On (log-) convexity of power mean

Antal Bege ${ }^{a}$, József Bukor, János T. Tóth ${ }^{b *}$
${ }^{a}$ Dept. of Mathematics and Informatics, Sapientia Hungarian University of Transylvania,Targu Mures, Romania
${ }^{b}$ Dept. of Mathematics and Informatics, J. Selye University, Komárno, Slovakia bukorj@selyeuni.sk, tothj@selyeuni.sk

Submitted October 20, 2012 - Accepted March 22, 2013

Abstract

The power mean $M_{p}(a, b)$ of order p of two positive real values a and b is defined by $M_{p}(a, b)=\left(\left(a^{p}+b^{p}\right) / 2\right)^{1 / p}$, for $p \neq 0$ and $M_{p}(a, b)=\sqrt{a b}$, for $p=0$. In this short note we prove that the power mean $M_{p}(a, b)$ is convex in p for $p \leq 0$, log-convex for $p \leq 0$ and log-concave for $p \geq 0$.

Keywords: power mean, logarithmic mean
MSC: 26E60, 26D20

1. Introduction

For $p \in \mathbb{R}$, the power mean $M_{p}(a, b)$ of order p of two positive real numbers, a and b, is defined by

$$
M_{p}(a, b)= \begin{cases}\left(\frac{a^{p}+b^{p}}{2}\right)^{\frac{1}{p}}, & p \neq 0 \\ \sqrt{a b}, & p=0\end{cases}
$$

Within the past years, the power mean has been the subject of intensive research. Many remarkable inequalities for $M_{p}(a, b)$ and other types of means can be found in the literature.

It is well known that $M_{p}(a, b)$ is continuous and strictly increasing with respect to $p \in \mathbb{R}$ for fixed $a, b>0$ with $a \neq b$.

[^0]Note that $M_{p}(a, b)=a M_{p}\left(1, \frac{b}{a}\right)$. Mildorf [3] studied the function

$$
f(p, a)=M_{p}(1, a)=\left(\frac{1+a^{p}}{2}\right)^{\frac{1}{p}}
$$

and proved that for any given real number $a>0$ the following assertions hold:
(A) for $p \geq 1$ the function $f(p, a)$ is concave in p,
(B) for $p \leq-1$ the function $f(p, a)$ is convex in p.

The aim of this note is to study the log-convexity of the power mean $M_{p}(a, b)$ in variable p. As a consequence we get several known inequalities and their generalization.

2. Main results

Theorem 2.1. Let $f(p, a)=M_{p}(1, a)$. We have
(i) for $p \leq 0$ the function $f(p, a)$ is log-convex in p,
(ii) for $p \geq 0$ the function $f(p, a)$ is log-concave in p,
(iii) for $p \leq 0$ the function $f(p, a)$ is convex in p.

Proof. Observe that for any real number t there holds

$$
\begin{equation*}
f(p t, a)^{t}=f\left(p, a^{t}\right) \tag{2.1}
\end{equation*}
$$

Let

$$
g(p, a)=\ln f(p, a)
$$

Taking the logarithm in (2.1) we have

$$
\operatorname{tg}(p t, a)=g\left(p, a^{t}\right)
$$

Calculating partial derivatives of both sides of the above equation we get

$$
t^{2} g_{1}^{\prime}(p t, a)=g_{1}^{\prime}\left(p, a^{t}\right)
$$

and

$$
\begin{equation*}
t^{3} g_{11}^{\prime \prime}(p t, a)=g_{11}^{\prime \prime}\left(p, a^{t}\right) \tag{2.2}
\end{equation*}
$$

Specially, taking $p=1$ in (2.2), we have

$$
\begin{equation*}
t^{3} g_{11}^{\prime \prime}(t, a)=g_{11}^{\prime \prime}\left(1, a^{t}\right) \tag{2.3}
\end{equation*}
$$

Taking into account that the function $f(p, a)$ is increasing and concave in p for $p \geq 1$ (see (A)), the function $g(p, a)$ is also increasing and concave in p for $p \geq 1$. For this reason

$$
g_{11}^{\prime \prime}\left(1, a^{t}\right) \leq 0
$$

for an arbitrary $a>0$ and real t. Let us consider the left hand side of (2.3). We have

$$
t^{3} g_{11}^{\prime \prime}(t, a) \leq 0
$$

which yields to the facts that the function $g(p, a)$ is concave for $p>0$, therefore the function $f(p, a)$ is log-concave in this case and the function $g(p, a)$ is convex for $p<0$. Hence the assertions (i), (ii) follow. Clearly, the assertion (iii) follows immediately from (i).

The following result is a consequence of the assertion (iii) Theorem 2.1.

Corollary 2.2. Inequality

$$
\begin{equation*}
\alpha M_{p}(a, b)+(1-\alpha) M_{q}(a, b) \geq M_{\alpha p+(1-\alpha) q}(a, b) \tag{2.4}
\end{equation*}
$$

holds for all $a, b>0, \alpha \in[0,1]$ and $p, q \leq 0$.
Let us denote by $G(a, b)=\sqrt{a b}$ and $H(a, b)=\frac{2 a b}{a+b}$ the arithmetic mean and harmonic mean of a and b, respectively. For $\alpha=\frac{2}{3}, p=0, q=1$ in (2.4) we get the inequality

$$
\frac{2}{3} G(a, b)+\frac{1}{3} H(a, b) \geq M_{-\frac{1}{3}}(a, b)
$$

which was proved in [6].
The next result is a consequence of (ii) in Theorem 2.1.
Corollary 2.3. For $\alpha \in[0,1], p, q \geq 0$ the inequality

$$
\begin{equation*}
M_{p}^{\alpha}(a, b) M_{q}^{(1-\alpha)}(a, b) \leq M_{\alpha p+(1-\alpha) q}(a, b) \tag{2.5}
\end{equation*}
$$

holds for all $a, b>0$.
Let us denote by $A(a, b)=\frac{a+b}{2}, G(a, b)=\sqrt{a b}$,

$$
L(a, b)= \begin{cases}\frac{b-a}{\ln b-\ln a}, & a \neq b \\ a, & a=b\end{cases}
$$

the arithmetic mean, geometric mean and logarithmic mean of two positive numbers a and b, respectively. Taking into account the result of Tung-Po Lin [2]

$$
\begin{equation*}
L(a, b) \leq M_{\frac{1}{3}}(a, b) \tag{2.6}
\end{equation*}
$$

together with (2.5) we have

$$
\begin{equation*}
M_{p}^{\alpha}(a, b) L^{(1-\alpha)}(a, b) \leq M_{\alpha p+(1-\alpha) \frac{1}{3}}(a, b) \tag{2.7}
\end{equation*}
$$

Specially, for $p=1$ and $p=0$ in (2.7) we get the inequalities

$$
A^{\alpha}(a, b) L^{(1-\alpha)}(a, b) \leq M_{\frac{1+2 \alpha}{3}}(a, b)
$$

and

$$
G^{\alpha}(a, b) L^{(1-\alpha)}(a, b) \leq M_{\frac{1-\alpha}{3}}(a, b)
$$

respectively, which results were published in [5].
Denote by

$$
I(a, b)= \begin{cases}\frac{1}{e}\left(\frac{a^{a}}{b^{b}}\right)^{\frac{1}{a-b}}, & a \neq b \\ a, & a=b\end{cases}
$$

the identric mean of two positive integers. It was proved by Pittenger [4] that

$$
\begin{equation*}
M_{\frac{2}{3}}(a, b) \leq I(a, b) \leq M_{\ln 2}(a, b) \tag{2.8}
\end{equation*}
$$

Using (2.5) together with (2.6) and (2.8) we immeditely have

$$
I^{\alpha}(a, b) L^{(1-\alpha)}(a, b) \leq M_{\alpha \ln 2+(1-\alpha) \frac{1}{3}}
$$

Note, in the case of $\alpha=\frac{1}{2}$ our result does not improve the inequality

$$
\sqrt{I(a, b) L(a, b)} \leq M_{\frac{1}{2}}(a, b)
$$

which is due to Alzer [1], but our result is a more general one.
With the help of using Theorem 2.1 more similar inequalities can be proved.

3. Open problems

Finally, we propose the following open problem on the convexity of power mean. The problem is to prove our conjecture, namely

$$
\begin{aligned}
& \inf _{a, b>0}\left\{p: M_{p}(a, b) \text { is concave for variable } p\right\}=\frac{\ln 2}{2}, \\
& \sup _{a, b>0}\left\{p: M_{p}(a, b) \text { is convex for variable } p\right\}=\frac{1}{2}
\end{aligned}
$$

References

[1] Alzer, H., Ungleichungen für Mittelwerte, Arch. Math (Basel), 47 (5) (1986) 422426.
[2] Lin, T. P., The power mean and the logarithmic mean, Amer. Math. Monthly, 81 (1974) 879-883.
[3] Mildorf, T. J., A sharp bound on the two variable power mean, Mathematical Reflections, 2 (2006) 5 pages, Available online at [http://awesomemath.org/ wp-content/uploads/reflections/2006_2/2006_2_sharpbound.pdf]
[4] Pittenger, A. O., Inequalities between arithmetic and logarithmic means, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 678-715 (1980) 15-18.
[5] Shi, M.-Y., Chu, Y.-M. and Jiang, Y.-P., Optimal inequalities among various means of two arguments, Abstr. Appl. Anal., (2009) Article ID 694394, 10 pages.
[6] Chu, Y.-M., XiA, W.-F.: Two sharp inequalities for power mean, geometric mean, and harmonic mean, J. Inequal. Appl. (2009) Article ID 741923, 6 pages.

[^0]: *The second and the third author was supported by VEGA Grant no. 1/1022/12, Slovak Republic.

