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Abstract

Sufficient conditions for existence of random fixed point of a nonexpan-
sive rotative random operator are obtained and existence of random periodic
points of a random operator is proved. We also derive random periodic point
theorem for ǫ- expansive random operator.
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1. Introduction

Random nonlinear analysis has grown into an active research area closely associ-
ated with the study of random nonlinear operators and their properties needed in
solving nonlinear random operator equations (see [7, 18, 21]). The study of random
fixed point theory was initiated by the Prague school of probabilists in the 1950’s
([15, 24]). Random fixed point theorems are of tremendous importance in proba-
bilistic functional analysis as they provide a convenient way of modelling many real
life problems and random methods have also revolutionized the financial markets.
The survey article by Bharucha -Reid [8] in 1976 attracted the attention of several
mathematician and gave wings to this theory. Itoh [17] extended Spacek’s and
Hans’s theorems to random multivalued contraction mappings. In recent years, a
lot of efforts have been made ([2, 3, 4, 5, 6, 16, 22, 23], and references therein) to
show the existence of random fixed points of certain random single valued and mul-
tivalued operators and various applications in diverse area from pure mathematics
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to applied sciences have been explored. The aim of this paper is to establish the
existence of random fixed point of nonexpansive rotative random operator in the
setting of Banach spaces. A random analogue of Edelstein theorem to establish
the existence of random periodic points for random single valued ǫ- contractive op-
erator is proved. These results are then used to obtain the random periodic point
of ǫ- expansive random operators. The results proved in this paper improve and
generalize several well known results in the literature [9, 12, 17].

2. Preliminaries

We begin with some definitions and state the notations used throughout this paper.
Let (Ω, Σ) be a measurable space (Σ- sigma algebra) and F be a nonempty subset of
a separable metric space (X, d). A single valued mapping T : Ω → X is measurable if
T−1(U) ∈ Σ for each open subset U of X, where T−1(U) = {ω ∈ Ω : T (ω)∩U 6= ∅}.
A mapping T : Ω × X → X is a random operator if and only if for each fixed
x ∈ X, the mapping T (., x) : Ω → X is measurable and it is continuous if for
each ω ∈ Ω, the mapping T (ω, .) : X → X is continuous. A measurable mapping
ξ : Ω → X is a random fixed point of a random operator T : Ω×X → X if and only
if ξ(ω) = T (ω, ξ(ω))) for each ω ∈ Ω. We denote the set of random fixed points of a
random operator T by RF (T ) and the set of all measurable mappings from Ω into
X by M(Ω, X). For the random operator f : Ω × X → X , the map f−1

ω : X → X
is defined by f−1

ω (y) = x if and only if f(ω, x) = y.
We denote the nth iterate T (ω, T (ω, T (ω, . . . , T (ω, x) · · · ))) of random operator

T : Ω×X → X by T n(ω, x). The letter I denotes the random operator I : Ω×X →
X defined by I(ω, x) = x and T 0 = I. The random operator T : Ω × X → X is
called random periodic operator with period p ∈ N, if for each x ∈ X and ω ∈ Ω
we obtain T p(ω, x) = I(ω, x). Let B(x0, r) denotes the spherical ball centred at x0

with radius r, defined as the set {x ∈ X : d(x, x0) 6 r}.

Definition 2.1. Let F be a nonempty subset of a separable metric space X . The
random operator T : Ω × F → F is said to be:

(a) k(ω)- contraction random operator if for any x, y ∈ F and ω ∈ Ω, we have

d(T (ω, x), T (ω, y)) 6 k(ω)d(x, y),

where k : Ω → [0, 1) is a measurable map. If k(ω) = 1 for any ω ∈ Ω, then T
is called nonexpansive random operator.

(b) contractive random operator if for any x, y ∈ F and ω ∈ Ω, we have

d(T (ω, x), T (ω, y)) < d(x, y).

(c) ǫ-contractive random operator if for ǫ > 0 and x, y ∈ F with x 6= y and
d(x, y) < ǫ, we have,

d(T (ω, x), T (ω, y)) < d(x, y),



Periodic fixed points of random operators 41

for every ω ∈ Ω. Obviously, every contractive random operator is ǫ- contrac-
tive random operator for any ǫ > 0.

(d) ǫ-expansive random operator if for ǫ > 0 and x, y ∈ F with x 6= y and
d(x, y) < ǫ, we have

d(T (ω, x), T (ω, y)) > d(x, y), (2.1)

for every ω ∈ Ω. If inequality (2.1) holds for every x, y ∈ X with x 6= y then
T is called an expansive random operator.

Obviously, every expansive random operator is ǫ- expansive random operator
for any ǫ > 0.

Definition 2.2. Let T : Ω×F → F be a random operator, where F is a nonempty
subset of a separable complete metric space X . A measurable mapping ξ : Ω → F is
called a random periodic point of T there exists n > 1 such that T n(ω, ξ(ω)) = ξ(ω),
for every ω ∈ Ω. That is, random periodic point is random fixed point of nth iterate
of T for some n > 1. The least such positive integer n is called period of random
periodic point ξ.

Note that random fixed point of T is also random periodic point of T of period
1 but there exists a random periodic point of T which fails to be the random fixed
point of T as shown in the examples presented below. It is also shown that there
exists a random operator having random periodic point of period 5 but does not
posses the random periodic point of period 3.

Example 2.3. Let Ω = [0, 1] and Σ be the sigma algebra of Lebesgue’s measurable
subsets of Ω. Take X = R with d(x, y) = |x − y| , for x, y ∈ R. Define random
operator T from Ω × X to X as,

T (ω, x) =

{

ω2 − x, if (ω, x) ∈ Ω × [0, 1]

ω2 − x − 1, otherwise.

Define the measurable mapping ξ : Ω → X as ξ(ω) = 1
2 (3ω2 − 1), for every ω ∈ Ω.

Now ξ is a random periodic point of T with period 2 but it fails to be a random
fixed point of T.

Example 2.4. Let Ω = [0, 1] and Σ be the sigma algebra of Lebesgue’s measurable
subsets of Ω. Take X = R with d(x, y) = |x − y| , for x, y ∈ R. Define random
operator T from Ω×X to X as, T (ω, 1) = 3, T (ω, 2) = 5, T (ω, 3) = 4, T (ω, 4) = 2,
T (ω, 5) = 1 and T (ω, x) = x − ω, when x /∈ {1, 2, 3, 4, 5}.

Define measurable mapping ξ : Ω → X as ξ(ω) = 1, for every ω ∈ Ω. Note that
ξ is a random periodic point of period 5. It is also noted that random operator
T in this example does not posses random fixed point because for any ξ to be the
random fixed point, we must have T (ω, ξ(ω)) = ξ(ω), for every ω ∈ Ω. But this
random operator equation holds only for ω = 0.
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Remark 2.5. Let F be a closed subset of a complete separable metric space X and
the sequence of measurable mappings {ξn} from Ω to F be point wise convergent,
that is, ξn(ω) → q := ξ(ω) for each ω ∈ Ω. Then ξ being the limit of the sequence
of measurable mappings is measurable and closedness of F implies ξ is a mapping
from Ω to F. Since F is a subset of a complete separable metric space X , also if T
is a continuous random operator from Ω × F to F then by the lemma 8.2.3 of [1],
the map ω → T n(ω, f(ω)) is measurable for any measurable mapping f from Ω to
F.

Definition 2.6. Let F be a nonempty subset of a Banach space X . The random
operator T : Ω × F → F is said to be (k, n)− rotative random operator for k < n,
if for each ω ∈ Ω,

‖ξ(ω) − T n(ω, ξ(ω))‖ 6 k ‖ξ(ω) − T (ω, ξ(ω))‖ ,

where ξ is a mapping from Ω to F and n ∈ N. The operator T is said to be n−
rotative random operator if it (k, n)− rotative random operator for some k < n
and T is called rotative random operator if it is an n- rotative random operator
for some n ∈ N. Note that any random periodic operator with period p is (0, p)-
rotative random operator.

Remark 2.7. If T : Ω × F → F is k(ω) contraction random operator where F is
a closed subset of Banach space X and n > 1. For any ξ : Ω → F, consider,

‖ξ(ω) − T n(ω, ξ(ω))‖ 6

n
∑

k=1

∥

∥T k−1(ω, ξ(ω)) − T k(ω, ξ(ω))
∥

∥

6 (1 + k(ω) + (k(ω))2 + · · ·

+ (k(ω))n−1) ‖ξ(ω) − T (ω, ξ(ω))‖

< n ‖ξ(ω) − T (ω, ξ(ω))‖ ,

for every ω ∈ Ω. Thus T is a rotative random operator.

3. Periodic and fixed points of rotative random op-

erators

In this section, we first show an existence of a random fixed point of a nonexpansive
rotative random operator which not only provides a random analogue of theorem
17.1 of [11] (see also [12]) but also improves theorem 2.1 of [17] in the sense that it
does not require the boundedness of T (ω, F ) for any ω ∈ Ω. Moreover we replace
continuous condensing random operator by nonexpansive rotative random operator.

Periodic point problems were systematically studied since the beginning of fifties
(see [9, 10, 13, 14, 19, 20]). We show some results on the existence of random
periodic points of random single valued ǫ- contractive operator in the setting of a
separable metric space.
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Theorem 3.1. Let F be a nonempty closed and convex subset of a separable Ba-
nach space X and T : Ω × F → F be a nonexpansive rotative random operator.
Then T has a random fixed point.

Proof. Let ξ : Ω → F be any fixed measurable mapping. For 0 < α < 1 and any
arbitrary measurable mapping η : Ω → F, define Tα : Ω × F → F as,

Tα(ω, η(ω)) = (1 − α)ξ(ω) + αT (ω, η(ω)).

Note that for each α, the random operator Tα has Lipschitz constant α. we may
apply [8] to obtain the sequence of random operators Fα : Ω × F → F such that
Tα(ω, Fα(ω, ξ(ω))) = Fα(ω, ξ(ω)), for every ω ∈ Ω. Consequently, we have

Fα(ω, ξ(ω)) = (1 − α)ξ(ω) + αT (ω, Fα(ω, ξ(ω))).

It can be verified that each Fα is nonexpansive random operator. By iterating Fα

we obtain

F k
α (ω, ξ(ω)) = (1 − α)F k−1

α (ω, ξ(ω)) + αT (ω, F k
α(ω, ξ(ω))), k ∈ N. (3.1)

Note that,

(1 − α)Fα(ω, ξ(ω))

= (1 − α)ξ(ω) + αT (ω, Fα(ω, ξ(ω))) − αFα(ω, ξ(ω))

= (1 − α)ξ(ω) + α(T (ω, Fα(ω, ξ(ω))) − Fα(ω, ξ(ω))).

Thus for each ω ∈ Ω

(1 − α)(ξ(ω) − Fα(ω, ξ(ω)))

= α(Fα(ω, ξ(ω)) − T (ω, Fα(ω, ξ(ω)))). (3.2)

Now suppose T is a (a, n)-rotative random operator, that is

‖ξ(ω) − T n(ω, ξ(ω))‖ 6 a ‖ξ(ω) − T (ω, ξ(ω))‖ ,

for every ω ∈ Ω. Now,

∥

∥Fα(ω, ξ(ω)) − F 2
α(ω, ξ(ω))

∥

∥

=

∥

∥

∥

∥

(1 − α)ξ(ω) + αT (ω, Fα(ω, ξ(ω))) − (1 − α)Fα(ω, ξ(ω))
− αT (ω, F 2

α(ω, ξ(ω)))

∥

∥

∥

∥

=

∥

∥

∥

∥

(1 − α)(ξ(ω) − Fα(ω, ξ(ω))) + α(T (ω, Fα(ω, ξ(ω)))
− αT (ω, F 2

α(ω, ξ(ω)))

∥

∥

∥

∥

=

∥

∥

∥

∥

α(Fα(ω, ξ(ω)) − T (ω, Fα(ω, ξ(ω)))) + α(T (ω, Fα(ω, ξ(ω)))
− αT (ω, F 2

α(ω, ξ(ω)))

∥

∥

∥

∥

= α
∥

∥Fα(ω, ξ(ω)) − T (ω, F 2
α(ω, ξ(ω)))

∥

∥
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6 α ‖Fα(ω, ξ(ω)) − T n(ω, Fα(ω, ξ(ω)))‖

+ α
∥

∥T n(ω, Fα(ω, ξ(ω))) − T (ω, F 2
α(ω, ξ(ω)))

∥

∥

6 αa ‖Fα(ω, ξ(ω)) − T (ω, Fα(ω, ξ(ω)))‖

+ α
∥

∥T n−1(ω, Fα(ω, ξ(ω))) − F 2
α(ω, ξ(ω))

∥

∥

= (1 − α)a ‖Fα(ω, ξ(ω)) − ξ(ω)‖

+ α
∥

∥T n−1(ω, Fα(ω, ξ(ω))) − F 2
α(ω, ξ(ω))

∥

∥ ,

for every ω ∈ Ω. Now we claim that the following inequality holds for every ω ∈ Ω
and m > 2.

α
∥

∥T m−1(ω, Fα(ω, ξ(ω))) − F 2
α(ω, ξ(ω))

∥

∥

6 (m − 1) − mα + αm ‖ξ(ω) − Fα(ω, ξ(ω))‖

+ αm
∥

∥Fα(ω, ξ(ω)) − F 2
α(ω, ξ(ω))

∥

∥ . (3.3)

For this consider,

α
∥

∥T (ω, Fα(ω, ξ(ω))) − F 2
α(ω, ξ(ω))

∥

∥

= α
∥

∥T (ω, Fα(ω, ξ(ω))) − (1 − α)Fα(ω, ξ(ω)) − αT (ω, F 2
α(ω, ξ(ω)))

∥

∥

= α

∥

∥

∥

∥

(1 − α)(T (ω, Fα(ω, ξ(ω))) − Fα(ω, ξ(ω))) − α(T (ω, F 2
α(ω, ξ(ω)))

− T (ω, Fα(ω, ξ(ω))))

∥

∥

∥

∥

6 (1 − α) ‖α(T (ω, Fα(ω, ξ(ω))) − Fα(ω, ξ(ω)))‖

+ α2
∥

∥T (ω, F 2
α(ω, ξ(ω))) − T (ω, Fα(ω, ξ(ω)))

∥

∥

= (1 − α)2 ‖ξ(ω) − Fα(ω, ξ(ω))‖ + α2
∥

∥T (ω, F 2
α(ω, ξ(ω))) − T (ω, Fα(ω, ξ(ω)))

∥

∥

6 (1 − α)2 ‖ξ(ω) − Fα(ω, ξ(ω))‖ + α2
∥

∥F 2
α(ω, ξ(ω)) − Fα(ω, ξ(ω))

∥

∥ .

So (3.3) is valid for m = 2 and for any ω ∈ Ω.
Assuming the validity of (3.3) for m = j and for any ω ∈ Ω, consider

α
∥

∥T j(ω, Fα(ω, ξ(ω))) − F 2
α(ω, ξ(ω))

∥

∥

= α
∥

∥T j(ω, Fα(ω, ξ(ω))) − (1 − α)Fα(ω, ξ(ω)) − αT (ω, F 2
α(ω, ξ(ω)))

∥

∥

= α

∥

∥

∥

∥

(1 − α)(T j(ω, Fα(ω, ξ(ω))) − Fα(ω, ξ(ω))) + α(T j(ω, Fα(ω, ξ(ω)))
− T (ω, F 2

α(ω, ξ(ω))))

∥

∥

∥

∥

6 α(1 − α)
∥

∥T j(ω, Fα(ω, ξ(ω))) − Fα(ω, ξ(ω))
∥

∥

+ α2
∥

∥T j(ω, Fα(ω, ξ(ω))) − T (ω, F 2
α(ω, ξ(ω)))

∥

∥

6 jα(1 − α) ‖Fα(ω, ξ(ω)) − T (ω, Fα(ω, ξ(ω)))‖

+ α2
∥

∥T j−1(ω, Fα(ω, ξ(ω))) − F 2
α(ω, ξ(ω))

∥

∥

6 jα(1 − α) ‖Fα(ω, ξ(ω)) − T (ω, Fα(ω, ξ(ω)))‖

+ α[(j − 1) − jα + αj ] ‖ξ(ω) − Fα(ω, ξ(ω))‖

+ αj+1
∥

∥Fα(ω, ξ(ω)) − F 2
α(ω, ξ(ω))

∥

∥

6 j(1 − α)2 + α2[(j − 1) − jα + αj ] ‖ξ(ω) − Fα(ω, ξ(ω))‖
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+ αj+1
∥

∥Fα(ω, ξ(ω)) − F 2
α(ω, ξ(ω))

∥

∥

6 [j − (j + 1)α + αj+1] ‖ξ(ω) − Fα(ω, ξ(ω))‖

+ αj+1
∥

∥Fα(ω, ξ(ω)) − F 2
α(ω, ξ(ω))

∥

∥ .

So by induction inequality (3.3) is valid for every ω ∈ Ω and m > 2.
Now consider, for ω ∈ Ω

∥

∥Fα(ω, ξ(ω)) − F 2
α(ω, ξ(ω))

∥

∥

6 (1 − α)a ‖Fα(ω, ξ(ω)) − ξ(ω)‖

+ α
∥

∥T n−1(ω, Fα(ω, ξ(ω))) − F 2
α(ω, ξ(ω))

∥

∥

6 (1 − α)a ‖Fα(ω, ξ(ω)) − ξ(ω)‖

+ [(n − 1) − nα + αn] ‖ξ(ω) − Fα(ω, ξ(ω))‖

+ αn
∥

∥Fα(ω, ξ(ω)) − F 2
α(ω, ξ(ω))

∥

∥ .

It further implies that

(1 − αn)
∥

∥Fα(ω, ξ(ω)) − F 2
α(ω, ξ(ω))

∥

∥

6 [(1 − α)a + (n − 1) − nα + αn] ‖ξ(ω) − Fα(ω, ξ(ω))‖ ,

for every ω ∈ Ω. Now we arrive at
∥

∥Fα(ω, ξ(ω)) − F 2
α(ω, ξ(ω))

∥

∥

6 (1 − αn)−1[(1 − α)a + (n − 1) − nα + αn] ‖ξ(ω) − Fα(ω, ξ(ω))‖

6 (a + n)(1 − α)(1 − αn)−1 − 1 ‖ξ(ω) − Fα(ω, ξ(ω))‖

= [(a + n)(

n−1
∑

i=0

αi)−1 − 1] ‖ξ(ω) − Fα(ω, ξ(ω))‖

= g(α) ‖ξ(ω) − Fα(ω, ξ(ω))‖ ,

for every ω ∈ Ω, where g(α) = [(a + n)(
∑n−1

i=0 αi)−1 − 1]. Since g is continuous
and decreasing for α ∈ (0, 1] with g(1) = a

n
< 1, there exists b ∈ (0, 1] such that

g(1) < 1 for α ∈ (b, 1]. For such α, the sequence of measurable mappings defined
by ηn(ω) = Fn

α (ω, ξ(ω)) → η(ω), for each ω ∈ Ω, η : Ω → F, being the limit of the
sequence of measurable functions, is also measurable (see remark 2.6). From (3.1)
it follows that η is a random fixed point of T. �

Example 3.2. Let Ω = [0, 1] and Σ be the sigma algebra of Lebesgue’s measurable
subsets of Ω. Take X = R with d(x, y) = |x − y| , for x, y ∈ R. Define random
operator T from Ω × X to X as, T (ω, x) = ω − x.

Define a fixed measurable mapping ξ : Ω → X as ξ(ω) = ω
3 , for every ω ∈ Ω.

Note that T is nonexpansive random operator. Since random operator equation
T 2(ω, ξ(ω)) = ξ(ω) holds for every ω ∈ Ω, therefore it is (2, 1)−rotative random
operator. Thus the conditions of Theorem 3.1 are satisfied. Moreover a measurable
mapping η : Ω → X defined as η(ω) = ω

2 , for every ω ∈ Ω, serve as a unique random
fixed point of T.
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Theorem 3.3. Let X be a separable metric space and T : Ω × X → X be a ǫ-
contractive random operator. Let ξ0 : Ω → X be any measurable mapping such that
a sequence {T n(ω, ξ0(ω))} has a point wise convergent subsequence of measurable
mappings. Then T has a random periodic point.

Proof. Let {T ni(ω, ξ0(ω))} be a subsequence of {T n(ω, ξ0(ω))} such that T ni(ω, ξ0

(ω)) → ξ(ω) for each ω ∈ Ω as ni → ∞ where {ni} is a strictly increasing sequence
of positive integers. The mapping ξ : Ω → X being point wise limit of sequence
of measurable mappings is measurable. Define sequence of measurable mappings
ξi : Ω → X as ξi(ω) = T ni(ω, ξ0(ω)). Given ǫ > 0, there exists an integer n0 such
that

d(ξi(ω), ξ(ω)) <
ǫ

4
, for i > n0 and ω ∈ Ω.

Put k = ni+1 − ni. Consider,

d(ξi+1(ω), T k(ω, ξ(ω))) = d(T k(ω, ξi(ω)), T k(ω, ξ(ω)))

< d(ξi(ω), ξ(ω)) <
ǫ

4
, for each ω ∈ Ω.

Now,

d(ξ(ω), T k(ω, ξ(ω)))

6 d(ξi+1(ω), T k(ω, ξ(ω))) + d(ξi+1(ω), ξ(ω))

<
ǫ

4
+

ǫ

4
=

ǫ

2
, for every ω ∈ Ω.

Now we claim that ξ is a random periodic point of T. To prove this, assume that
η : Ω → X be any measurable mapping such that η(ω) = T k(ω, ξ(ω)) but

η(ω) 6= ξ(ω), for some ω ∈ Ω. (3.4)

Which implies that 0 < d(η(ω), ξ(ω)) < ǫ. As T is a ǫ- contractive random operator
therefore for ω ∈ Ω for which (3.4) holds, we have

d(T (ω, ξ(ω)), T (ω, η(ω))) < d(ξ(ω), η(ω)).

Define h : Ω × X2 → R as, h(ω, x(ω), y(ω)) = d(T (ω,x(ω)),T (ω,y(ω)))
d(x(ω),y(ω)) , where x(ω) 6=

y(ω) ∈ X for each ω ∈ Ω. Now h(ω, ., .) is continuous at (ξ(ω), η(ω)) for every
ω ∈ Ω for which (3.4) is valid.

Take 0 < α < 1, then there exists δ > 0 such that x(ω) ∈ B(ξ(ω), δ) and
y(ω) ∈ B(η(ω), δ) gives

d(T (ω, x(ω)), T (ω, y(ω))) < αd(x(ω), y(ω)).

As, lim
r→∞

T k(ω, ξr(ω)) = T k(ω, ξ(ω)) = η(ω), for every ω ∈ Ω. So there exists

n1 > n0 such that
d(ξr(ω), ξ(ω)) < δ
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and
d(T k(ω, ξr(ω)), η(ω)) < δ,

for r > n1 and ω ∈ Ω. Hence we have

d(T (ω, ξr(ω)), T (ω, T k(ω, ξr(ω)))) < αd(ξr(ω), T k(ω, ξr(ω))). (3.5)

Consider,

d(ξr(ω), T k(ω, ξr(ω)))

6 d(ξr(ω), ξ(ω)) + d(ξ(ω), T k(ω, ξ(ω))) + d(T k(ω, ξ(ω)), T k(ω, ξr(ω)))

<
ǫ

4
+

ǫ

2
+

ǫ

4
= ǫ, (3.6)

for r > n1 > n0 and ω ∈ Ω for which (3.4) holds. Now using (3.5) and (3.6), we
have

d(T (ω, ξr(ω)), T (ω, T k(ω, ξr(ω))))

< αd(ξr(ω), T k(ω, ξr(ω))) < d(ξr(ω), T k(ω, ξr(ω))) < ǫ,

for r > n1. Since T is a ǫ- contractive random operator so for r > n1 and q > 0,
we have

d(T q(ω, ξr(ω)), T q(ω, T k(ω, ξr(ω))))

< d(ξr(ω), T k(ω, ξr(ω))) <
ǫ

α
.

Put q = nr+1 − nr, we have d(ξr+1(ω), T k(ω, ξr+1(ω))) < ǫ
α
. Hence,

d(ξs(ω), T k(ω, ξs(ω))) < ǫαs−r .

Now,

d(ξ(ω), η(ω)) 6 d(ξ(ω), ξs(ω)) + d(ξs(ω), T k(ω, ξs(ω)))

+d(T k(ω, ξs(ω)), η(ω)) → 0, as s → ∞.

for those ω ∈ Ω for which (3.4) holds. This contradiction concludes the result. �

Corollary 3.4. If in theorem 3.2, the random periodic point ξ (say) of T satisfies

d(ξ(ω), T (ω, ξ(ω))) < ǫ, for every ω ∈ Ω. (3.7)

Then ξ is a random fixed point of T.

Proof. Let k be the positive integer such that T k(ω, ξ(ω)) = ξ(ω), for every ω ∈ Ω.
If ξ is not a random fixed point of T, then ξ(ω) 6= T (ω, ξ(ω) for some ω ∈ Ω. Since
T is ǫ- contractive random operator, using (3.7) we have

d(ξ(ω), T (ω, ξ(ω))) = d(T k(ω, ξ(ω)), T k+1(ω, ξ(ω)))

< d(ξ(ω), T (ω, ξ(ω))).

This contradiction concludes the proof. �
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Remark 3.5. If X is a separable compact metric space and T : Ω×X → X is an
ǫ- contractive random operator. Then applying theorem 3.3, we conclude that T
has a random periodic point.

Theorem 3.6. Let X be a separable compact metric space and T : Ω × X → X
be an ǫ- contractive random operator. Then T has finitely many random periodic
points.

Proof. Let ξ, ζ : Ω → X be two random periodic points of T with ξ(ω) 6= ζ(ω)
and d(ξ(ω), ζ(ω)) < ǫ for some ω ∈ Ω. Let m, n > 1 be two integers such
that T m(ω, ξ(ω)) = ξ(ω) and T n(ω, ζ(ω)) = ζ(ω) for every ω ∈ Ω. Obviously
T mn(ω, ξ(ω)) = ξ(ω) and T mn(ω, ζ(ω)) = ζ(ω) for each ω ∈ Ω. Now consider,

d(ξ(ω), ζ(ω)) = d(T mn(ω, ξ(ω)), T mn(ω, ζ(ω)))

< d(ξ(ω), ζ(ω)),

which is contradiction. Therefore any two random periodic point of T must be
at least ǫ- apart. Compactness of X prevents us defining infinitely many random
periodic points from Ω × X to X. �

Acknowledgement. The authors are thankful to referee for precise remarks to
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