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A B S T R A C T

Icelandic waters are very productive and the fisheries are economically important for the Icelandic nation. The
importance of the fisheries has led to progressive fisheries management and extensive monitoring of the eco-
system. However, fisheries management is mainly built on single species stock assessment models, and multi-
species or ecological models are essential for building capacity around ecosystem-based fisheries management.
This paper describes the first end-to-end model for the Icelandic waters using the Atlantis modeling framework.
The modeled area is 1,600,000 km2, and covers the area from Greenland through Icelandic waters to the Faroe
Islands. The ocean area was divided into 51 spatial boxes, each with multiple vertical layers. There were 52
functional groups in the model: 20 fish groups (8 at a species level), 5 groups of mammals, 1 seabird group, 16
invertebrates, 5 primary producers, 2 bacteria and 3 detritus groups. The reliability of the model was evaluated
using a skill assessment and a sensitivity analysis was conducted to understand the dynamics of the system. The
sensitivity study revealed that saithe, redfish and tooth whales had the greatest effect on other groups in the
system. The skill assessment showed that the model was able to replicate time-series of biomass and landings for
the most important commercial groups and that modeling of the recruitment processes was important for some
of the groups. This model now provides a solid basis for evaluating alternative ecosystem and fisheries man-
agement scenarios, and should produce reliable results for the most important commercial groups.

1. Introduction

Icelandic waters, where the relatively warm Atlantic water and the
cold Arctic water meet, are very productive (Astthorsson et al., 2007).
The annual harvest from these waters is around 1.3 million tones,
which is 1.4% of the world´s harvest (Statistics Iceland, 2017). The
fisheries are economically important for the Icelandic nation and they
have, along with fish processing, accounted for 6–11% of the GDP and
37–63% of the exports since 2002 (Statistics Iceland, 2017). The highest
catches are of capelin (Mallotus villosus), but cod (Gadus morhua) has
the highest commercial value.

The importance of the fisheries has led to progressive fisheries
management, and Iceland was one of the first nations to implement a
quota system (Hilborn, 2007; Matthíasson, 2003). The ecosystem
monitoring program is extensive and a bottom trawl survey is carried
out twice annually (Anon., 2010) while acoustic surveys are conducted

for pelagic species (Anon., 2016; Vilhjálmsson and Carscadden, 2002).
The environmental conditions around Iceland are also monitored an-
nually where nutrients, temperature, salinity and plankton is measured
(Anon., 2015). In spite of extended datasets, including data on stomach
contents, fisheries management advice is mainly built on single species
stock assessment models for the most important commercial species
(Anon., 2016). Nevertheless, there has been increased demand for
ecosystem-based fisheries management (EBFM) in recent years. Single
species models do not consider species interactions, which are an im-
portant factor in EBFM (Link, 2002). Multi-species and ecosystem
models, where species interactions, and in some cases environmental
factors, are considered are tools that can be used to support EBFM
(Plagányi, 2007). Two preliminary food web models have been built for
Icelandic waters (Buchary, 2001; Mendy, 1998), but have not been
tested or used for fisheries management. A dynamic ecosystem model
could support an EBFM and allow fisheries scenarios concerning the
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most important commercial groups, e.g. the effects of stop fishing ca-
pelin, an important prey species in the system, to be evaluated.

Modeling of marine ecosystems has increased in recent years, with
developments in computational power, along with a growing under-
standing of ecosystem functioning and increased data sampling (Fulton,
2010). End-to-end models have become possible, where ecosystem and
human components are integrated. They are not appropriate for tactical
management advice (e.g., quota setting), unlike the single species
models, but are useful to evaluate system-level trade-offs of alternative
management strategies. Ecopath with Ecosim (EwE), a trophically-fo-
cused ecosystem model, has become widely used (Christensen and
Walters, 2004; Fulton, 2010), but more complex models such as Atlantis
are becoming more widely used (Fulton, 2010; Fulton et al., 2011;
Nyamweya et al., 2016; Ortega-Cisneros et al., 2017).

Atlantis (Audzijonyte et al., 2017a, 2017b; Fulton et al., 2011) is a
spatially resolved deterministic end-to-end model designed for
exploited marine ecosystems. The modeling framework consists of four
sub-models: biophysical, fisheries, management and socio-economic. It
has been used to explore major processes and responses in systems
(Kaplan et al., 2014; Nyamweya et al., 2016) and it has been used for
management strategy evaluations (MSE, Fulton et al., 2007).

Different ecosystem models (e.g. Atlantis vs. EwE) for the same
areas are not always consistent and have shown contradicting predic-
tions (Forrest et al., 2015; Pope et al., 2018). Such an ensemble mod-
eling approach can provide major insights into uncertainty around
system structure and function. This is important as the modeling pro-
cess for these models is subjective, as formal parameter estimation is
prohibited by the complexity of the models. Instead, they are currently
typically manually calibrated to historical data. This source of potential
uncertainty means that even when not being used in an ensemble, a
model skill assessment is an important means of determining how re-
liable models are, i.e. how well they fit to existing data and how well
they predict (Olsen et al., 2016). The prediction ability of models is
however usually not assessed because all existing data are used to ca-
librate the model (with subsequent use focused on relative projections
rather than focusing on absolute predictions). Olsen et al. (2016)
however performed a skill assessment on the predictive capacity of the
Atlantis model for the northeast US, ten years after the calibration,

when new data had been acquired. They recommend using a several
metrics to assess the different aspects of the skill of the model, e.g. one
that measures correlation and another that measures scale mismatch.
They concluded that the forecasting skill of the model for the northeast
US was comparable with the hindcasting skill, and did not degenerate
for a medium-term forecasting.

Finding means of assessing uncertainties and performance for large
ecosystem models is important, as they have both inherent structural
and parametric uncertainty. Unfortunately, their size has meant tradi-
tional approaches to assessing parametric uncertainty (let alone struc-
tural uncertainty) have been impractical due to the curse of di-
mensionality, rapid growth of complexity in multi-parametric analyses
and sensitivity to experimental design due to the feedback influences on
time dependence of parametric sensitivity results (Fulton, 2010; Fulton
et al., 2011). A sensitivity analysis can give insight into which para-
meters contribute the most towards uncertainty in the output (Pantus,
2007; Saltelli et al., 2006). However, a complete sensitivity analysis is
not feasible for Atlantis because it has thousands of parameters and
numerous possible interactions. Therefore, sensitivity analysis of
Atlantis models have been carried out for each parameter one-at-time
(Murray and Parslow, 1997) or for interactions between a selection of
parameters, which are already known to have a strong influence on
model performance or are particularly pertinent to that system type
(Ortega-Cisneros et al., 2017).

This paper describes the first end-to-end model for Icelandic waters
using the Atlantis modeling framework. The aim with this work is to
describe the model, compare its output to available data and evaluate
its reliability using a skill assessment. The aim is also to investigate how
sensitive the output is to changes in parameters and to use a partial
sensitivity analysis to understand the dynamics of the system.

2. Material and methods

2.1. Study area

The study area, the Icelandic waters, extends from 60° to 73°N and
from 43° to 0°W (Fig. 1). Two water masses meet in this area, the re-
latively warm and saline Atlantic water and cold Arctic water with low

Fig. 1. The modeled area and the locations of the 53 spatial boxes. Active boxes are in blue and boundary boxes in grey. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article).
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salinity (Astthorsson et al., 2007). The mixing of these two water
masses causes rather unstable environmental conditions, which has a
substantial impact on the production of the lower trophic levels
(Gislason et al., 2016). Primary production is higher in the warm
Atlantic water south of Iceland than in the cold Arctic water to the
north and east of the island (Astthorsson et al., 2007). This has an
impact on both the productivity and distribution of the fish stocks. The
main spawning grounds of the most important commercial species are
in the warm water to the south while the nursery grounds are in the
colder water to the north (Astthorsson et al., 2007). Around 30 fish
species and seven invertebrate species are commercially harvested in
Icelandic waters, along with whales and seals (Anon., 2016). The most
important commercial species is cod because of its high catches and
commercial value. Another important fish stock is the capelin, being the
most abundant pelagic stock in Icelandic waters and an important prey
for many demersal species such as cod, saithe (Pollachius virens) and
Greenland halibut (Reinhardtius hippoglossoides). Capelin feed in the
northern most part of the area and transfer large amount of energy to
the more southern grounds with their feeding and spawning migrations
(Vilhjálmsson, 1994). Over 20 species of mammals inhabit Icelandic
waters where they have great influence on the ecosystem; it has been
estimated that marine mammals consume over 6 million tons of fish,
cephalopods and zooplankton annually (Sigurjonsson and Vikingsson,
1997). Icelandic waters also support large populations of seabirds
(Lilliendahl and Solmundsson, 1997).

2.2. Model structure

2.2.1. The oceanography model
The modeled area is 1,600,000 km2 and covers the area from

Greenland through the Icelandic waters and to the Faroe Islands
(Fig. 1). The area has been divided into 51 ocean boxes and two land
boxes based on work described in Stefánsson and Palsson (1997) and in
Taylor (2005) where the division was mainly based on hydrography,
bathymetry and species distribution. Areas outside of the survey cov-
erage are divided into larger boxes because of less information on
species distribution. Active boxes (where the biology was modeled)
numbered 36, with an additional 15 boundary boxes to buffer water
fluxes to and from waters beyond the model domain. Each box was
further divided into vertical layers depending on the depth of the box.
The boxes each have one sediment layer and can have a maximum of six
water column layers (0–50m, 50–150m, 150–300m, 300–600m,
600–1000m and 1000m+). The oceanographic data were taken from a
hydrodynamic model (Logemann et al., 2013) and water fluxes, tem-
perature and salinity were calculated for each box and layer each day to
create a forcing time series running from 1948 to 2012. A full model
run is therefore 65 years and the time step of the model is 12 h.

2.2.2. Biological model
There were 52 functional groups in the model: 20 fish groups (8

represented at a species level), 5 groups of mammals, 1 seabird group,
16 invertebrates, 5 primary producers, 2 bacteria and 3 detritus groups
(Tables 1 and 2). The vertebrate groups could have up to ten age
classes, each of which could contain multiple annual cohorts. The
model tracks numbers and weight (mg N) per age class and the weight
was divided into reserve and structural weight, where reserve weight
was soft tissues and structural weight the bone structure. Cephalopods
and shrimp have two age classes, juveniles and adults. Other groups
were represented as aggregate biomass pools with no explicit age
structure. The initial conditions of most of the vertebrate groups, i.e.
their biomass and weight per individual were acquired from data
sampled by the Marine and Freshwater Research Institute (MFRI) or
from reports from the Institute (Anon., 2016). Initial condition for
zooplankton and primary producers were acquired from Astthorsson
et al. (2007).

The consumption rate of prey i by predator j (CRij) was modeled

Table 1
The vertebrate groups: the group code, group name and species, their maximum
age, reproduction function (BH=Beverton-Holt, BH-f=Beverton-Holt with
recruitment scalars, C= constant per adult), if the group is being harvested and
if a group is migratory.

Code Group Max age Reprod. Harvest. Mig.

FCD Cod (Gadus morhua) 20 BH-f Yes No
FHA Haddock (Melanogrammus

aeglefinus)
20 BH-f Yes No

FSA Saithe (Pollachius virens) 20 BH-f Yes No
FRF Redfish (Sebastes sp) 50 BH Yes No
FGH Greenland halibut (Reinhardtius

hippoglossoides)
20 BH Yes No

FFF Flatfish 20 BH Yes No
FHE Herring (Clupea harengus) 20 BH-f Yes No
FCA Capelin (Mallotus villosus) 6 BH-f Yes No
FMI Blue whiting (Micromesistius

poutassou)
20 BH Yes Yes

FMA Mackerel (Scomber scombrus) 20 BH Yes Yes
FOC Other codfish 20 BH Yes No
FDC Demersal commercial 20 BH Yes No
FDF Other demersal fish 10 BH No No
FSD Sandeel fish 10 BH No No
FDL Long lived demersal 30 BH No No
FMP Large pelagic fish 30 BH No No
FBP Small pelagic fish 10 BH No No
SSR Skates 30 BH Yes No
SSD Small sharks 50 C No No
SSH Large sharks 100 C No No
SB Seabird 40 C No Yes
PIN Pinniped 40 C No No
WMW Minke whale (Balaenoptera

acutorostrata)
50 C No Yes

WHB Baleen whale 100 C No Yes
WHT Tooth whale 70 C No No
WTO Other tooth whale 30 C No No

Table 2
Invertebrates, primary producers and detritus groups in the model – indicating
their major habitat type (benthic vs pelagic), whether the group is explicitly age
structured and whether the group is harvested.

Code Group Age-structure Benthic/pelagic Harvested

CEP Cephalopod Yes Pelagic No
PWN Shrimp Yes Pelagic No
ZS Microzooplankton No Pelagic No
ZM Mesozooplankton No Pelagic No
ZL Macrozooplankton No Pelagic No
ZG Gelatinous zooplankton No Pelagic No
LOB Norway lobster No Benthic No
BML Other megazoobenthos No Benthic No
SCA Iceland scallop No Benthic No
QUA Ocean quahog No Benthic No
CUC Cucumbers No Benthic No
BD Deposit feeder No Benthic No
BFF Other benthic filter feeders No Benthic No
BG Benthic grazer No Benthic No
BC Benthic carnivore No Benthic No
BO Meiobenthos No Benthic No
PL Diatom No Pelagic No
PS Pico-phytoplankton No Pelagic No
MA Macroalgae No Benthic No
SG Seagrass No Benthic No
DF Dinoflagellates No Pelagic No
PB Pelagic bacteria No Pelagic No
BB Sediment bacteria No Benthic No
DL Labile detritus No No
DR Refractory detritus No No
DC Carrion No No
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using an adjusted Holling type II:
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where mumj is the maximum growth rate and Cj is the clearance rate of
predator j, Bi is the biomass of prey i, and aij is the availability of prey i
to predator j. The ratio between C and mum determines the steepness of
the consumption curve and Ekj is the assimilation rate of prey k for
predator j. The diet composition for each predator was adjusted by
tuning the availability of each prey. Data from the MFRI on stomach
content and information from the literature (Gunnarsson et al., 1998;
Jónsson and Pálsson, 2013) was used as a guideline when tuning the
availability of each prey. The modeled food web is quite complex
(Fig. 2, graphed using the cheddar and igraph packages in R, Csardi and
Nepusz, 2006; Hudson et al., 2016).

Recruitment of the fish groups was modeled with the Beverton-Holt
function that describes the relationship between the spawning stock
biomass and number of recruits as follows:

=
+

R α SSB
β SSB

*
(2)

where R is the number of recruits, α is the maximum number of re-
cruits, β represents the size of the spawning stock which gives half of
the maximum recruitment, and SSB is spawning stock biomass, which
depends on individual weight and on the proportion spawning in each
age-class across the model domain (Audzijonyte et al., 2017a). Data
from MFRI were available for the most important commercial groups to
parameterize the recruitment curve. For other groups, the assumed
natural mortality and initial numbers were used to set the maximum
number of recruits. The recruitment of the mammals and the seabird
groups was modeled as a constant per adult (Table 1). It is possible to
induce recruitment spikes in Atlantis by scaling the recruitment from
the Beverton-Holt curve and this was done for the cod, haddock (Mel-
anogrammus aeglefinus), saithe, herring (Clupea harengus) and capelin.
Numbers per age-class as estimated by MFRI were used to calculate
time-series of recruitment scales. The recruitment of the mackerel
(Scomber scombrus) was scaled down before the year 2000 to imitate the
invasion that took place after 2000.

The functional groups had different spatial distributions that were
allowed to vary by season and for juveniles and adults. The distribu-
tions of the groups, which were kept fixed, were based on survey data
from the MFRI or from the literature (Jónsson and Pálsson, 2013).
Groups could also migrate into and out of the model area. The model

includes five migratory groups: blue whiting (Micromesistius poutassou),
mackerel, seabirds, minke whale and baleen whales.

2.2.3. Fisheries model
Harvests are modeled for the most important commercial species

(Table 1 and 2). Each group is harvested by fishing gear represented
using a length-specific logistic selectivity curve. Data on the size dis-
tribution of the catch and stock, as estimated by the MFRI, were used to
parameterize the selectivity curves for cod, haddock and saithe. The
current model did not have a dynamic fisheries model connected to
economics. Instead, time-series of harvest mortality were used to drive
the fisheries. The harvest mortality for each day is multiplied by se-
lectivity for each age class of each species. The harvest mortality was
allowed to change with time, but selectivity was assumed temporally
invariant. Harvest mortality was the same in all boxes and layers.
Discards were included in the model for two functional groups, cod and
haddock, and were based on Pálsson et al. (2012).

2.3. Skill assessment

A skill assessment was conducted to measure how well the model
fits to available data with and without recruitment spikes. Numerous
metrics exist to compare the model output with data (Bennett et al.,
2013; Stow et al., 2009) and while some of them are redundant (Olsen
et al., 2016), multiple metrics are necessary to evaluate model skill
(Olsen et al., 2016). In the present study three metrics where chosen,
demonstrating in three different ways how the model fits to data: 1)
model efficiency (MEF), 2) Pearson’s correlation (r) and 3) the relia-
bility index (RI). They are defined as follows:
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where Oi and Pi are the ith of n observations and predictions, respec-
tively and the O and P are the corresponding averages. These metrics
capture different aspects of model performance. MEF measures how
well the model fits to the data compared to the average. A perfect fit is
1, 0 is no better than using the average of the data points and negative
values correspond to a model that is worse than simply using the
average of the data in terms of providing direct biomass estimates
(although a model with negative MEF may still be useful if it has the
same trend as the data). The correlation measures how the observations
and the model prediction vary together, i.e. if the model has a similar
trend to the data. The correlation is from −1 to 1, where 1 is a perfect
positive, linear association, 0 is no linear association and, −1 is a
perfect negative, linear association. The closer this metric is to 1, the
better the model. However, this metric can be 1 even if the model is far
from the observations, i.e., when the predictions differ from the ob-
servations by a constant factor. The third metric, the reliability index,
measures how far on average the predictions and the observations are
from each other. Ideally, this measure should be close to 1.

The model biomass was compared to observed estimates of biomass
from the MFRI, which were available for five groups: cod, haddock,
saithe, herring and capelin. The predicted landings where compared to
landings data for 12 functional groups: cod, haddock, saithe, herring,
capelin, redfish (Sebastes sp), Greenland halibut, flatfish, blue whiting,
mackerel, other codfish and demersal commercial.

Fig. 2. Food web connections between the modeled functional groups (see
Tables 1 and 2 for group codes).
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2.4. Sensitivity analysis

A sensitivity analysis was conducted to determine how sensitive the
model output was to some of the model inputs, i.e., parameters and
oceanographic data. Some effort has been put into developing methods
for sensitivity analysis for complex and large models in recent years
(Oakley and O’Hagan, 2004; Pantus, 2007; Saltelli et al., 2010). These
methods require restricting consideration to a subset of parameters
from the Atlantis model, as there are thousands of parameters in the
model and that would overwhelm the analytical approaches.

Instead of conducting a rigorous and computationally expensive
sensitive analysis, a preliminary and simpler sensitivity analysis was
carried out. To see how sensitive the model was to the production of the
vertebrate groups, parameters that control recruitment (α in the
Beverton-Holt function, Eq. (2), and a parameter controlling the con-
stant recruitment per adult) were increased and decreased one at a time
by 20%. A sensitivity analysis was also conducted to assess how sen-
sitive the model was to production of the low trophic levels groups
(phytoplankton and zooplankton) by altering their production by 20%
and considering interactions between the selected parameters (Table 3),
as was done for the Atlantis model of the Benguela system (Ortega-
Cisneros et al., 2017). How sensitive the model was to the oceano-
graphic data (temperature, salinity and water fluxes) was also explored.
It is common to repeat years of oceanographic data in Atlantis models
for the hindcast (Nyamweya et al., 2016; Ortega-Cisneros et al., 2017)
and forecast (Kaplan et al., 2012). In the present model there are time-
series of oceanographic data of 65 years which cover the whole simu-
lated period. To explore the effects of oceanographic data, five of the
warmest years (2003–2007) were repeated 13 times to cover the
65 year simulation run (Fig. 3) and effects on biomass of the functional
groups in the model were assessed.

When only one parameter was perturbed at a time, as was done with
the recruitment parameters, a measure of model sensitivity was calcu-
lated as described in Murray and Parslow (1997):

=
−

S
V α V α

V α
(1.2 ) (0.8 )

0.4 ( )
,ij

i j i j

i j (6)

where Sij is the sensitivity measure for the biomass of group i when
recruitment parameter (α) in the Beverton-Holt function (see Eq. (2)) is
perturbed for group j, Vi(−) is the average biomass of group i for the
whole simulated period, i.e. Vi(1.2αj) is the average biomass of group i
when the recruitment of group j is increased by 20%. If S=1 then the
biomass changes by 20% when the recruitment is changed by 20%. If
S > 1 then the change in biomass is higher and if S < 1 then the
change in biomass is lower.

The measure S is no longer applicable when sensitivity to interac-
tions between parameters is explored. Instead percentage change in
biomass is used to measure sensitivity. The same was also done when
examining the effects of the oceanographic data. In that case, the effects
the oceanographic data had on the trend of the biomass was also con-
sidered. This was achieved by calculating the correlation of biomass
from the base run and biomass under the modified oceanographic run.

3. Results and discussion

3.1. Species interactions

An important part of ecosystem modeling is modeling the species
(or functional groups) interactions. This was done using the Holling
type II function (Eq. (1)). The diet composition of the predators re-
sembled what was observed in the stomach content data for most
groups (Figs. 4 and 5). The predators were feeding on the correct
groups, but they were relying too much on zooplankton and benthic
invertebrates in the model than what the stomach data indicated. The
zooplankton could however be under-represented in the stomach con-
tent data because of differences in digestion rates (Hyslop, 1980). Bias
towards the invertebrates will result in weaker species interactions
between the vertebrate groups. Also, sandeel were not as large a com-
ponent of the diet of its predators as they should have been. However
that group collapsed over time in the model, which it also did in the
ecosystem (Lilliendahl et al., 2013).

How much each group needs to feed to maintain their individual
weight was modeled with the assimilation parameter (E) in the Holling
type II function (Eq. (1)) and with the respiration function (Audzijonyte
et al., 2017a). The weight each group loses due to spawning also affects
how much they need to consume to maintain their weight. This, along
with the diet composition, controls how strong the species interactions
are. The Atlantis model does not report detailed consumption statistics
and therefore results on this are not shown. The strength of the species
interactions can be investigated using a sensitivity analysis as was the
case in this study (see Section 3.3).

3.2. Simulated biomass and landings

There were few groups with biomass that decreased substantially
towards the end of the model run. These groups were: sandeel (6% of
initial biomass), gelatinous zooplankton (10% of initial biomass), pico-
phytoplankton (10% of initial biomass), macroalgae (7% of initial
biomass) and dinoflagellates (0.1% of initial biomass). Sandeel was also
observed to decline in the ecosystem (Lilliendahl et al., 2013). The
biomass of pico-phytoplankton has very large seasonal variations and is
reported for January in the model when it is lowest, but the initial
biomass represents the situation during the summer months. The bio-
mass of gelatinous zooplankton and macroalgea decreased to 7–10% of
its initial biomass, but because they still exist in the system and because
they are not important part of the diet of other groups (except benthic
grazers) this should not cause problems for the behavior of the system.
The dinoflagellates were a group that went close to extinction. The
sensitivity study showed that this group is outcompeted by the pico-
phytoplankton (see Section 3.3.2). The abundance of the other two

Table 3
Growth rate of pico-phytoplankton (PS), diatoms (PL) and macrozooplankton
(ZL) in the base run (b) and where these parameters were decreased by 20% (d)
or increased by 20% (i).

Model run PS PL ZL

PSb_PLb_ZLb 0.7 0.4 0.8
PSb_PLb_ZLd 0.7 0.4 0.64
PSb_PLb_ZLi 0.7 0.4 0.96
PSb_PLd_ZLb 0.7 0.32 0.8
PSb_PLd_ZLd 0.7 0.32 0.64
PSb_PLd_ZLi 0.7 0.32 0.96
PSb_PLi_ZLb 0.7 0.48 0.8
PSb_PLi_ZLd 0.7 0.48 0.64
PSb_PLi_ZLi 0.7 0.48 0.96
PSd_PLb_ZLb 0.56 0.4 0.8
PSd_PLb_ZLi 0.56 0.4 0.64
PSd_PLb_ZLd 0.56 0.4 0.96
PSd_PLd_ZLb 0.56 0.32 0.8
PSd_PLd_ZLd 0.56 0.32 0.64
PSd_PLd_ZLi 0.56 0.32 0.96
PSd_PLi_ZLb 0.56 0.48 0.8
PSd_PLi_ZLd 0.56 0.48 0.64
PSd_PLi_ZLi 0.56 0.48 0.96
PSi_PLb_ZLb 0.84 0.4 0.8
PSi_PLb_ZLi 0.84 0.4 0.64
PSi_PLb_ZLd 0.84 0.4 0.96
PSi_PLd_ZLb 0.84 0.32 0.8
PSi_PLd_ZLd 0.84 0.32 0.64
PSi_PLd_ZLi 0.84 0.32 0.96
PSi_PLi_ZLb 0.84 0.48 0.8
PSi_PLi_ZLd 0.84 0.48 0.64
PSi_PLi_ZLi 0.84 0.48 0.96
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phytoplankton groups seems to be sufficient to make the system dy-
namics work, but the model would be more stable if it was possible to
achieve balance between the phytoplankton groups.

The simulated biomass changes either because individual weight
changes (Fig. 6), the numbers changes, or both. The simulated biomass
of some of the commercial fish groups (Fig. 7) increased in the start of
the model run, but decreased rapidly when fishing pressure was in-
creased. The exception was for the blue whiting, which dropped in
biomass at the start of the model run, when the individual weight
dropped (Fig. 6k), and did not increase until around 1980, but then
showed a decreasing trend when harvesting of that group begin around
2000 (Fig. 7k). Mackerel was modeled as an invasive species and its
biomass increased rapidly after 2000 (Fig. 7l). The burn in period was
included in the model run, which can explain the rapid changes at the
start of the simulation when the model has not stabilized.

The simulated biomass trajectories of five groups were compared to
estimated biomass with and without recruitment spikes (Fig. 7). The
skill assessment showed that the simulated biomass of cod fitted best to
the estimated biomass (Fig. 7a), both MEF and the correlation were the
highest and RI the lowest (Table 4). The simulated biomass of the pe-
lagic species, herring and capelin (Fig. 7d and e), did not fit the ob-
servations as well as the biomass of the demersal species and had a MEF
lower than zero and a weak correlation. When the recruitment spikes
were taken out of the model, the fit became worse for all these five
groups. The cod and the saithe had positive MEF and high, positive
correlation without the recruitment spikes but haddock, capelin and
herring in the model were not able to get the trend in biomass without

having the recruitment spikes included.
The model cannot be expected to achieve the correct trend when

forecasting for the groups that required recruitment spikes to achieve
positive correlation in the skill assessment. However, it is possible to
achieve uncertainty in the forecast by running the model under dif-
ferent recruitment processes. It also must be kept in mind that this is an
ecosystem model and not intended for tactical advice, but rather for
strategic advice where the accuracy of specific annual recruitment es-
timates is not as important.

The simulated landings, which were forced in the model with a
time-series of harvest rates had reasonable fit to the data for most of the
12 groups (Fig. 8). Saithe (Fig. 8c), other codfish (Fig. 8i) and the de-
mersal commercial group (Fig. 8j) had a good fit in terms of all three
metrics (Table 4). The landings of the flatfish group (Fig. 8h) had the
poorest fit, with the MEF just above zero and a correlation of 0.58. The
MEF was positive for all groups, except for haddock when it was
modeled without recruitment spikes (Fig. 8b and Table 4). The mag-
nitude of the simulated landings was not far off for most groups; seven
of the groups were within 50% of their observed values. Note that the
RI index is very sensitive if there are a few years where the magnitude is
incorrect. This was the case for blue whiting and mackerel where the
landings were very low is some years. In these cases, the total difference
in tons was not high, but because the landings were low, the difference
in magnitude could be large. All groups had positive correlation to the
landings data except haddock, which had a negative correlation when
the model had no recruitment spikes. The correlation decreased for the
cod when the recruitment spikes were taken out of the model, but

Fig. 3. Temperature in the 50–150m layer in box 25 (south of Iceland, see Fig. 1) and in box 37 (north of Iceland, see Fig. 1) from 1948 to 2012 when the full time-
series was used (1948–2012, base run) and when five years (2003–2007) were repeated.
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increased for the saithe. Modeling without the recruitment spikes did
not have as much of a negative effect on the landings as it did on the
biomass for the pelagic groups (i.e. capelin and herring). It was possible

to get a negative correlation for the biomass but positive correlation for
the landings (Table 4).

Skill assessment has now been conducted for most recent Atlantis
models, e.g. for Lake Victoria (Nyamweya et al., 2016) and the Ben-
guela and Agulhas currents (Ortega-Cisneros et al., 2017). The present
model has similar skill as these two models where most groups had
correlation higher than 0.5 and positive MEF. Skill assessment has been
performed for Atlantis models using biomass estimates (Ortega-
Cisneros et al., 2017) or catch per unit effort where biomass estimates
were not available and landings data (Nyamweya et al., 2016). Olsen
et al. (2016) also used ecosystem indicators to conduct skill assessment
for the Atlantis model for the northeast US. This was not attempted for
the present model as the data needed to calculate these indicators were
not available.

Discards were simulated for cod and haddock and compared to es-
timated discards (Fig. 8). The discard rate was on average 3.8% for cod
and 7.0% for haddock over the simulated period when recruitment was
modeled with recruitment spikes. This is consistent with what has been
estimated for haddock, where the discard rate has been estimated to be
from 2 to 22% in the last three decades (Pálsson, 2002; Pálsson et al.,
2012). The simulated discard rate for cod was higher than what has
been estimated, about 1% in recent years (Pálsson et al., 2012), but no
estimates exist from the last century. Note that the method used to
estimate the discard rate estimated the minimum rate and that the
actual discard rate can be assumed to be higher.

3.3. Sensitivity analysis

3.3.1. Recruitment parameters
For each group, altering the recruitment parameter for the group

had an effect on that group, but the size of that effect varied greatly
among groups (Fig. 9). The groups which that were the most sensitive
to changes in the recruitment parameters were herring, mackerel,
sandeel, seabirds and pinnipeds. Redfish, capelin, long lived demersal,
small sharks and tooth whales were the least sensitive.

Fig. 4. The average simulated diet composition for the ver-
tebrate groups (age-class 4) over the period 1948–2012. Some
of the prey groups have been aggregated into the following
groups: demersal (all other demersal fish), pelagic (all pelagic
fish except herring and capelin), mammals (all mammals and
seabirds), zoo (all zooplankton groups), benthos (all benthic
invertebrates) and detritus (detritus and discards).

Fig. 5. Average diet composition from stomach content data that was available
for 15 of the 20 fish groups.
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The change in the recruitment parameter was 20%, but the change
in actual recruitment could be much greater over time because of the
shape of the Beverton-Holt curve. The asymptote of the curve was in-
creased, which leads to higher recruitment. With higher recruitment the
stock can recover over time and produce higher spawning stock that
shifts the population to the right of the curve which will consequently
lead to even more recruitment, if the recruitment was not at the max-
imum in the base run. This was the case for herring, mackerel and
sandeel, which had S > 1 (Fig. 9). The seabird, large shark and the
mammal groups were modeled with constant recruitment per adult
with no explicit asymptote. Changing the recruitment parameter for
these groups by 20% also led to a greater change in actual recruitment
by the end of the model run.

Most of the groups had S < 1 which means that changing the re-
cruitment parameters by 20% resulted in less than a 20% change in the

biomass. This was because other parameters affected how much groups
could increase in biomass. The quadratic mortality parameter controls
the density dependent non-predation mortality; as numbers in an age-
class increase so does the mortality. Cannibalism also restrains popu-
lation growth when recruitment is increased and this may be the reason
why the stock size for the redfish group changed little with increased
recruitment. Also, redfish is a long-lived group (5 years within an age-
class), which means that it takes a long time for the change in re-
cruitment to have an effect on the numbers in the older age-classes.
Changing the maximum recruitment of capelin by 20% had little effect
on its biomass (S=0.11). The capelin numbers increased when max-
imum recruitment was increased by 20%, but the individual weight
dropped, resulting in very similar biomass as in the base run. The in-
verse happened when maximum recruitment was decreased, their
numbers decreased but individual weight increased and resulted in

Fig. 6. Relative change in weight (reserve+ structural weight) of each age-class of 12 commercial fish groups.
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similar biomass.
Saithe, redfish and tooth whales had the largest effect on other

vertebrate groups which were mostly negative effect on their prey
groups. They also had positive effects on few groups by affecting the
biomass of their predators. Vertebrate groups that were the most sen-
sitive to changes in the recruitment of other groups were mackerel,
flatfish, sandeel, small pelagic fish, seabirds and minke whale. It was
necessary to analyze what the effects were on individual weight (re-
serve and structural weight) and numbers rather than simply con-
sidering their biomass to understand how the groups affected each
other. It is also helpful to look at the diet composition of the groups to
understand their interactions.

Groups can have an effect on other groups if they feed on that group
or if they feed on its predators. For example, redfish had an effect on
saithe (S=−0.28) because it feeds on it, even though saithe only

makes up a very small portion of the redfish diet. Redfish had an op-
posite effects on the flatfish group (S=0.35) by consuming the pre-
dators of flatfish, such as saithe.

There can also be indirect effects on a group if they compete for the
same prey groups. For example, altering the recruitment of sandeel
affected the flatfish group (S=−0.33). The individual weight of flat-
fish increased when the recruitment of sandeel was decreased and vice
versa when the recruitment was increased. That affected the spawning
biomass of the flatfish, which consequently affected the recruitment
leading to changes in their numbers and biomass.

Altering the recruitment of the vertebrate groups also had an effect
on the invertebrates, primary producers and the detritus groups
(Fig. 10). The most sensitive groups were pico-phytoplankton and mi-
crozooplankton. The seagrass and benthic invertebrate groups were not
sensitive to a change in the recruitment of the vertebrates except the

Fig. 7. Simulated biomass with and without recruitment spikes for 12 commercial fish groups and compared to biomass estimates for 5 commercial fish groups.
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benthic grazer group, which was sensitive towards a change in sandeel
and haddock recruitment. Capelin and sandeel seemed to have the most
effect on the plankton groups but had opposite effects on the pico-
phytoplankton. Both these groups had high biomass (at least at the start
of the model run) and have zooplankton as the most important com-
ponent of their diet, but sandeel also relies on benthic invertebrates.
Dinoflagellates were a group that went close to extinction (0.1% of its
initial biomass) throughout the base model run, but altered recruitment
of cod and sandeel changed its biomass. The low biomass of the dino-
flagellates should not be a problem as the other two phytoplankton
groups compensated for the low biomass of them.

It has been observed that removal of top predators can have cas-
cading effects down the food web, where the removal led to 45% de-
crease in large zooplankton and a slight increase in phytoplankton
(Frank et al., 2005). The changes in recruitment of vertebrate groups
led to large changes in phytoplankton biomass that may not be realistic
and this should be studied further before the model is used for man-
agement strategy evaluation.

3.3.2. Growth parameters of plankton groups
The effects of changing the growth parameters of pico-phyto-

plankton, diatoms and macrozooplankton on the biomass of the func-
tional groups in the model are given in Fig. 11. Changing the growth
rate of the macrozooplankton had very little effect except when the
growth rate of diatoms had also been increased. The results of altering
the growth rate of the macrozooplankton are therefore not discussed
further here. Dinoflagellates appeared to suffer competitive exclusion,
being outcompeted by the pico-phytoplankton (for example, dino-
flagellates multiply when the growth rate of the pico-phytoplankton is
decreased; Fig. 11). This increased biomass of dinoflagellates led to an
increased biomass of microzooplankton.

The change in the growth of the phytoplankton also had a con-
siderable effect on the vertebrate groups. The vertebrate groups that
were the most sensitive were: baleen whales, minke whale, seabirds,
small and large pelagic fish, sandeel, mackerel and blue whiting, ca-
pelin and redfish (Fig. 11). Zooplankton is a large portion of the diet of
these groups (Fig. 4) and as the zooplankton responded to the phyto-
plankton, these planktivorous feeders did as well. The redfish biomass
increased by 84% when the growth rate of pico-phytoplankton was
decreased and the rate of diatoms was increased. All vertebrate groups
increased in biomass when the growth rate of both the phytoplankton
groups was increased and all vertebrate groups except mackerel de-
creased in biomass when just the diatom growth rate was reduced
(Fig. 11). A sensitivity study on the Atlantis model for the Benguela
system also showed strong reactions to changes in the growth rate of
the plankton groups, where some of the fish groups showed more than

100% increase in biomass (Ortega-Cisneros et al., 2017).

3.3.3. Oceanographic data
Repeating the five warm years instead of having the full oceano-

graphic time series affected some of the functional groups. Temperature
affects the respiration of the vertebrate groups and consequently their
growth. The water fluxes were also different between the two model
runs, influencing advection of nutrients and plankton groups; the shift
in nutrients also affected the growth of the primary producers. This
methodology can be used when testing the effect of climate change that
could have larger effects on the groups, especially the vertebrate groups
if density-dependent movement is turned on in the model, which was
not the case in the present model.

The oceanographic data had a large effect on the biomass of the
phytoplankton groups: pico-phytoplankton and diatoms (Fig. 12a). The
biomass of the pico-phytoplankton increased, while the biomass of the
diatoms decreased. Diatoms need higher nutrient concentrations than
pico-phytoplankton to achieve their maximum growth rates. The warm
conditions and associated water fluxes were therefore more favorable
for the pico-phytoplankton. The warm conditions were also favorable
for cephalopods, capelin and mackerel, leading to increased biomasses
compared to the base run. In contrast, these conditions led to decreased
biomass of herring. Capelin and herring feed mostly on zooplankton,
but capelin feeds both on mesozooplankton and macrozooplankton,
while herring feeds mainly on macrozooplankton, which increased in
biomass while the mesozooplankton decreased in biomass. It was ne-
cessary to look at the output from the model for each spatial box to
better understand why the capelin biomass was higher in the case when
the five warm years were repeated. At the individual spatial box level, it
was observed that the biomasses of both mesozooplankton and mac-
rozooplankton were much higher in one box in the north, where the
capelin feed during the winter (Box 12, Fig. 1), with the modified
oceanography than in the base run. The model output had to be ex-
plored at a high temporal resolution to better understand why the
herring biomass was lower when the warm years were repeated. The
reserve to structural weight ratio of the herring is lower in the early
years of the simulation with modified oceanography, which affected the
recruitment and ultimately led to a lower number of adults later in the
simulation (perpetuating lower recruitment).

Using the five warm years did not have a substantial effect on the
trend of the biomass of the vertebrate groups (Fig. 12b), not even
herring and capelin, which had changes in total biomass. It did have
some effect on the large pelagic fish, baleen whales and the other
toothed whales. The correlation between the zooplankton and phyto-
plankton groups was low, indicating that the trend was different from
the base run. The other benthic filter feeders group had a negative

Table 4
Skill assessment with and without recruitment spikes: The three metrics model efficiency (MEF), reliability index (RI) and correlation (r) for biomass and landings
(see Eqs. (3)−(5) for the metrics).

Metrics with recruitment spikes Metrics without recruitment spikes

Group Landings Biomass Landings Biomass

MEF RI r MEF RI r MEF RI r MEF RI r

Cod 0.41 1.24 0.74 0.73 1.23 0.88 0.23 1.32 0.64 0.55 1.32 0.78
Haddock 0.38 1.31 0.75 0.64 1.27 0.84 −0.75 1.53 −0.28 −0.29 1.50 −0.31
Saithe 0.55 1.23 0.86 0.40 1.24 0.83 0.72 1.20 0.89 0.58 1.24 0.81
Herring 0.65 1.70 0.87 −0.59 1.38 0.28 0.76 1.67 0.90 −2.22 1.56 −0.45
Capelin 0.73 1.98 0.87 −6.21 1.90 0.32 0.65 2.29 0.82 −9.51 2.33 −0.22
Redfish 0.19 1.36 0.77 0.20 1.35 0.78
Greenland halibut 0.54 1.69 0.75 0.54 1.68 0.75
Flatfish −0.05 1.44 0.50 0.13 1.41 0.59
Other codfish 0.53 1.24 0.79 0.48 1.26 0.75
Demersal commercial 0.52 1.28 0.77 0.52 1.28 0.77
Blue whiting 0.93 2.29 0.97 0.93 2.32 0.97
Mackerel 0.82 2.33 0.98 0.82 2.44 0.98

E. Sturludottir et al. Fisheries Research 207 (2018) 9–24

18



correlation, which means that the trend of the biomass under the
modified oceanography was in the opposite direction compared to its
biomass in the base run. It is therefore important to have correct
oceanographic data if trends of low tropic levels are the focus of a
study.

3.4. Model reliability

Kaplan and Marshall (2016) have set some standards that end-to-
end models such as Atlantis should reach before they are used in
management strategy evaluations. Models should fulfill the following:

1) All biological functional groups should persist throughout the model
run.

2) The model should achieve equilibrium, i.e., under fixed

environmental forcing the unfished model should have stable bio-
mass over the final 20 years for most vertebrate groups.

3) The biomass trends should be compared to survey time-series
(hindcast).

4) Qualitative model comparisons to survey data.
5) The model should capture the dynamics of abundant species.
6) Most functional groups should qualitatively match expected pro-

ductivity.
7) Natural mortality should be realistic.
8) Age and length structure of vertebrate groups should match data.
9) Diet composition of the functional groups should match diet data.

In relation to these standards, all groups except the dinoflagellates
(which had only 0.1% of its initial biomass) persisted throughout the
model run. Few groups (sandeel, gelatinous zooplankton, pico-

Fig. 8. Simulated landings with and without recruitment spikes and discards from the Atlantis model compared to landings data for 12 commercial fish groups.
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phytoplankton and macroalgae) decreased considerably in biomass but
still persisted at the end of the model when they had 7–10% of its initial
biomass.

Kaplan and Marshall (2016) did not define what is considered stable
biomass. In this study stable biomass will be considered if the biomass
changes by less than 10% over the last 20 years of the simulated period.
The model was run 100 years further, with the same fishing pressure
that was used in the final year of the base model and with

oceanography rerunning from the start of the model run. After 100
years of forecast 23 of the 26 vertebrate and 14 of the 16 invertebrate
groups had stable biomass in the last 20 years of the model run. If
fishing was excluded from the model and the model run was 165 years
only 15 of the 26 vertebrate groups had stable biomass in the last 20
years of the model run. Herring showed fluctuations and did not have
any trend if more than 20 years were considered. It is not realistic here
for all groups to reach a perfectly constant biomass as the underlying

Fig. 9. Sensitivity analysis: the metric S (see Eq. (6)) for the change in biomass of the vertebrate groups when recruitment was altered for the vertebrate groups. The
grey color represent S < −1 or S > 1.

Fig. 10. Sensitivity analysis: the metric S (see Eq. (6)) for the change in biomass of the invertebrate, primary producer, bacteria and detritus groups when recruitment
was altered for the vertebrate groups. The grey color represent S < −1 or S > 1.
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physical model always has some fluctuations. The physical forcing
(oceanographic data) contains seasonal and annual variations in tem-
perature, salinity and water fluxes, which consequently leads to fluc-
tuations in phytoplankton biomass, which escalates up the food chain.
It is difficult to assess what groups compose the same trend as the
phytoplankton because of the large variation in phytoplankton biomass,
both in space and time.

Most of the fish groups had realistic natural mortality that decreased
with age. Capelin had higher mortality for adults than juveniles, but
that group is set as semelparous, i.e., all fish die after spawning. The
whale groups had lower mortality for the juveniles. This is a con-
sequence of the quadratic mortality parameter settings used for this
group (which is different between juveniles and adults). This should be
fixed by increasing the mortality for the juveniles and the recruitment
rate in order to maintain suitable biomass levels and trajectories before

the model is used to predict effects on the whale groups or scenarios
regarding whaling.

The model was calibrated so that the weight (or length) of each age-
class within a group would be relatively constant over time (< 20%
change from initial conditions). This was achieved for most groups, but
some age-classes went over (or under) the limit (Fig. 6).

The diet composition matched the data (Section 3.1). It is a chal-
lenging task to calibrate an ecosystem model of this complexity such
that both diet composition and changes in diet over time are re-
presented correctly. The most important is to get the proportions si-
milar in order for the species interactions to be realistic and that has
been accomplished for the current model. Minor adjustments to the
availability of prey or to spatial distribution of the functional groups
may improve the model and that can be determined by conducting
another skill assessment of an adjusted model.

The simulated biomass was compared to biomass estimates and si-
mulated landings to landings data and a skill assessment conducted
(Section 3.2). Kaplan and Marshall (2016) did not state how well the
model needs to fit to the data before it is considered reliable and neither
did Olsen et al. (2016). However, it can be concluded that models that
cannot replicate historical time-series will not be able to produce reli-
able predictions about the future. Modeled groups that have negative
correlation in the skill assessment do not replicate historical time-series.
It is more difficult to define what values the metrics MEF and RI need to
reach to be able to conclude that the model is reliable. When MEF < 0
then a straight line through the average would give a better fit, but if
the correlation is positive the model can still be useful and the same can
be said about high RI. The model could however be used with more
confidence when the correlation, MEF and RI are close to 1 but the
minimum requirement is that the correlation is positive. The skill as-
sessment showed that the model had a good fit to the data, when
modeled with recruitment spikes, for the most important commercial
groups, i.e. the correlation was positive, MEF > 0 and RI < 1.5 for
most groups (Table 4). However, most of the groups in the model had
no biomass estimates and are not targeted by the fisheries and therefore
had no landings data for calibration and skill assessment purposes. It
was therefore not possible to determine the skill of the model for those
groups. Some of the non-commercial groups are caught in the survey
and it is possible to calculate a survey index for those groups and cal-
culate correlation between the simulated biomass and the survey index.
However, such analysis was not conducted for this paper because these
indices may not be reliable as the survey is not designed to capture
population trends for these species. Skill assessment could also be
carried out for plankton groups. However, this is challenging as these
groups show large variation, both is space and time. It would also be of
interest to assess how well the model captures the ocean currents. It can
then be evaluated if the model would benefit from an improvement of
the spatial structure of the model. This is a work for further research.

Ideally, one should not use the same data for model calibration and
for skill assessment of that model (Bennett et al., 2013). This was not
possible in this case as all available data were needed for calibration
and therefore the model reliability could be overestimated.

3.5. How can this model be used for ecosystem based fisheries management?

The goals of the Icelandic fisheries management act have largely be
met. Since its inception, harvest rates of commercially exploited fish
stocks have gradually been decreased, with the aim of achieving single
species maximum sustainable yield. The need for alternative manage-
ment strategies that take ecosystem and socio-economic considerations
into account has, however, increased in recent years. The model could
be used to evaluate fisheries scenarios for the most important com-
mercial species taking interactions into account. It provides a solid basis
for the testing of alternative ecosystem and fisheries management sce-
narios and will be of further use when the socio-ecological model
component has been integrated with the biophysical and fisheries

Fig. 11. Sensitivity analysis: Percentage change in biomass of all functional
groups when the growth rate of pico-phytoplankton (PS), diatoms (PL) and
macrozooplankton (ZL) were decreased by 20% (d), increased by 20% (i) or
kept unchanged (b). See Table 3 for parameter values in the model runs. Grey
color represents more than 100% change.
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model components.
This model can be used for examining scenarios regarding discards

and by-catch. It has already been used to explore the economic and
ecological effects of discarding in the cod and haddock fisheries where
five scenarios with different selectivity and discard rates where com-
pared (Sturludottir, 2018). The small scale lumpsucker fishery, which is
an important part of a local economy, has been under scrutiny for
considerable by-catch of marine mammals and seabirds (Anon., 2018;
Pálsson et al., 2015) and the model could be used to evaluate trade-offs
of alternative management actions, such as area closures and/or effort
reduction, which could have substantial consequences for the coastal
communities.

The spatial component of the Atlantis model allows diverse sce-
narios to be explored. For example the effects of changes in spatial
movement of species because of climate change can be explored, but
such changes have already been observed in Icelandic waters
(Carscadden et al., 2013). The effects of seasonal or permanent closures
already implemented in Icelandic waters have been studied (Schopka,
2007; Woods et al., 2017), but the effects of potential closures could be
explored with the current model.

The model is being used as an operating model to evaluate the

performance of other simpler ecosystem models such as EwE and
Gadget. It is very difficult to evaluate the reliability of ecosystem
models, but skill assessment has been used in that purpose. Atlantis
models can be used to test if other models can imitate the “Atlantis
ecosystem”. Data are simulated from the known ecosystem and im-
ported into the other models and then compared to the true values from
the Atlantis model. Using this method it can be studied how well the
models need to fit to historical data to be deemed reliable when used for
forecasting. This work is now ongoing using the present model.

4. Conclusion

An end-to-end model has been constructed that resembles the eco-
system of the Icelandic waters. This is the first dynamic end-to-end
model for this area. Preliminary EwE models (Buchary, 2001; Mendy,
1998) and multi-species models (Elvarsson, 2015) have been con-
structed but no dynamic models where the entire ecosystem is simu-
lated. Fisheries management in Iceland aims to be ecosystem based and
this model can be used to support EBFM. It can be used to evaluate
different fisheries and climate scenarios and to conduct management
strategy evaluations. The focus of the model is on the most important

Fig. 12. The effects of the oceanographic data, when five years of oceanographic data were repeated from 1948 to 2012 a) Change in biomass from the base run
where the full oceanographic data were used. b) Correlation between the biomass from the model with the full oceanographic data and from the model with five
years repeated. The correlation measure the change of the trend of the biomass of the functional groups.

E. Sturludottir et al. Fisheries Research 207 (2018) 9–24

22



commercial groups, to explore the effects of various harvesting strate-
gies, such as area closures and selectivity changes, on both commercial
groups and on other parts of the ecosystem. The model needs to be
judged to be reliable to have confidence in the model as a basis for
assessments and projections. It is very difficult to estimate the relia-
bility of a model as complex as Atlantis. Nevertheless, it was possible to
carry out a skill assessment, which showed that the model was able to
simulate the biomass trends for the most important commercial groups.
There were limited data available on the non-commercial groups and
therefore the reliability of the model for those groups could not be
assessed. Therefore, predicted effects on those groups need to be taken
with caution.

The sensitivity analysis revealed the influence of key parameters
and inputs, e.g., recruitment parameters and oceanographic data, on
model projections. This showed that there was uncertainty due to
sensitivity to the form of the recruitment relationships used and due to
the effect of environmental conditions (something the model may not
capture well). Uncertainty also exists due to sensitivity of the model to
oceanographic forcing, meaning that care must be taken around as-
sumptions regarding prevailing oceanographic conditions used when
running simulations, such as warm vs. cold periods.

Ecosystem models such as Atlantis are in a constant process of
further improvement and this is the case with the current model. This
work, the skill assessment and the sensitivity study will facilitate that
process by increasing the understanding of the dynamics of the system.

Acknowledgments

This study has received funding from the European Union’s Seventh
Framework Programme for research, technological development and
demonstration under grant agreement no. 613571 for the project
MareFrame and from the European Commission’s Horizon 2020
Research and Innovation Programme under Grant Agreement No.
634495 for the project Science, Technology, and Society Initiative to
minimize Unwanted Catches in European Fisheries (Minouw). Funding
from the Icelandic Research Fund (rannis, No. 152039051) is also ac-
knowledged. We would like to thank Sólveig Rósa Ólafsdóttir,
Guðmundur Þórðarson, Gísli A. Víkingsson, Þorvaldur Gunnlaugsson,
Kristján Lilliendahl, Ástþór Gíslason, Héðinn Valdimarsson and Jónas
Páll Jónasson at the Marine and Freshwater Research Institute and
Guðmundur Guðmundsson at the Icelandic Institute of Natural History
for their contribution to this work. We would also like to thank two
anonymous reviewers for their valuable comments.

References

Anon, 2010. Manuals for the Icelandic Bottom Trawl Surveys in Spring and Autumn.
Hafrannsoknir nr. 156. The Marine Research Institution, Reykjavik, Iceland. https://
www.hafogvatn.is/static/research/files/fjolrit-156pdf.

Anon, 2015. Environmental Conditions in Icelandic Waters 2014. Hafrannsoknir nr. 181.
The Marine Research Institution, Reykjavik, Iceland. https://www.hafogvatn.is/
static/research/files/fjolrit-181pdf.

Anon, 2016. State of Marine Stocks in Icelandic Waters 2015/2016 and Prospects for the
Quota Year 2016/2017. Marine Research in Iceland 185. The Marine Research
Institution, Reykjavik, Iceland. https://www.hafogvatn.is/static/research/files/
fjolrit_185pdf.

Anon, 2018. Bycatch of Seabirds and Marine Mammals in Lumpsucker Gillnets 2014-
2017. The Marine and Freshwater Research Institution, Reykjavik, Iceland. https://
www.hafogvatn.is/static/files/skjol/techreport-bycatch-of-birds-and-marine-
mammals-lumpsucker-en-final-draft.pdf.

Astthorsson, O.S., Gislason, A., Jonsson, S., 2007. Climate variability and the Icelandic
marine ecosystem. Deep-Sea Res. II 54, 2456–2477.

Audzijonyte, A., Gorton, R., Kaplan, I., Fulton, E.A., 2017a. Atlantis User’s Guide Part I:
General Overview, Physics & Ecology. CSIRO, Hobart, Australia.

Audzijonyte, A., Gorton, R., Kaplan, I., Fulton, E.A., 2017b. Atlantis User’s Guide Part II:
Socio-Economics. CSIRO, Hobart, Australia.

Bennett, N.D., Croke, B.F., Guariso, G., Guillaume, J.H., Hamilton, S.H., Jakeman, A.J.,
Marsili-Libelli, S., Newham, L.T., Norton, J.P., Perrin, C., Pierce, S.A., 2013.
Characterising performance of environmental models. Environ. Model. Softw. 40,
1–20.

Buchary, E.A., 2001. Preliminary reconstruction of the Icelandic marine ecosystem in

1950 and some predictions with time series data. Fisheries Impacts of the North
Atlantic Ecosystems: Models and Analyses. Fisheries Centre Research Reports, vol. 9.
pp. 296–306 (4).

Carscadden, J.E., Gjøsæter, H., Vilhjálmsson, H., 2013. A comparison of recent changes in
distribution of capelin (Mallotus villosus) in the Barents Sea, around Iceland and in
the Northwest Atlantic. Prog. Oceanogr. 114, 64–83.

Christensen, V., Walters, C.J., 2004. Ecopath with Ecosim: methods, capabilities and
limitations. Ecol. Model. 172 (2–4), 109–139.

Csardi, G., Nepusz, T., 2006. The igraph software package for complex network research.
InterJournal, Complex. Systems 1695. http://igraph.org.

Elvarsson, B., 2015. Statistical Models of Marine Multispecies Ecosystems. PhD Thesis.
University of Iceland, Reykjavik, Iceland.

Forrest, R.E., Savina, M., Fulton, E.A., Pitcher, T.J., 2015. Do marine ecosystem models
give consistent policy evaluations? A comparison of Atlantis and Ecosim. Fish. Res.
167, 293–312.

Frank, K.T., Petrie, B., Choi, J.S., Leggett, W.C., 2005. Trophic cascades in a formerly cod-
dominated ecosystem. Science 308 (5728), 1621–1623.

Fulton, E.A., 2010. Approaches to end-to-end ecosystem models. J. Mar. Syst. 81 (1),
171–183.

Fulton, E.A., Smith, A.D.M., Smith, D.C., 2007. Alternative Management Strategies for
Southeast Australian Commonwealth Fisheries: Stage 2: Quantitative Management
Strategy Evaluation. CSIRO, Tasmania, Australia. https://research.csiro.au/atlantis/
wp-content/uploads/sites/52/2015/10/AMS_Final_Report_v6.pdf.

Fulton, E.A., Link, J.S., Kaplan, I.C., Savina-Rolland, M., Johnson, P., Ainsworth, C.,
Horne, P., Gorton, R., Gamble, R., Smith, A.D.M., Smith, D.C., 2011. Lessons in
modelling and management of marine ecosystems: the Atlantis experience. Fish Fish.
12 (2), 171–188.

Gislason, A., Valdimarsson, H., Guðmundsson, K., Olafsdottir, S.R., 2016. Environmental
Conditions in Icelandic Waters 2015. [In Icelandic with English summary]. Marine
and Freshwater Research Institution, Reykjavik, Iceland. https://www.hafogvatn.is/
static/research/files/hafogvatn2016-001_lokapdf.

Gunnarsson, K., Jónsson, G., Pálsson, O.K., 1998. Sjávarnytjar við Ísland (e. Marine
Resources around Iceland). Mál og Menning, Reykjavik, Iceland [in Icelandic].

Hilborn, R., 2007. Defining success in fisheries and conflicts in objectives. Mar. Policy 31
(2), 153–158.

Hudson, L., Reuman, D., Emerson, R., 2016. Cheddar: Analysis and Visualisation of
Ecological Communities. R Package Version 0.1-631.

Hyslop, E.J., 1980. Stomach contents analysis– a review of methods and their application.
J. Fish Biol. 17, 411–429.

Jónsson, G., Pálsson, J., 2013. Íslenskir fiskar (e. Icelandic Fish). Mál og menning,
Reykjavík, Iceland [In Icelandic].

Kaplan, I.C., Marshall, K.N., 2016. A guinea pig’s tale: learning to review end-to-end
marine ecosystem models for management applications. ICES J. Mar. Sci. 73 (7),
1715–1724.

Kaplan, I.C., Horne, P.J., Levin, P.S., 2012. Screening California current fishery man-
agement scenarios using the Atlantis end-to-end ecosystem model. Prog. Oceanogr.
102, 5–18.

Kaplan, I.C., Holland, D.S., Fulton, E.A., 2014. Finding the accelerator and brake in an
individual quota fishery: linking ecology, economics, and fleet dynamics of US West
Coast trawl fisheries. ICES J. Mar. Sci. 71 (2), 308–319.

Lilliendahl, K., Solmundsson, J., 1997. An estimate of summer food consumption of six
seabird species in Iceland. ICES J. Mar. Sci. 54, 624–630.

Lilliendahl, K., Hansen, E.S., Bogason, V., Sigursteinsson, M., Magnúsdóttir, M.L.,
Jónsson, P.M., Helgason, H.H., Óskarsson, G.J., Óskarsson, P.F., Sigurðsson, Ó.J.,
2013. Viðkonubrestur lunda og sandsílis við Vestmannaeyjar (e. Recruitment failure
of Atlantic puffins Fratercula arctica and saneels Ammodytes marinus in
Vestmannaeyjar islands). Náttúrufræðingurinn 83 (1–2), 65–79 [in Icelandic with
English summary].

Link, J.S., 2002. What does ecosystem-based fisheries management mean. Fisheries 27
(4), 18–21.

Logemann, K., Ólafsson, J., Snorrason, Á., Valdimarsson, H., Marteinsdóttir, G., 2013. The
circulation of Icelandic waters–a modelling study. Ocean Sci. 9 (5), 931–955.

Matthíasson, T., 2003. Closing the open sea: development of fishery management in four
Icelandic fisheries. Nat. Resour. Forum 27 (1), 1–18 Blackwell Publishing Ltd.

Mendy, A., 1998. Trophic Modeling as a Tool to Evaluate and Manage Iceland’s
Multispecies Fisheries. Final project, United Nations University – Fisheries Training
Programme, Reykjavik, Iceland.

Murray, A., Parslow, J., 1997. Port Phillip Bay Environmental Study: Final Report. CSIRO,
Canberra, Australia. https://publications.csiro.au/rpr/download?pid=
procite:1e941c7a-3303-4b90-ba69-ecad2a810020&dsid=DS1.

Nyamweya, C., Sturludottir, E., Tomasson, T., Fulton, E.A., Taabu-Munyaho, A., Njiru, M.,
Stefansson, G., 2016. Exploring Lake Victoria ecosystem functioning using the
Atlantis modeling framework. Environ. Model. Softw. 86, 158–167.

Oakley, J.E., O’Hagan, A., 2004. Probabilistic sensitivity analysis of complex models: a
Bayesian approach. J. R. Stat. Soc.: Ser. B Stat. Methodol. 66 (3), 751–769.

Olsen, E., Fay, G., Gaichas, S., Gamble, R., Lucey, S., Link, J.S., 2016. Ecosystem model
skill assessment. Yes we can!. PLoS One 11 (1), e0146467.

Ortega-Cisneros, K., Cochrane, K., Fulton, E.A., 2017. An Atlantis model of the southern
Benguela upwelling system: validation, sensitivity analysis and insights into eco-
system functioning. Ecol. Model. 355, 49–63.

Pálsson, Ó.K., 2002. Brottkast ýsu á Íslandsmiðum (e. Discards of haddock in Icelandic
waters). Ægir 95, 32–37 [in Icelandic].

Pálson, Ó.K., Björnsson, H., Gísladóttir, H., Jóhannesson, G., Ottesen, Þ., 2012. Mælingar
á brottkasti þorsks og ýsu 2001-2010. Hafrannsóknir nr. 160. [In Icelandic with
English summary]. The Marine Research Institution, Reykjavík, Iceland. https://
www.hafogvatn.is/static/research/files/fjolrit-160pdf.

E. Sturludottir et al. Fisheries Research 207 (2018) 9–24

23

https://www.hafogvatn.is/static/research/files/fjolrit-156pdf
https://www.hafogvatn.is/static/research/files/fjolrit-156pdf
https://www.hafogvatn.is/static/research/files/fjolrit-181pdf
https://www.hafogvatn.is/static/research/files/fjolrit-181pdf
https://www.hafogvatn.is/static/research/files/fjolrit_185pdf
https://www.hafogvatn.is/static/research/files/fjolrit_185pdf
https://www.hafogvatn.is/static/files/skjol/techreport-bycatch-of-birds-and-marine-mammals-lumpsucker-en-final-draft.pdf
https://www.hafogvatn.is/static/files/skjol/techreport-bycatch-of-birds-and-marine-mammals-lumpsucker-en-final-draft.pdf
https://www.hafogvatn.is/static/files/skjol/techreport-bycatch-of-birds-and-marine-mammals-lumpsucker-en-final-draft.pdf
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0025
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0025
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0030
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0030
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0035
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0035
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0040
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0040
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0040
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0040
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0045
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0045
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0045
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0045
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0050
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0050
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0050
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0055
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0055
http://igraph.org
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0065
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0065
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0070
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0070
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0070
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0075
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0075
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0080
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0080
https://research.csiro.au/atlantis/wp-content/uploads/sites/52/2015/10/AMS_Final_Report_v6.pdf
https://research.csiro.au/atlantis/wp-content/uploads/sites/52/2015/10/AMS_Final_Report_v6.pdf
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0090
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0090
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0090
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0090
https://www.hafogvatn.is/static/research/files/hafogvatn2016-001_lokapdf
https://www.hafogvatn.is/static/research/files/hafogvatn2016-001_lokapdf
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0100
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0100
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0105
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0105
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0110
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0110
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0115
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0115
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0120
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0120
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0125
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0125
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0125
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0130
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0130
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0130
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0135
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0135
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0135
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0140
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0140
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0145
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0145
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0145
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0145
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0145
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0145
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0150
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0150
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0155
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0155
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0160
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0160
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0165
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0165
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0165
https://publications.csiro.au/rpr/download?pid=procite:1e941c7a-3303-4b90-ba69-ecad2a810020%26dsid=DS1
https://publications.csiro.au/rpr/download?pid=procite:1e941c7a-3303-4b90-ba69-ecad2a810020%26dsid=DS1
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0175
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0175
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0175
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0180
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0180
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0185
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0185
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0190
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0190
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0190
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0195
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0195
https://www.hafogvatn.is/static/research/files/fjolrit-160pdf
https://www.hafogvatn.is/static/research/files/fjolrit-160pdf


Pálsson, Ó.K., Gunnlaugsson, P., Ólafsdóttir, D., 2015. By-Catch of Sea Birds and Marine
Mammals in Icelandic Fisheries. Hafrannsóknir nr. 178. [In Icelandic with English
summary]. The Marine Research Institution, Reykjavík, Iceland. https://www.
hafogvatn.is/static/research/files/fjolrit-178pdf.

Pantus, F.J., 2007. Sensitivity Analysis for Complex Ecosystem Models. PhD Thesis.
School of Physical Sciences, the University of Queensland, Australia. http://www.
espace.library.uq.edu.au/view/UQ:137017.

Plagányi, É.E., 2007. Models for an Ecosystem Approach to Fisheries (No. 477). Food and
Agriculture and Organization of the United Nations, Rome, Italy.

Pope, J., Bartolino, V., Bauer, B., Horbowy, J., Ribeiro, J., Sturludottir, E., Thorpe, R.,
2018. Comparing steady state results of a range of multispecies models between and
across geographical areas by the use of the Jacobian matrix of yield on fishing
mortality rate. Fish. Res.

Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F., 2006. Sensitivity analysis practices:
strategies for model-based inference. Reliab. Eng. Syst. Saf. 91 (10), 1109–1125.

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S., 2010. Variance
based sensitivity analysis of model output. Design and estimator for the total sensi-
tivity index. Comput. Phys. Commun. 181 (2), 259–270.

Schopka, S.A., 2007. Area Closures in Icelandic Waters and the Real-Time Closure System:
A Historical Review. Report Series nr.133. [in Icelandic with English summary]. The
Marine Research Institution, Reykjavik, Iceland. https://www.hafogvatn.is/static/
research/files/fjolrit-133pdf.

Sigurjonsson, J., Vikingsson, G.A., 1997. Seasonal abundance of and estimated food
consumption by cetaceans in Icelandic and adjacent waters. J. Northw. Atl. Fish. Sci.
22, 271–287.

Statistics Iceland, 2017. Retrieved 18th of May 2017 at http://www.statice.is/.
Stefánsson, G., Palsson, O.K., 1997. BORMICON: A Boreal Migration and Consumption

Model. The Marine Research Institution, Reykjavik, Iceland. https://www.
hafogvatn.is/static/research/files/fjolrit-058pdf.

Stow, C.A., Jolliff, J., McGillicuddy, D.J., Doney, S.C., Allen, J.I., Friedrichs, M.A., Rose,
K.A., Wallhead, P., 2009. Skill assessment for coupled biological/physical models of
marine systems. J. Mar. Syst. 76 (1), 4–15.

Sturludottir, E., 2018. Exploring the effects of discarding using the Atlantis ecosystem
model for Icelandic waters. Sci. Mar. (Barc.).

Taylor, L., 2005. Definition of areas in Icelandic waters. In: Stefansson, G. (Ed.),
Development of Structurally Detailed Statistically Testable Models of Marine
Populations. The Marine Research Institution, Reykjavik, Iceland. https://www.
hafogvatn.is/static/research/files/fjolrit-119pdf.

Vilhjálmsson, H., 1994. The Icelandic Capelin Stock: Capelin, Mallotus villosus (Muller)
in the Iceland – Greenland – Jan Mayen Area. The Marine Research Institution,
Reykjavik, Iceland https://www.hafogvatn.is/static/research/files/rit_fiski_x-
iii_fyrri_hluti_1994pdf, https://www.hafogvatn.is/static/research/files/rit_fiski_x-
iii_seinni_hluti_1994pdf.

Vilhjálmsson, H., Carscadden, J.E., 2002. Assessment surveys for capelin in the
Iceland–East Greenland–Jan Mayen area, 1978–2001. ICES J. Mar. Sci. 59 (5),
1096–1104.

Woods, P.J., Elvarsson, B., Sigurdsson, Th., Stefánsson, G., 2017. Evaluating the effec-
tiveness of real-time closures for reducing susceptibility of small fish to capture. ICES
J. Mar. Sci. 75 (1), 298–308.

E. Sturludottir et al. Fisheries Research 207 (2018) 9–24

24

https://www.hafogvatn.is/static/research/files/fjolrit-178pdf
https://www.hafogvatn.is/static/research/files/fjolrit-178pdf
http://www.espace.library.uq.edu.au/view/UQ:137017
http://www.espace.library.uq.edu.au/view/UQ:137017
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0215
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0215
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0220
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0220
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0220
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0220
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0225
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0225
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0230
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0230
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0230
https://www.hafogvatn.is/static/research/files/fjolrit-133pdf
https://www.hafogvatn.is/static/research/files/fjolrit-133pdf
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0240
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0240
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0240
http://www.statice.is/
https://www.hafogvatn.is/static/research/files/fjolrit-058pdf
https://www.hafogvatn.is/static/research/files/fjolrit-058pdf
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0255
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0255
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0255
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0260
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0260
https://www.hafogvatn.is/static/research/files/fjolrit-119pdf
https://www.hafogvatn.is/static/research/files/fjolrit-119pdf
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0270
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0270
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0270
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0270
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0270
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0275
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0275
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0275
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0280
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0280
http://refhub.elsevier.com/S0165-7836(18)30162-0/sbref0280

	End-to-end model of Icelandic waters using the Atlantis framework: Exploring system dynamics and model reliability
	Introduction
	Material and methods
	Study area
	Model structure
	The oceanography model
	Biological model
	Fisheries model

	Skill assessment
	Sensitivity analysis

	Results and discussion
	Species interactions
	Simulated biomass and landings
	Sensitivity analysis
	Recruitment parameters
	Growth parameters of plankton groups
	Oceanographic data

	Model reliability
	How can this model be used for ecosystem based fisheries management?

	Conclusion
	Acknowledgments
	References




