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Abstract

Let G be a finite and simple graph with vertex set V (G), and let f: V (G)→
{−1, 1} be a two-valued function. If k > 1 is an integer and

∑

x∈N[v] f(x) > k

for each v ∈ V (G), where N [v] is the closed neighborhood of v, then f is
a signed k-dominating function on G. A set {f1, f2, . . . , fd} of signed k-
dominating functions on G with the property that

∑

d

i=1 fi(x) 6 k for each
x ∈ V (G), is called a signed (k, k)-dominating family (of functions) on G.
The maximum number of functions in a signed (k, k)-dominating family on
G is the signed (k, k)-domatic number on G, denoted by dk

S(G).
In this paper we initiate the study of the signed (k, k)-domatic number,

and we present different bounds on dk

S(G). Some of our results are extensions
of well-known properties of the signed domatic number dS(G) = d1

S(G).

Keywords: Signed (k, k)-domatic number, signed k-dominating function, sig-
ned k-domination number

MSC: 05C69

1. Terminology and introduction

Various numerical invariants of graphs concerning domination were introduced by
means of dominating functions and their variants. In this paper we define the
signed (k, k)-domatic number in an analogous way as Volkmann and Zelinka [6]
have introduced the signed domatic number.

We consider finite, undirected and simple graphs G with vertex set V (G) and
edge set E(G). The cardinality of the vertex set of a graph G is called the order of
G and is denoted by n(G). If v ∈ V (G), then N(v) is the open neighborhood of v,
i.e., the set of all vertices adjacent to v. The closed neighborhood N [v] of a vertex
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v consists of the vertex set N(v) ∪ {v}. The number d(v) = |N(v)| is the degree
of the vertex v. The minimum and maximum degree of a graph G are denoted by
δ(G) and ∆(G). The complement of a graph G is denoted by G. We write Kn for
the complete graph of order n and Cn for a cycle of length n. A fan and a wheel is a
graph obtained from a path and a cycle by adding a new vertex and edges joining
it to all the vertices of the path and cycle, respectively. If A ⊆ V (G) and f is a
mapping from V (G) into some set of numbers, then f(A) =

∑

x∈A f(x).
If k > 1 is an integer, then the signed k-dominating function is defined in

[7] as a two-valued function f : V (G) → {−1, 1} such that
∑

x∈N [v] f(x) > k for

each v ∈ V (G). The sum f(V (G)) is called the weight w(f) of f . The minimum
of weights w(f), taken over all signed k-dominating functions f on G, is called
the signed k-domination number of G, denoted by γkS(G). As the assumption
δ(G) > k − 1 is necessary, we always assume that when we discuss γkS(G), all
graphs involved satisfy δ(G) > k − 1 and thus n(G) > k. The special case k = 1
was defined and investigated in [1]. Further information on γ1S(G) = γS(G) can
be found in the monographs [2] and [3] by Haynes, Hedetniemi, and Slater.

Rall [4] has defined a variant of the domatic number of G, namely the frac-
tional domatic number of G, using functions on V (G). Analogous to the fractional
domatic number we may define the signed (k, k)-domatic number.

A set {f1, f2, . . . , fd} of signed k-dominating functions on G with the property

that
∑d

i=1 fi(x) 6 k for each x ∈ V (G), is called a signed (k, k)-dominating family
on G. The maximum number of functions in a signed (k, k)-dominating family on
G is the signed (k, k)-domatic number of G, denoted by dk

S(G).

First we study basic properties of dk
S(G). Some of them are extensions of well-

known results on the signed domatic number dS(G) = d1
S(G) given in [6]. Using

these results, we determine the signed (k, k)-domatic numbers of fans, wheels and
grids.

2. Basic properties of the signed (k, k)-domatic num-

ber

Theorem 2.1. The signed (k, k)-domatic number dk
S(G) is well-defined for each

graph G with δ(G) > k − 1.

Proof. Since δ(G) > k − 1, the function f : V (G) → {−1, 1} with f(v) = 1 for
each v ∈ V (G) is a signed k-dominating function on G. Thus the family {f} is
a signed (k, k)-dominating family on G. Therefore the set of signed k-dominating
functions on G is non-empty and there exists the maximum of their cardinalities,
which is the signed (k, k)-domatic number of G. �

Theorem 2.2. If G is a graph of order n, then

γkS(G)dk
S(G) 6 kn.
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Proof. If {f1, f2, . . . , fd} is a signed (k, k)-dominating family on G such that d =
dk

S(G), then the definitions imply

dγkS(G) =

d
∑

i=1

γkS(G) 6

d
∑

i=1

∑

x∈V (G)

fi(x)

=
∑

x∈V (G)

d
∑

i=1

fi(x) 6
∑

x∈V (G)

k = kn.

�

Theorem 2.3. If G is a graph with minimum degree δ(G) > k − 1, then

dk
S(G) 6 δ(G) + 1.

Proof. Let {f1, f2, . . . , fd} be a signed (k, k)-dominating family on G such that
d = dk

S(G). If v ∈ V (G) is a vertex of minimum degree δ(G), then it follows that

dk =

d
∑

i=1

k 6

d
∑

i=1

∑

x∈N [v]

fi(x)

=
∑

x∈N [v]

d
∑

i=1

fi(x)

6
∑

x∈N [v]

k = k(δ(G) + 1),

and this implies the desired upper bound on the signed (k, k)-domatic number. �

The special case k = 1 in Theorems 2.2 and 2.3 can be found in [6]. As an
application of Theorem 2.3, we will prove the following Nordhaus-Gaddum type
result.

Theorem 2.4. If k > 1 is an integer and G a graph of order n such that δ(G) >

k − 1 and δ(G) > k − 1, then

dk
S(G) + dk

S(G) 6 n + 1.

If dk
S(G) + dk

S(G) = n + 1, then G is regular.

Proof. Since δ(G) > k − 1 and δ(G) > k − 1, it follows from Theorem 2.3 that

dk
S(G) + dk

S(G) 6 (δ(G) + 1) + (δ(G) + 1)

= (δ(G) + 1) + (n − ∆(G) − 1 + 1)

6 n + 1,

and this is the desired Nordhaus-Gaddum inequality. If G is not regular, then
∆(G)−δ(G) > 1, and the above inequality chain leads to the better bound dk

S(G)+
dk

S(G) 6 n. This completes the proof. �
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Theorem 2.5. If v is a vertex of a graph G such that d(v) is odd and k is odd or
d(v) is even and k is even, then

dk
S(G) 6

k

k + 1
(d(v) + 1).

Proof. Let {f1, f2, . . . , fd} be a signed (k, k)-dominating family on G such that
d = dk

S(G). Assume first that d(v) and k are odd. The definition yields to
∑

x∈N [v] fi(x) > k for each i ∈ {1, 2, . . . , d}. On the left-hand side of this in-
equality a sum of an even number of odd summands occurs. Therefore it is an even
number, and as k is odd, we obtain

∑

x∈N [v] fi(x) > k+1 for each i ∈ {1, 2, . . . , d}.
It follows that

k(d(v) + 1) =
∑

x∈N [v]

k >
∑

x∈N [v]

d
∑

i=1

fi(x)

=
d

∑

i=1

∑

x∈N [v]

fi(x)

>

d
∑

i=1

(k + 1) = d(k + 1),

and this leads to the desired bound. Assume next that d(v) and k are even. Note
that

∑

x∈N [v] fi(x) > k for each i ∈ {1, 2, . . . , d}. On the left-hand side of this
inequality a sum of an odd number of odd summands occurs. Therefore it is an odd
number, and as k is even, we obtain

∑

x∈N [v] fi(x) > k+1 for each i ∈ {1, 2, . . . , d}.
Now the desired bound follows as above, and the proof is complete. �

The next result is an immediate consequence of Theorem 2.5.

Corollary 2.6. If G is a graph such that δ(G) and k are odd or δ(G) and k are
even, then

dk
S(G) 6

k

k + 1
(δ(G) + 1).

As an Application of Corollary 2.6, we will improve the Nordhaus-Gaddum
bound in Theorem 2.4 for many cases.

Theorem 2.7. Let k > 1 be an integer, and let G be a graph of order n such that
δ(G) > k − 1 and δ(G) > k − 1. If ∆(G) − δ(G) > 1 or k is even or k and δ(G)
are odd or k is odd and δ(G) and n are even, then

dk
S(G) + dk

S(G) 6 n.

Proof. If ∆(G) − δ(G) > 1, then Theorem 2.4 implies the desired bound. Thus
assume now that G is δ(G)-regular.
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Case 1: Assume that k is even. If δ(G) is even, then it follows from Theorem
2.3 and Corollary 2.6 that

dk
S(G) + dk

S(G) 6
k

k + 1
(δ(G) + 1) + (δ(G) + 1)

=
k

k + 1
(δ(G) + 1) + (n − δ(G) − 1 + 1)

< n + 1,

and we obtain the desired bound. If δ(G) is odd, then n is even and thus δ(G) =
n − δ(G) − 1 is even. Combining Theorem 2.3 and Corollary 2.6, we find that

dk
S(G) + dk

S(G) 6 (δ(G) + 1) +
k

k + 1
(δ(G) + 1)

= (n − δ(G)) +
k

k + 1
(δ(G) + 1)

< n + 1,

and this completes the proof of Case 1.
Case 2: Assume that k is odd. If δ(G) is odd, then it follows from Theorem 2.3

and Corollary 2.6 that

dk
S(G) + dk

S(G) 6
k

k + 1
(δ(G) + 1) + (n − δ(G)) < n + 1.

If δ(G) is even and n is even, then δ(G) = n − δ(G) − 1 is odd, and we obtain the
desired bound as above. �

Theorem 2.8. If G is a graph such that k is odd and dk
S(G) is even or k is even

and dk
S(G) is odd, then

dk
S(G) 6

k − 1

k
(δ(G) + 1).

Proof. Let {f1, f2, . . . , fd} be a signed (k, k)-dominating family on G such that
d = dk

S(G). Assume first that k is odd and d is even. If x ∈ V (G) is an arbitrary

vertex, then
∑d

i=1 fi(x) 6 k. On the left-hand side of this inequality a sum of an
even number of odd summands occurs. Therefore it is an even number, and as k is
odd, we obtain

∑d
i=1 fi(x) 6 k − 1 for each x ∈ V (G). If v is a vertex of minimum

degree, then it follows that

dk =

d
∑

i=1

k 6

d
∑

i=1

∑

x∈N [v]

fi(x)

=
∑

x∈N [v]

d
∑

i=1

fi(x)

6
∑

x∈N [v]

(k − 1) = (δ(G) + 1)(k − 1),
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and this yields to the desired bound. Assume second that k is even and d is odd.
If x ∈ V (G) is an arbitrary vertex, then

∑d

i=1 fi(x) 6 k. On the left-hand side of
this inequality a sum of an odd number of odd summands occurs. Therefore it is
an odd number, and as k is even, we obtain

∑d
i=1 fi(x) 6 k− 1 for each x ∈ V (G).

Now the desired bound follows as above, and the proof is complete. �

According to Theorem 2.1, dk
S(G) is a positive integer. If we suppose in the

case k = 1 that dS(G) = d1
S(G) is an even integer, then Theorem 2.8 leads to the

contradiction dS(G) 6 0. Consequently, we obtain the next known result.

Corollary 2.9 (Volkmann, Zelinka [6] 2005). The signed domatic number dS(G)
is an odd integer.

Corollary 2.10. If T is a nontrivial tree, then dS(T ) = 1 and d2
S(T ) 6 2. In

addition, if the diameter of T is at most three, then d2
S(T ) = 1.

Proof. Theorem 2.3 implies that dS(T ) 6 2 and d2
S(T ) 6 2. Applying Corollary

2.9, we obtain dS(T ) = 1. Now let f be a signed 2-dominating function on T . Then
we observe that f(x) = 1 if x is a leaf or x is neighbor of a leaf. However, if the
diameter of T is at most three, then each vertex of T is a leaf or a neighbor of a
leaf and thus f(x) = 1 for every vertex x ∈ V (T ). This shows that d2

S(T ) = 1 in
that case, and the proof is complete. �

The following example demonstrates that the bound d2
S(T ) 6 2 in Corollary

2.10 is sharp.
Let T ′ be a tree of order 10 with the leaves u1, u2, v1, v2, w1, w2 and the vertices

u3, v3, w3 and z such that u3 is adjacent to u1 and u2, v3 is adjacent to v1 and v2,
w3 is adjacent to w1 and w2 and z is adjacent to u3, v3 and w3. Then the functions
fi : V (T ′) → {−1, 1} such that f1(x) = 1 for each x ∈ V (T ′) and f2(z) = −1 and
f2(x) = 1 for each vertex x ∈ V (T ′) \ {z} are signed 2-dominating functions on T ′

such that f1(x) + f2(x) 6 2 for each vertex x ∈ V (T ′). Using Corollary 2.10, we
conclude that d2

S(T ′) = 2.

Theorem 2.11. Let k > 2 be an integer, and let G be a graph with minimum
degree δ(G) > k − 1. Then dk

S(G) = 1 if and only if for every vertex v ∈ V (G) the
closed neighborhood N [v] contains a vertex of degree at most k.

Proof. Assume that N [v] contains a vertex of degree at most k for every vertex
v ∈ V (G), and let f be a signed k-dominating function on G. If d(v) 6 k, then it
follows that f(v) = 1. If d(x) 6 k for a neighbor x of v, then we observe f(v) = 1
too. Hence f(v) = 1 for each v ∈ V (G) and thus dk

S(G) = 1.
Conversely, assume that dk

S(G) = 1. If G contains a vertex w such d(x) > k +1
for each x ∈ N [w], then the functions fi : V (G) → {−1, 1} such that f1(x) = 1 for
each x ∈ V (G) and f2(w) = −1 and f2(x) = 1 for each vertex x ∈ V (G) \ {w} are
signed k-dominating functions on G such that f1(x)+f2(x) 6 2 6 k for each vertex
x ∈ V (G). Thus {f1, f2} is a signed (2, 2)-dominating family on G, a contradiction
to dk

S(G) = 1. �
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Next we present a lower bound on the signed (k, k)-domatic number.

Theorem 2.12. Let k > 1 be an integer, and let G be a graph with minimum
degree δ(G) > k − 1. If G contains a vertex v ∈ V (G) such that all vertices of
N [N [v]] have degree at least k + 1, then dk

S(G) > k.

Proof. Let {u1, u2, . . . , uk} ⊂ N(v). The hypothesis that all vertices of N [N [v]]
have degree at least k + 1 implies that the functions fi : V (G) → {−1, 1} such that
fi(ui) = −1 and fi(x) = 1 for each vertex x ∈ V (G)\{ui} are signed k-dominating
functions on G for i ∈ {1, 2, . . . , k}. Since f1(x) + f2(x) + · · · + fk(x) 6 k for each
vertex x ∈ V (G), we observe that {f1, f2, . . . , fk} is a signed (k, k)-dominating
family on G, and Theorem 2.12 is proved. �

Corollary 2.13. If G is a graph of minimum degree δ(G) > k+1, then dk
S(G) > k.

Theorem 2.14. Let k > 1 be an integer, and let G be a (k + 1)-regular graph of
order n. If n 6≡ 0 (mod(k + 2)), then dk

S(G) = k.

Proof. Let f be an arbitrary signed k-dominating function on G. If we define the
sets P = {v ∈ V (G) | f(v) = 1} and M = {v ∈ V (G) | f(v) = −1}, then we firstly
show that

|P | >

⌈

n(k + 1)

k + 2

⌉

. (2.1)

Because of
∑

x∈N [y] f(x) > k for each vertex y ∈ V (G), the (k + 1)-regularity of
G implies that each vertex u ∈ P is adjacent to at most one vertex in M and each
vertex v ∈ M is adjacent to exactly k + 1 vertices in P . Therefore we obtain

|P | > |M |(k + 1) = (n − |P |)(k + 1),

and this leads to (2.1) immediately.
Now let {f1, f2, . . . , fd} be a signed (k, k)-dominating family on G with d =

dk
S(G). Since

∑d
i=1 fi(u) 6 k for every vertex u ∈ V (G), each of these sums

contains at least ⌈(d−k)/2⌉ summands of value -1. Using this and inequality (2.1),
we see that the sum

∑

x∈V (G)

d
∑

i=1

fi(x) =

d
∑

i=1

∑

x∈V (G)

fi(x) (2.2)

contains at least n⌈(d−k)/2⌉ summands of value -1 and at least d⌈n(k+1)/(k+2)⌉
summands of value 1. As the sum (2.2) consists of exactly dn summands, it follows
that

n

⌈

d − k

2

⌉

+ d

⌈

n(k + 1)

k + 2

⌉

6 dn. (2.3)

It follows from the hypothesis n 6≡ 0 (mod(k + 2)) that

⌈

n(k + 1)

k + 2

⌉

>
n(k + 1)

k + 2
,
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and thus (2.3) leads to

n(d − k)

2
+

dn(k + 1)

k + 2
< dn.

A simple calculation shows that this inequality implies d < k + 2 and so d 6 k + 1.
If we suppose that d = k + 1, then we observe that d and k of different parity.
Applying Theorem 2.8, we obtain the contradiction

k + 1 = d 6
k − 1

k
(k + 2) < k + 1.

Therefore d 6 k, and Corollary 2.13 yields to the desired result d = k. �

On the one hand Theorem 2.14 demonstrates that the bound in Corollary 2.13
is sharp, on the other hand the following example shows that Theorem 2.14 is not
valid in general when n ≡ 0 (mod(k + 2)).

Let v1, v2, . . . , vk+2 be the vertex set of the complete graph Kk+2. We define
the functions fi : V (G) → {−1, 1} such that fi(vi) = −1 and fi(x) = 1 for each
vertex x ∈ V (G) \ {vi} and each i ∈ {1, 2, . . . , k + 2}. Then we observe that
fi is a signed k-dominating function on Kk+2 for each i ∈ {1, 2, . . . , k + 2} and
∑k+2

i=1 fi(x) = k for each vertex x ∈ V (Kk+2). Therefore {f1, f2, . . . , fk+2} is a
signed (k, k)-dominating family on G and thus dk

S(Kk+2) > k + 2. Using Theorem
2.3, we obtain dk

S(Kk+2) = k + 2.

3. Signed (k, k)-domatic number of fans, wheels and

grids

Volkmann and Zelinka [6] have proved that dS(G) = 1 when G is a fan or a wheel
of order n > 4. If a graph G has a vertex of degree 3, then Volkmann [5] showed
that dS(G) = 1. Therefore dS(G) = 1 for each grid. Using the results of Section 2,
we now determine the signed (k, k)-domatic numbers of fans, wheels and grids for
k > 2.

Theorem 3.1. Let G be a fan of order n > 3. Then d3
S(G) = 1, d2

S(G) = 1 when
3 6 n 6 5 and d2

S(G) = 2 when n > 6.

Proof. Since N [v] contains a vertex of degree at most 3 for every vertex v ∈ V (G),
it follows from Theorem 2.11 that d3

S(G) = 1.
Let now x1, x2, . . . , xn be the vertex set of the fan G such that x1x2 . . . xnx1 is

a cycle of length n and xn is adjacent to xi for each i = 2, 3, . . . , n − 2.
If n 6 5, then N [v] contains a vertex of degree at most 2 for every vertex

v ∈ V (G), and Theorem 2.11 implies d2
S(G) = 1.

If n > 6, then the functions fi : V (G) → {−1, 1} such that f1(x) = 1 for each
x ∈ V (G) and f2(x3) = −1 and f2(x) = 1 for each vertex x ∈ V (G) \ {x3} are
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signed 2-dominating functions on G such that f1(x) + f2(x) 6 2 for each vertex
x ∈ V (G). Thus d2

S(G) > 2. In view of Corollary 2.6, we see that

d2
S(G) 6

2

3
(δ(G) + 1) = 2,

and therefore d2
S(G) = 2. �

Theorem 3.2. Let G be a wheel of order n > 5. Then d4
S(G) = d3

S(G) = 1,
d2

S(G) = 4 when n − 1 ≡ 0 (mod 3) and d2
S(G) = 2 when n − 1 6≡ 0 (mod 3).

Proof. Since N [v] contains a vertex of degree at most 3 for every vertex v ∈ V (G),
it follows from Theorem 2.11 that d4

S(G) = d3
S(G) = 1.

Now let x1, x2, . . . , xn be the vertex set of the wheel G such that x1x2 . . . xn−1x1

is a cycle of length n − 1 and xn is adjacent to xi for each i = 1, 2, . . . , n − 1. It
follows from Theorem 2.3 that d2

S(G) 6 4. Since δ(G) = 3, Corollary 2.13 implies
that d2

S(G) > 2. Let {f1, f2, . . . , fd} be a signed (2, 2)-dominating family on G
with d = d2

S(G). If d = 3, then Theorem 2.8 leads to the contradiction

3 = d 6
1

2
(δ(G) + 1) = 2.

Consequently, d = 2 or d = 4. Assume that d = 4. Since f1(x) + f2(x) + f3(x) +
f4(x) 6 2 for each vertex x ∈ V (G), there exists at least one number j ∈ {1, 2, 3, 4}
such that fj(x) = −1 for each x ∈ V (G). Assume, without loss of generality, that
f1(xn) = −1. Because of

∑

x∈N [v] f1(x) > 2 for each vertex v, we deduce that

f1(x1) = f1(x2) = . . . = f1(xn−1) = 1. If we assume, without loss of generality,
that f2(x1) = −1, then it follows that f2(x2) = f2(x3) = 1. If we assume next, with-
out loss of generality, that f3(x2) = −1, then we observe that f3(x3) = f3(x4) = 1
and therefore f4(x3) = −1 and thus f4(x4) = f4(x5) = 1. This leads to f2(x4) = −1
and so f2(x5) = f2(x6) = 1. Inductively, we see that f2(xi) = −1 if and only if
i ≡ 1 (mod 3), f3(xi) = −1 if and only if i ≡ 2 (mod 3) and f4(xi) = −1 if and
only if i ≡ 0 (mod 3). This can be realized if and only if n − 1 ≡ 0 (mod 3), and
this completes the proof. �

The cartesian product G = G1 × G2 of two vertex disjoint graphs G1 and G2

has V (G) = V (G1)×V (G2) and two vertices (u1, u2) and (v1, v2) of G are adjacent
if and only if either u1 = v1 and u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1).
The cartesian product of two paths Pr = x1x2 . . . xr and Pt = y1y2 . . . yt is called
a grid.

Theorem 3.3. Let G = Pr × Pt be a grid of order n = rt > 2 such that r 6 t.
Then

(1) If r = 1, then d2
S(G) = 1.

(2) If r = 2, then d3
S(G) = 1, d2

S(G) = 1 when t 6 4 and d2
S(G) = 2 when t > 5.
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(3) If r > 3, then d2
S(G) = 2.

(4) If 3 6 r 6 4, then d3
S(G) = 1.

(5) If r = 5 and t = 5, then d3
S(G) = 2.

(6) If r = 5 and t > 6 or r > 6, then d3
S(G) = 3.

Proof. (1) Assume that r = 1. Then G is a path and it follows from Theorem 2.11
that d2

S(G) = 1.
(2) Assume that r = 2. Then 2 6 d(v) 6 3 for every v ∈ V (G), and hence

Theorem 2.11 implies that d3
S(G) = 1. If t 6 4, then N [v] contains a vertex of

degree at most 2 for every vertex v ∈ V (G), and so d2
S(G) = 1, by Theorem 2.11.

If t > 5, then all vertices of N [(x1, y3)] are of degree 3, and thus it follows from
Theorem 2.11 that d2

S(G) > 2. Since δ(G) = 2, we deduce from Corollary 2.6 that
d2

S(G) 6 2 and so d2
S(G) = 2.

(3) Assume that r > 3. Then all vertices of N [(x2, y2)] are of degree at least 3,
and thus it follows from Theorem 2.11 that d2

S(G) > 2. Since δ(G) = 2, we deduce
from Corollary 2.6 that d2

S(G) 6 2 and so d2
S(G) = 2.

(4) Assume that 3 6 r 6 4. This condition shows that N [v] contains a vertex
of degree at most 3 for every vertex v ∈ V (G), and so Theorem 2.11 implies that
d3

S(G) = 1.
(5) Assume that r = t = 5. Then all vertices of N [(x3, y3)] are of degree 4, and

thus it follows from Theorem 2.11 that d3
S(G) > 2. Since N [v] contains a vertex of

degree at most 3 for every vertex v ∈ V (G) \ {(x3, y3)}, we deduce that f(v) = 1
for every signed 3-dominating function f on G and every vertex v 6= (x3, y3). This
implies that d3

S(G) 6 2 and thus d3
S(G) = 2.

(6) Assume that r = 5 and t > 6 or r > 6. In view of Theorem 2.3, we have
d3

S(G) 6 3. Define now the functions fi : V (G) → {−1, 1} such that f1(v) = 1
for each vertex v ∈ V (G), f2((x3, y3)) = −1 and f2(v) = 1 for each v ∈ V (G) \
{(x3, y3)} and f3((x3, y4)) = −1 and f3(v) = 1 for each v ∈ V (G)\{(x3, y4)}. Then
{f1, f2, f3} is a family of signed 3-dominating functions on G such that f1(v) +
f2(v) + f3(v) 6 3 for each vertex v ∈ V (G). Therefore d3

S(G) = 3, and the proof is
complete. �
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