding and Deeks, 201 OJ. These strategies under strict patient adherence can be 

used to functionally cure HIV-1 infected individuals: reduce HIV-1 viral loads to 

undetectable levels, improve CD4+ T cell counts and survival of HIV-1 infected patients 

[UNAIDS World AIDS Day Report, 2012]. A recent clinical trial (HPTN 052) also 

showed that early (350-550 CD4+ T cells/mm3 blood) compared to late (<250 CD4+ T 

cells/mm3 blood) cAR T treatment of HIV-1 infected individuals significantly reduces 

HIV-1 transmission in serodiscordant couples [Cohen et al. , 2011]. Early diagnosis and 

treatment with ART drugs (e.g. Raltegravir) that inhibit viral DNA integration into the 

genome of host CD4 + T cells could also be important in preventing significant loss of 

CD4+ T cells during acute phase infections [Cooper et al., 2013]. Thus, 

immunodeficiency related deaths or morbidity resulting from opportunistic co

infections such as tuberculosis, hepatitis, malaria and cryptococcosis might also be 

averted from early cART treatment [Chang et al. , 2013]. 

Despite the enormous potential and success of cAR T, its use to treat about 34 million 

HIV-1 infected individuals is deemed to be too costly and difficult to sustain especially 

given that drugs in cART regimens need to be taken on a daily basis [Andrieux-Meyer 

et al. , 2012]. Ideally, a true functional cure will also not require life-long treatment and 

an immune intervention following cART treatment to bolster durable suppressive anti

viral immune responses might be required to improve the feasibility of using cAR T as a 

functional cure. There have also been reports of HIV-1 drug resistance [Masimba et al. , 

2013], lack of patient adherence to cART regimens [Charurat et al., 2010] and adverse 
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side-effects associated with the use of cART [Rather et al., 2013]. Furthermore, cART 

cannot be used to deplete latent reservoirs ofHIV-1 [Vandergeeten et al. , 2013]. 

1.5.4 Vaccination against HIV-1 

Since Edward Jenner pioneered vaccination during the 19th century, vaccines have been 

used to eradicate smallpox and prevent human infections such as measles, polio and 

yellow fever [Fenner et al., 1988; Rueckert and Guzman, 2012]. For HIV-1 , vaccines 

can be used for immunoprophy laxis and are also expected to be much more cost

effective than ART especially given that vaccines have the potential to induce long

lasting protective immune responses. However, historically the use of vaccines in phase 

Ilb (STEP trial) and phase III (VAX003 , V AX004 and RV144) HIV-1 human clinical 

trials have been met with failure to induce significant protective outcomes [Flynn et al. , 

2005; Pitisuttithum et al. , 2006; Buchbinder et al. , 2008; Rerks-Ngarm et al. , 2009]. 

The lack of natural immunity and immune correlates of protection against HIV -1 have 

also impeded progress for developing a HIV-1 vaccine [Wijesundara et al. , 2011 ; Sanou 

et al. , 2012]. Furthermore, the reasons for poor translatability of findings in animal 

models and the failures of HIV-1 vaccines tested in human clinical trials are unclear. 

For instance, it was thought that the Adenovirus serotype 5 (Ad5) vaccine vector used in 

the STEP trial induced protective CD8+ T cell responses in macaques, but not in 

humans due to pre-existing immunity against Ad5 in humans [Cohen, 2013]. However, 

the recent failure of the HVTN 505 trial suggests that this was not the case and the use 

of Ad5 for vaccination in humans could increase the risk of HIV-1 acquisition [Cohen, 

2013; Hammer et al. , 2013]. Furthermore, the vaccine used in this trial was ineffective 

in inducing Gag-specific CD8+ T cell responses and predominantly induced CD8+ T cell 

responses against the highly variable HIV-1 envelope protein [Hammer et al. , 2013]. 
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Less than 1 % of HIV-infected individuals, referred to as elite controllers, have the 

capacity to control HIV-1 effectively to undetectable levels (usually <50-75 viral RNA 

copies per ml of plasma) [Deeks and Walker, 2007]. Therefore, understanding immune 

responses that allow elite controllers to resist HIV -1 infections and developing vaccines 

that will induce these responses is a rationale path for developing a HIV -1 vaccine. As 

discussed in section 1.3 and 1.4, the responses elucidated thus far that correlate with 

resistance include HIV-1 broadly neutralizing antibodies and high 

avidity/polyfunctional CD8+ T cell responses particularly against HIV-1 Gag epitopes. 

Apart from elite controllers understanding immune correlates of protection in the 

RV144 clinical trial, which reported a 30% protective efficacy is another attractive 

approach for developing a HIV-1 vaccine [Rerks-Ngarm et al. , 2009]. In the RV144 

trial the induction of IgG, but not IgA antibodies against HIV-1 envelope that help 

mediate ADCC in vaccinated individuals have correlated with protection [Haynes et al. , 

2012; Tomaras et al. , 2013]. Overall, mucosal (e.g. transmission sites like genito-rectal 

mucosa) and systemic induction of broadly neutralizing antibodies, ADCC antibodies 

and high avidity CD8+ T cells that respond against conserved HIV -1 antigens are all 

promising targets when designing prophylactic HIV-1 vaccines. 

The use of therapeutic vaccines to boost HIV-specific immune responses and reduce 

viral loads in HIV -1 infected individuals could be difficult due to several reasons: 1) 

pre-existing immunity and/or high viral loads could reduce lymphocyte proliferation 

[Moss et al. , 2002], 2) continuous immune stimulation can lead to anergy and immune 

exhaustion [Day et al. , 2006; Carcelain and Autran, 2013] , 3) the existence of escape 

mutants of immune surveillance [Geels et al. , 2003] , and 4) latent viral reservoirs can be 

found in immunologically privileged sites and expansion of CD4+ T cells could increase 
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the number of viral reservous [Pierson et al. , 2000]. Passive transfer of broadly 

neutralizing antibodies and vector-based immunoprophylaxis are emerging novel 

approaches that could be more successful for therapeutic purposes [Nishimura et al. , 

2003; Balazs et al., 2012; Diskin et al. , 2013]. Given that neutralizing antibodies can be 

engineered to have a long half-life in vivo [Zalevsky et al. , 201 O], these approaches 

could also be cost-effective surrogates for cART treatment. 

The use of vaccines for prophylactic and therapeutic purposes is expected to be more 

cost-effective and sustainable for developing a functional cure against HIV-1 than 

cAR T. Rationale vaccine design against HIV -1 will require vaccines that will 

effectively induce immune responses that correlate with HIV-1 resistance in elite 

controllers and protection in the RV 144 clinical trial. However, this is not 

straightforward and requires detailed understanding of mechanisms that facilitate the 

induction of high avidity CD8+ T cells, broadly neutralizing antibodies and ADCC. 

1.6 Poxviruses: why are they ideal vaccine vectors? 

Since Edward Jenner inoculated individuals with cowpox virus to confer protection 

against smallpox, the use of pox viruses for developing vaccines against numerous 

deadly pathogens such as malaria, influenza and HIV -1 is currently commonplace. 

Significant efforts have also been devoted for the use of recombinant Ad5 vectors for 

HIV -1 vaccination in humans, but recent clinical trials suggest that Ad5 vectors could 

increase the risk of HIV -1 acquisition and are not safe for human use [Buchbinder et al. , 

2008; Cohen, 2013]. The characteristics of pox viruses are described thoroughly in 

McFadden [2005] and summarized in table 1.3. Amongst the two subfamilies, species 

belonging to the Chordopoxvirinae (table 1.3) are used for vaccine development and 

the features that make them ideal for this purpose are listed below: 
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1) These viruses have large genome and packaging flexibility allowing for deletion of 

large amounts of viral DNA (at least 25 kb) for insertion of multiple 

antigens/adjuvants of interest [Smith and Moss, 1983]. 

2) They induce robust long-lasting T and B cell responses even after a single 

inoculation [Gherardi and Esteban, 1999]. 

3) Recombinants of these viruses can be easily grown and stored freeze-dried making 

them easy to manufacture and administer [Collier, 1955]. 

4) Pox viruses are safe or can be engineered ( e.g. deletion of virulent genes) to be safe 

for use in humans. 

•!• Recombinant A vi pox viruses such as fowlpox virus (FPV) and canarypox virus 

do not replicate in human cells and are safe for use in humans [Boyle et al. , 

2004; Pitisuttithum, 2005; Kelleher et al. , 2006]. 

•!• Thymidine kinase deficient strains of vaccinia virus (VV) and attenuated strains 

of VV such as Copenhagen strain of New York VV (NYV AC) and modified 

vaccinia Ankara (MV A) that do not replicate in human cells are safe for use in 

humans [Moss, 1996]. 

5) Pox viruses when used as vaccines have rendered protective outcomes against 

human and animal diseases. Few examples are listed below: 

•!• VV was used for the global eradication of smallpox [Fenner et al., 1988]. 

•!• Recombinant VV vaccines were used to vaccinate wild foxes to reduce rabies 

incidences in Europe [Pastoret et al. , 1988]. 
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Table 1.3. Characteristics of pox viruses. 
Characteristic Description . 

Subfamilies Two subfamilies: 
1. Chordopoxvirinae (infects vertebrates) 
2. Entopoxviridae (infects invertebrates/insects) 

Genera of Eight genera for Chordopoxvirinae: 
Chrodopoxvirinae 1. Orthopox ( e.g. ectromelia, monkeypox, vaccinia and variola) 

2. Parapox (e.g. pseudocowpox and somatitis papulosa) 
3. A vipox ( e.g. canarypox, fowl pox and quailpox) 
4. Capripox ( e.g. goatpox and sheep pox) 
5. Leporipox ( e.g. myxoma) 
6. Suipox ( e.g. swinepox) 
7. Molluscipox ( e.g. molluscum contagiosum) 
8. Y atapox ( e.g. tanapox) 

Genome Linear double stranded DNA genome (130-300 kb) with a 
hairpin loop at each end 

Size -300 nm 
Morphology Ovoid or brick-shaped enveloped viruses 
Replication Exclusively in the cytoplasm of cells 
Host range Host range depends on the species of virus ( e.g. ectromelia virus 

(mice), FPV ( chicken), variola virus (humans) and VV (natural 
host unknown, but infects human and mice) 

Transmission Most commonly transmitted through inhalation of virus droplets, 
but can also be transmitted through direct skin contact 

Genetic Considerable genetic similarities between different virus species: 
similarities ••• • -50-75% of genes are conserved between all species of 

Chordopoxvirinae 
••• -25% of genes conserved between all 

. 
of • are species 

Chordopoxvirinae and Entopoxviridae 
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•!• Recombinant FPV have been used to protect Australian poultry against 

infectious burs al disease virus [Boy le and Heine, 1994]. 

•!• In the RV 144 Thai trial where protection against HIV -1 was reported, HIV -1 

recombinant canarypox virus was used to vaccinate human participants [Rerks

N garm et al., 2009]. 

1. 7 Prime-boost vaccination to generate high avidity HIV-specific CDS+ T cells 

1. 7. 1 Overview 

Prime-boost vaccination is a consecutive immunization strategy used to amplify the 

number of antigen-specific effector/memory lymphocytes responding against encoded 

vaccine antigens (figure 1.4). The use of heterologous vectors in this instance is 

desirable to minimise the effects of anti-vector immunity that could occur if genetically 

identical (i.e. homologous) vectors are used for the prime and the booster vaccinations 

[Leong et al., 1995; Ramsay et al., 1997; Kent et al., 1998; Wijesundara et al., 2012]. 

Since its inception, heterologous prime-boost vaccination strategies have been used in 

an attempt to generate protective immunity against diseases such as malaria, 

tuberculosis, influenza and HIV-1 [Wijesundara et al., 2012]. However, there are 

various parameters that have to be optimized for developing efficacious heterologous 

prime-boost vaccination regimens [Wijesundara et al., 2012]. Here, ways to manipulate 

vaccination route, vector choice and molecular adjuvants such that heterologous prime

boost vaccination regimens can generate high avidity anti-viral CD8+ T cells are briefly 

reviewed. 
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Figure 1.4. Heterologous prime-boost vaccination for generating T cell immunity. 

Heterologous prime-boost vaccination involves immune priming and at least one 

immune boost to amplify immune responses of interest. A, In immune priming, antigens 

of interest (red) encoded in a recombinant DNA (rDNA) vector or a live virus vector 

(i.e. recombinant FPV (rFPV)) is used for immunization. Suosequently, vector encoded 

antigens gets presented by AP Cs to naYve T cells, which facilitates naYve T cell 

activation and differentiation into effector/memory T cells. Following immune priming, 

the peripheral T cell pool is expected to comprise primarily of naYve T cells (green) and 

relatively small proportion of effector/memory T cells specific to the encoded vaccine 

antigens of interest (red) or T cells specific to other vector components (blue). B, In 

immune boosting, same vaccine antigens (red) are delivered in a heterologous viral 

vector such as recombinant MVA (rMVA) to minimise the anti-vector immunity. 

Hence, following heterologous booster immunization the number of effector and 

memory T cells against the desired vaccine antigens gets further expanded. 
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1. 7. 2 Route of vaccine delivery: mucosa! versus systemic 

Most pathogens including HIV-1 are encountered at the mucosa and generating 

protective mucosal immunity is crucial for preventing the systemic spread of pathogens 

like HIV-1. Mucosal vaccination strategies are extremely effective in generating 

protective mucosal immunity against various mucosal pathogen infections [Belyakov 

and Ahlers, 2009]. This could be partially due to the capacity of mucosal vaccination 

regimens to generate high avidity anti-viral CD8+ T cells at mucosal surfaces. Indeed, 

several prime-boost vaccination studies have shown that mucosal (e.g. intranasal (i.n.) 

or intrarectal) compared to systemic (e.g. subcutaneous or intramuscular (i.m.)) vaccine 

delivery particularly during the prime is better at generating high avidity mucosal 

HIV /SIV-specific CD8+ T cells and protection [Belyakov et al. , 2001; Belyakov et al. , 

2006; Belyakov et al. , 2007; Ranasinghe et al. , 2007; Belyakov et al. , 2008; Ranasinghe 

et al. , 2011]. The exception here is when recombinant DNA vectors are used where i.m. 

priming is required for enhanced expression of vector encoded antigens [Wolff et al. , 

1990; Ranasinghe et al. , 2011]. Purely systemic vaccinations have failed to protect 

against HIV -1 in human clinical trials and are also poor at inducing mucosal homing 

marker (i.e. integrin a 4~ 7 and C-C chemokine receptor 9) expression and mucosal 

homing of T cells [Wijesundara et al. , 2011]. However, Ranasinghe et al [2007] have 

shown that combined mucosal/systemic (i.n. FPV-HIV primeNV-HIV boost) compared 

to purely mucosal (i.n. FPV -HIV /i.n. VV-HIV) regimens are more effective in 

generating high magnitude of HIV-specific CD8+ T cells. This was shown to occur in 

both mucosal and systemic compa1iments without significantly compromising T cell 

avidity [Ranasinghe et al. , 2007]. Overall, mucosal prime-boost vaccination regimens 

exhibit great potential for inducing high avidity HIV-specific CD8+ T cells and 

protection against HIV -1. 
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1. 7.3 Vaccine vector choice 

The choice of vectors for the prime and the boost could be a critical determinant for the 

avidity outcomes of anti-viral CD8+ T cells induced following prime-boost vaccination. 

For immune priming, non-replicating vaccine vectors (e.g. recombinant DNA or FPV) 

in mammalian cells that do not express high doses of vector-encoded antigens are 

desirable for obtaining protective outcomes and high avidity CD8+ T cells [Kent et al. , 

1998; Ramsay et al. , 1999; Ranasinghe et al. , 2011]. This is likely because the avidity 

of effector CD8+ T cells is expected be enhanced when their naYve precursors are 

primed with low doses of cognate antigens [Alexander-Miller et al. , 1996; Zeh et al. , 

1999]. However, a caveat is that using extremely low doses of antigen could be 

ineffective in priming T cell responses [Ranasinghe et al. , 2006]. For immune boosting, 

the use of recombinant live viral vectors is extremely effective in expanding desired 

anti-viral CD8+ T cell populations [Ramsay et al. , 1999; Ranasinghe et al. , 2006]. In 

particular, the use of recombinant VV for i.m. boosting especially following an i.n. 

prime with recombinant FPV have been established in our laboratory to be excellent at 

expanding high avidity anti-viral CD8+ T cells [Ranasinghe et al. , 2006; Ranasinghe et 

al. , 2007]. Overall, in vivo immune priming with vectors that express low levels of 

cognate antigens (e.g. recombinant DNA or FPV) prior to immune boosting with 

recombinant live viral vectors could be extremely effective in generating high avidity 

anti-viral CD8+ T cells. 

1. 7. 4 Vaccine adjuvants 

Historically adjuvants have been incorporated to enhance the immunogenicity of 

vaccines, but very few adjuvants are known to enhance the avidity of CD8+ T cells 

given that mechanisms dictating T cell avidity are poorly understood [Wijesundara et 

al. , 2012]. A few studies suggest that enhancing costimulatory capacity and maturation 
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of DCs through immunization with recombinant pox viruses containing T cell 

costimulatory molecules and/or granulocyte-macrophage colony stimulating factor are 

effective in inducing high avidity CD8+ T cells that can protect against tumors [Oh et 

al. , 2003 ; Hodge et al. , 2005]. Belyakov et al [2001; 2006] suggest that helper-CD8+ T 

cell peptide vaccination strategies adjuvanted with E.coli labile toxin can also enhance 

avidity of anti-viral CD8+ T cells and protection of macaques against SIV. In our 

laboratory, Ranasinghe et al [2013] showed that i.n./i.m. prime-boost vaccination with 

HIV-1 recombinant pox viral vaccines adjuvanted with IL-13 inhibitor (IL-13Ra2~10) 

can enhance the avidity of Gag-specific CD8+ T cells and protection. In Ranasinghe et 

al [2013] mucosal (i.n.) priming with recombinant IL-13 inhibitor FPV vectors were 

also shown to enhance the recruitment of a distinct subset of CD 11 b + CD 11 c + DCs into 

the lung, which is currently being evaluated for the capacity to prime high avidity CD8+ 

T cells. Thus, given that nai:ve T cell priming conditions can dictate avidity outcomes 

adjuvants can be used to alter the priming milieu such that high avidity anti-viral CD8+ 

T cells develop. 

1.8 IL-4 and IL-13: regulation of T cell avidity and cellular signaling 

IL-4 and IL-13 share many biological functions due to their ability to signal through a 

unique network of complex receptors (table 1.4; figure 1.5). IL-4 can signal through 

the type I IL-4 receptor (heterodimer of IL-4 Ra and common y (ye) chains) and the type 

II IL-4 receptor (heterodimer of IL-4Ra and IL-13 receptor a 1 (IL-13Ral) chains), but 

IL-13 only signals through the type II IL-4 receptor [Tabata et al. , 2007; Wills-Karp and 

Finkelman, 2008]. IL-4 and IL-13 cytokine responses can be completely abrogated on 

cells lacking IL-4 Ra expression as it is a component of both type I and type II IL-4 

receptors [Ban1er et al. , 1998; Mohrs et al. , 1999]. IL-13Ra2 binds with higher affinity 

to IL-13 than IL-13Ral , but appears to inhibit IL-13 ,signaling [Kawakami et al. , 2001; 
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Table 1.4. Common biological effects of IL-4 and IL-13. 
Biological effect 
j MHC-II and low affinity IgE receptor expression on B cells 
i mammary cell development 
i clearance of nematode infections 
i pulmonary fibrosis 
t CD8+ T cell avidity 

. 

i eosinophilia, neutrophilia and mucus secretion in 
w [Defrance et al. , 1987; Punnonen et al. , 1993] 
1; [Khaled et al. , 2007] 
n [Urban et al. , 1991; Urban et al. , 1998] 
a [Rankin et al. , 1996; Zhu et al. , 1999] 
v [Ranasinghe et al. , 2009] 

asthma 

A [Grtinig et al. , 1998; Wills-Karp et al. , 1998; Tomkinson et al. , 2001]. 
i indicates up-regulation or enhancement of the indicated effect(s) 
! indicates down-regulation or dampening of the indicated effect(s) 

Reference 
co 

~ 
Jt 

CT 

u 
A 
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Figure 1.5. IL-4/IL-13 receptor complex. IL-4 can signal through type I (heterodimer 

of IL-4Ra and ye) or type II (heterodimer of IL-4Ra and IL-13Ral) IL-4 receptors. IL-

13 can only signal through the type II IL-4 receptor. Signaling through these 

cytokines/receptors usually leads to activation of ST AT6, which translocates into the 

nucleus to activate transcription of IL-4/IL-13 responsive genes. IL-4 can also bind to 

sIL-4Ra or IL-13 can bind to IL-13Ra2 or IL-13Ra2~10, which is thought to not result 

in signaling. Hence, sIL-4Ra and IL-13Ra2 are referred to as decoy/inhibitors of IL-

4/IL-13 signaling. 
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Sivaprasad et al., 2010]. This decoy/inhibitory receptor can be membrane associated or 

soluble (IL-13Ra2~10) (figure 1.5). Similarly, a soluble form of IL-4Ra (sIL-4Ra) has 

been shown to inhibit the biological effects of IL-4 [Mosley et al. , 1989; Gessner et al. , 

1994; Borish et al., 2001]. IL-4 and IL-13 cellular signaling via the type I or type II IL-

4 receptors mainly leads to activation of STAT6 although, activation of STATl , STAT3 

and ST ATS has also been reported [Hou et al., 1994; Takeda et al. , 1996; Acacia de Sa 

Pinheiro et al., 2007]. Following activation, STAT6 translocates into the nucleus to 

activate transcription of genes (e.g. C023, MHC-II and IL-4Ra) [Nelms, 1999]. 

As described previously, our laboratory has identified that cog+ T cell avidity can be 

influenced based on the route of vaccine delivery or the presence of IL-4 and IL-13 

during vaccination of wild-type (WT) and gene knockout mice ( table 1.5). As shown in 

table 1.5 (model 11) following HIV-1 recombinant pox viral prime-boost vaccination, 

the avidity of HIV (KdGag197_205)-specific cog+ T cells inversely correlated with their 

IL-4 and IL-13 production capacity [Ranasinghe et al., 2007]. Enhancement in avidity 

in these studies favoured mucosal prime-boost vaccination regimens in the following 

manner: i.n./i.n. > i.n./i.m. > i.m./i.m .. Ranasinghe et al [2009; 2013] then established 

that IL-4 and IL-13 dampen the avidity of HIV-specific C08+ T cells, which led to 

development of novel IL-13Ra2~10 adjuvanted recombinant pox viral vaccines (table 

1.5 (model I and III)). These novel vaccines as hypothesized enhanced protection and 

Gag-specific cog+ T cell avidity following vaccination [Ranasinghe et al. , 2013]. 

Overall, our laboratory has established that mucosal HIV -1 recombinant pox viral 

prime-boost vaccination likely through reduced induction of IL-4 and IL-13 can 

enhance the avidity of HIV-specific cog+ T cells. 
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f .d. l . Table 1.5. Prime-boost models o av1 1ty regu at1on 1n our laboratory. 
Model Prime-boost Vaccines used Mouse 

vaccination genotype . 
regimen 

* i.n./i.m. FPV-HIV NV-HIV IL-13 -i -I 
i.n./i.m. FPV-HIVNV-HIV IL-4 -i -

i.n./i.m. FPV-HIV NV-HIV STAT6 _1_ 

i.n./i.m. FPV-HIVNV-HIV WT 
n1P i.n./i.n. FPV-HIVNV-HIV WT 

-
i.n./i.m. FPV-HIV NV-HIV WT 
i.m./i.m. FPV-HIVNV-HIV WT 

III~ i.n./i.m. FPV-HIV-IL-13Ra2~ 10/ WT 
VV-HIV-IL-13Ra2~10 

i.n./i.m. FPV-HIVNV-HIV WT 
+ is a relative incremental indicator of avidity (i.e. more '+' = higher avidity) 
* [Ranasinghe et al. , 2009] 
1V [Ranasinghe et al., 2007] 
~ [Ranasinghe et al., 201 3] 

HIV-sp·ecific 
CDS+ T cell 
avidity 
+++++ 
+++++ 
++++ 
+++ 
+++++ 
+++ 
++ 
+++++ 

+++ 
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1.9 FTA assay for measuring CD8+ T cell avidity in vivo 

Various in vitro based methods are commonly used to measure various aspects of CD8+ 

T cell avidity (table 1.6). Surface plasmon resonance and pMHC-I tetramer 

staining/dissociation assays are sensitive assays that can be used to define the affinity of 

the TCR or the overall avidity of TCR and CD8 co-receptors of a CD8+ T cell clone of 

interest (table 1.6). Tetramer technology is also extremely advantageous to further 

scrutinize the avidity profiles of antigen-specific CD8+ T cells of interest. In fact, a few 

studies have used this technology to examine expression levels of various markers that 

can regulate avidity and the TCR signatures ( clonotypes) of high and low avidity 

antigen-specific CD8+ T cells of interest [Kedzierska et al. , 2005; La Gruta et al. , 2006]. 

However, the major shortcoming of surface plasmon resonance and tetramer 

technologies are that they need to be complemented with assays that provide direct 

information regarding the effector functions of CD8+ T cells. Defining avidity profiles 

based on the effector function capacity/sensitivity of CD8+ T cells to the availability of 

co-receptor molecules (i.e. CD8) or titrated amounts of peptide pulsed target cells have 

classically been described using 51 Cr release, enzyme-linked immunospot (ELISPOT) 

and intracellular cytokine staining (ICS) assays [Alexander-Miller et al. , 1996; Slifka 

and Whitton, 2001; Draenert et al., 2004]. These assays provide direct evidence 

regarding the functional avidity of CD8+ T cells, but they are usually performed in vitro. 

Ideally, avidity is best measured in vivo and will not require any in vitro manipulation 

of CD8+ T cells. Previously developed in vivo CD8+ T cell killing assays [Oehen et al. , 

1997; Barchet et al., 2000] are only able to measure the magnitude of the killing 

response in a single animal without providing any detailed measurements on functional 

avidity and epitope variant cross-reactivity in a single host animal. These limitations are 

significant obstacles for vaccine strategies that aim to induce high avidity CD8+ T cells 

33 



Table 1.6. Common in vitro methods used to determine COS+ T cell avidity fates. 
Method Aspects of COS+ T cell avidity measured References 
Surface •!• Technique used to determine the affinity between one b 
Plasmon TCR and one pMHC-I in real-time based on ligand 
resonance binding to surf ace immobilized receptors 
pMHC-I •!• Flow cytometry based assay used to infer avidity of <p 
tetramer multiple TCRs and CDS co-receptors to cognate 
staining and pMHC-I based on the ability of CDS+ T cells to interact 
dissociation with fluorochrome conjugated tetramerized pMHC-I 

CDS 
blocking 

Marker 
. 

expression 
analysis 
Peptide 
pulsing 

•!• Flow cytometry based cell sorting of tetramer bound 
CDS+ T cells can be used to characterize TCR chains 
( clonotypes) that characterize high and low avidity cells 

•!• Anti-CDS antibodies or CDS null tetramers are used to A 
block CDS co-receptor involvement in cognate pMHC-I 
recognition and effector functions 

•!• Flow cytometry based measurements made to determine 8 
the expression levels of various candidate markers that 
correlate with CDS+ T cell avidity 

•!• Using ELISPOT, ICS or 51 Cr release assays, the ability € 
to respond (e.g. kill or produce IFN-y) against various 
target cells pulsed with titrated amounts of cognate 
antigens (peptides) can be used to determine the antigen 
sensitivity ( overall functional avidity) of CDS+ T cells 

c [Holler et al., 2001 ; Stone et al., 2009] 
cp [Kedzierska et al., 2005; La Gruta et al., 2006] 
A [Wooldridge et al. , 2003; Choi et al., 2003] 
8 [Slifka and Whitton, 2001; La Gruta et al. , 2006] 
€ [Alexander-Miller et al., 1996; Slifka and Whitton, 2001; Draenert et al., 2004] 
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in vivo. However, a novel FTA technology has been recently developed and can be 

used to overcome these limitations [Quah et al. , 2012; Quah et al. , 2013]. The FTA 

comprises of lymphocyte target cells with unique fluorescent signatures (>200) based 

on labeling cells with a combination of carboxyfluorescein succinimidyl ester (CFSE), 

cell trace violet (CTV) and cell proliferation dye eFluor®670 (CPD) [Quah et al. , 2012; 

Quah et al., 2013]. The FT A can then be pulsed with various titrated concentrations of 

MHC-I and MHC-II binding peptides and injected into HIV-1 vaccinated mice to 

evaluate TH cell responses and CD8+ T cell avidity (based on killing responses) in vivo 

[Quah et al., 2012; Quah et al. , 2013]. Consequently, this assay can be used thoroughly 

evaluateavidity and epitope variant cross-reactivity of CD8+ T cells as well as TH cell 

responses in vivo in the same vaccinated animal. 

1.10 Pre-clinical models for testing putative HIV-1 vaccines 

In 1940, Howard Florey and Ernst Chain demonstrated that penicillin could be 

administered safely to protect mice against deadly Streptococci infections [Chain et al. , 

1940], which later translated to saving millions of human lives. This landmark study 

showed the enormous potential of using pre-clinical models for developing safe yet 

protective substances for use in humans. There are three major pre-clinical animal 

models used for HIV -1 vaccine development or as 'gatekeepers' for advancement of 

HIV-1 vaccines into humans: mice (including humanized mice), macaques and 

chimpanzees. Mice genomes are easy to manipulate and their immune responses are 

well characterized making them ideal models for testing the immunogenicity and 

protective mechanisms of putative HIV-1 vaccines. However, all known mice strains 

apart from humanized mice cannot be used to test the efficacy of HIV-1 vaccines given 

that HIV-1 does not infect mice. HIV-1 is only known to naturally infect humans and 
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chimpanzees [Gao et al. , 1999], which makes chimpanzees an ideal HIV-I challenge 

model. However, successful outcomes of HIV- I vaccine regimens tested in 

chimpanzees have not been translated in human clinical trials [Bailey, 2008]. This has 

pushed researchers to use macaques and humanized mice models to determine the 

protective potential of HIV- I vaccines [Mosier, 1996; Shedlock et al., 2009]. Macaques 

are a natural host of SIV and humanized mice can be infected with HIV -1 given that 

they are engrafted with human peripheral blood mononuclear cells. However, HIV-I 

transmission in humanized mice does not occur and the protective effects associated 

with the use of SIV vaccines in macaques so far have also not been translated in human 

clinical trials [Buchbinder et al. , 2008; Van Duyne et al., 2009]. Macaques and 

humanized mice are also difficult to maintain/access and are expensive to use. 

The reasons for the poor translational potential of putative HIV-I vaccines tested in pre

clinical animals models is not clear, but it is probably not exclusively due to the 

challenge model chosen. It is very likely due to a significant lack in understanding of 

vaccine induced protective immune mechanisms in animals and whether induction of 

these protective responses is feasible in humans following vaccination [Shapiro, 2013]. 

Resolving these issues will help researchers understand the validity of the animal 

models chosen for developing efficacious HIV- I vaccines for use in humans. 

1.11 Basis and scope of this PhD thesis 

The PhD research project predominantly aimed towards understanding how IL-4 and 

IL-13 regulate anti-viral CD8+ T cell avidity/quality following virus infection ( chapter 

3) and HIV-I recombinant pox-viral prime-boost vaccination (chapter 4). The ability of 

FTA assays to screen for effective HIV-I recombinant pox viral prime-boost 

vaccination regimens that generated high quality T cell responses in vivo were also 
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examined ( chapter 5). Overall, the data generated from these studies provided more 

insights as to how CD8+ T cell avidity can be regulated following virus infection and 

HIV-I recombinant pox viral prime-boost vaccination. The rationales for each of these 

studies are outlined below: 

1. Cytokines require receptors to mediate signaling and no studies have evaluated how 

cytokine receptors for IL-4 and IL-13 are regulated following pox virus infection. 

Therefore, in the first study ( chapter 3) it was investigated how receptors for IL-4 

and IL-13 are regulated on immune cells following predominantly pox virus 

infections and whether regulation of these receptors influenced the avidity of anti

viral CD8+ T cells. 

2. In the second study ( chapter 4), how cytokines IL-4 and IL-13 act on anti-viral 

CD8+ T cells to regulate avidity was investigated using a range of HIV -1 

recombinant pox viral prime-boost vaccination strategies (table 1.5). For this 

purpose, whether differential regulation of avidity molecules (i.e. lck, CD8af3, TCR, 

lck, CD 11 a and CD2) played a role in modulating HIV-specific CD8+ T cell avidity 

and polyfunctionality was investigated. 

3. Current assays that measure avidity of CD8+ T cells following HIV- I vaccination 

are usually performed in vitro, which can limit the interpretation of the effectiveness 

of vaccines in inducing high quality (i.e. avidity) T cell responses in vivo. Therefore, 

in the final study ( chapter 5) the utility of a novel FTA assay (section 1.9) to 

determine the efficacy of vaccine vectors and routes of vaccine delivery for the 

induction of high avidity and epitope variant cross-reactive CD8+ T cells as well as 

TH cell responses in vivo was evaluated. 
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Chapter 2 

Materials and Methods 
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2.1 Mice 

Pathogen-free 6-10 weeks old WT, IL-4 -/-, IL-13 -/-, STAT6 -/- BALB/c mice were bred 

and maintained under The ANU Animal Experimentation and Ethics Committee 

(AEEC) guidelines. C57BL/6, C57BL/6 IFN-y -i-, C57BL/6.SJL (CD45.1) and TCR 

transgenic C57BL/6 OT-I (CD45.2) mice were all purchased from the Australian 

Phenomics Facility, ANU. 

2.2 Ethics statement 

All animals were maintained and experiments were performed in accordance with The 

Australian National Health and Medical Research Council guidelines within The 

Australian Code of Practice for the Care and Use of Animals for Scientific Purposes. 

All animals were also maintained in accordance with guidelines approved by AEEC, 

protocol numbers JIG 74.09 and A2011/018. Animals used for experimentation were 

monitored daily and infected mice were scored for signs of illness and weight loss. 

Animals were ethically sacrificed using cervical dislocation in accordance with the 

above AEEC approved protocols. 

2.3 Peptide and tetramer synthesis 

All peptides and tetramers used in this study were synthesized at The BRF, JCSMR. 

Peptides included the MHC-I-binding peptides, SPYAAGYDL (F2L, immunodominant 

VV epitope L dF226-34), KYGRLFNEI (A52R, subdominant VV epitope KdA5275_83), 

SPGAAGYDL (F2L mut, a MV A epitope homologous to F2L), AMQMLKETI (HIV 

Gag, Gag epitope KdGag191-2os), AMQMLKDTI (HIV Gag mut, HIV Gag subtype C 

variant [Earl et al., 2009]), AMQMLEKTI (HIV neg), VGPTPVNII (HIV Pol, Kd

restricted HIV Pol epitope [Wild et al., 2009]), RGPGRAFVTI (HIV Env, Kd-restricted 
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HIV Env epitope [Takeshita et al. , 1995], and the MHC-II-binding peptide 

PVGEIYKRWIILGLN (Gag TH, H-2d-restricted HIV Gag epitope [Mata and Paterson,-

1999]). Tetramers used in this study include allophycocyanin conjugated KdGag197_205 

or Kd A521s-83 tetramers. 

2.4 Viruses 

MV A, a virulent Semliki Forest virus ( aSFV), FPV, recombinant VV encoding the 

ovalbumin peptide SIINFEKL (VV-OVA2s1-264) or A/PRS (HlNl) influenza virus 

stocks used in this study were gifts from Associate Professor Guna Karupiah, Dr. 

Mohammed Alsharifi, Dr. David Boyle, Dr. David Tscharke and Dr. Y oichi Furuya, 

respectively. All FPV and MV A stocks were grown and titrated in chick embryonic 

epithelial cells. aSFV stocks were grown and titrated in BHK cells. A/PRS influenza 

virus stocks were prepared as described in Alsharifi et al [2009]. Briefly, one 

hemmagglutinin unit of virus in 100 µl of saline was injected into 10-days old 

embryonated chicken eggs, incubated for 48 hours at 3 7 °C, and then stored at 4 °C 

overnight. Subsequently, the allantoic fluids fro1n these eggs were then harvested and 

the virus purified using hemagglutinin based binding of chicken red blood cells. The 

purified virus was titrated using Madin-Darby canine kidney cells to determine the virus 

stock concentration. VV Western Reserve (VV-WR) strain and recombinant VV stocks 

were grown and titrated in 143B cells. Recombinant VV encoding murine IL-4 and 

hemagglutinin (VV-HA-IL-4) and the VV encoding hemagglutinin (VV-HA) were 

prepared as described in Sharma et al [1996]. These stocks were kindly provided by 

Professor Alistair Ramsay. The reco1nbinant FPV encoding HIV-1 AE clade Gag, Pol 

and Env (FPV-HIV; FPV117a) and recon1binant VV encoding HIV-1 AE clade Gag 

and Pol (VV-HIV; VV336) used in the current study were exactly as those used 

, 
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previously in Ranasinghe et al [2006]. Recombinant VV encoding HIV AE clade Env 

(VV337) was prepared as described in Coupar et al [2006]. Recombinant FPV-HIV 

and VV-HIV encoding the murine IL-13Ra2~10 (IL-13 inhibitor vaccines) were 

constructed exactly as describe in Ranasinghe et al [2013]. 

2.5 Liposome preparation 

Jason Price at Lipotek kindly synthesized the liposome constructs used in this project 

and the liposome construction process is briefly described here. Liposome doses were 

encapsulated with a 35 mg bolus of HIV Gag mut peptide and a 1 mg bolus of LPS. 

Liposomes were formed by suspending a desiccated thin film of lipids composed of 

DOPC:DOPG:DSPE-PEG750:D0PE:cholesterol (Avanti Polar Lipids) at a w:w ratio of 

10:4:2: 1:2 respectively, in water. HIV Gag mut and LPS were incorporated into the 

liposomes by vortexing for 30 seconds, freezing on dry ice and lyophilisation, before 

stepwise rehydration in water. Liposomes were then sized by sequential extrusion 

through 0.4 mm, 0.2 mm and 0.1 mm PC membranes using a Northern Lipids 'Lipex' 

extruder with a 10 ml thermobarrel warmed to 50 °C. Unencapsulated peptide was 

removed by dialysis using 300 kDa MWCO tubing (Spectrapore). Peptide content of the 

liposomes was analyzed by RP-HPLC (Waters HPLC system) and concentration 

determined by comparison with peptide standards. The Prepared liposomes were then 

administered intravenously (i.v.) in a 200 µl bolus. 

2.6 Virus infection and HIV-1 prime-boost vaccination 

All virus infections in age- and sex-matched mice were conducted intraperitoneally 

(i.p.) at a dose of 3 x 106 plaque forming units (PFU)/mouse or 5 x 106 PFU/mouse for a 

period of 7 days unless otherwise stated. 
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For all HIV-1 prime-boost vaccinations except where indicated, pathogen free 6-10 

weeks old BALB/c mice were primed i.n. with 1 x 107 PFU of FPV-HIV (FPV117a) 

followed by i.m. booster vaccination with 1 x 10 7 PFU of VV-HIV (VV3 3 6) 14 days 

apart as described in Coupar et al [2006] and Ranasinghe et al [2006]. In chapter 5, VV

HIV immunizations were done using i.n. or i.m. routes with a mixture of 2.5 x 106 PFU 

of VV336 and 2.5 x 106 PFU of VV337 in an attempt to generate Env-specific T cell 

responses. T cell responses were evaluated 7 or 14 days post booster vaccination. 

2. 7 Adoptive cell transfer of OT -I cells 

Red blood cell (RBC)-depleted splenocytes from 8 weeks old C57BL/6 OT-I mice were 

injected i.v. (10 x 106 cells in 200 µl of phosphate buffer saline (PBS)) into a lateral tail 

vein of 8 weeks old recipient C57BL/6.SJL mice. Subsequently, the recipient mice were 

rested ove1night (12-18 hours) and infected i.p. with 5 x 106 PFU/mouse of VV-WR 

control or VV-OV A2s7-264 · 

2.8 Flow cytometry 

2. 8.1 Antibodies 

The following monoclonal antibodies against mouse antigens and the respective isotype 

controls for CD8a, CD4, CD45R (B220), CD124 (IL-4Ra), CD132 (ye), CD49b 

(DX5), CD44, CD69, CD25 , CD45.1 , CD62L, CD1 lc and TNF-a were all obtained 

from Becton Dickinson (BD) Biosciences, USA. Monoclonal antibodies against mouse 

granzyme B (GzmB), CD45.2, CD2, CD1 la, TCR~, IFN-y, H-2Kct and CD8~.2 (clone 

53-5.8) and I-Ad were obtained from BioLegend, USA. Monoclonal antibodies against 

mouse CD213a (IL-13Ral ) and IL-2 were obtained from eBioscience, USA. These 
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antibodies were used as purified, fluorescein isothiocyanate, phycoerythrin, peridinin 

chlorophyll protein, pacific blue, alexa fluor 700, horizon V500, brilliant violet 605, 

PE-cyanine, allophycocyanin or allophycocyanin-eFluor 780 conjugates. Secondary 

fluorescein isothiocyanate conjugated anti-goat IgG (Jackson ImmunoResearch) was 

used to detect purified polyclonal goat IgG anti-mouse IL-13Ra2 (R&D systems) 

binding to splenocytes. Cell viability was assessed with the dye Hoechst 33258 (1 

mg/ml, Calbiochem-Behring Corp.) as described in Quah et al [2004]. 

2. 8. 2 Cell surface and intracellular staining procedures 

In all flow cytometry-based studies REC-depleted splenocytes were used. Cell surface 

staining and intracellular staining were performed using the respective methods 

described in Ranasinghe et al [2006]. Briefly, for cell surface staining 1-4 x 106 cells 

were incubated 30 minutes at 4 °C in the presence of purified or fluorochrome 

conjugated antibodies diluted in PBS containing 1 % foetal calf serum (PCS). 

Subsequently, samples were washed twice using PBS containing 1 o/o PCS, fixed in 

0.5% paraformaldehyde, prior to flow cytometry analysis. 

In all the experiments described here, intracellular GzmB staining of cell surface 

stained samples was conducted using freshly isolated REC-depleted splenocytes that 

were not stimulated with peptides. For IFN-y, TNF-a and IL-2 ICS, 1-4 x 106 cells in 

200 µl of Roswell Park Memorial Institute (RPMI) culture medium (Invitrogen, 

Australia) containing 10% PCS were seeded in 96 well U-bottom plates (BD 

Biosciences) in the presence or absence of 0.1 µg/ml of KdA5275_83 , L dF226_34 or 

KdGag197-2os peptides. When CD8 blocking was performed, cells were incubated with 1 

µg/ml of purified anti-mouse CD8~.2 prior to and during KdGag197_205 peptide 
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stimulation. Subsequently, peptide stimulated or unstimulated cultures were left for 1 

hour at 37 °C + 5% CO2 prior to addition of lx Brefeldin A (eBioscience, USA). The 

cultures were then left for further 4 hours at 3 7 °C + 5% CO2 prior to conducting cell 

surface staining as described before. 

For intracellular staining, cell surface stained samples were fixed and permeabilized 

using commercial intracellular fixation and permeabilization buffers according to the 

manufacturer' s protocol ( eBioscience, USA). Subsequently, permeabilized cells were 

incubated for 30 minutes at 4 °C in the presence of purified or fluorochrome conjugated 

antibodies diluted in lx permeabilization buffer ( eBioscience, USA). Intracellular 

stained sa1nples were washed twice using PBS containing 1 % FCS, fixed in 0.5o/o 

paraformaldehyde prior to flow cytometry analysis. All cell surface and intracellular 

stained samples were analyzed using fluorescence activated cell sorting (FACS) Calibur 

(BD Biosciences, USA) or BD LSR II (BD Biosciences, USA) flow cytometry 

machine. For each sample 2 x 105 - 1 x 106 events were acquired. Flow cytometry plots 

of the analyzed data were constructed using the FlowJo Tree Star software (version 

8.7.1). 

2.9 Tetramer staining and dissociation assays 

Tetramer staining was done using REC-depleted splenocytes from vaccinated mice as 

described in Ranasinghe et al [2007]. For blocking CD8 engagement with KdGag 197_205 

tetramer, cells (2 x 106 cells/25 µl PBS) were incubated with varying concentrations of 

purified anti-mouse CD8~.2 for 30 minutes at 4 °C prior to tetramer staining. When 

tetramer dissociation was performed, tetramer stained cells were incubated for 60 

minutes at 37 °C + 5% CO2 in the presence of 25 µg/ml of anti-mouse H-2Kd (2 x 106 

cells/40 µl PBS) to prevent tetramer re-binding to .cells. After tetramer staining and/or 
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dissociation, cells were washed twice using PBS + 1 % FCS prior to conducting a cell 

surf ace stain. 

2.10 FTA preparation 

FT A was constructed by labeling spleen cells with combinations of the dyes CFSE, 

CTV and CPD as described previously [Quah et al., 2012]. Briefly, splenocytes 

supplemented with RPMI + 10% FCS at 20 °C, were labeled with 0-66000 nM of each 

dye in 1-2 ml aliquots for 5 minutes and then washed at least three times. For FTA 

constructs, aliquots of splenocytes from BALB/c WT mice were initially labeled with 

several concentrations of CTV. Cells were then split equally and labeled with several 

concentrations of CFSE, washed once and then incubated with MHC-I and MHC-II 

binding peptides for 1 hour at 3 7 °C. Cells were then washed through a FCS cushion 

and subsequently washed twice more. Replicate samples were then labeled with CPD. 

After washing the cell samples twice, all aliquots were pooled and washed again and 

then labeled with 14 mM dialkylcarbocyanine lipophilic tracer dye (Dil) from 

Invitrogen. The FTA was then resuspended at up to 25 x 1 o? cells/ml for injection into 

mice. 5 x 10 7 of prepared FTA target cells were injected into a mouse and left in vivo 

for 18 hours prior to assaying for FT A target cell help and killing. 

2.11 In vitro anti-TCR stimulation of splenocytes 

Splenocytes from nai've BALB/c mice were cell surface stained using fluorochrome 

conjugated antibodies against mouse CD44 and CD8a for purification of CD4410 CD8+ 

splenocytes using the F ACSAria II (BD Biosciences). 2 x 104 of F ACS sorted CD4410 

CD8+ splenocytes in 100 µl of RPMI + 10% FCS were then cultured in U-bottom well 

plates coated with 3 µg/ml of anti-CD3r or PBS (mock) in the presence or absence of 

45 



0.1 ng/ml of recombinant murine IL-4 (R&D systems). Prior to seeding of cells, 96 well 

U-bottom plates were coated with 3 µg/ml of purified mouse anti-CD3£ (BioLegend) or 

PBS (3 0 µI /well) for 18 hours at 4 °C and washed three times with PBS (200 µI/well). 

The plates containing F ACS purified cells were then incubated for further 8 hours at 3 7 

°C + 5% CO2 prior to cell surface staining and flow cytometry analysis. 

2.12 Quantitative real-time polymerase chain reaction (PCR) 

IL-4Ra10 and IL-4Rahi CD8+ splenocytes (see supplementary figure 3A) from 

BALB/c mice infected with VV-WR for 7 days or total CD8+ splenocytes from 

unimmunized control BALB/c mice were sorted using F ACSAria II machine. RNA 

extracted from sorted cells was used to generate cDNA as described in Ranasinghe et al 

[2007]. Quantitative real-time PCR with specific primers (table 2.1) and Power SYBR 

Green PCR Master Mix (Applied Biosystems) were used to amplify cDNA for 40 

cycles according to the manufacturer' s guidelines of the Applied Biosystems SDS 7900 

real-time PCR machine. 

Primer melting curves were analyzed to ensure that target-specific amplification had 

occu1Ted. NCBI Primer-BLAST database was used to verify that the primers used in 

this study did not anneal to any unintended products in the mouse genome. mRNA 

encoding ribosomal protein L32 was amplified as the house keeping reference control to 

measure fold change in mRNA transcript levels (see section 2.13.3). 
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T bl 2 1 P . a e . . r1mers use dt ft f If PCR or quan I a 1ve rea - 1me . 
Primer Sense primer 5' ~ 3' Anti-sense primer 5'~3 ' 

IL-4Ra ACACTACAGGCTGATGTTCTTCG TGGACCGGCCTATTCATTTCC 

GzmB CCACTCTCGACCCTACATGG GGCCCCCAAAGTGACATTTAT 

L32 GCTGGAGGTGCTGCTGATGTG CGTTGGGATTGGTGACTCTGATGG 
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2.13 Statistical analysis 

2.13.1 Net fold reduction in IL-4Ra expression calculation 

Net fold reduction of cell surface IL-4 Ra expression was calculated using mean 

(geometric) fluorescent intensity (MFI) obtained from flow cytometry on gated CD8+ 

splenocytes from unimmunized or VV-WR infected mice as follows: ((MFI (IL-

4Ra)unimmunized - MFI (IL-4Ra)vv-WR) / MFI (IL-4Ra)unimmunizect). 

2. 13. 2 FTA statistical analysis 

The % specific killing was assessed as previously described [Quah et al. , 2012] using 

the following formula: 

% specific killing 

Targets+~ept~·de 
pnmed 

T t +nil arge sprimed = 1- ~~~~'--~~--"-~ 
Targets+p.epu~e 

naive .
1 T t +rn arge s naive 

X 100 

T cell help was assessed on the basis of CD69 up-regulation of FTA B cell by antibody 

labeling and flow cytometry. Expression of CD69 was calculated by subtracting the 

MFI (CD69) on FT A B cells from na:ive mice from that of FT A B cells from the 

vaccinated mice as previously described in Quah et al [2013]. 

Statistic values, including area under the curve (AUC = peptide (µM) x % specific 

killing response) and EC50 (peptide concentrations giving half maximal % specific 

killing) were calculated using GraphPad Prism Software. To calculate EC50 values the 

peptide concentrations in response curves were transformed to log10 (µM), specific 

killing normalized to 100% and data modeled to a si-gmoidal dose-response curve. 
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2.13. 3 Fold change in mRNA-transcript levels calculation 

The fold change in mRNA transcript levels was calculated using the 2-MCT method. 

L\L\CT was calculated as follows: ((CTtarget - CTreference) of sorted IL-4Ra10/ IL-4Rahi 

CD8+ T cells) - (CT target - CT reference) of nai've CD8+ T cells. 

2.13. 4 Statistical significance testing 

All the data presented in this study have been reproduced in at least two independent 

experiments unless otherwise stated. The data plotted in all the graphs shown except 

where indicated represent the mean and the error bars depict the standard error of the 

mean (SEM). Statistical significance of the data and the p values were calculated using 

the Graph InStat software (version 3.10). In all statistical significance analysis, a 

student's unpaired t-test, Mann-Whitney nonparametric two-tailed t-test or one-way 

ANOV A was used. 
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Chapter 3 

The Role of IL-4/IL-13 Cytokine Receptors in 
Modulating Anti-Viral CDS+ T Cell Quality 
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Please note that the data presented in this chapter have now been published in: 

Wijesundara DK, DC Tscharke, RJ Jackson and C Ranasinghe. Reduced Interleukin-4 

Receptor alpha Expression on CD8( +) T Cells Correlates with Higher Quality Anti

Viral Immunity. PLoS One 2013; 8: e55788. 

3.1 Introduction 

Protection against intracellular pathogens ( e.g. viruses and parasites) and tumors often 

requires the activation of effector CD8+ T cells, which usually mediate cytolysis upon 

recognition of non-self pMHC-I complexes presented on the surface of malignant cells 

or virus-infected cells [Zinkemagel et al., 1974; Harty et al., 2000; Dudley et al., 2002]. 

In HIV-I infections, increased susceptibility of virus-infected CD4+ T cells to CD8+ T 

cell mediated cytolysis has been associated with superior virus control in elite 

controllers [Buzon et al., 2014]. However, a collection of CD8+ T cell effector 

functions, not exclusively cytolysis, appears to be important in controlling virus 

infections. These include the ability to mount high avidity interactions with virus

infected cells, produce multiple anti-viral cytokines (i.e. IFN-y and TNF-a), induce a 

high clonal turnover rate, and/or the ability to produce chemoattractants ( e.g. 

macrophage inflammatory protein- I ~) to recruit immune cells to virus-infected sites 

[Derby et al. , 2001; Almeida et al. , 2007; Seder et al. , 2008]. These effector functions 

define the quality of effector CD8+ T cell responses against viruses. 

The use of IL-4 Ra -/-, IL-13 Ra 1 -/-, ye -/- and IL-13 Ra2 -/- mice have shown that these 

receptors are indeed important for controlling functions of IL-4 and IL-13 in allergic 

diseases and parasitic infections [Mohrs et al. , 1999; Sivaprasad et al., 2010, Junttila et 

al., 2008]. However, these studies provide limited insights as to how these receptors are 

regulated at a cellular level in vivo during the course of a pathogenic infection. A study 

51 



by Tanaka et al [2007] reported that cell surface IL-4Ra expression is down-regulated 

on activated CD4+ T cells in vivo following L. major infection. This was found to be 

due to degradation of IL-4Ra in intracellular compartments of activated CD4+ T cells in 

a TCR and dedicator of cytokinesis 2 (DOCK2) dependent manner [Tanaka et al. , 

2007]. In another study, Perona-Wright et al [2010] have also shown that cell surface 

IL-4Ra expression was down-regulated on activated CD4+ T cells following H 

polygyrus infection of mice, which was thought to render these cells refractory to 

further stimulation with IL-4. On the contrary, na:ive bystander CD4+ T cells in this 

instance were found to up-regulate IL-4Ra making them more responsive to IL-4 

[Perona-Wright et al., 201 OJ. These studies suggest that IL-4 Ra plays a critical role in 

tuning responsiveness of CD4+ T cells to IL-4 and/or IL-13 during infection with 

pathogens. 

Despite recent studies showing the importance of regulating IL-4Ra expression on 

CD4+ T cells following parasitic infection in vivo, only few studies have addressed how 

the cytokine receptors for IL-4/IL-13 are regulated on CDS+ T cells following virus 

infection in vivo. The current study initially investigated how IL-4 Ra, ye, IL-13 Ra 1 

and IL-13Ra2 were regulated on CDS+ T cells and other immune cells predominantly 

following VV infection of mice. After obtaining results showing that only IL-4Ra 

expression was differentially regulated on CDS+ T cells as a consequence of VV 

infection of mice, the current study explored the mechanisms involved in this process 

and whether differential regulation of IL-4Ra affected the quality of anti-viral CDS+ T 

cell immunity. 
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3.2 Results 

3. 2.1 Regulation of IL-4/IL-l 3 receptor components during VV infection 

To examine whether VV infection induced differential regulation of IL-4/IL-13 receptor 

subunits on immune cells known to be important for clearance of viral infections, 

splenocytes from unimmunized or VV-WR strain infected BALB/c WT mice were 

analyzed using flow cytometry during the peak (i.e. 7 days) of anti-viral immunity. Cell 

surface IL-13Ra 1, ye and intracellular IL-13Ra2 expression levels on gated B220\ 

CD4\ CD8\ DX5+ (NK cells) and CD1 lchigh 1-A\igh (DCs)) splenocytes from VV-WR 

infected mice and unimmunized mice were similar (figure 3.1). Cell surface IL-13Ra2 

expression was not detectable above background expression levels in the cell subsets 

shown in figure 3.1 (data not shown). Interestingly, cell surface IL-4Ra expression was 

up-regulated on CD1 lchigh 1-A\igh cells and down-regulated on CD4+ and CD8+ T cells 

as a consequence of VV infection (figure 3.1). Down-regulation of IL-4Ra was not 

uniformly observed on all CD4+ or CD8+ T cells following VV infection with some 

cells retaining similar IL-4Ra expression levels to that observed in unimmunized mice. 

3.2.2 Down-regulation of IL-4Ra expression correlates with the magnitude of effector 

CD8+ T cells 

To clearly understand the mechanisms responsible for mediating down-regulation of 

cell surface IL-4 Ra expression on CD8+ T cells following VV infection, the kinetics of 

down-regulation of this receptor on CD8+ T cells was monitored. Using ICS and GzmB 

expression assays, data revealed that VY-specific effector CD8+ T cells emerged on day 

5 post-infection (p.i.), peaked on day 7 p.i. and gradually declined from days 14-28 p.i. 

with VV-WR (figure 3.2A and 3.2B). Similarly, reduction in cell surface IL-4Ra 
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Figure 3.1. Distribution of IL-4Ra, ye, IL-13Ral and IL-13Ra2 on immune cells 

following VV infection. BALB/c WT mice infected for 7 days with VV-WR or 

unimmunized were sacrificed and splenocytes harvested for analysis using flow 

cytometry. The histogram plots show cell surface expression of IL-4Ra, ye, IL-13Ral 

and intracellular expression of IL-13Ra2 on gated B220\ CD4\ CD8\ DXS\ and 

CD 11 chigh I-A \igh splenocytes from a representative VV-WR infected mouse (red lines) 

and an unimmunized mouse (blue lines). The plots are representative of at least 12 mice 

tested in at least three independent experiments. 
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Figure 3.2. Reduction in IL-4Ra expression correlates with magnitude of anti-viral 

effector responses on CD8+ T cells. Unimmunized or VV-WR infected BALB/c WT 

mice were sacrificed at the indicated time points and splenocytes used for flow 

cytometry analysis or for ICS following Kd A5275_83 or -L dF226_34 in vitro peptide 

stimulation of splenocytes as described in section 2.8.2. A and B, The mean (n = 4) 

percentage of CD8+ splenocytes (A) and the total number of CD8+ splenocytes (B) from 

VV-WR infected mice that expressed GzmB or IFN-y following in vitro peptide 

stimulation. C, The kinetics of the mean (n = 4) net fold reduction in cell surface 

expression of IL-4Ra on gated CD8+ splenocytes from VV-WR infected mice relative 

to unimmunized mice. Net fold reduction was calculated using MFI values as described 

in section 2.13.1. The data shown is representative of at least two independent 

experiments and the error bars depict the SEM. 
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expression on CDS+ T cells following VV-WR infection was detected on day 5 p.i., 

peaked on day 7 p.i. (figure 3.2C). The expression of this receptor on CDS+ T cells then 

increased from days 14-28 p.i. with VV-WR (figure 3.2C). Thus, the magnitude of 

down-regulation of IL-4Ra expression on CDS+ T cells correlated with the increase in 

the magnitude of the anti-viral effector CDS+ T cell responses following VV infection. 

3.2.3 Down-regulation of IL-4Ra is TCR dependent and restricted to virus-specific 

CD8+ T cells 

Next the OT-I TCR transgenic system was used to show whether IL-4Ra down

regulation was restricted to CDS+ T cells responding to virus. Splenocytes from OT-I 

mice (CD45.2+) were transfetTed i.v. into congenic C57BL/6.SJL (CD45.1 \ CD45.2-) 

recipient mice prior to infection of these mice with VV-OV A2s7-264 or VV-WR, which 

does not express KbOVA257_264 (SIINFEKL) epitope. CDS+ T cells from OT-I mice 

almost exclusively recognize KbOV A257_264 and so should only be primed by VV

OV A2s7-264 and not VV-WR. This was confirmed using GzmB as a marker of activation 

(figure 3.3A). IL-4Ra levels were also measured (figure 3.3B and 3.3C), and down

regulation of this receptor on OT-I cells (CD45.2l was only seen in mice infected with 

VV-OV A2s7-264· By contrast IL-4Ra levels were reduced on recipient (CD45.2-) CDS+ 

T cells irrespective of the strain of virus. Thus, IL-4 Ra levels were only reduced on 

activated virus-specific CDS+ T cells. 

F ACS sorted polyclonal na:ive (CD4410) CD8+ T cells were also cultured in vitro with or 

without anti-TCR stimulation to determine whether IL-4Ra down-regulation was TCR 

dependent. IL-4Ra down-regulation was observed on CDS+ T cells as a consequence of 

plate-bound anti-CD3£ stimulation suggesting that this phenomenon was also TCR 

dependent (supplementary figure 1). 
., 
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3.2.4 Down-regulation of IL-4Ra is a general property of activated anti-viral CD8+ T 

cells 

To evaluate whether down-regulation of cell surface IL-4Ra expression on activated 

CD8+ T cells is specific to VV infections, IL-4 Ra expression was analyzed on effector 

(GzmB+ CD62L-) and naYve (GzmB- CD62L +) CD8+ T cells as described in Yuen et al 

[2010] following infection of BALB/c WT mice with VV-WR, MVA, aSFV, FPV or 

A/PR8 influenza virus (figure 3.4A). Cell surface IL-4Ra expression on effector CD8+ 

T cells compared to naYve bystander CD8+ T cells was significantly lower in all the 

mice infected with the different viruses (figure 3.4B and 3.4C). There were no 

significant differences between the levels of cell surface IL-4 Ra expression on effector 

or naYve CD8+ T cells that developed following VV-WR infection and other viral 

infections (figure 3.48 and 3.4C). Therefore, down-regulation of cell surface IL-4Ra 

expression on activated CD8+ T cells is a general feature of virus infections in vivo. 

3.2.5 Importance of IL-4, IL-13, IFN-y and STAT6 in regulating IL-4Ra expression on 

CD8+ T cells following virus infection 

IL-4, IL-13 and IFN-y are cytokines that play a role in regulating IL-4 Ra expression on 

cells [Serpier et al., 1997; Wills-Karp and Finkelman, 2008]. Thus, it was next 

determined whether down-regulation of cell surface IL-4Ra expression on anti-viral 

effector CD8+ T cells was dependent on IL-4, IL-13, STAT6 or IFN-y. For this purpose, 

IL-4Ra expression was analyzed on effector (GzmB+ CD62L-) and naYve (GzmB

CD62L +) CD8+ T cells from relevant gene knockout and littermate WT control mice 

infected with VV-WR. Cell surface IL-4 Ra expression on naYve CD8+ T cells, but not 

effector CD8+ T cells was significantly lower in IL-4 -1-, IL-13 -/- and STAT6 -/- BALB/c 

mice compared to BALB/c WT control mice (figure 3.5A and 3.5B). Interestingly, 

57 



Figure 3.3. Cell surface down-regulation of IL-4Ra specifically occurs on activated 

CDS+ T cells. Na'.ive C57BL/6.SJL (CD45.1 \ CD45.2-) mice that received 10 x 106 

C57BL/6 OT-I splenocytes (CD45.2+) i.v. were kept unimmunized or infected i.p. with 

5 x 106 PFU of VV-WR or VV-OV A257_264 for 7 days prior to sacrifice and flow 

cytometry analysis. A, Representative contour plots showing cell surface CD45 .2 and 

intracellular GzmB expression on gated CDS+ splenocytes from a recipient mouse of the 

indicated group. B, Representative histogram plots showing cell surface IL-4Ra 

expression on gated CDS+ CD45 .2- (left column of plots) or CDS+ CD45 .2+ (right 

column of plots) splenocytes from a recipient mouse kept unimmunized, infected with 

VV-WR or VV-OV A2s7-264· C, MFI (n = 6) representing cell surface IL-4Ra expression 

on gated CDS+ CD45 .2- or CDS+ CD45 .2+ splenocytes from recipient mice of the 

indicated group. One-way ANOVA (Tukey's Multiple Comparison) was used for 

testing significance of the data(*** - p < 0.001). Similar results have been obtained in 

three independent experiments and the error bars depict the SEM. 
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Figure 3.4. Down-regulation of IL-4Ra is a general feature of activated CD8+ T 

cells following virus infection. BALB/c WT mice were infected i.p. with 3 x 106 PFU 

of the indicated viruses or kept unimmunized for 7 days prior to sacrifice and flow 

cytometry analysis . A, Dot plots showing cell surface CD62L expression and 

intracellular GzmB expression on gated CDS+ splenocytes from a representative mouse 

of the indicated group. B, Representative histogram plots showing cell surface IL-4Ra 

expression on the indicated CDS+ splenocyte subset from a representative mouse 

infected with the indicated virus. C, MFI (n = 5) representing cell surface IL-4Ra 

expression on the indicated splenocyte subset from nnce infected with the indicated 

viruses. Similar results have been obtained in three independent experiments and the 

error bars shown depict the SEM. 
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Figure 3.5. IL-4, IL-13 and ST AT6 regulate IL-4Ra expression on CD8+ T cells 

following VV-WR infection. Gene knockout mice and respective littermate WT 

control mice were infected with VV -WR for 7 days or kept unimmunized prior to 

sacrifice and analysis using flow cytometry. A, Representative histogram plots showing 

cell surface IL-4Ra expression on the indicated CD8+ splenocyte subset from a gene 

knockout mouse or a littermate WT control mouse. B, MFI (n = 5) representing cell 

surface IL-4 Ra expression on the indicated CD8+ splenocyte subset from mice of the 

indicated genetic background infected with VV-WR. C, Representative histogram plots 

showing cell surface IL-4 Ra expression on the indicated CD8+ splenocyte subset from 

an unimmunized mouse or VV -WR infected mouse belonging to the indicated genetic 

background. All the results shown are representative of at least two independent 

experiments. Error bars when shown depict the SEM and one-way ANOVA (Dunnett 

Multiple Comparison) was used to determine the statistical significance of the data 

relative to WT control mice(*** - p < 0.001). 

61 



na:ive B cells, CD4 + T cells, NK cells and DCs did not express lower levels of IL-4 Ra 

in na:ive gene knockout mice for IL-4, IL-13 and ST A T6 relative to WT controls 

(supplementary figure 2). 

In these experiments, IL-4Ra expression levels on na:ive CD8+ T cells from VV-WR 

infected mice and unimmunized mice were also measured. This was done to investigate 

the possibility that VV-WR infection induced IL-4 and/or IL-13 to up-regulate IL-4Ra 

expression on na:ive bystander CD8+ T cells similar to what has been reported on na:ive 

bystander CD4+ T cells responding to IL-4 following parasitic infection [Perona-Wright 

et al., 2010]. However, na:ive CD8+ T cells from VV-WR infected IL-13 -/-, IL-4 -/-, 

STAT6 -!- or WT control BALB/c mice expressed similar levels of cell surface IL-4Ra 

to that of na:ive CD8+ T cells from unimmunized mice belonging to the respective 

genetic background (figure 3.SC). This suggests that VV-WR infection was not 

inducing significant levels of IL-4 and/or IL-13 to up-regulate IL-4Ra expression on 

na:ive CD8+ T cells. In contrast to the knockout mice described above, no difference in 

IL-4Ra expression levels were seen on any CD8+ T cells from C57BL/6 IFN-y -/

compared to C57BL/6 WT controls (figure 3.5A and 3.5B). Collectively, data suggest 

that IL-4, IL-13 and STAT6 are required for maintaining high levels of IL-4Ra 

expression on na:ive CD8+ T cells. 

..L 

3.2. 6 Increased IL-4 during virus infection induces higher levels of IL-4Ra on CD8 · T 

cells 

Next whether IL-4Ra levels on CD8+ T cells were fixed/unchanged, or responsive to 

IL-4 during infection was investigated. For these studies, VV-HA-IL-4 and the control 

VV-HA were used for infection. Strikingly, IL-4Ra expression was higher in BALB/c 
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WT mice infected with VV-HA-IL-4 relative to VV-HA infection when comparing 

naYve (GzmB- CD62L +) or effector (GzmB+ CD62L-) CD8+ T cells (figure 3.6). 

Similarly, up-regulation ofIL-4Ra was also observed following IL-4 exposure ofFACS 

sorted naYve CD8+ splenocytes from BALB/c WT mice in vitro stimulated or 

unstimulated with plate-bound anti-CD3r (supplementary figure 1). When the VV-HA 

and VV-HA-IL-4 infection experiments were performed using BALB/c STAT6 -/- mice, 

no difference in IL-4Ra expression was observed on CD8+ T cells unlike that observed 

in BALB/c WT mice (figure 3.6). Data indicate that the amount of IL-4 available 

during virus infection can regulate the expression of IL-4 Ra on CD8+ T cells in a 

STAT6 dependent manner. 

3.2. 7 Transcriptional control is not predictive of protein IL-4Ra expression on effector 

CD8+ T cells following VV-WR infection 

Whether lower production of IL-4Ra mRNA transcripts was responsible for down

regulating protein expression of IL-4 Ra on CD8+ T cells following VV infection was 

-
also evaluated. RNA extracted from FACS sorted IL-4Ra10 and IL-4Rahi CD8+ T cells 

(as shown in supplementary figure 3A) were used in these studies to synthesize cDNA 

for a quantitative real-time PCR analysis as described in section 2.12. The data indicate 

that there were no significant differences in the IL-4Ra mRNA transcript levels 

between IL-4Ra10 and IL-4Rahi CD8+ T cells despite the differences in IL-4Ra protein 

expression between these two cell populations (supplementary figure 3B). GzmB 

mRNA transcript levels were measured as a positive control given that GzmB mRNA 

transcript levels have been reported to be enhanced on VY-specific effector/memory 

CD8+ T cells compared to naYve CD8+ T cells [Yoshida et al., 2006]. Data showed that 

IL-4Ra10 CD8+ T cells clearly expressed much higher (-50 fold) GzmB mRNA 
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Figure 3.6. IL-4Ra is up-regulated on CD8+ T cells in a STAT6 dependent manner 

following VV-HA-IL-4 infection. WT or STAT6 -!- BALB/c mice were infected with 5 

x 106 PFU of VV-HA control, VV-HA-IL-4 or kept unimmunized for 7 days prior to 

sacrifice and analysis using flow cytometry. A and B, Representative histogram plots 

showing cell surface IL-4Ra expression (A) and the MFI (n = 5) of cell surface IL-4Ra 

expression (B) on the indicated CD8+ splenocyte subset from infected mice of the 

indicated genetic background. The data shown is representative of two independent 

experiments and the error bars depict the SEM. One-way ANOV A (Dunnett's Multiple 

Comparison) was used to determine the statistical significance of the data relative to 

respective cell subset from VV-HA infected mice(*** - p < 0.001). 
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transcript levels compared to IL-4Rahi CD8+ T cells (supplementary figure 3B). 

3.2.8 IL-4 and IL-13 regulate the establishment of IFN-y+ TNF-a+ producing effector 

CD8+ T cells following virus infection 

High avidity virus-specific CD8+ T cells express elevated levels of both IFN-y and 

TNF-a [La Gruta et al., 2006; Ranasinghe et al., 2007]. To evaluate whether 

differential regulation of cell surface IL-4 Ra expression on CD8+ T cells may play a 

role in regulating CD8+ T cell functional quality, IFN-y and TNF-a production were 

measured using ICS following in vitro KdA5275_83 or LdF226-34 peptide stimulation of 

splenocytes from VV infected WT and gene knockout BALB/c mice. Amongst the gene 

knockout mice examined only BALBI c IL-4 -/- mice developed greater numbers of IFN

y expressing Kd A5275_83 or L dF226_34 specific CD8+ T cells compared to BALB/c WT 

control mice following VV-WR infection (figure 3. 7B). However, the enhancement in 

cell numbers in this instance was not robust enough to reach statistical significance 

(figure 3. 7B). The number of IFN-y + TNF-a + Kd A5275_83 or L dF226_34 specific CD8+ T 

cells and the proportion of Kd A5275_83 or L dF226_34 specific CD8+ T cells that expressed 

TNF-a in addition to IFN-y was higher in VV-WR infected IL-13 -/-, IL-4 -/- and STAT6 

-!- BALB/c mice compared to BALB/c WT control mice (figure 3.7). Given that IL-4Ra 

expression on naYve CD8+ T cells was lower in IL-13 -/-, IL-4 -/- and STAT6 -/- BALB/c 

mice compared to BALB/c WT mice (figure 3.5), in these studies, lower IL-4Ra 

expression on naYve CD8+ T cells correlated with the enhancement in the anti-viral IFN-

+TN + + y F-a CD8 T cell responses. 
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Figure 3.7. IL-4 and IL-13 dampen polyfunctional (IFN-y+ TNF-a+) CD8+ T cell 

numbers following VV-WR infection. IL-13 -/-, IL-4 -/-, STAT6 -/- and WT BALB/c 

mice were infected with 3 x 106 PFU of VV-WR or kept as unimmunized controls for 7 

days prior to sacrifice and analysis using ICS after in vitro peptide stimulation. A, 

Representative dot plots showing IFN-y and TNF-a expression on gated CD8+ 

splenocytes from VV-WR infected mice of the indicated genetic background following 

in vitro stimulation of splenocytes with the indicated peptides. B, Mean (n = 6) total 

f d d "fi + + + + + number o K A521s-s3 or L F226-34 spec1 1c CD8 IFN-y or CD8 IFN-y TNF-a 

splenocytes from the indicated mice infected with VV-WR. C, Mean (n = 6) proportion 

of Kd A5275_83 or L dF226_34 specific CD8+ IFN-y + splenocytes that also produced TNF-a 

from the indicated mice infected with VV -WR. The data presented in all panels are 

representative of at least two independent. Error bars depict the SEM and statistical 

significance was determined using a one-way ANOV A (Dunnett' s Multiple 

Comparison) relative to WT control mice(* - p < 0.05 ; *** - p < 0.001). 

, 
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Figure 3.8. STAT6 is required for IL-4 mediated attrition of VY-specific CD8+ T 

cell responses. WT and ST AT6 -!- BALB/c mice were infected with 5 x 106 PFU of 

VV-HA, VV-HA-IL-4 or kept unimmunized for 7 days prior to sacrifice and analysis 

using ICS after in vitro peptide stimulation. A and B, Representative dot plots showing 

IFN-y and TNF-a expression on gated CDS+ splenocytes from infected BALB/c WT 

(A) or BALB/c STAT6 -!- (B) mice following in vitro stimulation of splenocytes with 

the indicated peptides. C, The mean (n = 4-5) number of cytokine producing Kd A5275_83 

or L dF226_34 specific CDS+ splenocytes and the mean (n = 4-5) proportion of CDS+ 

splenocytes that produced TNF-a in addition to IFN-y from WT (top row of plots) or 

STA T6 -!- (bottom row of plots) BALB/c mice infected with the indicated virus. The 

data are representative of two independent experiments and the error bars depict the 

SEM. One-way ANOV A (Dunnett' s Multiple Comparison) was used to determine 

statistical significance of the data relative to VV-HA infected mice(* - p < 0.05; ** - p 

< 0.01 ; *** - p < 0.001). 
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Consistent with the above findings, infection of BALB/c WT mice with VV-HA-IL-4 

compared to VV-HA control infection significantly reduced the numbers of IFN-y + and 

IFN-y + TNF-a + Kd A5275_83 or L dF226_34 specific CD8+ T cells (figure 3.8A and 3.8C). 

The proportion of KdA5275_33 or LdF226-34 specific CD8+ T cells that expressed TNF-a 

in addition to IFN-y was also significantly reduced in BALB/c WT mice infected with 

VV-HA-IL-4 compared to VV-HA (figure 3.8A and 3.8C). Unlike that observed with 

BALB/c WT mice, infection of BALB/c STAT6 -!- mice with VV-HA-IL-4 compared to 

VV-HA control did not impair the IFN-y and TNF-a cytokine production capacity of 

Kd A521s-s3 or L dF226-34 specific CD8+ T cells (figure 3.8B and 3.8C). Thus, elevation 

of IL-4Ra expression on CD8+ T cells during virus infection strongly correlated with 

the reduction of anti-viral IFN-y + TNF-a + CD8+ T cell responses. 

3.3 Discussion 

Results clearly indicated that amongst the different IL-4/IL-13 receptor components 

only cell surface IL-4Ra expression was significantly down-regulated on activated 

CD8+ T cells following virus infection IL-4, IL-13 and STAT6 were required to elevate 

IL-4Ra expression on naYve CD8+ T cells, but not IFN-y. VV-HA-IL-4 infection studies 

showed that IL-4 and STAT6 were required to up-regulate IL-4Ra expression on naYve 

and effector CD8+ T cells. In all these studies higher IL-4Ra expression on CD8+ T 

cells strongly correlated with the reduction in polyfunctional or IFN-y + TNF-a + anti

viral CD8+ T cells. Thus, it is plausible to propose that regulation of IL-4Ra expression 

during virus infection plays an important role in regulating the quality of anti-viral 

CD8+ T cell immunity. 

70 



Contrary to suggestions from other reports [Graber et al., 1998; Wills-Karp and 

Finkelman, 2008], data in the current study showed that IL-13Ra 1 is ubiquitously 

expressed on the cell surface of T cells as well as B cells, NK cells and DCs. The reason 

for this discrepancy is unclear, but it is most likely due to the lack of specific 

monoclonal antibodies used to detect surface expression of this receptor [Graber et al., 

1998]. Similar ubiquitous expression on immune cells was also observed with respect to 

IL-4Ra, ye, and IL-13Ra2. However, following virus infection only IL-4Ra was 

notably differentially regulated on certain immune cell subsets (i.e. CD4+ T cells, CD8+ 

T cells and DCs). The mechanisms responsible for regulating IL-4Ra expression on 

CD4 + T cells and DCs following virus infection were not investigated in this study and 

warrants further investigation especially given the importance of these cell subsets in 

driving immune responses that help control intracellular pathogens [Seder et al., 2008; 

Kroger et al., 2008]. 

In an acute LCMV adoptive transfer model, Wherry et al [2007] have reported changes 

in many cellular markers, including IL-4Ra expression on transferred LCMV DbGP33-

specific transgenic P14 CD8+ T cells. In their model, IL-4Ra expression was down

regulated on LCMV DbGP33-specific CD8+ T cells following acute and chronic LCMV 

infection. These findings are consistent with the findings of the current study. However, 

unlike the current study, Wherry et al [2007] did not investigate the factors responsible 

for regulating IL-4 Ra expression on polyclonal CD8+ T cells or the implications of 

regulating this receptor on CD8+ T cell functionality following virus infection in WT 

. 
mice. 

IL-4 can induce the activation of STATl, STAT3, STATS and STAT6 on naYve and 

activated CD8+ T cells in vitro [ Acacia de Sa Pinheiro et al., 2007], but the current 
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infection studies with VV-HA-IL-4 suggest that STAT6 was indispensible for IL-4 

mediated up-regulation of cell surface IL-4Ra expression on na:ive and effector CDS+ T 

cells. Even in na:ive gene knockout mice STAT6 signaling, which appeared to be 

optimal in the presence of both IL-4 and IL-13 , was required to maintain high levels of 

cell surface IL-4Ra expression on CDS+ T cells. Thus, IL-4 and/or IL-13 signaling 

through STAT6 appears to be important in maintaining high levels of IL-4Ra 

expression on na:ive CDS+ T cells even when no pathogen is encountered. Furthermore, 

this signaling mechanism appears to also be important in elevating IL-4 Ra expression 

on na:ive and effector CDS+ T cells in vivo following virus infection. However, a caveat 

in this interpretation is that deficiency of ST AT6 in other cells may play a role in 

regulating IL-4 Ra expression levels on CDS+ T cells. 

Previous infection studies with VV-HA-IL-4 or recombinant ectromelia virus encoding 

IL-4 suggest that IL-4 dampened the effector function capacity of anti-viral CDS+ T 

cells and enhanced viral pathogenesis [Sharma et al., 1996; Jackson et al., 2001]. In 

chronic HIV progressors, HIV-specific CDS+ T cells with reduced cytolytic capacity 

have been reported to express IL-4 [Maggi et al. , 1994]. In our laboratory, following 

HIV -1 recombinant pox-viral prime-boost vaccination, both IL-4 and IL-13 were found 

to dampen the avidity of HIV-specific CDS+ T cells [Ranasinghe et al. , 2009]. 

However, none of the above studies have monitored the expression of IL-4Ra in 

conjunction with the anti-viral effector functions on CDS+ T cells. This was addressed 

this in the current study and the data suggest that enhancing CDS+ T cell responsiveness 

to IL-4 and/or IL-13 via STAT6 dependent up-regulation of IL-4Ra expression can 

exacerbate the quality (IFN-y and TNF-a cytokine production) of anti-viral CDS+ T cell 

immunity. 
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Paradoxical to these studies, our laboratory findings have also shown that HIV-specific 

CD8+ T cells that developed in IL-4 Ra -/- mice following HIV-1 recombinant prime-

boost vaccination expressed high levels of IL-4 and IL-13, but low levels of IFN-y 

[Ranasinghe et al., 2009]. Other studies using IL-4Ra -/-mice have also shown that IL-

4Ra is required for the maintenance of optimal CD8+ T cell cytotoxicity, IFN-y 

production and memory responses [Marsland et al., 2005; Morrot et al., 2005]. It is 

highly likely that in IL-4 Ra -/-mice, other compensatory mechanisms may play a role in 

dampening CD8+ T cell functionality as Mohrs et al [2000] have shown that IL-4 

producing TH cell (T H2) differentiation can still occur in IL-4Ra -/- mice in vivo. 

Identification of these compensatory mechanisms may not only help understand 

mechanisms important for regulating T cell quality, but also help reconcile the 

paradoxical findings discussed above. 

The exact intracellular mechanisms that facilitate down-regulation of IL-4Ra on CD8+ 

T cells are not clear. The findings from this study suggest that mRNA transcriptional 

regulation is not involved in this process. Given that DOC!(.2 is important for down

regulating IL-4Ra expression on CD4+ T cells [Tanaka et al., 2007], it would be 

intriguing to investigate whether D0CK2 also plays a similar role in CD8+ T cells. The 

current study also did not investigate how IL-4 and/ or IL-13 mediated elevation of IL-

4 Ra expression on CD8+ T cells act to dampen IFN-y and TNF-a cytokine production 

by anti-viral CD8+ T cells. It is possible that activation of suppressor of cytokine 

signaling-I and -3 on anti-viral CD8+ T cells is important for this effect as IL-4 and IL-

13 mediated activation of these transcription factors have been shown to dampen IFN-y 

and TNF-a cytokine production by keratinocytes [ Albanesi et al., 2007]. IL-4 has also 

been shown to down-regulate the CD8 co-receptor expression levels on antigen-specific 

CD8+ T cells, which dampens the functionality of these cells [Erard et al., 1993; 
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Kienzle et al. , 2005 ; Apte et al. , 201 OJ. Therefore, IL-4 and/or IL-13 mediated 

regulation of the CDS co-receptor expression levels on anti-viral CDS+ T cells may also 

play a role in regulating anti-viral cytokine production and this will be addressed in 

chapter 4. 

To my understanding, this is the first study to evaluate how the different cellular 

receptor components for IL-4 and IL-13 are regulated on CDS+ T cells following virus 

infection. The data from this study suggest that differential regulation of IL-4 Ra, unlike 

other IL-4/IL-13 receptor components (i.e. ye, IL-13Ral and IL-13Ra2) plays a more 

critical role in determining the responsiveness of CDS+ T cells to IL-4 and/or IL-13 in 

order to regulate the quality of anti-viral CDS+ T cell immunity. This is consistent with 

our laboratory studies where IL-4 and IL-13 were shown to play an important role in 

modulating the avidity of HIV-specific CDS+ T cell responses following prime-boost 

vaccination [Ranasinghe et al. , 2007; Ranasinghe et al. , 2009]. Thus, the current 

findings could be exploited to design more effective pox viral-vectored vaccines against 

chronic infections such as HIV-1 where robust CDS+ T cell immunity is required for 

protection. Furthermore, given that IL-4Ra is constitutively expressed on T cells, it may 

easily be used as a novel biomarker to assess T cell quality following vaccination. 
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Chapter 4 

IL-4 and IL-13 Modulation of Anti-Viral CD8+ T 
Cell Avidity Following HIV-1 Recombinant Pox 
Viral Prime-Boost Vaccination 
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Please note that the data presented in this chapter have now been published in: 

Wijesundara DK, RJ Jackson, DC Tscharke and C Ranasinghe. IL-4 and IL-13 

mediated down-regulation of CDS expression levels can dampen anti-viral CDS(+) T 

cell avidity following HIV-1 recombinant pox viral vaccination. Vaccine 2013; 31: 

4548-55. 

4.1 Introduction 

Even though effective anti-retroviral drugs are currently available against HIV-1 

[Thompson et al. , 2010] , developing a vaccine still remains a major priority for slowing 

down the progression of HIV-1 incidences worldwide. Numerous studies have shown 

that elite controllers despite being infected with HIV-1 typically have undetectable 

HIV-1 in the plasma ( <50 RNA copies/ml plasma), which correlates with the presence 

of high avidity and polyfunctional HIV-specific CDS+ T cells [Betts et al., 2006; 

Almeida et al. J 2007; Critchfield et al. 1 2007; Harari et al., 2008]. Recombinant pox 

viruses are extensively used for HIV-1 vaccine development. Therefore, understanding 

factors that could dictate avidity outcomes of anti-viral CDS+ T cells following HIV-1 

recombinant pox viral vaccination could be important for rationale design of effective 

HIV-1 vaccines in the future. 

In the previous chapter, it was discussed that the expression levels of receptors for 

cytokines IL-4 and IL-13 , particularly IL-4Ra was important for modulating anti-viral 

CDS+ T cell avidity. To gain more insight into the roles of IL-4 and IL-13 in modulating 

avidity, the current chapter investigates whether these cytokines regulated the 

expression of T cell associated avidity markers (i.e. TCR, CD8, CD 11 a, CD2 and lck; 

section 1.4) to affect anti-viral CD8+ T cell avidity. These investigations were 

conducted predominantly using published HIV-1 recombinant pox viral prime-boost 
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vaccination strategies in our laboratory ( table 1.5) to help understand how these 

strategies generated high avidity anti-viral CD_8+ T cells. 

4.2 Results 

4. 2.1 IL-4 and JL-13 selectively dampen CD8 densities on HIV-specific CD8+ T cells 

Initially it was examined whether IL-4 and IL-13 regulated the expression of various T 

cell associated molecules, which could dampen the avidity of anti-viral CD8+ T cells 

induced following HIV-1 recombinant pox viral prime-boost vaccination. For this 

purpose, the expression of a representative panel of T cell avidity markers (i.e. TCR, 

CD8, CD1 la, CD2 and lck) were measured on KctGag197-2os specific CD8+ T cells that 

were induced following i.n. FPV-HIV /i.m. VV-HIV vaccination of WT, IL-13 -/-, IL-4 -

/- and STAT6 -/- BALB/c mice (figure 4.1). 

Following HIV-1 recombinant prime boost vaccination, only CD8a and CD8~ levels 

were found to be consistently enhanced on KctGag1 97-2os specific CD8+ T cells obtained 

from gene knockout mice relative to the WT controls (figure 4.18). Although at least 

one report has suggested that high avidity anti-viral CD8+ T cells can enhance the 

expression ratios of CD8~:CD8a [Kroger et al., 2007], these ratios were similar on 

KctGag 197_205 specific CD8+ T cells from all vaccinated animals (figure 4.2A). IL-4 and 

IL-13 mediated reduction of CD8 densities was also observed on Kct A5275_83 specific 

CD8+ T cells 7 days following VV-WR infection (figure 4.28). This suggested that this 

phenomenon was not specific to KctGag197_205 specific CD8+ T cells or the time point 

(i.e. 14 days post booster vaccination) designated to evalulate immunity following 

prime-boost vaccination. 
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Figure 4.1. IL-4 and IL-13 dampen CDS densities on KctGag191-2os specific CDS+ T 

cells following HIV-1 recombinant pox viral prime-boost vaccination. A, 

Representative dot plots showing CD8a and KdGag1 97_205 tetramer expression on gated 

CD8+ splenocytes from mice of the indicated genetic background vaccinated i.n FPV

HIV /i.m. VV-HIV 14 days apart. The number in the gate of each plot represents the 

percentage of CD8+ splenocytes that recognize the KdGag197_205 tetramer. B, 

Representative histogram plots and the MFI (n = 4) representing the expression of the 

indicated T cell avidity n1arkers on KdGag1 97_205 tetramer specific CD8+ splenocytes 

obtained from vaccinated mice in A. Statistical significance of the data is shown relative 

to BALB/c WT mice using one-way ANOV A (Dunnett's Multiple Comparison). The 

data are representative of at least two independent experiments and the error bars depict 

the SEM. * -p < 0.05 ; ** -p < 0.01. 
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Figure 4.2. Up-regulation of CD8 densities, but not CD8~:CD8a ratios are a 

feature of high avidity anti-viral CD8+ T cells following pox virus infection and 

vaccination. A, Mean (n = 4) CD8~:CD8a expression ratios calculated using MFI 

values on KdGag197-2os tetramer specific CD8+ splenocytes from mice prime-boost 

vaccinated in figure 4.1. B, MFI (n = 6) representing CD8a expression on KdA5275_83 

tetramer specific CD8+ splenocytes from mice of the indicated genetic background 

infected for 7 days with 3 x 106 PFU of VV-WR. Statistical significance of the data is 

shown relative to BALB/c WT mice using one-way ANOV A (Dunnett ' s Multiple 

Comparison). C, MFI (n = 4) representing CD8a expression on KdGag1 91-2os tetramer 

specific CD8+ splenocytes from BALB/c WT mice prime-boost vaccinated i.n./i.n. , 

i.n./i.m. or i.m./i.m. 14 days apart with FPV -HIV /VV-HIV. Statistical significance of 

the data is calculated using one-way ANOVA (Tukey's Multiple Comparison). D, MFI 

(n = 4) representing CD8a expression on KdGag 197_205 tetramer specific CD8+ 

splenocytes from BALB/c WT mice prime-boost vaccinated i.n./i.m. with FPV

HIV /VV -HIV (control) or FPV -HIV -IL-13 Ra2~ 10/VV -HIV -IL-13 Ra2~ 10 (IL-13 

inhibitor vaccine). Statistical significance of the data is calculated using a student's 

unpaired t-test. Data presented in this entire figure is representative of at least two 

independent experiments and the error bars depict the SEM. * -p < 0.05 ; ** -p < 0.01. 
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Our laboratory findings have demonstrated that the avidity of KdGag197-2os specific 

CD8+ T cells can be regulated depending on the route of vaccine delivery (i.e. avidity: 

i.n./i.n. > i.n./i.m. > i.m./i.m.) [Ranasinghe et al. , 2007]. The avidity hierarchy from this 

published report correlated with the CD8 expression levels on KdGag197-2os specific 

CD8+ T cells (i.e. CD8 expression: i.n./i.n. > i.n./i.m. > i.m./i.m.) in the current study 

(figure 4.2C). Fwihermore, our laboratory has recently shown that vaccines that 

transiently inhibit IL-13 activity at the vaccination site can induce high avidity CD8+ T 

cells with better protective efficacy (i.e. avidity and protection: IL-13Ra26 l 0 

adjuvanted IL-13 inhibitor vaccine> control vaccine) [Ranasinghe et al. , 2013]. In the 

current study, compared to the control vaccination (i.n. FPV-HIV /i.m. VV-HIV), IL-13 

inhibitor vaccination strategy (i.n. FPV-HIV-IL-13Ra26l 0/i.m. VV-HIV-IL-

13Ra26l 0) also facilitated the development of KdGag 197_205 specific CD8+ T cells with 

elevated CD8 expression levels (figure 4.2D). Collectively, data suggest that IL-4 

and/or IL-13 can down-regulate CD8 densities, which correlate with reduced avidity on 

anti-viral CD8+ T cells following VV-WR infection and HIV-1 recombinant pox viral 

prime-boost vaccination. 

4.2.2 HIV-specific CD8+ T cells require CD8 for opti,nal cognate pMHC-1 engagement 

Previous studies using CD8 null tetramers and anti-CDS blocking antibodies have 

shown that TCR engagement alone on some anti-viral CD8+ T cell clones is sufficient 

for effector functions and maintaining a high avidity interaction with cognate pMHC-I 

[Choi et al. , 2003 ; Wooldridge et al. , 2003]. Therefore, it was next examined whether 

the availability of CD8 on KdGag197_205 specific CDS+ T cells was important in 

maintaining a high avidity interaction with cognate pMHC-I and for effector functions 

(i.e. cytokine production). 
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In order to achieve the above, splenocytes obtained from i.n. FPV-HIV /i.m. VV-HIV 

vaccinated mice were incubated with CD8 blocking antibodies (i.e. anti-CD8~.2) prior 

to KdGag197_205 tetramer staining or prior to and during KdGag197-2os peptide stimulation 

for ICS (figure 4.3). Data demonstrated a dose dependent reduction of KdGag197-2os 

tetramer engagement with increasing concentrations of anti-CD8~.2 (figure 4.3A). The 

production of cytokines IFN-y, TNF-a and IL-2 was also significantly reduced on CD8+ 

T cells due to CD8 blocking during in vitro KdGag197-2os peptide stimulation (figure 

4.3B). Interestingly, in each vaccinated mouse the dependence of CD8 co-receptor on 

KdGag 197_205 specific CD8+ T cells for cytokine production was as follows: IL-2 > TNF

a > IFN-y (figure 4.3B). Overall, our data indicated that the availability of CD8 co

receptor on KdGag197_205 specific CD8+ T cells was crucial for maintaining a high 

avidity interaction with cognate pMHC-I and for effector functions. 

4. 2. 3 Regulation of CD8 densities is a feature of CD8+ T cell polyfunctionality 

Given that there was greater dependence of CD8 co-receptor for production of 

cytokines associated with polyfunctionality (figure 4.3B; e~g . . TNF-a and IL-2), this 

study next examined how CD8 densities were regulated on different polyfunctional 

subsets of HIV-specific CD8+ T cells. Therefore, the CD8 expression levels on IFN-y + 

TNF + IL-2+ -a (highly polyfunctional), IFN-y + TNF-a + (moderately 

polyfunctional) and IFN-y + TNF-a- IL-2- (poorly polyfunctional) KdGag197_205 specific 

CD8+ T cells were measured following i.n. FPV-HIV/i.m. VV-HIV vaccination (figure 

4.4). IFN-y was monitored (figure 4.4B and 4.4C) as a positive control given that 

highly polyfunctional T cells have been reported to produce more IFN-y on a per cell 

basis compared to poorly polyfunctional T cells [Precopio et al., 2007]. There was a 

modest yet statistically insignificant enhancement in CD8 expression levels on 
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KdGag197_205 tetramer Anti-CD8p.2 (µg/ml) 

Figure 4.3. CD8 is required by KctGag197_205 specific CD8+ T cells to optimally 

engage with KctGag197_205 tetramer and for effector functions. Splenocytes obtained 

from i.n. FPV-HIV/i.m. VV-HIV (14 days apart) vaccinated BALB/c WT mice (n = 4-

6) were incubated with 1 µg/ml of purified anti-CD8~.2 prior to (and also during 

stimulation when peptide stimulated) staining with KdGag197_205 tetramer or in vitro 

stimulation with 0.1 µg/ml of KdGag197_205 peptide for ICS. A, Representative histogram 

plot (left panel) or mean (n = 4) percentage of maximum KdGag197_205 tetramer binding 

(right panel) on KdGag191-2os tetramer specific CD8+ splenocytes is shown. The numbers 

in the histogram plot represents the concentration (µg/ml) of anti-CD8~.2 used for CD8 

blocking. B, Percentage of maximum cytokine producing CD8+ splenocytes after CD8 

blocking of splenocytes during in vitro KdGag 197_205 peptide stimulation. Each line is 

representative of the responses from a single vaccinated mouse and the maximum 

response (100%) is the response resulting in the absence of CD8 blocking. The data is 

representative of at least three independent experiments and the error bars when shown 

depict the SEM. 
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moderately polyfunctional cells compared to poorly polyfunctional cells (figure 4.48 

and 4.4C). However, greatly elevated IFN-y, CD8a and CD8~ densities were detected 

in highly polyfunctional compared to poorly/moderately polyfunctional cells (figure 

4.48 and 4.4C). On the contrary, elevation of lck expression was not a feature of 

moderately or highly polyfunctional cells suggesting that there was no generic up

regulation of avidity markers supporting enhancement in polyfunctionality (figure 4.48 

and 4.4C). 

Given that IL-4 and IL-13 reduced CD8 densities on anti-viral CD8+ T cells (figure 

4.1), this study next examined whether this reduction also affected the establishment of 

highly polyfunctional CD8+ T cells following prime-boost vaccination. It was observed 

that greater proportion of IFN-y producing KdGag 197_205 specific CD8+ T cells expressed 

TNF-a and IL-2 in IL-13 -1-, IL-4 -!- and STAT6 -!- BALB/c mice compared to WT 

controls (figure 4.5A and 4.58). Furthermore, the absolute numbers of IFN-y + TNF-a + 

IL-2+ KdGag191-2os specific CD8+ T cells were also enhanced in the gene knockout mice 

(figure 4.SC). Overall, increasing CD8 densities appeared to be a feature of anti-viral 

CD8+ T cells that were highly polyfunctional following HIV-1 recombinant pox viral 

prime-boost vaccination. 

4.2.4 IL-4 and IL-13 mediated CD8 density regulation on HIV-specific CD8+T cells 

modulate T cell avidity/polyfunctionality 

This study next examined whether IL-4 and IL-13 mediated reduction of CD8 densities 

could also dampen the avidity of HIV -specific CD8+ T cells from WT controls 

compared to IL-13 -/-, IL-4 -/- and ST AT6 -/- BALB/c mice. For this purpose, splenocytes 

from i.n. FPV-HIV/i.m. VV-HIV vaccinated mice were incubated with or without anti

CD8~.2 prior to conducting an ICS for measuring polyfunctionality or tetramer 
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Figure 4.4. Enhancement of CD8 densities correlates with enhancement in cytokine 

polyfunctionality of HIV-specific CD8+ T cells from IDV-1 recombinant pox viral 

prime-boost vaccinated mice. Splenocytes from i.n. FPV-HIV/i.m. VV-HIV (14 days 

apart) vaccinated BALB/c WT mice (n = 4) were stimulated in vitro with 0.1 µg/ml of 

KdGag197_205 peptide and analyzed for expression of CD8a, CD8~, lck and IFN-y on 

cytokine producing CD8+ T cells. A, Representative dot plots from a peptide 

unstimulated or stimulated culture where IFN-y+ TNF-a- IL-2-, IFN-y+ TNF-a+ IL-2-

and IFN-y+ TNF-a+ IL-2+ CD8+ T cells were gated for analysis. B, Representative 

histogram plots and the MFI showing the expression of CD8a, CD8~, lck and IFN-y on 

different polyfunctional populations of KdGag197_205 specific CD8+ T cells. Each line is 

representative of an individual mouse from a total of four mice -examined. Data 

presented in this figure is representative of at least two independent experiments. A 

paired t-test was used to determine the statistical significance of the data. ns - p > 0.05; 

* -p < 0.05; ** -p < 0.01 ; *** -p < 0.001. 
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Figure 4.5. IL-4 and IL-13 dampen the establishment of highly polyfunctional 

KdGag191-2os specific CD8+ T cells following HIV-1 recombinant pox viral prime

boost vaccination. Splenocytes from i.n. FPV-HIV/i.m. VV-HIV (14 days apart) 

vaccinated mice were stimulated in vitro with 0.1 µg/ml of KdGag 197_205 peptide for ICS 

analysis. A, Representative dot plots showing IFN-y and CD8a expression (top row of 

plots) on gated CD8+ splenocytes or TNF-a and IL-2 production (bottom row of plots) 

on gated CDS+ IFN-y + splenocytes from vaccinated mice of the indicated genetic 

background. B, The mean (n = 5) proportion of TNF-a and IL-2 producing CDS+ IFN

y + splenocytes and the mean (n = 5) absolute numbers of CDS+ IFN-y + TNF-a + IL-2+ 

splenocytes for the mice vaccinated in A. Statistical significance of the data is shown 

relative to BALB/c WT mice using one-way ANOV A (Dunnett's Multiple Comparison) 

* -p < 0.05; ** -p < 0.01. 
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dissociation assay for measuring avidity. The rationale here was that if reduction of 

CD8 densities on HIV-specific CD8+ T cells was important then blocking CD8 

availability for tetramer engagement and cytokine production should abrogate avidity 

differences observed between IL-13 -/-, IL-4 -/- and STAT6 -/- BALB/c mice and WT 

controls. 

CD8 blocking of splenocytes from all vaccinated mice reduced the amount of KdGag197_ 

205 tetramer engagement following tetramer dissociation and polyfunctionality of 

KdGag197_205 specific CD8+ T cells during in vitro KdGag197-2os peptide stimulation 

(figure 4.6). Furthermore, statistically significant reduction in KdGag 197_205 tetramer 

engagement of CD8+ T cells from WT mice was not observed relative to the gene 

knockout mice vvhen CD8 was blocked on splenocytes during tetramer dissociation 

(figure 4.6A). Statistically significant reduction in the proportions of IFN-y + KdGag197_ 

20s specific CD8+ T cells that produced TNF-a and IL-2 was also not observed in 

vaccinated WT mice relative to gene knockout mice when CD8 was blocked on 

splenocytes during KdGag197_205 peptide stimulation (figure 4.6B). Thus, IL-4 and IL-13 

mediated down-regulation of CD8 densities appears to be important in reducing avidity 

and polyfunctionality of KdGag191-2os specific CD8+ T cells. 
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Figure 4.6. IL-4 and IL-13 can regulate CD8 expression levels and modulate T cell 

quality of KctGag197-2os specific CD8+ T cells following HIV-1 recombinant pox viral 

prime-boost vaccination. WT, IL-13 -/-, IL-4 -/- and STAT6 -/- BALB/c mice (n = 5-8) 

were i.n. FPV-HIV/i.m. VV-HIV (14 days apart) vaccinated. Splenocytes from these 

mice with (1 µg/ml anti-CD8~.2) or without (mock) CD8 blocking were stimulated in 

vitro using 0.1 µg/ml of KdGag1 97-2os peptide for ICS or stained using KdGag197-2os 

tetramer for tetramer dissociation. A, Mean (n = 8) percentage of maximum KdGag 197_ 

20s tetramer binding of CD8+ T cells following tetramer dissociation for 60 minutes in 

the absence or presence of CD8 blocking. B, The mean (n = 5) proportion of CD8+ IFN

y + splenocytes that also produced TNF-a and IL-2 in the absence or presence of CD8 

blocking of splenocytes during KdGag 197_205 peptide stimulation. The data in this figure 

is representative of 2-3 independent experiments and the error bars depict the SEM. 

Statistical significance of the data was calculated using a one-way ANOV A relative to 

WT mice (Dunnett ' s Multiple Comparison). * -p < 0.05; ** -p < 0.01. 
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4.3. Discussion 

Due to the disappointing outcomes of numerous HIV -1 vaccine trials conducted thus 

far, development of more efficacious HIV -1 vaccines is a necessity for slowing the 

global progression of HIV-1. This requires the fundamental understanding of 

mechanisms that generate favourable immune outcomes following vaccination. Our 

laboratory has previously shown that following HIV-1 recombinant pox viral prime

boost vaccination, IL-4 and IL-13 can dampen the avidity of HIV-specific CD8+ T cells 

[Ranasinghe et al. , 2009; Ranasinghe et al. , 2013]. The current study reports that IL-4 

and IL-13 can dampen CD8 densities on anti-viral CD8+ T cells following HIV-1 

recombinant pox viral prime-boost vaccination. Furthermore, reduced expression levels 

of CD8 were a feature of low avidity anti-viral CD8+ T cells that developed in various 

pox virus infection and vaccination settings. 

Data in the current study suggest that IL-4 and IL-13 selectively regulated the 

expression levels of CD8, but not other T cell avidity markers such as TCR, CD2, 

CDl la and lck on anti-viral CD8+ T cells following HIV-1 recombinant pox viral 

prime-boost vaccination. This is also the first report to show the involvement of IL-13 

in regulating CD8 densities on anti-viral CD8+ T cells. Previous reports have shown that 

IL-4 exposure in vitro and in vivo can down-regulate CD8 expression levels to reduce 

the cytolytic capacity of effector CD8+ T cells [Kienzle et al. , 2005 ; Apte et al. , 2008]. 

Furthermore, IFN-I have also been shown to reduce CD8 expression levels and avidity 

of anti-viral CD8+ T cells [Xiao et al. , 2007]. These reports are consistent with the 

findings of the current study where reduction of CD8 densities also appeared to reduce 

the avidity and functional capacity of anti-viral CD8+ T cells. It would be of great 

interest for future investigations to also examine whether IFN-I cooperate 
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synergistically with IL-4 and/or IL-13 in down-regulating CD8 densities on anti-viral 

CD8+ T cells following pox virus infection or vaccination. 

Belyakov et al [2007; 2008] have shown that mucosal vaccination strategies are 

efficient in inducing high avidity anti-viral CD8+ T cells particularly at tissues closer to 

the sites of immunization. Several other studies suggest that mucosal vaccination 

strategies can induce high avidity CD8+ T cells that can protect macaques against SIV 

challenge [Belyakov et al., 2001; Kent et al., 2005; Belyakov et al., 2006]. In the 

current study mucosal HIV -1 recombinant pox viral prime-boost vaccination strategies 

were found to enhance CD8 densities on HIV -specific CD8+ T cells, which correlated 

with T cell avidity. Ranasinghe et al [2013] and the current study collectively show that 

mucosal vaccination strategies that temporarily inhibit IL-13 function (i.e. IL-

13Ra2~10 adjuvanted vaccines) can enhance CD8 densities and avidity of HIV-specific 

CD8+ T cells with better protective outcomes. These findings are consistent with Ahlers 

et al [2002] study showing that immunization of mice with peptide vaccine constructs 

in conjunction with granulocyte macrophage colony stimulating factor and IL-13Ra2-

Fc antibodies can enhance the cytotoxic activity of HIV-specific CD8+ T cells and 

protection. Interestingly, Isakov et al [2011] have shown that IL-15 plays an important 

role in enhancing avidity of anti-viral CD8+ T cells following mucosal immunization, 

which is consistent with Oh et al [2004] where IL-15 was shown to enhance CD8 

densities and avidity of anti-viral CD8+ T cells. Therefore, development of vaccines that 

prevent significant down-regulation of CD8 densities on antigen-specific CD8+ T cells 

offer exciting prospects for developing efficacious vaccines against intracellular 

mucosal pathogens such as HIV -1. 
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Even though polyfunctionality correlates with avidity of anti-viral CD8+ T cells [La 

Gruta et al. , 2006; Almeida et al. , 2007], regulation of molecules that can affect both T 

cell avidity and polyfunctionality is not well understood. In the current study, 

enhancement in CD8 densities highly correlated with enhancement in avidity and 

polyfunctionality of HIV -specific CD8+ T cells following pox viral vaccination. 

Furthermore, blocking CD8 availability significantly reduced the polyfunctional 

capacity and avidity of HIV-specific CD8+ T cells. Thus, monitoring CD8 expression 

levels could be used as a predictor of both avidity and polyfunctional capacity of anti

viral CD8+ T cells especially for CD8 dependent T cell clones following pox viral 

vaccination. The caveat here is that IFN-y, TNF -a and IL-2 production by LCMV -

specific monoclonal P 14 transgenic CD8+ T cells can occur independently of CD8, 

especially during later stages of LCMV infection [Slifka and Whitton, 2001 ; Kerry et 

al. , 2005]. Therefore, it is likely that according to different viruses and/or the infection 

state (i.e. acute or chronic) multiple redundant mechanisms may be involved in 

regulating polyfunctionality of anti-viral CD8+ T cells. These mechanisms may include 

regulation of lipid raft formation [Cawthon et al. , 2004] , TCR clonotypes [Kedzierska 

et al., 2005] , IL-4Ra (chapter 3), lck [Slifka and Whitton, 2001] and IL-15 receptor a 

[Oh et al. , 2004] on CD8+ T cells. 

The current study did not examine whether IL-4 and IL-13 reduced CD8 densities on 

anti-viral CD8+ T cells during long-term memory phases even though effector phase 

data suggests that this phenomenon is not specific to an epitope or a particular time 

point following immunization. However, whether this phenomenon operates during 

long-term memory phases to regulate the quality of anti-viral CD8+ T cell responses 

requires further investigation. Another caveat in the current study is that anti-CD8 

antibodies were used to determine the dependence of avidity and functional quality on 
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the CD8 co-receptor molecules of CD8+ T cells. There have been no reports to suggest 

that the anti-CD8~.2 antibodies (clone 53-5.8) used in the current study can sterically 

hinder other interactions (i.e. TCR with pMHC-I) of CD8+ T cells. In fact, several 

publications have used this particular antibody to determine the dependence of survival 

and functionality on CD8 co-receptor molecules of CD8+ T cells [Slifka and Whitton, 

2001; La Gruta et al. , 2006; Takeda and Jameson, 2009; Loi et al. , 2013]. In an ideal 

scenario, however, these experiments are best performed using CD8 null tetramers as 

additional controls given that these tetramers specifically do not allow CD8 co-receptor 

engagement with pMHC-I [Choi et al., 2003]. 

Most HIV-1 vaccination strategies to date have mainly focused on the induction of 

either neutralizing antibodies or CD8+ T cell responses against HIV-1. However, as 

discussed in section 1.5.4 the induction of heterosubtypic immunity (both neutralizing 

antibody and CD8+ T cell responses) is expected to be beneficial in generating optimal 

protective immunity against HIV-1. The findings from the current study suggest that 

HIV-1 recombinant pox viral vaccination strategies that inhibit IL-13 function can 

enhance the quality of anti-viral CD8+ T cell immunity most likely through up

regulation of CD8 densities on anti-viral CD8+ T cells [Ranasinghe et al. , 2013]. Such 

vaccination strategies could also enhance the quality of antibody immunity, as IL-4 and 

IL-13 are known to mediate isotype switching of antibodies to IgE; enhanced IgE 

production has co1Telated with enhanced pathogenesis of HIV-1 [Vigano et al., 1995; 

Ouaaz et al. , 1996; Oettgen et al. , 2000]. 

In conclusion, the current study suggest that IL-4/IL-13 could mediate down-regulation 

of CD8 expression levels as a likely mechanism to dampen the avidity/polyfunctionality 

of anti-viral CD8+ T cells. Furthermore, recombinant HIV-1 pox viral mucosal 
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vaccination strategies that can transiently inhibit IL-13 activity at the vaccination site 

can enhance CD8 densities and avidity of anti-viral CD8+ T cells. It is plausible to 

propose that in the absence of IL-4 and IL-13 signalling, anti-viral CD8+ T cells express 

higher amounts of CD8 allowing these cells to build high avidity interactions with 

cognate pMHC-I complexes presented on virus-infected cells. This should facilitate 

high avidity CD8+ T cells to maintain more durable interactions with virus-infected 

cells allowing them to exert effector functions efficiently. Thus, vaccine strategies that 

inhibit IL-4/IL-l 3 activity offer great promise for future vaccines against many chronic 

infections including HIV-1 that require high avidity CD8+ T cells for protective 

immunity. 
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Chapter 5 

The FT A Assay for Assessing T Cell Magnitude, 
Avidity and Epitope Cross-Reactivity In Vivo 
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The data in this chapter is now under review in the journal Vaccine: 

Wijesundara DK, C Ranasinghe, J Price, RJ Jackson, I Atmosukarto, CR Parish and BJ 

Quah. Use of an in vivo FT A assay to assess the magnitude, functional avidity and epitope 

variant cross-reactivity of T cell responses following HIV-1 recombinant pox virus 

vaccination. Manuscript submitted to Vaccine (Manuscript ID: JVAC-D-13-01113Rl) . 

5.1 Introduction 

The induction of high avidity, polyfunctional and epitope variant cross-reactive anti

viral CD8+ T cell responses particularly against conserved HIV-1 epitopes ( e.g. Gag) 

have been associated with superior HIV-1 control in elite controllers [Pontesilli et al. , 

1998; Betts et al. , 2006; Almeida et al. , 2007; Critchfield et al. , 2007; Ferre et al. , 2010; 

Berger et al. , 2011; Mothe et al. , 2012; Turk et al. , 2013]. Hence, it can be postulated 

that measuring and inducing high avidity CD8+ T cell responses in vivo are necessary 

for effective and rationale HIV-1 vaccine design. As described in section 1.9, many of 

the current T cell based-assays provide limited capacity to measure avidity and epitope 

variant cross-reactivity, which led us to develop the FTA technology to make these 

measurements in vivo [Quah et al. , 2012]. Furthermore, this technique also allows for 

the measurements of TH cell responses based on the ability of TH cells to activate ( e.g. 

up-regulate CD69 expression) FTA B cells pulsed with peptides [Quah et al. , 2013]. 

In previous studies Ranasinghe et al [2006; 2007; 2011] have established that the 

combination of vaccine route and the order in which HIV -1 recombinant pox viral 

vaccine vectors are delivered in prime-boost regimens can alter HIV-specific CD8+ T 

cell immunity and avidity. In the current study, the FT A assay was used to further 

clarify which vaccine vector combinations induced the best T cell immune responses 

(e.g. avidity, cross-reactivity and helper capacity) in vivo following HIV-1 recombinant 
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pox viral prime-boost vaccination. The primary aim of the current study was to test the 

feasibility of using the FTA assay as a high-throughput tool to screen for the most 

effective HIV-1 vaccination strategies that can induce desired T cell responses in vivo. 

5.2 Results 

5. 2.1 Utility of the FTA Assay in measuring T cell responses in vivo 

To establish the utility of the FT A assay as a screening tool to measure T cell effector 

responses in a reproducible manner, six BALB/c mice were immunized with VV-WR 

and in vivo CD8+ T cell killing responses were measured 7 days p.i. using the FTA. 

Responses were assessed against immunodominant VV F2L (L dF226_34) , subdominant 

VV A52R (Kd A5275_83 ) and F2L mut (MV A homologue of F2L; section 2.3) epitopes. 

A generic schematic representation of the steps involved in this technique is depicted in 

figure 5.1. As anticipated killing responses were not detected against the HIV neg 

control epitope, but were obvious against F2L and A52R epitopes (Figure 5.2A-B). 

Despite not being expressed by VV-WR, epitope variant cross-reactive CD8+ T cell 

killing responses against the F2L mut epitope were detected in all VV-WR infected 

animals (Figure 5.2A). Furthermore, the magnitude of the killing responses against the 

epitopes were as follows: F2L > A52R > F2L mut. In addition to the AUC 

measurements describing the magnitude of the killing responses (figure 5.2B), the ECso 

measurements were also made to determine the avidity of the CD8+ T cell responses 

(figure 5.2C). This analysis revealed that CD8+ T cells required 10 times the amount of 

A52R peptide and 70 times the amount of F2L mut peptide to generate half maximal 

killing compared to F2L (Figure 5.2C). Overall, the above data provide an example of 

the utility of the FT A assay in reproducibly measuring magnitude, avidity and epitope 

variant cross-reactivity of CD8+ T cell killing responses in vivo. 
,, 
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5.2.2 Screening FPV- and VV-based prime-boost vaccine regzmens using the FTA 

assay 

Having established the reproducibility and utility of the FT A assay, we then applied the 

technique to screen various HIV -1 recombinant pox virus prime-boost vaccination 

regimens for their ability to induce T cell responses. To assess this we generated a 

vaccine regimen matrix based on all the combinations (i.e. 24 combinations) of two 

vectors FPV-HIV and VV-HIV given either i.n. or i.m. (table 5.1). To comprehensively 

assess these regimens, immune responses to seven different T cell epitopes were 

investigated. This included CD8+ T cell epitopes from VV (F2L, F2L mut) as positive 

controls and HIV (Gag (KctGag197_205), Pol, Env and .Gag mut) as described in section 

2.3. Also a HIV Gag TH eptiope (section 2.3) that allow activation of B cell targets in 

the FTA was included to measure TH cell responses (figure 5.lC) [Quah et al., 2013]. 

A representative experiment from three independent experiments is shown in 

supplementary figure 4 and 5 and includes data from six intra-animal replicates (6048 

data points per experiment). Due to the large amount of data generated in this instance, 

AUC values were calculated for responses against each epitope and depicted as a heat 

map to allow trends to be revealed more easily (figure 5.3A). Killing responses from 

several vaccine regimens were clearly detectable against the Gag and even the Gag mut 

epitopes, but only negligible killing responses were detected against Pol and Env 

epitopes (figure 5.3). Interestingly, the magnitude of the killing responses against Gag, 

Gag mut, F2L and F2L mut epitopes were greatest in the heterologous FPV-HIV /VV

HIV prime-boost regimens (figure 5.3). The responses against the Gag mut are also 

indicative of Gag epitope variant cross-reactive CD8+ T cell responses following 

vaccination. Furthermore, FPV-HIV /VV-HIV regimens also gave robust TH cell 

responses against the Gag TH epitope (figure 5.3). 
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Figure 5.1. Schematic representation of a 252-parameter FTA assay. 5 x 107 

splenocytes from mice were labeled with combinations of CTV (0 nM, 350 nM, 1295 

nM, 4792 nM, 17729 nM and 65595 nM), CFSE (0 nM, 79 nM, 315 nM, 1106 nM, 

3859 nM, 13505 nM and 47269 nM) and CPD (0 nM, 106 nM, 690 nM, 2738 nM, 

10262 nM and 38506 nM) to generate 252 discernable cell clusters. Cell clusters were 

pulsed with MHC-binding peptides (as outlined in figure 5.3) to generate a panel of 42 

peptide pulsed clusters and this repeated six times to generate six intra-animal repeats 

(i.e., 252 target cell clusters in total). Target cells were also labeled with Dil for 

discrimination from host splenocytes (not shown). A, FTA cells were injected i.v. into 

host mice that had 6 days earlier been vaccinated with VV-HIV or left unimmunized as 

a control. 18 how·s after FT A injection, splenocytes were collected and target cells 

delineated fron1 host splenocytes by Dil label using flow cytometry (not shown). B, 2D 

plots of the fluorescence intensities of a panel of 42 VV F2L peptide-pulsed clusters 

from unirnmunized (left plots) and vaccinated (right plots) mice and an associated 

histogram analysis of clusters pulsed with titrated amounts of VV F2L peptide. The 

disappearance of target cells in these clusters in vaccinated mice relative to 

unimmunized controls reveals specific killing of F2L peptide pulsed targets. C, An 

example of histogram analysis of the FTA T helper assay where B220+ FT A cells 

pulsed with the Gag TH cell peptides were assessed for CD69 up-regulation in 

vaccinated and unimmunized mice. 
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Figure 5.2. The FT A assay can reproducibly measure magnitude, functional 

avidity and epitope variant cross-reactivity of CD8+ T cells in vivo. Six BALB/c 

mice were immunized i.p. with 5 x 106 PFU of VV-WR. FTA was constructed using 

mouse splenocytes and comprised of FT A cells pulsed with six different concentrations 

of the MHC-I binding peptides F2L, F2L mut, A52R, and HIV neg (as a negative 

control). FTA target cells were injected i.v. into infected mice 6 days p.i. and after 18 

hours in vivo percent specific killing calculated for FT A target cells from harvested 

spleens. A, In vivo killing responses from six infected mice where each plot represents 

an individual mouse. B, Summary of responses depicted in A from all mice with means 

(n = 6) of percent specific killing. C, Mean (n = 6) AUC measurements from percent 

specific killing response curves in A. D, Mean (n = 6) EC50 of the killing response in C. 

The e1Tor bars depict the SEM and the p values were calculated using a one-way 

ANOV A (Tukey's Multiple Comparison). Data is representative of several independent 

experiments. * - p < 0.05. 
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Figure 5.3. Heat map screen of the magnitude of in vivo killing of the indicated 

peptide-pulsed targets. BALB/c WT mice were vaccinated with 24 different vaccine 

regimens as shown in table 5.1 and T cell responses were assessed using a 252-

parameter FT A comprised of cells pulsed with six concentrations of F2L, F2L mut, 

Gag, Gag mut, Pol, Env and Gag TH· FTA target cells were injected i.v. into vaccinated 

mice 6 days post vaccination and responses assessed after 18 hours in vivo using 

harvested spleens for analysis using flow cytometry. AUC were then calculated and 

portrayed as a heat map where darkest shading indicates highest magnitude and lightest 

shading indicates lowest magnitude T cell responses. Data is representative of three 

independent experiments. 
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From the above analysis, it was also apparent that FPV -HIV NV-HIV and VV

HIV /FPV-HIV regimen clusters gave strong killer and helper T cell responses against 

Gag epitopes (figure 5.3 and 5.4A). When evaluating the avidity for the killer 

responses against Gag and Gag mut epitopes, FPV-HIV /VV-HIV prime-boost 

vaccination cluster had the lowest EC50 and therefore the highest avidity killing 

responses (figure 5.4B). There appeared to be no vaccination route dependent trends in 

the killing responses for the FPV-HIVNV-HIV cluster (figure 5.4B). Interestingly, 

there was evidence to suggest that the VV -HIV /FPV-HIV heterologous prime-boost 

vaccination strategy benefited from the i.m. boost with FPV-HIV as this regimen gave a 

comparable avidity killing response against Gag epitopes to that of the FPV -HIV NV

HIV cluster. Whilst the FPV-HIVNV-HIV and VV-HIV/FPV-HIV generated TH cell 

responses against Gag TH epitope, negligible EC50 changes were apparent with TH cell 

responses in these clusters (figure 5.4). Overall, the best vaccine strategy in terms of 

inducing high avidity killer and helper T cell responses appeared to be regimens 

comprised of FPV-HIV priming followed by VV-HIV booster vaccination. 

5. 2. 3 Liposome boosting improves the niagnitude, functional avidity and epitope variant 

cross-reactivity of CD8+ T cell responses 

FPV -HIV NV -HIV vaccination generated robust kiiling responses against Gag and Gag 

mut epitopes, but these responses were consistently lower compared to the responses 

against immunodominant VV F2L epitope (figure 5.5A and 5.5B). This was also 

observed with respect to the avidity of CDS+ T cell responses. For example, whilst the 

i.n. FPV-HIV/i.m. VV-HIV regimen typically generated a IO-fold and 40-fold avidity 

enhancement against Gag epitope and Gag mut epitope respectively compared to 

vaccination with VV -HIV alone, the avidity of these responses was still lower than 
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Figure 5.4. Magnitude, avidity and cross-reactivity of Gag-specific T cell responses 

for the experiment described in figure 5.3. Mice vaccinated from figure 5.3 were 

further analyzed for magnitude (A) and avidity (B) to determine vaccine clusters that 

were robust at inducing high avidity and cross-reactive Gag-specific T cell responses in 

vivo. Two separate clusters (FPV-HIV /VY-HIV (red box)) and VY-HIV /FPV-HIV 

(green box)) were identified as the most effective vaccine regimens in generating high 

avidity and cross-reactive Gag-specific CD8+ T cell responses in vivo. 
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Figure 5.5. Tertiary vaccination with liposomes improves the magnitude, 

functional avidity and epitope variant cross-reactivity of CD8+ T cell responses 

following prime-boost vaccination. Mice were vaccinated i.n. with FPV-HIV, i.m. 

with VV-HIV, and/or i.v. with liposomes (containing 35 mg of Gag mut and 1 mg of 

LPS per dose). Liposome booster vaccinations were given 4 weeks post the i.m. VV

HIV and 6 weeks post the i.n. FPV-HIV vaccinations. T cell responses were assessed 

using 252-parameter FT As as in figure 5.3. A, Percent specific killing of FTA in vivo 

by CDS+ T cells induced by prime, boost, and/or tertiary liposome vaccination regimens 

showing killing responses to F2L, F2L mut, HIV Gag and HIV Gag mut epitopes. B, 

Mean (n = 6) for the killing responses against the epitopes shown in A. C, Mean (n = 6) 

AUC values for the killing responses shown in B. D, Mean (n = 6) EC50 values for the 

killing responses shown in A. The error bars depict the SEM and the p values were 

calculated using Mann-Whitney nonparametric two-tailed t-test. ** -p < 0.01. 
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responses against F2L epitope 1n seven independent experiments (representative 

example give in figure 5.50). Therefore, the use of a peptide (HIV Gag mut)-liposome 

( section 2.5) construct for vaccination was investigated to determine whether the 

avidity of HIV Gag-specific CDS+ T cell responses could be improved beyond that of 

F2L-specific CDS+ T cells. Gag mut peptide was chosen such that the highest avidity 

and cross-reactive Gag-specific CDS+ T cells could be expanded. 

Peptide-liposome constructs and LPS were administered i.v. 6 weeks post i.n. FPV-HIV 

vaccination and 4 weeks post i.m. VV -HIV booster vaccination. T cell responses were 

assessed using the FTA T cell assay 7 days post peptide-liposome booster vaccination 

(figure 5.5). As controls, mice were also vaccinated with liposome constructs alone, 

which generated negligible killing responses against all epitopes (figure 5.5A-B). 

When liposome constructs were included as a tertiary vaccination for the i.n. FPV

HIV /i.m. VY-HIV regimen, the magnitude of the killing responses against Gag and the 

Gag mut epitopes was higher than that of the i.n. FPV-HIV /i.m. VY-HIV vaccination 

alone (figure 5.5C). Interestingly, following i.n. FPV-HIV /i.m. VY-HIV /liposomes 

vaccination the magnitude and the avidity (EC50) of the killing responses against Gag 

and F2L epitopes were similar (figure 5.5). The EC50 values of the killing responses 

against Gag and Gag mut epitopes revealed a three-fold enhancement in the i.n. FPV

HIV /i.m. VY-HIV /liposomes regimen relative to the i.n. FPV-HIV /i.m. VY-HIV 

regimen (figure 5.50). Collectively, data suggests that a liposomal booster vaccination 

can be used to futiher enhance the magnitude, avidity and epitope variant cross

reactivity of desired ( e.g. Gag-specific) CDS+ T cell responses. 
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5.3 Discussion 

Here the use of a high-throughput multi-parameter in vivo assay with the capacity to 

measure magnitude, avidity and epitope variant cross-reactivity of T cell responses in 

vivo following HIV-1 vaccination was described. This assay is unique in that it allows 

the simultaneous measurement of killing and helper activity against numerous target 

cells pulsed with a broad concentration range of several different MHC-I/II binding 

peptides in vivo. Furthermore, previously developed in vivo CD8+ T cell killing assays 

[Oehen et al., 1997; Barchet et al. , 2000] can only measure the magnitude of killing 

responses in a single animal whereas the FT A can also provide detailed measurements 

of avidity and epitope variant cross-reactivity in a single animal. In vitro assays such as 

the 51Cr-release, ICS and ELISPOT peptide dilution assays, typically require ex vivo 

stimulation of host effector T cells. Such stimulation may also result in changes in 

avidity at a population level due to preferential outgrowth of high avidity effector T 

cells [Yerly et al. , 2008]. Thus, the FTA assay has an excellent capacity with distinct 

advantages to measure multiple parameters of T cell responses in a single animal in 

VlVO. 

The versatility of the FT A assay allowed the comprehensive screening of T cell 

responses generated from 24 different vaccination regimens against 7 distinct viral 

epitopes (Gag, Gag TH, Gag mut, Pol, Env, F2L and F2L mut). From this analysis, 

heterologous prime-boost vaccination regimens, particularly FPV -HIV /VV -HIV 

regimens were found to be the most effective strategy in generating high magnitude of 

anti-viral CD8+ T cell responses with high avidity and epitope variant cross-reactivity in 

vivo. The FTA assay cannot be used to quantify the absolute numbers of responding 

CD8+ T cells, but our laboratory using in vitro assays such as tetramer 

staining/dissociation assays and ICS have addressed this aspect. The findings from these 
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assays also suggest that the FPV-HIV NV-HIV vaccination regimen was most effective 

in generating high avidity Gag-specific CD8+ T cell responses [Ranasinghe et al. , 2006; 

Ranasinghe et al. , 2007; Ranasinghe et al. , 2011]. These findings also demonstrate that 

vector combinations in pox viral prime-boost vaccination regimens play an important 

role in determining vaccine efficacy and CD8+ T cell avidity. Despite the consisting of 

findings with respect to the choice of vector combinations, the FTA assay did not 

indicate avidity differences on Gag-specific CD8+ T cells when FPV-HIV was delivered 

i.n. or i.m. in the FPV-HIVNV-HIV regimen. This is in contrast to Ranasinghe et al 

[2007] where data from tetramer dissociation assays demonstrated that i.n. compared to 

i.m. priming with FPV-HIV was more efficient in generating high avidity Gag-specific 

CD8+ T cells in the FPV-HIVNV-HIV regimen [Ranasinghe et al. , 2007]. The reasons 

for this discrepancy are unclear and it could suggest that data from in vitro assays such 

as tetramer dissociation do not always correlate with the data from FTA assays. 

However, it remains to be seen whether this discrepancy is due to the fact that killing 

responses using the FT A assay were measured 18 hours post target cells transfer instead 

of an earlier time point where high avidity CD8+ T cells more actively participate in 

killing than low avidity CD8+ T cells. 

More and more studies are indicating that vaccines can induce T cell responses to cross

reactive epitopes and techniques to evaluate these parameters are of great importance 

when dealing with diseases like HIV-I. Broad epitope variant cross-reactivity of CD8+ 

T cells have been observed in elite controllers [Mothe et al. , 2012]. Similar findings 

have been reported in hepatitis C virus patients, where clearance of the virus was 

associated with increased epitope variant cross-reactivity and heightened avidity of 

CD8+ T cells [Yerly et al., 2008]. In the current study, the FPV-HIVNV-HIV 

vaccination regimen was also extremely efficient in generating highly cross-reactive 

110 



CD8+ T cell responses against Gag mut epitope. Collectively, the current study 

demonstrates that FPV-HIV NV-HIV heterologous prime-boost vaccination regimens 

have the hallmarks of an efficacious vaccination strategy that could induce robust 

protective immunity. 

Another important finding from the current study was that CD8+ T cell killing responses 

generated by FPV-HIV /VV -HIV vaccination were further enhanced when liposomes 

carrying HIV-1 epitopes were used as a tertiary vaccination. Specifically, this allowed 

the avidity of the killing responses against Gag and Gag mut to be increased by about 

three fold from the FPV-HIV NV-HIV vaccination alone. In various prime-boost 

vaccination studies, a tertiary booster has been shown to enhance both T and B cell 

immunity [Stambas et al. , 2005]. Also, in the recent Thai RV144 trial, recombinant 

HIV -1 canary pox priming followed by a HIV -1 protein booster vaccination yielded 

immune outcomes with a 30% protective efficacy [Rerks-Ngarm et al. , 2009]. 

The ref ore, there the use of liposome vectors could be extremely beneficial for vaccine 

regimens requiring multiple booster vaccinations, especially when anti-vector immunity 

is of concern. Liposomes are also safe in humans and can be engineered to express 

tailor-made epitopes, danger signals and targeting motifs to amplify immune responses 

generated previously using recombinant DNA or viral vectors [Immordino et al., 2006]. 

However, the use of safer immune adjuvants other than LPS is recommended for 

application in humans. 

There are few caveats with the FT A assay in its current form for evaluating HIV-1 

vaccine efficacy. One caveat of the FT A assay is that it relies on target cells that are 

pulsed with designated viral peptides rather than target cells infected with HIV -1 where 

the relative expression of these designated peptides could be significantly different. 
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Furthermore, in the current assay killing responses were measured 18 hours post

transfer of target cells. Given that high avidity CDS+ T cells are expected to kill virus

infected target cells early compared to low avidity counterparts (figure 1.3), it will also 

be important to determine whether the kinetics of the killing responses can change the 

avidity and magnitude measurements made using this assay. These caveats could be 

better addressed if the FTA was optimised for use in MHC-I matched macaques instead 

of mice where the killing responses against SIV-infected target cells could be 

monitored. Along with relevant SIV protective studies, this is expected to improve the 

translatability of the findings from the FT A assay regarding the efficacy of vaccination 

regimens in facilitating the development of high avidity CDS+ T cells with a great 

potential to control HIV-1 infections. 

In conclusion, using the novel FTA assay a combination of HIV-1 recombinant pox 

viral prime-boost regimens were evaluated for their ability to generate robust anti-viral 

T cell responses in vivo. In this study, it was found that the magnitude, avidity and 

epitope variant cross-reactivity of CDS+ T cells in vivo are dependent on the vaccine 

vector combination used for vaccination. Out of the 24 vaccine combinations tested, 

FPV-HIV NV-HIV vaccination strategies induced the best immune outcomes. 

Moreover, liposome tertiary vaccination further enhanced the magnitude, avidity and 

epitope cross-reactivity of CDS+ T cell immunity, which offers great prospects for 

future vaccine development. Overall, data suggest that the FTA assay is an extremely 

valuable and cost-effective tool that can be used for large scale screening of vaccine 

combinations in vivo for pre-clinical testing. 
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Chapter 6 

General Discussion 

113 



6.1 Synopsis 

After over three decades since the discovery of HIV -1 , a vaccine against this deadly 

virus is currently not available. Rationale HIV-1 vaccine design is a difficult prospect 

given the rapid mutation rate and latency capabilities of this virus [Chomont et al., 

2009; McMichael et al., 2010]. However, developing HIV-1 vaccination strategies that 

can induce broadly neutralizing antibodies, ADCC and high avidity anti-viral CDS+ T 

cells offer hope especially given that these immune components correlate with HIV-1 

resistance ( e.g. in elite controllers) [Walker et al. , 2009; Haynes et al., 2012; Julien et 

al. , 2013 ; Liao et al. , 2013; Critchfield et al., 2007; Turk et al. , 2013]. Our laboratory 

has previously shown that systemic (i.m./i.m.) HIV -1 vaccination strategies promote 

greater induction of IL-4 and IL-13 to dampen anti-viral CDS+ T cell avidity compared 

to mucosal (i.n./i.n. and i.n./i.m.) HIV-1 vaccination strategies [Ranasinghe et al., 2007; 

Ranasinghe et al. , 2009]. Based on these findings our laboratory also constructed novel 

and protective IL-13Ra211 l O adjuvanted HIV-1 pox viral vaccines that transiently 

inhibit IL-13 function and enhance the avidity of anti-viral CDS+ T cells following 

mucosal vaccination [Ranasinghe et al. , 2013]. To understand how our mucosal HIV-1 

vaccinations strategies generated favourable immune outcomes, the current PhD 

investigated how IL-4 and IL-13 dampened anti-viral CDS+ T cell avidity. Furthermore, 

the use of a novel FT A assay as a screening tool to select HIV-1 pox viral vaccine 

strategies that can induce high avidity T cell responses in vivo was also evaluated. The 

key findings from these studies and their ramifications will be discussed in this chapter. 

6.2 IL-4Ra is an important regulator of anti-viral CD8+ T cell avidity 

In order to understand how IL-4 and IL-13 dampened avidity of anti-viral CDS+ T cells, 

we initially evaluated the expression of receptors for these cytokines on immune cells 
, 
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following virus infection. Given that cytokines require receptors to exert their biological 

effects, it was hypothesized that regulation of receptors in a manner that allow CD8+ T 

cells to reduce the responsiveness to IL-4 and/or IL-13 can enhance the avidity of CD8+ 

T cells. In support of this hypothesis, our findings suggest that down-regulation of IL-

4 Ra, the common signalling receptor subunit of IL-4 and IL-13 [Wills-Karp and 

Finkelman, 2008], on naYve CD8+ T cells was important for priming high avidity and 

polyfunctional anti-viral CD8+ T cell responses. This conclusion is consistent with 

previous in vitro studies showing that IL-4 during polyclonal stimulation primes naYve 

CD8+ T cells to become poorly functional effector cells [Erard et al., 1993; Kienzle et 

al., 2005]. The PhD studies also showed that even on effector CD8+ T cells greater 

down-regulation of IL-4Ra expression following cognate antigen encounter correlated 

with significant enhancement in IFN-y and TNF-a production during virus infection. 

These findings are in agreement with previous reports where heightened IL-4 and IL-13 

responses in the context of tumour and virus infections were shown to dampen 

functional capacity and avidity of effector CD8+ T cells [Sharma et al. , 1996; Jackson et 

al., 2001; Apte et al., 2008; Apte et al., 201 O; Ranasinghe et al., 2009; Ranasinghe et 

al., 2013]. Thus, down-regulating IL-4Ra expression on naYve CD8+ T cells appeared · 

to be important for priming high avidity anti-viral CD8+ T cells and for established anti

viral effector CD8+ T cells to maintain high avidity anti-viral responses during the 

course of a virus infection. 

Elevation of IL-4 Ra expression on CD8+ T cells could also play an important role in 

immune evasion of HIV -1 during natural infections. There are reports showing that 

enhanced IgE levels are featured in patients with poor HIV-1 prognosis [Israel-Biet et 

al., 1992, Vigano et al., 1995, Rancinan et al., 1998]. Similarly anti-viral IgE responses 

have been associated with enhanced pathogenesis of respiratory syncytial virus [Russi et 
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al., 1993 ; Dakhama et al. , 2009]. IL-4 and IL-13 are required for IgE synthesis in 

humans and IL-4 producing CD8+ T cells are emiched in HIV-1 infected patients 

[Maggi et al., 1994; Punnonen et al. , 1997]. Therefore, it is possible that IL-4 and IL-13 

induced following HIV-1 infection could in tum elevate IL-4Ra expression on CD8+ T 

cells and reduce CD8+ T cell avidity as a mechanism to evade anti-viral CD8+ T cells 

immunity. 

6.3 IL-4 and IL-13 regulate CDS densities to dampen anti-viral CDS+ T cell avidity 

The above observations suggest that reducing the responsiveness to IL-4 and IL-13 via 

down-regulation of IL-4Ra is important for enhancing the avidity of anti-viral CD8+ T 

cell responses. It was next evaluated whether these cytokines affected the expression of 

T-cell associated molecules (e.g. CD1 la, CD2, TCR, CD8 and lck) on anti-viral CD8+ 

T cells that participate in maintaining high avidity cell-cell interactions with APCs. 

Ranasinghe et al [2007; 2009] have identified differences in CD8+ T cell avidity 

following HIV-1 vaccination using tetramer dissociation assays; these assays 

distinguish avidity based on the strength of tetramer engagement with the TCR and/or 

CD8 co-receptor. This led to the hypothesis that IL-4 and IL-13 can reduce the affinity 

and/or the expression levels of TCR and/or CD8 co-receptor for down-regulating 

avidity of HIV-specific CD8+ T cells. Indeed, it was found that IL-4 and IL-13 

selectively dampen CD8 expression levels, which also dampen the avidity and 

polyfunctionality of HIV-specific CD8+ T cells following i.n. FPV-HIV /i.m. VV-HIV 

vaccination. 

A few repo1is following influenza virus infections have suggested that the usage of 

certain TCR clonotype (e.g. TCR V~7) is characteristic of high avidity CD8+ T cells 
,, 
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[Kedzierska et al., 2005; Kedzierska et al., 2008]. Although in the current study TCR 

clonotypes were not evaluated, data suggest that enhancement in CD8 densities was 

sufficient to enhance avidity of HIV-specific CD8+ T cells that developed in vaccinated 

IL-4 -1-, IL-13 -/- and STAT6 -/- mice relative to WT controls. Previous reports are also in 

agreement with the above findings where anti-viral CD8+ T cell avidity was shown to 

be up-regulated due to enhancement in CD8, but not TCR densities following pox viral 

infection [Oh et al., 2004; Xiao et al., 2007]. Overall, data suggest that IL-4 and IL-13 

mediated regulation of CD8 densities is an important determinant of CD8+ T cell avidity 

following pox viral infection and HIV-1 recombinant pox viral prime-boost vaccination. 

6.4 How does IL-4 and IL-13 responsiveness affect anti-viral CD8+ T cell avidity? 

The data obtained from the virus infection and vaccination studies can be used to 

propose a tentative model where anti-viral CD8+ T cell avidity could be regulated based 

on IL-4 and IL-13 responsiveness. Previously, Xiao et al [2007] have shown that CD8 

densities are down-regulated on anti-viral CD8+ T cells following cognate antigen 

encounter during pox virus infections. In chapter 3, it was -shown that naYve CD8+ T 

cells in the absence ofIL-4 and IL-13 signalling (i.e. in IL-4 -/-, IL-13 -/- and STAT6 -/-

mice) expressed lower levels of IL-4 Ra making them less responsive to these cytokines 

during T cell priming. Therefore, it is plausible to propose that IL-4 and IL-13 

signalling through activation of ST AT6 promotes greater down-regulation of CD8 

densities on naYve CD8+ T cells following cognate antigen encounter during pox virus 

infection and vaccination. Consequently, anti-viral effector CD8+ T cells that develop 

with reduced CD8 densities have poor polyfunctionality and avidity. It has been shown 

that heterologous mucosal HIV-1/SIV prime-boost vaccination regimens are most 

effective in preserving avidity and protective capacity of anti-viral CD8+ T cells [Kent 

et al., 2005; Belyakov et al., 2006; Belyakov et al., 2008; Ranasinghe et al., 2007; 
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Ranasinghe et al. , 2011; Ranasinghe et al. , 2013]. Therefore, vaccines (e.g. IL-13 

inhibitor) that minimise down-regulation of CD8 densities on HIV-specific CD8+ T 

cells even following mucosa! vaccination hold great potential in facilitating protective 

CD8+ T cell immunity against HIV-1. 

6.5 FTA assay is a valuable screening tool for assaying CD8+ T cell avidity in vivo 

Previously, it was discussed that identifying mechanisms that can regulate anti-viral 

CD8+ T cell avidity is important for developing more efficacious HIV-1 vaccines. In 

particular, the importance of regulating IL-4Ra and CD8 co-receptor expression levels 

on anti-viral CD8+ T cells was discussed. Another important aspect for developing more 

efficacious HIV-1 vaccines is to develop assays that evaluate CD8+ T cell avidity in 

vivo in pre-clinical models. Therefore, as the final study during the PhD project the use 

of a novel FT A assay was evaluated for this purpose. 

Interestingly, the FT A assay efficiently isolated clusters of HIV-1 recombinant pox viral 

vaccination strategies that were most effective in generating high avidity T cell 

responses zn vivo (e.g. heterologous FPV-HIVNV-HIV vaccination strategies). The 

high avidity Gag-specific CD8+ T cell killing responses induced following FPV

HIV./VV-HIV vaccination regimens also exhibited superior epitope cross-reactivity. 

Various T cell responses (avidity, epitope cross-reactivity and helper activity) using the 

FT A were also measured against a range of peptide pulsed target cells (> 200) in the 

same HIV -1 vaccinated animal allowing for thorough screening of large number of 

vaccine strategies in a cost-effective manner. Overall, the development of the FTA 

assay is a significant advancement in the field of HIV-1 vaccine development given that 

this is the only assay that can be used to comprehensively measure functional avidity of 

anti-viral CD8+ T cell responses in vivo following JilV-1 vaccination. 
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A few caveats for using this assay include that HIV- I infected target cells could not be 

used in mice and that the kinetics of killing are also expected to provide useful 

information regarding how efficient high avidity CD8+ T cells are in clearing virus

infected targets. Overall, the studies conducted clearly demonstrated the utility and 

effectiveness of the FT A assay in measuring various T cell quality parameters that are 

representative hallmarks of protective immunity against viral infections in vivo. 

Furthermore, the FTA assay could be utilized to develop effective prime-boost 

vaccination strategies for novel vaccines/vectors that aim to induce high avidity T cell 

responses in vivo using pre-clinical models. 

6.6 Significance of the PhD 

Effective HIV- I prophylactic vaccines will require the induction of high avidity HIV

specific CD8+ T cells and robust antibody responses. Given that HIV- I transmissions 

occur mainly through a single founder virus [Keele et al., 2008], it is important to have 

these responses at transmission sites ( e.g. genito-rectal mucosa in case of sexual 

transmissions and systemic compartments in case of blood transfusions). This should 

serve to minimise systemic viral spread and establishment of latent reservoirs. The 

findings from our laboratory thus far suggest that vaccination strategies, which 

minimise IL-4/IL-13 responses and maintain high CD8 densities on anti-viral CD8+ T 

cells are beneficial for this purpose. In particular, i.n. FPV-HIV /i.m. VV-HIV and 

mucosal IL-13 inhibitor vaccination strategies were extremely effective at inducing high 

avidity HIV -specific CD8+ T cells at both mucosal and systemic compartments 

[Ranasinghe et al. , 2007; Ranasinghe et al. , 2013]. Preliminary findings from our 

laboratory also suggest that mucosal IL-13 inhibitor vaccines promote anti-viral IgG 
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responses. Matthew Worley, current student in the laboratory, is evaluating whether 

these IgG responses are similar to those that have correlated with ADCC responses and 

protection against HIV-1 [Haynes et al., 2012; Tomaras et al., 2013]. Therefore, 

mucosal HIV-1 recombinant pox viral vaccination strategies that inhibit IL-13 

responses have provided promising outcomes for developing prophylactic HIV -1 

vaccmes. 

Currently, about 34 million people are infected with HIV-1 globally and therapeutic 

approaches to cure these individuals are desperately in need. Mucosal HIV-1 

recombinant pox viral vaccination strategies that induce high avidity HIV-specific 

CD8+ T cells may also be used for this purpose. Shan et al [2012] have shown that 

autologous Gag-specific CD8+ T cells are required to efficiently clear latently-infected 

CD4+ T cells following re-activation in vitro. Recently, histone deacetylase inhibitors 

such as vorinostat and pano binostat have emerged to be promising drugs for 

reactivating latency on CD4+ T cells and thereby exposing these cells to the immune 

system [Archin et al. , 2012; Rasmussen et al. , 2013]. Therefore, vaccination of HIV

infected individuals with i.n./i.m. HIV-1 IL-13 inhibitor vaccines prior to treatment with 

histone deacetylase inhibitors might facilitate the rapid clearance of latently infected 

CD4 + T cell reservoirs. A caveat with this strategy is the presence of immune exhausted 

CD8+ T cells in HIV-1 infected patients, but evaluation of these approaches should help 

develop a complete cure for HIV-1 infected patients. 

6. 7 Future directions 

It is intriguing why up-regulation of IL-4Ra, but not down-regulation of this receptor 

on CD8+ T cells was dependent on STAT6 following virus infection in vivo. Down

regulation of IL-4Ra on CD4+ T cells has previouslY, been described to be dependent on 
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D0CK2 [Tanaka et al., 2007]. Even though the dependence of IL-4Ra down-regulation 

on D0CK2 has not been explored on CD8+ T cells, future investigations could benefit 

from examining whether D0CK2 and ST AT6 play antagonizing roles in regulation of 

IL-4 Ra expression on CD8+ T cells. This will provide more insight as to how IL-4 Ra 

expression and CD8+ T cell avidity are regulated. 

Whether reduced responsiveness to IL-4 and IL-13 in a CD8+ T cell autonomous 

manner is sufficient to enhance anti-viral CD8+ T cell avidity was not evaluated in the 

current PhD project. This is important for identifying whether cell types other than 

CD8+ T cells can contribute to regulating CD8 expression levels and avidity of anti

viral CD8+ T cells. To evaluate this initially, infection or vaccination of mice where IL-

4Ra is mainly or exclusively deficient only in CD8+ T cells is required. These mice 

could be generated using bone marrow chimeras (i.e. chimeras between CD8a -!- and 

IL-4 Ra -/- mice) or ere-lox system as done in Dewals et al [2009]. 

Given the ethical, technical and sampling limitations it is more difficult to conduct 

elaborate functional assays using human specimens compared to laboratory animals. 

Therefore, there is a constant requirement for identifying novel yet reliable biomarkers 

that are descriptive of lymphocyte functions especially CD8+ T cell avidity in the 

context of HIV -1 infections. Monitoring cell surface IL-4 Ra expression levels on naYve 

CD8+ T cells might be ideal and descriptive for predicting avidity of HIV-specific CD8+ 

T cells in HIV-1 infected patients. To address this possibility, initially IL-4Ra 

expression levels on naYve CD8+ T cells from elite controllers (where elite control is 

associated with enhanced HIV -specific CD8+ T cell avidity) and HIV -1 progressors 

should be monitored. It can be hypothesized that IL-4 Ra expression levels will be lower 
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on na:ive CDS+ T cells or at least on naYve precursors of HIV-specific CDS+ T cells from 

elite controllers relative to HIV-I progressors. 

Studies in our laboratory have demonstrated that mucosal (i.n./i.m.) IL-13 inhibitor 

vaccination strategies can protect mice against a lethal recombinant influenza-HIV virus 

mucosa! challenge [Ranasinghe et al. , 2013]. It is also important to determine whether 

such mucosal vaccination strategies can be protective in the context of SIV infections in 

1nacaques in order to thoroughly evaluate the translational prospects of these vaccines. 

It will be intriguing to dete1mine whether regulation of IL-4Ra and CDS co-receptor 

levels on na:ive and SIV-specific CDS+ T cells following IL-13 inhibitor vaccination can 

be predictive of protective outcomes and avidity of SIV-specific CDS+ T cells. Our 

laboratory is currently constructing vaccines for use in macaques for this purpose, 

which will hopefully allow for the full evaluation of our vaccines ' translational potential 

for testing in human clinical trials in the near future. 

122 



Supplementary Figures 
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Supplementary figure 1. The importance of TCR signaling and IL-4 in regulating 

IL-4Ra expression of CD8+ T cells in vitro. F ACS sorted CD4410 CD8+ splenocytes 

from naYve BALB/c mice were cultured for 8 hours in presence or absence of 0.1 ng/ml 

of recombinant murine IL-4 using microwells (2 x 104 cells/well) coated with anti

CD3E or not (unstimulated). Subsequently, cultured splenocytes were analyzed using 

flow cytometry for IL-4Ra expression. A, Representative histogram plots showing IL-

4Ra expression on CD8+ splenocytes cultured in the presence or absence of anti-CD3E 

+ IL-4. B, MFI (n = 4) representing IL-4Ra expression on CD8+ splenocytes cultured in 

the presence or absence of anti-CD3E ± IL-4. The data presented is representative of 

two independent experiments and the error bars depict the SEM. One-way ANOVA 

(Tukey ' s Multiple Comparison) was used to determine statistical significance of the 

data(*** - p < 0.001 ). 
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Supplementary figure 2. The absence of IL-4 and IL-13 does not affect the in vivo 

IL-4Ra expression on naive B cells, CD4+ T cells, NK cells and DCs. Splenocytes 

from naYve mice were isolate and analyzed using flow cytometry for IL-4 Ra 

expression. A, Representative histogram plots showing IL-4Ra expression on the 

indicated immune cell subset. B, MFI (n = 3) representing IL-4Ra expression on the 

indicated immune cell subset. The data presented is representative of at least two 

independent experiments and the en·or bars depict the SEM. One-way ANOVA 

(Dunnett's Multiple Comparison) was used to determine statistical significance of the 

data relative to WT mice(*** - p < 0.001). 
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Supplementary figure 3. Down-regulation of IL-4Ra expression on CD8+ T 

following VV infection is not due to transcriptional regulation. Splenocytes from 7 

days VV-WR infected (3 x 106 PFU/mouse) or unimmunized BALB/c WT mice were 

F ACS sorted for quantitative real-time PCR analysis as described in the materials and 

methods. A, Representative density plots showing IL-4Ra and CD8a expression on 

gated CD8+ splenocytes from mice infected with VV -WR or kept as unimmunized. B, 

Mean (n = 4-6) fold change in mRNA transcript levels of IL-4Ra and GzmB on F ACS 

sorted IL-4Ra10 and IL-4Rahi cells from VY-infected mice with respect to the mRNA 

transcript levels of F ACS sorted CD8+ T cells from unimmunized mice. The data shown 

is representative two independent experiments and the error bars depict the SEM. 

Statistical significance of the data was determined relative to IL-4Rahi cells using a 

student's unpaired t-test (*** - p < 0.001). 
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Supplementary figure 4. Killing responses data used to construct the heat map 

shown from the experiment in figure 5.3. 
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Supplementary figure 5. Gag TH data used to construct the heat map shown from 

the experiment in figure 5.3. 
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