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Abstract

Our aim was to find a graphic numeric solution method for higher-order
differential equations and differential equation systems. To understand this
method the basic mathematical knowledge taught in the secondary school
must be enough, we have to complete it with geometric meaning of differential
quotient and generalization of knowledge about two-dimensional vector space.
We considered it important to make this method easy to algorithm. Such
method and its practical experience are shown in this paper.

MSC: 65L05, 65L06, 53A04,97D99

1. Introduction

It is well-known how important the differential equation models are in the math-
ematical description of different processes and systems.

Our aim is to find approximate methods which are based on the demonstration
and there is no need for higher mathematical knowledge to understand and apply
them. Moreover, it is easy to algorithmise them even in the possession of the
secondary school material.

The problem concerning this topic such as mechanical oscillations can be given
as an ordinary n-order differential equation:
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y(n)(t) = g(t, y(t), y(1)(t), y(2)(t), . . . , y(n−1)(t))

This can be transformed to explicit ordinary differential equation system (ab-
breviated as ODES in the followings):

ẋi(t) = fi(t, x1(t), x2(t), . . . , xn(t)) (i = 1, . . . , n). (1.1)

The solution for these equations, if it exist at all, can be given with xi(t) (i =
1, . . . , n) functions. In most cases to produce such solutions is a difficult task
which needs the knowledge of serious mathematical devices.

We consider the solutions n+ 1-dimensional space curve

x(t) = (t, x1(t), x2(t), . . . , xn(t)).

So (1.1) corresponds a vector to any point in n + 1-dimensional vector place,
and the vector is parallel with the tangent line at a given P point of the solution of
ODES. The only problem is that we do not know which points should be considered
belonging to the same curve among the points close to one another.

In certain cases there is no need to present all the possible solutions, that is all
curves, only the x(t) curve is necessary of which a given

P0(p0; p1; p2; . . . ; pn)

fits, and on the coordinates of which

xi(p0) = pi (i = 1, . . . , n)

is realized. In this case we can say that we solve an initial value problem. By
expressing an initial value problem we choose one of the curves which are solutions
for ODES. Other times we have to be contented with the approximate solution of
the problem.

In a geometrical point of view the solution for an initial value problem by
approximation is giving a P0, P1, . . . , Pk point serial the elements of which fit to
the chosen curve by desired accuracy. The serial of points (0 6 i 6 k) determines
a broken line the points of which approximate well the points of the curve.

The accuracy of the approximation is influenced by several factors. The most
important ones among them are the approximate algorithm and ODES itself.

This way, when we select the successive elements of the point serial we should
take the changes of the curve of the function into consideration.

2. Demonstration of an approximate method

Let (1.1),

P0(p0; p1; p2; . . . ; pn)
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point on coordinates of which

xi(p0) = pi (i = 1, . . . , n)

is realized and a suitable minor d distance. We would like to determine the broken
line running through P0 point and approaching the

x(t) = (t, x1(t), x2(t), . . . , xn(t))

function curve meaning the solution in the surroundings of P0 given point.
Let mp vector be parallel with tangent line to curves at P0 point. The coordi-

nates of mp are:
m

p
0 = 1

m
p
i = ẋi(p0) (i = 1, . . . , n).

Define p vector, where p is parallel with mp vector and ‖p‖=d, that is

p =
mp

‖mp‖
d. (2.1)
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Figure 1: The cp and the cq osculation circles in case n = 2 (in 3 dimension)

Define Q point, where
−−→
P0Q = p. Then coordinates of Q point can be calculated

(see figure 1). Let coordinates of Q point be Q(q0; q1; . . . ; qn).
Coordinates of mq vector, which is parallel with tangent line to curves at Q

point is:
m

q
0 = 1
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m
q
i = ẋi(q0) (i = 1, . . . , n).

If d is minor enough, then Q is close enough to the curve which is the solution for
the initial value problem. This way, mq well approximates the steepness of the
curve in one of its points near to Q.

Define q vector, where q is parallel mq vector and ‖q‖ = d, in other words

q =
mq

‖mq‖
d. (2.2)

If q vector is parallel with p vector, then we accept Q point as the next element
of serial of points, and we continue the approaching from this point.

Otherwise in the narrow surroundings of P0 the curve can be well approximated
in the plane, which p and q vectors define with a proper arc (cp), which is the
osculating circle of the curve in P0. Similarly, we can fit an arch (cq) in (p,q)
plane in the narrow surroundings of Q to the curve on which Q fits (see figure 2.a).
The lines which are perpendicular tangent lines in P0 and Q points intersect at
point C. This point can be considered to be the common central point of the two
circles (cp and cq) if the d is minor enough.

Define a and b vectors for coordinates of C point: a = p + λq, and let a be
perpendicular to p vector, and b = q + ωp and let b be perpendicular to q vector
(see figure 2.b; 2.c).

As p and a are perpendicular to each other, their scalar product is null, from
which λ can be calculated:

λ = −

∑n

i=0 p
2
i

∑n

i=0 piqi
.

Similar way, can we get value of ω from scalar product of q and b:

ω = −

∑n

i=0 q
2
i

∑n

i=0 piqi
.

On the one hand,
−−→
OC local vector can be written with

−−→
OP0 local vector and a

vector multiplies by a constant, on the other hand, with
−−→
OQ local vector and b

vector multiplied by an other constant. That is:

−−→
OC =

−−→
OP0 + φa =

−−→
OP0 + φp + φλq, (2.3)

−−→
OC =

−−→
OQ+ ψb =

−−→
OQ+ ψq + ψωp. (2.4)

We know, that
−−→
OQ−

−−→
OP0 = p.

Then in the (p,q) base are the value of φ and ψ can be calculated:

φ =
1

λω − 1
; ψ =

λ

λω − 1
. (2.5)
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Figure 2: The cp and cq osculation circles in the plane of p and q

Then coordinates of C point can also be calculated in both (p,q) base and n+ 1-
dimensional vector place.

Knowing coordinates of C point we can define P1 point, as a point of the line

defined by C and Q points and of cp arc, namely
−−→
CP1 vector is parallel with

−−→
CQ

vector,
∥

∥

∥

−−→
CP1

∥

∥

∥
=

∥

∥

∥

−−→
CP

∥

∥

∥
and P1 point is on the CQ half-line. So

−−→
OP1 =

−−→
OP0 +

−−→
P0C +

−−→
CP1,

where
−−→
OP0 and

−−→
OP1 are local vectors (see figure 1).
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To determine the following approximate point, the starting point will be P1 as
it was P0 earlier.

The promptness of the approximation depends on the selection of the value d.
If it is too big, C will not be a good approximation of the common centre of the
two osculating circles (cp and cq).

At the same time, if we find an appropriate C point then the distance of C and
P0 approximate the radius of the circle of curvature at P1. This can be used to get
a better defining of the value of d. If we can choose the value of d according to the
characteristics of the curve we can approximate the function more precisely, and
the algorithm will be faster.

To understand the operation of this method we only need the knowledge of
graphic meaning of the differential quotient as the exact definition is not used in
this case.

If we regard an ODES as a function which orders vector to the point of n+ 1-
dimensional place, where the vector is parallel with the tangent line at the point
then the point serial giving the solution can be written by the use of vector op-
eration based on the method mentioned above (in the followings OCM–osculating
circle method) which approximates the solution of initial value problem.

To give the algorithm we need the knowledge of the equation system and vector
operations (such as scalar product, vector addition).

3. Look at the problem in case n = 2

Let the next initial value problem be given

ẋ1(t) = f1(t, x1(t), x2(t)),

ẋ2(t) = fi(t, x1(t), x2(t)),

P0(p0;x1(p0);x2(p0)).

The solution of initial value problem is the x(t) = (t, x1(t), x2(t)) curve, which can
be approximated with P0, P1, . . . , Pk serial of points. The mp(1, ẋ1(p0), ẋ2(p0))
vector is parallel with tangent line of the curve at P0 point. Then coordinates of p

vector can be calculated on grounds (2.1).

If coordinates of Q point are Q(q0; q1; . . . ; qn) then mq(1, ẋ1(q0), ẋ2(q0)) is the
vector belonging to Q. From mq coordinates of q vector are calculatable ground
of (2.2). Value of λ and ω can be defined:

λ = −
p2
0 + p2

1 + p2
2

p1q1 + p1q1 + p2q2
,

ω = −
q20 + q21 + q22

p1q1 + p1q1 + p2q2
.
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Ground of these considering (2.3), (2.4) and (2.5) coordinates of C point can be

calculatable, from which coordinates of P1 are also calculatable grounding of
−−→
CP0,

−−→
CQ vectors and

−−→
OP1 =

−−→
OP0 +

−−→
P0C +

−−→
CP1

vector.

4. Examples

To illustrate the usefulness of algorithm we show two examples. Data for the
figures of the examples were provided by a program, which was made on the base
of above demonstrated algorithm. The initial values and parameters can be chosen
randomly, the values in the examples provide the demonstration of working of
algorithm. The aim was not to show the mathematical model.

4.1. Equation of damped oscillation

Generally:

x(2)(t) +
c

m
x(1)(t) + ω2x(t) = 0,

where c, m and ω are constants characteristic of the system. We get the next
equation system after transforming:

ẋ1(t) = x2(t),

ẋ2(t) = −
c

m
x2(t) − ω2x1(t).

Choose c = 1, m = 2 and ω = π in the example. Then

ẋ1(t) = x2(t),

ẋ2(t) = −
1

2
x2(t) − π2x1(t).

(4.1)

Define the approximated solution of equation system where the initial conditions
are

x1(0) = 0.28

x2(0) = 0.28

values by using OCM algorithm.

Compare our solution to numeric solution produced by Runge-Kutta4 method
of Maple program. In both methods we have approximated the solution (h = 350).
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Figure 3: Curve of meaning the solution of (4.1) equation system.
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Figure 4: Deflection-time function.

4.2. Lotka-Volterra model

Lotka-Volterra equations are suitable for modelling various occurrences, systems
for examples ecological systems, chemical processes. The model can be defined with
next equations:

ẋ1(t) = −ax1(t) + bx1(t)x2(t) −mx2
1(t),

ẋ2(t) = cx1(t) − dx1(t)x2(t) − lx2
2(t).
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The actual entity number of predatory is X1, prey is X2. a, b, c, d,m, l are constant
characteristic of the system. In our example we examine the system a = 2; b =
0.015; c = 1; d = 0.03; m = 0; l = 0.0005:

ẋ1(t) = −2x1(t) + 0.015x1(t)x2(t),

ẋ2(t) = x1(t) − 0.03x1(t)x2(t) − 0.0005x2
2(t).

(4.2)

Initial condition is:

x1(0) = 150,

x2(0) = 50.

Figure 5: Curve meaning the solution of (4.2) equation system.
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Figure 6: Trajectory of (4.2).
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Figure 7: Change of entity number of predators and preys in time.
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5. Conclusion

In case of various approximating method the solution can be approximated more
precisely by increasing of the applied basis points. But this makes the method more
difficult and needs more counting. Despite OCM, considers two basis points, the
method provides comparatively great precision. It can be explained by approxi-
mating the curve on short periods with arcs. The curve piece, which is between any
definite two basis points, can be approximated with an arc with suitable radius,
in other words, any point on the curve piece between Pi, Pi+1 points can be ap-
proximated with a suitable point of arch. Giving the solution by vector equation,
despite we give in n + 1 dimensional vector space, can be easy. As we reduce the
solution to a 2-dimensional case, we can avoid the solution of equation system,
which has more equation than two.
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