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Abstract

As an application of Faulhaber’s theorem on sums of powers of integers
and the associated Faulhaber polynomials, in this article we provide the solu-
tion to the following two questions: (1) when is the average of sums of powers
of integers itself a sum of the first n integers raised to a power? and (2), when
is the average of sums of powers of integers itself a sum of the first n integers
raised to a power, times the sum of the first n squares? In addition to this,
we derive a family of recursion formulae for the Bernoulli numbers.

Keywords: sums of powers of integers, Faulhaber polynomials, matrix inver-
sion, Bernoulli numbers
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1. Introduction

Recently Pfaff [1] investigated the solutions of the equation

∑n
i=1 i

a +
∑n

i=1 i
b

2
=

(
n∑

i=1

i

)c

, (1.1)

for positive integers a, b, and c, and found that the only solution (a, b, c) to (1.1)
with a 6= b is (5, 7, 4) (the remaining solutions being the trivial one (1, 1, 1) and
the well-known solution (3, 3, 2)). Furthermore, Pfaff provided some necessary
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conditions for
∑n

i=1 i
a1 +

∑n
i=1 i

a2 + · · ·+∑n
i=1 i

am−1

m− 1
=

(
n∑

i=1

i

)am

, (1.2)

to hold. Specifically, by assuming that a1 ≤ a2 ≤ · · · ≤ am−p−1 < am−p = · · · =
am−1 (with a1, a2, . . . , am positive integers), Pfaff showed that any solution to (1.2)
must fulfil the condition

p

m− 1
=

am
2am−1 . (1.3)

There are infinitely many solutions to (1.3). For example, for am = 8, the set of
solutions to (1.3) is given by (am, p,m − 1) = (8, p, 16p), with p ≥ 1. However,
as Pfaff himself pointed out [1], it is not known if any given solution to (1.3) also
yields a solution to (1.2), so that solving this problem for m > 3 will require some
other approach. In this article we show that, for any given value of am ≥ 1, there is
indeed a unique solution to equation (1.2), on the understanding that the fraction

p
m−1 is given in its lowest terms. Interestingly, this is done by exploiting the
properties of the coefficients of the so-called Faulhaber polynomials [2, 3, 4, 5, 6].
Although there exist more direct ways to arrive at the solution of equation (1.2)
(for example, by means of the binomial theorem or by mathematical induction),
our pedagogical approach here will serve to introduce the (relatively lesser known)
topic of the Faulhaber polynomials to a broad audience.

In addition to the equation (1.2) considered by Pfaff, we also give the solution
to the closely related equation

∑n
i=1 i

a1 +
∑n

i=1 i
a2 + · · ·+∑n

i=1 i
am−1

m− 1
=

(
n∑

i=1

i2

)(
n∑

i=1

i

)am

, (1.4)

where now am ≥ 0. Obviously, for am = 0, we have the trivial solution a1 = a2 =
· · · = am−1 = 2. In general, it turns out that all the powers a1, a2, . . . , am−1 on
the left-hand side of (1.4) must be even integers, whereas those appearing in the
left-hand side of (1.2) must be odd integers. This is a straightforward consequence
of the following theorem.

2. Faulhaber’s theorem on sums of powers of inte-
gers

Let us denote by Sr the sum of the first n positive integers each raised to the integer
power r ≥ 0, Sr =

∑n
i=1 i

r. The key ingredient in our discussion is an old result
concerning the Sr’s which can be traced back to Johann Faulhaber (1580–1635),
an early German algebraist who was a close friend of both Johannes Kepler and
René Descartes. Faulhaber discovered that, for even powers r = 2k (k ≥ 1), S2k

can be put in the form

S2k = S2

[
F

(2k)
0 + F

(2k)
1 S1 + F

(2k)
2 S2

1 + · · ·+ F
(2k)
k−1 S

k−1
1

]
, (2.1)
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whereas, for odd powers r = 2k + 1 (k ≥ 1), S2k+1 can be expressed as

S2k+1 = S2
1

[
F

(2k+1)
0 + F

(2k+1)
1 S1 + F

(2k+1)
2 S2

1 + · · ·+ F
(2k+1)
k−1 Sk−1

1

]
, (2.2)

where {F (2k)
j } and {F (2k+1)

j }, j = 0, 1, . . . , k− 1, are sets of numerical coefficients.
Equations (2.1) and (2.2) can be rewritten in compact form as

S2k = S2F
(2k)(S1), (2.3)

S2k+1 = S2
1F

(2k+1)(S1), (2.4)

where both F (2k)(S1) and F (2k+1)(S1) are polynomials in S1 of degree k−1. Follow-
ing Edwards [2] we refer to them as Faulhaber polynomials and, by extension, we
call F (2k)

j and F (2k+1)
j the Faulhaber coefficients. Next we quote the first instances

of S2k and S2k+1 in Faulhaber form as

S2 = S2,

S3 = S2
1 ,

S4 = S2

[
− 1

5 + 6
5S1

]
,

S5 = S2
1

[
− 1

3 + 4
3S1

]
,

S6 = S2

[
1
7 − 6

7S1 +
12
7 S

2
1

]
,

S7 = S2
1

[
1
3 − 4

3S1 + 2S2
1

]
,

S8 = S2

[
− 1

5 + 6
5S1 − 8

3S
2
1 + 8

3S
3
1

]
,

S9 = S2
1

[
− 3

5 + 12
5 S1 − 4S2

1 + 16
5 S

3
1

]
,

S10 = S2

[
5
11 − 30

11S1 +
68
11S

2
1 − 80

11S
3
1 + 48

11S
4
1

]
,

S11 = S2
1

[
5
3 − 20

3 S1 +
34
3 S

2
1 − 32

3 S
3
1 + 16

3 S
4
1

]
.

Note that, from the expressions for S5 and S7, we quickly get that S5+S7

2 = S4
1 .

Let us now write the equations (1.2) and (1.4) using the notation Sr for the
sums of powers of integers,

Sa1
+ Sa2

+ · · ·+ Sam−1

m− 1
= Sam

1 , (2.5)

and
Sa1

+ Sa2
+ · · ·+ Sam−1

m− 1
= S2S

am
1 . (2.6)

Since S1 = n(n+1)/2 and S2 = (2n+1)S1/3, from (2.1) and (2.2) we retrieve the
well-known result that Sr is a polynomial in n of degree r+ 1. From this result, it
in turn follows that the maximum index am−1 on the left-hand side of (2.5) is given
by am−1 = 2am − 1, a condition already established in [1]. In fact, in order for
equation (2.5) to hold, it is necessary that all the indices a1, a2, . . . , am−1 appearing
in the left-hand side of (2.5) be odd integers. To see this, suppose on the contrary
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that one of the indices is even, say aj . Then, from (2.3) and (2.4), the left-hand
side of (2.5) can be expressed as follows:

L(S1, S2) =
S2F

(aj)(S1) + S2
1P (S1)

m− 1
,

where F (aj)(S1) and P (S1) are polynomials in S1. On the other hand, for nonneg-
ative integers u and v, it is clear that S2S

u
1 6= Sv

1 irrespective of the values of u
and v, as S2S

u
1 (Sv

1 ) is a polynomial in n of odd (even) degree. This means that
S2F

(aj)(S1) cannot be reduced to a polynomial in S1 from which we conclude, in
particular, that L(S1, S2) 6= Sam

1 .
Similarly, using (2.3) and (2.4) it can be seen that, in order for equation (2.6)

to hold, all the indices a1, a2, . . . , am−1 in the left-hand side of (2.6) have to be
even integers, the maximum index am−1 being given by am−1 = 2am + 2.

3. Faulhaber’s coefficients

The sets of coefficients {F (2k)
j } and {F (2k+1)

j } satisfy several remarkable proper-
ties, a number of which will be described below. As it happens with the binomial
coefficients and the Pascal triangle, the properties of the Faulhaber coefficients are
better appreciated and explored when they are arranged in a triangular array. In
Table 1 we have displayed the set {F (2k+1)

j } for k = 1, 2, . . . , 10, while the corre-
sponding coefficients {F (2k)

j } (also for k = 1, 2, . . . , 10) are given in Table 2. The
numeric arrays in Tables 1 and 2 also can be viewed as lower triangular matrices,
with the rows being labelled by k and the columns by j. The following list of prop-
erties of the Faulhaber coefficients are readily verified for the coefficients shown in
Tables 1 and 2. They are, however, completely general.

1. The Faulhaber coefficients are nonzero rational numbers.

2. The entries in a row have alternating signs, the sign of the leading coefficient
(which is situated on the main diagonal) being positive.

3. The sum of the entries in a row is equal to unity,
∑k−1

j=0 F
(2k+1)
j =

∑k−1
j=0 F

(2k)
j = 1.

4. The entries on the main diagonal are given by F (2k+1)
k−1 = 2k

k+1 and F
(2k)
k−1 =

3·2k−1

2k+1 , and the entries in the j = 0 column are F (2k+1)
0 = 2(2k + 1)B2k and

F
(2k)
0 = 6B2k, where B2k denotes the 2k-th Bernoulli number. Furthermore,

the entries in the j = 1 column are connected to those in the j = 0 column
by the simple relations F (2k+1)

1 = −4F (2k+1)
0 = −8(2k + 1)B2k and F (2k)

1 =

−6F (2k)
0 = −36B2k.
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k\j 0 1 2 3 4 5 6 7 8 9

1 1

2 − 1
3

4
3

3 1
3 − 4

3 2

4 − 3
5

12
5 −4 16

5

5 5
3 − 20

3
34
3 − 32

3
16
3

6 − 691
105

2764
105 − 944

21
4592
105 − 80

3
64
7

7 35 −140 718
3 − 704

3
448
3 −64 16

8 − 3617
15

14468
15 − 4948

3
24304
15 − 9376

9
1408
3 − 448

3
256
9

9 43867
21 − 175468

21
1500334

105 − 210656
15

45264
5 − 144512

35
6944
5 − 1024

3
256
5

10 − 1222277
55

4889108
55 − 5016584

33
24655472

165 − 3180688
33 44096 −15040 11776

3 −768 1024
11

Table 1: The set of coefficients {F (2k+1)
j } for 1 ≤ k ≤ 10.

5. There exists a relation between F (2k+1)
j and F (2k)

j , namely,

F
(2k+1)
j =

2(2k + 1)

3(j + 2)
F

(2k)
j , j = 0, 1, . . . , k − 1. (3.1)

This formula allows us to obtain the k-th row in Table 1 from the k-th row
in Table 2, and vice versa.

6. The entries F (2k+1)
k−2 , F

(2k+1)
k−3 , . . . , F

(2k+1)
0 within the k-th row in Table 1 can

be successively obtained by the rule
q∑

j=0

2j
(
k + 1− j
2q + 1− 2j

)
F

(2k+1)
k−j−1 = 0, 1 ≤ q ≤ k − 1, (3.2)

given the initial condition F (2k+1)
k−1 = 2k

k+1 . By applying the bijection (3.1) to

the coefficients F (2k+1)
k−j−1 , one gets the corresponding rule for the entries in the

k-th row in Table 2.

7. For any given k ≥ 3, and for each j = 0, 1, . . . , k − 3, we have
k∑

r=1

odd(r)
(
k

r

)
F

(2k−r)
j = 0, (3.3)

where odd(r) restricts the summation to odd values of r, i.e., odd(r) = 1 (0)
for odd (even) r. Similarly, by applying the bijection (3.1) to the coef-
ficients F (2k−r)

j , it can be seen that, for any given k ≥ 1 and for each
j = 0, 1, . . . , k − 1,

k+1∑

r=0

even(r)
(
k + 2

r + 1

)
(2k + 3− r)F (2k+2−r)

j = 0, (3.4)
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k\j 0 1 2 3 4 5 6 7 8 9

1 1

2 − 1
5

6
5

3 1
7 − 6

7
12
7

4 − 1
5

6
5 − 8

3
8
3

5 5
11 − 30

11
68
11 − 80

11
48
11

6 − 691
455

4146
455 − 1888

91
328
13 − 240

13
96
13

7 7 −42 1436
15 − 352

3
448
5 − 224

5
64
5

8 − 3617
85

21702
85 − 9896

17
12152
17 − 9376

17
4928
17 − 1792

17
384
17

9 43867
133 − 263202

133
3000668

665 − 105328
19

407376
665 − 216768

95
83328
95 − 4608

19
768
19

10 − 174611
55

1047666
55 − 10033168

231
12327736

231 − 454384
11 22048 − 60160

7
17664

7 − 3840
7

512
7

Table 2: The set of coefficients {F (2k)
j } for 1 ≤ k ≤ 10.

where even(r) = 1 (0) for even (odd) r picks out the even power terms.
Informally, we may call the property embodied in equations (3.3) and (3.4) the
sum-to-zero column property, as the coefficients F (2k−r)

j [F (2k+2−r)
j ] entering

the summation in (3.3) [(3.4)] pertain to a given column j. This is to be
distinguished from the sum-to-zero row property in equation (3.2), where the
coefficients F (2k+1)

k−j−1 belong to a given row k.

8. For completeness, next we write down the explicit formula for F (2k+1)
j which

was originally obtained in [7, Section 12]. Adapting the notation in [7] to
ours, we have that

F
(2k+1)
j = (−1)j 2

j+2

j + 2

bj/2c∑

r=0

(
2j + 1− 2r

j + 1

)(
2k + 1

2r + 1

)
B2k−2r, (3.5)

for j = 0, 1, . . . , k − 1, and where bj/2c denotes the floor function of j/2,
namely the largest integer not greater than j/2. The set of coefficients {F (2k)

j }
can then be found through relation (3.1). We shall use relation (3.5) in
Section 6 to derive a family of recursion formulae for the Bernoulli numbers.

4. Averaging sums of powers of integers

Interestingly enough, the sum-to-zero column property in equations (3.3) and (3.4)
provides the solution to the problem of averaging sums of powers of integers in
equations (2.5) and (2.6). For the sake of brevity, next we focus on the connection
between (3.3) and (2.5). An analogous reasoning can be made to establish the link
between (3.4) and (2.6). To grasp the meaning of equation (3.3), consider a concrete
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example where k = 7. Then the column index j takes the values j = 0, 1, 2, 3, 4,
and (3.3) gives rise to the following five equalities:

(
7
1

)
F

(13)
0 +

(
7
3

)
F

(11)
0 +

(
7
5

)
F

(9)
0 +

(
7
7

)
F

(7)
0 = 0

(
7
1

)
F

(13)
1 +

(
7
3

)
F

(11)
1 +

(
7
5

)
F

(9)
1 +

(
7
7

)
F

(7)
1 = 0

(
7
1

)
F

(13)
2 +

(
7
3

)
F

(11)
2 +

(
7
5

)
F

(9)
2 +

(
7
7

)
F

(7)
2 = 0

(
7
1

)
F

(13)
3 +

(
7
3

)
F

(11)
3 +

(
7
5

)
F

(9)
3 = 0

(
7
1

)
F

(13)
4 +

(
7
3

)
F

(11)
4 = 0.

For a reason that will become clear in just a moment, we add to this list of equalities
a last one to include the value of

(
7
1

)
F

(13)
5 , namely,

(
7
1

)
F

(13)
5 = 26. Furthermore, we

multiply the first equality by S0
1 , the second equality by S1

1 , the third equality by
S2
1 , and so on, that is,

(
7
1

)
F

(13)
0 S0

1 +
(
7
3

)
F

(11)
0 S0

1 +
(
7
5

)
F

(9)
0 S0

1 +
(
7
7

)
F

(7)
0 S0

1 = 0
(
7
1

)
F

(13)
1 S1

1 +
(
7
3

)
F

(11)
1 S1

1 +
(
7
5

)
F

(9)
1 S1

1 +
(
7
7

)
F

(7)
1 S1

1 = 0
(
7
1

)
F

(13)
2 S2

1 +
(
7
3

)
F

(11)
2 S2

1 +
(
7
5

)
F

(9)
2 S2

1 +
(
7
7

)
F

(7)
2 S2

1 = 0
(
7
1

)
F

(13)
3 S3

1 +
(
7
3

)
F

(11)
3 S3

1 +
(
7
5

)
F

(9)
3 S3

1 = 0
(
7
1

)
F

(13)
4 S4

1 +
(
7
3

)
F

(11)
4 S4

1 = 0
(
7
1

)
F

(13)
5 S5

1 = 26S5
1 .

Now we can see that the sum of the entries in the first column is just
(
7
1

)
times

the Faulhaber polynomial F (13)(S1), the sum of the entries in the second column
is
(
7
3

)
times F (11)(S1), the sum of the third column is

(
7
5

)
times F (9)(S1), and the

sum of the fourth column is
(
7
7

)
times F (7)(S1). Then we have

(
7
1

)
F (13)(S1) +

(
7
3

)
F (11)(S1) +

(
7
5

)
F (9)(S1) +

(
7
7

)
F (7)(S1) = 26S5

1 .

Next we multiply both sides of this equation by S2
1 and divide them by 26. Thus,

taking into account (2.4), we finally obtain
(
7
7

)
S7 +

(
7
5

)
S9 +

(
7
3

)
S11 +

(
7
1

)
S13

26
= S7

1 . (4.1)

Since
(
7
1

)
+
(
7
3

)
+
(
7
5

)
+
(
7
7

)
= 26, the identity (4.1) constitutes the solution to (2.5)

for the particular case am = 7. In this case we have that p
m−1 = 7

26 , in accordance
with condition (1.3).

In general, for an arbitrary exponent am ≥ 1, the solution to equation (2.5) is
given by ∑am

r=1 odd(r)
(
am

r

)
S2am−r

2am−1 = Sam
1 . (4.2)

A few comments are in order concerning the solution in (4.2). In the first place,
by the constructive procedure we have used to obtain the solution (4.1) for the
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case am = 7, it should be clear that the solution (4.2) is unique for each am ≥ 1,
the quotient p

m−1 characterizing the solution being determined (when expressed
in lowest terms) by the relation p

m−1 = am

2am−1 . Secondly, for odd (even) am, the
numerator of (4.2) involves am+1

2 (am

2 ) different sums Sj with j being an odd
integer ranging in am ≤ j ≤ 2am − 1 (am + 1 ≤ j ≤ 2am − 1). Furthermore, the
binomial coefficients fulfil the identity

∑am

r=1 odd(r)
(
am

r

)
= 2am−1, thus ensuring

that the overall number of terms appearing in the numerator of (4.2) equals 2am−1.
For example, for am = 3, from (4.2) we get the solution S3+3S5

4 = S3
1 , which

was also found in [1]. For am = 4, noting that p
m−1 = 4

8 = 1
2 , we get the solution

S5+S7

2 = S4
1 which, as we saw, corresponds to the one denoted as (a, b, c) = (5, 7, 4)

in [1]. More sophisticated examples are, for instance,

S9 + 36S11 + 126S13 + 84S15 + 9S17

256
= S9

1 ,

and

1

131072

(
5S21 + 285S23 + 3876S25 + 19380S27 + 41990S29

+ 41990S31 + 19380S33 + 3876S35 + 285S37 + 5S39

)
= S20

1 .

On the other hand, starting with equation (3.4) and making an analysis similar
to that leading to equation (4.2), one can deduce the following general solution to
equation (2.6), namely,

1
am+2

∑am+1
r=0 even(r)

(
am+2
r+1

)
(2am + 3− r)S2am+2−r

3 · 2am
= S2S

am
1 . (4.3)

Now, for each am ≥ 0, the quotient p
m−1 characterizing the solution (4.3) turns

out to be p
m−1 = 2am+3

3·2am . Further, for odd (even) am, the numerator of (4.3)
involves am+3

2 (am

2 + 1) different sums Sj with j being an even integer ranging in
am + 1 ≤ j ≤ 2am + 2 (am + 2 ≤ j ≤ 2am + 2). Moreover, the following identity
holds

am+1∑

r=0

even(r)
(
am + 2

r + 1

)
(2am + 3− r) = 3 · 2am(am + 2),

and then the overall number of terms in the numerator of (4.3) is 3 · 2am . For
example, for am = 17, from equation (4.3) we find

1

393216

(
S18 + 189S20 + 4692S22 + 35700S24 + 107406S26

+ 140998S28 + 82212S30 + 20196S32 + 1785S34 + 37S36

)
= S2S

17
1 .

Finally we note that, by combining (4.2) and (4.3), we obtain the double identity
(with am ≥ 1):
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(am + 2)

am∑

r=1

odd(r)
(
am
r

)
S2S2am−r

=
1

6

am+1∑

r=0

even(r)
(
am + 2

r + 1

)
(2am + 3− r)S2am+2−r

= 2am−1(am + 2)S2S
am
1 .

5. Matrix inversion

It is worth pointing out that, for any given am, we can equally obtain Sam
1 (S2S

am
1 )

by inverting the corresponding triangular matrix formed by the Faulhaber coeffi-
cients in Table 1 (Table 2). This method was originally introduced by Edwards [3]
(see also [2]) to obtain the Faulhaber coefficients themselves by inverting a matrix
related to Pascal’s triangle. As a concrete example illustrating this fact, consider
the equation (2.2) written in matrix format up to k = 6:




S3

S5

S7

S9

S11

S13




=




1 0 0 0 0 0

− 1
3

4
3 0 0 0 0

1
3 − 4

3 2 0 0 0

− 3
5

12
5 −4 16

5 0 0
5
3 − 20

3
34
3 − 32

3
16
3 0

− 691
105

2764
105 − 944

21
4592
105 − 80

3
64
7







S2
1

S3
1

S4
1

S5
1

S6
1

S7
1




. (5.1)

Let us call the square matrix of (5.1) F. Clearly, F is invertible since all the
elements in its main diagonal are nonzero. Then, to evaluate the column vector on
the right of (5.1), we pre-multiply by the inverse matrix of F on both sides of (5.1)
to get 



S2
1

S3
1

S4
1

S5
1

S6
1

S7
1




=




1 0 0 0 0 0
1
4

3
4 0 0 0 0

0 1
2

1
2 0 0 0

0 1
16

5
8

5
16 0 0

0 0 3
16

5
8

3
16 0

0 0 1
64

21
64

35
64

7
64







S3

S5

S7

S9

S11

S13




,

from which we obtain the powers S2
1 , S

3
1 , S

4
1 , . . . , expressed in terms of the odd

power sums S3, S5, S7, . . . . Of course the resulting formula for S7
1 agrees with that

in equation (4.1). Conversely, by inverting the matrix F−1 we get the corresponding
Faulhaber coefficients. Note that the elements of F−1 are nonnegative, and that
the sum of the elements in each of the rows is equal to one. In fact, the row
elements of F−1 are given by the corresponding coefficients

(
am

r

)
/2am−1 appearing

in the left-hand side of (4.2).
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Similarly, writting the equation (2.1) in matrix format up to k = 6, we have



S2

S4

S6

S8

S10

S12




=




1 0 0 0 0 0

− 1
5

6
5 0 0 0 0

1
7 − 6

7
12
7 0 0 0

− 1
5

6
5 − 8

3
8
3 0 0

5
11 − 30

11
68
11 − 80

11
48
11 0

− 691
455

4146
455 − 1888

91
328
13 − 240

13
96
13







S2

S2S1

S2S
2
1

S2S
3
1

S2S
4
1

S2S
5
1




. (5.2)

Let us call the square matrix of (5.2) G. Then, pre-multiplying both sides of (5.2)
by the inverse matrix of G, we obtain




S2

S2S1

S2S
2
1

S2S
3
1

S2S
4
1

S2S
5
1




=




1 0 0 0 0 0
1
6

5
6 0 0 0 0

0 5
12

7
12 0 0 0

0 1
24

7
12

3
8 0 0

0 0 7
48

5
8

11
48 0

0 0 1
96

9
32

55
96

13
96







S2

S4

S6

S8

S10

S12




,

from which we can determine S2 times the powers S1, S
2
1 , S

3
1 , . . . , in terms of the

even power sums S2, S4, S6, . . . . Likewise, we can see that the elements of G−1
are nonnegative and that the sum of the elements in each row is equal to one.

In view of this example, it is clear that the formulae (4.2) and (4.3) can be
regarded as a rule for calculating the inverse of the triangular matrices in Tables 1
and 2, respectively. Moreover, the uniqueness of the solutions in (4.2) and (4.3)
follows ultimately from the uniqueness of the inverse of such triangular matrices.

6. A family of recursion formulae for the Bernoulli
numbers

As a last important remark we note that the sum-to-zero column property allows
us to derive a family of recursive relationships for the Bernoulli numbers. Consider
initially the equation (3.3) for the column index j = 0. So, recalling that F (2k+1)

0 =

2(2k+ 1)B2k, we will have (for odd r) that F (2k−r)
0 = 2(2k− r)B2k−r−1, and then

equation (3.3) becomes (for j = 0)

k∑

r=1

odd(r)
(
k

r

)
(2k − r)B2k−r−1 = 0, (6.1)

which holds for any given k ≥ 3. For example, for k = 13, from (6.1) we obtain

B12 + 90B14 + 935B16 + 2508B18 + 2079B20 + 506B22 + 25B24 = 0,
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and so, knowing B12, B14, B16, B18, B20, and B22, we can get B24. On the other
hand, from equation (3.5) we obtain

F
(2k+1)
2 =

4

3
(2k + 1)

[
30B2k + k(2k − 1)B2k−2

]
,

from which we in turn deduce that, for odd r,

F
(2k−r)
2 = 40(2k − r)B2k−r−1 + 4

(
2k − r

3

)
B2k−r−3.

Therefore, recalling (6.1), from equation (3.3) with j = 2 we obtain the recurrence
relation

k∑

r=1

odd(r)
(
k

r

)(
2k − r

3

)
B2k−r−3 = 0, (6.2)

which holds for any given k ≥ 5. On the other hand, from equation (3.5) we obtain

F
(2k+1)
4 =

16

45
(2k + 1)

[
3780B2k + 210k(2k − 1)B2k−2

+ k(k − 1)(2k − 1)(2k − 3)B2k−4
]
,

from which we in turn deduce that, for odd r,

F
(2k−r)
4 = 1344(2k − r)B2k−r−1 + 224

(
2k − r

3

)
B2k−r−3 +

32

3

(
2k − r

5

)
B2k−r−5.

Thus, taking into account (6.1) and (6.2), we see that, for j = 4, equation (3.3)
yields the recurrence relation

k∑

r=1

odd(r)
(
k

r

)(
2k − r

5

)
B2k−r−5 = 0, (6.3)

which holds for any given k ≥ 7. The pattern is now clear. Indeed, by assuming
that F (2k−r)

2s (for odd r) is of the form

F
(2k−r)
2s =

s∑

q=0

f (2k−r)q

(
2k − r
2q + 1

)
B2k−r−2q−1,

with the f (2k−r)q ’s being nonzero rational coefficients, from equation (3.3) one read-
ily gets the following general recurrence relation for the Bernoulli numbers:

k∑

r=1

odd(r)
(
k

r

)(
2k − r
2s+ 1

)
B2k−r−2s−1 = 0, (6.4)

which holds for any given k ≥ 2s+3, with s = 0, 1, 2, . . . . Formulae (6.1), (6.2), and
(6.3) are particular cases of the recurrence (6.4) for s = 0, 1, and 2, respectively.

Averaging sums of powers of integers and Faulhaber polynomials 115



Similarly, starting from equation (3.4), it can be shown that

k+1∑

r=0

even(r)
(
k + 2

r + 1

)(
2k + 3− r
2s+ 1

)
B2k+2−r−2s = 0, (6.5)

which holds for any given k ≥ 2s + 1, with s = 0, 1, 2, . . . . It is easy to see that
relations (6.4) and (6.5) are equivalent to each other. Moreover, we note that the
recurrence (6.4) is essentially equivalent to the one given in [8, Theorem 1.1].

7. Conclusion

In this article we have tackled the problem of averaging sums of powers of integers
as considered by Pfaff [1]. For this purpose, we have expressed the Sr’s in the
Faulhaber form and then we have used certain properties of the coefficients of the
Faulhaber polynomials. Indeed, as we have seen, the sum-to-zero column property
in equations (3.3) and (3.4) constitutes the skeleton of the solutions displayed in
(4.2) and (4.3). It is to be noted, on the other hand, that the formulae (4.2) and
(4.3) can be obtained in a more straightforward way by a proper application of the
binomial theorem (for a derivation of the counterpart to the formulae (4.2) and (4.3)
using this method, see [5, Subsections 3.2 and 3.3]). Furthermore, a demonstration
by mathematical induction of the identities in (4.2) and (4.3) (although expressed
in a somewhat different manner) already appeared in [9].

We believe, however, that our approach here is worthwhile since it introduces an
important topic concerning the sums of powers of integers that may not be widely
known, namely, the Faulhaber theorem and the associated Faulhaber polynomials.
We invite the interested reader to prove some of the properties listed above, and
to pursue the subject further [3, 4, 5, 6, 10, 11, 12].
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