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Abstract
In this paper we will study the properties of ideals I(q)

c related to the
notion of I-convergence of sequences of real numbers. We show that I(q)

c

and I(q)∗
c -convergence are equivalent. We prove some results about modified

Olivier’s theorem for these ideals. For bounded sequences we show a connec-
tion between I(q)

c -convergence and regular matrix method of summability.

1. Introduction

In papers [9],and [10] the notion of I-convergence of sequences of real numbers is
introduced and its basic properties are investigated. The I-convergence generalizes
the notion of the statistical convergence (see[5]) and it is based on the ideal I of
subsets of the set N of positive integers.

Let I ⊆ 2N. I is called an admissible ideal of subsets of positive integers, if I
is additive (i.e. A,B ∈ I ⇒ A ∪B ∈ I), hereditary (i.e. A ∈ I, B ⊂ A⇒ B ∈ I),
containing all singletons and it doesn’t contain N. Here we present some examples
of admissible ideals. More examples can be found in the papers [7, 9, 10, 12].

(a) The class of all finite subsets of N form an admissible ideal usually denote by
If .

(b) Let % be a density function on N, then the set I% = {A ⊆ N : %(A) = 0}
is an admissible ideal. We will use the ideals Id, Iδ, Iu related to asymp-
totic,logarithmic,uniform density,respectively. For those densities for defini-
tions see [9, 10, 12, 13].
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(c) For any q ∈ (0, 1〉 the set I(q)
c = {A ⊆ N :

∑
a∈A a

−q < ∞} is an admissible
ideal. The ideal I(1)

c = {A ⊆ N :
∑
a∈A a

−1 < ∞} is usually denoted by Ic.
It is easy to see, that for any q1 < q2; q1, q2 ∈ (0, 1)

If ( I(q1)
c ( I(q2)

c ( Ic ( Id (1.1)

In this paper will we study the ideals I(q)
c . In particular the equivalence be-

tween I(q)
c , I(q)∗

c , Olivier’s like theorems for this ideals and characterization of I(q)
c -

convergent sequences by regular matrices.

2. The equivalence between I(q)
c and I(q)∗

c -convergence

Let us recall the notion of I-convergence of sequences of real numbers, (cf.[9, 10]).

Definition 2.1. We say that a sequence x = (xn)∞n=1 I-converges to a number L
and we write I − lim xn = L, if for each ε > 0 the set A(ε) = {n : |xn − L| ≥ ε}
belongs to the ideal I.

I-convergence satisfies usual axioms of convergence i.e. the uniqueness of limit,
arithmetical properties etc. The class of all I-convergent sequences is a linear
space. We will also use the following elementary fact.

Lemma 2.2. Let I1, I2 be admissible ideals such that I1 ⊂ I2. If I1 − limxn = L
then I2 − limxn = L.

In the papers [9, 10] there was defined yet another type of convergence related
to the ideal I.

Definition 2.3. Let I be an admissible ideal in N. A sequence x = (xn)∞n=1 of real
numbers is said to be I∗-convergent to L ∈ R (shortly I∗ − limxn = L) if there is
a set H ∈ I, such that for M = N \H = {m1 < m2 < . . .} we have, lim

k→∞
xmk

= L.

It is easy to prove, that for every admissible ideal I the following relation
between I and I∗-convergence holds:

I∗ − limxn = L⇒ I − limxn = L.

Kostyrko, Šalát and Wilczynski in [9] give an algebraic characterization of ideals
I, for which the I and I∗-convergence are equal; it turns out that these ideals are
with the property (AP).

Definition 2.4. An admissible ideal I ⊂ 2N is said to satisfy the property (AP)
if for every countable family of mutually disjoint sets {A1, A2, . . .} belonging to I
there exists a countable family of sets {B1, B2, . . .} such that Aj4Bj is a finite set
for j ∈ N and

⋃∞
j=1Bj ∈ I.(A4B = (A \B) ∪ (B \A)).
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For some ideals it is already known whether they have property (AP)(see [9,
10, 12, 13]). Now, will show the equivalence between I(q)

c and I(q)∗
c -convergence.

Theorem 2.5. For any 0 < q ≤ 1 the ideal I(q)
c has a property (AP).

Proof. It suffices to prove that any sequences (xn)∞n=1 of real numbers such that
I(q)
c − limxn = ξ there exist a set M = {m1 < m2 < . . . < mk < . . .} ⊆ N such

that N \M ∈ I(q)
c and lim

k→∞
xmk

= ξ.

For any positive integer k let εk = 1
2k and Ak = {n ∈ N : |xn − ξ| ≥ 1

2k }. As
I(q)
c − limxn = ξ, we have Ak ∈ I(q)

c , i.e.∑
a∈Ak

a−q <∞.

Therefore there exist an infinite sequence n1 < n2 < . . . < nk . . . of integers
such that for every k = 1, 2, . . . ∑

a>nk
a∈Ak

a−q <
1
2k

Let H =
⋃∞
k=1[(nk, nk+1〉 ∩Ak]. Then∑

a∈H
a−q ≤

∑
a>n1
a∈A1

a−q +
∑
a>n2
a∈A2

a−q + . . .+
∑
a>nk
a∈Ak

a−q + . . . <

<
1
2

+
1
22

+ . . .+
1
2k

+ . . . < +∞

Thus H ∈ I(q)
c . Put M = N \H = {m1 < m2 < . . . < mk < . . .}. Now it suffices

to prove that lim
k→∞

xmk
= ξ. Let ε > 0. Choose k0 ∈ N such that 1

2k0
< ε. Let

mk > nk0 . Then mk belongs to some interval (nj , nj+1〉 where j ≥ k0 and doesn’t
belong to Aj (j ≥ k0). Hence mk belongs to N \ Aj , and then |xmk

− ξ| < ε for
every mk > nk0 , thus lim

k→∞
xmk

= ξ.

3. Olivier’s like theorem for the ideals I(q)
c

In 1827 L. Olivier proved the results about the speed of convergence to zero of the
terms of a convergent series with positive and decreasing terms.(cf.[8, 11])

Theorem A. If (an)∞n=1 is a non-increasing sequences and
∑∞
n=1 an < +∞, then

lim
n→∞

n · an = 0.
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Simple example an = 1
n if n is a square i.e. n = k2, (k = 1, 2, . . .) and an = 1

2n

otherwise shows that monotonicity condition on the sequence (an)∞n=1 can not be
in general omitted.

In [14] T.Šalát and V.Toma characterized the class S(T ) of ideals such that
∞∑
n=1

an < +∞⇒ I − lim
n→∞

n · an = 0 (3.1)

for any convergent series with positive terms.

Theorem B. The class S(T ) consists of all admissible ideals I ⊆ P(N) such that
I ⊇ Ic.

From inclusions (1.1) is obvious that ideals I(q)
c do not belong to the class S(T ).

In what follows we show that it is possible to modify the Olivier’s condition∑∞
n=1 an < +∞ in such a way that the ideal I(q)

c will play the role of ideal Ic in
Theorem B.

Lemma 3.1. Let 0 < q ≤ 1. Then for every sequence (an)∞n=1 such that an >

0, n = 1, 2, . . . and
∑∞
n=1 an

q < +∞ we have I(q)
c − limn · an = 0.

Proof. Let the conclusion of the Lemma 3.1 doesn’t hold. Then there exists ε0 > 0
such that the set A(ε0) = {n : n · an ≥ ε0} doesn’t belong to I(q)

c . Therefore
∞∑
k=1

m−qk = +∞, (3.2)

where A(ε0) = {m1 < m2 < . . . < mk < . . .}. By the definition of the set A(ε0)
we have mk · amk

≥ ε0 > 0, for each k ∈ N . From this mq
k · aqmk

≥ εq0 > 0 and so
for each k ∈ N

aqmk
≥ εq0 ·m

−q
k (3.3)

From (3.2) and (3.3) we get
∑∞
k=1 a

q
mk

= +∞, and hence
∑∞
n=1 a

q
n = +∞. But it

contradicts the assumption of the theorem.

Let’s denote by Sq(T ) the class of all admissible ideals I for which an analog
Lemma 3.1 holds. From Lemma 2.2 we have:

Corollary 3.2. If I is an admissible ideal such that I ⊇ I(q)
c then I ∈ Sq(T ).

Main result of this section is the reverse of Corollary 3.2.

Theorem 3.3. For any q ∈ (0, 1〉 the class Sq(T ) consists of all admissible ideals
such that I ⊇ I(q)

c .

Proof. It this sufficient to prove that for any infinite set M = {m1 < m2 < . . . <

mk < . . .} ∈ I(q)
c we have M ∈ I, too. Since M ∈ I(q)

c we have
∞∑
k=1

m−qk < +∞.
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Now we define the sequence (an)∞n=1 as follows

amk
=

1
mk

(k = 1, 2, . . .),

an =
1

10n
for n ∈ N \M.

Obviously an > 0 and
∑∞
n=1 an

q < +∞ by the definition of numbers an. Since
I ∈ Sq(T ) we have

I − limn · an = 0.

This implies that for each ε > 0 we have

A(ε) = {n : n · an ≥ ε} ∈ I,

in particular M = A(1) ∈ I.

4. I(q)
c -convergence and regular matrix transforma-

tions

I(q)
c -convergence is an example of a linear functional defined on a subspace of the

space of all bounded sequences of real numbers. Another important family of such
functionals are so called matrix summability methods inspired by [1, 6]. We will
study connections between I(q)

c -convergence and one class of matrix summability
methods. Let us start by introducing a notion of regular matrix transformation
(see [4]).

Let A = (ank) (n, k = 1, 2, . . .) be an infinite matrix of real numbers. The
sequence (tn)∞n=1 of real numbers is said to be A-limitable to the number s if
lim
n→∞

sn = s, where

sn =
∞∑
k=1

anktk (n = 1, 2, . . .).

If (tn)∞n=1 is A-limitable to the number s, we write A− lim
n→∞

tn = s.
We denote by F (A) the set of all A-limitable sequences. The set F (A) is called

the convergence field. The method defined by the matrix A is said to be regular
provided that F (A) contains all convergent sequences and lim

n→∞
tn = t implies

A− lim
n→∞

tn = t. Then A is called a regular matrix.
It is well-known that the matrix A is regular if and only if satisfies the following

three conditions (see [4]):

(A) ∃K > 0,∀n = 1, 2, . . .
∑∞
k=1 |ank| ≤ K;

(B) ∀k = 1, 2, . . . lim
n→∞

ank = 0

(C) lim
n→∞

∑∞
k=1 ank = 1



32 J. Gogola, M. Mačaj, T. Visnyai

Let‘s ask the question: Is there any connection between I-convergence of se-
quence of real numbers andA-limit of this sequence? It is well know that a sequence
(xk)∞k=1 of real numbers Id-converges to real number ξ if and only if the sequence
is strongly summable to ξ in Caesaro sense. The complete characterization of sta-
tistical convergence (Id-convergence) is described by Fridy-Miller in the paper [6].
They defined a class of lower triangular nonnegative matrices T with properties:

n∑
k=1

ank = 1 ∀n ∈ N

if C ⊆ N such that d(C) = 0, then lim
n→∞

∑
k∈C

ank = 0.

They proved the following assertion:

Theorem C. The bounded sequence x = (xn)∞n=1 is statistically convergent to L
if and only if x = (xn)∞n=1 is A-summable to L for every A in T .

Similar result for Iu-convergence was shown by V. Baláž and T. Šalát in [1].
Here we prove analogous result for I(q)

c -convergence. Following this aim let’s define
the class Tq lower triangular nonnegative matrices in this way:

Definition 4.1. Matrix A = (ank) belongs to the class Tq if and only if it satisfies
the following conditions:

(I) lim
n→∞

∑n
k=1 ank = 1

(q) If C ⊂ N and C ∈ I(q)
c , then lim

n→∞

∑
k∈C ank = 0, 0 < q ≤ 1.

It is easy to see that every matrix of class Tq is regular. As the following example
shows the converse does not hold.

Example 4.2. Let C = {12, 22, 32, 42, . . . , n2, . . .} and q = 1. Obviously C ∈
I(1)
c = Ic. Now define the matrix A by:

a11 = 1, a1k = 0, k > 1

ank =
1

2k · lnn
, k 6= l2, k ≤ n

ank =
1

l lnn
, k = l2, k ≤ n

ank = 0, k > n

It is easy to show that A is lower triangular nonnegative regular matrix but
does not satisfy the condition (q) from Definition 4.1.∑

k<n2

k∈C

an2k =
1

lnn2
(1 +

1
2

+ . . .+
1
n

) ≥ lnn
2 lnn

=
1
2

9 0

for n→∞. Therefore A /∈ T1.
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Lemma 4.3. If the bounded sequence x = (xn)∞n=1 is not I-convergent then there
exist real numbers λ < µ such that neither the set {n ∈ N : xn < λ} nor the set
{n ∈ N : xn > µ} belongs to ideal I.

As the proof is the same as the proof on Lemma in [6] we will omit it.
Next theorem shows connection between I(q)

c -convergence of bounded sequence
of real numbers and A-summability of this sequence for matrices from the class Tq.

Theorem 4.4. Let q ∈ (0, 1〉. Then the bounded sequence x = (xn)∞n=1 of real
numbers I(q)

c -converges to L ∈ R if and only if it is A-summable to L ∈ R for each
matrix A ∈ Tq.

Proof. Let I(q)
c − limxn = L and A ∈ Tq. As A is regular there exists a K ∈ R

such that ∀n = 1, 2, . . .
∑∞
k=1 |ank| ≤ K.

It is sufficient to show that lim
n→∞

bn = 0, where bn =
∑∞
k=1 ank.(xk − L). For

ε > 0 put B(ε) = {k ∈ N : |xk − L| ≥ ε}. By the assumption we have B(ε) ∈ I(q)
c .

By condition (q) from Definition 4.1 we have

lim
n→∞

∑
k∈B(ε)

|ank| = 0 (4.1)

As the sequence x = (xn)∞n=1 is bounded, there exists M > 0 such that

∀k = 1, 2, . . . : |xk − L| ≤M (4.2)

Let ε > 0. Then

|bn| ≤
∑

k∈B( ε
2K )

|ank||xk − L| +
∑

k/∈B( ε
2K )

|ank||xk − L| ≤

≤M
∑

k∈B( ε
2K )

|ank| +
ε

2K

∑
k/∈B( ε

2K )

|ank| ≤

≤M
∑

k∈B( ε
2K )

|ank| +
ε

2
(4.3)

By part (q) of Definition 4.1 there exists an integer n0 such that for all n > n0∑
k∈B( ε

2K )

|ank| <
ε

2M

Together by (4.3) we obtain lim
n→∞

bn = 0.

Conversely, suppose that I(q)
c − limxn = L doesn’t hold. We show that there

exists a matrix A ∈ Tq such that A − lim
n→∞

xn = L does not hold, too. If I(q)
c −

limxn = L
′ 6= L then from the firs part of proof it follows that A− lim

n→∞
xn = L

′
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6= L for any A ∈ Tq. Thus, we may assume that (xn)∞n=1 is not I(q)
c -convergent,

and by the above Lemma 4.3 there exist λ and µ (λ < µ), such that neither the
set U = {k ∈ N : xk < λ} nor V = {k ∈ N : xk > µ} belongs to the ideal I(q)

c . It
is clear that U ∩ V = ∅. If U /∈ I(q)

c then
∑
i∈U i

−q = +∞ and if V /∈ I(q)
c then∑

i∈V i
−q = +∞. Let Un = U ∩ {1, 2, . . . , n} and Vn = V ∩ {1, 2, . . . , n}.

Now we define the matrix A = (ank) by the following way: Let s(1)n =∑
i∈Un

i−q for n ∈ U , s(2)n =
∑
i∈Vn

i−q for n ∈ V and s(3)n =
∑n
i=1 i

−q for
n /∈ U ∩ V . As U, V /∈ I(q)

c we have lim
n→∞

s(j)n = +∞, j = 1, 2, 3.

ank =



ank = k−q

s(1)n
n ∈ U and k ∈ Un,

ank = 0 n ∈ U and k /∈ Un,
ank = k−q

s(2)n
n ∈ V and k ∈ Vn,

ank = 0 n ∈ V and k /∈ Vn,
ank = k−q

s(3)n
n /∈ U ∩ V,

ank = 0 k > n,

Let’s check that A ∈ Tq. Obviously A is a lower triangular nonnegative matrix.
Condition (I) is clear from the definition of matrix A. Condition (q): Let B ∈ I(q)

c

and b =
∑
k∈B k

−q < +∞. Then

∑
k∈B

ank ≤
1

s(3)n

∑
k∈B∩{1,...,n}

k−qχB(k) ≤ b

s(3)n
→ 0

for n→∞. Thus A ∈ Tq.
For n ∈ U

∞∑
k=1

ankxk =
1

s(1)n

n∑
k=1

k−qχU (k)xk <
λ

s(1)n

n∑
k=1

k−qχU (k) = λ

on other hand for n ∈ V
∞∑
k=1

ankxk =
1

s(2)n

n∑
k=1

k−qχV (k)xk >
µ

s(2)n

n∑
k=1

k−qχV (k) = µ.

Therefore A− lim
n→∞

xn does not exist.

Corollary 4.5. If 0 < q1 < q2 ≤ 1, then Tq2 $ Tq1 .

Proof. Let B ∈ I(q2)
c \ I(q1)

c and let (xn) = χB(n), n = 1, 2, . . . Clearly I(q2)
c −

limxn = 0 and I(q1)
c − limxn does not exist. Let A be the matrix constructed from

the sequence (xn)∞n=1 as in the proof of Theorem 4.4. In particular A ∈ Tq1 and
A− lim

n→∞
xn does not exist. Therefore A /∈ Tq2 .
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Further we show some type well-known matrix which fulfills condition (I). Let
(pj)∞j=1 be the sequence of positive real numbers. Put Pn = p1 + p2 + . . .+ pn.

Now we define matrix A = (ank) in this way:

ank =
pk
Pn

k ≤ n

ank = 0 k > n.

This type of matrix is called Riesz matrix.
Especially we put pn = nα, where 0 < α < 1. Then

ank =
kα

1α + 2α + . . .+ nα
k ≤ n

ank = 0 k > n.

This special class of matrix we denote by (R, nα). It is clear that this matrix fulfills
conditions (I) and (q). For this class of matrix is true following implication:

I(q)
c − limxk = L⇒ (R, nα)− limxk = L

where (xk)∞k=1 is a bounded sequence, 0 < q ≤ 1 , 0 < α < 1. Converse does
not hold. It is sufficient to choose the characteristic function of the set of all
primes P. Then (R, nα) − limxk = 0, but I(q)

c − limxk does not exist, because∑
n∈P n

−q = +∞, where P is a se of all primes. Hence the class (R, nα) of matrices
belongs to T \ Tq.

Problem 4.6. If we take any admissible ideal I and define the class TI of matrices
by replacing the condition (I) in Definition 4.1 by condition:if C ⊂ N and C ∈ I,
I admissible ideal on N then lim

n→∞

∑
k∈C |ank| = 0 then it is easy to see that the if

part of Theorem 4.4 holds for I too. The question is what about only if part.
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