Remarks on arithmetical functions

$$
a_{p}(n), \gamma(n), \tau(n)
$$

Zoltán Fehér ${ }^{a}$, Béla László ${ }^{a}$, Martin Mačaj ${ }^{b}$, Tibor Šalát ${ }^{b}$
${ }^{a}$ Department of Mathematics and Informatics, Faculty of Central European Studies
Constantine the Philosopher University e-mail: zfeher@ukf.sk, blaszlo@ukf.sk
${ }^{b}$ Department of Algebra, Geometry and Mathematics Education
Faculty of Mathematics, Physics and Informatics
Comenius University
e-mail: martin.macaj@fmph.uniba.sk

Submitted 31 July 2005; Accepted 1 September 2006

Abstract

In this paper some properties of the arithmetical functions $a_{p}(n), \gamma(n)$, $\tau(n)$ defined by Šalát in 1994 and Mycielski in 1951, respectively are investigated from the point of view of \mathcal{I}-convergence of sequences (\mathcal{I}-convergence was defined by Kostyrko, Šalát and Wilczynski in 2000).

1. Introduction

We shall study some properties of the \mathcal{I}-convergence of sequences of arithmetical functions $f: \mathbb{N} \rightarrow \mathbb{N}, a_{p}(n), \gamma(n), \tau(n)$. Elementary properties of the function $a_{p}(n)$ were studied in [6]. We shall extend these results with properties of \mathcal{I}-convergence of the sequence $\left(a_{p}(n)\right)_{n=1}^{\infty}$.

We also want to investigate the asymptotic density of the sets $M_{f}=\{n: f(n) \mid$ $n\}$ and the \mathcal{I}-convergence of arithmetical functions $\gamma(n), \tau(n)$ defined by Mycielski in [4].

As usual we put for $A \subset \mathbb{N}: A(n)=|\{1,2, \ldots n\} \cap A|$,

$$
\underline{d}(A)=\liminf \frac{A(n)}{n}, \bar{d}(A)=\limsup \frac{A(n)}{n}
$$

the lower and upper density of A. If $\underline{d}(A)=\bar{d}(A)$, then we set

$$
d(A)=\underline{d}(A)=\bar{d}(A), d(A)=\lim _{n \rightarrow \infty} \frac{A(n)}{n} .
$$

The system $\mathcal{I} \subseteq 2^{\mathbb{N}}$ is called an admissible ideal if \mathcal{I} is additive $(A, B \in \mathcal{I} \Rightarrow$ $A \cup B \in \mathcal{I})$, hereditary $(A \in \mathcal{I}, B \subseteq A \Rightarrow B \in \mathcal{I})$ and contains all finite sets. In this paper we are interested in ideals $\mathcal{I}_{f}=\{A \subseteq \mathbb{N},|A|<+\infty\}, \mathcal{I}_{d}=\{A \subseteq \mathbb{N}$: $d(A)=0\}, \mathcal{I}_{c}=\left\{A \subseteq \mathbb{N}: \sum_{a \in A} a^{-1}<+\infty\right\}$ and $\mathcal{I}_{c}^{q}=\left\{A \subseteq \mathbb{N}: \sum_{a \in A} a^{-q}<+\infty\right\}$ for $q \in(0,1)$. It is easy to see that for $q \leqslant q^{\prime} \in(0,1)$ the following inclusions hold:

$$
\mathcal{I}_{f} \subseteq \mathcal{I}_{c}^{q} \subseteq \mathcal{I}_{c}^{q^{\prime}} \subseteq \mathcal{I}_{c} \subseteq \mathcal{I}_{d}
$$

A given sequence $x=\left(x_{n}\right)_{n=1}^{\infty}$ of real numbers is said to be \mathcal{I}-convergent to $L \in R$, if for each $\varepsilon>0$ we have $A_{\varepsilon}=\left\{n:\left|x_{n}-L\right| \geqslant \varepsilon\right\} \subseteq \mathcal{I}$ (shortly \mathcal{I} - $\left.\lim x_{n}=L\right)$. The cases of \mathcal{I}_{f}-convergence and \mathcal{I}_{d}-convergence coincide with the usual convergence and the statistical convergence (see [3], [7]), respectively. Therefore we will write $\lim x_{n}=L$ and $\operatorname{limstat} x_{n}=L$ instead of $\mathcal{I}_{f}-\lim x_{n}=L$ and $\mathcal{I}_{d}-\lim x_{n}=L$, respectively.

In [7, Lemma 2.2] it is shown that

$$
\mathcal{I} \subseteq \mathcal{I}^{\prime} \Rightarrow \mathcal{I}-\lim x_{n}=L \Rightarrow \mathcal{I}^{\prime}-\lim x_{n}=L
$$

Using this result we completely determine for which q the sequences $a_{p}(n), \gamma(n)$ and $\tau(n)$ are \mathcal{I}_{c}^{q}-convergent.

2. \mathcal{I}-convergence of $\left(a_{p}(n)\right)_{n=1}^{\infty}$

Let p be a prime number. The function $a_{p}(n)$ is defined in the following way: $a_{p}(1)=0$ and if $n>1$, then $a_{p}(n)$ is the unique integer $j \geqslant 0$ satisfying $p^{j} \mid n$ but $p^{j+1} \nmid n$, i.e., $p^{a_{p}(n)} \| n$. At first we are going to generalize the result that the sequence $\left((\log p) \frac{a_{p}(n)}{\log n}\right)_{n=2}^{\infty}$ is statistically convergent to 0 [6, Th. 4.2].

Proposition 2.1. Let $g(n)>0(n=1,2 \ldots)$ and $\lim _{n \rightarrow \infty} g(n)=+\infty$. We have

$$
\lim \operatorname{stat}(\log p) \frac{a_{p}(n)}{g(n)}=0
$$

Proof. Let $\varepsilon>0$. Put $A_{\varepsilon}=\left\{n>1:(\log p) \frac{a_{p}(n)}{g(n)} \geqslant \varepsilon\right\}$. We will show that $d\left(A_{\varepsilon}\right)=0$. Let $\eta>0$. Choose $m \in N$ such that

$$
\begin{equation*}
p^{-m}<\eta . \tag{2.1}
\end{equation*}
$$

By the conditions of the proposition there exists an n_{0}, such that for any $n>n_{0}$ we have

$$
\begin{equation*}
\frac{\varepsilon g(n)}{\log p}>m \tag{2.2}
\end{equation*}
$$

Let $n>n_{0}$ and $n \in A_{\varepsilon}$. It follows from (2.2) and the definition of A_{ε} that

$$
\begin{gathered}
(\log p) \frac{a_{p}(n)}{g(n)} \geqslant \varepsilon, \\
a_{p}(n) \geqslant \frac{\varepsilon g(n)}{\log p}>m .
\end{gathered}
$$

Hence for the numbers $n>n_{0}, n \in A_{\varepsilon}$ implies $p^{m} \mid n$. This leads to the conclusion that $A_{\varepsilon} \subseteq\left\{1,2, \ldots, n_{0}\right\} \cup\left\{n>n_{0}: p^{m} \mid n\right\}$ and considering (2.1) we get $\bar{d}\left(A_{\varepsilon}\right) \leqslant$ $p^{-m}<\eta$. Since $\eta>0$ is an arbitrary positive number, $d\left(A_{\varepsilon}\right)=0$.

Remark 2.2. It is proved [6, Th. 4.1] that the sequence $\left((\log p) \frac{a_{p}(n)}{\log n}\right)_{n=2}^{\infty}$ is dense in interval $(0,1)$. But $\left((\log p) \frac{a_{p}(n)}{g(n)}\right)_{n=2}^{\infty}$ which is statistically convergent to zero if $g(n) \rightarrow+\infty$, is not always dense in $(0,1)$: For example if we define the function $g(n)=\max \left\{1, \log ^{2} n\right\}$, then we have

$$
\lim _{n \rightarrow \infty}(\log p) \frac{a_{p}(n)}{\log ^{2} n}=0
$$

and also

$$
\lim \operatorname{stat} \frac{a_{p}(n)}{\log ^{2} n}=0
$$

but this sequence is not dense in $(0,1)$.
Theorem 2.3. The sequence $\left(a_{p}(n)\right)_{n=1}^{\infty}$ is I_{c}-convergent to 0 and \mathcal{I}_{c}^{q}-divergent for $q \in(0,1)$.

Proof. Let $\varepsilon>0$ and denote

$$
A_{\varepsilon}=\left\{n \in \mathbb{N}:(\log p) \frac{a_{p}(n)}{\log n} \geqslant \varepsilon\right\}
$$

Let $q \in(0,1)$. We want to show that

$$
\begin{equation*}
\sum_{n \in A_{\varepsilon}} \frac{1}{n}<+\infty \tag{2.3}
\end{equation*}
$$

and for $0<\varepsilon<1-q$

$$
\begin{equation*}
\sum_{n \in A_{\varepsilon}} \frac{1}{n^{q}}=+\infty \tag{2.4}
\end{equation*}
$$

For nonnegative integer i denote $A_{\varepsilon}^{i}=\left\{n \in A_{\varepsilon} ; n=p^{i} u,(u, p)=1\right\}$. We have $A_{\varepsilon}^{i} \cap A_{\varepsilon}^{j}=\emptyset$ for $i \neq j$ and for any $t>0$

$$
\begin{equation*}
\sum_{n \in A_{\varepsilon}} \frac{1}{n^{t}}=\sum_{i=0}^{\infty} \sum_{n \in A_{\varepsilon}^{i}} \frac{1}{n^{t}} \tag{2.5}
\end{equation*}
$$

a) Consider that $n \in A_{\varepsilon}^{i}$ if and only if $n=p^{i} u$ where $(u, p)=1$ and also

$$
(\log p) \frac{a_{p}(n)}{\log n} \geqslant \varepsilon .
$$

Then

$$
(\log p) \frac{i}{i \log p+\log u} \geqslant \varepsilon
$$

from which we obtain $u \leqslant p^{i \delta}$, where $\delta=(1-\varepsilon) / \varepsilon$. Hence

$$
\sum_{n \in A_{\varepsilon}^{i}} \frac{1}{n} \leqslant \frac{1}{p^{i}} \sum_{u \leqslant p^{i \delta}} \frac{1}{u} \leqslant \frac{1}{p^{i}}\left(1+\int_{1}^{p^{i \delta}} d t / t\right)=\frac{1}{p^{i}}(1+i \delta \log p) \leqslant A \delta \frac{i}{p^{i}} \log p
$$

where $A>0$ is only dependent on ε, p and not on i. The series $\sum_{i=0}^{\infty} \frac{i}{p^{i}}$ converges, this proves (2.3).
b) We write

$$
\sum_{n \in A_{\varepsilon}^{i}} \frac{1}{n^{q}}=\frac{1}{p^{i q}} \sum_{\substack{u \leqslant p^{i \delta} \\(u, p)=1}} \frac{1}{u^{q}} .
$$

Then we have

$$
\begin{aligned}
\sum_{\substack{u \leqslant p^{i \delta} \\
(u, p)=1}} \frac{1}{u^{q}} & =\sum_{u \leqslant p^{i \delta}} \frac{1}{u^{q}}-\sum_{k \leqslant p^{i \delta-1}} \frac{1}{(k p)^{q}}=\sum_{u \leqslant p^{i \delta}} \frac{1}{u^{q}}-\frac{1}{p^{q}} \sum_{k \leqslant p^{i \delta-1}} \frac{1}{k^{q}} \\
& =\left(1-\frac{1}{p^{q}}\right) \sum_{v \leqslant p^{i \delta-1}} \frac{1}{v^{q}}+\sum_{p^{i \delta-1}<v \leqslant p^{i \delta}} \frac{1}{v^{q}} \\
& \geqslant \sum_{p^{i \delta-1<v \leqslant p^{i \delta}}} \frac{1}{v^{q}} \geqslant\left(p^{i \delta}-p^{i \delta-1}\right) \frac{1}{p^{i \delta q}} \\
& =p^{i \delta}\left(1-\frac{1}{p}\right) \frac{1}{p^{i \delta q}}=\left(1-\frac{1}{p}\right) p^{i \delta(1-q)} .
\end{aligned}
$$

Finally we obtain

$$
\sum_{n \in A_{\varepsilon}} \frac{1}{n^{q}}=\sum_{i=0}^{\infty} \sum_{v \in A_{\varepsilon}^{i}} \frac{i}{v^{q}} \geqslant\left(1-\frac{1}{p}\right) \sum_{i=0}^{\infty} \frac{1}{p^{i[q+(q-1) \delta]}}
$$

The series on the right-hand side diverges if $q+(q-1) \delta<0$, i.e. $\varepsilon<1-q$. This proves the I_{c}^{q}-divergence of $\left(a_{p}(n)\right)_{n=1}^{\infty}$.

3. On the functions $\gamma(n)$ and $\tau(n)$

In [4] there were new arithmetical functions defined and investigated in connection with the representation of natural numbers of the form $n=a^{b}$, where a, b are positive integers. Let

$$
\begin{equation*}
n=a_{1}^{b_{1}}=a_{2}^{b_{2}}=\cdots=a_{\gamma(n)}^{b_{\gamma(n)}} \tag{3.1}
\end{equation*}
$$

be all such representations of a given natural number n, where $a_{i}, b_{i} \in N$.
Denote by

$$
\tau(n)=b_{1}+\cdots+b_{\gamma(n)},(n>1)
$$

It is clear that $\gamma(n) \geqslant 1$, because for any $n>1$ there exists a representation in the form n^{1}.

We are going to study some new properties of the functions $\gamma(n)$ and $\tau(n)$.
Put $T(n)=\gamma(2)+\cdots+\gamma(n),(n \geqslant 2)$. It is proved in [4], that

$$
\begin{equation*}
T(n)=\sum_{s=1}^{\left[\log _{2} n\right]}[\sqrt[s]{n}]-\left[\log _{2} n\right]=n+\sum_{s=2}^{\left[\log _{2} n\right]}[\sqrt[s]{n}]-\left[\log _{2} n\right] \tag{3.2}
\end{equation*}
$$

Remark 3.1. It is easy to show that the average order of the function $\gamma(n)$ is 1 , i.e.,

$$
\lim _{n \rightarrow \infty} \frac{T(n)}{n}=1
$$

It follows from (3.2) that

$$
T(n)=n+T_{1}(n)-\left[\log _{2} n\right]
$$

where $T_{1}(n)=n+\sum_{s=2}^{\left[\log _{2} n\right]}[\sqrt[s]{n}]$. Then simple estimations give

$$
\left(\left[\log _{2} n\right]-1\right)[\sqrt[{\left.\left[\log _{2} \sqrt[n]\right]{n}\right] \leqslant T_{1}(n) \leqslant\left(\left[\log _{2} n\right]-1\right) \sqrt{n}} .]{ }
$$

from which we get $\lim _{n \rightarrow \infty} \frac{T_{1}(n)}{n}=0$.
In papers $[1,2]$ sets of the form $M_{f}=\{n \in \mathbb{N}: f(n) \mid n\}, f: \mathbb{N} \rightarrow \mathbb{N}$ are investigated. For some of the known arithmetical functions the sets M_{f} have zero asymptotic density: e.g. the functions $\omega(n)$ (the number of prime divisors of n), $s_{g}(n)$ (the digital sum of n in the representation with base g), $\pi(n)$ (the number of primes not exceeding n).

Proposition 3.2. Put $A_{k}=\left\{n>1: n=p_{1}^{\alpha_{1}} \ldots p_{n}^{\alpha_{n}},\left(\alpha_{1}, \ldots, \alpha_{n}\right)=k\right\} \quad(k=$ $1,2, \ldots)$. Then

$$
\begin{equation*}
d\left(A_{1}\right)=1 \tag{3.3}
\end{equation*}
$$

Proof. Denote by $B=\cup_{k=2}^{\infty} A_{k}$, then $\mathbb{N} \backslash\{1\}=A_{1} \cup B$, where $A_{1} \cap B=\emptyset$. It can be easily shown that $d(B)=0$, from which (3.3) follows immediately. The elements of the set B are only numbers of the form $t^{s}(t>1, s>1)$. Denote by H the set of all numbers $t^{s}(t>1, s>1)$. The series of reciprocal values of these numbers is equal to $\sum_{t=2}^{\infty} \sum_{s=2}^{\infty} \frac{1}{t^{s}}$ which is convergent to 1 (cf. [4]). Then we have $d(H)=0$ and it implies that also $d(B)=0$.

Let us investigate the asymptotic density of $M_{\gamma}=\{n: \gamma(n) \mid n\}$ and $M_{\tau}=$ $\{n: \tau(n) \mid n\}$.

Proposition 3.3. We have
(i) $d\left(M_{\gamma}\right)=1$,
(ii) $d\left(M_{\tau}\right)=1$.

Proof. (i) If $n \in A_{1}$, then evidently $\gamma(n)=1$ and $n \in M_{\gamma}$. Thus $A_{1} \subseteq M_{\gamma}$ and considering (3.3) we get $d\left(M_{\gamma}\right)=1$.
(ii) Similarly.

In $[4$, Th. 3, Th. 5] there are proofs of the following results:

$$
\sum_{n=2}^{\infty} \frac{\gamma(n)-1}{n}=1, \sum_{n=2}^{\infty} \frac{\tau(n)-1}{n}=1+\frac{\pi^{2}}{6}
$$

In connection with these results we have investigated the convergence of series for any $\alpha \in(0,1)$

$$
\sum_{n=2}^{\infty} \frac{\gamma(n)-1}{n^{\alpha}}, \sum_{n=2}^{\infty} \frac{\tau(n)-1}{n^{\alpha}}
$$

Theorem 3.4. The series

$$
\sum_{n=2}^{\infty} \frac{\gamma(n)-1}{n^{\alpha}}
$$

diverges for $0<\alpha \leqslant \frac{1}{2}$ and converges for $\alpha>\frac{1}{2}$.
Proof. a) Let $0<\alpha \leqslant \frac{1}{2}$. Put $K=\left\{k^{2}: k>1\right\}$. A simple estimation gives

$$
\sum_{n=2}^{\infty} \frac{\gamma(n)-1}{n^{\alpha}} \geqslant \sum_{n \in K} \frac{\gamma(n)-1}{n^{\alpha}}
$$

Clearly $\gamma(n) \geqslant 2$ for $n \in K$. Therefore

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{\gamma(n)-1}{n^{\alpha}} \geqslant \sum_{n \in K} \frac{1}{n^{\alpha}}=\sum_{k=2}^{\infty} \frac{1}{k^{2 \alpha}} \geqslant \sum_{k=2}^{\infty} \frac{1}{k}=+\infty \tag{3.4}
\end{equation*}
$$

b) Let $\alpha>\frac{1}{2}$. We will use the formula

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{\gamma(n)-1}{n^{\alpha}}=\sum_{k=2}^{\infty} \sum_{s=2}^{\infty} \frac{1}{k^{\alpha s}}=\sum_{k=2}^{\infty} \frac{1}{k^{\alpha}\left(k^{\alpha}-1\right)} \tag{3.5}
\end{equation*}
$$

For a sufficiently large number $k\left(k>k_{0}\right)$ we have $\frac{k^{\alpha}}{k^{\alpha}-1}<2$. We can estimate the series on the right-hand side of (3.5) with

$$
\sum_{k=2}^{\infty} \frac{1}{k^{\alpha}\left(k^{\alpha}-1\right)}<\sum_{k=2}^{k_{0}} \frac{1}{k^{\alpha}\left(k^{\alpha}-1\right)}+2 \sum_{k>k_{0}} \frac{1}{k^{2 \alpha}} .
$$

Since $2 \alpha>1$ we get

$$
\sum_{n=2}^{\infty} \frac{\gamma(n)-1}{n^{\alpha}}<+\infty
$$

Corollary 3.5. The sequence $\gamma(n)$ is
(i) \mathcal{I}_{c}-convergent to 1 ,
(ii) \mathcal{I}_{c}^{q}-divergent for $q \in\left(0, \frac{1}{2}\right]$ and \mathcal{I}_{c}-convergent to 1 for $q \in\left(\frac{1}{2}, 1\right)$.

Proof. (i) Let $\varepsilon>0$. The set of numbers $\{n>1:|\gamma(n)-1| \geqslant \varepsilon\}$ is a subset of $H=\left\{t^{s}, t>1, s>1\right\}$ and $\sum_{a \in H} \frac{1}{a}<+\infty$. From the definition of I_{c}-convergence (i) follows.
(ii) Let $\varepsilon>0$ and denote $A_{\varepsilon}=\left\{n \in \mathbb{N}:\left|\gamma_{n}-1\right| \geqslant \varepsilon\right\}$. When $0<q \leqslant \frac{1}{2}$ then for the numbers $n \in K, K=\left\{k^{2}: k>1\right\}$ considering (3.4) holds

$$
\sum_{n \in A_{\varepsilon}} \frac{1}{n^{\alpha}} \geqslant \sum_{n \in K} \frac{1}{n^{\alpha}} \geqslant+\infty
$$

Therefore $\gamma(n)$ is \mathcal{I}_{c}^{q}-divergent. When $\frac{1}{2}<q<1$, then $A_{\varepsilon} \subset H$ and

$$
\sum_{n=2}^{\infty} \frac{1}{n^{\alpha}} \leqslant \sum_{k=2}^{\infty} \sum_{s=2}^{\infty} \frac{1}{k^{\alpha s}}
$$

The convergence of the series on the right-hand side we proved previously in Theorem 3.4. Therefore $\gamma(n)$ is \mathcal{I}_{c}-convergent to 1 if $q \in\left(\frac{1}{2}, 1\right)$.

Remark 3.6. We have $\lim \operatorname{stat} \gamma(n)=1$.
Theorem 3.7. The series

$$
\sum_{n=2}^{\infty} \frac{\tau(n)-1}{n^{\alpha}}
$$

diverges for $0<\alpha \leqslant \frac{1}{2}$ and converges for $\alpha>\frac{1}{2}$.

Proof. Let $0<\alpha<1$. We write the given series in the form

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{\tau(n)-1}{n^{\alpha}}=\sum_{k=2}^{\infty} \sum_{s=2}^{\infty} \frac{s}{k^{\alpha s}}, \tag{3.6}
\end{equation*}
$$

We shall try to use a similar method to Mycielski's proof of the convergence of $\sum_{n=2}^{\infty} \frac{\tau(n)-1}{n^{\alpha}}$ to explain the equality (3.6). Since $\frac{s}{k^{\alpha s}}=-\frac{k}{\alpha} \frac{d}{d t}\left(\frac{1}{t^{\alpha s}}\right)_{t=k}$ and $\sum_{s=2}^{\infty} \frac{1}{t^{\alpha s}}=$ $\frac{1}{t^{\alpha}\left(t^{\alpha}-1\right)}$ the right-hand side of (3.6) is equal to

$$
\sum_{s=2}^{\infty} \frac{2 k^{\alpha}-1}{k^{\alpha}\left(k^{\alpha}-1\right)^{2}}=\sum_{s=2}^{\infty} a_{k} .
$$

For the k-th term of $\sum a_{k}$ we have

$$
a_{k}=\frac{2-\frac{1}{k^{\alpha}}}{\left(1-\frac{1}{k^{\alpha}}\right)^{2}} \cdot \frac{1}{k^{2 \alpha}} .
$$

Denote by $b_{k}=\frac{1}{k^{2 \alpha}}$ and consider that $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=2$. Hence the series $\sum_{s=2}^{\infty} a_{k}$ converges (diverges) if and only if the series $\sum_{s=2}^{\infty} b_{k}$ converges (diverges). Since $\sum b_{k}$ is convergent (divergent) for any $\alpha>\frac{1}{2}\left(0<\alpha \leqslant \frac{1}{2}\right)$ so does the series $\sum a_{k}$ and therefore the series $\sum \frac{\tau(n)-1}{n^{\alpha}}$.

Corollary 3.8. The sequence $\tau(n)$ is
(i) \mathcal{I}_{c}-convergent to 1 ,
(ii) \mathcal{I}_{c}^{q}-divergent for $q \in\left(0, \frac{1}{2}\right]$ and \mathcal{I}_{c}-convergent to 1 for $q \in\left(\frac{1}{2}, 1\right)$.

Proof. Similar to the proof of Corollary 3.5.
Remark 3.9. We have $\lim \operatorname{stat} \tau(n)=1$.

References

[1] Cooper, C. N., Kennedy, R. E., Chebyshev's inequality and natural density, AMM 96 (1998) 118-124.
[2] Erdôs, P., Pomerance, C., On a theorem of Besicovitch: values of arithmetical functions that divide their arguments, Indian J. Math. 32 (1990) 279-287.
[3] Kostyrko, P., Šalát, T., Wilczynski, W., I-convergence, Real Anal. Exchange 26 (2000-2001), 669-686.
[4] Mycielski, J., Sur les reprĆsentations des nombres naturels par des puissances a base et exposant naturels, Coll. Math. II (1951) 254-260.
[5] Powel, B. J., Šalát, T., Convergence of subseries of the harmonic series and asymptotic densities of sets of positive integers, Publ. de L'institut math., vol. 50. (64) (1991) 60-70.
[6] ŠAlÁt, T., On the function $a_{p}, p^{a_{p}(n)} \| n(n>1)$, Math. Slov. 44 (1994) No. 2, 143-151.
[7] ŠAlát, T., Toma, V., A classical Olivier's theorem and statistical convergence, Annales Math. B. Pascal 10 (2003) 305-313.
[8] Schinzel, A., Šalát, T., Remarks on maximum and minimum exponents in factoring, Math. Slov. 44 (1994) 505-514.

Zoltán Fehér, Béla László

Department of Mathematics and Informatics
Faculty of Central European Studies
Constantine the Philosopher University
Tr. A. Hlinku 1
94974 Nitra
Slovak Rep.

Martin Mačaj, Tibor Šalát

Department of Algebra, Geometry and Mathematics Education
Faculty of Mathematics, Physics and Informatics
Comenius University
Mlynska Dolina
84248 Bratislava
Slovak Rep.

