Annales Mathematicae et Informaticae 33 (2006) pp. 35-43 http://www.ektf.hu/tanszek/matematika/ami

Remarks on arithmetical functions $a_p(n), \ \gamma(n), \ \tau(n)$

Zoltán Fehér^a, Béla László^a, Martin Mačaj^b, Tibor Šalát^b

^aDepartment of Mathematics and Informatics, Faculty of Central European Studies Constantine the Philosopher University e-mail: zfeher@ukf.sk, blaszlo@ukf.sk

> ^bDepartment of Algebra, Geometry and Mathematics Education Faculty of Mathematics, Physics and Informatics Comenius University e-mail: martin.macaj@fmph.uniba.sk

> > Submitted 31 July 2005; Accepted 1 September 2006

Abstract

In this paper some properties of the arithmetical functions $a_p(n)$, $\gamma(n)$, $\tau(n)$ defined by Šalát in 1994 and Mycielski in 1951, respectively are investigated from the point of view of \mathcal{I} -convergence of sequences (\mathcal{I} -convergence was defined by Kostyrko, Šalát and Wilczynski in 2000).

1. Introduction

We shall study some properties of the \mathcal{I} -convergence of sequences of arithmetical functions $f: \mathbb{N} \to \mathbb{N}$, $a_p(n)$, $\gamma(n)$, $\tau(n)$. Elementary properties of the function $a_p(n)$ were studied in [6]. We shall extend these results with properties of \mathcal{I} -convergence of the sequence $(a_p(n))_{n=1}^{\infty}$.

We also want to investigate the asymptotic density of the sets $M_f = \{n : f(n) \mid n\}$ and the \mathcal{I} -convergence of arithmetical functions $\gamma(n), \tau(n)$ defined by Mycielski in [4].

As usual we put for $A \subset \mathbb{N}$: $A(n) = |\{1, 2, \dots, n\} \cap A|,$

$$\underline{d}(A) = \liminf \frac{A(n)}{n}, \overline{d}(A) = \limsup \frac{A(n)}{n}$$

the lower and upper density of A. If $\underline{d}(A) = \overline{d}(A)$, then we set

$$d(A) = \underline{d}(A) = \overline{d}(A), d(A) = \lim_{n \to \infty} \frac{A(n)}{n}$$

The system $\mathcal{I} \subseteq 2^{\mathbb{N}}$ is called an admissible ideal if \mathcal{I} is additive $(A, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I})$, hereditary $(A \in \mathcal{I}, B \subseteq A \Rightarrow B \in \mathcal{I})$ and contains all finite sets. In this paper we are interested in ideals $\mathcal{I}_f = \{A \subseteq \mathbb{N}, |A| < +\infty\}$, $\mathcal{I}_d = \{A \subseteq \mathbb{N} : d(A) = 0\}$, $\mathcal{I}_c = \{A \subseteq \mathbb{N} : \sum_{a \in A} a^{-1} < +\infty\}$ and $\mathcal{I}_c^q = \{A \subseteq \mathbb{N} : \sum_{a \in A} a^{-q} < +\infty\}$ for $q \in (0, 1)$. It is easy to see that for $q \leq q' \in (0, 1)$ the following inclusions hold:

$$\mathcal{I}_f \subseteq \mathcal{I}_c^q \subseteq \mathcal{I}_c^{q'} \subseteq \mathcal{I}_c \subseteq \mathcal{I}_d.$$

A given sequence $x = (x_n)_{n=1}^{\infty}$ of real numbers is said to be \mathcal{I} -convergent to $L \in R$, if for each $\varepsilon > 0$ we have $A_{\varepsilon} = \{n : |x_n - L| \ge \varepsilon\} \subseteq \mathcal{I}$ (shortly \mathcal{I} -lim $x_n = L$). The cases of \mathcal{I}_f -convergence and \mathcal{I}_d -convergence coincide with the usual convergence and the statistical convergence (see [3], [7]), respectively. Therefore we will write $\lim x_n = L$ and $\lim \operatorname{stat} x_n = L$ instead of \mathcal{I}_f -lim $x_n = L$ and \mathcal{I}_d -lim $x_n = L$, respectively.

In [7, Lemma 2.2] it is shown that

$$\mathcal{I} \subseteq \mathcal{I}' \Rightarrow \mathcal{I} - \lim x_n = L \Rightarrow \mathcal{I}' - \lim x_n = L.$$

Using this result we completely determine for which q the sequences $a_p(n)$, $\gamma(n)$ and $\tau(n)$ are \mathcal{I}_c^q -convergent.

2. *I*-convergence of $(a_p(n))_{n=1}^{\infty}$

Let p be a prime number. The function $a_p(n)$ is defined in the following way: $a_p(1) = 0$ and if n > 1, then $a_p(n)$ is the unique integer $j \ge 0$ satisfying $p^j | n$ but $p^{j+1} \nmid n$, i.e., $p^{a_p(n)} \parallel n$. At first we are going to generalize the result that the sequence $\left((\log p) \frac{a_p(n)}{\log n} \right)_{n=2}^{\infty}$ is statistically convergent to 0 [6, Th. 4.2].

Proposition 2.1. Let g(n) > 0 (n = 1, 2...) and $\lim_{n \to \infty} g(n) = +\infty$. We have

$$\limsup \operatorname{stat}(\log p) \frac{a_p(n)}{g(n)} = 0.$$

Proof. Let $\varepsilon > 0$. Put $A_{\varepsilon} = \{n > 1 : (\log p) \frac{a_p(n)}{g(n)} \ge \varepsilon\}$. We will show that $d(A_{\varepsilon}) = 0$. Let $\eta > 0$. Choose $m \in N$ such that

$$p^{-m} < \eta. \tag{2.1}$$

By the conditions of the proposition there exists an n_0 , such that for any $n > n_0$ we have

$$\frac{\varepsilon g(n)}{\log p} > m. \tag{2.2}$$

Let $n > n_0$ and $n \in A_{\varepsilon}$. It follows from (2.2) and the definition of A_{ε} that

$$(\log p)\frac{a_p(n)}{g(n)} \ge \varepsilon,$$

 $a_p(n) \ge \frac{\varepsilon g(n)}{\log p} > m.$

Hence for the numbers $n > n_0, n \in A_{\varepsilon}$ implies $p^m | n$. This leads to the conclusion that $A_{\varepsilon} \subseteq \{1, 2, \ldots, n_0\} \cup \{n > n_0 : p^m | n\}$ and considering (2.1) we get $\overline{d}(A_{\varepsilon}) \leq p^{-m} < \eta$. Since $\eta > 0$ is an arbitrary positive number, $d(A_{\varepsilon}) = 0$.

Remark 2.2. It is proved [6, Th. 4.1] that the sequence $\left((\log p)\frac{a_p(n)}{\log n}\right)_{n=2}^{\infty}$ is dense in interval (0, 1). But $\left((\log p)\frac{a_p(n)}{g(n)}\right)_{n=2}^{\infty}$ which is statistically convergent to zero if $g(n) \to +\infty$, is not always dense in (0, 1): For example if we define the function $g(n) = max\{1, \log^2 n\}$, then we have

$$\lim_{n \to \infty} (\log p) \frac{a_p(n)}{\log^2 n} = 0$$

and also

$$\limsup \operatorname{stat} \frac{a_p(n)}{\log^2 n} = 0,$$

but this sequence is not dense in (0, 1).

Theorem 2.3. The sequence $(a_p(n))_{n=1}^{\infty}$ is I_c -convergent to 0 and \mathcal{I}_c^q -divergent for $q \in (0, 1)$.

Proof. Let $\varepsilon > 0$ and denote

$$A_{\varepsilon} = \{ n \in \mathbb{N} : (\log p) \frac{a_p(n)}{\log n} \ge \varepsilon \}.$$

Let $q \in (0, 1)$. We want to show that

$$\sum_{n \in A_{\varepsilon}} \frac{1}{n} < +\infty \tag{2.3}$$

and for $0 < \varepsilon < 1 - q$

$$\sum_{n \in A_{\varepsilon}} \frac{1}{n^q} = +\infty.$$
(2.4)

For nonnegative integer i denote $A^i_{\varepsilon} = \{n \in A_{\varepsilon}; n = p^i u, (u, p) = 1\}$. We have $A^i_{\varepsilon} \cap A^j_{\varepsilon} = \emptyset$ for $i \neq j$ and for any t > 0

$$\sum_{n \in A_{\varepsilon}} \frac{1}{n^t} = \sum_{i=0}^{\infty} \sum_{n \in A_{\varepsilon}^i} \frac{1}{n^t}.$$
(2.5)

a) Consider that $n \in A^i_{\varepsilon}$ if and only if $n = p^i u$ where (u, p) = 1 and also

$$(\log p)\frac{a_p(n)}{\log n} \ge \varepsilon.$$

Then

$$(\log p)\frac{i}{i\log p + \log u} \geqslant \varepsilon$$

from which we obtain $u \leq p^{i\delta}$, where $\delta = (1 - \varepsilon)/\varepsilon$. Hence

$$\sum_{n \in A_{\varepsilon}^{i}} \frac{1}{n} \leqslant \frac{1}{p^{i}} \sum_{u \leqslant p^{i\delta}} \frac{1}{u} \leqslant \frac{1}{p^{i}} \left(1 + \int_{1}^{p^{i\delta}} dt/t \right) = \frac{1}{p^{i}} (1 + i\delta \log p) \leqslant A\delta \frac{i}{p^{i}} \log p$$

where A > 0 is only dependent on ε, p and not on *i*. The series $\sum_{i=0}^{\infty} \frac{i}{p^i}$ converges, this proves (2.3).

b) We write

$$\sum_{n \in A_{\varepsilon}^{i}} \frac{1}{n^{q}} = \frac{1}{p^{iq}} \sum_{\substack{u \leqslant p^{i\delta} \\ (u,p)=1}} \frac{1}{u^{q}}$$

Then we have

$$\begin{split} \sum_{\substack{u \leqslant p^{i\delta} \\ (u,p)=1}} \frac{1}{u^q} &= \sum_{u \leqslant p^{i\delta}} \frac{1}{u^q} - \sum_{k \leqslant p^{i\delta-1}} \frac{1}{(kp)^q} = \sum_{u \leqslant p^{i\delta}} \frac{1}{u^q} - \frac{1}{p^q} \sum_{k \leqslant p^{i\delta-1}} \frac{1}{k^q} \\ &= \left(1 - \frac{1}{p^q}\right) \sum_{v \leqslant p^{i\delta-1}} \frac{1}{v^q} + \sum_{p^{i\delta-1} < v \leqslant p^{i\delta}} \frac{1}{v^q} \\ &\geqslant \sum_{p^{i\delta-1} < v \leqslant p^{i\delta}} \frac{1}{v^q} \geqslant (p^{i\delta} - p^{i\delta-1}) \frac{1}{p^{i\delta q}} \\ &= p^{i\delta} (1 - \frac{1}{p}) \frac{1}{p^{i\delta q}} = (1 - \frac{1}{p}) p^{i\delta(1-q)}. \end{split}$$

Finally we obtain

$$\sum_{n\in A_{\varepsilon}}\frac{1}{n^q} = \sum_{i=0}^{\infty}\sum_{v\in A_{\varepsilon}^i}\frac{i}{v^q} \geqslant (1-\frac{1}{p})\sum_{i=0}^{\infty}\frac{1}{p^{i[q+(q-1)\delta]}}.$$

The series on the right-hand side diverges if $q + (q-1)\delta < 0$, i.e. $\varepsilon < 1 - q$. This proves the I_c^q -divergence of $(a_p(n))_{n=1}^{\infty}$.

3. On the functions $\gamma(n)$ and $\tau(n)$

In [4] there were new arithmetical functions defined and investigated in connection with the representation of natural numbers of the form $n = a^b$, where a, b are positive integers. Let

$$n = a_1^{b_1} = a_2^{b_2} = \dots = a_{\gamma(n)}^{b_{\gamma(n)}}$$
(3.1)

be all such representations of a given natural number n, where $a_i, b_i \in N$.

Denote by

$$\tau(n) = b_1 + \dots + b_{\gamma(n)}, (n > 1).$$

It is clear that $\gamma(n) \ge 1$, because for any n > 1 there exists a representation in the form n^1 .

We are going to study some new properties of the functions $\gamma(n)$ and $\tau(n)$. Put $T(n) = \gamma(2) + \cdots + \gamma(n), (n \ge 2)$. It is proved in [4], that

$$T(n) = \sum_{s=1}^{\lfloor \log_2 n \rfloor} \sqrt[s]{n} - \lfloor \log_2 n \rfloor = n + \sum_{s=2}^{\lfloor \log_2 n \rfloor} \sqrt[s]{n} - \lfloor \log_2 n \rfloor.$$
(3.2)

Remark 3.1. It is easy to show that the average order of the function $\gamma(n)$ is 1, i.e.,

$$\lim_{n \to \infty} \frac{T(n)}{n} = 1$$

It follows from (3.2) that

$$T(n) = n + T_1(n) - [\log_2 n],$$

where $T_1(n) = n + \sum_{s=2}^{\lfloor \log_2 n \rfloor} \sqrt[s]{n}$. Then simple estimations give

$$\left(\left[\log_2 n\right] - 1\right)\left[\left[\log_2 n\right] \sqrt{n}\right] \leqslant T_1(n) \leqslant \left(\left[\log_2 n\right] - 1\right)\sqrt{n}$$

from which we get $\lim_{n \to \infty} \frac{T_1(n)}{n} = 0.$

In papers [1, 2] sets of the form $M_f = \{n \in \mathbb{N} : f(n) \mid n\}, f : \mathbb{N} \to \mathbb{N}$ are investigated. For some of the known arithmetical functions the sets M_f have zero asymptotic density: e.g. the functions $\omega(n)$ (the number of prime divisors of n), $s_g(n)$ (the digital sum of n in the representation with base g), $\pi(n)$ (the number of primes not exceeding n).

Proposition 3.2. Put $A_k = \{n > 1 : n = p_1^{\alpha_1} \dots p_n^{\alpha_n}, (\alpha_1, \dots, \alpha_n) = k\}$ $(k = 1, 2, \dots)$. Then

$$d(A_1) = 1. (3.3)$$

Proof. Denote by $B = \bigcup_{k=2}^{\infty} A_k$, then $\mathbb{N} \setminus \{1\} = A_1 \cup B$, where $A_1 \cap B = \emptyset$. It can be easily shown that d(B) = 0, from which (3.3) follows immediately. The elements of the set B are only numbers of the form $t^s(t > 1, s > 1)$. Denote by H the set of all numbers $t^s(t > 1, s > 1)$. The series of reciprocal values of these numbers is equal to $\sum_{t=2}^{\infty} \sum_{s=2}^{\infty} \frac{1}{t^s}$ which is convergent to 1 (cf. [4]). Then we have d(H) = 0 and it implies that also d(B) = 0.

Let us investigate the asymptotic density of $M_{\gamma} = \{n : \gamma(n) \mid n\}$ and $M_{\tau} = \{n : \tau(n) \mid n\}$.

Proposition 3.3. We have

(i) $d(M_{\gamma}) = 1$, (ii) $d(M_{\tau}) = 1$.

Proof. (i) If $n \in A_1$, then evidently $\gamma(n) = 1$ and $n \in M_{\gamma}$. Thus $A_1 \subseteq M_{\gamma}$ and considering (3.3) we get $d(M_{\gamma}) = 1$. (ii) Similarly.

In [4, Th. 3, Th. 5] there are proofs of the following results:

$$\sum_{n=2}^{\infty} \frac{\gamma(n) - 1}{n} = 1, \sum_{n=2}^{\infty} \frac{\tau(n) - 1}{n} = 1 + \frac{\pi^2}{6}.$$

In connection with these results we have investigated the convergence of series for any $\alpha \in (0, 1)$

$$\sum_{n=2}^{\infty} \frac{\gamma(n) - 1}{n^{\alpha}}, \sum_{n=2}^{\infty} \frac{\tau(n) - 1}{n^{\alpha}}$$

Theorem 3.4. The series

$$\sum_{n=2}^{\infty} \frac{\gamma(n) - 1}{n^{\alpha}}$$

diverges for $0 < \alpha \leq \frac{1}{2}$ and converges for $\alpha > \frac{1}{2}$.

Proof. a) Let $0 < \alpha \leq \frac{1}{2}$. Put $K = \{k^2 : k > 1\}$. A simple estimation gives

$$\sum_{n=2}^{\infty} \frac{\gamma(n)-1}{n^{\alpha}} \ge \sum_{n \in K} \frac{\gamma(n)-1}{n^{\alpha}}.$$

Clearly $\gamma(n) \ge 2$ for $n \in K$. Therefore

$$\sum_{n=2}^{\infty} \frac{\gamma(n) - 1}{n^{\alpha}} \geqslant \sum_{n \in K} \frac{1}{n^{\alpha}} = \sum_{k=2}^{\infty} \frac{1}{k^{2\alpha}} \geqslant \sum_{k=2}^{\infty} \frac{1}{k} = +\infty.$$
(3.4)

b) Let $\alpha > \frac{1}{2}$. We will use the formula

$$\sum_{n=2}^{\infty} \frac{\gamma(n) - 1}{n^{\alpha}} = \sum_{k=2}^{\infty} \sum_{s=2}^{\infty} \frac{1}{k^{\alpha s}} = \sum_{k=2}^{\infty} \frac{1}{k^{\alpha}(k^{\alpha} - 1)}.$$
(3.5)

For a sufficiently large number k $(k > k_0)$ we have $\frac{k^{\alpha}}{k^{\alpha}-1} < 2$. We can estimate the series on the right-hand side of (3.5) with

$$\sum_{k=2}^{\infty} \frac{1}{k^{\alpha}(k^{\alpha}-1)} < \sum_{k=2}^{k_{0}} \frac{1}{k^{\alpha}(k^{\alpha}-1)} + 2 \sum_{k>k_{0}} \frac{1}{k^{2\alpha}}.$$

Since $2\alpha > 1$ we get

$$\sum_{n=2}^{\infty} \frac{\gamma(n) - 1}{n^{\alpha}} < +\infty.$$

Corollary 3.5. The sequence $\gamma(n)$ is

- (i) \mathcal{I}_c -convergent to 1,
- (ii) \mathcal{I}_c^q -divergent for $q \in (0, \frac{1}{2}]$ and \mathcal{I}_c -convergent to 1 for $q \in (\frac{1}{2}, 1)$.

Proof. (i) Let $\varepsilon > 0$. The set of numbers $\{n > 1 : |\gamma(n) - 1| \ge \varepsilon\}$ is a subset of $H = \{t^s, t > 1, s > 1\}$ and $\sum_{a \in H} \frac{1}{a} < +\infty$. From the definition of I_c -convergence (i) follows.

(ii) Let $\varepsilon > 0$ and denote $A_{\varepsilon} = \{n \in \mathbb{N} : |\gamma_n - 1| \ge \varepsilon\}$. When $0 < q \le \frac{1}{2}$ then for the numbers $n \in K$, $K = \{k^2 : k > 1\}$ considering (3.4) holds

$$\sum_{n \in A_{\varepsilon}} \frac{1}{n^{\alpha}} \ge \sum_{n \in K} \frac{1}{n^{\alpha}} \ge +\infty.$$

Therefore $\gamma(n)$ is \mathcal{I}_c^q -divergent. When $\frac{1}{2} < q < 1$, then $A_{\varepsilon} \subset H$ and

$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha}} \leqslant \sum_{k=2}^{\infty} \sum_{s=2}^{\infty} \frac{1}{k^{\alpha s}}.$$

The convergence of the series on the right-hand side we proved previously in Theorem 3.4. Therefore $\gamma(n)$ is \mathcal{I}_c -convergent to 1 if $q \in (\frac{1}{2}, 1)$.

Remark 3.6. We have $\limsup \tau \gamma(n) = 1$.

Theorem 3.7. The series

$$\sum_{n=2}^{\infty} \frac{\tau(n) - 1}{n^{\alpha}}$$

diverges for $0 < \alpha \leq \frac{1}{2}$ and converges for $\alpha > \frac{1}{2}$.

Proof. Let $0 < \alpha < 1$. We write the given series in the form

$$\sum_{n=2}^{\infty} \frac{\tau(n) - 1}{n^{\alpha}} = \sum_{k=2}^{\infty} \sum_{s=2}^{\infty} \frac{s}{k^{\alpha s}},$$
(3.6)

We shall try to use a similar method to Mycielski's proof of the convergence of $\sum_{n=2}^{\infty} \frac{\tau(n)-1}{n^{\alpha}}$ to explain the equality (3.6). Since $\frac{s}{k^{\alpha s}} = -\frac{k}{\alpha} \frac{d}{dt} (\frac{1}{t^{\alpha s}})_{t=k}$ and $\sum_{s=2}^{\infty} \frac{1}{t^{\alpha s}} = \frac{1}{t^{\alpha}(t^{\alpha}-1)}$ the right-hand side of (3.6) is equal to

$$\sum_{k=2}^{\infty} \frac{2k^{\alpha} - 1}{k^{\alpha}(k^{\alpha} - 1)^2} = \sum_{k=2}^{\infty} a_k.$$

For the k-th term of $\sum a_k$ we have

$$a_k = \frac{2 - \frac{1}{k^\alpha}}{(1 - \frac{1}{k^\alpha})^2} \cdot \frac{1}{k^{2\alpha}}$$

Denote by $b_k = \frac{1}{k^{2\alpha}}$ and consider that $\lim_{k \to \infty} \frac{a_k}{b_k} = 2$. Hence the series $\sum_{s=2}^{\infty} a_k$ converges (diverges) if and only if the series $\sum_{s=2}^{\infty} b_k$ converges (diverges). Since $\sum b_k$ is convergent (divergent) for any $\alpha > \frac{1}{2}$ ($0 < \alpha \leq \frac{1}{2}$) so does the series $\sum a_k$ and therefore the series $\sum \frac{\tau(n)-1}{n^{\alpha}}$.

Corollary 3.8. The sequence $\tau(n)$ is

- (i) \mathcal{I}_c -convergent to 1,
- (ii) \mathcal{I}_c^q -divergent for $q \in (0, \frac{1}{2}]$ and \mathcal{I}_c -convergent to 1 for $q \in (\frac{1}{2}, 1)$.

Proof. Similar to the proof of Corollary 3.5.

Remark 3.9. We have $\limsup \tau(n) = 1$.

References

- COOPER, C. N., KENNEDY, R. E., Chebyshev's inequality and natural density, AMM 96 (1998) 118–124.
- [2] ERDŐS, P., Pomerance, C., On a theorem of Besicovitch: values of arithmetical functions that divide their arguments, Indian J. Math. 32 (1990) 279–287.
- [3] KOSTYRKO, P., ŠALÁT, T., WILCZYNSKI, W., *I-convergence*, Real Anal. Exchange 26 (2000–2001), 669–686.

- [5] POWEL, B. J., ŠALÁT, T., Convergence of subseries of the harmonic series and asymptotic densities of sets of positive integers, Publ. de L'institut math., vol. 50. (64) (1991) 60-70.
- [6] ŠALÁT, T., On the function a_p , $p^{a_p(n)} \parallel n (n > 1)$, Math. Slov. 44 (1994) No. 2, 143–151.
- [7] ŠALÁT, T., TOMA, V., A classical Olivier's theorem and statistical convergence, Annales Math. B. Pascal 10 (2003) 305–313.
- [8] SCHINZEL, A., ŠALÁT, T., Remarks on maximum and minimum exponents in factoring, Math. Slov. 44 (1994) 505–514.

Zoltán Fehér, Béla László

Department of Mathematics and Informatics Faculty of Central European Studies Constantine the Philosopher University Tr. A. Hlinku 1 949 74 Nitra Slovak Rep.

Martin Mačaj, Tibor Šalát

Department of Algebra, Geometry and Mathematics Education Faculty of Mathematics, Physics and Informatics Comenius University Mlynska Dolina 842 48 Bratislava Slovak Rep.