
On a secure distributed data sharing
system and its implementation

Péter Kasza, Péter Ligeti, Ádám Nagy

Eötvös Loránd University
Department of Computeralgebra

pkasza@caesar.elte.hu, turul@cs.elte.hu, spigy88@inf.elte.hu

Submitted September 23, 2014 — Accepted February 10, 2015

Abstract

In this paper we propose a decentralized privacy-preserving system which
is able to share sensible data in an encrypted way, that only predefined sub-
sets of authorized entities can recover the data after getting an additional
alarm message. In the paper we give a short description of the necessary
cryptographic building blocks and the communication protocol. Further-
more, we present the main communication channels and the implementation
of the proposed data sharing system. The proposed system achieves the de-
sired functionalities by using secret sharing and two communication networks:
an ordinary P2P network where the encrypted information is stored, and a
smaller private P2P network called friend-to-friend network, which consists
of the authorized parties and handles messages that are necessary to the de-
cryption. The main part of the paper concentrates on the implementation of
the system.

Keywords: private P2P network, secret sharing, symmetric cryptography

MSC: 94A62, 68P25

1. Introduction

1.1. Motivation

The number and role of smart devices show an intensive growth nowadays, they
are collecting, storing and sending a large amount of sensitive data about the

Annales Mathematicae et Informaticae
44 (2015) pp. 111–120
http://ami.ektf.hu

111



owner of the device. Communication devices, like smartphones or tablets can
have several built-in sensors, such as accelerometers, digital compasses, gyroscopes,
GPS trackers, microphones and cameras. Dedicated self-tracking devices measuring
various medical data of the user, like blood-pressure, pulse, blood-sugar level, etc.
The sensible data collected by these devices are often handled (additionally stored
and analyzed) by a central entity, usually a mobile or cloud service provider, raising
serious privacy concerns. The main goal of this paper is to propose a privacy-
preserving communication framework, wherein the sensible data is not stored by
a singular trusted third party, but instead distributed to some predefined subset
of users such that large coalition of users is necessary to recover the data. In
the proposed solution the encrypted data packages are stored within an open P2P
network and the necessary decryption key is distributed in a private network called
friend-to-friend (or F2F) network. In order to decrease the communication and
space consumption of the users and avoid a possible adversarial tracking, it is
required that the original data can be recovered only in the presence of a special
event, called an alarm message. Examples of such alarm messages are extremities
in medical data, S.O.S. signals in case of a physical attack or stroke, etc.

1.2. Communication building blocks: P2P and F2F networks

A peer-to-peer (P2P) network is a type of decentralized and distributed network
architecture in which the individual nodes of the network (called peers) act both as
suppliers and consumers of resources, in contrast to the client-server model where
client nodes request access to resources provided by central servers. In our protocol
the P2P architecture is used for file sharing; the participants are able to search,
upload and download messages from the P2P network.

A friend-to-friend (or F2F) computer network is a type of private peer-to-peer
network in which the users only make direct connections with people they know.
Unlike other kinds of private P2P networks, the users in a friend-to-friend network
cannot find out who else is participating beyond their own circle of friends, so F2F
networks can grow in size without compromising their users’ anonymity. Many F2F
networks support indirect anonymous or pseudonymous communication between
users who do not know or trust one another. For example, a node in a friend-to-
friend overlay can automatically forward a file (or a request for a file) anonymously
between two friends, without telling either of them the other’s name or IP address.
These friends can in turn automatically forward the same file (or request) to their
own friends, and so on. Historically, the first F2F system was Turtle [3], recent
examples of popular implementations are RetroShare [6] and OneSwarm [5]. For
the underlying P2P system we chose the BitTorrent protocol’s DHT network and
implemented our own friend-to-friend scheme on top of it by creating encrypted
communication channels between the nodes.

112 P. Kasza, P. Ligeti, Á. Nagy



1.3. Cryptographic primitives: secret sharing and symmetric
cryptography

A secret sharing scheme is a method of distributing secret data among a set of par-
ticipants so that only specified qualified subsets of participants are able to recover
the secret from its parts of information called shares. In addition, if the unqualified
subsets collectively yield no extra information, i.e. the joint shares are statistically
independent of the secret, then the scheme is called perfect. For a given positive
integer t a secret sharing scheme is called t-threshold, if every subset of participants
with cardinality at least t can recover the secret.

Secret sharing was first introduced independently by Blakley [1] and Shamir
[7]. In both papers the authors constructed perfect t-threshold schemes. Here
we present the method of Shamir, which can be easily implemented due to its
simplicity.

Example 1.1 (Shamir). Let the participants indexed by the non-zero elements
of a finite field F and let p be polynomial of degree at most t − 1 over F chosen
uniformly at random. The share of participant i is p(i) and the secret is the the
constant term of p(x), i.e. p(0).

In the proposed protocol we assume that at least some of our friends in the
F2F network are trustful i.e. can be expected to follow the protocol. We use
the pairwise secret channels between the participants for communication. The
security of these end-to-end communication channels are guaranteed by symmetric
cryptographic primitives, especially by symmetric encryption schemes. Informally,
a symmetric encryption scheme consist of three algorithm: the key-generation,
where the common secret key is established and sent on a secret channel; the
encryption where the sender computes the ciphertext of a given message using
the symmetric key and the decryption, where the receiver computes the message
from the ciphertext using the symmetric key. A message (key) of an encryption
scheme is computationally secure if any probabilistic polynomial time adversary is
able to learn some information about the message (key) with negligible probability
only. Note that, this is rather an informal definition, but here we just highlight
the main cryptographic ideas and results: we use that most of the widely used
encryption schemes are proven to be computationally secure. For example, in the
case of the OneSwarm network, RSA is used: every user generates a 1024 bit
public/private RSA key pair when installing the client, with the public key serving
as its identity. After a key-exchange between the friends, the participants can
connect to one another using secure sockets (SSLv3) bootstrapped by their RSA
key pairs. Furthermore forward security can be achieved by establishing ephemeral
Diffie-Hellman keys between the participants.

On a secure distributed data sharing system and its implementation 113



2. Protocol description

Within this section we present an informal description of the proposed protocol
together with the desired security requirements. This paper concentrates on the
communication channels and the implementation details, hence the exact protocol
description and the proof of security is contained in a separate paper [4].

2.1. Parameters

The participants of the protocol are the following: Alice, the sender of the data
and the alarm message, Alice’s friends in the F2F network and further participants
using an open P2P network. We suppose two communication channels: a F2F
network consists of Alice and her friends and a P2P network. Alice is able to make
a digital signature for integrity protection and the encryption for every message
and key. Alice has a secret symmetric key with every friend of her in the F2F
network.

2.2. Protocol description

The protocol has three main phases: the first one is Uploading, where the sender
first generates a temporary key and uploads the encrypted message in the P2P
network. Next, the sender distributes the collection of encrypted temporary keys
together with the list of identifiers of other shares and the message according to a
t-threshold secret sharing scheme. Finally, the shares are sent to her friends in the
F2F network.

The second step is the Downloading phase, in which the alarm message is sent
first to the friends. After getting the alarm signal, the friends distribute their
encrypted shares into the P2P network and then download the remaining parts
from the P2P network based on the identifiers of the shares and the message.

The last stage is the Message recovery step, where every friend checks the in-
tegrity and authenticity of the downloaded packages, computes the encrypted tem-
porary key from the correct shares and decrypt the session key with the symmetric
key and the original message with this decrypted key as well.

2.3. Security model

We suppose two opposite user behaviors. The first kind of participants is called
honest, meaning that they always follow the steps of the protocol and compute/send
nothing more. The other extremity is a malicious participant who is not supposed
to send messages according to the protocol, but is not able to interrupt the com-
munication. Because the connections in a F2F network are based on real personal
relationships and trust, we will suppose that the honest friends are in majority.

Intuitively, we need that if there are “many good friends” then every friend is
able to get the message when the protocol finishes (even the “bad” ones). Further-
more, it is necessary that no small subset of participants can learn any information

114 P. Kasza, P. Ligeti, Á. Nagy



about session key (including non-friends) as long as Alice doesn’t send the alarm
signal and any subset of entities out of the F2F network learns nothing about
the message. Here we collect the precise security requirements that the proposed
scheme has to satisfy:

• Correctness: if there is a set of at least t honest friends, then every friend
can recover the original message at the end of the protocol.

• Key Privacy: the session key used for encryption/decryption of the message
is computationally secure against any coalition of participants of cardinality
less than t, before getting the alarm message.

• Message Privacy: the message is computationally secure against any coali-
tion of participants who are not friends of the sender in the F2F network.

2.4. Security analysis

Here we only present the main theorems providing the above requirements without
proofs, the particular analysis can be found in [4].

Theorem 2.1. If Alice uses a perfect t-threshold secret sharing scheme in the
Uploading then the system fulfills the Correctness requirement.

Theorem 2.2. If Alice uses a perfect t-threshold secret sharing scheme in the
Uploading and a computationally secure encryption scheme, then the system fulfills
the Key Privacy requirement.

Theorem 2.3. If Alice use a computationally secure encryption scheme, then the
system fulfills the Message Privacy requirement.

From the implementation point of view, it is enough to use a perfect secret
sharing scheme, like Shamir’s scheme 1.1 and computationally secure encryption
in the implementation of the used F2F network.

3. Implementation details

The created application – called Siren – realizes the requirements described above:
the users can send and receive encrypted information (location, special message,
etc.) to and from their friends and it can be restored by them if and only if the
communication breaks unexpectedly or there is an alarm message. In the case of
emergency (i.e. some friend sent or triggered an alarm message) the application
will automatically put out the known shared pieces to the peer-to-peer network and
will try to gather enough piece to restore the key for the encrypted information.
The decrypted information will be shown to the user as a pop-up warning message
on the device.

On a secure distributed data sharing system and its implementation 115



3.1. Structure

Each instance of the Siren application is made up of a Signaling, a Processor, a F2F
network layer and a P2P network layer module. The modules are responsible for
different aspects of the program. The Signaling and Processor modules implement
the core protocol described above in 2.2. The F2F and P2P layers provides a simple
socket based interface to the underlying friend-to-friend and peer-to-peer network.

Siren

Processor

Alarm

Store

Signaling F2F
layer

P2P
layer

Help from third party

DHT

F2F

P2P

Figure 1: Modules of the Siren application

3.1.1. Signaling

The Signaling module interacts with the user through a graphical interface, makes
and distributes heartbeat messages as specified in the Uploading phase or sends a
panic signal if requested. After starting the module it keeps making and distribut-
ing heartbeat messages with a given frequency until the user stops the module or
it becomes impossible to send any message. When the user stops the module, it
will send a special closing message to the friends (not an alarm), hence they will
don’t start the Upload phase.

The heartbeat messages contain shared pieces of an unique key – which was
used to encrypt information about the user – as well as some parameters about
when and how the alarm message will be sent or should be triggered. Among
others every message contains an expiration time and a deadline too. After the
expiration time the receiver’s Processor module will drop the message; while after
the deadline an alarm will be triggered unless another newer message arrives from
the sender.

3.1.2. Processor

The Processor module has two important tasks. The first task is to store the mes-
sages sent by friends from both F2F and P2P networks. It will organize and keep
the messages until they are expired (the expiration time sent within the heartbeat
message) and can announce them on the peer-to-peer network.

116 P. Kasza, P. Ligeti, Á. Nagy



The other task of this module is to listen to alarm messages. If a friend has sent
or triggered such message then it will gather the shared data from the P2P network,
decrypt the information after recovering its key as described in the Message recovery
phase in 2.2 and show it to the user. Because there can be more non-expired
message from the same sender, the module will simultaneously try to gather all the
required number of pieces for every message. Hence if there is a chance to recover
a message that is not expired then it will be.

3.1.3. F2F Layer

The F2F layer abstracts away the F2F network, providing a simple socket interface
where the individual nodes can be addressed by their identifiers calculated from
their public keys.

To build up communication between two F2F nodes, their network addresses
has to be resolved first. In our case, the node addresses are resolved used the
BitTorrent DHT network. The network address for each node consists of an (IP
address, port) pair. These pairs are identified by the SHA-256 hash of the node’s
public key. The F2F layer maintains a cache of these (id,IP,port) triples to speed
up connection requests. Between two nodes, if only one node’s network address
changes, this node can notify the other one of its new address. The DHT only
needs to be checked if the node identifier is not found in the cache or if both
node’s addresses change simultaneously. The nodes must however continuously
keep advertising their network addresses through the DHT network, because the
DHT has a tendency to “forget” information as old nodes leave and new ones enter
the cloud.

Once the network address for a node is known, an encrypted channel can be
established using the public key for the node. Through this channel, the nodes
negotiate an ephemeral Diffie-Hellman key, which they use to encrypt their further
messages. This provides better performance then using the asymmetric encryption
and also achieves forward security.

Having a fully functional P2P layer, one can calculate and advertise F2F node
identifier. The identifier of a F2F node is the SHA-256 hash of the node’s public
key. The calculation of these keys are done in two step. Firstly at the first start of
the application it generates a new RSA keypair to sign messages and identify the
host1 and send/receive invites. When a friend’s identifier known it can check out
his address from the DHT and start the Diffie–Hellman key exchange. At the last
phase of the key exchange it receives the public key of the friend with some data
(like name, etc.) and calculates the common key for the communication channel.

Separating this functionality from the main application promotes modularity
and encourages reuse. We hope that our implementation of the F2F layer will
provide a guideline for developing similar cryptographic software.

1It uses this hash calculated from the public key as identifier in the distributed hash table too.

On a secure distributed data sharing system and its implementation 117



User time

Friend

1 1

2

2

3 4 5

Communication
via

encrypted channel

1 Sending invitation

2 Get address from DHT

3 Key exchange 1st phase

4 Key exchange 2nd phase

5 Authentication

Figure 2: The process of establishing communication channel

3.1.4. P2P Layer

Bootstrapping the P2P layer. As seen in figure 1, the modules are highly
interdependent, with the P2P layer being the most fundamental part of the ap-
plication. The P2P layer provides a reliable address resolution mechanism for the
F2F network. Because of this, the application needs to bootstrap the P2P network
first to be able to use the F2F network. Bootstrapping from a handful of nodes
can take some time to finish (it usually takes a few minutes), however in most
cases we only need to find a few nodes only, because the addresses of the nodes are
cached and stored between sessions. The cache contains a selected subset of the
P2P nodes. The node selection based on their uptime and node identifier.

The nodes’ uptime is usually thought of as a decreasing failure rate system
(see [2]) in which the nodes with a longer uptime have a higher probability of
being available for some fixed amount of time from now. If the cache is empty, we
bootstrap the DHT from the following “master” nodes:

• udp://router.bittorrent.com:6881

• udp://router.utorrent.com:6881

• udp://dht.transmissionbt.com:6881

Communication via P2P. This implementation uses the peer-to-peer network
for simple data announcing too. The encrypted data – which key was shared via
the F2F network – is sent to the P2P network as well as all of the key pieces when
a friend is in an emergency.

3.2. Key management

Our keypair is generated on the first run of the application and stored on the local
disk for further use. The program manages a contact list of friends in the F2F
network, which contains the hash of partners’ public keys so that their network
addresses can be resolved. The actual public keys are not stored, but they can be
retrieved from an alive node after the Diffie-Hellman key exchange. One can add
new friends to the contact list by sending a special invitation message which can
take the form of an URL or a QR code. The invitation contains the hash of the

118 P. Kasza, P. Ligeti, Á. Nagy



public key and an initial network address. Both of them are signed with the private
key. This prevents forgeries and guarantees the authenticity of the invitation.

3.2.1. User interface

The application was made for Android operation systems so it can be used on the
majority of mobile devices. The user interface can be separated into three parts:
main, friends and settings.

• In the main part of the UI the user can start/stop the signaling module and
can see some numerical information how: many friend added to his network,
how many is active and how many turned on the signaling module. Also the
other interfaces can be reached from here.

• The friends UI was made to handle friends so here the user can add, delete,
invite or disable2 friends. Reached this interface the user will see a list which
items contain friends and their connection information like invitation states
(sent/received) and that the friend is active or sending heartbeat messages.

• With the settings UI the user can set the parameters of Signaling module, the
F2F and P2P networks and also can change the information of the encrypted
message that the others will known in case of emergency.

Figure 3: The three main graphical interfaces of the application

Acknowledgements. The research was carried out as part of the EITKIC_12-
1-2012-0001 project, which is supported by the Hungarian Government, managed
by the National Development Agency, financed by the Research and Technology In-
novation Fund and was performed in cooperation with the EIT ICT Labs Budapest
Associate Partner Group. (www.ictlabs.elte.hu). This research has been par-
tially supported by the Lendület program of the Hungarian Academy of Sciences.
The second author was partially supported by the grant OTKA PD-100712.

2Disable friends means they won’t participant in the user’s secret sharing but the application
will receive messages from them and will warning the user if they are in emergency.

On a secure distributed data sharing system and its implementation 119



References

[1] Blakley, G. R., Safeguarding cryptographic keys Proceedings of the National Com-
puter Conference Vol. 48 (1979) pp. 313–317.

[2] Carrda, D., Building a Reliable P2P System Out of Unreliable P2P Clients:
The Case of KAD (2007) http://www.eurecom.fr/fr/publication/2430/download/
ce-carrda-071210.pdf

[3] Isdal, T., Piatek, M., Krishnamurthy, A., Anderson, T., Privacy-preserving
P2P data sharing with OneSwarm http://www.oneswarm.org/f2f_tr.pdf

[4] Kasza, P., Nagy, Á., Ligeti, P., Siren: secure data-sharing over P2P and F2F
networks submitted to Studia Scientiarum Mathematicarum Hungarica

[5] Popescu, B.C., Crispo, B., Tanenbaum, A. S., Safe and Private Data Sharing
with Turtle: Friends Team-Up and Beat the System 12th International Workshop on
Security Protocols (2004).

[6] RetroShare: secure communications with friends, available online at http://
retroshare.sourceforge.net/

[7] Shamir, A., How to share a secret Communications of the ACM Vol. 22 (1) (1979)
pp. 612–613.

120 P. Kasza, P. Ligeti, Á. Nagy


