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Abstract
In this paper we will study the properties of ideals ng) related to the
notion of Z-convergence of sequences of real numbers. We show that 7
and Ic(q>*—convergence are equivalent. We prove some results about modified
Olivier’s theorem for these ideals. For bounded sequences we show a connec-
tion between I£Q)—convergence and regular matrix method of summability.

1. Introduction

In papers [9],and [10] the notion of Z-convergence of sequences of real numbers is
introduced and its basic properties are investigated. The Z-convergence generalizes
the notion of the statistical convergence (see[5]) and it is based on the ideal Z of
subsets of the set N of positive integers.

Let T C 2V, T is called an admissible ideal of subsets of positive integers, if Z
is additive (i.e. A,B€Z = AUB € 7), hereditary (ie. A€ Z, BC A= BeI),
containing all singletons and it doesn’t contain N. Here we present some examples
of admissible ideals. More examples can be found in the papers [7, 9, 10, 12].

(a) The class of all finite subsets of N form an admissible ideal usually denote by
Iy.

(b) Let ¢ be a density function on N, then the set Z, = {4 C N : p(A) = 0}
is an admissible ideal. We will use the ideals Z4,7Zs,Z,, related to asymp-
totic,logarithmic,uniform density,respectively. For those densities for defini-
tions see [9, 10, 12, 13].
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(¢) For any ¢ € (0,1) the set 79 = {ACN:} 4079 < oo} is an admissible
ideal. The ideal " = {ACN: Y 407" < oo} is usually denoted by Z..

It is easy to see, that for any ¢; < ¢2;¢1,92 € (0,1)
LT C Il C 1. C Ty (1.1)

=

In this paper will we study the ideals I(SQ). In particular the equivalence be-
tween Zéq) , ng)*, Olivier’s like theorems for this ideals and characterization of L(,q)—

convergent sequences by regular matrices.

2. The equivalence between 79 and Iéq>*-convergence

Let us recall the notion of Z-convergence of sequences of real numbers, (cf.[9, 10]).

Definition 2.1. We say that a sequence =z = (z,)52; Z-converges to a number L
and we write Z — lim x, = L, if for each ¢ > 0 the set A(e) = {n : |z, — L| > ¢}
belongs to the ideal 7.

T-convergence satisfies usual axioms of convergence i.e. the uniqueness of limit,
arithmetical properties etc. The class of all Z-convergent sequences is a linear
space. We will also use the following elementary fact.

Lemma 2.2. Let 7,75 be admissible ideals such that 7y C Zy. If 7y — limx, = L
then Io — limx,, = L.

In the papers [9, 10] there was defined yet another type of convergence related
to the ideal 7.

Definition 2.3. Let Z be an admissible ideal in N. A sequence x = (x,,)%2 4 of real
numbers is said to be Z*-convergent to L € R (shortly Z* — limz,, = L) if there is
a set H € Z, such that for M = N\ H = {m; < mgy < ...} we have, klim T, = L.

It is easy to prove, that for every admissible ideal Z the following relation
between Z and Z*-convergence holds:

¥ —limz,=L=7—-limx, = L.

Kostyrko, Salat and Wilczynski in [9] give an algebraic characterization of ideals
Z, for which the Z and Z*-convergence are equal; it turns out that these ideals are
with the property (AP).

Definition 2.4. An admissible ideal Z C 2V is said to satisfy the property (AP)
if for every countable family of mutually disjoint sets {A1, Aa, ...} belonging to 7
there exists a countable family of sets {B1, Ba, ...} such that A;AB, is a finite set
for j € N and U]Oil B € I.(AAB = (A\ B)U(B\A4)).
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For some ideals it is already known whether they have property (AP)(see [9,
10, 12, 13]). Now, will show the equivalence between 749 and L9 convergence.

Theorem 2.5. For any 0 < q < 1 the ideal Iéq) has a property (AP).

Proof. Tt suffices to prove that any sequences (z,)22; of real numbers such that
79 _lima, = £ there exist a set M = {m; <my < ... <my < ...} € Nsuch
that N\ M € Z&” and lim @, =¢.

For any positive integer k let e = 2% and Ay = {neN: |z, - > 2%} As
I —limz, = ¢, we have A, € T.? | i.e.

Z a < oo.

acAyg

Therefore there exist an infinite sequence n; < ng < ... < ng... of integers
such that for every k =1,2,...

Za_q<%

a>ng
acAy

Let H = Uy [(nk, nis1) N Ag]. Then

Za‘qg Z a 9+ Z a T4+, + Z ai+...<

a€H a>ng a>nsg a>ng

acAq acAg a€Ay
1 1 1
<§+?++27k+<+00

Thus H € 7. Put M=N\H={m <mg <...<my <...}. Now it suffices
to prove that klim Tm, = & Let ¢ > 0. Choose ko € N such that 2%0 < e. Let
my, > ng,. Then my belongs to some interval (n;,n;y1) where j > ko and doesn’t
belong to A; (j > ko). Hence my, belongs to N\ A;, and then |z,,, —¢| < ¢ for
every my > ny,, thus klim Ty, =& O

3. Olivier’s like theorem for the ideals ZC(Q)

In 1827 L. Olivier proved the results about the speed of convergence to zero of the
terms of a convergent series with positive and decreasing terms.(cf.[8, 11])

Theorem A. If (a,)72, is a non-increasing sequences and Y .- | a, < +0oo, then
lim n-a, =0.

n—oo
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Simple example a, = L if n is a square i.e. n =k%, (k=1,2,...) and a, = 2%
otherwise shows that monotonicity condition on the sequence (a,)32; can not be
in general omitted.

In [14] T.Salét and V.Toma characterized the class S (T') of ideals such that

Zan<—|—oo:I— lim n-a, =0 (3.1)
n=1

for any convergent series with positive terms.

Theorem B. The class S(T') consists of all admissible ideals T C P(N) such that
I21Z..

From inclusions (1.1) is obvious that ideals 789 do not belong to the class S (7).

In what follows we show that it is possible to modify the Olivier’s condition
Z?:l an, < 400 in such a way that the ideal Ic(q) will play the role of ideal Z,. in
Theorem B.

Lemma 3.1. Let 0 < g < 1. Then for every sequence (a,)>2, such that a, >

0,n=1,2,... and > 77, a,? < +oo we have 79 —limn - a, = 0.

Proof. Let the conclusion of the Lemma 3.1 doesn’t hold. Then there exists ey > 0
such that the set A(eg) = {n:n-a, > eo} doesn’t belong to Ic(q). Therefore

> my = +oo, (3.2)
k=1

where A(gg) = {m1 < ma < ... < my < ...}. By the definition of the set A(eg)
we have my, - am, > g9 > 0, for each k € N. From this m{ - aZ, > ef > 0 and so
for each k € N

al, > ed-m; 1 (3.3)
From (3.2) and (3.3) we get > ,~; al = +o0, and hence Y, ad = +oo. But it
contradicts the assumption of the theorem. O

Let’s denote by S¢(T") the class of all admissible ideals Z for which an analog
Lemma 3.1 holds. From Lemma 2.2 we have:

Corollary 3.2. IfZ is an admissible ideal such that T D I then T € Sy(T).
Main result of this section is the reverse of Corollary 3.2.

Theorem 3.3. For any q € (0,1) the class Sq(T) consists of all admissible ideals
such that T D TP,

Proof. Tt this sufficient to prove that for any infinite set M = {m; < ma < ... <
mE<...}€E ISI) we have M € Z, too. Since M € Ic(q) we have

oo
Z my < +oo.
k=1
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Now we define the sequence (a,)% as follows

1
amk - my (k == 172,...)7
1
an, = W for nEN\M

Obviously a,, > 0 and Zzo:l an? < 400 by the definition of numbers a,. Since
T € §;(T) we have
7 -—limn-a, =0.

This implies that for each € > 0 we have
Ae)={n:n-a, >} €I,
in particular M = A(1) € Z. O

4. Z(EQ)—convergence and regular matrix transforma-
tions

IC(Q)—convergence is an example of a linear functional defined on a subspace of the
space of all bounded sequences of real numbers. Another important family of such
functionals are so called matrix summability methods inspired by [1, 6]. We will
study connections between Ic(q)—convergence and one class of matrix summability
methods. Let us start by introducing a notion of regular matrix transformation
(see [4]).

Let A = (anr) (n,k = 1,2,...) be an infinite matrix of real numbers. The
sequence (t,)°; of real numbers is said to be A-limitable to the number s if
nlin;o Sp = S, where

o0
Sp = Zanktk (n = 1,2, .. )
k=1

If ()52 is A-limitable to the number s, we write A — lim ¢, = s.

n—oo

We denote by F(A) the set of all A-limitable sequences. The set F/(A) is called
the convergence field. The method defined by the matrix A is said to be regular

provided that F(A) contains all convergent sequences and lim ¢, = t implies
n—o0o
A — lim ¢, =t. Then A is called a regular matriz.

n—oo

It is well-known that the matrix A is regular if and only if satisfies the following
three conditions (see [4]):

(A) 3K >0,Yn=1,2,... > 7 lank| < K;
(B) Vk=1,2,... lim anr =0

(C) lim Y02 an, =1
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Let‘s ask the question: Is there any connection between Z-convergence of se-
quence of real numbers and A-limit of this sequence? It is well know that a sequence
(xr)72, of real numbers Z;-converges to real number ¢ if and only if the sequence
is strongly summable to £ in Caesaro sense. The complete characterization of sta-
tistical convergence (Zj-convergence) is described by Fridy-Miller in the paper [6].
They defined a class of lower triangular nonnegative matrices 7 with properties:

n
Z ank =1 Vn eN
k=1
if C CN such that d(C)=0, then lim Z ant = 0.
n—oo
keC
They proved the following assertion:

Theorem C. The bounded sequence x = (x,)52, is statistically convergent to L
if and only if x = (x,)22 is A-summable to L for every A in T.

Similar result for Z,-convergence was shown by V. Balaz and T. Salat in [1].

Here we prove analogous result for Z£Q)—convergence. Following this aim let’s define
the class 7, lower triangular nonnegative matrices in this way:

Definition 4.1. Matrix A = (a,%) belongs to the class 7, if and only if it satisfies
the following conditions:

(D) lim >} anp =1
@)HCCNMﬂCEZ@J%nﬁg}%aWM:O,0<q§L

It is easy to see that every matrix of class 7 is regular. As the following example
shows the converse does not hold.

Example 4.2. Let C = {12,22,32.42,... n% ...} and ¢ = 1. Obviously C €
Ic(l) = Z.. Now define the matrix A by:

a;n =1,a1, =0, k>1
_
2k -Inn
, k=12 k<n

Anp = , k£ kE<n

nk = {Inn

ank =0, k>n

It is easy to show that A is lower triangular nonnegative regular matrix but
does not satisfy the condition (q) from Definition 4.1.

g a —i(l—i-l%— +l)>lnn—1—ﬁ0
"k = Inn2 2 7 n/ T 2lnn 2
k<n?

keC

for n — oo. Therefore A ¢ T;.
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Lemma 4.3. If the bounded sequence x = (x,)%2 ¢ s not Z-convergent then there
exist real numbers A < p such that neither the set {n € N : x,, < A} nor the set
{n e N:z, > pu} belongs to ideal T.

As the proof is the same as the proof on Lemma in [6] we will omit it.

Next theorem shows connection between ng)—convergence of bounded sequence

of real numbers and A-summability of this sequence for matrices from the class 7.

Theorem 4.4. Let g € (0,1). Then the bounded sequence x = (x,)52, of real

numbers Ic(q)—converges to L € R if and only if it is A-summable to L € R for each
matric A € 7Ty.

Proof. Let I — limz,, = L and A € T,. As A is regular there exists a K € R
such that Vn =1,2,...3 77 ank| < K.
It is sufficient to show that lim b, = 0, where b, = > 7~ | ank.(xx — L). For

e >0put B(e) ={k € N: |z — L| > }. By the assumption we have B(e) € 789,
By condition (q) from Definition 4.1 we have

dim D fan] =0 (4.1)
keB(e)

As the sequence = = (2,)%2; is bounded, there exists M > 0 such that
Vk=1,2,...: |z — LI <M (4.2)
Let € > 0. Then

bal < > ankllze — LI+ D ankllox — L] <
k€B(5%) k¢B(5%)
g
<M > awkl + o |an] <

2K
keB(5%) k¢B(3%)

g
<M Z |ank| + 5 (43)
kEB(5%)

By part (q) of Definition 4.1 there exists an integer ng such that for all n > ng

Z |ank\ < ﬁ

k€B(5%)
Together by (4.3) we obtain lim b, = 0.

Conversely, suppose that ng) —limz,, = L doesn’t hold. We show that there
exists a matrix A € 7; such that A — lim z, = L does not hold, too. If 79 —

n—oo

limz, = L # L then from the firs part of proof it follows that A — lim x, = L

n—oo
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# L for any A € 7,. Thus, we may assume that (z,)5%; is not Iéq)—convergent,
and by the above Lemma 4.3 there exist A and p (A < p), such that neither the
set U={keN:xzp <A} nor V={keN:zx,>p} belongs to the ideal 9. 1t
is clear that UNV = 0. If U ¢ 79 then eyt P =400 and if V ¢ 789 then
eyt ?=400. Let U, =UN{1,2,...,n}and V,, = VN {1,2,...,n}.

Now we define the matrix A = (anx) by the following way: Let sy, =
Yiep, i forn € U, sy = Yy, i % forn € V oand sy, = Y ;1,09 for
ngUNV. AsU,V ¢ Z? we have HILH;O S = +00,5 =1,2,3.

Anp = S"(’:)q neUand kcU,,

ank, =0 n €U and k ¢ U,,

—q
ankzsk neVand k eV,
Ank — (2)n

ank =0 neVand k¢V,,
e =2= ng¢UNV,

S(3)n

anr =0 k>n,

Let’s check that A € 7;. Obviously A is a lower triangular nonnegative matrix.

Condition (I) is clear from the definition of matrix A. Condition (q): Let B € 740
and b=}, 5 k79 < +oo. Then

Zank <

keB

b
> kixslk) < -0
keBN{1,...,n} 5@)m

5(3)n

for n — oo. Thus A € 7.
Forne U

o0
Z ApkTl =
k=1
on other hand forn € V
oo
Zankﬂik = Zk v (k)xy > Zk xv(k
k=1

Therefore A — lim z,, does not exist. O

n—oo

Zk) Ivu(k)xg < Zk Ixu(k

s(l)n 1)n

S@)n S(@2)n

Corollary 4.5. If0 < q1 < q2 <1, then T, & S 7y

Proof. Let B € T.%) \ 7 and let (2,) = x5(n), n = 1,2,... Clearly .7 —
limz, =0 and Zg‘h) —lim x,, does not exist. Let A be the matrix constructed from

the sequence (z,)72; as in the proof of Theorem 4.4. In particular A € 7;, and
A — lim z,, does not exist. Therefore A ¢ 7T,,. O

n—oo
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Further we show some type well-known matrix which fulfills condition (I). Let
(pj)521 be the sequence of positive real numbers. Put P, = p1 +p2 + ... + pa.
Now we define matrix A = (anx) in this way:

ank:p—k k<n

n
ane, =0 &k >n.

This type of matrix is called Riesz matrix.
Especially we put p, = n®, where 0 < a < 1. Then
«
la 420 4 ..+ no -

Ank

ank =0 k>n.

This special class of matrix we denote by (R,n%). It is clear that this matrix fulfills
conditions (I) and (q). For this class of matrix is true following implication:

I —limay = L= (R,n®) —limay = L

where (x)72, is a bounded sequence, 0 < ¢ <1, 0 < a < 1. Converse does
not hold. It is sufficient to choose the characteristic function of the set of all
primes P. Then (R,n®) — limz, = 0, but Ic(q) — lim z; does not exist, because
Znep n~ % = +o0, where P is a se of all primes. Hence the class (R,n%) of matrices
belongs to 7\ 7.

Problem 4.6. If we take any admissible ideal Z and define the class 77 of matrices

by replacing the condition (I) in Definition 4.1 by condition:if C' C N and C € Z,

7 admissible ideal on N then lim »7, - |ank| = 0 then it is easy to see that the if
n—oo

part of Theorem 4.4 holds for 7 too. The question is what about only if part.
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