
Cube-and-Conquer approach for
SAT solving on grids∗

Csaba Biróa, Gergely Kovásznaib, Armin Bierec,

Gábor Kuspera, Gábor Gedaa

aEszterházy Károly College
birocs,gkusper,gedag@aries.ektf.hu

bVienna University of Technology
kova@forsyte.tuwien.ac.at
cJohannes Kepler University

biere@jku.at

Submitted May 10, 2013 — Accepted December 9, 2013

Abstract

Our goal is to develop techniques for using distributed computing re-
sources to efficiently solve instances of the propositional satisfiability problem
(SAT). We claim that computational grids provide a distributed computing
environment suitable for SAT solving. In this paper we apply the Cube and
Conquer approach to SAT solving on grids and present our parallel SAT solver
CCGrid (Cube and Conquer on Grid) on computational grid infrastructure.

Our solver consists of two major components. The master application runs
march_cc, which applies a lookahead SAT solver, in order to partition the in-
put SAT instance into work units distributed on the grid. The client applica-
tion executes an iLingeling instance, which is a multi-threaded CDCL SAT
solver. We use BOINC middleware, which is part of the SZTAKI Desktop
Grid package and supports the Distributed Computing Application Program-
ming Interface (DC-API). Our preliminary results suggest that our approach
can gain significant speedup and shows a potential for future investigation
and development.

Keywords: grid, SAT, parallel SAT solving, lookahead, march_cc, iLingeling,
SZTAKI Desktop Grid, BOINC, DC-API

∗Supported by Austro-Hungarian Action Foundation, project ID: 83öu17.

Annales Mathematicae et Informaticae
42 (2013) pp. 9–21
http://ami.ektf.hu

9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EKE Repository of Publications

https://core.ac.uk/display/188018782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Propositional satisfiability is the problem of determining, for a formula of the propo-
sitional logic, if there is an assignment of truth values to its variables for which
that formula evaluates to true. By SAT we mean the problem of propositional
satisfiability for formulas in conjunctive normal form (CNF). SAT is one of the
most-researched NP-complete problems [8] in several fields of computer science,
including theoretical computer science, artificial intelligence, hardware design, and
formal verification [5]. Also it should be noted that the hardness of the problem is
caused by the possibly increasing number of the variables, since by a fixed set of
variables SAT and n-SAT are regular languages and therefore there is a determin-
istic (theoretical) linear time algorithm to solve them, see, [21, 23].

Modern sequential SAT solvers are based on the Davis-Putnam-Logemann-
Loveland (DPLL) [9] algorithm. This algorithm performs Boolean constraint prop-
agation (BCP) and backtrack search, i.e., at each node of the search tree it selects
a decision variable, assigns a truth value to it, and steps back when conflict oc-
curs. Conflict-driven clause learning (CDCL) [5, Chpt. 4] is based on the idea
that conflicts can be exploited to reduce the search space. If the method finds a
conflict, then it analyzes this situation, determines a sufficient condition for this
conflict to occur, in form of a learned clause, which is then added to the formula,
and thus avoids that the same conflict occurs again. This form of clause learning
was first introduced in the SAT solver GRASP [19] in 1996. Besides clause learning,
lazy data structures are one of the key techniques for the success of CDCL SAT
solvers, such as “watched literals” as pioneered in 2001, by the CDCL solver Chaff
[20, 18] . Another important technique is the use of the VSIDS heuristics and the
first-UIP backtracking scheme. In the state-of-the-art CDCL solvers, like PrecoSAT
and Lingeling [3, 4], several other improvements are applied. Besides enhanced
preprocessing techniques like e.g. failed literal detection, variable elimination, and
blocked clause elimination, clause deletion strategies and restart policies have a
great impact to the performance of the CDCL solver.

Lookahead SAT solvers [5, Chpt. 5] combine the DPLL algorithm with looka-
heads, which are used in each search node to select a decision variable and at the
same time to simplify the formula. One popular way of lookahead measures the
effect of assigning a certain variable to a certain truth value: BCP is applied, and
then the difference between the original clause set and the reduced clause set is
measured (by using heuristics). In general, the variable for which the lookahead
on both truth values results in a large reduction of the clause set is chosen as the
decision variable. The first lookahead SAT solver was posit [10] in 1995. It al-
ready applied important heuristics for pre-selecting the “important” variables, for
selecting a decision variable, and for selecting a truth value for it. The lookahead
solvers satz [17] and OKsolver [16] further optimized and simplified the heuristics,
e.g., satz does not use heuristics for selecting a truth value (rather prefers true),
and OKsolver does not apply any pre-selection heuristics. Furthermore, OKsolver
added improvements like local learning and autarky reasoning. In 2002, the solver

10 Cs. Biró, G. Kovásznai, A. Biere, G. Kusper, G. Geda

march [13] further improved the data structures and introduced preprocessing tech-
niques. As a variant of march, march_cc [14] can be considered as a case splitting
tool. It produces a set of cubes, where each cube represents a branch cutoff in the
DPLL tree constructed by the lookahead solver. It is also worth to mention that
march_cc outputs learnt clauses as well, which represent refuted branches in the
DPLL tree. The resulting set of cubes represents the remaining part of the search
tree, which was not refuted by the lookahead solver itself.

There are two types of basic appearance of parallelism in computations, the
“and-parallelism” and the “or-parallelism” [22]. The first is used in high perfor-
mance computing, while the latter is more similar to nondeterministic guesses
(data parallel). SAT can (theoretically effectively) be solved by several new com-
puting paradigms using or-parallelism and by using, roughly speaking, exponential
number of threads. Since multi-core architectures are common today, the need for
parallel SAT solvers using multiple cores has increased considerably.

In essence, there are two approaches to parallel SAT solving [12]. The first group
of solvers typically follow a divide-and-conquer approach. They split the search
space into several subproblems, sequential DPLL workers solve the subproblems,
and then these solutions are combined in order to create a solution to the original
problem. This first group uses relatively intensive communication between the
nodes. They do for example load balancing, and dynamic sharing of learned clauses.

The second group apply portfolio-based SAT solving. The idea is to run inde-
pendent sequential SAT solvers with different restart policies, branching heuristics,
learning heuristics, etc. ManySAT [11] was the first portfolio-based parallel SAT
solver. ManySAT applies several strategies to the sequential SAT solver MiniSAT.
Plingeling [3, 4] follows a similar approach, and uses the sequential SAT solver
Lingeling. In most of the state-of-the-art portfolio-based parallel SAT solvers
(e.g. ppfolio, pfolioUZK, SATzilla) not only different strategies, but even dif-
ferent sequential solvers compete and, to a limited extent, cooperate on the same
formula. In such approaches there is no load balancing and the communication is
limited to the sharing of learned clauses.

GridSAT [7, 6] was the first complete and parallel SAT solver employing a grid.
It belongs to the divide-and-conquer group. It is based on the sequential SAT solver
zChaff. Besides achieving significant speedup in the case of some (satisfiable and
even unsatisfiable) instances, GridSAT is able to solve some problems for which
sequential zChaff exceeds time out. GridSAT distributes only the short learned
clauses over the nodes, therefore it minimizes the communication overhead. Search
space splitting is based on the selection of a so-called pivot variable x on the
second decision level, and then creating two subproblems by adding a new decision
on x resp. ¬x to the first decision level. If sufficient resources are available, the
subproblems can further be partitioned recursively. Each new subproblem is defined
by a clause set, including learned clauses, and a decision stack.

[15] proposes a more sophisticated approach, based on using “partition func-
tions”, in order to split a problem into a fixed number of subproblems. Two par-
tition functions were compared, a scattering-based and a DPLL-based one with

Cube-and-Conquer approach for SAT solving on grids 11

lookahead. A partition function can be applied even in a recursive way, by repar-
titioning difficult subproblems (e.g., the ones that exceeds time out). For some of
the experiments, an open source grid infrastructure called Nordugrid was used.

SAT@home [25] is a large volunteer SAT-solving project on grid, which involves
more than 2000 clients. The project is based on the Berkeley Open Infrastruc-
ture for Network Computing (BOINC) [1], which is an open source middleware
system for volunteer grid computing. On top of BOINC, the project was imple-
mented by using the SZTAKI Desktop Grid [24], which provides the Distributed
Computing Application Programming Interface (DC-API), in order to simplify the
development, and then also to deploy and distribute applications to multiple grid
environments. [25] proposes a rather simple partitioning approach: given a set of
n selected variables, called a decomposition, a set of 2n subproblems is generated.
The key issue is how to select a decomposition. One way to solve this issue, is
to derive the set of “important” decomposition variables from the original problem
formulation, which, however, then is problem-specific, and needs human guidance.
For instance, in the context of SAT-based cryptoanalysis of keystream generators,
a decomposition set can be obtained from the encoding of the initial state of the
linear feedback shift registers [25]. SAT@home uses no data exchange among clients.

Our approach, called CCGrid, also uses BOINC and the SZTAKI Desktop Grid,
as it is detailed in Sect. 3, but is based on the Cube and Conquer approach [14].
For partitioning the input problem, we use march_cc. Our approach differs from
the previous ones in the fact that it uses a parallel SAT solver, iLingeling, for
solving the particular subproblems, on each client. In Sect. 4 we present some
experiments and preliminary results.

2. Preliminaries

Given a Boolean variable x, there exist two literals, the positive literal x and the
negative literal x. A clause is a disjunction of literals, a cube is a conjunction of
literals. Either a clause or a cube can be considered as a finite set of literals.

A truth assignment for a (finite) clause set or cube set F is a function φ that
maps literals in F to {0, 1}, such that if φ(x) = v, then φ(x) = 1 − v. A clause
resp. cube C is satisfied by φ if φ(l) = 1 for some resp. every l ∈ C. A clause set
resp. cube set F is satisfied by φ if φ satisfies C for every resp. some C ∈ F .

For representing the input clause set for a SAT solver, the DIMACS CNF format
is commonly used, which references a Boolean variable by its (1-based) index. A
negative literal is referenced by the negated reference to its variable. A clause
is represented by a sequence of the references to its literals, terminated by a “0”.
The iCNF format extends the CNF format with a cube set.1 A cube, called an
assumption, is represented by a leading character “a” followed by the references to
its literals and a terminating “0”.

1http://users.ics.tkk.fi/swiering/icnf/

12 Cs. Biró, G. Kovásznai, A. Biere, G. Kusper, G. Geda

3. Architecture

Our application is a variant of the Cube and Conquer approach [14] and consists of
two major components: a master application and a client application. The master
is responsible for dividing the global input data into smaller chunks and distributing
these chunks in the form of work units. Interpreting the output generated by the
clients out of the work units and combining them to form a global output is also
the job of the master. The architecture is depicted in Fig. 1. Similar to [25],
the environment for running our system is the SZTAKI Desktop Grid [24] and
BOINC [1], and was implemented by the use of the DC-API.

database

BOINC
Server

march_cc

BOINC
deamons
work units

BOINC
Client

iLingeling

PC1

BOINC
Client

iLingeling

PC2

. . .

BOINC
Client

iLingeling

PCn

Figure 1: CCGrid architecture

The master
The master executes a partitioning tool called march_cc [14], which is based on
the lookahead SAT solver march. Given a CNF file, march_cc primarily tries to
refute the input clause set. If this does not succeed, march_cc outputs a set of
assumptions (cubes) that describe the cutoff branches in the DPLL tree. These
assumptions cover all subproblems of the input clause set that have not been refuted
during the partitioning procedure. Given these assumptions, the master application
creates work units, each of which consists of the input CNF file and a slice of the

Cube-and-Conquer approach for SAT solving on grids 13

assumption set. As it can be seen in Fig. 2, if one of the clients reports one of
the work units to be satisfiable, then the master outputs the satisfying model and
destroys all the running work units. If every clients report unsatisfiability, then the
master outputs unsatisfiability.

SATRunning

. . .

Running UNSATUNSAT

. . .

UNSAT

Figure 2: (a) If the problem is SAT, it is enough to find a SAT
derived instance. (b) If the problem is UNSAT, one must show all

derived instances UNSAT.

The pseudocode below shows how the master application works. It is divided
into three procedures; the Main procedure is shown in Algorithm 1. It shares
two constants with the other procedures: (i) maxAsmCount defines the maximum
number of assumptions per work unit; (ii) rfsInterval gives a refresh interval at
which DC-API events are processed. The master application uses several global
variables; all of them are self-explanatory. In loop 6-9, work units are created,
by calling the procedure CreateWorkUnit. Loop 10-13 then processes DC-API
events generated by those work units that have finished solving their subproblems.
Processing DC-API events is done by calling a callback function which has been
previously set to ProcessWorkUnitResult in line 3. The loop stops if either
one of the work units returns a SAT result or all the work units completed.

CreateWorkUnit, shown in Algorithm 2, creates and submits a work unit
to the grid. First, the CNF file is added to the new work unit. Then, in the
loop, at most maxAsmCount assumptions from asmFile are copied into the new
file asmChunkFile. Note that asmFile is global, it has been opened by the Main
procedure (Algorithm 1, line 4), and therefore its current file position is held.
Finally, asmChunkFile is added to the work unit, which is then submitted to the
grid.

As already mentioned, ProcessWorkUnitResult, shown in Algorithm 3,
works as a callback function for DC-API events. It processes the result returned
by a work unit.

14 Cs. Biró, G. Kovásznai, A. Biere, G. Kusper, G. Geda

Algorithm 1 Master: main procedure
Require: global constants maxAsmCount, rfsInterval
Require: global variables cnfFile, asmFile, wuCount, res, resFile
1: procedure Main
2: initialize DC-API master
3: set ProcessWorkUnitResult as result callback
4: open asmFile
5: wuCount← 0
6: while not EOF(asmFile) do
7: CreateWorkUnit
8: wuCount← wuCount+ 1
9: end while

10: while res 6= SAT and wuCount > 0 do
11: wait rfsInterval
12: process DC-API events
13: end while
14: if res 6= SAT then
15: res← UNSAT
16: cancel all work units
17: end if
18: end procedure

Algorithm 2 Master: creating work units
1: procedure CreateWorkUnit
2: wu← new work unit
3: wu.cnfFile← cnfFile
4: asmChunkFile← new file
5: for i← 1 to maxAsmCount do
6: if EOF(asmFile) then
7: break
8: end if
9: copy next assumption from asmFile to asmChunkFile

10: i← i+ 1
11: end for
12: wu.asmFile← asmChunkFile
13: submit wu to the grid
14: end procedure

Algorithm 3 Master: processing work unit result
1: procedure ProcessWorkUnitResult(wu)
2: if wu.res = SAT then
3: res← SAT
4: copy wu.resFile to resFile
5: end if
6: wuCount← wuCount− 1
7: end procedure

Cube-and-Conquer approach for SAT solving on grids 15

The client

Each client executes the parallel CDCL solver iLingeling [14, 4], for a fixed num-
ber of threads. Each thread executes a separate lingeling instance. iLingeling
expects as input an iCNF file, including 1 or more assumptions, which is then
loaded into a working queue. Each lingeling instance reads the input clause set,
and then, in each iteration, gets the first assumption from the working queue.

If one of the lingeling instances can prove that the clause set is satisfiable
under the given assumptions, then iLingeling reports that the clause set itself is
satisfiable, the satisfying model is returned, and hence the remaining assumptions
in the working queue can be ignored. Otherwise, i.e., if a lingeling instance
reports unsatisfiability, then the assumption is retrieved from the working queue
and the same SAT solver instance continues with the solving procedure. If the
working queue becomes empty, then iLingeling reports that the clause set under
the given set of assumptions is unsatisfiable.

Algorithm 4 shows the client’s main procedure. It uses one global constant,
thrCount, which specifies the number of worker threads to use. First, the procedure
creates an iLingeling instance with thrCount worker threads, loads both the CNF
and the assumption files, and runs iLingeling. In loop 7-12, the results by all
the threads are checked: if any of them is SAT then the result for the work unit
is SAT; otherwise it is UNSAT (line 14). The result, as well as the satisfying
model, is written into a result file by the procedure CreateResultFile, shown
in Algorithm 5.

Algorithm 4 Client: main procedure
Require: global constant thrCount
1: procedure Main(wu)
2: initialize DC-API client
3: iLingeling ← new iLingeling instance using thrCount threads
4: load wu.cnfFile into iLingeling
5: load wu.asmFile into iLingeling
6: run iLingeling
7: for i← 1 to thrCount do
8: if ith thread’s result is SAT then
9: wu.res← SAT

10: break
11: end if
12: end for
13: if i > thrCount then
14: wu.res← UNSAT
15: end if
16: CreateResultFile(wu, iLingeling)
17: end procedure

16 Cs. Biró, G. Kovásznai, A. Biere, G. Kusper, G. Geda

Algorithm 5 Client: creating result file
1: procedure CreateResultFile(wu, iLingeling)
2: resFile← new file
3: write wu.res into resFile
4: if wu.res = SAT then
5: model← satisfying assignment from iLingeling
6: write model into wu.resFile
7: end if
8: wu.resFile← resFile
9: end procedure

4. Results and testing environment

Our implementation consists of a quad-core SUN server with 6 GB memory, used
as a master, and 20 quad-core PCs with 2 GB memory, used as clients. In our
experiments, we used instances from the SAT Challenge 2012, from the Application
(SAT + UNSAT) and the Hard Combinatorial (SAT + UNSAT) tracks. Results are
presented in Tab. 1 and Tab. 2. The 1st column represents the instance’s name.
In the 2nd column, A resp. HC denotes Application resp. Hard Combinatorial
problems. The 4th column shows the number of cubes, generated by march_cc.
The 3rd resp. 5th column shows the runtime of march_cc resp. iLingeling, being
executed on the master. The 6th column contains the sum of the previous two
numbers, which represents the overall runtime of the cube-and-conquer approach
running on a single (quad-core) machine. The total runtime of CCGrid is shown
in the 7th column, while the 8th column measures the speedup as the ratio of the
runtimes in the 6th and 7th columns.

In our approach, CCgrid have been executed without any communication among
clients. Even though they do not cooperate and do not exchange learnt clauses,
CCGrid shows a wide range of speedups. We achieved speedup up to ca. 8.5 on
UNSAT instances (QG-gensys-icl003.sat05-2715.reshuffled-07) and up to ca. 7 on
SAT instances (sgen1-sat-160-100).

Since the master has to distribute quite large work units over the network, com-
munication overhead matters in the case of small instances, where communication
costs are significant compared to the input size. Therefore, although we used a
1Gbps LAN in our experiments, cube-and-conquer running on a single machine
outperformed CCgrid on some instances. If we look at the battleship-16-31-sat row
in Tab. 1, we can see that march_cc and iLingeling can solve this problem on 1
client a bit faster than CCGrid on 20 clients.

In the case of satisfiable instances, we might be lucky, finding a model quickly,
or unlucky. If there are many satisfying models, then it is not worth to distribute
the problem over many clients. However, if there exist only a few models, then it is
a good idea to use many clients, since the more clients we use, the more probable it
is for a client to be lucky enough to find one of those few solutions. Unfortunately,
we have no information about how many models the instances in Tab. 1 have.

Cube-and-Conquer approach for SAT solving on grids 17

m
ar

ch
_
cc

#
of

cu
be

s

iL
in
ge

lin
g

cu
be

-a
nd

-

co
nq

ue
r

C
C
G
ri
d

sp
ee

du
p

of clients 1 1 1 20

vmpc_26 A 8.38 296 40.22 48.6 13.64 3.56
AProVE09-07 A 65.93 4245 19.12 85.05 79.16 1.07
clauses-4 A 29.68 25 59.01 88.69 81.98 1.08
gss-16-s100 A 155.28 6292 201.21 356.49 171.71 2.08
IBM_FV_
2004_rule_
batch_22
_SAT_dat. k65

A 17.93 361 148.95 166.88 154.02 1.08

ezfact64_3. sat05-
450. reshuffled-07

HC 458.71 469428 63.71 522.42 505.72 1.03

sgen1-sat-160-100 HC 10.65 210168 419.92 430.57 62.28 6.91
em_7_4 _8_exp HC 20.06 19419 170.9 190.96 46.47 4.11
battleship-16-31-
sat

HC 174.89 91757 2.69 177.58 180.89 0.98

Hidoku_ enu_6 HC 125.02 256225 91.61 216.63 159.31 1.36

Table 1: Runtimes and speedup
all instances are SAT

CCGrid seems to be much better in distributing satisfiable instances from the
HC track than the ones from the A track, since march_cc seems to generate much
more cubes for the previous ones.

In the case of unsatisfiable instances, we cannot be lucky to find an early solution
since there is no satisfying model. When comparing the speedups in Tab. 1 and
Tab. 2, we can see that speedups around 1 are more frequent on satisfiable instances.

This shows that in the case of unsatisfiable instances there is less risk of wasting
resources without any speedup.

5. Future work and conclusion

This paper presents a first attempt of applying the Cube and Conquer approach [14]
to computational grids. We presented the parallel SAT solver CCGrid, which runs
on the MTA SZTAKI Grid using BOINC. In this version, the master application
applies march_cc, using a lookhead solver, to split a SAT instance. The client ap-
plication uses the parallel SAT solver iLingeling to deal with several assumptions.
The client creates a separate iLingeling instance for each work unit, and destroys
it after completing the work unit. For the sake of improving our current results, in
future work, we would like to preserve the state of iLingeling instances, including
learnt clauses.

In our experience, the cube generation phase implemented in march_cc makes
up a significant part of the runtime. As a consequence, we were mostly able to
achieve significant speedup on such instances on which the cube generation phase

18 Cs. Biró, G. Kovásznai, A. Biere, G. Kusper, G. Geda

m
ar

ch
_
cc

#
of

cu
be

s

iL
in
ge

lin
g

cu
be

-a
nd

-

co
nq

ue
r

C
C
G
ri
d

sp
ee

du
p

of clients 1 1 1 20

counting-clqcolor-
unsat-set-b-
clqcolor-08-06-
07.sat05-1257.
reshuffled-07

A 5.77 112757 12.77 18.54 8.71 2.13

gensys-
ukn002.sat05-
2744. reshuffled-07

A 12.70 21408 230.01 242.71 71.55 3.39

Q32inK09 A 12.15 5279 35.89 48.04 14.38 3.34
QG6-dead-
dnd002.sat05-
2713. reshuffled-07

A 2.38 12147 35.79 38.17 4.74 8.05

QG-gensys-
icl003.sat05-2715.
reshuffled-07

A 25.43 38466 291.05 316.48 37.24 8.49

instance_n6
i7_pp_ci_ce

A 103.78 29290 111.72 215.50 117.20 1.84

AProVE07-09.cnf A 34.43 86048 4.55 37.98 37.46 1.01

battleship-10-10-
unsat

HC 0.36 2317 15.47 15.83 4.48 3.53

rand_net60-40-
10.shuffled

HC 111.23 130227 13.24 124.47 115.62 1.08

smtlib-qfbv-aigs-
ext_con_032
008_0256-tseitin

HC 67.24 22384 7.29 74.53 71.47 1.04

Table 2: Runtimes and speedup
all instances are UNSAT

took a relatively short time. Therefore, our further aim to reduce the time spent on
cube generation by parallelizing the look-ahead solver. We plan to adapt march_cc
to a cluster infrastructure and to investigate the possibility of merging our BOINC-
based approach with a cluster-based master application. We expect further im-
provement by analyzing the generated cubes and then, based on the result of the
analysis, partitioning the cube set in a more sophisticated way.

In order to achieve larger speedup on unsatisfiable instances, it might be useful
to call march_cc not only while partitioning the original problem, but also for
repartitioning difficult subproblems, e.g., those on which a client exceeds a certain
time limit. Finally, it might be interesting to apply similar techniques not only to
clusters resp. grids, but also to cloud computing platforms.

References

[1] D. P. Anderson, BOINC: A System for Public-Resource Computing and Storage.
Proc. of GRID 2004, pp. 4–10, 2004.

Cube-and-Conquer approach for SAT solving on grids 19

[2] A. Balint, A. Belov, D. Diepold, A. Gerber, M. Järvisalo, C. Sinz (eds),
Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions. Depart-
ment of Computer Science Series of Publications B, vol. B-2012-2, University of
Helsinki, 2012.

[3] A. Biere, Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. Tech-
nical Report 10/1, FMV Reports Series, JKU, 2010.

[4] A. Biere, Lingeling and Friends Entering the SAT Challenge 2012. Haifa Verification
Conference, Department of Computer Science Series of Publications B, vol. B-2012-2,
pp. 33–34, 2012.

[5] A. Biere, M. Heule, H. van Maaren, T. Walsh, Handbook of Satisfiability.
IOS Press, Amsterdam, 2009.

[6] W. Chrabakh, R. Wolski, GridSAT: A Chaff-based Distributed SAT Solver for
the Grid. Proc. of SC’03, pp. 37–49, 2003.

[7] W. Chrabakh, R. Wolski, GrADSAT: A Parallel SAT Solver for the Grid. Tech-
nical report, UCSB Computer Science, 2003.

[8] S. A. Cook, The Complexity of Theorem-Proving Procedures. Proc. of STOC’71,
pp. 151–158, 1971.

[9] M. Davis, G. Logemann, D. Loveland, A Machine Program for Theorem Prov-
ing. Commun. ACM, vol. 5, no. 7, pp. 394–397, 1962.

[10] J.W. Freeman, Improvements to Propositional Satisfiability Search Algorithms.
Ph.D. Dissertation, Department of Computer and Information Science, University of
Pennsylvania, May, 1995.

[11] Y. Hamadi S. Jabbour, L. Sais, ManySAT: a Parallel SAT Solver. Journal on
Satisfiability, Boolean Modeling and Computation, vol. 6, pp. 245–262, 2009.

[12] Y. Hamadi, S. Jabbour, C. Piette, L. Saïs, Deterministic Parallel DPLL. JSAT,
vol. 7. no. 4, pp. 127–132, 2011.

[13] M. Heule, March: Towards a Look-ahead SAT Solver for General Purposes. Master
thesis, TU Delft, The Netherlands, 2004.

[14] M. Heule, O. Kullmann, S. Wieringa, A. Biere, Cube and Conquer: Guiding
CDCL SAT Solvers by Lookaheads. Proc. of Haifa Verification Conference, Lecture
Notes in Computer Science, vol. 7261, pp. 50–65, 2011.

[15] A. E. J. Hyvärinen, T. Junttila, I. Niemelä, Partitioning SAT instances for
distributed solving. Proc. of LPAR’10, pp. 372–386, 2010.

[16] O. Kullmann, Investigating the Behaviour of a SAT Solver on Random Formulas.
Technical Report CSR 23-2002, Swansea University, Computer Science Report Series,
October, 2002.

[17] C.M. Li and Anbulagan, Look-Ahead versus Look-Back for Satisfiability Prob-
lems. Lecture Notes in Computer Science, vol. 1330, pp. 342–356, 1997.

[18] Y. S. Mahajan, Z. Fu, S. Malik, Zchaff2004: An Efficient SAT Solver. Lecture
Notes in Computer Science: Theory and Applications of Satisfiability Testing, vol.
3542, pp. 360–375, 2005.

[19] J. P. Marques-Silva, K. A. Sakallah, GRASP: A New Search Algorithm for
Satisfiability. Proc. of ICCAD’96, pp. 220–227, 1996.

20 Cs. Biró, G. Kovásznai, A. Biere, G. Kusper, G. Geda

[20] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff:
Engineering an Efficient SAT Solver. Proc. of DAC’01, pp. 530–535, 2001.

[21] B. Nagy, The Languages of SAT and n-SAT over Finitely Many Variables are Reg-
ular. Bulletin of the EATCS, no. 82, pp. 286–297, 2004.

[22] B. Nagy, On the Notion of Parallelism in Artificial and Computational Intelligence.
Proc. of HUCI 2006, pp. 533–541, 2006.

[23] B. Nagy, On Efficient Algorithms for SAT. Proc. of CMC 2012, Lecture Notes in
Computer Science, vol. 7762, pp. 295–310, 2013.

[24] P. Kacsuk, J. Kovács, Z. Farkas, A. C. Marosi, G. Gombás, Z. Balaton,
SZTAKI Desktop Grid (SZDG): A Flexible and Scalable Desktop Grid System. Jour-
nal of Grid Computing, vol. 7, no. 4, pp. 439–461, 2009.

[25] M. Posypkin, A. Semenov, O. Zaikin, Using BOINC Desktop Grid to Solve Large
Scale SAT Problems. Computer Science, vol. 13, no. 1, pp. 25–34, 2012.

Cube-and-Conquer approach for SAT solving on grids 21

