Annales Mathematicae et Informaticae 38 (2011) pp. 27–36 http://ami.ektf.hu

On $\mathcal{I}_c^{(q)}$ -convergence

J. Gogola a , M. Mačaj b , T. Visnyai b

^aUniversity of Economics, Bratislava, Slovakia e-mail: gogola@euba.sk

^bFaculty of Mathematics, Physics and Informatics Comenius University, Bratislava, Slovakia e-mail: visnyai@fmph.uniba.sk, macaj@fmph.uniba.sk

Submitted October 28, 2010 Accepted March 10, 2011

Abstract

In this paper we will study the properties of ideals $\mathcal{I}_c^{(q)}$ related to the notion of *I*-convergence of sequences of real numbers. We show that $\mathcal{I}_c^{(q)}$ and $\mathcal{I}_c^{(q)*}$ -convergence are equivalent. We prove some results about modified Olivier's theorem for these ideals. For bounded sequences we show a connection between $\mathcal{I}_c^{(q)}$ -convergence and regular matrix method of summability.

1. Introduction

In papers $[9]$, and $[10]$ the notion of *I*-convergence of sequences of real numbers is introduced and its basic properties are investigated. The I-convergence generalizes the notion of the statistical convergence (see[5]) and it is based on the ideal $\mathcal I$ of subsets of the set $\mathbb N$ of positive integers.

Let $\mathcal{I} \subseteq 2^{\mathbb{N}}$. \mathcal{I} is called an admissible ideal of subsets of positive integers, if \mathcal{I} is additive (i.e. $A, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$), hereditary (i.e. $A \in \mathcal{I}$, $B \subset A \Rightarrow B \in \mathcal{I}$), containing all singletons and it doesn't contain N. Here we present some examples of admissible ideals. More examples can be found in the papers [7, 9, 10, 12].

- (a) The class of all finite subsets of N form an admissible ideal usually denote by \mathcal{I}_f .
- (b) Let ϱ be a density function on N, then the set $\mathcal{I}_{\varrho} = \{A \subseteq \mathbb{N} : \varrho(A) = 0\}$ is an admissible ideal. We will use the ideals $\mathcal{I}_d, \mathcal{I}_\delta, \mathcal{I}_u$ related to asymptotic,logarithmic,uniform density,respectively. For those densities for definitions see [9, 10, 12, 13].

(c) For any $q \in (0,1)$ the set $\mathcal{I}_c^{(q)} = \{A \subseteq \mathbb{N} : \sum_{a \in A} a^{-q} < \infty\}$ is an admissible ideal. The ideal $\mathcal{I}_c^{(1)} = \{A \subseteq \mathbb{N} : \sum_{a \in A} a^{-1} < \infty\}$ is usually denoted by \mathcal{I}_c . It is easy to see, that for any $q_1 < q_2$; $q_1, q_2 \in (0, 1)$

$$
\mathcal{I}_f \subsetneq \mathcal{I}_c^{(q_1)} \subsetneq \mathcal{I}_c^{(q_2)} \subsetneq \mathcal{I}_c \subsetneq \mathcal{I}_d \tag{1.1}
$$

In this paper will we study the ideals $\mathcal{I}_c^{(q)}$. In particular the equivalence between $\mathcal{I}_c^{(q)}$, $\mathcal{I}_c^{(q)*}$, Olivier's like theorems for this ideals and characterization of $\mathcal{I}_c^{(q)}$. convergent sequences by regular matrices.

2. The equivalence between $\mathcal{I}_c^{(q)}$ and $\mathcal{I}_c^{(q)*}$ -convergence

Let us recall the notion of $\mathcal{I}\text{-convergence}$ of sequences of real numbers, (cf.[9, 10]).

Definition 2.1. We say that a sequence $x = (x_n)_{n=1}^{\infty}$ *T*-converges to a number *L* and we write $\mathcal{I} - \lim x_n = L$, if for each $\varepsilon > 0$ the set $A(\varepsilon) = \{n : |x_n - L| \ge \varepsilon\}$ belongs to the ideal \mathcal{I} .

I-convergence satisfies usual axioms of convergence i.e. the uniqueness of limit, arithmetical properties etc. The class of all \mathcal{I} -convergent sequences is a linear space. We will also use the following elementary fact.

Lemma 2.2. Let $\mathcal{I}_1, \mathcal{I}_2$ be admissible ideals such that $\mathcal{I}_1 \subset \mathcal{I}_2$. If $\mathcal{I}_1 - \lim x_n = L$ then \mathcal{I}_2 – $\lim x_n = L$.

In the papers [9, 10] there was defined yet another type of convergence related to the ideal $\mathcal{I}.$

Definition 2.3. Let \mathcal{I} be an admissible ideal in N. A sequence $x = (x_n)_{n=1}^{\infty}$ of real numbers is said to be \mathcal{I}^* -convergent to $L \in \mathbb{R}$ (shortly \mathcal{I}^* – $\lim x_n = L$) if there is a set $H \in \mathcal{I}$, such that for $M = \mathbb{N} \setminus H = \{m_1 < m_2 < \ldots\}$ we have, $\lim_{k \to \infty} x_{m_k} = L$.

It is easy to prove, that for every admissible ideal $\mathcal I$ the following relation between $\mathcal I$ and $\mathcal I^*$ -convergence holds:

$$
\mathcal{I}^* - \lim x_n = L \Rightarrow \mathcal{I} - \lim x_n = L.
$$

Kostyrko, Šalát and Wilczynski in [9] give an algebraic characterization of ideals I, for which the I and \mathcal{I}^* -convergence are equal; it turns out that these ideals are with the property (AP) .

Definition 2.4. An admissible ideal $\mathcal{I} \subset 2^{\mathbb{N}}$ is said to satisfy the property AP if for every countable family of mutually disjoint sets $\{A_1, A_2, \ldots\}$ belonging to $\mathcal I$ there exists a countable family of sets $\{B_1, B_2, \ldots\}$ such that $A_j \triangle B_j$ is a finite set for $j \in \mathbb{N}$ and $\bigcup_{j=1}^{\infty} B_j \in \mathcal{I}.(\overline{A \triangle B} = (\overline{A} \setminus B) \cup (\overline{B} \setminus A)).$

For some ideals it is already known whether they have property $(AP)(\text{see }[9,])$ 10, 12, 13]). Now, will show the equivalence between $\mathcal{I}_c^{(q)}$ and $\mathcal{I}_c^{(q)*}$ -convergence.

Theorem 2.5. For any $0 < q \le 1$ the ideal $\mathcal{I}_c^{(q)}$ has a property (AP).

Proof. It suffices to prove that any sequences $(x_n)_{n=1}^{\infty}$ of real numbers such that $\mathcal{I}_c^{(q)}$ – lim $x_n = \xi$ there exist a set $M = \{m_1 < m_2 < \ldots < m_k < \ldots\} \subseteq \mathbb{N}$ such that $\mathbb{N} \setminus M \in \mathcal{I}_c^{(q)}$ and $\lim_{k \to \infty} x_{m_k} = \xi$.

For any positive integer k let $\varepsilon_k = \frac{1}{2^k}$ and $A_k = \{n \in \mathbb{N} : |x_n - \xi| \geq \frac{1}{2^k}\}$. As $\mathcal{I}_c^{(q)}$ – lim $x_n = \xi$, we have $A_k \in \mathcal{I}_c^{(q)}$, i.e.

$$
\sum_{a\in A_k} a^{-q} < \infty.
$$

Therefore there exist an infinite sequence $n_1 < n_2 < \ldots < n_k \ldots$ of integers such that for every $k = 1, 2, \ldots$

$$
\sum_{\substack{a>n_k\\a\in A_k}} a^{-q} < \frac{1}{2^k}
$$

Let $H = \bigcup_{k=1}^{\infty} [(n_k, n_{k+1}) \cap A_k]$. Then

$$
\sum_{a \in H} a^{-q} \le \sum_{\substack{a > n_1 \\ a \in A_1}} a^{-q} + \sum_{\substack{a > n_2 \\ a \in A_2}} a^{-q} + \dots + \sum_{\substack{a > n_k \\ a \in A_k}} a^{-q} + \dots <
$$

$$
< \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^k} + \dots < +\infty
$$

Thus $H \in \mathcal{I}_c^{(q)}$. Put $M = \mathbb{N} \setminus H = \{m_1 < m_2 < \ldots < m_k < \ldots\}$. Now it suffices to prove that $\lim_{k \to \infty} x_{m_k} = \xi$. Let $\varepsilon > 0$. Choose $k_0 \in \mathbb{N}$ such that $\frac{1}{2^{k_0}} < \varepsilon$. Let $m_k > n_{k_0}$. Then m_k belongs to some interval (n_j, n_{j+1}) where $j \geq k_0$ and doesn't belong to A_j $(j \geq k_0)$. Hence m_k belongs to $\mathbb{N} \setminus A_j$, and then $|x_{m_k} - \xi| < \varepsilon$ for every $m_k > n_{k_0}$, thus $\lim_{k \to \infty} x_{m_k} = \xi$. \Box

3. Olivier's like theorem for the ideals $\mathcal{I}_c^{(q)}$ c

In 1827 L. Olivier proved the results about the speed of convergence to zero of the terms of a convergent series with positive and decreasing terms.(cf.[8, 11])

Theorem A. If $(a_n)_{n=1}^{\infty}$ is a non-increasing sequences and $\sum_{n=1}^{\infty} a_n < +\infty$, then $\lim_{n\to\infty} n \cdot a_n = 0.$

Simple example $a_n = \frac{1}{n}$ if *n* is a square i.e. $n = k^2$, $(k = 1, 2, ...)$ and $a_n = \frac{1}{2^n}$ otherwise shows that monotonicity condition on the sequence $(a_n)_{n=1}^{\infty}$ can not be in general omitted.

In [14] T.Šalát and V.Toma characterized the class $\mathcal{S}(T)$ of ideals such that

$$
\sum_{n=1}^{\infty} a_n < +\infty \Rightarrow \mathcal{I} - \lim_{n \to \infty} n \cdot a_n = 0 \tag{3.1}
$$

for any convergent series with positive terms.

Theorem B. The class $S(T)$ consists of all admissible ideals $T \subseteq \mathcal{P}(\mathbb{N})$ such that $\mathcal{I} \supseteq \mathcal{I}_c$.

From inclusions (1.1) is obvious that ideals $\mathcal{I}_c^{(q)}$ do not belong to the class $\mathcal{S}(T)$. In what follows we show that it is possible to modify the Olivier's condition $\sum_{n=1}^{\infty} a_n < +\infty$ in such a way that the ideal $\mathcal{I}_c^{(q)}$ will play the role of ideal \mathcal{I}_c in Theorem B.

Lemma 3.1. Let $0 < q \leq 1$. Then for every sequence $(a_n)_{n=1}^{\infty}$ such that $a_n >$ $0, n = 1, 2, ...$ and $\sum_{n=1}^{\infty} a_n^q < +\infty$ we have $\mathcal{I}_c^{(q)}$ - $\lim n \cdot a_n = 0$.

Proof. Let the conclusion of the Lemma 3.1 doesn't hold. Then there exists $\varepsilon_0 > 0$ such that the set $A(\varepsilon_0) = \{n : n \cdot a_n \ge \varepsilon_0\}$ doesn't belong to $\mathcal{I}_c^{(q)}$. Therefore

$$
\sum_{k=1}^{\infty} m_k^{-q} = +\infty,
$$
\n(3.2)

where $A(\varepsilon_0) = \{m_1 < m_2 < \ldots < m_k < \ldots\}$. By the definition of the set $A(\varepsilon_0)$ we have $m_k \cdot a_{m_k} \geq \varepsilon_0 > 0$, for each $k \in N$. From this $m_k^q \cdot a_{m_k}^q \geq \varepsilon_0^q > 0$ and so for each $k \in N$

$$
a_{m_k}^q \ge \varepsilon_0^q \cdot m_k^{-q} \tag{3.3}
$$

From (3.2) and (3.3) we get $\sum_{k=1}^{\infty} a_{m_k}^q = +\infty$, and hence $\sum_{n=1}^{\infty} a_n^q = +\infty$. But it contradicts the assumption of the theorem. \Box

Let's denote by $\mathcal{S}_q(T)$ the class of all admissible ideals $\mathcal I$ for which an analog Lemma 3.1 holds. From Lemma 2.2 we have:

Corollary 3.2. If \mathcal{I} is an admissible ideal such that $\mathcal{I} \supseteq \mathcal{I}_c^{(q)}$ then $\mathcal{I} \in \mathcal{S}_q(T)$.

Main result of this section is the reverse of Corollary 3.2.

Theorem 3.3. For any $q \in (0,1)$ the class $\mathcal{S}_q(T)$ consists of all admissible ideals such that $\mathcal{I} \supseteq \mathcal{I}_c^{(q)}$.

Proof. It this sufficient to prove that for any infinite set $M = \{m_1 < m_2 < \ldots < m_m\}$ $m_k < \ldots \} \in \mathcal{I}_c^{(q)}$ we have $M \in \mathcal{I}$, too. Since $M \in \mathcal{I}_c^{(q)}$ we have

$$
\sum_{k=1}^{\infty} m_k^{-q} < +\infty.
$$

Now we define the sequence $(a_n)_{n=1}^{\infty}$ as follows

$$
a_{m_k} = \frac{1}{m_k} (k = 1, 2, \ldots),
$$

\n
$$
a_n = \frac{1}{10^n} \text{ for } n \in \mathbb{N} \setminus M.
$$

Obviously $a_n > 0$ and $\sum_{n=1}^{\infty} a_n^q < +\infty$ by the definition of numbers a_n . Since $\mathcal{I} \in \mathcal{S}_q(T)$ we have

$$
\mathcal{I} - \lim n \cdot a_n = 0.
$$

This implies that for each $\varepsilon > 0$ we have

$$
A(\varepsilon) = \{ n : n \cdot a_n \ge \varepsilon \} \in \mathcal{I},
$$

in particular $M = A(1) \in \mathcal{I}$.

4. $\mathcal{I}_c^{(q)}$ -convergence and regular matrix transformations

 $\mathcal{I}_c^{(q)}$ -convergence is an example of a linear functional defined on a subspace of the space of all bounded sequences of real numbers. Another important family of such functionals are so called matrix summability methods inspired by [1, 6]. We will study connections between $\mathcal{I}_c^{(q)}$ -convergence and one class of matrix summability methods. Let us start by introducing a notion of regular matrix transformation (see [4]).

Let $\mathbf{A} = (a_{nk}) (n, k = 1, 2, ...)$ be an infinite matrix of real numbers. The sequence $(t_n)_{n=1}^{\infty}$ of real numbers is said to be A-limitable to the number s if $\lim_{n\to\infty} s_n = s$, where

$$
s_n = \sum_{k=1}^{\infty} a_{nk} t_k \quad (n = 1, 2, \ldots).
$$

If $(t_n)_{n=1}^{\infty}$ is **A**-limitable to the number s, we write $\mathbf{A} - \lim_{n \to \infty} t_n = s$.

We denote by $F(A)$ the set of all A-limitable sequences. The set $F(A)$ is called the convergence field. The method defined by the matrix \bf{A} is said to be regular provided that $F(A)$ contains all convergent sequences and $\lim_{n\to\infty} t_n = t$ implies $\mathbf{A} - \lim_{n \to \infty} t_n = t$. Then **A** is called a *regular matrix*.

It is well-known that the matrix A is regular if and only if satisfies the following three conditions (see [4]):

 $(A) \exists K > 0, \forall n = 1, 2, ... \sum_{k=1}^{\infty} |a_{nk}| \leq K;$

$$
(B) \ \forall k = 1, 2, \dots \lim_{n \to \infty} a_{nk} = 0
$$

(C) $\lim_{n\to\infty}\sum_{k=1}^{\infty} a_{nk} = 1$

 \Box

Let's ask the question: Is there any connection between $\mathcal{I}\text{-convergence}$ of sequence of real numbers and A-limit of this sequence? It is well know that a sequence $(x_k)_{k=1}^{\infty}$ of real numbers \mathcal{I}_d -converges to real number ξ if and only if the sequence is strongly summable to ξ in Caesaro sense. The complete characterization of statistical convergence $(\mathcal{I}_d$ -convergence) is described by Fridy-Miller in the paper [6]. They defined a class of lower triangular nonnegative matrices $\mathcal T$ with properties:

$$
\sum_{k=1}^n a_{nk} = 1 \ \ \forall n \in \mathbb{N}
$$

$$
\text{if } C \subseteq \mathbb{N} \text{ such that } d(C) = 0, \text{ then } \lim_{n \to \infty} \sum_{k \in C} a_{nk} = 0.
$$

They proved the following assertion:

Theorem C. The bounded sequence $x = (x_n)_{n=1}^{\infty}$ is statistically convergent to L if and only if $x = (x_n)_{n=1}^{\infty}$ is **A**-summable to L for every **A** in T.

Similar result for \mathcal{I}_u -convergence was shown by V. Baláž and T. Šalát in [1]. Here we prove analogous result for $\mathcal{I}_c^{(q)}$ -convergence. Following this aim let's define the class \mathcal{T}_q lower triangular nonnegative matrices in this way:

Definition 4.1. Matrix $\mathbf{A} = (a_{nk})$ belongs to the class \mathcal{T}_q if and only if it satisfies the following conditions:

- (I) $\lim_{n \to \infty} \sum_{k=1}^{n} a_{nk} = 1$
- (q) If $C \subset \mathbb{N}$ and $C \in \mathcal{I}_c^{(q)}$, then $\lim_{n \to \infty} \sum_{k \in C} a_{nk} = 0$, $0 < q \le 1$.

It is easy to see that every matrix of class \mathcal{T}_q is regular. As the following example shows the converse does not hold.

Example 4.2. Let $C = \{1^2, 2^2, 3^2, 4^2, ..., n^2, ...\}$ and $q = 1$. Obviously $C \in$ $\mathcal{I}_c^{(1)} = \mathcal{I}_c$. Now define the matrix **A** by:

$$
a_{11} = 1, a_{1k} = 0, \quad k > 1
$$

$$
a_{nk} = \frac{1}{2k \cdot \ln n}, \quad k \neq l^2, k \leq n
$$

$$
a_{nk} = \frac{1}{l \ln n}, \quad k = l^2, k \leq n
$$

$$
a_{nk} = 0, \quad k > n
$$

It is easy to show that A is lower triangular nonnegative regular matrix but does not satisfy the condition (q) from Definition 4.1.

$$
\sum_{\substack{k < n^2 \\ k \in C}} a_{n^2 k} = \frac{1}{\ln n^2} \left(1 + \frac{1}{2} + \ldots + \frac{1}{n} \right) \ge \frac{\ln n}{2 \ln n} = \frac{1}{2} \to 0
$$

for $n \to \infty$. Therefore $\mathbf{A} \notin \mathcal{T}_1$.

Lemma 4.3. If the bounded sequence $x = (x_n)_{n=1}^{\infty}$ is not *I*-convergent then there exist real numbers $\lambda < \mu$ such that neither the set $\{n \in \mathbb{N} : x_n < \lambda\}$ nor the set ${n \in \mathbb{N} : x_n > \mu}$ belongs to ideal *I*.

As the proof is the same as the proof on Lemma in [6] we will omit it.

Next theorem shows connection between $\mathcal{I}_c^{(q)}$ -convergence of bounded sequence of real numbers and A-summability of this sequence for matrices from the class \mathcal{T}_q .

Theorem 4.4. Let $q \in (0,1)$. Then the bounded sequence $x = (x_n)_{n=1}^{\infty}$ of real numbers $\mathcal{I}_c^{(q)}$ -converges to $L \in \mathbb{R}$ if and only if it is **A**-summable to $L \in \mathbb{R}$ for each matrix $\mathbf{A} \in \mathcal{T}_q$.

Proof. Let $\mathcal{I}_c^{(q)}$ – $\lim x_n = L$ and $\mathbf{A} \in \mathcal{T}_q$. As \mathbf{A} is regular there exists a $K \in \mathbb{R}$ such that $\forall n = 1, 2, \ldots \sum_{k=1}^{\infty} |a_{nk}| \leq K$.

It is sufficient to show that $\lim_{n \to \infty} b_n = 0$, where $b_n = \sum_{k=1}^{\infty} a_{nk} (x_k - L)$. For $\varepsilon > 0$ put $B(\varepsilon) = \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\}$. By the assumption we have $B(\varepsilon) \in \mathcal{I}_c^{(q)}$. By condition (q) from Definition 4.1 we have

$$
\lim_{n \to \infty} \sum_{k \in B(\varepsilon)} |a_{nk}| = 0 \tag{4.1}
$$

As the sequence $x = (x_n)_{n=1}^{\infty}$ is bounded, there exists $M > 0$ such that

$$
\forall k = 1, 2, \dots : |x_k - L| \le M \tag{4.2}
$$

Let $\varepsilon > 0$. Then

$$
|b_n| \leq \sum_{k \in B(\frac{\varepsilon}{2K})} |a_{nk}| |x_k - L| + \sum_{k \notin B(\frac{\varepsilon}{2K})} |a_{nk}| |x_k - L| \leq
$$

$$
\leq M \sum_{k \in B(\frac{\varepsilon}{2K})} |a_{nk}| + \frac{\varepsilon}{2K} \sum_{k \notin B(\frac{\varepsilon}{2K})} |a_{nk}| \leq
$$

$$
\leq M \sum_{k \in B(\frac{\varepsilon}{2K})} |a_{nk}| + \frac{\varepsilon}{2}
$$
(4.3)

By part (q) of Definition 4.1 there exists an integer n_0 such that for all $n > n_0$

$$
\sum_{k \in B\left(\frac{\varepsilon}{2K}\right)} |a_{nk}| < \frac{\varepsilon}{2M}
$$

Together by (4.3) we obtain $\lim_{n \to \infty} b_n = 0$.

Conversely, suppose that $\mathcal{I}_c^{(q)}$ – $\lim x_n = L$ doesn't hold. We show that there exists a matrix $\mathbf{A} \in \mathcal{T}_q$ such that $\mathbf{A} - \lim_{n \to \infty} x_n = L$ does not hold, too. If $\mathcal{I}_c^{(q)}$ – $\lim x_n = L' \neq L$ then from the firs part of proof it follows that $A - \lim_{n \to \infty} x_n = L'$

 $\neq L$ for any $A \in \mathcal{T}_q$. Thus, we may assume that $(x_n)_{n=1}^{\infty}$ is not $\mathcal{I}_c^{(q)}$ -convergent, and by the above Lemma 4.3 there exist λ and μ ($\lambda < \mu$), such that neither the set $U = \{k \in \mathbb{N} : x_k < \lambda\}$ nor $V = \{k \in \mathbb{N} : x_k > \mu\}$ belongs to the ideal $\mathcal{I}_c^{(q)}$. It is clear that $U \cap V = \emptyset$. If $U \notin \mathcal{I}_c^{(q)}$ then $\sum_{i \in U} i^{-q} = +\infty$ and if $V \notin \mathcal{I}_c^{(q)}$ then $\sum_{i \in V} i^{-q} = +\infty$. Let $U_n = U \cap \{1, 2, \ldots, n\}$ and $V_n = V \cap \{1, 2, \ldots, n\}$.

 $\sum_{i\in U_n} i^{-q}$ for $n \in U$, $s_{(2)n} = \sum_{i\in V_n} i^{-q}$ for $n \in V$ and $s_{(3)n} = \sum_{i=1}^n i^{-q}$ for Now we define the matrix $\mathbf{A} = (a_{nk})$ by the following way: Let $s_{(1)n} =$ $n \notin U \cap V$. As $U, V \notin \mathcal{I}_c^{(q)}$ we have $\lim_{n \to \infty} s_{(j)n} = +\infty, j = 1, 2, 3$.

$$
a_{nk} = \begin{cases} a_{nk} = \frac{k^{-q}}{s_{(1)n}} & n \in U \text{ and } k \in U_n, \\ a_{nk} = 0 & n \in U \text{ and } k \notin U_n, \\ a_{nk} = \frac{k^{-q}}{s_{(2)n}} & n \in V \text{ and } k \in V_n, \\ a_{nk} = 0 & n \in V \text{ and } k \notin V_n, \\ a_{nk} = \frac{k^{-q}}{s_{(3)n}} & n \notin U \cap V, \\ a_{nk} = 0 & k > n, \end{cases}
$$

Let's check that $A \in \mathcal{T}_q$. Obviously A is a lower triangular nonnegative matrix. Condition (I) is clear from the definition of matrix **A**. Condition (q): Let $B \in \mathcal{I}_c^{(q)}$ and $b = \sum_{k \in B} k^{-q} < +\infty$. Then

$$
\sum_{k \in B} a_{nk} \le \frac{1}{s_{(3)n}} \sum_{k \in B \cap \{1, ..., n\}} k^{-q} \chi_B(k) \le \frac{b}{s_{(3)n}} \to 0
$$

for $n \to \infty$. Thus $\mathbf{A} \in \mathcal{T}_q$.

For $n \in U$

$$
\sum_{k=1}^{\infty} a_{nk} x_k = \frac{1}{s_{(1)n}} \sum_{k=1}^{n} k^{-q} \chi_U(k) x_k < \frac{\lambda}{s_{(1)n}} \sum_{k=1}^{n} k^{-q} \chi_U(k) = \lambda
$$

on other hand for $n \in V$

$$
\sum_{k=1}^{\infty} a_{nk} x_k = \frac{1}{s_{(2)n}} \sum_{k=1}^{n} k^{-q} \chi_V(k) x_k > \frac{\mu}{s_{(2)n}} \sum_{k=1}^{n} k^{-q} \chi_V(k) = \mu.
$$

Therefore $\mathbf{A} - \lim_{n \to \infty} x_n$ does not exist.

Corollary 4.5. If $0 < q_1 < q_2 \leq 1$, then $\mathcal{T}_{q_2} \subsetneqq \mathcal{T}_{q_1}$.

Proof. Let $B \in \mathcal{I}_c^{(q_2)} \setminus \mathcal{I}_c^{(q_1)}$ and let $(x_n) = \chi_B(n)$, $n = 1, 2, \ldots$ Clearly $\mathcal{I}_c^{(q_2)}$ $\lim x_n = 0$ and $\mathcal{I}_c^{(q_1)} - \lim x_n$ does not exist. Let **A** be the matrix constructed from the sequence $(x_n)_{n=1}^{\infty}$ as in the proof of Theorem 4.4. In particular $\mathbf{A} \in \mathcal{T}_{q_1}$ and $\mathbf{A} - \lim_{n \to \infty} x_n$ does not exist. Therefore $\mathbf{A} \notin \mathcal{T}_{q_2}$.

 \Box

Further we show some type well-known matrix which fulfills condition (I) . Let $(p_j)_{j=1}^{\infty}$ be the sequence of positive real numbers. Put $P_n = p_1 + p_2 + \ldots + p_n$. Now we define matrix $\mathbf{A} = (a_{nk})$ in this way:

$$
a_{nk} = \frac{p_k}{P_n} \quad k \le n
$$

$$
a_{nk} = 0 \quad k > n.
$$

This type of matrix is called Riesz matrix.

Especially we put $p_n = n^{\alpha}$, where $0 < \alpha < 1$. Then

$$
a_{nk} = \frac{k^{\alpha}}{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}} \quad k \le n
$$

$$
a_{nk} = 0 \quad k > n.
$$

This special class of matrix we denote by (\mathbf{R}, n^{α}) . It is clear that this matrix fulfills conditions (I) and (q). For this class of matrix is true following implication:

$$
\mathcal{I}_c^{(q)} - \lim x_k = L \Rightarrow (\mathbf{R}, n^{\alpha}) - \lim x_k = L
$$

where $(x_k)_{k=1}^{\infty}$ is a bounded sequence, $0 < q \le 1$, $0 < \alpha < 1$. Converse does not hold. It is sufficient to choose the characteristic function of the set of all primes P. Then $(\mathbf{R}, n^{\alpha}) - \lim x_k = 0$, but $\mathcal{I}_c^{(q)}$ primes \mathbb{P} . Then $(\mathbf{R}, n^{\alpha}) - \lim x_k = 0$, but $\mathcal{I}_c^{(q)} - \lim x_k$ does not exist, because $\sum_{n \in \mathbb{P}} n^{-q} = +\infty$, where $\mathbb P$ is a se of all primes. Hence the class (\mathbf{R}, n^{α}) of matrices belongs to $\mathcal{T} \setminus \mathcal{T}_q$.

Problem 4.6. If we take any admissible ideal \mathcal{I} and define the class $\mathcal{T}_{\mathcal{I}}$ of matrices by replacing the condition (I) in Definition 4.1 by condition:if $C \subset \mathbb{N}$ and $C \in \mathcal{I}$, *I* admissible ideal on $\mathbb N$ then $\lim_{n\to\infty}\sum_{k\in C}|a_{nk}|=0$ then it is easy to see that the if part of Theorem 4.4 holds for $\mathcal I$ too. The question is what about only if part.

References

- [1] Baláž, V. Šalát, T.: Uniform density u and corresponding I_u convergence, Math. $Communications$ 11 (2006), 1-7.
- [2] Brown,T.C. Freedman,A.R.: The uniform density of sets of integers and Fermat's Last Theorem, C.R. Math. Rep. Acad. Sci. Canada XII (1990), 1–6.
- [3] Buck,R.C.: The measure theoretic approach to density, *Amer. J. Math.* **68** (1946), 560–580.
- [4] Cooke, C.: Infinite matrices and sequences spaces, *Moskva* (1960).
- [5] Fast, H.: Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
- [6] Fridy,J.A.-Miller,H.I.: A matrix characterization of statistikal convergence Analysis 11 (1986), 59–66.
- [7] Gogola, J. Červeňanský, J.: $\mathcal{I}_c^{(q)}$ -convergence of real numbers, Zborník vedeckých prác MtF STU v Trnave 18 (2005), 15–18
- [8] Knopp, K: Theorie ubd Anwendung der unendlichen Reisen, Berlin (1931).
- [9] Kostyrko,P. Šalát, T. Wilczyński W.: I-convergence, Real Anal. Exchange 26 (2000-2001), 669–686.
- [10] Kostyrko, P. Mačaj, M. Šalát, T. Sleziak, M.: I-convergence and extremal I-limit poits, Mathematica Slovaca 55 (2005), No. 4, 443–464.
- [11] Olivier, L: Remarques sur les series infinies et lem convergence, J. reine angew. Math 2 (1827), 31–44.
- [12] Pašteka, M. Šalát, T. Visnyai, T.: Remark on Buck's measure density and generalization of asymptotic density, Tatra Mt. Math. Publ. 31 (2005), 87–101.
- [13] Sember,J.J. Freedman,A.R.: On summing sequences of 0's and 1's, Rocky Mount J. Math 11 (1981), 419–425.
- [14] Šalát, T. Toma, V.: A classical Olivier's theorem and statistical convergence, Annales Math. Blaise Pascal 1 (2001), 10-18.
- [15] Šalát, T. Visnyai,T.: Subadditive measures on N and the convergence of series with positive terms, Acta Math.(Nitra) 6 (2003), 43-52.