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Abstract

In this paper some properties of the arithmetical functions ap(n), γ(n),
τ(n) defined by Šalát in 1994 and Mycielski in 1951, respectively are inves-
tigated from the point of view of I-convergence of sequences (I-convergence
was defined by Kostyrko, Šalát and Wilczynski in 2000).

1. Introduction

We shall study some properties of the I–convergence of sequences of arith-
metical functions f : N → N, ap(n), γ(n), τ(n). Elementary properties of the
function ap(n) were studied in [6]. We shall extend these results with properties of
I–convergence of the sequence (ap(n))∞n=1.

We also want to investigate the asymptotic density of the sets Mf = {n : f(n) |
n} and the I–convergence of arithmetical functions γ(n), τ(n) defined by Mycielski
in [4].

As usual we put for A ⊂ N: A(n) = |{1, 2, . . . n} ∩ A|,

d(A) = lim inf
A(n)

n
, d(A) = lim sup

A(n)

n
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the lower and upper density of A. If d(A) = d(A), then we set

d(A) = d(A) = d(A), d(A) = lim
n→∞

A(n)

n
.

The system I ⊆ 2N is called an admissible ideal if I is additive (A,B ∈ I ⇒
A ∪ B ∈ I), hereditary (A ∈ I, B ⊆ A ⇒ B ∈ I) and contains all finite sets. In
this paper we are interested in ideals If = {A ⊆ N, |A| < +∞}, Id = {A ⊆ N :
d(A) = 0}, Ic = {A ⊆ N :

∑

a∈A

a−1 < +∞} and Iq
c = {A ⊆ N :

∑

a∈A

a−q < +∞} for

q ∈ (0, 1). It is easy to see that for q 6 q′ ∈ (0, 1) the following inclusions hold:

If ⊆ Iq
c ⊆ Iq′

c ⊆ Ic ⊆ Id.

A given sequence x = (xn)∞n=1 of real numbers is said to be I–convergent
to L ∈ R, if for each ε > 0 we have Aε = {n :

∣

∣xn − L
∣

∣ > ε} ⊆ I (shortly
I–lim xn = L). The cases of If -convergence and Id-convergence coincide with
the usual convergence and the statistical convergence (see [3], [7]), respectively.
Therefore we will write lim xn = L and lim stat xn = L instead of If–lim xn = L
and Id–lim xn = L, respectively.

In [7, Lemma 2.2] it is shown that

I ⊆ I ′ ⇒ I − lim xn = L ⇒ I ′ − lim xn = L.

Using this result we completely determine for which q the sequences ap(n), γ(n)
and τ(n) are Iq

c -convergent.

2. I-convergence of (ap(n))∞n=1

Let p be a prime number. The function ap(n) is defined in the following way:
ap(1) = 0 and if n > 1, then ap(n) is the unique integer j > 0 satisfying pj |n but
pj+1 ∤ n, i.e., pap(n) ‖ n. At first we are going to generalize the result that the

sequence
(

(log p)
ap(n)
log n

)∞

n=2
is statistically convergent to 0 [6, Th. 4.2].

Proposition 2.1. Let g(n) > 0 (n = 1, 2 . . . ) and lim
n→∞

g(n) = +∞. We have

lim stat(log p)
ap(n)

g(n)
= 0.

Proof. Let ε > 0. Put Aε = {n > 1 : (log p)
ap(n)
g(n) > ε}. We will show that

d(Aε) = 0. Let η > 0. Choose m ∈ N such that

p−m < η. (2.1)

By the conditions of the proposition there exists an n0, such that for any n > n0

we have
εg(n)

log p
> m. (2.2)
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Let n > n0 and n ∈ Aε. It follows from (2.2) and the definition of Aε that

(log p)
ap(n)

g(n)
> ε,

ap(n) >
εg(n)

log p
> m.

Hence for the numbers n > n0, n ∈ Aε implies pm|n. This leads to the conclusion
that Aε ⊆ {1, 2, . . . , n0} ∪ {n > n0 : pm | n} and considering (2.1) we get d(Aε) 6

p−m < η. Since η > 0 is an arbitrary positive number, d(Aε) = 0. �

Remark 2.2. It is proved [6, Th. 4.1] that the sequence
(

(log p)
ap(n)
log n

)∞

n=2
is dense

in interval (0, 1). But
(

(log p)
ap(n)
g(n)

)∞

n=2
which is statistically convergent to zero if

g(n) → +∞, is not always dense in (0, 1): For example if we define the function
g(n) = max{1, log2 n}, then we have

lim
n→∞

(log p)
ap(n)

log2 n
= 0

and also

lim stat
ap(n)

log2 n
= 0,

but this sequence is not dense in (0, 1).

Theorem 2.3. The sequence (ap(n))
∞

n=1 is Ic–convergent to 0 and Iq
c –divergent

for q ∈ (0, 1).

Proof. Let ε > 0 and denote

Aε = {n ∈ N : (log p)
ap(n)

log n
> ε}.

Let q ∈ (0, 1). We want to show that

∑

n∈Aε

1

n
< +∞ (2.3)

and for 0 < ε < 1 − q
∑

n∈Aε

1

nq
= +∞. (2.4)

For nonnegative integer i denote Ai
ε = {n ∈ Aε;n = piu, (u, p) = 1}. We have

Ai
ε ∩ Aj

ε = ∅ for i 6= j and for any t > 0

∑

n∈Aε

1

nt
=

∞
∑

i=0

∑

n∈Ai
ε

1

nt
. (2.5)
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a) Consider that n ∈ Ai
ε if and only if n = piu where (u, p) = 1 and also

(log p)
ap(n)

log n
> ε.

Then

(log p)
i

i log p + log u
> ε

from which we obtain u 6 piδ, where δ = (1 − ε)/ε. Hence

∑

n∈Ai
ε

1

n
6

1

pi

∑

u6piδ

1

u
6

1

pi

(

1 +

∫ piδ

1

dt/t

)

=
1

pi
(1 + iδ log p) 6 Aδ

i

pi
log p

where A > 0 is only dependent on ε, p and not on i. The series
∞
∑

i=0

i
pi converges,

this proves (2.3).
b) We write

∑

n∈Ai
ε

1

nq
=

1

piq

∑

u6piδ

(u,p)=1

1

uq
.

Then we have

∑

u6piδ

(u,p)=1

1

uq
=
∑

u6piδ

1

uq
−

∑

k6piδ−1

1

(kp)q
=
∑

u6piδ

1

uq
− 1

pq

∑

k6piδ−1

1

kq

=

(

1 − 1

pq

)

∑

v6piδ−1

1

vq
+

∑

piδ−1<v6piδ

1

vq

>
∑

piδ−1<v6piδ

1

vq
> (piδ − piδ−1)

1

piδq

= piδ(1 − 1

p
)

1

piδq
= (1 − 1

p
)piδ(1−q).

Finally we obtain

∑

n∈Aε

1

nq
=

∞
∑

i=0

∑

v∈Ai
ε

i

vq
> (1 − 1

p
)

∞
∑

i=0

1

pi[q+(q−1)δ]
.

The series on the right-hand side diverges if q + (q − 1)δ < 0, i.e. ε < 1 − q. This
proves the Iq

c –divergence of (ap(n))
∞

n=1. �
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3. On the functions γ(n) and τ(n)

In [4] there were new arithmetical functions defined and investigated in connec-
tion with the representation of natural numbers of the form n = ab, where a, b are
positive integers. Let

n = ab1
1 = ab2

2 = · · · = a
bγ(n)

γ(n) (3.1)

be all such representations of a given natural number n, where ai, bi ∈ N .

Denote by

τ(n) = b1 + · · · + bγ(n), (n > 1).

It is clear that γ(n) > 1, because for any n > 1 there exists a representation in
the form n1.

We are going to study some new properties of the functions γ(n) and τ(n).

Put T (n) = γ(2) + · · · + γ(n), (n > 2). It is proved in [4], that

T (n) =

[log2 n]
∑

s=1

[ s
√

n] − [log2 n] = n +

[log2 n]
∑

s=2

[ s
√

n] − [log2 n]. (3.2)

Remark 3.1. It is easy to show that the average order of the function γ(n) is 1,
i.e.,

lim
n→∞

T (n)

n
= 1.

It follows from (3.2) that

T (n) = n + T1(n) − [log2 n],

where T1(n) = n +
[log2 n]
∑

s=2
[ s
√

n]. Then simple estimations give

([log2 n] − 1)[ [log2 n]
√

n] 6 T1(n) 6 ([log2 n] − 1)
√

n

from which we get lim
n→∞

T1(n)
n

= 0.

In papers [1, 2] sets of the form Mf = {n ∈ N : f(n) | n}, f : N → N are
investigated. For some of the known arithmetical functions the sets Mf have zero
asymptotic density: e.g. the functions ω(n) (the number of prime divisors of n),
sg(n) (the digital sum of n in the representation with base g), π(n) (the number
of primes not exceeding n).

Proposition 3.2. Put Ak = {n > 1 : n = pα1
1 . . . pαn

n , (α1, . . . , αn) = k} (k =
1, 2, . . . ). Then

d(A1) = 1. (3.3)
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Proof. Denote by B = ∪∞

k=2Ak, then N\{1} = A1 ∪ B, where A1 ∩ B = ∅. It can
be easily shown that d(B) = 0, from which (3.3) follows immediately. The elements
of the set B are only numbers of the form ts(t > 1, s > 1). Denote by H the set
of all numbers ts(t > 1, s > 1). The series of reciprocal values of these numbers is

equal to
∞
∑

t=2

∞
∑

s=2

1
ts which is convergent to 1 (cf. [4]). Then we have d(H) = 0 and

it implies that also d(B) = 0. �

Let us investigate the asymptotic density of Mγ = {n : γ(n) | n} and Mτ =
{n : τ(n) | n}.

Proposition 3.3. We have
(i) d(Mγ) = 1,
(ii) d(Mτ ) = 1.

Proof. (i) If n ∈ A1, then evidently γ(n) = 1 and n ∈ Mγ . Thus A1 ⊆ Mγ and
considering (3.3) we get d(Mγ) = 1.
(ii) Similarly. �

In [4, Th. 3, Th. 5] there are proofs of the following results:

∞
∑

n=2

γ(n) − 1

n
= 1,

∞
∑

n=2

τ(n) − 1

n
= 1 +

π2

6
.

In connection with these results we have investigated the convergence of series
for any α ∈ (0, 1)

∞
∑

n=2

γ(n) − 1

nα
,

∞
∑

n=2

τ(n) − 1

nα
.

Theorem 3.4. The series
∞
∑

n=2

γ(n) − 1

nα

diverges for 0 < α 6 1
2 and converges for α > 1

2 .

Proof. a) Let 0 < α 6 1
2 . Put K = {k2 : k > 1}. A simple estimation gives

∞
∑

n=2

γ(n) − 1

nα
>
∑

n∈K

γ(n) − 1

nα
.

Clearly γ(n) > 2 for n ∈ K. Therefore

∞
∑

n=2

γ(n) − 1

nα
>
∑

n∈K

1

nα
=

∞
∑

k=2

1

k2α
>

∞
∑

k=2

1

k
= +∞. (3.4)
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b) Let α > 1
2 . We will use the formula

∞
∑

n=2

γ(n) − 1

nα
=

∞
∑

k=2

∞
∑

s=2

1

kαs
=

∞
∑

k=2

1

kα(kα − 1)
. (3.5)

For a sufficiently large number k (k > k0) we have kα

kα−1 < 2. We can estimate
the series on the right-hand side of (3.5) with

∞
∑

k=2

1

kα(kα − 1)
<

k0
∑

k=2

1

kα(kα − 1)
+ 2

∑

k>k0

1

k2α
.

Since 2α > 1 we get
∞
∑

n=2

γ(n) − 1

nα
< +∞.

�

Corollary 3.5. The sequence γ(n) is
(i) Ic-convergent to 1,
(ii) Iq

c –divergent for q ∈ (0, 1
2 ] and Ic–convergent to 1 for q ∈

(

1
2 , 1
)

.

Proof. (i) Let ε > 0. The set of numbers {n > 1 :
∣

∣γ(n) − 1
∣

∣ > ε} is a subset of
H = {ts, t > 1, s > 1} and

∑

a∈H

1
a

< +∞. From the definition of Ic–convergence (i)

follows.
(ii) Let ε > 0 and denote Aε = {n ∈ N :

∣

∣γn − 1
∣

∣ > ε}. When 0 < q 6 1
2 then

for the numbers n ∈ K, K = {k2 : k > 1} considering (3.4) holds

∑

n∈Aε

1

nα
>
∑

n∈K

1

nα
> +∞.

Therefore γ(n) is Iq
c –divergent. When 1

2 < q < 1, then Aε ⊂ H and

∞
∑

n=2

1

nα
6

∞
∑

k=2

∞
∑

s=2

1

kαs
.

The convergence of the series on the right-hand side we proved previously in The-
orem 3.4. Therefore γ(n) is Ic–convergent to 1 if q ∈ ( 1

2 , 1). �

Remark 3.6. We have lim stat γ(n) = 1.

Theorem 3.7. The series
∞
∑

n=2

τ(n) − 1

nα

diverges for 0 < α 6 1
2 and converges for α > 1

2 .
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Proof. Let 0 < α < 1. We write the given series in the form

∞
∑

n=2

τ(n) − 1

nα
=

∞
∑

k=2

∞
∑

s=2

s

kαs
, (3.6)

We shall try to use a similar method to Mycielski’s proof of the convergence of
∞
∑

n=2

τ(n)−1
nα to explain the equality (3.6). Since s

kαs = − k
α

d
dt

( 1
tαs )t=k and

∞
∑

s=2

1
tαs =

1
tα(tα−1) the right-hand side of (3.6) is equal to

∞
∑

s=2

2kα − 1

kα(kα − 1)2
=

∞
∑

s=2

ak.

For the k-th term of
∑

ak we have

ak =
2 − 1

kα

(1 − 1
kα )2

· 1

k2α
.

Denote by bk = 1
k2α and consider that lim

k→∞

ak

bk
= 2. Hence the series

∞
∑

s=2
ak

converges (diverges) if and only if the series
∞
∑

s=2
bk converges (diverges). Since

∑

bk is convergent (divergent) for any α > 1
2 (0 < α 6 1

2 ) so does the series
∑

ak

and therefore the series
∑ τ(n)−1

nα . �

Corollary 3.8. The sequence τ(n) is
(i) Ic–convergent to 1,
(ii) Iq

c –divergent for q ∈ (0, 1
2 ] and Ic–convergent to 1 for q ∈

(

1
2 , 1
)

.

Proof. Similar to the proof of Corollary 3.5. �

Remark 3.9. We have lim stat τ(n) = 1.

References

[1] Cooper, C. N., Kennedy, R. E., Chebyshev’s inequality and natural density,
AMM 96 (1998) 118–124.

[2] Erdős, P., Pomerance, C., On a theorem of Besicovitch: values of arithmetical
functions that divide their arguments, Indian J. Math. 32 (1990) 279–287.

[3] Kostyrko, P., Šalát, T., Wilczynski, W., I–convergence, Real Anal. Exchange
26 (2000–2001), 669–686.

[4] Mycielski, J., Sur les reprĆsentations des nombres naturels par des puissances a
base et exposant naturels, Coll. Math. II (1951) 254–260.



Remarks on arithmetical functions ap(n), γ(n), τ(n) 43

[5] Powel, B. J., Šalát, T., Convergence of subseries of the harmonic series and
asymptotic densities of sets of positive integers, Publ. de L’institut math., vol. 50.
(64) (1991) 60–70.

[6] Šalát, T., On the function ap, p
ap(n) ‖ n (n > 1), Math. Slov. 44 (1994) No. 2,

143–151.

[7] Šalát, T., Toma, V., A classical Olivier’s theorem and statistical convergence,
Annales Math. B. Pascal 10 (2003) 305–313.

[8] Schinzel, A., Šalát, T., Remarks on maximum and minimum exponents in fac-
toring, Math. Slov. 44 (1994) 505–514.

Zoltán Fehér, Béla László
Department of Mathematics and Informatics
Faculty of Central European Studies
Constantine the Philosopher University
Tr. A. Hlinku 1
949 74 Nitra
Slovak Rep.

Martin Mačaj, Tibor Šalát
Department of Algebra, Geometry and Mathematics Education
Faculty of Mathematics, Physics and Informatics
Comenius University
Mlynska Dolina
842 48 Bratislava
Slovak Rep.


