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Abstract

A positive integer n is called a balancing number if
1424+ (n-—D=n+1)+0+2)+ -+ (n+r)

for some positive integer r.

Several authors investigated balancing numbers and their various gener-
alizations.

The goal of this paper is to survey some interesting properties and results
on balancing, cobalancing and all types of generalized balancing numbers.
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1. Introduction

The sequence R = {R;}°, = R(A, B, Ry, R1) is called a second order linear recur-
rence if the recurrence relation

R; = ARi_l + BR;_» (Z > 1)

holds for its terms, where A, B # 0, Ry and R; are fixed rational integers and | Ro|+
|R1| > 0. The polynomial f(x) = 22 — Az — B is called the companion polynomial
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of the sequence R = R(A, B, Ry, R1). Let D = A? + 4B be the discriminant of
f. The roots of the companion polynomial will be denoted by o and 3. As it is
well-known, if D > 0 then sequence can be written in the form

ao’ — b’ )
=, Z 2),
R=22 (i22)

where a = Ry — Ro8 and b = Ry — Rypa.

In [3] A. Behera and G. K. Panda gave the notion of balancing number.

Definition 1.1 ([3]). A positive integer n is called a balancing number if
I+2+--+(n-1)=0n+1)+n+2)+---+(n+7)

for some positive integer 7. This number is called the balancer corresponding to
the balancing number n. The mth term of the sequence of balancing numbers is
denoted by B;,.

Remark 1.2. It can be derived from Definition 1.1 that the following statements
are equivalent to each other (see also [3]):

e 1 is a balancing number,
e n? is a triangular number (i.e. n? =1+2+--- + k for some k € N),

e 8n? + 1 is a perfect square.

It is easy to see that 6, 35, and 204 are balancing numbers with balancers 2, 14
and 84, respectively.

2. Properties of balancing numbers

2.1. Generating balancing numbers

In [3] A. Behera and G. K. Panda proved other interesting properties about bal-
ancing numbers.
Let us consider the following functions:

F(z) =22v/822 + 1 (2.1)

G(z) =3z + V822 + 1 (2.2)

H(z) =17z + 6/82% + 1 (2.3)
They proved that these functions always generate balancing numbers.

Theorem 2.1 (Theorem 2.1 in [3]). For any balancing number n, F(n), G(n),
and H(n) are also balancing numbers.
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Remark 2.2. Using the theorem above we get that if n is a balancing number,
then G(F(n)) = 6nv/8n2 + 1+ 16n% + 1 is an odd balancing number, because F(n)
is always even and G(n) is odd when n is even.

For generating balancing numbers they proved the following theorems:

Theorem 2.3 (Theorem 3.1 in [3]). If n is any balancing number, then there is
no balancing number k such that n < k < 3n+ v/8n? + 1.

Its corollary is the following:

Corollary 2.4 (Corollary 3.2 in [3]). If n = By, is a balancing number with m >
1, then we have B,,—1 = 3n —v/8n? + 1.

They proved that a balancing number can also be generated by two balancing
numbers.

Theorem 2.5 (Theorem 4.1 in [3]). If n and k are balancing numbers, then

Fln k) =nvV/8k2 + 1+ ky/8n2 +1 (2.4)

is also a balancing number.

2.2. A recurrence relation and other properties

In [3] Behera and Panda proved that the balancing numbers fulfill the following
recurrence relation
Bm+1 = 6Bm - Bm—l (m Z 1)

where By = 1 and B; = 6. Using this recurrence relation they get interesting
relations between balancing numbers.

Theorem 2.6 (Therem 5.1 in [3]). For any m > 1 we have
 Bii1 Bi1= (B +1)(Bp — 1),
o B, = By - By — Br—1 - Bn—r—1 for any positive integer k < m,
o By, = B2 — B2,

L4 BQm+l = Bm(Bm+1 - Bm—l)-

In [26] G. K. Panda established other interesting arithmetic-type, de-Moivre’s-
type and trigonometric-type properties of balancing numbers.

Theorem 2.7 (Theorem 2.1 in [26]). If m and k are natural numbers and m > k,
then (Bm + Bk)(Bm — Bk) = Btk - Bm—k.

Remark 2.8. The Fibonacci numbers Fy, satisfy a similar property (see [16] p. 59)

Foir - Frp = F2 — (=1)™*FE2,
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We know that if m is natural number, then 143+ -+ (2m —1) = m?2. In [26]
G. K. Panda proved three properties of balancing numbers similar to the identity
above. For balancing numbers we get:

Theorem 2.9 (Theorem 2.2 in [26]).
® Bi+Bs+--+ Bay_1 = B,
o B2+B4++B2m :BmBm+1;

e B+ By +---+ Bay :Bm(Bm+Bm+1)

The identity (cos x+isinz)™ = cos nz+i sin nz for complex numbers is known as
the de-Moivre’s formula. The following theorem gives a de-Moivre’s-type property
of balancing numbers. Let C,,, = \/8B2, + 1.

Theorem 2.10 (Theorem 2.3 in [26]). If m and k are natural numbers, then
(Com + V8Bm)* = Coni + V8B

Remark 2.11. The Fibonacci (F,,) and Lucas (L,,) numbers satisfy a similar

property

L + V5,
2

" Lo+ VBF,
_ : ,

Panda proved another interesting result about the greatest common divisor of
balancing numbers.

Theorem 2.12 (Theorem 2.5 in [26]). If m and k are natural numbers then
ng(Bm, Bk) = B(m,k)~

In [3] we can find nonrecursive forms to obtain balancing numbers. One of these
results is the following:

Theorem 2.13 (Theorem 7.1 in [3]). If By, is the mth balancing number then

m+1 _ ym+1
Bmzi%r—%—ﬂ m=0,1,2,...,
1 — A2
where \; = 3+ /8 and \y = 3 — /8.

Remark 2.14. We get this formula easily using the companion polynomial of the
recurrence relation of B,,.
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2.3. Fibonacci and Lucas balancing numbers

In [21] K. Liptai obtained several results about special type of balancing numbers.
Let us consider the definition below:

Definition 2.15 ([21] and [22]). We call a balancing number a Fibonacci or a Lu-
cas balancing number if it is a Fibonacci or a Lucas number, too.

Using this definition and companion polynomial of B,, K. Liptai proved that
the balancing numbers are solutions of a Pell’s equation.

Theorem 2.16 (Theorem 1 in [21]). The terms of the second order linear recur-
rence R(6,—1,1,6) are the solutions of the equation

-8y =1
for some integer y.

There is also a connection between Fibonacci or Lucas numbers and Pell’s
equation. The following theorem is due to D. E. Ferguson:

Theorem 2.17 (Theorem in [7]). The only solutions of the equation
2 —5y% = 44

are t = Ly, y = +F, (n=0,1,2...), where L., and F,, are the mth terms of
the Lucas and Fibonacci sequences, respectively.

To find all Fibonacci or Lucas balancing numbers K. Liptai proved that there
are finitely many common solutions of the Pell’s equations above using a method
of A. Baker and H. Davenport.

The main theorem in [21] and [22] are the following:

Theorem 2.18 (Theorem 4 in [21] and [22]). There is no Fibonacci or Lucas bal-
ancing number.

Remark 2.19. Using another method L. Szalay got the same result for the solu-
tions of simultaneous Pell equations in [35]. In this method he converted simul-
taneous Pell’s equations into a family of Thue equations which could be solved
completely.

3. Properties of cobalancing numbers

3.1. Introduction

By slightly modifying the definition 1.1 we get:
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Definition 3.1 ([27]). We call n € N a cobalancing number if
I+2+-+n=mn+1)+0n+2)+ -+ (n+79
for some r¢ € N. Here we call r¢ the cobalancer corresponding to the cobalancing

number n. Denote n by B¢, if n is the mth term of the sequence of cobalancing
numbers.

Remark 3.2. The first three cobalancing numbers are 2, 14 and 84 with cobal-
ancers 1, 6, 35, respectively.

3.2. Properties of cobalancing numbers

Cobalancing numbers B¢, have similar properties to balancing numbers B,,. In
[27] G. K. Panda and P. K. Ray proved the following properties:

Theorem 3.3 (Theorem 2.2 in [27]). If n = BS, is a cobalancing number with
m > 1 then B, | =3n+v8n?+8n+1+1 and Bf,_; =3n—v8n?+8n+1+1.
By Theorem 3.3 they get a recurrence relation for cobalancing numbers that is
B, =6B% — B  +2, (m=23,..)

where they set Bf = 0. The following theorem is a consequence of the relation
above.

Theorem 3.4 (Theorem 3.1 in [27]). Every cobalancing number is even.
We also denote by r,, the balancer belonging to B, and ¢, the cobalancer
belongig to BS,. Then by using the definition 1.1 and 3.1 the following theorems

are valid:

Theorem 3.5 (Theorem 6.1 in [27]). Every balancer is a cobalancing number and
every cobalancer is a balancing number.

Using our notation we get:

Theorem 3.6 (Theorem 6.2 in [27]). We have ry, = B, and r5, | = By, for ev-
erym=1,2,....

Panda and Ray got a corollary from the theorems above.

Corollary 3.7 (Corollary 6.4 in [27]). 7m+1 = rm + 2Bm.
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3.3. Connection between (co)balancing and Pell numbers

In [28] we can find interesting results about the connection of Pell, balancing or
cobalancing numbers. Let P,, be the mth Pell number (m = 1,2...). It is well
known that

P=1,P=2Pyt1=2P,+ P,_1.

The authors call Cy,, = /8B2, + 1 the mth Lucas-balancing number and ¢, =

\/ 8 (Bc)fn + 8B¢, + 1 the mth Lucas-cobalancing number. The first result of them
is the following:

Theorem 3.8 (Theorem 2.2 in [28]). The sequences of Lucas-balancing and Lu-
cas-cobalancing numbers satisfy recurrence relations with identical balancing num-
bers. More precisely, C1 =3, Cy =17, Cppy1 = 6Cy, — Croq and c1 =1, c2 =17,
Cm+1 = 6Cpy — Cp—1 form=2,3,....

In [28] the authors get a formula how to calculate balancing or cobalancing
numbers from Pell numbers.

Theorem 3.9 (Theorem 3.2 in [28]). If P is a Pell number then [P/2] is either
a balancing number or a cobalancing number. More precisely Py, /2 = By, and
|—P2m_1/2-| = B,,Cn (m: 1,2,)

There is another result for calculating balancing number and its balancer, too.

Theorem 3.10 (Theorem 3.4 in [28]). The sum of the first 2m — 1 Pell numbers
is equal to the sum of the mth balancing number and its balancer.

4. Generalizations

4.1. Sequence balancing and cobalancing numbers
In [25] G. K. Panda defined sequence balancing and sequence cobalancing numbers.

Definition 4.1 ([25]). Let {s,,}3°_; be a sequence of real numbers. We call a
number s, of this sequence a sequence balancing number if

s1+s2+ -+ Sm1 :Sm+l+sm+2+"'+sm+r
for some natural number r. Similarly, we call s, a sequence cobalancing number
if
Sl+52+"'+5m:Sm+1+5m+2+"'+5m+r
for some natural number r.
Remark 4.2. For example, if we take s,, = 2m then the sequence balancing

numbers of this sequence are 12, 70, 408,. . . which are twice the balancing numbers.
It is also true for sequence cobalancing numbers and similarly in the case when

m
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In [25] the author investigated the existence of sequence balancing or cobalanc-
ing numbers in the sequence of odd natural numbers. So, let s, = 2m — 1. Using
simple technics he got that the sequence of sequence balancing numbers in the se-
quence of odd natural numbers is given by {285, | + 75,1 + 1}75_; (see Theorem
2.1.4 in [25]). So, let the mth sequence balancing number in the sequence of odd
natural numbers be denoted by z,,. Then by this fact above G. K. Panda got the
following recurrence relation for these solutions.

Theorem 4.3 (Theorem 2.1.5 in [25]). The sequence {x., }°°_, satisfies the recur-
rence relation Tp41 = 62y, — Tiy—1 for m > 2.

Remark 4.4. The author in [25] investigated also the existance of sequence bal-
ancing or cobalancing numbers in the cases when a,, = m+1 and a,,, = F,, (among
Fibonacci numbers). In the first case the sequence balancing numbers among the
numbers a,, = m + 1 can be given by a linear combination of balancing numbers.

In the second one he gets that the only sequence cobalancing number in the
Fibonacci sequence is F» = 1.

4.2. Generalized balancing sequences

In [4] A. Bérczes, K. Liptai and I. Pink generalized the definition 4.1 due to G. K.
Panda.

Definition 4.5 ([4]). We call a binary recurrence R; = R(A, B, Ry, R1) a balanc-
ing sequence if

Ri+Ro+ - +Rp-1=Rpy1+Rnya+ -+ Rtk (4.1)
holds for some £ > 1 and m > 2.

In that paper they proved that any sequence R; = R(A, B,0, Ry) with condi-
tions D = A2 +4B > 0, (A, B) # (0,1) is not a balancing sequence.

Theorem 4.6 (Theorem 1 in [4]). There is no balancing sequence of the form
R; = R(A, B,0, Ry) with D = A%> + 4B > 0 except for (A, B) = (0,1) in which case
(4.1) has infinitely many solutions (m, k) = (m,m — 1) and (m,k) = (m,m) for
m = 2.

By this theorem they got the following corollary.

Corollary 4.7 (Corollary 1 in [4]). Let R; = R(A, B,0,1) be a Lucas-sequence
with A2 +4B > 0. Then R; is not a balancing sequence.

4.3. (k,l)-numerical centers

Definition 4.8 ([23]). Let y,k and [ be fixed positive integers with y > 4. A
positive integer z (x < y — 2) is called a (k,)-power numerical center for y, or a
(k,1)-balancing number for y if

ik @D =@+ D)+ (y -1
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Remark 4.9. In [8] R. Finkelstein studied "The house problem” and introduced
the notion of first-power numerical center which coincides with the notion of bal-
ancing number B,,. He proved that infinitely many integers y possess (1, 1)-power
centers and there is no integer y > 1 with a (2,2)-power numerical center. In his
paper, he conjectured that if £ > 1 then there is no integer y > 1 with (k, k)-power
numerical center. Later in [33] his conjeture was confirmed for k¥ = 3. Recently,
Ingram in [17] proved Finkelstein’s conjecture for k = 5.

In [23] the authors proved a general result about (k,)-balancing numbers, but
they could not deal with Finkelstein’s conjecture in its full generality. Their main
results are the following theorems.

Theorem 4.10 (Theorem 1 in [23]). For any fixed positive integer k > 1, there
are only finitely many positive pairs of integers (y,1) such that y possesses a (k,1)-
power numerical center.

For the proof of this theorem they used a result from [31]. Thus Theorem 4.10
is ineffective in case [ < k in the sense that no upper bound was made for possible
numerical centers except for the cases when [l =1 or [ = 3.

Theorem 4.11 (Theorem 2 in [23]). Let k be a fized positive integer with k > 1
and 1 € {1,3}. If (k,1) # (1,1), then there are only finitely many (k,1)-balancing
numbers, and these balancing numbers are bounded by an effectively computable
constant depending only on k.

Remark 4.12. In [23] the authors gave an example for numerical centers in the
case when (k,1) = (2,1). After solving an elliptic equation by MAGMA [24] they
got three (2, 1)-power numerical centers x, namely 5, 13 and 36.

4.4. (a,b)-type balancing numbers

Another generalization is the following by T. Kovécs, K. Liptai and P. Olajos:

Definition 4.13 ([20]). Let a,b be nonnegative coprime integers. We call a posi-
tive integer an + b an (a,b)-type balancing number if

(@+b)+ 2a+b)+ -+ (an—1)+b) =(an+1)+b)+---+ (a(n+7r) +b)

for some r € N. Here r is called the balancer corresponding to the balancing
number. We denote the positive integer an + b by B{Y) if this number is the mth

among the (a, b)-type balancing numbers.

Remark 4.14. We have to mention that if we use notation a,, = an + b then we
get sequence balancing numbers and if a = 1 and b = 0 for (a,b)-type balancing
numbers than we get balancing numbers B,,.

Using the definition the authors in [20] get the following proposition:
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Lemma 4.15 (Proposition 1 in [20]). If B is an (a,b)-type balancing number
then the following equation

2
228 (B,(,‘j’b)) = a2 — dab — 402 (4.2)

is valid for some z € Z.

4.4.1. Polynomial values among balancing numbers

Let us consider the following equation for (a, b)-type balancing numbers
B = f(x) (4.3)

where f(z) is a monic polynomial with integer coefficients. By Proposition 4.15
and the result from Brindza [5] Kovacs, Liptai and Olajos proved the following
theorem:

Theorem 4.16 (Theorem 1 in [20]). Let f(z) be a monic polynomial with integer
coefficients, of degree > 2. If a is odd, then for the solutions of (4.3) we have
max(m, |z|) < co(f,a,b), where co(f,a,b) is an effectively computable constant
depending only on a, b and f.

Let us consider a special case of Theorem 4.16 with f(x) = z!. Using one of

the results from Bennett [1] the authors in [20] get the following theorem:
Theorem 4.17 (Theorem 2 in [20]). If a® —4ab—4b* = 1, then there is no perfect
power (a,b)-balancing number.

2

Remark 4.18. There are infinitely many integer solutions of the equation a® —
4ab — 4b% = 1.

The authors are interested in combinatorial numbers (see also Kovécs [19]),
that is binomial coefficients, power sums, alternating power sums and products of
consecutive integers. For all £,z € N let

Sp(z) = 1" 4 2% 4. 4 (z — 1)F,

Ti(z) = —1F 4 2F — . 4 (=1)" N2 — 1)F,

My(z) =2(z+1)...(x+ k—1).
We mention that the degree of Si(x), Tk (z) and i (z) are k + 1, k and k, respec-
tively and (), Sk(z), T(z) are polynomials with non-integer coefficients. More-
over, in the case when f(x) = IIj(x) Theorem 4.16 is valid but the parameter a is

odd.
Let us consider the following equation

B = p(x), (4.4)

where p(z) is a polynomial with rational integer coefficients. In this case Kovécs,
Liptai and Olajos gave effective results for the solutions of equation (4.4).
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Theorem 4.19 (Theorem 3 in [20]). Let k > 2 and p(x) be one of the polyno-
mials (i), Hy(x), Sk—1(x), Tr(z). Then the solutions of equation (4.3) satisfy
max(m, |z|) < ¢1(a,b, k), where c1(a,b, k) is an effectively computable constant de-
pending only on a, b and k.

4.4.2. Numerical results

In [20] T. Kovécs, K. Liptai and the author completely solve the above type equa-
tions for some small values of k that lead to genus 1 or genus 2 equations. In this
case the equation can be written as

v’ =8f(x)? +1, (4.5)

where f(x) is one of the following polynomials. Beside binomial coefficients (ﬁ),
we consider power sums and products of consecutive integers, as well. We mention
that in their results, for the sake of completeness, they provide all integral (even
the negative) solutions to equation (4.5).

Genus 1 and 2 equations They completely solve equation (4.5) for all param-
eter values k in case when they can reduce the equation to an equation of genus 1.
We have to mention that a similar argument has been used to solve several com-
binatorial Diophantine equations of different types, for example in [9], [10], [12],
[13], [18], [19], [29], [30], [34], [37], [38]. Further they also solved a particular case
(f(x) = S5(x)) when equation (4.3) can be reduced to the resolution of a genus 2
equation. To solve this equation, they used the so-called Chabauty method. We
have to note that the Chabauty method has already been successfully used to solve
certain combinatorial Diophantine equations, see e.g. the corresponding results in
the papers [6], [11], [14], [15], [32], [36] and the references given there.

Theorem 4.20 (Theorem 4 in [20]). Suppose that a® — 4ab — 4b> = 1. Let f(x) €
{(5): (5), (3), Ma(x), Ug(x), Iy(x), S1(x), S2(x), S3(x), S5(x)}.  Then the solutions
(m,x) of equation (4.3) are those contained in Table 1. For the corresponding

parameter values we have (a,b) = (1,0) in all cases.

Remark 4.21. In [20] the authors considered some other related equations that
led to genus 2 equations. However, because of certain technical problems, they
could not solve them by the Chabauty method. They determined the “small"
solutions(i.e. |z| < 10000) of equation (4.5) in cases

r@ e {(5)-(5) Mot Ms(o). 57600}

Their conjecture is that that there is no solution for these equations.
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f(z) Solutions (m,x) of (4.3)

() (1,-3), (1,4)

(g) (2v _5)a (27 7)

(Z) (2v _4)a (27 7)
Hg(l‘) (17_3)7(172)
H3($) (15_3)5(171)

14 () 0

Sl(x) (15_4)5(173)

Sa(z) | (3,-8),(3,9),(5,—27), (5,28)
S3(x) 0

S5 () 0

Table 1
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