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Dedicated to the memory of Professor Péter Kiss

Péter Kiss was born in Nagyréde in 1937. He attended secondary school in
Gyöngyös and in 1955 he entered the Eötvös Lóránd University Faculty of Science
in Budapest. He took his teacher’s diploma in mathematics and physics. After
finishing university, he taught at the Gárdonyi Géza Secondary School in Eger for
12 years.

He began to teach at what is now called the Eszterházy Károly College at
the Department of Mathematics in 1972 and taught there until his death in 2002.
He took a special interest in Number Theory. His doctoral thesis “Second order
linear recurrence and pseudoprime numbers” was submitted in 1977. He obtained
the candidate’s degree in 1980, the title of his dissertation was “Second order
linear recursive sequences and their applications in diophantine problems”. In 1995
Péter Kiss habilitated at the Kossuth Lajos University of Debrecen and he was
inaugurated as professor. He got the Szent-Györgyi Albert prize in 1997. He got
the title of doctor of mathematical science of Hungarian Academy of Sciences in
1999.

His lectures were lucid and meticulously crafted and through him many of
his students grew to like mathematics and research. He brought into existence a
research group in Number Theory and supported the work of his inquiring students
and colleagues. One of his students, Bui Minh Phong, was awarded the Rényi
Kató prize in 1976. He was the supervisor of the doctoral theses of the following
colleagues: Ferenc Mátyás, Sándor Molnár, Béla Zay, Kálmán Liptai, László Szalay,
and helped Bui Minh Phong, László Gerőcs and Pham Van Chung in writing of
their theses.

He took an enthusiastic part in the everyday world of mathematics. He held
several county and national posts in the János Bolyai Mathematical Society. He was
a contributor to the abstracting journals Mathematical Reviews and Zentralblatt
für Mathematik and he was also a permanent member of organizing committee of
the Fibonacci Conference. He was a highly respected member of the community of
mathematicians. This was proved by many joint papers, invitations to conferences
and friends all over the world.

This paper is devoted to the summary of his academic achievements.

Research has been supported by the Hungarian Research Fund (OTKA) Grant T-032898.
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1. Introduction

In 1202 Leonardo Pisano, or Fibonacci, employed the recurring sequence
1, 2, 3, 5, 8, 13, . . . in a problem on the number of offspring of a pair of rabbits.
Let’s denote by Fn and Fn+1 the n-th and (n + 1)-th term of this sequence,
respectively. In this case Fn+2 = Fn+1 + Fn, where F0 = 0 and F1 = 1. Simple
generalizations of the Fibonacci sequence are the second order linear recurrences.
The sequence {Rn}∞n=0 = R(A,B,R0, R1) is called a second order linear recurrence
if the recurrence relation

Rn = ARn−1 +BRn−2 (n > 1)

holds for its terms, where A, B 6= 0, R0 and R1 are fixed rational integers and
|R0|+ |R1| > 0. The sequence R(A,B, 2, A) is called the associate sequence of the
sequence R(A,B, 0, 1).

The polynomial x2 − Ax − B is called the companion polynomial of the
second order linear recurrence R = R(A,B,R0, R1). The zeros of the companion
polynomial will be denoted by α and β. In the sequel we assume that the sequence
is not degenerate, i.e. α/β is not a root of unity, and we order α and β so that
|α| ≥ |β|. Using this notation, we get that

Rn =
aαn − bβn

α− β
,

where a = R1 −R0β and b = R1 −R0α.
Consider now a generalization of second order linear recurrences.
The sequence G(A1, A2, . . . , Ak, G0, G1, . . . , Gk−1) = {Gn}∞n=0 is called a k-th

order linear recursive sequence of rational integers if

Gn = A1Gn−1 +A2Gn−2 + · · ·+AkGn−k (n > k − 1),

for certain fixed rational integers A1, A2, . . . , Ak with Ak 6= 0 and G0, G1, . . . ,
Gk−1 not all zero. The companion polynomial of a recurrence with coefficients
A1, A2, . . . , Ak is given by xk − A1x

k−1 − A2x
k−2 − · · · − Ak. Denote by α =

α1, α2, . . . , αs the distinct zeros of the companion polynomial. Assume that
α, α2, . . . , αs has multiplicity 1,m2, . . . ,ms respectively and that |α| > |αi| for
i = 2, . . . , s. The zero α is called the dominating root of the polynomial. It is
known that in this case the terms of the sequence can be written in the form

Gn = aαn + r2(n)α
n
2 + · · ·+ rs(n)α

n
s (n ≥ 0) ,

where the ri
′s (i = 2, . . . , s) are polynomials of degree mi − 1 and the coefficients

of these polynomials as well as a are elements of the algebraic number field
Q(α, α2, . . . , αs).
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2. Common terms and difference of the terms of linear recurrences

Let G(A1, . . . , Ak, G0, . . . , Gk−1) and H(B1, . . . , Br, H0, . . . , Hr−1) be linear
recurrence sequences having dominating roots. Let p1 < p2 < · · · < ps be different
primes and denote by S the set of rational integers which have only these primes
as prime factors. We suppose that 1 ∈ S.

M. Mignotte (1978) studied the common terms of linear recurrences, that is,
the equation

Gx = Hy.

P. Kiss proved the following theorem in [19].

Theorem 2.1. Let G and H be linear recurrence sequences with dominating roots
α and β, respectively. In this case

Gn = aαn + g2(n)α
n
2 + · · ·+ gs(n)α

n
s ,

and

Hn = bβn + q2(n)β
n
2 + · · ·+ qt(n)β

n
t .

We suppose that Gi 6= aαi, Hj 6= bβj and s1aα
i 6= s2bβ

j for any s1, s2 ∈ S if
max (i, j) > n0. If

s1Gx = s2Hy

for some s1, s2 ∈ S, then max (x, y) < n1, where n1 is effectively computable and
depends on S, n0 and the parameters of the sequences G and H .

P. Erdős asked whether the terms of the recurrence sequences could be close
to each other. P. Kiss answered this question in [30].

Theorem 2.2. Suppose that G and H are linear recurrences satisfying the
conditions of Theorem 2.1. Then for any integers s1, s2 ∈ S

∣∣|s1Gx| − |s2Hy|
∣∣ > exp

{
c ·max(x, y)

}

for all integers x, y > n2, where c and n2 are effectively computable positive
numbers depending only on S, n0 and the parameters of G and H .

P. Kiss generalized a result of Shorey and Stewart in [30].

Theorem 2.3. Let G be a linear recurrence sequence satisfying the conditions of
Theorem 2.1. If

sxq = Gn

for some positive integers s ∈ S, q, n and x > 1, then q < n3, where n3 is an
effectively computable positive number depending only on S, n0 and the parameters
of G.

A similar result was proved in the same paper.
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Theorem 2.4. Let G be a linear recurrence sequence as in Theorem 2.1. Further-
more assume that k > 2, |α2| 6= 1, |α2| > |α3| ≥ |αj | (j > 3) and g2(i) 6= 0, if
i > n0. Then

|sxq −Gn| > ecn

for all positive integers s ∈ S, x, q, n and with q, n > n4, where n4 is an effectively
computable positive number depending only on S, n0 and the parameters of G.

3. Prime divisors of second order linear recurrences

Let R(A,B, 0, 1) be a non-degenerate second order linear recurrence sequence
where R0 = 0, R1 = 1 and (A,B) = 1. If p is a prime with p|/B, then there are
terms Rn of R (different from R0 = 0) which are divisible by p. The least index of
these terms is called the rank of apparition of p in the sequence R and is denoted
by r(p). Thus p | Rr(p), but p|/Rm if 0 < m < r(p). If r(p) = n, then we say that p is
a primitive divisor of Rn. If p is a primitive divisor of Rn and pk | Rn (k ≥ 1), but
pk+1|/Rn, then we say pk is a primitive prime power divisor of Rn. P. Kiss proved
the following theorem in [36].

Theorem 3.1. Let Rn be the product of primitive prime power divisors of Rn.
Then ∑

n≤x

logRn =
3 · log |α|

π2
x2 +O(x log x),

provided that x sufficiently large. (The constant involved in O() depends on the
parameters of the sequence.)

In the joint paper [45] P. Kiss and B. M. Phong studied the reciprocal sum
of primitive prime divisors of the terms of second order linear recurrences. To
formulate this, let R(A,B, 0, 1) be a second order linear recurrence and

p (n) =
∑

r(p)=n

1

p

the reciprocal sum of primitive prime divisors of Rn (n > 0), (p(n) = 0, if there is
no primitive prime divisor of Rn). Furthermore let

f(n) =
∑

p|Rn

1

p

be the reciprocal sum of all prime divisors of the term Rn, (f(n) = 0, if there is no
prime divisor). Using this notation they proved that

f(n) < log log log n+ c
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for sufficiently large n. This is the best possible result apart from the constant c.

The average of the previous functions was studied in Kiss [47]. The main results
are the following.

Theorem 3.2. There exists a constant c > 0 depends on the sequence R such that

∑

n≤x

f(n) = cx+O(log log x)

for sufficiently large x.

Theorem 3.3. There exists an absolute constant c > 0 such that

p(n) < c
(log logn)2

n

for sufficiently large n. Furthermore

∑

n≤x

p(n) =
∑

r(p)≤x

1

p
= log log x+O(1).

4. Approximation problems

Let G(A,B,R0, R1) be a nondegenerate second order linear recurrence, and
D = A2 + 4B denote the discriminant of its companion polynomial. If D > 0 then
the quotion Rn+1/Rn is a convergent of the irrational number α. The sharpness of
the convergent was studied in Kiss [16].

Theorem 4.1. Suppose that D > 0, G0 = 0, G1 = 1 and that α is an irrational
number. Then the inequality

∣∣∣∣α− Gn+1

Gn

∣∣∣∣ <
1

c ·G2
n

holds for some c > 0 and infinitely many n if and only if |B| = 1 and c ≤
√
D.

Moreover if |B| = 1 and the inequality

∣∣∣∣α− p

q

∣∣∣∣ <
1√
Dq2

holds for some rational number p/q then p/q = Gn+1/Gn for some positive integer n.

In general Gn+1/Gn is a weaker convergent of α. In the joint paper [55] P. Kiss
and Zs. Sinka proved the following theorem.



12 K. Liptai, F. Mátyás

Theorem 4.2. Let G be a non-degenerate second order linear recurrence with
D > 0. Define the numbers k0 and c0 by

k0 = 2− log |B|
log |α| and c0 =

√
D

k0−1

|ak0−1b|

and let k and c positive real numbers (a and b were defined in the introduction).
Then ∣∣∣∣α− Gn+1

Gn

∣∣∣∣ <
1

cGk
n

holds for infinetely many integer n if and only if k < k0 and c is arbitrary, or k = k0
and c < c0, or k = k0, c = c0 and B > 0, or k = k0, c = c0, B < 0 and b/a > 0.

P. Kiss and R. F. Tichy [39], [40] have dealt with the convergent of |α| by

rational numbers of the forms
∣∣∣Gn+1

Gn

∣∣∣.

Theorem 4.3. Let G be a non-degenerate second order linear recurrence. If D < 0
then there is a positive number c, depending only on the parameters of the sequence
G, such that ∣∣∣∣|α| −

∣∣∣∣
Gn+1

Gn

∣∣∣∣
∣∣∣∣ <

1

nc

for infinitely many n.

Furthermore they showed that apart from the constant c, it is the best possible
approximation.

Theorem 4.4. Let G be a non-degenerate second order linear recurrence. If D < 0
then there is a positive number c′, such that

∣∣∣∣|α| −
∣∣∣∣
Gn+1

Gn

∣∣∣∣
∣∣∣∣ >

1

nc′

for any sufficiently large n.

For the Fibonacci sequence Y. V. Matijasevich and R. K. Guy proved that

lim
n→∞

√
6 · log(F1 · F2 · · ·Fn)

log[F1, F2, . . . , Fn]
= π.

In the joint paper [38] P. Kiss and F. Mátyás generalized this result. They showed
that the Fibonacci sequence can be replaced by any non-degenerate second order
linear recurrence sequence G with G0 = 0, G1 = 1 and (A,B) = 1. Using a Baker
type result, they also gave an error term of the form O (1/logn).
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5. Recursive sequences and diophantine equations

The equation
x2 −Dy2 = N,

with given integers D and N and variables x and y, is called Pell’s equation. If D
is negative, it can have only a finite number of rational integer solutions. If D is a
perfect square, say D = a2, the equation reduces to

(x− ay)(x+ ay) = N

and again there are only a finite number of solutions. The most interesting case
arises when D is a positive integer and not a perfect square.

In [8] P. Kiss and F. Várnai proved that the solutions (x, y) of the equation

x2 − 2y2 = N

can be given with the help of terms of finitely many second order linear recurrences
P (2, 1, P0, P1), such that

(x, y) = (±(P2n + P2n+1),±P2n+1).

P. Kiss [25] generalized this result in the following form.

Theorem 5.1. If the equation

x2 − (a2 + 1)y2 = N

has a solution for a fixed integer a > 0, then all solutions (x, y) can be given with
the help of finitely many linear recurring sequences G(2a,−1, G0, G1) such that

(x, y) = (±(G2n + aG2n+1)±G2n+1),

where

0 ≤ G1 < 2a
√
N for N > 0

and

0 ≤ G1 < (2a2 + 1)

√
−N

a2 + 1
for N < 0.

In the same paper P. Kiss proved the following theorem.

Theorem 5.2. If the equation

x2 − (a2 − 4)y2 = 4N
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has a solution for a fixed integer a > 0, then all solutions (x, y) can be given with
the help of finitely many second order linear recurring sequences G(a,−1, G0, G1)
such that

(x, y) = (±H2n,±G2n),

where H is the associate sequence of G and

0 ≤ G1 <
√
N for N > 0

and

0 ≤ G1 < a

√
−N

a2 − 4
for N < 0.

In their joint paper [77] P. Kiss and K. Liptai found relationships between
Fibonacci numbers and solutions of special diophantine equations.

Theorem 5.3. All positive integer solutions of the equation

x2 + x(y − 1)− y2 = 0

are of the form
(x, y) = (F 2

2h+1, F2h+1F2h+2),

where Fi is the i-th Fibonacci number.
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ON SOME SPECIAL FINSLER METRICS
IN PSYCHOMETRY

Sándor Bácsó, Erika Gyöngyösi, Ildikó Papp (Debrecen, Hungary)
Brigitta Szilágyi (Budapest, Hungary)

Dedicated to the memory of Professor Péter Kiss

Abstract. An expansive use of Finsler metrics can be observed in physics, biology, geology,
financial mathematics. It is a great improvement for us dealing with Finsler geometry to know
that Finsler metrics can be applied even in psychology. The aim of this present paper is to show
some Finsler metrics being important even in applications such as Hilbert metric. These classical
Finsler metrics have been formulated since the beginning of 1900 and they are even projects of
current research, too. Since the book entitled “An Introduction to Riemann–Finsler Geometry”
(Springer-Verlag, 2000) written by D. Bao, S. S. Chern and Z. Shen was published, the previous
names of concepts of Finsler geometry and Finsler metric were replaced by Riemann–Finsler
geometry and Riemann–Finsler metric.

1. Introduction

First of all let us give the concept of Riemann-Finsler metric.

Definition 1. Let an n-dimensional differentiable manifold M be given with a
tangent space TxM in the point (xi) (i = 1, 2, . . . , n) of M . Let us denote the
coordinates of vectors of TxM by (yi). The function L(x, y):TM(=

⋃
x TxM) → R

is Riemann–Finsler metric, if the following properties hold:
(1) Regularity: L(x, y) is a function C∞ on the manifold TM\O of nonzero

tangent vectors.
(2) Positive homogeneity: L(x, λy) = λL(x, y) for all λ > 0.

(3) Strong convexity: the n×n matrix gij(x, y) =
∂2L2

∂yi∂yj (x, y) is positive definit
at every y 6= 0.

Remark. In some situations, the Riemann–Finsler metric L(x, y) satisfies the
criterion L(x, y) = L(x,−y). In general, we consider this property to be too
restrictive. In Example 1 we present an original Finsler metric, which has not
this symmetric property.

This definition mentioned above can be found in the doctoral dissertation of
Paul Finsler “Über Kurven und Flächen in allgemeinen Räumen”, 1918, Göttingen.
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Essentially the same definition was given by Riemann in his famous habilitation
dissertation “Über die Hypothesen, welche der Geometrie zugrund liegen”, 1854.

Since this definition was considered to be too general in determining the tensor
of curvature, Riemann chose a well-known special case

L2(x, y) = gij(x)y
iyj,

and he stated “we will now stick to the case ellipsoids (quadratic forms), because
if not, the computation would become very complicated”.

An American–Chinese professor Shiing-Shen Chern who is one of the living
geometers with the most significant scientific achievements in differential geometry
denies Riemann’s statement. He wrote in his latest two papers where he pointed
out:

“In fact, the general case is just as simple and a main point went unnoticed
by Riemann and his successors” [1].

“I believe a major part of differential geometry in the 21th century should be
Riemann–Finsler geometry” [2].

2. Randers metrics

It is not difficult to construct an non-trivial (i.e. non-Riemannian) Riemann-
Finsler metric. G. Randers studied the following metric in 1941:

L(x, y) = α(x, y) + β(x, y)

where α2(a, y) = aij(x)y
iyj is a Riemann metric, β(x, y) = bi(x)y

i is an 1-form [3].
We can illustrate this metric in two-dimensional case in the following way:

Figure 1
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In the tangent space TxM the indicatrix is an ellipse whose focus is the origin.
So we get an original Riemann–Finsler metric, where

L(x, y) 6= L(x,−y).

We can consider the generalization of a Randers metric as Funk metric from which
the Hilbert metric can be derived.

3. Funk distance function

Let En be an n-dimensional Euclidean space, and D be a strictly convex
domain in En, and in En let ∂D denote the border of D.

Figure 2

Consider two arbitrary points A and B of D and let the line |AB| meet ∂D in
a point P and let the order of the points be A,B, P .

Definition 2. ([4]) Given a positive constant k the Funk distance function
f(A,B) can be defined as follows:

f(A,B) =
1

k
log(AP/BP )

where AP and BP denote Euclidean distances.
From this definition it follows that the Funk distance function has the prop-

erties:
(1) f(A,B) ≥ 0 for every two points A and B of D;
(2) f(A,B) = 0 if and only if A = B;
(3) f(A,B)+f(B,C) ≥ f(A,C) holds for every three points A,B,C of D. Equality

holds if and only if B is on the line |AC|;
(4) Generally f(A,B) 6= f(B,A), but f(A,An) → 0 if and only if f(An, A) → 0.
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4. Hilbert distance function

Figure 3

Definition 3. ([5]) The Hilbert distance function is obtained by the symmetrisation
of the Funk distance function:

h(A,B) =
1

2
{f(A,B) + f(B,A)} =

1

2k
log(AP/BP ×BQ/AQ).

Here the line |AB| meets the border of D in the points P and Q and the order of
the points is Q,A,B, P .

The Hilbert distance function has the following properties:
(1) h(A,B) ≥ 0 for every two points A and B of D;
(2) h(A,B) = 0 if and only if A = B;
(3) h(A,B)+h(B,C) ≥ h(A,C) holds for every three points A,B,C of the domain

D. Equality holds if and only if the point B is on the line |AC| provided if D
is strictly convex;

(4) h(A,B) = h(B,A).

5. Funk and Hilbert metrics

Figure 4
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Let (xi) be the coordinates of the point A, (yi) be the coordinates of the vector
y 6= 0. Let us define the function r(xi, yi) by the following equality

r(x, y) = AP/‖y‖,

where AP is an Euclidean distance, ‖y‖ is the Euclidean norm of the vector y.
The function r(x, y) has the following properties:

(1) r(x, y) > 0 for every pair (x, y);
(2) r(x, y) is of degree (−1) positively homogeneous in y;
(3) If ∂D = {zi : φ(zi) = 0} then φ(xi + ryi) = 0. Namely, if we denote the

coordinates of P by (zi) then zi = xi + r(x, y)yi;
(4) r(x, y) ∈ C∞.

Definition 4. [6] Lf = 1
kr(x,y) and Lh = 1

2k[r(x,y)+r(x,−y)] are Funk metric and
Hilbert metric respectively.

Theorem 5. 1. [7] The Funk metric and the Hilbert metric are original Riemann-
Finsler metrics.

Theorem 5. 2. [8] The Funk space (D,Lf) and Hilbert space (D,Lh) have

constant curvatures with the values (−k2/4) and (−k2) respectively.

An interesting special case follows:
Let the border ∂D of the strictly convex domain D be given by a curve of

second order, which is non-degenerated as follows:

∂D : ϕ(zi) = 0,

where
ϕ(zi) = bijz

izj + ciz
i + d, bij = bji.

then Lf = 1
k [(aij(x)y

iyj)d
1
2 + bi(x)y

i] and Lh = 1
2 [aij(x)y

iyj ]d
1
2 .

So in this case (D,Lf ) is a Randers space with a negative constant curvature
(−k2/4), and (D,Lh) is a Riemannian space with a negative constant curvature
(−k2). If D is a unit circle then (D,Lh) gives the well-known Klein model of the
hyperbolic space.

6. Some application in physics, in biology and in psychology

Let Rn = (M,α) be an n-dimensional Riemannian space with a Riemannian
metric α, α2 = aij(x)y

iyj, and with a differential one-form β = bi(x)y
i on M .

Definition 5. An (α, β)-metric is a Finsler metric L(α, β) on M which is a
positively homogeneous function of degree one the arguments (α, β).
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The Randers metric L = α+ β and the Kropina metric L = α2/β have played
a central role in the theory of (α, β)-metrics, and have been the bases of various
branches of theoretical physics [9].

In biology there are a lot of Finsler metrics which are suitable to describe
biological models and now we intend to show only one of them which arises in coral
reef ecology:

If we consider the following local coordinate system in two-dimensional case
x = (x1, x2) = (x, y) and u = (y1, y2) = (h, v), then this metric has the following
form

L(x, y, h, v) = eφ(x,y)N(h, v),

where N is a special Minkowski metric (the main scalar is constant, which is a very
restrictive condition for the metric) [10].

This metric is very similar to the metric, which is used in psychometry when
a psychometric function has radial symmetry. Then the applicable Finsler metric
is of the following form:

(⋆) F (x, u) = ξ(x)|u|,

where ξ(x) > 0 and |u| denotes the Minkowski norm [11], [12].
This type of Finsler metrics are called conform Minkowski, or conform flat

metrics. Properties of this type of metrics are being worked out presently. Consider
the following Finsler metrics with the property (⋆) which are defined as in the
paper mentioned above:
(1) F (x, u) = eax+by 4

√
h4 + v4 + h2v2

(2) F (x, u) = ecxy 4
√
h4 + v4 + h2v2

(3) F (x, u) = eax+by 4
√
(h2 + v2 + hv)(h2 + v2)

(4) F (x, u) = ecxy 4
√
(h2 + v2 + hv)(h2 + v2), where a, b, c ∈ R are constants.

The Gaussian curvature of the first of these two dimensional Finsler metrics
is as follows [13]

−72
√
u4 + v4 + u2v2(4b2u14 − 4abvu13 − 40u12b2v2 + u12a2v2 + 34av3u11

−83u10b2v4 − 7u10a2v4 + 146av5bu9 − 50u8a2v6 − 95u8b2v6 + 188av7bu7

−50u6b2v38− 95u6a2v8 + 146av9bu5 − 7u4b2v10 − 83u4a2v10 + 34av11bu3

+u2b2v12 − 40u2a2v12 − 4av13bu+ 4a2v14)e(−2αx−2by)/(2u4 + 11u2v2 + 2v4)4.

The Gaussian curvature of the others is much more complicated.
It would be interesting studied under what conditions a Randers metric

applied in so many fields could be applied in psychometry as Finsler metric.
One can even examine under what conditions a Randers metric is conform flat
(conform Minkowski). This means a rather complicated examination. A necessary
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and sufficient condition is known for a Randers metric to be conform Minkowski.
Meanwhile this result is too complicated in respect of applications.

Determining the differential equations of the geodetics of the metrics men-
tioned above could provide an important problem (n = 2).

It may be interesting to examine under what conditions a Finsler metric
applied in pscyhometry is of Douglas type. That is, it occurs if and only if the
differential equations of the geodetics (y = y(x)) in two dimension is as follows:

y′′ =
d2y

dx2
= a(x, y)(y′)3 + b(x, y)(y′)2 + c(x, y)y′ + d(x, y),

that is the differential equation of the geodetics is a polynom of degree three in
y′ = dy

dx [14], [15], [16].
This result may be of importance because the psychometric metric can be

measured along the geodesics.

Remark 2. Certainly Randers metric can only be applied in psychometry if non-
symmetrical metrics are also allowed in studies of some psychometric problems. We
can find a refrence to this possibility in the paper [11]. We hope that in the near
future we can characterize the metric functions which is useful in psychometry and
which we described in the present paper.
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A NOTE ON NON-NEGATIVE INFORMATION FUNCTIONS

Béla Brindza and Gyula Maksa (Debrecen, Hungary)

Dedicated to the memory of Professor Péter Kiss

Abstract. The purpose of the present paper is to make a first step to prove the conjecture,
namely, that not every non-negative information function coincides with the Shannon’s one on
the algebraic elements of the closed unit interval.

1. Introduction

The characterization of the Shannon entropy, based upon its recursive and
symmetric properties is strongly connected with the so-called fundamental equation
of information, which is

(1.1) f(x) + (1− x)f

(
y

1− x

)
= f(y) + (1− y)f

(
x

1− y

)

where f : [0, 1] → IR and (1.1) holds for all x, y ∈ [0, 1[ , x+ y ≤ 1.
The solutions of (1.1) satisfying f(0) = f(1) and f(12 ) = 1 are the information

functions. The basic monography Aczél and Daróczy [1] contains several results on
these functions, like, if f is non-negative and bounded, then f = S, where

S(x) = −x log2 x− (1 − x) log2(1− x), x ∈ [0, 1],

(0 log2 0 is defined by 0). (See also Daróczy–Kátai [2]). A related result is

Theorem 1. (Daróczy–Maksa [3]). If f is a non-negative information function,
then

(1.2) f(x) ≥ S(x), x ∈ [0, 1]

moreover, there exists a non-negative information function different from S.

This research has been supported by the Hungarian Research Fund (OTKA) Grant T-030082
and by the Higher Educational Research and Development Fund (FKFP) Grant 0215/2001.
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The proof of the second part of this theorem is based upon the existence of a
non-identically zero real derivation d: IR → IR which is additive, that is

d(x + y) = d(x) + d(y) (x, y ∈ IR)

and satisfies the equation

d(xy) = xd(y) + yd(x), (x, y ∈ IR)

and different from 0 at some point. (See for example Kuczma [4]).
A computation shows that the function

(1.3) f(x) =





S(x) +
d(x)2

x(1 − x)
if x ∈ ] 0, 1[

0 if x ∈ {0, 1}

is a non-negative information function and different from S if d is a real derivation
different from 0. (See Daróczy–Maksa [3]).

After this result some other natural questions arose, namely, the characteriza-
tion of the non-negative information functions and (or at least) their Shannon kernel
{x ∈ [0, 1]: f(x) = S(x)} where f is a fixed non-negative information function. (See
Lawrence–Mess–Zorzitto [6], Maksa [7] and Lawrence [5].)

It is known that the real derivations are vanishing over the field of algebraic
numbers (se Kuczma [4]), hence

(1.4) f(α) = S(α)

if f is given by (1.3). It is noted that (1.4) holds for all non-negative information
functions f and for all rational α ∈ [0, 1]. (See Daróczy–Kátai [2].)

Our conjecture is that there are non-negative information functions that are
different from the Shannon’s one at some algebraic element of [0, 1]. In the next
section we prove a partial result in this direction.

2. Results

The base of our investigations is the following theorem.

Theorem 2. A function f : [0, 1] → IR is a non-negative information function, if
and only if, there exists an additive function a: IR → IR such that a(1) = 1,

(2.1) −xa(log2 x)− (1− x)a(log2(1− x)) ≥ 0 if x ∈ ] 0, 1[ ,
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and

(2.2) f(x) =





−xa(log2 x)− (1− x)a(log2(1 − x)) if x ∈ ] 0, 1[

0 if x ∈ {0, 1}.

Furthermore f = S holds, if and only if, there is a real derivation d: IR → IR such
that

(2.3) a(x) = x+ 2xd(2−x) if x ∈ IR.

Proof. The first part of the theorem is an easy consequence of Theorem 1 of
Daróczy–Maksa [3]. To prove the second part, first suppose that the non-negative
information function f coincides with S on [0, 1]. Therefore, by the definition of S
and by (2.2), we get that

(2.4) −xa(log2 x)− (1− x)a(log2(1− x)) = −x log2 x− (1− x) log2(1− x)

holds for all x ∈ ] 0, 1[ where a is an additive function that exists by the first part
of the theorem. Define the function ϕ: ] 0,+∞[ → IR by

(2.5) ϕ(x) = −xa(log2 x) + x log2 x.

An easy calculation shows that

(2.6) ϕ(xy) = xϕ(y) + yϕ(x) if x > 0, y > 0

and, because of (2.4),

ϕ(x) + ϕ(1 − x) = 0 if 0 < x < 1.

This implies that

ϕ

(
x

x+ y

)
+ ϕ

(
y

x+ y

)
= 0

for all x > 0, y > 0 whence, applying (2.6), we have that

0 = xϕ

(
1

x+ y

)
+

1

x+ y
ϕ(x) + yϕ

(
1

x+ y

)
+

1

x+ y
ϕ(y)

= (x+ y)ϕ

(
1

x+ y

)
+

1

x+ y
(ϕ(x) + ϕ(y))

= ϕ(1)− 1

x+ y
(ϕ(x + y)− ϕ(x) − ϕ(y)).



34 B. Brindza and Gy. Maksa

Since ϕ(1) = 0, we dotain that

(2.7) ϕ(x + y) = ϕ(x) + ϕ(y) if x > 0, y > 0.

If x ∈ IR define the function d: IR → IR by

d(x) = ϕ(u)− ϕ(v)

where u > 0, v > 0 and x = u − v. Equation (2.7) garantees that the definition of
d is correct, d is additive, and moreover, by (2.6) and (2.7), d is a real derivation
that is an extension of ϕ to IR. Thus, by (2.5),

d(x) = −xa(log2 x) + x log2 x if x > 0

whence we obtain (2.3) replecing x by 2−x.
Finally, if d is an arbitrary real derivation then the function a defined by (2.3)

is additive, a(1) = 1 and the function f given in (2.2) coincides with S on [0, 1].

Since every real derivation vanishes at all algebraic points (see, for example
Kuczma [4]), in order to prove our conjecture, by (2.3), we have to construct an
additive function a for which a(1) = 1, a(log2 β) 6= log2 β for some positive algebraic
number β and (2.1) holds for all x ∈ ] 0, 1[ .

Instead of this we can proof the following weaker result only.

Theorem 3. Let Q(α) be a real algebraic extension of Q of degree n > 1. If Q[α]
(the ring of algebraic integers in Q(α)) is a unique factorization domain then there
exists an additive a: IR → IR with a(1) = 1 satisfying

(2.8) −xa(log2 x)− (1− x)a(log2(1− x)) ≥ S(x) if x ∈ ] 0, 1[ ∩Q[α]

and

(2.9) a(log2 β) 6= log2 β

for some positive algebraic number β.

Proof. Let U be the unitgroup of Q[α] generating by a set of fundamental units
{ε1, . . . , εn−1} and P = {π1, . . . , πs, . . .} be the set of primes in Q[α]. Since the
group of the roots of unity is {−1, 1}, only, we may assume that

0 < εi, i = 1, . . . , n− 1; 0 < πj , j = 1, 2, . . . .

and every non-zero element x of Q[α] can uniquely be written in the form

(2.10) x = ±
(

n−1∏

i=1

εki

i

)


∞∏

j=1

π
ℓj
j
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where the exponents are (rational) integers and ℓj ≥ 0, j = 1, 2, . . .. The set P is
multiplicatively independent, hence the set {log2 π:π ∈ P} is linearly independent
(over Q). Therefore there is a Hamel basis H ⊂ IR for which 1 ∈ H and log2 π ∈ H
if π ∈ P .

Let π1 ∈ P be fixed. We may assume that π1 6= 2. Define the function a0
on H by a0(log2 π1) = log2

π1

2 , a0(h) = h if h ∈ H, h 6= log2 π1, and let a
be the additive extension of a0 to IR. It is obvious that a(1) = 1 and (2.9) is
satisfied by β = π1. To prove (2.8) first suppose that the exponent of π1 is positive
in the decomposition (2.10) of x ∈ ] 0, 1[ ∩ Q[α]. Then the exponent of π1 in the
decomposition of (1−x) is zero. Of course, the same is true also for (1−x) instead
of x. Therefore

(2.11) a(log2(1− x)) = log2(1 − x)

or

(2.12) a(log2 x) = log2 x

holds for all x ∈ ] 0, 1[ ∩Q[α]. Supposing (2.11) we have that

− xa(log2 x)− (1− x)a(log2(1− x))

= −xa

(
log2

x

πℓ1
1

+ log2 π
ℓ1
1

)
− (1− x) log2(1 − x)

= −xa

(
log2

x

πℓ1
1

)
− xa(log2 π

ℓ1
1 )− (1− x) log2(1 − x)

= −x log2
x

πℓ1
1

− xℓ1a(log2 π1)− (1 − x) log2(1− x)

= −x log2 x− (1− x) log2(1− x) + xℓ1
[
log2 π1 − a(log2 π1)

]

= −x log2 x− (1− x) log2(1− x) + xℓ1
[
log2 π1 − log2

π1

2

]

> −x log2 x− (1− x) log2(1− x) = S(x).

Thus (2.8) holds. In case (2.12) the proof is similar. Finally, if the exponent of π1

is zero in the decompositions of both x and (1− x) then, of course, the equality is
valid in (2.8).

Remark. According to the classical approximation result of Dirichlet the set
D = { x ∈]0, 1[∩Q[α]: ℓ1 > 0 in (2.10)} is dense in [0, 1]. Thus the strict inequality
holds on the dense set D in (2.8).
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Abstract. The paper deals with a generalized ratio set of positive integers defined as

Rn(A)={a1a2...an/(b1b2...bn);a1,a2,...,an,b1,b2,...,bn∈A}, where A⊂N.

There are characterized the accumulation points of Rn(A). Further it is proved that if A⊂N has
positive lower asymptotic density then for sufficiently large positive integer n the set Rn(A) is
dense in R+.

AMS Classification Number: 11B05

1. Introduction

Denote by R (R+) the set of all real (positive real) numbers and by N the
set of all positive integer numbers, respectively. The ratio set of A ⊂ N is denoted
by R(A) = {a

b ; a, b ∈ A} (see [3], [5]). The symbol Xd will stand for the set of all
accumulation points of X ⊂ R+. It is easy to see that for any infinite subset A
of positive integers {0,+∞} ⊂ R(A)d. The set R(A) is everywhere dense in R+ if
R(A)d = [0,+∞].

It is known that if limn→∞
an+1

an
= 1 for the set A = {a1 < a2 < · · ·} ⊂ N then

R(A) is dense in R+ [5], on the other hand if limn→∞
an+1

an
= c > 1 then R(A) is

not dense in R+, moreover R(A)d ∩
(
1
c , c

)
= ∅ [6].

The lower and upper asymptotic density of A, denoted by d(A) and d(A)
respectively, are defined as

d(A) = limx→∞
A(x)

x
, d(A) = limx→∞

A(x)

x
,

This research was supported by Grant GAAV A 1187, 101.
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where A(x) = #{a ≤ x : a ∈ A}. If d(A) = d(A) = d(A) then the number d(A) is
called the asymptotic density of the set A.

We mention some known results on the topics density of ratio sets. Šalát [5]
showed that d(A) = d(A) > 0 or d(A) = 1 implies that R(A) is everywhere dense
in R+ and for every sufficiently small ε > 0 there exists a subset of A ⊂ N such
that d(A) = 1 − ε and R(A) is not everywhere dense in R+. He gave an example
of A ⊂ N for which d(A) = 1

4 and R(A) is not everywhere dense in R+. Strauch
and Tóth [4] proved that 1

2 is the lower bound of γ’s for which d(A) ≥ γ implies
that R(A) is everywhere dense in R+.

We define the generalized ratio set

Rn(A) = {a1a2 . . . an
b1b2 . . . bn

; a1, a2, . . . , an, b1, b2, . . . , bn ∈ A}.

Clearly, R1(A) = R(A) and Rn(A) ⊂ Rm(A) for m ≥ n.
In [2] was asked: For which sets B ⊂ R does there exist a set A ⊂ N such that

R(A)d = B? It is evident that B 6= ∅ provided A is infinite. On the other hand,
{0,+∞} ⊂ R(A)d for any infinite A ⊂ N. Further, if some positive t ∈ R(A)d, then
1
t ∈ R(A)d, since a

b ∈ R(A) always implies that b
a ∈ R(A). Notice also, that the

accumulation points of any linear set constitute a closed set in R. Consequently,
the nonempty set B must be a closed subset of [0,+∞] = R+ ∪ {0,+∞}, it must
contain 0 and +∞, and if b ∈ B (b ∈ R+) then 1

b ∈ B. In [1] was proved that these
conditions are also sufficient for the existence of an A ⊂ N for that R(A)d = B.
We show that the same assertion is valid if we consider the generalized ratio set
Rn(A) instead of the ratio set R(A).

2. Theorems and proofs

Theorem 1. Let ∅ 6= B ⊂ [0,+∞] and n be a positive integer. The followings are
equivalent:

(i) There exists an A ⊂ N such that Rn(A)
d = B;

(ii) B ∩R is closed in R, {0,+∞} ⊂ B and b ∈ B implies 1
b ∈ B.

Proof. As the implication (i) ⇒ (ii) is trivial it suffices to prove only (ii) ⇒ (i). The
case n = 1 was considered in [1]. Let us suppose that n > 1 and suppose ∅ 6= B ⊂
[0,+∞] satisfies (ii). Let S stand for the system of intervals (1+ i−1

n , 1+ i+1
n ) where

n ∈ N and i = 1, 2, . . . , n2. The length of intervals tends to zero with increasing n
and every real number greater than 1 can be covered with infinitely many elements
of S. Denote by ((ck− δk, ck+ δk))

∞
k=1 the sequence of those intervals from S which

meet B (i.e. which contain at least one element from B).
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Define the set A = {a0 < a1 < a2 < . . .} ⊂ N as follows:
Let a0 = 1, a1 = 2, a2 = 3, further

a3k = ⌊(a3k−1)
n2

.(ck + 1)⌋, a3k+1 = (a3k)
n2

, a3k+2 =

⌈
ck.(a3k+1)

n

(a3k)n−1

⌉
for k = 1, 2, . . .

We will show that Rn(A)
d = B.

(1) B ⊂ Rn(A)
d: Let t ∈ B be a positive real number. We may suppose that

t > 1. Let ((cmk
−δmk

, cmk
+δmk

))∞k=1 be a sequence of intervals containing t. Then
lim
k→∞

cmk
= t since lim

k→∞
δmk

= 0. Accordingly the sequence

(1)
a3mk+2 · (a3mk

)n−1

(a3mk+1)n
=

⌈
cmk

· (a3mk+1)
n

(a3mk
)n−1

⌉
· (a3mk

)n−1

(a3mk+1)n
(k = 1, 2, . . .)

converges to t; thus, t ∈ R(A)d.

(2) Rn(A)
d ⊂ B: Let us consider the fraction

r =
ai1ai2 . . . aim
aj1aj2 . . . ajm

∈ Rn(A),

where m ≤ n, ai1 , . . . , aim , aj1 , . . . , ajm ∈ A further ai1 ≥ ai2 ≥ · · · ≥ aim , ai1 >
aj1 ≥ aj2 ≥ · · · ≥ ajm and the fraction r cannot be simplified. Our aim is to show
that only a sequence like (1) from Rn(A) can have finite limit. To prove this we
consider the following possibilities:

(a) i1 = 3k or i1 = 3k + 1. In this case we have

r ≥ ai1
(ai1−1)n

≥ (ai1−1)
n2−n.

(b) m < n, i1 = 3k + 2, j1, . . . , jm ≤ 3k + 1 or m = n, j1, . . . , jn−1 ≤ 3k + 1,
jn ≤ 3k. Now we have

r ≥ a3k+2

(a3k+1)n−1 · a3k
=

⌈ ck·(a3k+1)
n

(a3k)n−1

⌉

(a3k+1)n−1 · a3k
≥ a3k+1

(a3k)n
= (a3k)

n2−n.

(c) i1 = 3k + 2, i2, . . . , in−1 ≤ 3k, in ≤ 3k − 1, j1 = j2 = · · · = jn = 3k + 1.
Then we have the following estimation

r≤a3k+2 · (a3k)n−2 · a3k−1

(a3k+1)n
<
(ck + 1) · (a3k+1)

n

(a3k)n−1
· (a3k)

n−2 · a3k−1

(a3k+1)n
· (ck + 1)·a3k−1

a3k
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≤(a3k−1)
1−n2

.

The last case we have to consider is related to (1)

(d) i1 = 3k + 2, i2 = · · · = in = 3k, j1 = · · · = jn = 3k + 1.
Let now t ∈ R(A)d and t > 1. Then there exist sequences (si,l)∞l=1 and (ri,l)

∞
l=1,

i = 1, 2, . . . , n of positive integers such that

(2) lim
l→∞

as1,l · as2,l · · · asn,l

ar1,l · ar2,l · · ·arn,l

= t.

Observe that if the fractions in (2) are of the form (a) and (b) then their limit
is +∞ and if these fractions are of the form (c) then their limit is 0. So (2) can
hold only if for sufficiently large numbers we have the case (d). Therefore for some
subsequence (mk)

∞
k=1 of positive integers we have

lim
k→+∞

cmk
= t.

Taking into account that every interval (cmk
−δmk

, cmk
+δmk

) contains some tk ∈ B,
therefore lim

k→∞
tk = t. Finally, the closedness of B ∩R in R ensures that t ∈ B.

Remark. As a consequence of the theorem we immediately have that for each
n ≥ 1 there exists a set A ⊂ N such that Rn(A) is not dense in R+, but Rn+1 is
already dense in R+. Indeed, there is a set A such that the set of all accumulation
points of Rn(A) is equal to B = {n, 1

n ;n = 1, 2, . . .}. Obviously, then Rn+1(A) is
dense in R+.

Strauch and Tóth [4] have proved that for any A ⊂ N and the interval (α, β),
0 ≤ α < β ≤ 1 if (α, β) ∩R(A) = ∅ then d(A) ≤ 1− (β − α). The following lemma
generalizes this result and it is basic for the proof of the theorem below.

Lemma. Let A ⊂ N and the pairwise disjoint intervals (αi, βi), 0 ≤ αi < βi ≤ 1
are such that (αi, βi) ∩R(A) = ∅, i = 1, 2, . . . ,m. Then

d(A) ≤ 1−
m∑

i=1

(βi − αi)

Proof. In the cases d(A) = 0 or d(A) = 1 the assertion is trivial (it was proved by
Šalát [5] that d(A) = 1 implies that R(A) is everywhere dense in R+), so we can
suppose that the set A is infinite and A has infinite complement in N. Thus A can
be expressed as the set of integer points lying in the intervals

[b1, c1], [b2, c2], . . . , [bn, cn], . . . ,
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whose endpoints are ordered as

b1 ≤ c1 < b2 ≤ c2 < · · · < bn ≤ cn < · · ·

Obviously,

d(A) = limn→+∞
1

cn

n∑

i=1

(ci − bi + 1).

Let us consider the fractions a
cn

, where a ∈ A, a ≤ cn. All these fractions are
contained in the union of the intervals

(3)

[
b1
cn

,
c1
cn

]
,

[
b2
cn

,
c2
cn

]
, · · · ,

[
bn
cn

,
cn
cn

]
.

The distance of any two neighbouring fractions lying in the same interval of (3) is
1
bn

→ 0 as n → +∞. Therefore, for sufficiently large n, each interval (αi, βi) ⊂ [0, 1],
i = 1, 2, . . . ,m must lie in the complement of

[
bk
cn

,
ck
cn

]
, k = 1, 2, . . . , n.

This complement is formed by the pairwise disjoint intervals

(
ck
cn

,
bk+1

cn

)
, k = 1, 2, . . . , n− 1.

Hence

∪m
i=1(αi, βi) ⊂ ∪n

k=1

(
ck
cn

,
bk+1

cn

)

and therefore
m∑

i=1

(βi − αi) ≤
n∑

k=1

bk+1 − ck
cn

.

The upper asymptotic density of the set A we can write as

d(A) = limn→+∞

(
cn − b1

cn
+

n

cn
− 1

cn
[(b2 − c1) + (b3 − c2) + · · ·+ (bn − cn−1)]

)

whence

d(A)− d(C) ≤ 1−
m∑

i=1

(βi − αi),

where C is the range of cn. Now, for a positive integer t, transform [bn, cn] →
[tbn, tcn+t−1] and denote by At the set of all integer points lying in [tbn, tcn+t−1],
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n = 1, 2, . . .. Analogously, Ct is the set of all tcn+t−1. Then we have d(At) = d(A)

and d(Ct) = d(C)/t, which gives

d(A)− d(C)

t
≤ 1−

m∑

i=1

(βi − αi)

and the assertion of the lemma follows.

Theorem 2. For arbitrary A = {a1 < a2 < · · ·} ⊂ N having positive lower
asymptotic density (d(A) > 0) there exists a positive integer n such that the set
Rn(A) is dense in R+.

Proof. First, we claim that d(A) > 0 implies that for some interval [γ, δ], 1 ≤
γ < δ the set R(A) is dense in [γ, δ]. Indeed, if such interval γ, δ] does not exist,
then there exist pairwise disjoint intervals (αi, βi), 0 ≤ αi < βi ≤ 1 such that
(αi, βi) ∩ R(A) = ∅, i = 1, 2, . . . ,m and the sum of the length of these intervals
can be arbitrary near to 1, i.e.

m∑

i=1

(βi − αi) > 1− d(A)

which is a contradiction with the lemma.

From the condition d(A) > 0 follows that for sufficiently large K we have

ak+1

ak
< K, k = 1, 2, . . .

If R(A) is dense in [γ, δ], (1 ≤ γ < δ) then R2(A) is dense in [1, δ
γ ] and R4(A) is

dense in [1, ( δγ )
2], . . .. To see this, we remark that

R2n+1(A) = R(R2n(A)), n = 1, 2, . . .

Evidently ( δγ )
n → +∞ for n → +∞, therefore for sufficiently large n we have that

Rn−1(A) is dense in [1,K]. Using this fact we have that the set
{
t · ak

a1
; t ∈ Rn−1(A)

}
⊂ Rn(A)

is dense in each [ak

a1
,
ak+1

a1
], k = 1, 2, . . ., hence Rn(A) is dense in R+.

To conclude this paper, let us describe some open problems associated with
this topic.

Let γ(n) be the least value of γ for which d(A) ≥ γ implies that Rn(A) is
dense in R+, n = 1, 2, . . .. It is known that γ(1) = 1/2. Determine the exact value
of γ(2). What can be said about the function γ(n)?
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Abstract. We consider the problem of existence of power integral bases in orders of
composite fields. Completing our former results we show that under certain congruence conditions
on the defining polynomial of the generating elements of the fields, the composite of the polynomial
orders does not admit power integral basis. As applications we provide several examples involving
also infinite parametric families of fields.
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1. Introduction

Let K be an algebraic number field of degree n with ring of integers ZK . It is
a classical problem in algebraic number theory to decide if there is an element α
in K such that

{1, α, α2, . . . , αn−1}
is an integral basis. Such an integral basis is called power integral basis. A further
problem is to find all elements which generate power integral bases.

The index of a primitive algebraic integer α ofK is defined as the module-index

I(α) = (Z+
K : Z+[α]).

Obviously α generates a power integral basis if and only if I(α) = 1.
Note that

(1) I(α) =

∣∣∣
∏

1≤j<k≤n(α
(j) − α(k))

∣∣∣
√
|DK |

Research of the first author is supported by Grants T-037367 and T-042985, of the second
author by Grant T-037367 from the Hungarian National Foundation for Scientific Research.
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where α(i) (i = 1, . . . , n) are the conjugates of α and DK is the discriminant of K.
Let {1, ω2, . . . , ωn} be an integral basis of K. Then the discriminant of the

linear form l(X) = X1 + ω2X2 + · · ·+ ωnXn can be written as

DK/Q(l(X)) = I(x2, . . . , xn)
2 ·DK ,

where I(x2, . . . , xn) is the index form corresponding to the integral basis {1, ω2, . . . ,
ωn} (see I. Gaál [4]).

For any
α = x1 + ω2x2 + · · ·+ ωnxn ∈ ZK

we have

I(α) = |I(x2, . . . , xn)|.

Hence if we want to determine all generators of power integral bases, we have
to solve the index form equation

(2) I(x2, . . . , xn) = ±1 (x2, . . . , xn ∈ Z).

Using Baker’s method the first effective upper bounds for the solutions of (2)
were given by K. Győry [10]. This upper bound implies that (2) has only finitely
many solutions.

There are efficient algorithms for determining all generators of power integral
bases in lower degree number fields cf. I. Gaál and N. Schulte [9] for cubic, I. Gaál,
A. Pethő and M. Pohst [7] for quartic fields. A general algorithm for quintic fields
was given by I. Gaál and K. Győry [5], which already requires several hours of CPU
time. For algorithms for solving index form equations in certain special sextic, octic,
nonic fields see I. Gaál [1], [3], I.Gaál and M. Pohst [8], I. Járási [11]. For a more
complete overview on the topic see the monograph [4].

For higher degree number fields this problem is very complicated because of
the high degree and the large number of variables of equation (1). The resolution
of this equation is only hopeful if K has proper subfields, because in this case the
index form is reducible.

Higher degree fields having subfields are very often given as composites of
certain subfields. This is the case that we investigated in [2] and [6]. The purpose
of this paper is to add some recent results to this area. In order to make it easier
for the reader to compare our (old and new) results, we first summarize our former
results, then we detail the new results that can be used in some important cases
not covered by our former statements.
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2. Coprime discriminants

In [2] we considered the problem of existence of power integral bases in case
K is the composite of two subfields L and M with coprime discriminants. Let
L be of degree r with integral basis {l1 = 1, l2, . . . , lr} and discriminant DL.
Denote the index form corresponding to the integral basis {l1 = 1, l2, . . . , lr} of
L by IL(x2, . . . , xr). Similarly, let M be of degree s with integral basis {m1 =
1,m2, . . . ,ms} and discriminant DM . Denote the index form corresponding to the
integral basis {m1 = 1,m2, . . . ,ms} of M by IM (x2, . . . , xs). Assume, that the
discriminants are coprime, that is gcd(DL, DM ) = 1.

Set K = L ·M the composite of L and M . As it is known (cf. W. Narkiewicz
[12]) the discriminant of K is DK = Ds

L · Dr
M and an integral basis of K is given

by {li ·mj : 1 ≤ i ≤ r, 1 ≤ j ≤ s}. Hence, any integer α of K can be represented
in the form

(3) α =

r∑

i=1

s∑

j=1

xij · li ·mj

with xij ∈ Z (1 ≤ i ≤ r, 1 ≤ j ≤ s).
I. Gaál [2] formulated a general necessary condition for α ∈ ZK to be a

generator of a power integral basis of K.

Theorem 1. (I. Gaál, [2]) Assume gcd(DL, DM ) = 1. If α of (3) generates a power
integral basis in K = L ·M then

(4) NM/Q

(
IL

(
s∑

i=1

x2i ·mi, . . . ,

s∑

i=1

xri ·mi

))
= ±1

and

(5) NL/Q

(
IM

(
r∑

i=1

xi2 · li, . . . ,
r∑

i=1

xis · li
))

= ±1.

This statement was applied e.g. for nonic fields [3].

3. Non-coprime discriminants

A sufficient condition for the non-existence of power integral bases in K was
formulated by I. Gaál, P. Olajos and M. Pohst [6] in the case when DL and DM

are usually not coprime.



48 I. Gaál and P. Olajos

Let f, g ∈ Z[x] be distinct monic irreducible polynomials (over Q) of degrees
m and n, respectively. Let ϕ be a root of f and let ψ be a root of g. Set L = Q(ϕ),
M = Q(ψ) and assume that the composite field K = LM has degree mn. We also
assume that there is a prime number q, (q ≥ 2) such that both f and g have a
multiple linear factor (at least square) modulo q, that is, there exist af and ag in
Z such that

(6)

{
f(af ) ≡ f ′(af ) ≡ 0 (mod q),
g(ag) ≡ g′(ag) ≡ 0 (mod q).

Note that our assumption implies that q divides both the discriminant d(f) of
the polynomial f and the discriminant d(g) of g. In our case the fields we consider
are composites of subfields whose discriminants are usually not coprime. This is
the case in many interesting examples.

Consider the order Of = Z[ϕ] of the field L, the order Og = Z[ψ]
of the field M and the composite order Ofg = OfOg = Z[ϕ, ψ] in the
composite field K = ML. Note that {1, ϕ, . . . , ϕm−1}, {1, ψ, . . . , ψn−1} and
{1, ϕ, . . . , ϕm−1, ψ, ϕψ, . . . , ϕm−1ψ, . . . , ψn−1, ϕψn−1, . . . , ϕm−1ψn−1} are Z bases
of Of , Og and Ofg, respectively.

Theorem 2. (I. Gaál, P. Olajos, M. Pohst [6]) Under the above assumptions the
index of any primitive element of the order Ofg is divisible by q.

As a consequence we have:

Theorem 3. (I. Gaál, P. Olajos, M. Pohst [6]) Under the above assumptions the
order Ofg has no power integral basis.

In [6] we applied the above theorem to the parametric family of simplest sextic
fields.

4. New results on composite fields

We are going to formulate a further sufficient condition for the non-existence
of power integral bases in composite fields.

Let f, g ∈ Z[x] be monic, irreducible polynomials of degrees m,n ∈ Z,
respectively. Let α be a root of f , and let β be a root of g. Denote the discriminants
of these polynomials by d(f), d(g). The conjugates of α and β will be denoted
by αk (k = 1, . . . ,m) and βl (l = 1, . . . , n), respectively. Further, let L =

Q(α), OL = Z[α] with discriminant DOL = d(f) and M = Q(β), OM = Z§m[β]
with discriminant DOM = d(g). We assume that there are square-free numbers
p, q ∈ Z (p, q ≥ 2) such that
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(A) f(x) ≡ xm (mod p),

or

(B) g(x) ≡ xn (mod q).

This condition is of course restrictive, but (as we can see in the examples) it holds
in many cases which are important for the applications.

Let K = L ·M and OK = OL · OM = Z[α, β]. Then DOK = Dn
OL ·Dm

OM and
any ϑ ∈ OK can be written in the form

ϑ =

m−1∑

i=0

n−1∑

j=0

xij · αi · βj

with conjugates

ϑkl =

m−1∑

i=0

n−1∑

j=0

xij · αi
k · βj

l

(1 ≤ k ≤ m, 1 ≤ l ≤ n).
Our main result is the following:

Theorem 4. Assume that there exists a power integral basis in OK. If (A) is
satisfied, then

(7) (d(g))
m(m−1)/2 ≡ ±1 (mod p).

If (B) is satisfied, then

(8) (d(f))n(n−1)/2 ≡ ±1 (mod q).

As a consequence we have:

Theorem 5. If (A) is satisfied, but (7) does not hold, then OK does not admit any
power integral basis. If (B) is satisfied, but (8) does not hold, then OK does not
admit any power integral basis.

Proof of Theorem 4. If ϑ generates a power integral basis in K, then we have

(9) I(ϑ) =
1√

|DOK |
·
∏

(k1,l1)<(k2,l2)
|ϑk1l1 − ϑk2l2 | = 1.

where the pairs (k1, l1) < (k2, l2) are ordered lexicographically.
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This product splits into three factors taking integer values. The first and second
are the following:

F1 =

m∏

k=1

∏

1≤l1<l2≤n

ϑkl1 − ϑkl2
βl1 − βl2

,

F2 =

n∏

l=1

∏

1≤k1<k2≤m

ϑk1l − ϑk2l

αk1 − αk2

.

The factors in these products are algebraic integers. By using symmetric polyno-
mials we can see that both F1 and F2 are complete norms, hence F1, F2 ∈ Z.
These factors absorb completely the discriminant

√
|DOK |, thus the third factor

F3 consist of the remaining factors (ϑk1l1 −ϑk2l2) of the product (9), and also takes
integer value.

Assume that f(x) ≡ xm (mod p). Denote by N the smallest normal extension
of K, let p0 be a prime factor of p and let p0 be a prime ideal of N lying above p0.
Since f(x) ≡ xm (mod p0), hence f(x) =

∏m
j=1(x − αj) ≡ xm (mod p0). This

means that for any root αj we have
0 = f(αj) ≡ αm

j (mod p0) that is the roots of f are zero modulo p0.
Let us consider the factors F1 and F3 (mod p0). Using αj ≡ 0 (mod p0)

for j = 1, . . . ,m we have

F1 =
m∏

k=1

∏

1≤l1<l2≤n

(
ϑkl1 − ϑkl2
βl1 − βl2

)

=

m∏

k=1

∏

1≤l1<l2≤n

1

βl1 − βl2

m−1∑

i=0

n−1∑

j=0

xij · (αi
k · βj

l1
− αi

k · βj
l2
)

≡
m∏

k=1

∏

1≤l1<l2≤n

1

βl1 − βl2

n−1∑

j=0

x0j · (βj
l1
− βj

l2
)

=


 ∏

1≤l1<l2≤n

n−1∑

j=0

x0j ·
(
βj
l1
− βj

l2

βl1 − βl2

)


m

(mod p0).

For similar reasons for F3 we have

F3 =
∏

k1 6=k2

∏

1≤l1<l2≤n

(ϑk1l1 − ϑk2l2)

=
∏

k1 6=k2

∏

1≤l1<l2≤n

m−1∑

i=0

n−1∑

j=0

xij · (αi
k1

· βj
l1
− αi

k2
· βj

l2
)



Recent results on power integral bases of composite fields 51

≡
∏

k1 6=k2

∏

1≤l1<l2≤n

n−1∑

j=0

x0j · (βj
l1
− βj

l2
)

=
∏

k1 6=k2

∏

1≤l1<l2≤n

(βl1 − βl2) ·
n−1∑

j=0

x0j ·
(
βj
l1
− βj

l2

βl1 − βl2

)

= (DOM)
m(m−1)/2 ·


 ∏

1≤l1<l2≤n

n−1∑

j=0

x0j ·
(
βj
l1
− βj

l2

βl1 − βl2

)


m2−m

= (d(g))
m(m−1)/2 ·


 ∏

1≤l1<l2≤n

n−1∑

j=0

x0j ·
(
βj
l1
− βj

l2

βl1 − βl2

)


m2−m

(mod p0).

In the case when ϑ ∈ OK generates a power integral basis in OK then this
means that Fi = εi (i = 1, 2, 3), where εi = 1 or −1. This implies

F1 ≡ ε1 (mod p0), F2 ≡ ε2 (mod p0), F3 ≡ ε3 (mod p0).

Comparing the above congruences for F1 and F3 (mod p0) we conclude

(d(g))
m(m−1)/2 · εm−1

1 ≡ ε3 (mod p0).

But this is a congruence with integers, hence it must also hold modulo p0 in Z
(if an integer is divisible by a prime ideal then by taking norms it follows that a
certain power of the prime number under the prime ideal divides a power of the
integer, that is the prime number divides the integer):

(d(g))
m(m−1)/2 · εm−1

1 ≡ ε3 (mod p0).

This is satisfied for all prime factors p0 of (the square-free) p hence we become

(d(g))
m(m−1)/2 · εm−1

1 ≡ ε3 (mod p),

that is

(10) (d(g))m(m−1)/2 ≡ ±1 (mod p).

Performing a similar calculation in the case g(x) ≡ xn (mod q) for F2 and
F3 (mod q) we obtain

(11) (d(f))
n(n−1)/2 ≡ ±1 (mod q).

This theorem gives a simple condition to exclude the existence of power integral
bases in OK. If the congruences (7) and (8) are both valid and the discriminants
DL, DM are coprime (this means that we can not apply Theorem 4) then we have
to use Theorem 1 for finding the generator elements. On the other hand, if the
discriminants DL, DM are coprime and if Theorem 4 is applicable, then we can
exclude the existence of power integral bases without any tedious computations.
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5. Examples

In the examples we use the polynomial orders OL and OM in the same meaning
as in Theorem 2, and similarly OK = OLOM.

Example I. Let p, q be square-free integers (≥ 2). One of the most straightforward
and frequently used applications of Theorem 4 is the case when f(x) = xm−p and
g(x) = xn − q. Assume that K = Q( m

√
p, n

√
q) is of degree mn. We have

d(f) = (−1)(m−1)(m−2)/2 ·mm · pm−1,

d(g) = (−1)(n−1)(n−2)/2 · nn · qn−1.

By Theorem 4 if one of the congruences

(
nn · qn−1

)m(m−1)/2 ≡ ±1 (mod p),

(
mm · pm−1

)n(n−1)/2 ≡ ±1 (mod q).

is not satisfied, then OK = Z[ m
√
p, n

√
q] has no power integral basis.

I.1. In the special case if m = 3, n = 2, the field K = L ·M is an algebraic number
field of degree 6. We have d(f) = DOL = −27 · p2, d(g) = DOM = 4 · q.

The above congruences are of the form

(12) 64 · q3 ≡ ±1 (mod p).

(13) −27 · p2 ≡ ±1 (mod q).

If for example p = 7, q = 5 then gcd(DOL , DOM) = 1. We have

(14) 64 · 53 = 8000 ≡ 6 ≡ −1 (mod 7),

(15) −27 · 72 = −1323 ≡ 2 ≡ −3 (mod 5).

Theorem 4 implies that there is no power integral basis in OK.

I.2. In the special case when m = 22, n = 15 and [K : Q] = 22 · 15 = 330, we have

d(f) = DOL = 2222 · p21, d(g) = DOM = −1515 · q14.

If for example we take p = 31, q = 17 then

gcd(DOL , DOM) = 1,
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hence Theorem 1 would be applicable. But by applying Theorem 4, either

(−1515 · 1714)231 ≡ 4 ≡ −27 (mod 31)

or
(2222 · 3121)105 ≡ 10 ≡ −7 (mod 17)

implies that there exist no power integral basis in OK.

Example II. To consider a different example let f(x) = x5 − p3x3 − p2x2 − px− p
and g(x) = x3 − q2x2 − qx − q (m = 5, n = 3). If OK has power integral bases,
then the following congruences must be satisfied:

d(g)10 ≡ ±1 (mod p),

d(f)3 ≡ ±1 (mod q),

where
d(g) = −q2(−4q − q4 + 18q2 + 4q5 + 27)

and

d(f) = −p4(108p13 − 56p12 + 12p11 + 75p8 − 38p7 + 11p6 − 3750p4+

4250p3 − 1600p2 + 256p− 3125).

If one of these congruences is not satisfied, OK = Z[α, β] (α and β are being roots
of f, g respectively) has no power integral basis.

II.1. Let p = 7, q = 29. Then [K : Q] = 5 · 3 = 15, and we have

d(f) = DOL = −23320969892806663 = −(7)4(11)2(5208131)(15413),

d(g) = DOM = −68417338124 = −(2)2(29)2(41)(496051)

and
gcd(DOL , DOM) = 1,

hence Theorem 1 would be applicable. But by applying Theorem 4, either

d(g)10 ≡ 2 ≡ −5 (mod 7)

or
d(f)3 ≡ 6 ≡ −23 (mod 29)

implies that there exist no power integral basis in OK.
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Abstract. In this paper we investigate the integral of the weighted maximal function of
the Walsh–Paley–Dirichlet, and the Walsh–Kaczmarz–Dirichlet kernels. We find necessary and
sufficient conditions for the finiteness of the integrals. The conditions are quite different for the
two rearrangements of the Walsh system.
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1. Introduction

The Walsh system in the Kaczmarz enumeration was studied by a lot of
authors (see [4], [5], [8], [7], [1], [6], [9]). In [2] it has been pointed out that the
behavior of the Dirichlet kernel of the Walsh–Kaczmarz system is worse than of
the kernel of the Walsh–Paley system considered more often. Namely, it is proved
[2]that for the Dirichlet kernel Dn(x) of the Walsh–Kaczmarz system the inequality
lim supn→∞

|Dn(x)|
log n ≥ C > 0 holds a.e. This “spreadness” of this system makes

easier to construct examples of divergent Fourier series [1].
A number of pathological properties is due to this “spreadness” property of

the kernel. For example, for Fourier series with respect to the Walsh–Kaczmarz
system it is impossible to establish any local test for convergence at a point or on
an interval, since the principle of localization does not hold for this system.

On the other hand, the global behavior of the Fourier series with respect to this
system is similar in many aspects to the case of the Walsh–Paley system. Schipp [5]
and Wo–Sang Young [9] proved that the Walsh–Kaczmarz system is a convergence
system. Skvorcov [8] verified the everywhere (and uniform) convergence of the Fejér

Research supported by the Hungarian “Művelődési és Közoktatási Minisztérium”, grant no.
FKFP 0182/2000, by the Hungarian National Foundation for Scientific Research (OTKA), grant
no. M 36511/2001.
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means of continuous functions, and Gát proved [3] that the Fejér–Lebesgue theorem
also holds for the Walsh–Kaczmarz system.

Beyond the convergence theorems of the Fourier series one can often find
some boundedness properties of the Dirichlet kernel functions. For instance, for
the Walsh–Paley system we have supn∈N |Dn(x)| < ∞ for each x 6= 0. This —as
we have seen above— is not the case for the Kaczmarz rearrangement. What can
be said for the norm of maximal functions? It is easy to have that the L1 norm
of supn∈N |Dn| with respect to both systems is infinite. What happens if we apply
some weight function α? That is, on what conditions find we the inequality

∣∣∣∣∣

∣∣∣∣∣ sup
n∈N

∣∣∣∣
Dn

α(n)

∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

< ∞

valid? The aim of this paper is to find the necessary and sufficient conditions for
the both rearrangement of the Walsh system.

Let P denote the set of positive integers, N := P ∪ {0} the set of nonnegative
integers and Z2 the discrete cyclic group of order 2, respectively. That is, Z2 = {0, 1}
the group operation is the mod 2 addition and every subset is open. Haar measure
is given in a way that the measure of a singleton is 1/2. Set

G := ×k=0
∞ Z2

the complete direct product. Thus, every x ∈ G can be represented by a sequence
x = (xi, i ∈ N), where xi ∈ {0, 1} (i ∈ N). The group operation on G is the
coordinate-wise addition, (which is the so-called logical addition) the measure (de-
noted by µ) and the topology are the product measure and topology. The compact
Abelian group G is called the Walsh group. Set ei := (0, 0, . . . , 1, 0, 0, . . .) ∈ G the
i-th coordinate of which is 1, the rest are zeros.

A base for the neighborhoods of G can be given as follows

I0(x) := G, In(x) := {y = (yi, i ∈ N) ∈ G : yi = xi for i < n}

for x ∈ G,n ∈ P. Let 0 = (0, i ∈ N) ∈ G denote the nullelement of G, In :=
In(0) (n ∈ N). Let I := {In(x) : x ∈ G,n ∈ N}. The elements of I are called
the dyadic intervals on G. Furthermore, let Lp(G) (1 ≤ p ≤ ∞) denote the usual
Lebesgue spaces (| . |p the corresponding norms) on G, An the σ algebra generated
by the sets In(x) (x ∈ Gm) and En the conditional expectation operator with
respect to An (n ∈ N) (f ∈ L1).

Let n ∈ N. Then n =
∑∞

i=0 ni2
i, where ni ∈ {0, 1} (n ∈ N), i.e. n is expressed

in the number system based 2. Denote by |n| := max(j ∈ N : nj 6= 0), that is,
2|n| ≤ n < 2|n|+1. The Rademacher functions are defined as:

rn(x) := (−1)xn (x ∈ G, n ∈ N).
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The Walsh–Paley system is defined as the sequence of the Walsh–Paley functions:

ωn(x) :=
∞∏

k=0

(rk(x))
nk = (−1)

∑|n|
k=0

nkxk , (x ∈ G, n ∈ N).

That is, ω := (ωn, n ∈ N). The n-th Walsh–Kaczmarz function is

κn(x) := r|n|(x)
|n|−1∏

k=0

(
r|n|−1−k(x)

)nk = r|n|(x)(−1)
∑|n|−1

k=0
nkx|n|−1−k ,

for n ∈ P, κ0(x) := 1, x ∈ G. The Walsh–Kaczmarz system κ := (κn, n ∈ N) can be
obtained from the Walsh–Paley system by renumbering the functions within the
dyadic “block” with indices from the segment [2n, 2n+1− 1]. That is, {κn: 2

k ≤ n <
2k+1} = {ωn : 2k ≤ n < 2k+1} for all k ∈ N, κ0 = ω0.

By means of the transformation τA:G → G

τA(x) := (xA−1, xA−2, . . . , x1, x0, xA, xA+1, . . .) ∈ G,

which is clearly measure-preserving and such that τA(τA(x)) = x we have

κn(x) = r|n|(x)ωn(τ|n|(x)) (n ∈ N).

Let us consider the Dirichlet kernel functions:

Dφ
n :=

n−1∑

k=0

φk,

where φ is either κ or ω and n ∈ P.
Let function α: [0,+∞) → [1,+∞) be monotone increasing, and define the

weighted maximal function of the Dirichlet kernels:

Dφ
α(x) := sup

n∈N

|Dφ
n(x)|

α(⌊log n⌋) (x ∈ G),

where φ is either the Walsh–Paley, or the Walsh–Kaczmarz system. If it does not
cause confusion the notation φ is omitted. First we discuss the Walsh–Paley case.

Proposition 1. Dω
α ∈ L1 if and only if

∑∞
A=0

1
α(A) < ∞. Moreover,

1

2

∞∑

A=0

1

α(A)
≤| Dω

α |1≤ 2
∞∑

A=0

1

α(A)
.



58 Gy. Gát

Proof. In [6] one can read that for arbitrary x ∈ IA\IA+1, and A ∈ N the inequality

|Dn(x)| ≤ min{n, 2A}.

This immediately follows

Dα(x) ≤ 2
A∑

k=0

2k

α(k)
.

That is,

|| Dα ||1=
∞∑

A=0

∫

IA\IA+1

Dα(x)dµ(x)

≤ 2

∞∑

A=0

1

2A+1

A∑

k=0

2k

α(k)

=
∞∑

k=0

∞∑

A=k

1

2A
2k

α(k)

≤ 2

∞∑

k=0

1

α(k).

That is, we have proved that (1/α(n)) ∈ l1 implies Dα ∈ L1. On the other hand,
in the same way as above we have

| Dα |1=
∞∑

A=0

∫

IA\IA+1

Dα(x)dµ(x)

≥
∞∑

A=0

∫

IA\IA+1

D2A(x)

α(A)
dµ(x)

=
∞∑

A=0

1

2A+1

2A

α(A)
.

In the case of the Walsh–Kaczmarz system the situation changes. Namely, we
prove the following two propositions:

Proposition 2. If
∑∞

A=1
A

α(A) < ∞, then Dκ
α ∈ L1. Moreover, || Dκ

α ||1≤
4
∑∞

A=1
A

α(A) + C, where C is some constant, such that may depend on α (but

anyway it is a finite real).

Proposition 3. There exists a positive constant C (which may depend on α) such
that

| Dκ
α |1≥

1

25

∞∑

A=1

A

α(A)
− C.
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These propositions give

Corollary 4. Dκ
α ∈ L1 if and only if

∑∞
A=1

A
α(A) < ∞.

That is, in the case of the Kaczmarz rearrangement we have to divide by a
“greater” weight function α if we want the maximal function Dκ

α to be integrable.
Besides, by the method of the proof of Proposition 3 one can prove that if Dκ

α /∈ L1

(that is,
∑∞

A=1
A

α(A) = ∞), then it is not integrable on any dyadic interval. This
is quite different in the Walsh–Paley case. Since for this system even the maximal
function supn |Dω

n | is bounded by 2A on G \ IA. In order to prove Proposition 2 we
use to following lemma. Let

Lα(x) := sup{D2j(τA(x))

α(A)
: j ≤ A, j,A ∈ N}, x ∈ G.

Lemma 5. We prove || Lα ||1≤ 2
∑∞

A=1
A

α(A) + C.

Proof.

| Lα |1≤
∞∑

A=0

A∑

j=0

| D2j ◦ τA |1
α(A)

=
∞∑

A=1

A+ 1

α(A)
+ C.

Proof of Proposition 2. It is known ([6]) that for 1 ≤ n ∈ N

Dκ
n = D2|n| + r|n|D

ω
n−2|n| ◦ τ|n|.

Since in [6] one can find the inequality

|Dω
n(x)| ≤ 2j = D2j (x)

for any x ∈ Ij \ Ij+1, then

sup
|n|=A

|Dκ
n(x)| ≤ D2A(x) + sup

|n|<A

|Dω
n(τA(x))| ≤ D2A(x) + sup{D2j (τA(x)) : j < A}.

This gives

Dκ
α(x) = sup

A
sup
|n|=A

|Dκ
n(x)|

α(A)
≤ sup

A

|D2A(x)|
α(A)

+ Lα(x) ≤ Dω
α(x) + Lα(x).

By Proposition 1 we have

| Dω
α |1≤ 2

∞∑

A=1

A

α(A)
+ C,
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and by Lemma 5, that is, by

| Lα |1≤ 2

∞∑

A=1

A

α(A)
+ C

the proof of the inequality

| Dκ
α |1≤ 4

∞∑

A=1

A

α(A)
+ C,

that is, the proof of Proposition 2 is complete.

Proof of Proposition 3. Introduce the following notations:

Lα,N := sup
A≤N
j≤A

∣∣∣∣
D2j ◦ τA
α(A)

∣∣∣∣ , aN :=| Lα,N |1 (N ∈ N).

First, we prove that

(1) aN ≤ CN2.

This in equality can be proved in the following way.

aN ≤
N∑

A=0

A∑

j=0

∣∣∣∣
∣∣∣∣
D2j ◦ τA
α(0)

∣∣∣∣
∣∣∣∣
1

≤
N∑

A=0

A∑

j=0

C ≤ CN2.

Next, for N ∈ N, and k ∈ N, 1 ≤ k denote by JN,k the following subset of G.

JN,k :=

{
{x ∈ G : xN−k = 1, xN−k+1 = · · · = xN−1 = 0} if N ≥ k ≥ 2,
{x ∈ G : xN−1 = 1} if N ≥ k = 1.

Since for fixed N the setsJN,k, IN are disjoint, and ∪N
k=1JN,k ∪ IN = G, then

we have

(2) aN =
N∑

k=1

∫

JN,k

Lα,N dµ+

∫

IN

Lα,N dµ.

We give another upper bound for aN , a different one from the inequality (1).
Investigate the function Lα,N on the set JN,k.
If A = N , then for y = τA(x) we have y0 = · · · = yk−2 = 0, yk−1 = 1.
Thus, supj≤A D2j (τA(x))/α(A) = 2k−1/α(N).

For A = N − 1 we have supj≤A D2j (τA(x))/α(A) = 2k−2/α(N − 1).
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And so on . . .

Finally, if A = N − k + 1 we have supj≤A D2j (τA(x))/α(A) = 1/α(N − k + 1).
That is, for x ∈ JN,k

sup
N−k<A≤N

j≤A

∣∣∣∣
D2j ◦ τA(x)

α(A)

∣∣∣∣ = max

{
2k−1

α(N)
,

2k−2

α(N − 1)
, . . . ,

1

α(N − k + 1)

}
.

This, and ∫

JN,k

sup
A≤N−k

j≤A

∣∣∣∣
D2j ◦ τA(x)

α(A)

∣∣∣∣ dµ =
1

2k
aN−k

implies

∫

JN,k

Lα,N (x) dµ(x) = max

{
1

2α(N)
,

1

22α(N − 1)
, . . . ,

1

2kα(N − k + 1)
,
1

2k
aN−k

}
.

Consequently, by (2) we have

(3)

aN ≤
N∑

k=1

sup
l∈[1,...,k]

1

2lα(N − l + 1)
+

N∑

k=1

1

2k
aN−k +

∫

IN

Lα,N dµ

≤
N∑

k=1

sup
l∈[1,...,k]

1

2lα(N − l + 1)
+

N∑

k=1

1

2k
aN−k +

1

2N
Lα,N (0)

≤ N sup
A∈[1,...,N ]

1

2N−A+1α(A)
+

N∑

k=1

1

2k
aN−k + sup

A≤N

1

2N−Aα(A)

≤
(
N

2
+ 1

)
sup

0<A≤N

1

2N−Aα(A)
+

N∑

k=1

1

2k
aN−k +

1

2Nα(0)
.

Next, we prove the inequality below (constant C depends on the function α).

(4)

N∑

n=1

n

2
sup

{
1

α(n)
,

1

2α(n− 1)
, . . . ,

1

2n−1α(1)

}
≤ C +

2

3

N∑

n=1

n

α(n)
.

If

sup

{
1

α(n)
,

1

2α(n− 1)
, . . . ,

1

2n−1α(1)

}
=

1

2kα(n− k)
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for some 1 ≤ k < n, then we have

sup

{
1

α(n)
,

1

2α(n− 1)
, . . . ,

1

2n−1α(1)

}
=

1

2kα(n− k)

sup

{
1

α(n− 1)
,

1

2α(n− 2)
, . . . ,

1

2n−2α(1)

}
=

1

2k−1α(n− k)

...

sup

{
1

α(n− k)
,

1

2α(n− k − 1)
, . . . ,

1

2n−k−1α(1)

}
=

1

α(n− k)
.

Consequently, for the left side of (4) we have the following upper bound.

1

2

K∑

i=1

(
ni

α(ni)
+

ni + 1

2α(ni)
+

ni + 2

22α(ni)
+ · · ·+ ni+1 − 1

2ni+1−ni−1α(ni)

)
,

where for the strictly monotone increasing sequence (ni) we have n1 = 1, and
K ∈ N is defined as nK+1 − 1 = N . If

{i ∈ N:ni + 1 < ni+1} = ∅,
then the left side of (4) is bounded by

1

2

K∑

n=1

n

α(n)
=

1

2

N∑

n=1

n

α(n)
.

On the other hand, if
{i ∈ N:ni + 1 < ni+1} 6= ∅,

then let ρ denote its minimal element. That is, n1 = 1, n2 = 2, . . . , nρ = ρ, nρ+1 ≥
ρ+ 2. Consequently for the left side of (4) we have

(5)

N∑

n=1

n

2
sup

{
1

α(n)
,

1

2α(n− 1)
, . . . ,

1

2n−1α(1)

}

=
1

2

(
1

α(1)
+

2

α(2)
+ · · ·+ ρ− 1

α(ρ− 1)

)

+
1

2

(
nρ

α(nρ)
+

nρ + 1

2α(nρ)
+ · · ·+ nρ+1 − 1

2nρ+1−nρ−1α(nρ)

)

+
1

2

K∑

i=ρ+1

(
ni

α(ni)
+

ni + 1

2α(ni)
+

ni + 2

22α(ni)
+ · · ·+ ni+1 − 1

2ni+1−ni−1α(ni)

)

≤ C +
1

2

K∑

i=ρ+1


 ni

α(ni)
+

1

α(ni)


ni +

∞∑

j=1

j

2j






≤ C +
1

2

K∑

i=ρ+1

(
ni

α(ni)
+

ni + 2

α(ni)

)
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(C depends on α). Since the function α: [0,+∞) → [1,+∞) is monotone
increasing, then we have

N∑

n=1

n

2
sup

{
1

α(n)
,

1

2α(n− 1)
, . . . ,

1

2n−1α(1)

}

≤ C +
1

2

K∑

i=ρ+1

(
ni

α(ni − 1)
+

ni + 2

α(ni)

)

≤ C +
1

2

N∑

n=nρ+1−1

n+ 2

α(n)

≤ C +
1

2
· 4
3

N∑

n=1

n

α(n)
.

That is, the inequality (4) is verified. On the other hand, (2) also implies

aN ≥
N∑

k=1

max

{
1

2α(N)
,
1

2k
aN−k

}
+ sup

A≤N

1

2N−Aα(A)

≥
N∑

k=⌊N/4⌋+1

1

2α(N)
+

⌊N/4⌋∑

k=1

1

2k
aN−k + sup

A≤N

1

2N−Aα(A)

≥ 3N/8

α(N)
+

aN−1

2
+

aN−2

22
+ · · ·+ a⌈3N/4⌉

2⌊N/4⌋ + sup
A≤N

1

2N−Aα(A)
.

By this inequality we have

2aN − aN−1 ≥ 3N/4

α(N)
+

aN−2

2
+

aN−3

22
+ · · ·+ a⌈3N/4⌉

2⌊N/4⌋−1
+ 2 sup

A≤N

1

2N−Aα(A)
.

Consequently, (3) gives

2aN − 2aN−1 ≥ 3N/4

α(N)
+

aN−2

2
+

aN−3

22
+ · · ·+ a⌈3N/4⌉

2⌊N/4⌋−1
+ 2 sup

A≤N

1

2N−Aα(A)

− N − 1

2
sup

A≤N−1

1

2N−1−Aα(A)
−

N−1∑

k=1

1

2k
aN−1−k − sup

A≤N−1

1

2N−Aα(A)

≥ 3N/4

α(N)
− N − 1

2
sup

A≤N−1

1

2N−1−Aα(A)
−

N−1∑

k=⌊N/4⌋

1

2k
aN−1−k.
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At last by (1) and (4) we have the following lower bound for aN .

2aN =

N∑

n=1

(2an − 2an−1)

≥
N∑

n=1

3n/4

α(n)
−

N−1∑

n=0

n

2
sup
A≤n

1

2n−Aα(A)
− C

N∑

n=1

n2

2n/4

≥
(
3

4
− 2

3

) N∑

n=1

n

α(n)
− C.

Apply Proposition (1), or more exactly, the method its proof, and the inequality
given for aN above.

|| Dκ
α ||1= sup

N∈N
sup

{∣∣∣∣
∣∣∣∣

Dκ
n

α(log(⌊n⌋))

∣∣∣∣
∣∣∣∣
1

: n ≤ N

}

≥ sup
N∈N

sup

{∣∣∣∣
∣∣∣∣
Dκ

2A+2j

α(A)

∣∣∣∣
∣∣∣∣
1

: j < A ≤ N, (j, A,N ∈ N)
}

≥ sup
N∈N

sup

{∣∣∣∣
∣∣∣∣
Dω

2j ◦ τA
α(A)

− D2A

α(A)

∣∣∣∣
∣∣∣∣
1

: j < A ≤ N, (j, A,N ∈ N)
}

≥ sup
N∈N

(
aN − 2

N∑

A=0

1

α(A)

)

≥ sup
N∈N

(
1

24

N∑

n=1

n

α(n)
− 2

N∑

A=1

1

α(A)
− C

)

≥ 1

25

∞∑

n=1

n

α(n)
− C.

This completes the proof of Proposition (3).
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ON SOME ARITHMETICAL PROPERTIES OF LUCAS
AND LEHMER NUMBERS, II.

Kálmán Győry∗ (Debrecen)

Dedicated to the memory of Professor Péter Kiss

Abstract. Denote by S the set of non-zero integers composed only of finitely many given
primes. We proved with Kiss and Schinzel [7] that if un is a Lucas or Lehmer number with n>6

and un∈S, then |un| can be estimated from above in terms of S. An explicit upper bound for |un|
was given later in our article [5]. In the present paper a significant improvement of this bound is
established which implies, among other things, that P (un)> 1

4 (log log |un|)1/2 if n>30 or if 30≥n>6

and |un| is sufficiently large.

AMS Classification Number: 11B39, 11D61

1. Introduction

The Lucas numbers un are defined by

un =
αn − βn

α− β
, n > 0,

where α+ β and αβ are relatively prime non-zero rational integers and α/β is not
a root of unity, while the Lehmer numbers un satisfy

un =

{
αn−βn

α−β , if n is odd,
αn−βn

α2−β2 , if n is even,

where (α + β)2 and αβ are relatively prime non-zero rational integers and α/β is
not a root of unity. The Lucas and Lehmer numbers are non-zero rational integers.

∗Supported in part by the Netherlands Organization for Scientific Research, the Hungarian
Academy of Sciences and by grants 29330, 38225 and 42985 of the Hungarian National Foundation
for Scientific Research.
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Let p1, . . . , ps be rational primes with max
i

pi = P , and denote by S the set

of non-zero rational integers not divisible by primes different from p1, . . . , ps. We
proved with Kiss and Schinzel [7] that if un is a Lucas number or a Lehmer number
with n > 6 and un ∈ S then

(1) n ≤ max{C1, P + 1}

with C1 = e452467 and

(2) max{|α|, |β|, |un|} < C2,

where C2 is an effectivelly computable positive number depending only on P and
s. The proof of (1) was based on a result of Stewart [15] which asserts that for
n > C1, the Lucas and Lehmer numbers un always have a primitive prime divisor.
To prove (2), we reduced the problem to Thue–Mahler equations and used the
bound available at that time for the solutions of such equations. Later, in [5], I
made C2 completely explicit by means of an explicit and improved bound from [4]
on the solutions of Thue–Mahler equations. As a consequence, I showed in [5] that
if un is a Lucas or Lehmer number with n > 6 and |un| > exp exp{4C3

1 logC1} then

(3) 4sP 2 logP > log log |un|

and

(4) P >
1

2
(log log |un|)1/3,

where P = P (un) and s = ω(un). Here P (un) and ω(un) signify the greatest prime
factor and the number of distinct prime factors of un (with the convention that
P (±1) = 1, ω(±1) = 0).

As is known, there are various lower bounds for P (un) in terms of n, valid for
all or “almost all” n, see e.g. [3], [16], [12], [14], [13], [8], [17] and the references
given there. However, these estimates do not imply (3) and (4), because the lower
bounds in (3) and (4) depend on un and not on n. Theorem 2 of [8] gives also a
lower bound of the form

c(log log |un|)2 log log log |un|, if |un| > c
′
.

for P (un). In contrast with (4), the constants c, c
′
depend, however, on α, β and S

as well.
Recently, Bilu, Hanrot and Voutier [1] significantly improved Stewart’s result

[15] by showing that for n > 30, un has a primitive prime divisor. This will enable
us to prove (1) with C1 replaced by 30. Furthermore, in 1998 I succeeded (cf. [6]) to
improve upon the previous bound of [4] on the solutions of Thue–Mahler equations,
that is, in another formulation, on the S-integral solutions of Thue equations. Using
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this improvement from [6] and following the arguments of [5], we shall derive (2)
with an explicit bound C2 which is much better than the previous one in [5]. As a
consequence, we obtain also some improvements of (3) and (4).

Keepeng the above notation, let ϕ(n) denote Eurler’s function.

Theorem. Let un be a Lucas number or a Lehmer number defined as above with
n > 6. If un ∈ S then

(5) n ≤ max{30, P + 1}.

Further,
max{|α|, |β|, |un|}

is bounded above by

(6) exp{(k(s+ 1))9k(s+2)P k(logP )sk+2},

where k = ϕ(n)/2.

The inequality (5) is a significant improvement of (1), while (6) improves upon
considerably (3) of [5].

From (5) and (6) we deduce the following improvements of (3) and (4).

Corollary. Let un be a Lucas or a Lehmer number with n > 30, or with 30 ≥ n > 6
and |un| > exp exp{7040}. Then we have

(7) 9(s+ 2)P logP > log log |un|

and

(8) P >
1

4
(log log |un|)1/2,

where P = P (un) and s = ω(un).

2. Proofs

Proof of the Theorem. We follow the proof of Theorem 1 of [5]. Let un ∈ S be a
Lucas number or a Lehmer number with n > 6. Then (5) follows in the same way
as (1) was proved in [7] if we raplace Stewart’s result [15] by the above-mentioned
theorem of Bilu, Hanrot and Voutier [1] on primitive prime divisors.

To prove (6), we first introduce some notation. Put αβ = B and α+β = A or
(α+β)2 = A according as un is a Lucas or a Lehmer number. Setting α2+β2 = E,
we get E = A2 − 2B or E = A− 2B and gcd(E,B) = 1.
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Denote by Φd(x, y) the d-th cyclotomic polynomial in homogeneous form. Then
we have

un =
αn − βn

α− β
=

∏

d|n
d>1

Φd(α, β), if n > 0,

or
un =

αn − βn

α2 − β2
=

∏

d|n
d≥3

Φd(α, β), if n is even.

If ζ = e2πi/d and d ≥ 3, then

Φd(α, β) = Fd(E,B),

where

(9) Fd(z, 1) =
∏

gcd(t,d)=1
1≤t<d/2

(z − (ζt + ζ−t))

is an irreducibile polynomial of degree ϕ(d)/2 with coefficients from Z. We infer
now in both cases that there are non-negative integers z1, . . . , zs such that

(10) G(E,B) =
∏

d|n
d≥3

Fd(E,B) = ±pz11 · · · pzss .

Here G(x, y) is a homogeneous polynomial with coefficients from Z. Further, in
view of n > 6, the degree of G, denoted by g, satisfies

3 ≤ g ≤ n− 1

2
.

We note that G(x, y) is not irreducibile in general, but its linear factors over Q̄ are
pairwise linearly independent. Putting

zi = gz
′
i + z

′′
i with integers z

′
i ≥ 0, 0 ≤ z

′′
i < g, 1 ≤ i ≤ s,

and
D = p

z
′
1

1 · · · pz
′
s

s , b = ±p
z
′′
1

1 · · · pz
′′
s

s ,

(10) implies

(11) G

(
E

D
,
B

D

)
= b

which can be regarded as a Thue equation in the S-integers E
D , B

D .
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We apply *) now Theorem 1 of [6] with m = 2 to equation (11). Denote
by K = Kn the maximal real subfield of the n-th cyclotomic field. Its degree is
k = ϕ(n)/2. Let hK , RK , DK and RS be the class number, regulator, discriminant
and S−regulator (for its definition see e.g. [6]) of K. Further, we write log∗ α for
max{logα, 1}. Then using Theorem 1 of [6], one can deduce the estimate

(12)
max(|E|, |B|) < exp{c1P kRS(log

∗ RS).

(log∗(PRS)/ log
∗ P )(RK + hK logQ+ 2g + log |b|)},

where
c1 = n(k(s+ 1))8ks+9k+11 .

As is known, (see e.g. [6])

log∗(PRS)/ log
∗ P ≤ 2 log∗ RS and RS ≤ hKRK(ksW )k,

where W = (log p1) · · · (log ps). Further, we use as in [5] that

hKRK < 4|DK |1/2(log |DK |)k−1

and
RK ≥ 0.373, |DK | ≤ nk.

For n ≥ 3, we also have (cf. [10]),

n/ϕ(n) < eγ log log n+ 5/(2 log logn),

where γ denotes Euler’s constant.
Finally, we have

logQ ≤ s logP and log |b| ≤ gs logP.

Now it is easy to verify that (12) gives the bound (6) for max{|α|, |β|, |un|}.

Proof of the Corollary. First suppose that k ≤ P/2. In view of k ≤ n−1
2 and

(5), this is always the case if n > 30. In this case (7) can be easily deduced from
(6) by using

(13) s ≤ 1.25506P/ logP for s ≥ 1

(cf. [10]). Further, one can easily check that

(14) s+ 2 ≤ 1.777777P/ logP if 1 ≤ s ≤ 7.

*) We remark that in case of φ(n)/2≥3, i.e. except for the cases n=8,10,12,(10) could also be
reduced to an irreducibile Thue–Mahler equation to which a recent theorem of Bugeaud and the
author [2] also applies.
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Now using (13) if s ≥ 8 and (14) if 1 ≤ s ≤ 7, we get from (7) the estimate (8).
Next suppose that P/2 < k. Then, by (5), it follows that n ≤ 30 and hence

k ≤ 14. This gives P ≤ 23 and so s ≤ 9. Now we infer from (6) that log log |un| ≤
7040. Hence, if 6 < n ≤ 30 and

|un| > exp exp{7040},

then we must have k ≤ P/2 and, as was proved above, (7) and (8) follow.
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REPRESENTATION OF SOLUTIONS OF PELL EQUATIONS
USING LUCAS SEQUENCES

James P. Jones (Calgary, Canada)

Dedicated to the memory of Professor Péter Kiss

Abstract. We consider classes of Pell equations of the form x2−dy2=c where d=a2±4

or d=a2±1 and c=±4 or c=±1. We show that all the solutions are expressible in terms of Lucas
sequences and we give the Lucas sequences which solve the equations explicitly.

AMS Classification Number: 11B39, 11B37

1. Introduction

The purpose of this paper is to collect together results concerning the solutions
of the Pell equations x2−(a2±4)y2 = ±4, x2−(a2±4)y2 = ±1, x2−(a2±1)y2 = ±4
and x2 − (a2 ± 1)y2 = ±1. We show that the solutions to these Pell equations can
all be expressed in terms of Lucas sequences Un(a,±1) and Vn(a,±1) of E. Lucas
[20], [21].

The solutions of the Pell equations x2 − (a2 + 4)y2 = ±a, x2 − (a2 − 4)y2 =
5 − 2a, x2 − (a2 − 4)y2 = 2 − a and x2 − (a2 − 1)y2 = 2 − 2a can also be
represented as Lucas sequences. This is more difficult to prove however and will be
shown in a subsequent paper.

The above Pell equations are important to logicians since the sequences of
solutions have many elegant divisibility properties which make them useful for
diophantine representation of recursively enumerable sets. The above mentioned
Pell equations can be found in the papers Y. Matiyasevich [22], [25], M. Davis
[1], J. Robinson [26], [27], [28], M. Davis, H. Putnam, J. Robinson [3] and Davis,
Matiyasevich and Robinson [2]. Also in the author’s papers [4], [5], [6], [7], and in
Jones and Matiyasevich [8], [10]. The above Pell equations also have application
to the problem of singlefold diophantine representation of recursively enumerable
sets. See Matiyasevich [25] for an explanation, also the paper of Sun Zhiwei [29]
and Jones and Matiyasevich [8], [9].

Let A and B be integers with A ≥ 1 and B = ±1. Put D = A2 − 4B. The Pell
equation,

(1) V 2 −DU2 = ±4,
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is closely connected with the Lucas identity,

(2) V 2
n −DU2

n = 4Bn

which is satisfied by the Lucas sequences Un and Vn. In the theory developed by
E. Lucas [20], [21] and D. H. Lehmer [18], [19], the sequences Un = Un(A,B)
and Vn = Vn(A,B) satisfying equation (2) are definable as second order linear
recurrences:

(3) V0 = 2, V1 = A, Vn+2 = AVn+1 −BVn,

(4) U0 = 0, U1 = 1, Un+2 = AUn+1 −BUn.

The Lucas sequences Vn and Un satisfy a large number of other identities as
well. We shall need:

(5) (i) 2Vn+1 = AVn +DUn, (ii) 2Un+1 = AUn + Vn,

(6) (i) 2BVn−1 = AVn −DUn, (ii) 2BUn−1 = AUn − Vn.

The above four identities are easy to derive, by induction on n, from the recurrence
equations (3) and (4). Using identity (5) (i) it is then easy to show that Un and
Vn satisfy the Lucas identity (2). For plainly V 2

n − DU2
n = 4Bn holds for n = 0.

Suppose it holds for n. By (5) (i),

4V 2
n+1 − 4DU2

n+1 = (AVn +DUn)
2 −D(AUn + Vn)

2

= A2V 2
n +D2U2

n −DA2U2
n −DV 2

n = (A2 −D)V 2
n − (A2 −D)DU2

n

= 4BV 2
n − 4BDU2

n = 4B(V 2
n −DU2

n) = 4B4Bn = 16Bn+1.

Hence the Lucas identity (2) holds for n+ 1 and so by induction (2) holds for all
n ≥ 0.

One of the main theorems we shall need is that all solutions of V 2−DU2 = ±4
are given by the Lucas sequences V = Vn(A,B) and U = Un(A,B). And we shall
need to know exactly for which pairs (A,B) this holds. We therefore give a careful
proof and an exact statement. We will prove the theorem in the following form:

Theorem 1.1. Suppose D = A2 − 4B, B = 1 and 3B + 5 ≤ 2A. Then for all
nonnegative integers U and V ,

V 2 −DU2 = ±4 ⇐⇒ (∃n ≥ 0)[V = Vn(A,B) and U = Un(A,B)]
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Before giving the proof we mention that the purpose of the hypothesis 3B+5 ≤
2A is to exclude some pairs such as B = 1 and A = 3 for which the theorem does not
hold, yet include others such as B = −1 and A = 1 for which it does hold. If B = 1
and A = 3, then D = 5. x2 − 5y2 = −4 has infinitely many nonnegative integer
solutions (x, y). But they are not all of the form x = Vn(3, 1) and y = Un(3, 1). For
example the solution (x, y) = (1, 1) is not of the form x = Vn(3, 1) and y = Un(3, 1).
Rather x = Vn(1,−1) and y = Un(1,−1) where n = 1. (x, y) lies within the
Fibonacci sequence.

Care is therefore necessary in the statement of Theorem 1.1. Not only can
Theorem 1.1 fail to hold when B = 1 and A = 3, the result can fail to hold when
we try to generalize it beyond |B| = 1. Consider for example the case of B = 2.
If A = 4, then D = A2 − 4B = 8. Now V = 20 and U = 7 is a solution of
V 2 − 8U2 = 4B1. But ∀n 20 6= Vn(4, 2) and ∀n 7 6= Un(4, 2). Thus Theorem 1.1
does not hold for B = 2 and A = 4.

2. Descent

Our main tool in the proof we shall give here of Theorem 1.1 will be Fermat’s
method of descent. We will apply the method to equation (1). We will need the
following lemmas:

Lemma 2.1. (Parity Lemma) Suppose A is a positive integer and |B| = 1.

If A is even: Vn(A,B) is even, and Un(A,B) is even iff 2|n.
If A is odd: Vn(A,B) ≡ Un(A,B) (mod 2), and Vn(A,B) and Un(A,B) are even
iff 3|n.

Proof. By induction on n using equations (3) and (4).

Lemma 2.2. For all n ≥ 0, V2n(1,−1) = Vn(3,+1) and U2n(1,−1) = Un(3,+1),
(n = 0, 1, 2, . . .).

Proof. The proof of this for Vn is the same as that for Un so we shall give
only the proof for Un. For this we use induction on n. If n = 0 or n = 1, then
U2n(1,−1) = Un(3, 1) and U2(n+1)(1,−1) = Un+1(3, 1). Suppose these hold for n

and n+1. By (4), U2(n+2)(1,−1) = U2n+4(1,−1) = U2n+3(1,−1)+U2n+2(1,−1) =

U2n+2(1,−1) + U2n+1(1,−1) + U2n+2(1,−1) =

U2n+2(1,−1) + U2n+2(1,−1)− U2n(1,−1) + U2n+2(1,−1) =

3U2n+2(1,−1)− U2n(1,−1) = 3U2(n+1)(1,−1)− U2n(1,−1) =

3Un+1(3, 1)− Un(3, 1) = Un+2(3, 1).

Lemma 2.3. Let A and V be non-negative integers. Then

If V 2 −A2 = +8, then A = 1 and V = 3.
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If V 2 −A2 = −8, then A = 3 and V = 1.

Proof. 1 ≤ |V 2 −A2| ≤ 8 ⇒ 1 ≤ |V −A|(V +A) ≤ 8 ⇒ 1 ≤ V +A ≤ 8. Hence,
if V 2 −A2 = +8, then A = 1 and V = 3. If V 2 −A2 = −8, then A = 3 and V = 1.

Lemma 2.4.
(Descent Lemma) Suppose D = A2 − 4B, B = ±1, B + 2 ≤ A and U and V

are integers such that 0 ≤ V , 2 ≤ U and V 2−DU2 = ±4. If V ′ and U ′ are defined
by

(7) (i) V ′ =
AV −DU

2B
, (ii) U ′ =

AU − V

2B
,

then V ′ and U ′ are integers and satisfy V ′2 −DU ′2 = ±4B. Also V ′ and U ′ satisfy

(8) (i) 2V = AV ′ +DU, (ii) 2U = AU ′ + V ′.

Furthermore 1 ≤ V ′ and 1 ≤ U ′ < U .

Proof. First we show that 2U ≤ V . Since D = A2 − 4B, B = ±1 and B + 2 ≤ A,
5 ≤ D. Since 2 ≤ U we have 4 ≤ U2 and so 4U2 ≤ 5U2 ± 4 ≤ DU2 ± 4 = V 2.
Therefore 2U ≤ V .

Next we show that V ′ and U ′ are integers. D = A2 − 4B ⇒ D ≡ A2 ≡ A
(mod 2). Also V 2 − DU2 = ±4 ⇒ V 2 ≡ A2U2 (mod 2) ⇒ V ≡ AU (mod 2).
Hence AU−V ≡ 0 (mod 2) and so U ′ is an integer. Also since V ≡ AU (mod 2)
and D ≡ A (mod 2), AV −DU ≡ A2U −AU ≡ AU −AU = 0 (mod 2) so V ′ is
an integer.

Next we show that (V ′)2 −D(U ′)2 = ±4B. From the definitions of V ′ and U ′

we have

V ′2 −DU ′2 =
(AV −DU)2

4B2
−D

(AU − V )2

4B2
=

A2V 2 −DV 2 −DA2U2 +D2U2

4B2
=

(A2 −D)(V 2 −DU2)

4B2
=

(4B)(±4)

4B2
=

±4

B
= ±4B.

Next we show that 2V = AV ′ +DU ′ and 2U = AU ′ + V ′. From the definitions of
V ′ and U ′,

AV ′+DU ′ = A
AV −DU

2B
+D

AU − V

2B
=

A2V −DV

2B
=

V (A2 −D)

2B
=

V 4B

2B
= 2V.

Also

AU ′ + V ′ = A
AU − V

2B
+

AV −DU

2B
=

A2U −DU

2B
=

U(A2 −D)

2B
=

U4B

2B
= 2U.
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Next we show that 1 ≤ U ′ < U . V 2 −DU2 = ±4 ⇒ (A2 − 4B)U2 − V 2 = ∓4 ⇒
A2U2−V 2 = 4BU2∓4 ⇒ (AU−V )(AU+V ) = 4B(U2∓B). Since 2BU ′ = AU−V
⇒ 2BU ′(AU + V ) = 4B(U2 ∓ B) ⇒ U ′(AU + V ) = 2(U2 ∓ B) = 2U2 ∓ 2B, we
have

(9)
2U2 − 2

AU + V
≤ U ′ =

2U2 ∓ 2B

AU + V
≤ 2U2 + 2

AU + V
≤ 2U2 + 2

U + V
,

using B + 2 ≤ A ⇒ 1 ≤ A. Since 2 ≤ U ⇒ 2 < 2U2 ⇒ 0 < 2U2 − 2, equation (9)
⇒ 0 < U ′. Hence 1 ≤ U ′. Now we can show U ′ < U . Using 2U ≤ V , shown earlier,
2U ≤ V ⇒ 3U ≤ U + V . Also 2 ≤ U ⇒ 2 < U2. Hence by (9),

(10) U ′ ≤ 2(U2 + 2)

U + V
≤ 2U2 + 2

3U
≤ 2U2 + U2

3U
= U.

Therefore U ′ < U . Finally we can show that 1 ≤ V ′. Since V ′ = (AV −DU)/2B,
we have

(11) UV ′ =
AUV −DU2

2B
=

AUV − V 2 ± 4

2B
=

AUV − V 2

2B
± 2B = V U ′ ± 2B.

Since 1 ≤ U ′ and 4 ≤ 2U ≤ V , we have 2 ≤ 4±2B ≤ 2U±2B ≤ 2UU ′±2B ≤
V U ′± 2B = UV ′ by (11). Hence 2 ≤ UV ′ and so 1 ≤ V ′. This completes the proof
of the Descent Lemma.

Proof of Theorem 1.1. Suppose 3B + 5 ≤ 2A. In the direction ⇐ Theorem
1.1 has already been proven by our establishing identity (2). For the direction ⇒
we use the Descent Lemma and induction on U . Suppose 0 ≤ U , 0 ≤ V and
V 2 − DU2 = ±4. If U = 0, then V 2 = ±4 ⇒ V 2 = 4 ⇒ V = 2 and so we can
let n = 0. Suppose U = 1. Then V 2 − DU2 = ±4 ⇒ V 2 − (A2 − 4B) = ±4 ⇒
V 2 −A2 = ±4− 4B. We consider two cases:

Case 1. B = −1. Here we have V 2 −A2 = 0 or V 2 −A2 = 8. If V 2 −A2 = 0, then
V = A and so we can let n = 1 since V1(A,B) = A = V and U1(A,B) = 1 = U .
If V 2 − A2 = 8, then by Lemma 2.3, A = 1 and V = 3 so we can let n = 2 since
V2(A,B) = A2 − 2B = 3 = V and U2(A,B) = A = 1 = U .

Case 2. B = +1. Here V 2 −A2 = 0 or V 2 − A2 = −8. If V 2 −A2 = −8, then by
Lemma 2. 3, A = 3 and V = 1. Since B = 1, A = 3 contradicts 3B+5 ≤ 2A. Hence
V 2 −A2 = 0. In this case V = A and so we can let n = 1 since V1(A,B) = A = V
and U1 = 1 = U .

Now we can suppose 2 ≤ U and that the implication ⇒ of Theorem 1. 1 holds
for all pairs V ′, U ′ such that 0 ≤ U ′ < U and 0 ≤ V ′. Since B = ±1, the
hypothesis 3B + 5 ≤ 2A implies B + 2 ≤ A and so we can apply the Descent
lemma. Define V ′ and U ′ from V and U as indicated in the Descent Lemma:
V ′ = (AV −DU)/2B and U ′ = (AU − V )/2B. The Descent Lemma then asserts
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that V ′ and U ′ are integers, 1 ≤ V ′, 1 ≤ U ′ < U and V ′2 − DU ′2 = ±4. Hence
by the induction hypothesis ∃n ≥ 0 such that V ′ = Vn(A,B) and U ′ = Un(A,B).
Consequently using equations (8) in the Descent Lemma and identity (5) (i) we
have, 2V = AV ′+DU ′ = AVn+DUn = 2Vn+1 and so V = Vn+1. By (8) and identity
(5) (ii) we also have 2U = AU ′ +V ′ = AUn +Vn = 2Un+1 and so U = Un+1. Thus
the implication ⇒ holds for U . By induction the implication ⇒ holds for all U .
Thus Theorem 1. 1 is proved.

Corollary 2.5. If 4 ≤ A, B = 1, D = A2 − 4, then V 2 − DU2 = −4 has no
solutions U , V .

Proof. Of course this follows immediately from Theorem 1. 1 and Lucas Identity
(2). But there is a more interesting proof using the Descent Lemma: Suppose 4 ≤ A,
B = +1 and D = A2 − 4. Then B + 2 ≤ A so we can use the Descent Lemma.
Suppose V 2 −DU2 = −4 for some V , U . Let (V, U) be the pair with smallest U
such that 0 ≤ V and 0 ≤ U . Then U 6= 0. By Lemma 2. 3, U = 1 would imply
A = 3. Hence 2 ≤ U and so by the Descent Lemma ∃V ′, U ′ such that 1 ≤ V ′,
1 ≤ U ′ < U and V 2−DU2 = −4. But this contradicts the original choice of U and
V . Thus V and U such that V 2 −DU2 = −4 do not exist.

Remark. If A = 3, then V 2 − (A2 − 4)U2 = −4 does have solutions, e.g. V = 1
and U = 1.

Corollary 2.6. If 4 ≤ A, then x2 − (a2 − 4)y2 = −4 has no solutions.

Corollary 2.7. If 4 ≤ A, then all solutions of x2 − (a2 − 4)y2 = +4 are given by
x = Vi(a,+1) and y = Ui(a,+1), (i = 0, 1, 2, . . .).

Corollary 2.8. If 1 ≤ A, then all solutions of x2 − (a2 + 4)y2 = −4 are given by
x = V2i+1(a,−1) and y = U2i+1(a,−1), (i = 0, 1, 2, . . .).

Corollary 2.9. (Matiyasevich equation [22]) If 1 ≤ A, then all solutions of x2 −
(a2 + 4)y2 = +4 are given by x = V2i(a,−1) and y = U2i(a,−1), (i = 0, 1, 2, . . .).

Remark. In [22] Y. V. Matiyasevich used the above equation x2 − (a2 +4)y2 = 4
with a = 1, to solve Hilbert’s Tenth Problem. (I.e. he used the sequence of Fibonacci
numbers with even subscripts, U2i(1,−1) = Ui(3, 1).)

3. Solutions of Pell equations with d = a2 ± 4 and c = ±1.

In this section we give the solutions of Pell equations of the form x2 − (a2 ±
4)y2 = ±1.

Lemma 3.1. If 4 ≤ a, then x2 − (a2 − 4)y2 = −1 has no solutions.

Proof. Suppose 4 ≤ a and x2 − (a2 − 4)y2 = −1. Multiplying by 4 we obtain
(2x)2 − (a2 − 4)(2y)2 = −4, which, since 4 ≤ a, has no solutions by Corollary 2.6.
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Remark. If a = 3, then x2 − (a2 − 4)y2 = −1 has infinitely many solutions,
x = V6i+3(1,−1)/2 and y = U6i+3(1,−1)/2, (i = 0, 1, 2, . . .). This is shown by the
next theorem since a2 − 4 = 5 = 12 + 4.

Theorem 3.2. If 1 ≤ a and a is odd, then all solutions of x2 − (a2 + 4)y2 = −1

are given by x = V6i+3(a,−1)
2 and y = U6i+3(a,−1)

2 , (i = 0, 1, 2, . . .).

Proof. Using Corollary 2.8, since 1 ≤ a, we have x2 − (a2 + 4)y2 = −1 ⇐⇒
(2x)2 − (a2 + 4)(2y)2 = −4 ⇐⇒ 2x = Vn(a,−1) and 2y = Un(a,−1) for some odd
n. As a is odd, by the Parity Lemma 2|Vn(a,−1) and 2|Un(a,−1) ⇐⇒ 3|n. 3|n and
n is odd ⇐⇒ ∃i n = 6i+ 3, (i = 0, 1, 2, . . .).

Lemma 3.3. For any even integer a, x2 − (a2 + 4)y2 = −1 has no solutions.

Proof. Suppose a is even. Then 4|a2 ⇒ 4|a2 − 4. But x2 6= −1 (mod 4).

Theorem 3.4. If 4 ≤ a and a is even, then all solutions of x2 − (a2 − 4)y2 = +1

are given by x = V2i(a,+1)
2 and y = U2i(a,+1)

2 , (i = 0, 1, 2, . . .).

Proof. Using Corollary 2.7, since 4 ≤ a, we have x2 − (a2 − 4)y2 = +1 ⇐⇒
(2x)2− (a2−4)(2y)2 = +4 ⇐⇒ ∃ n ≥ 0, 2x = Vn(a,+1) and 2y = Un(a,+1). Since
2|a, the Parity Lemma implies 2|Vn(a,+1) and 2|Un(a,+1) ⇐⇒ 2|n, i.e. n = 2i,
(i = 0, 1, 2, . . .).

Theorem 3.5. If 3 ≤ a and a is odd, then all solutions of x2 − (a2 − 4)y2 = +1

are given by x = V3i(a,+1)
2 and y = U3i(a,+1)

2 , (i = 0, 1, 2, . . .).

Proof. Suppose 3 ≤ a and a is odd. x2−(a2−4)y2 = +1⇐⇒ (2x)2−(a2−4)(2y)2 =
+4. If 3 < a, then by Corollary 2.7, 2x = Vn(a,+1) and 2y = Un(a,+1), where,
by the Parity Lemma, n = 3i, (i = 0, 1, 2, . . .). If 3 = a, then, since a2 − 4 = 5 =
12 + 4, Corollary 2.9, ⇒ 2x = V2j(1,−1) and 2y = U2j(1,−1), where j = 3i, (i =
0, 1, 2, . . .) by the Parity Lemma, so that x = V6i(1,−1)/2 and y = U6i(1,−1)/2,
(i = 0, 1, 2, . . .). However by Lemma 2.2, V6i(1,−1) = V3i(3,+1) and U6i(1,−1) =
U3i(3,+1), (i = 0, 1, 2, . . .) as required

Theorem 3.6. If 2 ≤ a and a is even, then all solutions of x2 − (a2 + 4)y2 = +1

are given by x = V2i(a,−1)
2 and y = U2i(a,−1)

2 , (i = 0, 1, 2, . . .).

Proof. By Corollary 2.9, since 1 ≤ a, we have x2 − (a2 + 4)y2 = +1 ⇐⇒ (2x)2 −
(a2+4)(2y)2 = +4 ⇐⇒ 2x = Vn(a,−1) and 2y = Un(a,−1) for some even n. Since
2|a and n is even, the Parity Lemma implies 2|Vn(a,−1) and 2|Un(a,−1).

Theorem 3.7. If 1 ≤ a and a is odd, then all solutions of x2 − (a2 + 4)y2 = +1

are given by x = V6i(a,−1)
2 and y = U6i(a,−1)

2 , (i = 0, 1, 2, . . .).

Proof. By Corollary 2.9, since 1 ≤ a, we have x2 − (a2 + 4)y2 = +1 ⇐⇒ (2x)2 −
(a2+4)(2y)2 = +4 ⇐⇒ 2x = Vn(a,−1) and 2y = Un(a,−1) for some even n. Since
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a is odd, the Parity Lemma implies 2|Vn(a,−1) and 2|Un(a,−1) ⇐⇒ 3|n. 2|n and
3|n ⇐⇒ 6|n. Hence n = 6i (i = 0, 1, 2, . . .).

4. Solutions of Pell equations with d = a2 ± 1 and c = ±1.

In this section we consider solutions of Pell equations of the form x2 − (a2 ±
1)y2 = ±1.

Lemma 4.1. If 2 ≤ a, then x2 − (a2 − 1)y2 = −1 has no solutions.

Proof. Suppose 2 ≤ a and x2 − (a2 − 1)y2 = −1. Multiplying by 4 we obtain
(2x)2 − ((2a)2 − 4)y2 = −4. Since 4 ≤ 2a, this equation has no solutions by
Corollary 2. 6.
[Another proof is also possible. Let d = a2 − 1. The continued fraction expansion
of

√
d is

√
d = [a− 1; 1, 2a− 2] with period length 2 (even). Hence x2 − dy2 = −1

is unsolvable.]

Theorem 4.2. (Julia Robinson’s equation [26], [27]) If 2 ≤ a, then all solutions of

x2−(a2−1)y2 = +1 are given by x = Vi(2a,+1)
2 and y = Ui(2a,+1), (i = 0, 1, 2, . . .).

Proof. Suppose 2 ≤ a. Using Corollary 2.7, since 4 ≤ 2a we have x2 − (a2 −
1)y2 = +1 ⇐⇒ (2x)2 − ((2a)2 − 4)y2 = +4 ⇐⇒ ∃ n ≥ 0, 2x = Vn(2a,+1) and
y = Un(2a,+1). Since 2a is even, the Parity Lemma implies Vn(2a,+1) is even.
Hence 2|Vn(2a,+1).

Theorem 4.3. If 1 ≤ a, then all solutions of x2 − (a2 + 1)y2 = +1 are given by

x = V2i(2a,−1)
2 and y = U2i(2a,−1), (i = 0, 1, 2, . . .).

Proof. Using Corollary 2.9, since 1 ≤ 2a, we have x2 − (a2 + 1)y2 = +1 ⇐⇒
(2x)2− ((2a)2+4)y2 = +4 ⇐⇒ 2x = Vn(2a,−1) and y = Un(2a,−1) for some even
n, n = 2i, (i = 0, 1, 2, . . .). Since 2a is even, the Parity Lemma implies 2|Vn(2a,−1).

Theorem 4.4. If 1 ≤ a, then all solutions of x2 − (a2 + 1)y2 = −1 are given by

x = V2i+1(2a,−1)
2 and y = U2i+1(2a,−1), (i = 0, 1, 2, . . .).

Proof. Using Corollary 2.8, since 1 ≤ 2a, we have x2 − (a2 + 1)y2 = −1 ⇐⇒
(2x)2 − ((2a)2 +4)y2 = −4 ⇐⇒ 2x = Vn(2a,−1) and y = Un(2a,−1) for some odd
n, n = 2i+ 1, (i = 0, 1, 2, . . .). The Parity Lemma implies 2|Vn(2a,−1), since 2a is
even.
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5. Solutions of Pell equations with d = a2 ± 1 and c = ±4.

In this section we consider solutions of Pell equations of the form x2 − (a2 ±
1)y2 = ±4.

Lemma 5.1. If 2 ≤ a, a 6= 3 and x2 − (a2 − 1)y2 = ±4, then y is even.

Proof. Let d = a2 − 1. Suppose 2 ≤ a, a 6= 3 and x2 − dy2 = ±4. If a is
even, then 4|a2 and so d ≡ −1 (mod 4). Hence x2 − dy2 = ±4 ⇒ x2 + y2 ≡ 0
(mod 4) ⇒ y ≡ x ≡ 0 (mod 2). Therefore we can suppose a is odd and 5 ≤ a.
Then 4|d and so x is even. Suppose y is odd, and without loss of generality that y
is the least such odd y > 0. Since 3 < a, (a − 1)2 < a2 − 5 < a2 + 3 < (a + 1)2.
Hence d ± 4 is not a square and so y 6= 1. Therefore 2 < y. Let x′ = ax − dy and
y′ = ay − x. Then

x′2 − dy′2 = (ax− dy)2 − d(ay − x)2 = (a2 − d)x2 − d(a2 − d)y2 = x2 − dy2 = ±4.

Hence (x′, y′) is also a solution. Since x is even and a and y are both odd, y′ is
odd. Now 5 ≤ a and 2 < y ⇒ 2y2(1 − a) < ±4 < y2 ⇐⇒

2y2 − 2ay2 < ±4 < y2 ⇐⇒ y2 − 2ay2 < −y2 ± 4 < 0 ⇐⇒
a2y2 − 2ay2 + y2 < a2y2 − y2 ± 4 < a2y2 ⇐⇒
(a2 − 2a+ 1)y2 < (a2 − 1)y2 ± 4 < a2y2 ⇐⇒

(a− 1)2y2 < x2 < a2y2 ⇐⇒ (a− 1)y < x < ay ⇐⇒
0 < ay − x < y ⇐⇒ 0 < y′ < y. But since x′2 − dy′2 = ±4 and y′ is odd, this
contradicts the choice of y. Hence no such odd y exists.

Lemma 5.2. If 1 ≤ a, a 6= 2 and x2 − (a2 + 1)y2 = ±4, then y is even.

Proof. Let d = a2 +1. Suppose 1 ≤ a, a 6= 2 and x2 − dy2 = ±4. If a is odd, then
a2 ≡ 1 (mod 4) and so d ≡ 2 (mod 4). Hence x2 − dy2 = ±4 ⇒ x2 + 2y2 ≡ 0
(mod 4) ⇒ y ≡ x ≡ 0 (mod 2). Consequently we can suppose a is even and since
a 6= 2, that 4 ≤ a. Suppose y is odd and y is the least such odd y > 0. Since d is
odd and y is odd, x must be odd. Since 2 < a, (a−1)2 < a2−3 < a2+5 < (a+1)2

so that d± 4 is not a square and hence y 6= 1. Thus 2 < y. Put x′ = dy − ax and
y′ = x − ay. As in the proof of Lemma 5.1, x′2 − dy′2 = ±4. Since y′ = x − ay, x
is odd and a is even, y′ is odd. Now 2 < a and 2 < y ⇒ −y2 < ±4 < 2ay2 ⇐⇒
0 < y2 ± 4 < 2ay2 + y2 ⇐⇒

a2y2 < a2y2 + y2 ± 4 < a2y2 + 2ay2 + y2 ⇐⇒
a2y2 < (a2 + 1)y2 ± 4 < (a+ 1)2y2 ⇐⇒

a2y2 < x2 < (a+ 1)2y2 ⇐⇒ ay < x < (a+ 1)y ⇐⇒
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0 < x − ay < y ⇐⇒ 0 < y′ < y. But since x′2 − dy′2 = ±4 and y′ is odd, this
contradicts the choice of y. Hence no such odd y exists.

Theorem 5.3. If 2 ≤ a and a 6= 3, then all solutions of x2 − (a2 − 1)y2 = +4 are
given by x = Vi(2a,+1) and y = 2Ui(2a,+1), (i = 0, 1, 2, . . .).

Proof. Suppose 2 ≤ a, a 6= 3 and x2 − (a2 − 1)y2 = +4. By Lemma 5.l, 2|y. Let
y = 2u. x2 − (a2 − 1)y2 = +4 ⇐⇒ x2 − (a2− 1)4u2 = +4 ⇐⇒ x2 − ((2a)2 − 4)u2 =
+4 ⇐⇒ x = Vi(2a,+1) and u = Ui(2a,+1) for some i, by Corollary 2.7, since
4 ≤ 2a.

Theorem 5.4. If 1 ≤ a and a 6= 2, then all solutions of x2 − (a2 + 1)y2 = +4 are
given by x = V2i(2a,−1) and y = 2U2i(2a,−1), (i = 0, 1, 2, . . .).

Proof. Suppose 1 ≤ a, a 6= 2 and x2 − (a2 + 1)y2 = +4. By Lemma 5.2, 2|y. Let
y = 2u. x2 − (a2 +1)y2 = +4 ⇐⇒ x2 − (a2+1)4u2 = +4 ⇐⇒ x2 − ((2a)2 +4)u2 =
+4 ⇐⇒ x = V2i(2a,−1) and u = U2i(2a,−1) for some i, (i = 0, 1, . . .), by Corollary
2.9, since 1 ≤ 2a.

Theorem 5.5. If 1 ≤ a and a 6= 2, then all solutions of x2 − (a2 + 1)y2 = −4 are
given by x = V2i+1(2a,−1) and y = 2U2i+1(2a,−1), (i = 0, 1, 2, . . .).

Proof. Suppose 1 ≤ a, a 6= 2 and x2 − (a2 + 1)y2 = −4. By Lemma 5.2, 2|y. Let
y = 2u. x2− (a2+1)y2 = −4 ⇐⇒ x2− (a2+1)4u2 = −4 ⇐⇒ x2− ((2a)2+4)u2 =
−4 ⇐⇒ x = V2i+1(2a,−1) and u = U2i+1(2a,−1) for some i, (i = 0, 1, . . .), by
Corollary 2.8, since 1 ≤ 2a.

Theorem 5.6. If 2 ≤ a and a 6= 3, then x2 − (a2 − 1)y2 = −4 has no solutions.

Proof. Suppose 2 ≤ a, a 6= 3 and x2 − (a2 − 1)y2 = −4. By Lemma 5.1, 2|y. Let
y = 2u. Then x2−(a2−1)y2 = −4 ⇒ x2−(a2−1)4u2 = −4 ⇒ x2−((2a)2−4)u2 =
−4. But this equation has no solutions by Corollary 2.6, since 4 ≤ 2a.
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ON SOME RESEARCH PROBLEMS IN MATHEMATICS

Imre Kátai (Budapest, Hungary)

Dedicated to the memory of Professor Péter Kiss

I. Introduction

The problem presented here is originated during our joint research activity
with Z. Daróczy and some others for the Rényi–Parry expansions [1–11].

Let C∞ denote the space of sequences c = (c0, c1, . . .) the coordinates cν of
which are complex numbers. The shift operator σ:C∞ → C∞ is defined by

σ(c) = (c1, c2, . . .).

Let t0 = 1, tν ∈ C (ν = 1, 2, . . .) be bounded, and t = (t0, t1, . . .). We define

(1.1) R(z) = t0 + t1z + · · · .

Let l1 be the linear space of the sequences b ∈ C∞, for which
∑ |bν | < ∞

holds.
The scalar product of a bounded sequence c and a b ∈ C∞ is defined as

c b = bc =

∞∑

ν=0

bνcν .

Let

(1.2) Ht =
{
b ∈ l1 | σl(b)t = 0, l = 0, 1, 2, . . .

}
.

It is clear that Ht is a closed linear subspace of l1.

Let H(0)
t ⊆ Ht be the set of those b ∈ Ht for which

(1.3) |bν | ≤ C(ε, b)e−εν (ν ≥ 0)

holds with suitable ε > 0 and C(ε, b) (<∞).

Financially supported by the Research Group of Applied Number Theory of HAS, and by
OTKA T 031877.
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If ρ is a root of R(z), |ρ| < 1, then bν = ρν satisfies σl(b)t = 0 (l = 0, 1, 2, . . .)
and even |bν | ≤ Ce−εν , where ε can be defined from e−ε = |ρ|, and C = 1.

If ρ is a root of R(z) of multiplicity m, then bν = νjρν (ν ≥ 0) are solutions
of σl(b)t = 0 (l ≥ 0) for every j = 0, . . . ,m − 1, furthermore (1.3) holds with
suitable ε, and constant C(ε, b). The sequences bν = νjρν (ν ≥ 0) are called
elementary solutions.

Let H(e)
t be the space of finite linear combinations of elementary solutions.

Let furthermore H(e)

t be the closure of H(e)
t .

It is obvious that H(e)

t ⊆ Ht.

Conjecture 1. H(e)

t = Ht.

Conjecture 2. Assume that R(z) 6= 0 in |z| < 1. Then Ht = {0}.

Theorem 1. We have
H(0)

t = H(e)
t .

Proof. H(e)
t ⊆ H(0)

t obviously holds. We shall prove that H(0)
t ⊆ H(e)

t , i.e. that if
σl(b)t = 0 (l = 0, 1, 2, . . .), and

|bν | < C(b, ε) · e−εν ,

then there exist ρ1, . . . , ρk suitable roots of R(z), |ρs| ≤ 1/eε (s = 1, . . . , k) such
that

bν =
k∑

s=1

ps(ν)ρ
ν
s (ν = 0, 1, 2, . . .),

ps are polynomials, deg ps = ms − 1, where ms is the multiplicity of the root ρs
for R(z).

Let b be a solution of

(1.4) σl(b)t = 0 (l = 0, 1, 2, . . .), |bν | ≤ C(ε, b) · e−εν .

Let furthermore ρ1, . . . , ρp be all the roots of R(z) in the disc |z| < 1

eε
+ ε1,

where ε1 is an arbitrary small positive number. Let ms be the multiplicity of ρs,
i.e.

R(j)(ρs) = 0 (j = 0, . . . ,ms − 1), R(ms)(ρs) 6= 0.

Let ϕ(z) =
p∏

j=1

(z − ρj)
mj , ψ(z) =

p∏
j=1

(1 − ρjz)
mj , and E be defined for a

sequence a0a1 . . . such that Eam = am+1.
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If b is a solution of the equation (1.4), and p is an arbitrary polynomial in
C[z], then en = p(E)bn is a solution of (1.4) as well.

Let
cn := ψ(E)bn (n ∈ N0).

Let furthermore

(1.5) B(z) =

∞∑

ν=0

bν
zν
, C(z) =

∞∑

ν=0

cν
zν
.

Observe that

(1.6) C(z) =
∏(

1− ρν
z

)mν

B(z) = ψ

(
1

z

)
B(z),

and that

(1.7) ψ

(
1

z

)
zM = ϕ(z), M = m1 + · · ·+mp.

The function B(z) is regular outside |z| ≤ e−ε, and bounded in |z| ≥ 1

eε
+ ε2,

where ε2 > 0 is an arbitrary constant. We assume that
1

eε
+ ε2 < 1. In the ring

1

eε
+ ε2 < |z| < 1 we have

R(z)B(z) =

( ∞∑

u=0

tuz
u

)( ∞∑

v=0

bν · z−v

)
=

∞∑

r=−∞
κrz

r,

where
κr =

∑

u−v=r
u,v≥0

tubv.

Due to (1.4), κr = 0 if r < 0, and κr = O(1), for r > 0. Thus

R(z)B(z) = K(z), K(z) = κ0 + κ1z + · · · ,

K(z) is regular in |z| < 1. Consequently, B(z) =
K(z)

R(z)
,

(1.8) C(z) =
K(z)ψ

(
1
z

)

R(z)
.
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The right hand side of (1.8) is regular in |z| < 1

eε
+ ε1, and bounded there.

Otherhand B(z) and so C(z) is bounded in |z| ≥ 1

eε
+ ε2. If we choose ε2 < ε1, we

conclude that C(z) is bounded on the whole plane and so, it is constant, C(z) = D,
∑ bν

zν
= B(z) =

D

ψ(1/z)
, and so

∞∑

ν=0

bνz
ν =

D∏
(1− ρνz)mν

.

The right hand side can be splitted into partial fractions,

D∏
(1 − ρνz)mν

=

p∑

ν=1

mν∑

j=0

eν,j
(1− ρνz)j

, (eν,j ∈ C),

whence we obtain immediately that

cn =

p∑

ν=1

pν(n)ρ
n
ν deg pν ≤ mν − 1,

and so the theorem holds.

II.

Let {λn}∞n=1 be a strictly monotonic sequence of positive numbers, λ1 > λ2 >
· · · (> 0), and assume that Ln = λn+1 + . . . is finite, furthermore that

(2.1) λn ≤ Ln (n = 0, 1, 2, . . .).

The condition (2.1) implies that

H =
{
x
∣∣∣ x =

∑
εnλn, εn ∈ {0, 1}

}

is the whole interval [0, L0]. This assertion is due to Kakeya.
In some of our papers with Daróczy, we have investigated expansions generated

by λn satisfying (2.1).
A sequence {λn} is called interval filling, if (2.1) holds.
In a paper written jointly with Z. Daróczy and G. Szabó [12] we proved the

following assertion.
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Theorem 2. Let λn be an interval filling sequence. Let {an}∞n=1 ∈ l1 be a sequence
with the following property: if

∞∑

n=1

εnλn = 0, εn ∈ {−1, 0, 1},

then ∑
εnan = 0.

We have an = cλn with some constant c.

Conjecture 3. Let {λn}∞n=1 be such a sequence of positive numbers for which
λ1 > λ2 > · · ·, ∑λn < ∞, and H = {x | x =

∑
εnλn, εn ∈ {0, 1}} contains

an interval. Assume furthermore that {an}∞n=1 ∈ l1 such a sequence for which∑
δnλn = 0, δn ∈ {−1, 0, 1} implies that

∑
δnan = 0.

Then an/λn = constant.

Remarks. 1. If H = {∑ εnλn | εn ∈ {0, 1}} is totally disconnected, then each
x ∈ H has a unique expansion, therefore

δ1λ1 + δ2λ2 + · · · = 0, δj ∈ {−1, 0, 1}

implies that δ1 = δ2 = · · · = 0, consequently every {an} ∈ l1 is a solution.

2. Assume that Λ := {λn} is interval filling and even that there is a non-trivial
subsequence λnj (= wj) for which Ω = {wj} is interval-filling.

Let M denote the set of the following sequences (e1, e2, . . .) = e.

1. If eν ∈ {−1, 0, 1} for every ν and eν = 0 for ν 6∈ {n1, n2, . . .}, then e ∈ M.
2. For every n, let λn be expanded in the system Ω with some digits {0, 1}:

λn =
∞∑

j=1

δ
(n)
n+jλn+j ,

where δ(n)m = 0 if m 6∈ {n1, n2, . . .}.
Then (

0, 0, . . . , 0, − n
1, δ

(n)
n+1, δ

(n)
n+2, . . .

)
∈ M,

if n ≥ n1, where n1 is a constant.

3. For every n = 1, . . . , n1 − 1 choose an arbitrary sequence
(
e
(n)
1 , e

(n)
2 , . . .

)
such

that

(a) e(n)l = 0 if l < n,

(b) e(n)u 6= 0,
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(c) e(n)m ∈ {−1, 0, 1}.

Let
(
e
(n)
1 , e

(n)
2 , . . .

)
∈ M.

Assertion: Let {an} ∈ l1 be a sequence for which

∑
εnan = 0

whenever ∑
εnλn = 0

and (ε1, ε2, . . .) ∈ M.
Then an = cλn (n ∈ N).
The assertion is an easy consequence of our Theorem 2.
Indeed, by using Theorem 2 for Ω, we obtain that anj = cλnj (j = 1, 2, . . .).
Let now j ≥ 1 be fixed and consider the set of the integers n ∈ [nj+1, nj+1−1].

Since Ω is interval filling, therefore λnj ≤ λnj+1 +λnj+2 + · · · consequently for every
n there is a suitable sequence defined in (ii).

We have an =
∑
δ
(n)
n+j an+j = c

∑
δ
(n)
n+j λn+j = cλn. Thus an = cλn if n ≥ n1.

From (iii), we obtain that an = cλn for n = n1 − 1, n1 − 2, . . . , 1.

The assertion is proved.

Let λn := Θn, Θ ∈
(
1

2
, 1

)
, L0 =

Θ

1−Θ
. A sequence ε1, . . . , εN ∈ {−1, 0, 1}

is said to be continuable if
∣∣ε1Θ+ · · ·+ εNΘN

∣∣ ≤ ΘNL0.

Let t(0) = 2, t(±1) = 1 and

τ(ε1, . . . , εN ) =
N∏

j=1

t(εj).

Let mN (Θ) =
∑
τ(ε1, . . . , εN ), where the summation is extended over the

continuable sequences. One can see easily that

mN (Θ) ≥ c(4Θ)N , c > 0.

Let F be a set of sequences ε = ε1ε2 . . . , εν ∈ {−1, 0, 1}, furthermore let FN

be the set of those sequences δ1 . . . δN ∈ {−1, 0, 1}N , which can be continued with
suitable εν ∈ {−1, 0, 1} (ν ≥ N + 1) such that δ1 . . . δN εN+1εN+2 . . . ∈ F .
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Let
πN (Θ|F) =

∑

δ1...δN∈FN

τ(δ1, . . . , δN ).

Conjecture 4. If a = a1a2 . . . ∈ l1 and

∑
εnan = 0 whenever

ε ∈ F , and
πN (Θ|F) → ∞ (N → ∞)

then an = cΘn (n = 1, 2, . . .).

III.

Let Θ ∈
(
1

2
, 1

)
, q = 1/Θ, L =

Θ

1−Θ
. Let η ∈ [Θ,ΘL] and T = Tη be the

mapping [0, L] → [0, L] defined as follows.
If x ∈ [0, L], then let

ε1 = ε1(x) =

{
0, if x < η,
1, if x ≥ η,

and let x1 = Tx be defined from

x = ε1Θ+Θx1.

Continuing this process, xn = εn+1Θ + Θxn+1 (n = 1, 2, . . .), an expansion
of x

(3.1) x = ε1Θ+ ε2Θ
2 + · · ·

is given. We say that it is a representation of level η of x.
We can see that T : [0, qη) → [0, qη). Let us consider the expansion of level η

of qη, and η:

(3.2) qη = t1Θ+ t2Θ
2 + . . . , η = π1Θ+ π2Θ

2 + · · · .

Let t = t1t2 . . . , π = π1π2 . . . .
Let

E := {ε(§) | § ∈ [′,∐η)} .

Let furthermore F be the set of those sequences f = f1f2 . . . ∈ {0, 1}∞ for
which:
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(1) σj(f) < t (j = 0, 1, 2, . . .),
(2) if fν = 1, then

σν−1(f) = fνfν+1 . . . ≥ π.

Theorem 3. We have E = F .

Remark. The expansion T for η = Θ was defined by A. Rényi [1]. W. Parry
proved the relation E = F for η = Θ in [2].

Proof of Theorem 3. The relation E ⊆ F is obvious. Let x = ε1(x)Θ+ · · · , x ∈
[0, qη]. Since for every couples y1, y2, if 0 ≤ y1 < y2 ≤ qη, then ε(y1) < ε(y2), thus
ε(x) < t. Since xn = εn+1(x)Θ + · · · < qη, therefore σn(ε(x)) < t. If εn(x) = 1,
then xn−1 = εn(x)Θ + · · · ≥ η, thus (εn(x), . . .) ≥ π. Thus E ⊆ F is true.

Let f ∈ F , y : T = f1Θ+ f2Θ
2 + · · · . We shall prove that y ≤ qη and that if

fk = 1, then fkΘ+ · · · ≥ η. Hence it would follow that ε(y) = f .
Let fj = tj (j = 1, . . . , k1 − 1), fk1 = 0, tk1 = 1. Furthermore let fk1+j = tj

for (j = 1, . . . , k2 − 1), fk2 = 0, tk2 = 1, and so on. We allow the choice kν = 1,
when (j = 1, . . . , kν − 1) is an empty condition.

Thus we have

(3.3)
y = t1Θ+ · · ·+ tk1−1Θ

k1−1 + Θk1
(
t1Θ+ · · ·+ tk2−1Θ

k2−1
)
+

+ Θk1+k2
(
t1Θ+ · · ·+ tk3−1Θ

k3−1
)
+ · · · .

If tk = 1, then tkΘ + tk+1Θ
2 + · · · ≥ η, and so t1Θ + · · · + tk−1Θ

k−1 ≤
(qΘ)(1−Θk).

From (3.3) we obtain that

y ≤ (qΘ)(1−Θk1) + (qΘ) ·Θk1(1−Θk2) + · · · = qΘ.

The estimation from below is the same. Assume that f1 = π1, fj = πj j =
1, . . . , (k1−1), fk1 = 1, πk1 = 0, fk1+j = πj , j = 1, . . . , k2−1, fk1+k2 = 1, πk2 = 0,
and so on. Then

y =
(
π1Θ+ · · ·+ πk1−1Θ

k1−1
)
+Θk1−1

(
π1Θ+ · · ·+ πk2−1Θ

k2−1
)
+

+Θ(k1−1)+(k2−1)
(
π1Θ+ . . .+ πk3−1Θ

k3−1
)
+ · · ·

If k is such an integer for which πk = 0, then η = π1Θ + · · · + πk−1Θ
k−1 +

Θk−1ξ, ξ < η, and so

π1Θ+ · · ·+ πk−1Θ
k−1 ≥ η

(
1−Θk−1

)
.

Therefore
y ≥ η

(
1−Θk1−1

)
+ ηΘk1−1

(
1−Θk2−1

)
+ . . . = η.
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Hence the assertion easily follows.

Theorem 4. Let η1 < η2, η1, η2 ∈ [Θ,ΘL]. Furthermore let H(η1, η2) be the set
of those x ∈ [0, L] for which their expansions of level η1 and of level η2 are the
same. Then the Lebesgue measure of H(η1, η2) is zero.

We shall not prove this theorem presently.

IV.

Let q > 1 be a Pisot number, Θ = 1/q, k = [q], A = {0, 1, . . . , k},

H :=
{∑

εnΘn

∣∣∣ εn ∈ A
}
= [0, kL], L =

Θ

1−Θ
.

Let ε(x) = ε1(x)ε2(x) . . . be the sequence of digits in the regular (that is the
Rényi–Parry) expansion of x (=

∑
εn(Θ)Θn). Let t = t1t2 . . . be the sequence of

digits in the quasi-regular expansion of 1.
The digit ε1(x) for the regular expansion of x is defined as

ε1(x) = [qx],

while in the quasi-regular expansions by [qx], if qx is not an integer, and by qx− 1
if it is an integer. Since q is a Pisot number, therefore σk(t) (k = 0, 1, . . .) is
ultimately periodic, that is

(4.1) σk+p(t) = σk(t)

holds with suitable p > 0, k > 0.
Let B = {⌊′, ⌊∞, . . . , ⌊∇} be a set of distinct integers such that b0 = 0, −K1 =

min bν < 0, K2 = max bν > 0.
We would like to find those sequences f1, f2, . . . ∈ B for which

(4.2) O = f1Θ+ f2Θ
2 + · · ·

holds.
Let γ0 = 0, γ1 = −f1, γj = qγj−1 − fj (j = 1, 2, . . .).
Then

(4.3) γj = fj+1Θ+ fj+2Θ
2 + · · · ∈ [−K1L,K2L].

The numbers γj are integers in Q(q). Let the conjugates of q be q =
q1, q2, . . . , qn. We have |qν | < 1 (ν = 2, . . . , n).
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Consequently,

γj(ql) = −
(
f1q

j−1
l + · · ·+ fj

)
, |γj(ql)| ≤

max(K1,K2)

1− |ql|

(j = 2, . . . , n), γj ∈ [−K1L,K2L].
Since the vectorials {γj(ql) | l = 1, . . . , n} belong to a bounded domain,

therefore they are taken from a finite set which is denoted by F :

F =

{
ρ, ρ integer in Q(q), |ρ(ql)| ≤

max(K1,K2)

1− |ql|
(l ≥ 2), ρ ∈ [−K1L,L2L]

}
.

The construction of the graph G(F)

The edges of the graph are the elements of F . We shall draw an edge from
ρ ∈ F to ρq − f if ρq − f ∈ F . This (directed) edge is labeled with f .

It is clear that all solutions f1, f2, . . . of (4.2) can be getting by walking on the
graph starting from 0, and noting the sequence of the labels of the graph.

By using this construction we can solve some interesting problems.

Problem. Let A = {0, 1, . . . , k}, ε(x) be the sequence of digits in the regular
expansion of x. Let us determine those sequences (δ1, . . . , δN ) ∈ AN which can be
continued appropriately, by δN+j ∈ A (j = 1, 2, . . .) such that x =

∑
1
δνΘ

ν .

This can be done as follows. We consider the set B = A−A = {⊓ − ⊑ | ⊓,⊑ ∈ A}
and define F as earlier, then G(F) by drawing the edge ρ1 → ρ2, if ρ2 = qρ1 − f .
After then we delete the edge labeled with f , and substitute it with as many edges
as many solutions f = u − v, u, v ∈ A has, and we label them with (u, v). Let
G∗(F) be this directed multigraph.

Let us walk on G∗(F) starting from 0 and note the sequence of labels:

(u1, v1), (u2, v2), . . . .

Let us consider only those routes for which uj = εj(x) (j = 1, . . . , N). Then
the sequence of the second components will give a suitable continuable sequence
δ1, . . . , δN , and all appropriate sequences can be getting on this way.

Let us see G(F) and G∗(F) in the simplest case

Θ =

√
5− 1

2
, q =

√
5 + 1

2
, A = {0, 1}, B = {−∞, ′,∞}.
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V.

Let f :N → C be a completely multiplicative arithmetical function, |f(n)| =
1 (n ∈ N), and let δf (n) = f(n+ 1)f(n).

E. Wirsing proved in 1984 that if δf (n) → 1 (n → ∞), then f(n) = niτ [13],
[14].

Daróczy and I proved the following assertion [15].

If G is a compact Abelian group, f :N → G is completely additive, i.e. f(mn) =
f(m) + f(n) for every m,n ∈ N, and f(n+ 1)− f(n) → 0 (n → ∞), then there
is a continuous homomorphism Φ:Rx → G such that

f(n) = φ(n) (n ∈ N).

Conjecture 5. Let G be a compact Abelian group, f :N → G be completely additive,
and closure f(N) = G (closure f(N) always is a closed subgroup in G). Let U be
the set of those u for which there exists an infinite sequence of integers nν ր, such
that f(nν + 1)− f(nν) → u.

Then U is a subspace in G, furthermore

f(n) := Φ(n) + V (n),

where Φ is a continuous homomorphism, φ:Rx → G, V (N) ⊆ U, clos V (N) = U .
We formulate our conjecture for complex valued completely multiplicative

functions.

Conjecture 6. Let f be completely multiplicative, |f(n)| = 1 (n ∈ N), δf (n) =
f(n + 1)f(n). Let Ak = {α1, . . . , αk} be the set of limit points of {δf (n) | n =

1, 2, . . .}. Then Ak = {w|wk = 1}, furthermore f(n) = niτF (n), and

(i) F (N) = Ak,

(ii) for every w ∈ Ak there is some infinite sequence nν such that F (nν+1)F (nν) =
w (ν = 1, 2, . . .).

A weaker conjecture, namely that under the conditions of Conjecture 6 there is
an s such that F (N) = {ω | ωs = 1}, was proved by E. Wirsing [18] in his brilliant
paper.

VI.

Let Pk be the set of integers n = p1 · · · pk where p1, . . . , pk are distinct primes.
Let α be a fixed irrational number. Let e(β) := e2πiβ . Let q1 < q2 < · · · < qr
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be the whole sequence of the primes up to x. Let Xqj (j = 1, . . . , r) be complex
numbers,

Qk(Xq1 , . . . , Xqr ) :=

∣∣∣∣
∑ n ∈ Pk

n = p1 . . . pk < x
Xp1 · · ·Xpk

e(nα)

∣∣∣∣ .

Let us define

δk(x) = max
|Xq1 |≤1,...,|Xqr |≤1

Qk(Xq1 , . . . , Xqr )

πk(x)
,

δk = lim sup
x→∞

δk(x).

Conjecture 7. We have δk < 1 if k ≥ 2. Furthermore δk → 0 (k → ∞).
H. Daboussi proved several years ago that for every irrational α, for every

multiplicative function f , such that |f(n)| ≤ 1 (n ∈ N), the relation

1

x

∣∣∣∣∣∣
∑

n≤x

f(n)e(nα)

∣∣∣∣∣∣
→ 0 (x→ ∞).

The order of the convergence may depend on α, but does not depend on f . In our
recent paper written jointly with Indlekofer [19] we proved:

If α is irrational, w(n) is the number of the prime divisors of n, P̃k =

{n | w(n) = k}, π̃k(x) = #
{
P̃k(x) ∩ [1, x]

}
, η > 0 is a small constant,

then uniformly for multiplicative functions f restricted by the conditions |f(n)| ≤
1 (n ∈ N) we have

max
k

1

π̃k(x)

∣∣∣∣
∑ n ≤ x

n ∈ P̃K
f(n)e(nα)

∣∣∣∣→ 0 as η <
k

x2
< 2− η x→ ∞.

I hope that Conjecture 7 is true.
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RECIPROCAL INVARIANT DISTRIBUTED SEQUENCES
CONSTRUCTED BY SECOND ORDER LINEAR RECURRENCES

Sándor H.-Molnár (Budapest, Hungary)

Dedicated to the memory of Professor Péter Kiss

Abstract. In this paper we determine necessary and sufficient conditions for the sequence
(Gn+1/Gn)

∞
n=0 to become a reciprocal invariant distributed sequence modulo 1, where Gn is the

n-th term of a non-degenerate second order linear recurrence of real numbers.

1. Introduction

Let G = G(A,B,G0, G1) = (Gn)
∞
n=0 be a second order linear recursive

sequence of real numbers defined by the recursion

(1) Gn = AGn−1 +BGn−2 (n > 1),

where A,B and the initial terms G0, G1 are fixed real numbers with restrictions
AB 6= 0, D = A2 + 4B 6= 0 and G2

0 +G2
1 > 0. It is well-known that the terms of G

can be written in the form

(2) Gn = aαn − bβn,

where α and β are the roots of the characteristic polynomial x2 − Ax − B of the
sequence G and a = G1−G0β

α−β , b = G1−G0α
α−β (see e.g. I. Niven and H. S. Zuckerman

[9], p. 91).
Troughout this paper we assume |α| ≥ |β| and the sequence is non-degenerate,

i.e. α/β is not a root of unity and ab 6= 0. If Gn0 = 0 we may also suppose that
Gn 6= 0 for n 6= n0, since P. Kiss [2] proved that a non-degenerate sequence G has
at most one zero term.

Distribution properties of the Fibonacci sequence G = G(1, 1, 0, 1) and more
general integer valued and real valued recurrences were studied by several authors.
Here we only mention the papers [4], [3], [5] and [7], connected with our topic.

The object of this paper is to determine necessary and sufficient conditions for
the sequence (Gn+1/Gn)

∞
n=0 to become a reciprocal invariant distributed sequence

modulo 1. (The definition of reciprocal invariant will be given later.)



102 S. H.-Molnár

The sequence ω = (xn)
∞
n=1 is said to have asymptotic distribution function

modulo 1 (a.d.f. mod 1) F if

lim
N→∞

1

N

N∑

n=1

χ(x, xn) = F (x) for 0 ≤ x ≤ 1,

where the function χ is defined by

χ(x, y) =

{
1, if 0 ≤ {y} < x,
0, if x ≤ {y}

and {y} denotes the fractional part of the real number y.
In [8] the following definition was introduced.

Definition. Let ω = (xn)
∞
n=1 and ξ = (f(xn))

∞
n=1 be sequences of real numbers,

where f is a real–valued function. If the sequences ω and ξ have a.d.f. mod 1 and
these functions are identical, then we say ω is f invariant distributed sequence
modulo 1. (i.d. mod 1 to f.)
In special cases:
(i) if ω is i.d. mod 1 to f(x) = 1

x , we say ω is reciprocal invariant distributed
sequence mod 1,

(ii) if ω is i.d. mod 1 to f(x) =
√
x we say ω is a square root invariant distributed

sequence mod 1.
P. Kiss and R. F. Tichy in [4] investigated the asymptotic distribution function
modulo 1 of the sequence (Gn+1/Gn)

∞
n=1 when D < 0. Their theorem can be

extended to any sequence (Gn+k/Gn)
∞
n=1, where k is a nonzero integer. We prove:

Theorem 1. Let G = (Gn)
∞
n=0 be a linear recurring sequence defined by Gn =

AGn−1 + BGn−2, (n > 1) with nonzero real coefficients A and B, real initial
values G0, G1 (not both G0 and G1 are zero) and with negative discriminant

D = A2 + 4B. Let k 6= 0 be an integer. If the number Θ = 1
π arctan

√
−D
A is

irrational, then the asymptotic distribution function modulo 1 H of the sequence
(Gn+k/Gn)

∞
n=1 is given by

(3) H(x) = H1 (x− {c}) +H1 ({c})

with

(4) H1(x) = x+
1

π
arctan

sin(2πx)

exp(2π|d|) − cos(2πx)
,

c = rk cos(kπΘ), d = −rk sin(kπΘ) and r = |α| =
∣∣∣A+

√
A2+4B
2

∣∣∣.
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Theorem 2. Let G = (Gn)
∞
n=0 be a non-degenerate second order linear recursive

sequence defined by Gn = AGn−1+BGn−2 (n > 1) with nonzero real coefficients
A and B, real initial values G0, G1 (where G2

0+G2
1 6= 0) and negative discriminant

D = A2 +4B. The sequence ω = (Gn+1/Gn)
∞
n=1 is reciprocal invariant distributed

modulo 1 if and only if B = −1.

Theorem 3. Let G = (Gn)
∞
n=0 be a non-degenerate second order linear recursive

sequence defined by the recursion Gn = AGn−1 + BGn−2 (n > 1) with nonzero
integer coefficients A and B, integer initial values G0, G1 (where G2

0 + G2
1 6= 0)

and with positive discriminant D = A2 + 4B. The sequence ω = (Gn+1/Gn)
∞
n=1 is

reciprocal invariant distributed modulo 1 if and only if B = 1.

2. Proofs

Proof of Theorem 1. Let G be a second order linear recursive sequence satisfying
the conditions of Theorem 1. We know from [2] that the zero multiplicity of G is at
most one and one element is not relevant for the asymptotic distribution function
therefore without loss of generality we may assume that Gn 6= 0 for n ≥ 0. In (2)
α, β and a, b are complex conjugate numbers since D = A2 + 4B < 0 and we can
write

(5) α = r exp(iπΘ), β = r exp(−iπΘ)

and

(6) a = r1 exp(iπω), b = r1 exp(−iπω),

where exp(x) denotes the usual exponential function and

0 < Θ =
1

π
arctan

√
−D

A
< 1, ω =

1

π
arctan

AG0 − 2G1

G0

√
−D

,

while r and r1 are positive real numbers, a 6= 0 and b 6= 0. Since G is a non-
degenerate sequence we have Θ is an irrational number.

By (2), (5) and (6) we obtain for all n ≥ max{0,−k} = n0 that

Gn+k

Gn
=

r1r
n+k exp(iπ(ω + (n+ k)Θ)) + r1r

n+k exp(−iπ(ω + (n+ k)Θ))

r1rn exp(iπ(ω + nΘ)) + r1rn exp(−iπ(ω + nΘ))

= rk
cos(π(ω + (n+ k)Θ))

cos(π(ω + nΘ))
= rk(cos(πkΘ)− sin(πkΘ) · tan(π(ω + nΘ)))

= c+ d tan(π(ω + nΘ)),
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where c = rk cos(kπΘ), d = −rk sin(kπΘ) are nonzero real numbers independent
on n. Note that the proof of the inequality

∣∣∣∣∣∣
1

N

N+n0−1∑

n=n0

χ

(
x,

Gn+k

Gn

)
−

1∫

0

χ(x, c+ d tan(π(y + ω))dy

∣∣∣∣∣∣

≤ 4
√
|rk sin(kπΘ)|

√
∆N + 6∆N ,

where ∆N = ∆N (Θn) denotes the discrepancy of the sequence (Θn)∞n=1 which is
analogous to described in [4] by P. Kiss and R. F. Tichy. Since we only need a.d.f.
mod 1, we omit the proof.

In the following we compute the integral

(7) H(x) =

∫ 1

0

χ(x, c+ d tan(π(y + ω))dy =

1/2∫

−1/2

χ(x, c+ d tan(π(y + ω))dy

in the case c = 0. By the substitution u = d tan(πy) we get

(8) H1(x) =
|d|
π

∞∫

−∞

χ(x, u)

d2 + u2
du.

We use the Fourier series expansion of the characteristic function

χ(x, u) = x+
1

π

∞∑

m=1

sin(2πmx)

m
cos(2πmu) +

1

π

∞∑

m=1

1− cos(2πmx)

m
sin(2πmu)

and the integral formulae

∞∫

−∞

cos(2πmu)

d2 + u2
du =

π

|d| exp(−2πm|d|),
∞∫

−∞

sin(2πmu)

d2 + u2
du = 0 (see e.g. [1]).

By swapping summation and integration and applying Lebesgue’s theorem on
dominated convergence we have

H1(x) = x+
1

π

∞∑

m=1

sin(2πmx)

m
exp(−2πm|d|) = x+

1

π
ℑ
( ∞∑

m=1

wm

m

)
,
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where w = exp(2π(−|d|+ ix)). Since −|d| < 0, we have |w| < 1 and ℜ(1−w) > 0,

so
∞∑

m=1

wm

m = − log(1− w). Since

ℑ(1− w) = exp(−2π|d|) sin(2πx) and ℜ(1− w) = 1− exp(−2π|d|) cos(2πx)

it follows that

H1(x) = x+
1

π
arctan

exp(−2π|d|) sin(2πx)
1− exp(−2π|d|) cos(2πx)

= x+
1

π
arctan

sin(2πx)

exp(2π|d|)− cos(2πx)
.

Since H1(−x) = −H1(x), H(x) = H1(x − c) − H1(−c) = H1(x − c) + H1(c), the
proof of the theorem is complete.

Proof of Theorem 2. Let G be a second order linear recursive sequence satisfying
the conditions of Theorem 2. By [4] the a.d.f. mod 1 of the sequence (Gn+1/Gn)

∞
n=1

is F (x) = F1(x− {A/2}) + F1({A/2}), where

F1(x) = x+
1

π
arctan

sin(2πx)

exp(π
√
−D)− cos(2πx)

.

One can check that ω = (Gn/Gn+1)
∞
n=0 = (Gn−1/Gn)

∞
n=1 = ξ. The a. d. f. mod

1 ω and ξ are identical which is easy to derive by Theoem 1. Indeed, if k = −1 and
c = r−1 cos(−πΘ) = r cos(πΘ)

r2 = − A
2B and d = −r−1 sin(−πΘ) = r sin(πΘ)

r2 = −
√
−D
2B

then

H(x) = H1

(
x−

{−A

2B

})
+H1

({−A

2B

})
,

where

H1(x) = x+
1

π
arctan

sin(2πx)

exp
(

π
√
−D

−B

)
− cos(2πx)

.

We have to decide some necessary and sufficient conditions for the equality

(9) F (x) = H(x) 0 ≤ x ≤ 1.

A straightforward calculation shows that the derivate of F (x) and H(x) is given
by

(10) F
′
(x) = 1 + 2

E1 cos
(
2π
(
x−

{
A
2

}))
− 1

E2
1 − 2E1 cos

(
2π
(
x−

{
A
2

}))
+ 1
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and

(11) H
′
(x) = 1 + 2

E2 cos
(
2π
(
x−

{−A
2B

}))
− 1

E2
2 − 2E2 cos

(
2π
(
x−

{−A
2B

}))
+ 1

,

where

E1 = exp(π
√
−D) and E2 = exp

(
π
√
−D

B

)
.

This yields that the graph of F (x) is steepest at {A/2} and the graph of H(x) is
steepest at

{−A
2B

}
. By (9) we get x0 = {A/2} =

{−A
2B

}
and thus

F (x0) = F1(0) + F1

({
A

2

})
= F1

({
A

2

})

and

H(x0) = H1(0) +H1

({−A

2B

})
= H1

({
A

2

})
.

On the other hand,

F1

({
A

2

})
= H1

({
A

2

})

implies

exp(π
√
−D) = exp

(
π
√
−D

−B

)

and B = −1. If B = −1 then F (x) = H(x) (0 ≤ x ≤ 1) is trivially true. Therefore
B = −1 is a necessary and sufficient condition for (Gn+1/Gn)

∞
n=0 to be reciprocal

invariant distributed mod 1.

Proof of Theorem 3. Suppose |α| ≥ |β|, where α and β are the roots of the
characteristic polynomial of G. By the conditions of Theorem 3, D > 0, therefore
|α| > |β|. From αβ = −B ∈ Z and B 6= 0 it follows that |α| > 1. Then
(Gn+1/Gn)

∞
n=0 and (Gn/Gn+1)

∞
n=0 is convergent (c.f. [7]).

Indeed,

lim
n−→∞

Gn+1

Gn
= lim

n−→∞
aαn+1 − bβn+1

aαn − bβn
= lim

n−→∞
α
1− (b/a)(β/α)n+1

1− (b/a)(β/α)n
= α

and
lim

n−→∞
Gn

Gn+1
=

1

α
.

The sequence (Gn+1/Gn)
∞
n=0 can only be reciprocal invariant distributed mod 1 if

α ≡ 1
α (mod 1).
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If α > 1 then 0 < 1
α < 1, therefore there is a positive integer c, for which

α− c = 1
α . By multiplying the equality by α, we have

(12) α2 − cα− 1 = 0.

If α < −1 then −1 < 1
α < 0, therefore

(13) α2 + (c− 1)α− 1 = 0.

So there exists an integer A, such that α is a root of the equation

(14) x2 −Ax− 1 = 0.

The constants in (1), by the condition of Theorem 3, are integers and at the same
time (14) is the characteristic equation of the sequence G, so therefore the condition
B = 1 is necessary.

An easy calculation shows that if |α| > 1 and B = 1 then the sequence
(Gn+1/Gn)

∞
n=0 and (Gn/Gn+1)

∞
n=0 are such ones that their limit points are greater

and smaller, alternately. Then there exists and a.d.f. mod 1 for both sequences,
which is the function

F (x) =





0, if 0 ≤ x < {α},
1
2 , if x = {α},
1, if {α} < x ≤ 1.

The proof is complete.
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A NOTE ON THE CORRELATION COEFFICIENT
OF ARITHMETIC FUNCTIONS

Milan Păstéka, Robert F. Tichy (Bratislava, Slovakia – Graz, Austria)

Dedicated to the memory of Professor Péter Kiss

1. Introduction

The statistical independence was studied by G. Rauzy [9], and later in the
papers [3], [5]. We remark that two arithmetical functions F,G with values in [0, 1]
are called statistically independent if and only if

1

N

N∑

n=1

F (f(n))G(g(n)) − 1

N2

N∑

n=1

F (f(n))
N∑

n=1

G(g(n)) → 0,

as N → ∞ for all continuous real valued functions f, g defined on [0, 1] (cf. [9]). In
the papers [3], [5] a characterization of this type of independence is given in terms
of the Lp-discrepancy.

The aim of the present note is to give a “statistical” condition of linear
dependence of some type of functions. We consider two polyadically continuous
functions f and g. Such functions can be uniformly approximated by the periodic
functions (cf. [8]). Let Ω be the space of polyadic integers, constructed as a
completion of positive integers with respect to the metric d(x, y) =

∑∞
n=1

ϕn(x−y)
2n ,

where ϕn(z) = 0 if n|z and ϕn(z) = 1 otherwise, (see the paper [7]). For a survay on
the properties of this metric ring we refer also to the monograph [8]. The functions
f, g can be extended to uniformly continuous functions f̃ , g̃ defined on Ω. The space
Ω is equipped with a Haar probability measure P , thus f̃ , g̃ can be considered as
random variables on Ω. Put

ρ̃ =
|E(f̃ · g̃)− E(f̃) ·E(g̃)|

D2(f̃) ·D2(g̃)
,

where E(·) is the mean value and D2(·) is the dispersion (variance) (cf. [1], [10]).
The value ρ̃ is called the correlation coefficient of f̃ , g̃, thus if ρ̃ = 1 then g̃ = Af̃+B
for some constants A,B. In the following we will prove a similar result for a greater
class of functions.
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2. Correlation on a set with valuation

Let M be a set with valuation

| · |:M → [0,∞)

such that
(i) The set M(x) = {a ∈ M : |a| ≤ x} is finite for every x ∈ [0,∞),
(ii) If N(x) = cardM(x), then N(x) → ∞ as x → ∞.

Let S ⊆ M and put for x > 0

γx(S) =
card(S ∩M(x))

N(x)
.

Then γx is an atomic probability measure with atoms M(x). If for some S ⊆ M
there exists the limit

(2.1) lim
x→∞

γx(S) := γ(S),

then the value γ(S) will be called the asymptotic density of S.
If h is a real-valued function defined on M, then it can be considered as a

random variable with respect to γx for x > 0 with mean value

Ex(h) :=
1

N(x)

∑

|a|≤x

h(a)

and dispersion

D2
x(h) =

1

N(x)

∑

|a|≤x

(h(a)− Ex(h))
2 =

1

N(x)

∑

|a|≤x

h2(a)− (Ex(h))
2

(cf. [1]).

Remark. In the case M = N (the set of positive integers) we obtain by (2.1) the
well known asymptotic density. Various examples of such sets M with valuations
satisfying (i),(ii) are special arithmetical semigroups equipped with absolute value
| · | in the sense of Knopfmacher [6].

Let f, g be two real-valued functions defined on M and D2
x(f) > 0, D2

x(g) > 0
for sufficiently large x. Consider their correlation coefficient with respect to γx
given as follows

(2.2) ρx = ρx(f, g) =
|Ex(f · g)− Ex(f)Ex(g)|

Dx(f) ·Dx(g)
.



A note on the correlation coefficient of arithmetic functions 111

Clearly, if ρx = 1, then for every α ∈ M(x) we have

g(α) = Axf(α) +Bx,

where

Ax =
Ex(f · g)− Ex(f)Ex(g)

D2
x(f)

,

and
Bx = Ex(g)−AxEx(f)

(cf. [1], [10]).
Note that if M = N and f, g are statistically independent arithmetic functions,

then
ρx(f, g) → 0, x → ∞.

The line β = Axα+Bx is well known as the regression line of f, g on M(x) (cf. [1],
[10]). Consider now the function g −Axf . By some calculations we derive

Ex(g −Axf) = Bx,

and
D2

x(g −Axf) = (1 − ρ2x)D
2
x(g),

where ρx is given by (2.2). Thus from Tchebyschev’s inequality we get

(2.3) γx ({a : |g(a)−Axf(a)−Bx| ≥ ε}) ≤ (1− ρ2x)D
2
x(g)

ε2
.

Suppose now that there exist some A,B such that Ax → A,Bx → B.
We have

|g(a)−Af(a)−B| ≤ |g(a)−Axf(a)−Bx|+ |f(a)||Ax −A|+ |Bx −B|.

Thus if f is bounded we obtain for ε > 0 and sufficiently large x

|g(a)−Af(a)−B| ≥ ε ⇒ |g(a)−Axf(a)−Bx| ≥
ε

2
,

and so (2.3) yields

(2.4) γx({a : |g(a)−Af(a)−B| ≥ ε}) ≤ 4(1− ρ2x)D
2
x(g)

ε2
.

Now we can state our main result.

Theorem 1. Let f, g be two bounded real-valued functions on M.
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(1) Suppose that D2
x(f) > 0, D2

x(g) > 0 for sufficiently large x and Ax → A,Bx →
B and ρx → 1 (as x → ∞). Then for every ε > 0

(2.5) γ({a : |g(a)−Af(a)−B| ≥ ε}) = 0.

(2) Let D2
x(g) > K > 0 for some K and assume (2.5) for every ε > 0 and suitable

constants A,B. Then ρx → 1 (as x → ∞).

Proof. If g is bounded, then also D2
x(g) is bounded and the assertion (1) follows

directly from (2.4).
Put g1 := Af + B. The assumptions of (2) imply that A 6= 0 and D2

x(f) >
K1 > 0, D2

x(g1) > K2 > 0 for some constants K1,K2. Then we have

(2.6) ρx(g1, f) = 1

for each x.
Denote for two bounded real-valued functions h1, h2:

h1 ∼ h2 ⇐⇒ γ({a : |h1(a)− h2(a)| ≥ ε}) = 0.

It can be verified easily that ∼ is an equivalence relation compatible with addition
and multiplication, moreover for each uniformly continuous function F it follows
from (ii)

h1 ∼ h2 ⇒ Ex(F (h1))− Ex(F (h2)) → 0

as x → ∞. In the case (2) we have g ∼ g1. This yields

(2.7) D2
x(g)−D2

x(g1) → 0, x → ∞,

but (2.6) gives
Dx(g1)Dx(f) = |Ex(g1f)− Ex(g1)Ex(f)|.

Hence, observing that Dx(f) is bounded we obtain from (2.7).

Dx(g)Dx(f)− |Ex(g1f)− Ex(g1)Ex(f)| → 0, x → ∞ .

Therefore
Dx(g)Dx(f)− |Ex(gf)− Ex(g)Ex(f)| → 0, x → ∞ ,

and the assertion follows.

The Besicovitch functions. Consider now the case M = N. An arithmetic
function h is called almost periodic if for each ε > 0 there exists a periodic function
hε such that

lim
N→∞

1

N

∑

n≤N

|h(n)− hε(n)| < ε.
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(These functions are also called Besicovitch functions). The class of all such
arithmetic functions will be denoted by B1. For a survey of the properties of B1

we refer to [8] or [2]. For each h ∈ B1 there exist the limits

lim
N→∞

EN (h) := E(h)

and
lim

N→∞
D2

N (h) := D2(h).

If f, g ∈ B1 are bounded then also f + g, f · g ∈ B1.
Thus, if D2(f), D2(g) > 0 then the limits lim

x→∞
Ax, lim

x→∞
Bx and lim

x→∞
ρx always

exist.
The relation h ∼ L for an arithmetic function h and some constant L, used in

the proof of Theorem 1, is defined in [4] as the statistical convergence of h to L.
Šalát [11] gives the following characterisation of the statistical convergence:

Theorem 2. Let h be an arithmetic function, and L a constant. Then h ∼ L if
and only if there exists a subset K ⊂ N such that the asymptotic density of K is
1 and limn→∞,n∈K h(n) = L.

Denote by B2 the set of all Besicovitch functions of h, such that h is bonded
and D2(h) > 0. Thus for two functions f, g ∈ B2 there exists the limit ρ(f, g) :=
limn→∞ ρN (f, g). Theorem 1 and Theorem 2 immediately imply:

Theorem 3. Let f, g ∈ B2. Then ρ(f, g) = 1 if and only if there exist some
constants A,B and a set K ⊂ N of asymptotic density 1 such that

lim
n→∞,n∈K

f(n)−Ag(n)−B = 0.

Let us conclude this note by the remarking that the statistical convergence of
the real valued function on M can be characterized analogously as in the paper
[11], using the same ideas. Let h be a real valued function on M and L a real
constant. Consider K ⊂ M, then we write

lim
a∈K

h(a) = L ⇔ ∀ε > 0∃x0∀a ∈ K : |a| > x0 =⇒ |h(a)− L| < ε.

Theorem 4. Let h be a real valued function on M and L a constant. Then h ∼ L
if and only if there exists a set K ⊂ M such that γ(K) = 1 and lima∈K h(a) = L.

Sketch of proof. Put Kn = {a ∈ M : |h(a)−L| < 1
n} for n ∈ N. Clearly it holds

that γ(Kn) = 1, n = 1, 2, . . .. Thus it can be selected such an increasing sequence
of positive integers {xn} that for x > xn we have

γx(Kn) >
(
1− 1

n

)
, n = 1, 2, . . . .
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Put

K =
∞⋃

n=1

Kn ∩
(
M(xn+1) \M(xn)

)
.

Using the fact that the sequence of sets Kn is non increasing it can be proved that
γ(K) = 1, and lima∈K h(a) = L, by a similary way as in [11].
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EGY NEGYEDRENDŰ REKURZÍV SOROZATCSALÁDRÓL

Pethő Attila (Debrecen, Hungary)

Emlékül Kiss Péternek, a rekurzív sorozatok fáradhatatlan kutatójának.

Abstract. Let a,b∈Z and δ∈{1,−1} such that a2−4(b−2δ) 6=0, bδ 6=2 and if δ=1, then
b6=2a−2. We define the fourth order recursive sequence Gn=Gn(a,b,δ), n≥0 by the initial terms
G0=0, G1=1, G2=a, G3=a2−b−δ and by the recursion

Gn+4=aGn+3−bGn+2+δaGn+1−Gn, n≥0.

Similarly, the sequence Ĝn=Ĝn(a,b,δ), n≥0 is defined by the same recursive relation but with
initial terms Ĝ0=4, Ĝ1=a, Ĝ2=a2−2b, Ĝ3=a3−3ab+3aδ. It is shown that Gn behaves in some
sense similarly as the Fibonacci sequence and Ĝn as the Lucas sequence. More precisely we prove
that Gn is a divisibility sequence and Ĝn divides Ĝm whenever n is odd and divides m. We prove
further that these sequences are closely related to the second order sequences defined by the initial
terms g0=0, g1=1, as well as ĝ0=2, ĝ1=a and by the recursion

gn+2=agn+1−(b−2δ)gn, n≥0.

We show for example that if p is a prime then

Gp(a,b,δ)≡gp(a,b,δ) (mod p) and Ĝp(a,b,δ)≡ĝp(a,b,δ) (mod p).

1. Bevezetés

Legyenek a, b ∈ Z és δ ∈ {1,−1} olyanok, hogy a2 − 4(b− 2δ) 6= 0, bδ 6= 2, és
ha δ = 1, akkor b 6= 2a − 2. Legyen továbbá a Gn = Gn(a, b, δ), n ≥ 0 sorozat a
G0 = 0, G1 = 1, G2 = a, G3 = a2 − b− δ kezdőértékkel és a

(1) Gn+4 = aGn+3 − bGn+2 + δaGn+1 −Gn, n ≥ 0

rekurzióval definiálva.
Hasonlóképpen legyen a Ĝn = Ĝn(a, b, δ), n ≥ 0 sorozat a Ĝ0 = 4, Ĝ1 = a,

Ĝ2 = a2 − 2b, Ĝ3 = a3 − 3ab+ 3aδ kezdőtagokkal és ugyancsak az (1) rekurzióval
definiálva.

A dolgozat az OTKA T42985 és T38225 pályázatok támogatásával készült.
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Dolgozatunkban megmutatjuk, hogy a {Gn}∞n=0 sorozat bizonyos szempontból
hasonlóképpen viselkedik, mint a Fibonacci, míg a Ĝn, mint a Lucas-sorozat.
Pontosabban igaz az

1. Tétel. A {Gn}∞n=0 oszthatósági sorozat, azaz ha d|n, akkor Gd|Gn.

2. Tétel. Ha n páratlan és d|n, akkor Ĝd|Ĝn.
Az 1. Tételt a b = 1, 3, δ = 1 speciális esetekben a [2] dolgozatban bi-

zonyítottuk.
A fenti negyedfokú sorozatok szoros kapcsolatban állnak a g0 = 0, g1 = 1,

illetve a ĝ0 = 2, ĝ1 = a kezdőértékekkel és a

(2) gn+2 = agn+1 − (b− 2δ)gn, n ≥ 0

rekurzióval definiált másodrendű rekurzív sorozatokkal. A pontos összefüggéseket
a 4. Tételben fogalmazzuk meg.

Végezetül megmutatjuk, hogy a {Gn} és {gn}, illetve a {Ĝn} és {ĝn} sorozatok
p prímszám szerinti redukáltjai is összefüggnek.

3. Tétel. Legyen p prímszám. Akkor

(3) Gp(a, b, δ) ≡ gp(a, b, δ) (mod p) és

(4) Ĝp(a, b, δ) ≡ ĝp(a, b, δ) (mod p).

Az 5. tételben megfogalmazott kongurenciák prímszámok tesztelésére is alkal-
masak, erre a kérdésre azonban most nem térünk ki.

2. Kapcsolat a {Gn} és {gn} sorozatok karakterisztikus
polinomjai között

A {Gn} és persze a {Ĝn} karakterisztikus polinomja

PG(x) = x4 − ax3 + bx2 − δax+ 1.

Könnyen belátható, hogy

1

x2
PG(x) =

(
x+

δ

x

)2

− a

(
x+

δ

x

)
+ b− 2δ,

azaz az 1
x2PG(x) racionális törtfüggvényben az y = x+ δ

x helyettesítést végrehajtva
a

Pg(y) = y2 − ay + b− 2δ
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polinomot kapjuk, amelyik a {gn} és {ĝn} sorozatok karakterisztikus polinomja.
Az a2 − 4(b− 2δ) 6= 0 feltétel miatt Pg(y)-nak két különböző gyöke van, melyeket
ε és ε′-vel fogunk jelölni. A bδ 6= 2 feltétel miatt b− 2δ 6= 0, így εε′ 6= 0.

A kezdőértékek megválasztása miatt

(5) gn =
εn − ε′n

ε− ε′
és ĝn = εn + ε′n

teljesül minden n ≥ 0-ra.
Ha η a PG(x) gyöke, akkor η 6= 0 és δ

η is gyöke PG(x)-nek. A b 6= 2a− 2, ha
δ = 1 feltétel miatt η 6= δ

η . A PG(x) és Pg(y) polinomok közötti összefüggés miatt
η+ δ

η gyöke Pg(y)-nak. Feltehető, hogy η+ δ
η = ε. Mivel ε 6= ε′, így PG(x)-nek van

olyan ϑ-val jelölt gyöke, amelyre ϑ+ δ
ϑ = ε′. Eredményeinket az alábbi állításokban

foglaljuk össze.

1. Lemma. Legyenek a, b,∈ Z és δ ∈ {1,−1} olyanok, hogy a2−4(b−2δ) 6= 0,
bδ 6= 2, és b 6= 2a− 2, ha δ = 1. Ekkor
(i) Pg(x)-nek két nullától különböző gyöke van: ε és ε′.
(ii) PG(x)-nek négy különböző gyöke van: η, δ

η , ϑ és δ
ϑ .

(iii) Teljesül, hogy

ε = η +
δ

η
és ε′ = ϑ+

δ

ϑ
.

Az 1. Lemmában megfogalmazott tulajdonságokat, valamint a {Gn} és a {Ĝn}
sorozatok kezdőértékeit felhasználva könyen belátható, hogy

(6) Gn =
ηn +

(
δ
η

)n
− ϑn −

(
δ
ϑ

)n

η + δ
η − ϑ− δ

ϑ

és

(7) Ĝn = ηn +

(
δ

η

)n

+ ϑn +

(
δ

ϑ

)n

teljesül minden n ≥ 0-ra.

3. A tételek bizonyítása

Az 1. tétel bizonyítása. Vegyük észre először az

ηn +

(
δ

η

)n

− ϑn −
(
δ

ϑ

)n

= (ηn − ϑn)

(
1−

(
δ

ηϑ

)n)
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relációt, amelyik minden n ≥ 0-ra teljesül. Ebből és (6)-ból következik, hogy

(8) Gn =
ηn − ϑn

η − ϑ
·
1−

(
δ
ηϑ

)n

1− δ
ηϑ

.

Az η és ϑ a PG(x) gyökei, így egységek valamely algebrai számtestben. Ebből
következik, hogy δ

ηϑ is egység.

A definícióból nyilvánvaló, hogy Gn ∈ Z minden n ≥ 0-ra. Legyen d ∈ N
olyan, hogy d | n. Akkor Gn/Gd ∈ Q.

Másrészt (8)-ból következik, hogy

Gn

Gd
=

ηn − ϑn

ηd − ϑd
·
1−

(
δ
ηϑ

)n

1−
(

δ
ηϑ

)d .

Elemi algebrai azonosság szerint

ηn − ϑn

ηd − ϑd
= ηn−d + ηn−2dϑd + · · ·+ ηdϑn−2d + ϑn−d.

A jobb oldali összeadandók mindegyike algebrai egész, így az összegük is az.
Ugyanígy látható be, hogy a második faktor is algebrai egész, így Gn/Gd olyan
algebrai egész szám, amelyik Q-ban van. Ez pedig csak akkor lehetséges, ha
Gn/Gd ∈ Z.

2. tétel bizonyítása. Ez hasonló az 1. Tétel bizonyításához. Azt kell csak
észrevennünk, hogy

(9) ηn +

(
δ

η

)n

+ ϑn +

(
δ

ϑ

)n

= (ηn + ϑn)

(
1 +

(
δ

ηϑ

)n)
,

valamint ha n páratlan és d | n, akkor

ηn + ϑn

ηd + ϑd
, illetve

1 +
(

δ
ηϑ

)n

1 +
(

δ
ηϑ

)d

algebrai egészek.

1. Megjegyzés. Az osztható rekurzív sorozatokat Bézivin, Pethő és van der
Poorten [1] karakterizálták. Az általunk definiált {Gn} és {Ĝn} sorozatoknak az az
érdekessége, hogy bár (8), illetve (9) szerint felbomlanak két másodrendű lineáris
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rekurzív sorozat szorzatára, a faktorok azonban általában nem racionális egészek.
Ez történik például, ha b = −1 vagy −3 és δ = −1.

Az F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn kezdőértékekkel, illetve rekurzióval
definiált Fibonacci-sorozat jelenti az iskolapéldát osztható rekurzív sorozatokra.
Erre könyű olyan bizonyítást adni (ld. pl. [3]), amelyik csak az egész számok
aritmetikáját használja. Hasonló bizonyítást a {Gn} és a {Ĝn} sorozatokra nem
sikerült találnunk.

2. Megjegyzés. A Fibonacci-sorozatokra, sőt az általánosabb Rn = αn−βn

α−β

sorozatokra, ahol α és β az αx2− r1x− r0, r1, r0 ∈ Z polinom gyökei, az 1. tételnél
erősebb (Rn, Rd) = R(n,d) reláció is teljesül.

Ez általában nem igaz az általunk definiált {Gn} sorozatokra. Tekintsük
például az

n 0 1 2 3 4 5 6 7 8 9 10

Gn 0 1 1 5 7 20 35 83 161 355 720

sorozatot, amelyik a

Gn+4 = Gn+3 + 3Gn+2 −Gn+1 −Gn

rekurziónak tesz eleget. Ekkor például (G3, G5) = 5 6= G1 és (G4, G6) = 7 6= G2.
Könnyen lehet persze további példákat is találni, ezért érdekes kérdés a {Gn} és
{Ĝn} sorozatokra a tagok legnagyobb közös osztójának jellemzése.

A 3. tétel bizonyítása. A (8), (9) valamint az 1. lemma (iii) relációkat
használjuk a bizonyításban. Legyen p prímszám. Ha p = 2, akkor (3) és (4) a
sorozatok kezdőértékei megválasztása miatt teljesül. A továbbiakban tehát felte-
hető, hogy p páratlan. Ekkor

εp − ε′p

ε− ε′
=

(
η + δ

η

)p
−
(
ϑ+ δ

ϑ

)p

ε− ε′

=

p−1
2∑

i=0

(
p
i

)
δi
(
ηp−2i +

(
δ
ϑ

)p−2i − ϑp−2i −
(
δ
ϑ

)p−2i
)

ε− ε′

=

p−1
2∑

i=0

(
p

i

)
δi

ηp−2i +
(

δ
η

)p−2i

− ϑp−2i −
(
δ
ϑ

)p−2i

η + δ
η − ϑ− δ

ϑ

=

p−1
2∑

i=0

(
p

i

)
δiGp−2i.
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Mivel
(
p
i

)
minden 1 ≤ i ≤ p− i-re osztható p-vel, így az előző azonosságból

gp ≡ Gp (mod p),

azaz (3) következik.
A (4) kongruencia hasonlóképpen ellenőrizhető.

3. Megjegyzés. A (3) és (4) kongruenciák nem prímkritériumok, azaz vannak
olyan összetett számok, amelyekre (3), illetve (4) teljesül. A Fibonacci-sorozat és a
2. megjegyzésben megadott sorozat például az (a, b, δ) = (1,−3,−1) paraméterek-
kel van definiálva. A 0 ≤ n ≤ 10000 intervallumban az n = 15, 25, 45, 121, 125, 375,

525, 625, 1125, 1605, 2205, 2375, 3125, 4375, 5425, 8925, 9375 összetett számokra is
teljesül (3).

4. További összefüggések a {Gn}
és {gn}, illetve a {Ĝn} és {ĝn} sorozatok között

Az előbbiekben láthattuk, hogy a {Gn} és {gn}, illetve {Ĝn} és {ĝn} sorozatok
között szoros kapcsolat van. A 3. részben például beláttuk, hogy páratlan p egészre
gp kifejezhető Gp, Gp−2, . . . , G1 egész együtthatós lineáris kombinációjaként. Most
az ellenkező irányú kapcsolatot vizsgáljuk, azaz Gp-t (Ĝp− t) szeretnénk kifejezni a
{gn} ({ĝn}) sorozat elemei lineáris kombinációjaként. A következő állítás biztosan
ismert, de nem sikerült referenciát találnunk.

2. Lemma. Definiáljuk a {λ(j)
i } i≥0

j≥2
sorozatot a következőképpen:

λ
(0)
0 = 2, λ

(0)
1 = 0, λ

(1)
0 = 1, λ

(1)
1 = 0 és

λ
(2k+2)
0 = −λ

(2k)
0 , λ

(2k+2)
k+1 = λ

(2k+1)
k , λ

(2k+2)
i = λ

(2k+1)
i−1 − λ

(2k)
i , 1 ≤ i ≤ k és

λ
(2k+3)
0 = 0, λ

(2k+3)
k+1 = λ

(2k+2)
k+1 , λ

(2k+3)
i = λ

(2k+2)
i − λ

(2k+1)
i , 1 ≤ i ≤ k.

Ha 0 ≤ n = 2k + e, ahol e ∈ {0, 1}, akkor

Xn + Y n =

k∑

i=0

λ
(n)
i (X + Y )2i+e(XY )k−i.

Bizonyítás. Egyszerű teljes indukció, felhasználva az

Xn+1 + Y n+1 = (Xn + Y n)(X + Y )−XY (Xn−1 + Y n−1)

azonosságot.
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3. Lemma. Bármely n ≥ 0 és 0 ≤ i ≤ [n2 ]-re λ
(n)
i (−1)[

n
2 ]−i ≥ 0.

Bizonyítás. A 2. lemmában leírtak miatt

λ
(n)
[n/2] = 1 és λ

(n)
0 =

{
2(−1)[n/2], ha n páros,
0, ha n páratlan.

Így az állítás igaz minden n-re és i = 0, [n2 ]-re. Tegyük fel, hogy igaz minden
m < n-re, és legyen 0 < i < [n2 ].

Ha n páros, mondjuk n = 2k + 2, és 0 < i < k + 1, akkor

λ
(2k+2)
i (−1)k+1−i = λ

(2k+1)
i−1 (−1)k+1−i − λ

(2k)
i (−1)k+1−i

= λ
(2k+1)
i−1 (−1)[

2k+1
2 ]−(i−1)+2 + λ

(2k)
i (−1)k−i+2.

A jobb oldalon álló kifejezésben az indukciós hipotézis szerint mindkét összeadandó
nem negatív, így az összegük is az.

Ha pedig n páratlan, például n = 2k + 3, és 0 < i < k + 1, akkor

λ
(2k+3)
i (−1)k+1−i = λ

(2k+2)
i (−1)k+1−i − λ

(2k+1)
i (−1)k+1−i

= λ
(2k+2)
i (−1)[

2k+2
2 ]−i + λ

(2k+1)
i (−1)[

2k+1
2 ]−i+2,

és az előbbi esethez hasonlóan következtethetünk arra, hogy a kifejezés nem negatív.

4. Tétel. Legyenek a, b, δ a Bevezetésben megfogalmazott feltételeknek eleget
tevő egész számok és 0 ≤ n = 2k + e, ahol e ∈ {0, 1}. Akkor

Gn(a, b, δ) =





k∑
i=0

λ
(n)
i g2i+e(a, b, δ), ha de = 1,

k∑
i=0

|λ(n)
i |g2i+e(a, b, δ), ha δ = −1,

és

Ĝn(a, b, δ) =





k∑
i=0

λ
(n)
i ĝ2i+e(a, b, δ), ha δ = 1,

k∑
i=0

|λ(n)
i | ĝ2i+e(a, b, δ), ha δ = −1.

Bizonyítás. Csak az első állítást bizonyítjuk, mert a második bizonyítása
teljesen hasonló. Az a, b és δ argumentumokat elhagyjuk a továbbiakban. A (6)
azonosságot és a 2. lemma állítását felhasználva
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Gn =
ηn +

(
δ
η

)n
−
(
ϑn +

(
δ
ϑ

)n)

ε− ε′

=
1

ε− ε′

(
k∑

i=0

λ
(n)
i

(
η +

δ

η

)2i+e (
η
δ

η

)k−i

−
k∑

i=0

λ
(n)
i

(
ϑ+

δ

ϑ

)2i+e (
ϑ
δ

ϑ

)k−i
)

=
1

ε− ε′

k∑

i=0

λ
(n)
i δk−i

(
ε2i+e − ε′2i+e

)

=

k∑

i=0

λ
(n)
i δk−ig2i+e.

Végül felhasználva a 3. lemmát, kapjuk az állítást.
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ON ADDITIVE FUNCTIONS SATISFYING
CONGRUENCE PROPERTIES

Bui Minh Phong (Budapest, Hungary)

Dedicated to the memory of Professor Péter Kiss

Abstract. In this paper, we consider those integer-valued additive functions f1 and f2 for
which the congruence f1(an+b)≡f2(cn)+d (mod n) is satisfied for all positive integers n and for
some fixed integers a≥1, b≥1, c≥1 and d. Our result improve some earlier results of K. Kovács, I.
Joó, I. Joó & B. M. Phong and P. V. Chung concerning the above congruence.

1. Introduction

The problem concerning the characterization of some arithmetical functions
by congruence properties initiated by Subbarao [10] was studied later by several
authors. M. V. Subbarao proved that if an integer-valued multiplicative function
g(n) satisfies the congruence

g(n+m) ≡ g(m) (mod n)

for all positive integers n and m, then there is a non-negative integer α such that

g(n) = nα

holds for all positive integers n. Recently some authors generalized and improved
this result in a variety of ways. A. Iványi [3] obtained that the same result
holds when m is a fixed positive integer and g is an integer-valued completely
multiplicative function. For further results and generalizations of this problem we
refer to the works of B. M. Phong [7]–[8], B. M. Phong & J. Fehér [9], I. Joó [4] and
I. Joó & B. M. Phong [5]. For example, it follows from [8] that if an integer-valued
multiplicative function g(n) satisfies the congruence

g(An+B) ≡ C (mod n)

for all positive integers n and for some fixed integers A ≥ 1, B ≥ 1 and C 6= 0 with
(A,B) = 1, then there are a non-negative integer α and a real-valued Dirichlet
character χA (mod A) such that

g(n) = χA(n)n
α

It was financially supported by OTKA T 043657
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holds for all positive integers n which are prime to A.

In the following let A and A∗ denote the set of all integer-valued additive and
completely additive functions, respectively. Let IN denote the set of all positive
integers. A similar problem concerning the characterization of a zero-function as
an integer-valued additive function satisfying a congruence property have been
studied by K. Kovács [6], P. V. Chung [1]–[2], I. Joó [4] and I. Joó & B. M. Phong
[5]. It was proved by K. Kovács [6] that if f ∈ A∗ satisfies the congruence

f(An+B) ≡ C (mod n)

for some integers A ≥ 1, B ≥ 1, C and for all n ∈ IN , then

f(n) = 0

holds for all n ∈ IN which are prime to A. This result was extended in [1], [2], [4]
and [5] for integer-valued additive functions f . It follows from the results of [2] and
[4] that for integers A ≥ 1, B ≥ 1, C and functions f1 ∈ A, f2 ∈ A∗ the congruence

f1(An+B) ≡ f2(n) + C (mod n) (∀n ∈ IN)

implies that f2(n) = 0 for all n ∈ IN and f1(n) = 0 for all n ∈ IN which are prime
to A.

Our purpose in this paper is to improve the above results by showing the
following

Theorem 1. Assume that a ≥ 1, b ≥ 1, c ≥ 1 and d are fixed integers and the
functions f1, f2 are additive. Then the congruence

(1) f1(an+ b) ≡ f2(cn) + d (mod n)

is satisfied for all n ∈ IN if and only if the equation

(2) f1(an+ b) = f2(cn) + d

holds for all n ∈ IN .

Theorem 2. Assume that a ≥ 1, b ≥ 1, c ≥ 1 and d are fixed integers. Let
a1 = a

(a, b) , b1 = b
(a, b) and

µ :=

{
1 if 2 | a1b1
2 if 2 6 | a1b1.

If the additive functions f1 and f2 satisfy the equation (2) for all n ∈ IN , then

f1 (n) = 0 for all n ∈ IN, (n, µab1) = 1
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and
f2(n) = 0 for all n ∈ IN, (n, µcb1) = 1.

2. Lemmas

Lemma 1. Assume that f∗ ∈ A∗ satisfies the congruence

f∗(An+ B) ≡ f∗(n) +D (mod n)

for some fixed integers A ≥ 1, B ≥ 1 and D. Then f∗(n) = 0 holds for all n ∈ IN .

Proof. Lemma 1 follows from Theorem 2 of [4].

Lemma 2. Assume that f ∈ A satisfies the congruence

f(An+B) ≡ D (mod n)

for some fixed integers A ≥ 1, B ≥ 1 and D. Then f(n) = 0 holds for all n ∈ IN
which are prime to A.

Proof. This is the result of [1].

Lemma 3. Assume that f1, f ∈ A satisfy the congruence

(3) f1(An+ 1) ≡ f(Cn) +D (mod n)

holds for all n ∈ IN with some integers A ≥ 1, C ≥ 1 and D. Then

f(n) = f [(n, 6C2)] for all n ∈ IN

and f1(m) = 0 holds for all m ∈ IN , which are prime to 6AC. Here (x, y) denotes
the greatest common divisor of the integers x and y.

Proof. In the following we shall denote by n∗ the product of all distinct prime
divisors of positive integer n.

For each positive integer M let P = P (M) be a positive integer for which

(4) (M2 − 1)∗|ACP.

It is obvious from (4) that

(ACM(M + 1)Pn+ 1, AC(M + 1)Pn+ 1) = 1,

(
C2(M + 1)2Pn,ACMPn+ 1

)
= 1
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and

(ACM(M + 1)Pn+ 1) (AC(M + 1)Pn+ 1) = AC(M + 1)2Pn[ACMPn+ 1] + 1

hold for all n ∈ IN . Using these relations and appealing to the additive nature of
the functions f1 and f , we can deduce from (3) that

(5) f(ACMPn+ 1)

≡ −f
(
C2(M + 1)2Pn

)
+ f

(
C2M(M + 1)Pn

)
+ f

(
C2(M + 1)Pn

)
+D (mod n)

is satisfied for all n, M ∈ IN , where P = P (M) satisfies the condition (4).
Let M = 2, P (2) = 3 and M = 3, P (3) = 2. In these cases (4) is true and so

it follows from (5) that

(6) f(6ACn+ 1) ≡ −f(27C2n) + f(18C2n) + f(9C2n) +D (mod n)

and

(7) f(6ACn+ 1) ≡ −f(32C2n) + f(24C2n) + f(8C2n) +D (mod n)

are satisfied for all n ∈ IN . Let N and n be positive integers with the condition

(8) (N(N + 1), 6ACn+ 1) = 1.

By using the relation

(6ACn+ 1)(62A2C2Nn2 + 1) = 6ACn [6ACNn(6ACn+ 1) + 1] + 1

and that
(
6ACn+ 1, 62A2C2Nn2 + 1

)
= (6ACn+ 1, N + 1) = 1,

(6ACNn, 6ACn+ 1) = (6ACn+ 1, N) = 1,

it follows from (6) and (7) that

(9) −f
(
162AC3Nn2

)
+ f

(
108AC3Nn2

)
+ f

(
54AC3Nn2

)
≡ −f

(
27C2Nn

)

+f
(
18C2Nn

)
+ f

(
9C2Nn

)
− f

(
27C2n

)
+ f

(
18C2n

)
+ f

(
9C2n

)
+D (mod n)

and

(10) −f
(
192AC3Nn2

)
+ f

(
144AC3Nn2

)
+ f

(
48AC3Nn2

)
≡ −f

(
32C2Nn

)

+f
(
24C2Nn

)
+ f

(
8C2Nn

)
− f

(
32C2n

)
+ f

(
24C2n

)
+ f

(
8C2n

)
+D (mod n)

hold for all n, N ∈ IN satisfying (8).
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Let Q be a fixed positive integer. First we apply (9) when N = 1, n = Qm,
(m,Q) = 1 and m → ∞. It is obvious that (8) holds, and so by (9) we have

(11) f
(
Q2

)
= 2f(Q) for Q ∈ IN, (Q, 6AC) = 1.

Now let N = Q and n = Qk(6CQm + 1) with k, m ∈ IN . It is obvious that (8)
holds for infinity many integers m, because

(
36AC2Qk+1, 6ACQk + 1

)
= 1. These

with (9) show that

(12) f
(
Q2k+1

)
= f

(
Qk

)
+ f

(
Qk+1

)
for all Q ∈ IN, (Q, 6AC) = 1.

From (11) and (12) we obtain that

(13) f
(
Qk

)
= kf(Q) for all Q ∈ IN, (Q, 6AC) = 1.

Thus, by using the additivity of f it follows from (8) and (13) that (9) and (10)
hold for all N , n ∈ IN , and they with n = Qm, (m, 6ACNQ) = 1, m → ∞ imply
that

−f
(
162AC3NQ2

)
+ f

(
108AC3NQ2

)
+ f

(
54AC3NQ2

)
= −f

(
27C2NQ

)

+f
(
18C2NQ

)
+ f

(
9C2NQ

)
− f

(
27C2Q

)
+ f

(
18C2Q

)
+ f

(
9C2Q

)
D

and

−f
(
192AC3NQ2

)
+ f

(
144AC3NQ2

)
+ f

(
48AC3NQ2

)
= −f

(
32C2NQ

)

+f
(
24C2NQ

)
+ f

(
8C2NQ

)
− f

(
32C2Q

)
+ f

(
24C2Q

)
+ f

(
8C2Q

)
+D

hold for all N , Q ∈ IN . Consequently
(14)

−f
(
27C2NQ

)
+f

(
18C2NQ

)
+f

(
9C2NQ

)
−f

(
27C2Q

)
+f

(
18C2Q

)
+f

(
9C2Q

)

−f
(
27C2NQ2

)
+ f

(
18C2NQ2

)
+ f

(
9C2NQ2

)
− f

(
27C2

)
+ f

(
18C2

)
+ f

(
9C2

)

and
(15)

−f
(
32C2NQ

)
+f

(
24C2NQ

)
+f

(
8C2NQ

)
−f

(
32C2Q

)
+f

(
24C2Q

)
+f

(
8C2Q

)

= −f
(
32C2NQ2

)
+f

(
24C2NQ2

)
+f

(
8C2NQ2

)
−f

(
32C2

)
+f

(
24C2

)
+f

(
8C2

)

are satisfied for all N , Q ∈ IN .

For each prime p let e = e(p) be a non-negative integer for which pe ‖ C2.
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First we consider the case when (p, 6) = 1. By applying (14) with Q = p,
N = pl (l ≥ 0), we have

f
(
pl+e(p)+2

)
− f

(
pl+e(p)+1

)
= f

(
pe(p)+1

)
− f

(
pe(p)

)
for all l ≥ 0,

which shows that for all integers β ≥ e(p)

(16) f
(
pβ+1

)
− f

(
pβ

)
= f

(
pe(p)+1

)
− f

(
pe(p)

)
.

Now we consider the case p = 2. Applying (14) with Q = 2 and n = 2l, (l ≥ 0) one
can check as above that

(17) f
(
2β+1

)
− f

(
2β

)
= f

(
2e(2)+2

)
− f

(
2e(2)+1

)
.

Finally, we consider the case p = 3. Applying (15) with Q = 3 and N = 3l, l ≥ 0
we also get

(18) f
(
3β+1

)
− f

(
3β

)
= f

(
3e(3)+2

)
− f

(
3e(3)+1

)
.

Now we write
f(n) = f∗(n) + F (n),

where f∗ is a completely additive function defined as follows:

(19) f∗(p) :=





f
(
pe(p)+1

)
− f

(
pe(p)

)
for (p, 6) = 1

f
(
pe(p)+2

)
− f

(
pe(p)+1

)
for p = 2 or p = 3

.

Then, from (16)-(19) it follows that

F
(
pk
)
= F

[
(pk, 6C2)

]
for (k = 0, 1, . . .).

Thus, we have proved that

(20) F (n) = F
[
(n, 6C2)

]

is satisfied for all n ∈ IN .

We shall prove that f∗(n) = 0 for all n ∈ IN and f1(m) = 0 for all m ∈ IN
which are prime to 6AC.

We note that, by considering n = 2m and taking into account (6), we have

f(12ACm+ 1) ≡ −f(54C2m) + f(36C2m) + f(18C2m) +D (mod m)
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Since f = f∗ + F , from the last relation and (20) we get

f∗(12ACm+ 1) ≡ f∗(m) + [f∗(12C2) + F (6C2) +D] (mod m),

which with Lemma 1 shows that f∗(n) = 0 for all n ∈ IN . This shows that f ≡ F ,
i.e.

f(n) = f [(n, 6C2)]

holds for all n ∈ IN . Now, by applying (3) with n = 6Cm and using the last relation
and Lemma 2, we have that f1(n) = 0 holds for all n ∈ IN which are prime to
6AC.

The proof of Lemma 3 is completed.

3. Proof of Theorem 1

It is obvious that (1) follows from (2). We shall prove that if (1) is true, then
(2) holds.

Assume that the functions f1 and f2 ∈ A satisfy the congruence (1) for some
integers a ≥ 1, b ≥ 1, c ≥ 1 and d. It is obvious that (1) implies the fulfilment of

f1(abn+ 1) ≡ f2(b
2cn) + d− f1(b) (mod n)

for all n ∈ IN . By Lemma 3,

(21) f2(n) = f2[(n, 6b
4c2)] for all n ∈ IN

and

(22) f1(n) = 0

for all n ∈ IN which are prime to 6abc.
We shall prove that

(23) f1(an+ b) = f2(cn) + d

is true for all n ∈ IN .

Let K be a positive integer. By (21) and (22), we have

f1(6ab
4ct+ 1) = 0,

f2[6b
4c2(aK + b)t+ cK] = f2(cK)
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hold for all positive integers t, consequently

f1(aK + b)− f2(cK)− d = f1(aK + b) + f1(6ab
4ct+ 1)− f2(cK)− d

= f1[a(6b
4c(aK + b)t+K) + b]− f2[6b

4c2(aK + b)t+ cK]− d

holds for every positive integer t. Thus, by applying (1) with n = 6b4c(aK+b)t+K,
the last relation proves that (23) holds for n = K.

This completes the proof of Theorem 1.

4. Proof of Theorem 2

As we have shown in the proof of Theorem 1, if the functions f1, f2 ∈ A
satisfy (2), then (21) and (22) imply

(24) f1(m) = 0 for all m ∈ IN, (m, 6abc) = 1

and

(25) f2(n) = 0 for all n ∈ IN, (m, 6bc) = 1.

Let D = (a, b), a1 = a
D , b1 = b

D . It is clear that for each positive integer
M, (M,a1) = 1 there are m0, n0 ∈ IN such that

(26) Mm0 = a1n0 + b1, (m0, a1) = 1 and (M, n0) = (M, b1).

Let

(27) u(M) :=

{
1, if 2 | a1 M

(M, b1)
b1

(M, b1)
,

2, if 2 6 | a1 M
(M, b1)

b1
(M, b1)

.

By applying the Chinese Remainder Theorem and using (26)–(27), we can choose a
positive integer t1 such that m1 = a1t1 +m0, n1 = Mt1 +n0 satisfy the following
conditions:

Mm1 = a1n1 + b1 ,

n1

u(M)(M, b1)
is an integer,

and

(m1, 6abc) =

(
n1

u(M)(M, b1)
, 6bc

)
= 1.

Hence, we infer from (2) and (24)-(25) that

f1(DM) = f1(DMm1) = f1(an1 + b) = f2(cn1) + d = f2 [cu(M)(M, b1)] + d,
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consequently

(28) f1 [DM ] = f2 [cu(M)(M, b1)] + d

hold for all M ∈ IN, (M, a1) = 1. This implies that

(29) f1(n) = 0 for all n ∈ IN, (n, µab1) = 1,

where µ ∈ {1, 2} such that 2| µa1b1.
Now we prove that

(30) f2(n) = 0 for all n ∈ IN, (n, µcb1) = 1.

For each positive integer n, let M(n) := a1n + b1 and U(n) := u(a1n + b1).
Since (M(n), b1) = (n, b1) and

a1
M(n)

(M(n), b1)

b1
(M(n), b1)

≡ a1
b1

(n, b1)

[
n

(n, b1)
+ 1

]
(mod 2),

we have

U(n) :=





1, if 2 | a1 b1
(n, b1)

[
n

(n, b1)
+ 1

]
,

2, if 2 6 | a1 b1
(n, b1)

[
n

(n, b1)
+ 1

]
.

Hence, (2) and (28) show that

f2(cn) = f1(an+ b)− d = f1 [DM(n)]− d = f2 [cU(n)(n, b1)]

is satisfied for all n ∈ IN , which implies (29). Thus, (29) is proved.
By (29) and (30), the proof of Theorem 2 is completed.
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Dedicated to the memory of Professor Péter Kiss

Abstract. The structure of the group of quasi multiplicative arithmetical functions
such that f(1) 6=0 with respect to Dirichlet and the more general Davison convolution via an
isomorphism to a subgroup of upper triangular and Toeplitz matrices will be described.

AMS Classification Number: 11A25

1. Introduction

In what follows unless contrary is stated K denotes a field between the field
of complex C and the field of rational numbers Q. Let Arit(K) denote the set of
all K-valued arithmetical functions (i.e. functions defined on the set N of positive
integers with values in K), and Mult(K) the set of nonzero (i.e. non identically
vanishing) multiplicative arithmetical functions f , that is functions such that
f(nm) = f(n)f(m) whenever (m,n) = 1. The sets Arit(K) and Mult(K) endowed
with the Dirichlet convolution

(f ⋆D g)(n) =
∑

d1d2=n

f(d1)g(d2)

are of basic importance in various number-theoretical considerations.
Given an f ∈ Arit(K) we can assign it the formal Dirichlet series

(1) f 7→ T (f) =
∞∑

n=1

f(n)

ns
.

The author was supported by the Grant Agency of the Czech Republic, Grant
# 201/01/0471.
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If we define the multiplication of formal Dirichlet series by

∞∑

n=1

f(n)

ns
·

∞∑

n=1

g(n)

ns
=

∞∑

n=1

(f ⋆D g)(n)

ns
,

then for the set of all formal Dirichlet series

D(K) =

{ ∞∑

n=1

an
ns

: an ∈ K

}

with multiplication defined above we have:

Lemma 1. ([13, Theorem 4.6.1]) The map T defined by (1) gives an isomorphism
between the semigroups (Arit(K), ⋆D) and (D(K), .).

The underlying property for the investigation that follows is the following
result due to Bell:

Lemma 2. (a) The set of arithmetical functions f ∈ Arit(K) for which f(1) 6= 0
forms a commutative group with respect to Dirichlet convolution ⋆D.
(b) The set (Mult(K), ⋆D) forms a subgroup of the group (Arit(K), ⋆D).

Dehaye [5] analyzed the structure of the group (Mult(R), ⋆D) of real valued
non-zero multiplicative functions with respect to the Dirichlet convolution ⋆D. He
proved (among other) that (Mult(R), ⋆D) is isomorphic to the complete direct1

product
∏̃

i∈ND1
R of countably many copies of D1

R, where D1
R is the set of all

matrices 


1 a b c d · · ·
0 1 a b c · · ·
0 0 1 a b · · ·
0 0 0 1 a · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

...




which all entries on descending diagonals are equal real numbers while the main
diagonal entries are equal to 1. In what follows we show using more number
theoretical arguments that his results can be extended to more general types of
arithmetical functions and convolutions.

1 For the definition of the complete (or Cartesian) direct product the reader is
referred to [6] or [5] or sources quoted [5], if necessary.
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2. Quasi multiplicative functions

If f ∈ Arit(K) is a multiplicative arithmetical function, then f(m)f(n) =

f((m,n))f
(

m.n
(m,n)

)
for all m,n ∈ N. An arithmetical function f is called quasi

multiplicative ([11,14]) if f(1) 6= 0 and

(2) f(1)f(mn) = f(m)f(n) whenever (m,n) = 1.

The set of nonzero K-valued quasi multiplicative functions will be denoted by
Quas(K). The analogue of the second part of Theorem 2 for nonzero quasi
multiplicative can be verified by a direct computation:

Lemma 3. The set Quas(K) forms a commutative group with respect to Dirichlet
convolution ⋆D.

Note that an f with f(1) 6= 0 is quasi multiplicative if, and only if, f− = 1
f(1)f

is multiplicative.2 There follows from this observation (or directly from (2)) that

(3) f−(pα1
1 · · · pαk

k ) =

k∏

i=1

f(pαi

i )

f(1)
=

k∏

i=1

f−(pαi

i ),

or

(4) f(pα1
1 · · · pαk

k ) = f(1)1−k
k∏

i=1

f(pαi

i ) = f(1)

k∏

i=1

f−(pαi

i ),

whenever p1, . . . , pk are distinct primes and αi ∈ N. The next two results follow
from well known properties of multiplicative functions:

Lemma 4. If f ∈ Arit(K) with f(1) 6= 0, then f is quasi multiplicative if and
only if (3) or (4) holds for all k tuples p1, . . . , pk of distinct primes and all αi ∈ N.

If f is multiplicative then under the isomorphism of Lemma 1 the image T (f)
is a Dirichlet series admitting the so called Euler factorization. Therefore if f ∈
Quas(K), then applying this fact to the multiplicative function f− we get:

Lemma 5. If f ∈ Quas(K) then T (f)/f(1) is the formal product of the series

(5) 1 +
f(p)

f(1)ps
+

f(p2)

f(1)p2s
+

f(p3)

f(1)p3s
+ · · · ,

where the product runs over all primes p.

2 If f is multiplicative, so is f(Mn)/f(M), where M is any positive integer.
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The series (5) is in a one-to-one relation to a formal power series called Bell series
fp(x) of an f ∈ Arit(K) with f(1) 6= 0 modulo the prime p

fp(x) = f(1) + f(p)x+ f(p2)x2 + · · · =
∞∑

n=0

f(pn)xn.

In terms of Bell series we can characterize the quasi multiplicative functions as
follows:

Lemma 6. Let f, g ∈ Quas(K). Then f = g if, and only if,

fp(x) = gp(x) for all primes p,

or equivalently

f(pα) = g(pα) for all primes p and integers α ≥ 0.

The next result shows a close relation between Bell series and Dirichlet
multiplication:

Lemma 7. ([1, Theorem 2.25]) For any two arithmetical functions f and g let
h = f ⋆D g. Then for every prime p we have

hp(x) = fp(x)gp(x).

Perhaps a most natural proof of this result can be modelled using matrix
multiplication of infinite upper triangular matrices of the type

(6) fp(x) 7→ mK,D(fp) =




f(1) f(p) f(p2) f(p3) · · ·
0 f(1) f(p) f(p2) · · ·
0 0 f(1) f(p) · · ·
0 0 0 f(1) · · ·
...

...
...

...
. . .




Let P denote the set of all (rational) primes.

Theorem 8. Let DK be the set of matrices of the type3

T (a, b, c, d, e, . . .) =




a b c d e · · ·
0 a b c d · · ·
0 0 a b c · · ·
0 0 0 a b · · ·
0 0 0 0 a · · ·
...

...
...

...
...

. . .




with a 6= 0, b, c, d, e, . . . ∈ K.

3 That is upper triangular (semi-definite) matrices that are constant along all
diagonals parallel to the principal diagonal. Matrices possessing the later property
are also called Toeplitz matrices.



Group of quasi multiplicative arithmetical functions 137

Then
(a) DK is a group with respect to the matrix multiplication,
(b) The group (Quas(K), ⋆D) is isomorphic to a subgroup of the complete direct

product
∏̃

p∈PDK, defined by the condition that the diagonal value a is a common

number in all components of an element of the direct product.

Proof. (a) The proof can be based either on standard tools from matrix algebra or
using our arithmetical background. Using the matrix algebra language let A(m,n),
m,n ∈ {1, 2, 3, . . .} be the (m,n)th entry of a matrix A. Then A ∈ DK if and only
if
(1) if n > m then A(m,n) = 0, i.e. A is upper triangular,
(2) A(m + k, n + k) = A(m,n) for all indices m,n ∈ N, k ∈ Z such that

min{m,n, n+ k,m+ k} ≥ 1, i.e. A is Toeplitz.
Let Ai ∈ DK, i = 1, 2 and A = A1A2. Then A(m,n) =

∑∞
t=1 A1(m, t)A2(t, n).

That A is upper triangular is easy to see. What concerns the second property it
suffices to prove it for k = 1 only. Let n ≤ m. Then4

A(m+ 1, n+ 1) =

∞∑

t=1

A1(m+ 1, t)A2(t, n+ 1) =

m+1∑

t=n+1

A1(m+ 1, t)A2(t, n+ 1)

=

m∑

t=n

A1(m, t)A2(t, n) = A(m,n),

where in the second equality we used the fact that the matrices under consideration
are upper triangular. The case n > m is even easier to verify, for in this case at
least one of the factors in the first sum vanishes. This shows that DK is closed
under the multiplication of matrices.

The presence of the identity element in DK is clear. To prove the existence of
inverse elements we switch to our arithmetical background.5

If f ∈ Mult(K), then also f−1 ∈ Mult(K). Lemma 7 implies that the Bell
series modulo p of f−1 is given by

f−1
p (x) =

1

fp(x)
.

4 Another form of the following rearrangement of the summands gives [3, p.
96–97] the product matrix formula for an (m+1, n+1) entry of the product of
two general Toeplitz matrices saying that A(m+1, n+1) = A1(m+1, 1)A2(1, n+
1) +A(m,n).

5 For another proof we refer to [3, Corollary of Theorem 2] where it is proved
that the only Toeplitz matrices with Toeplitz inverses are the triangular ones.
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Consequently, f−1
p (x) can be found by formal power series inversion and the

corresponding element in DK can be found for ℓ = f−1 noting that if

H =




0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .




and E is the infinite identity matrix, then

ℓp(H) = ℓ(1)E + ℓ(p)H + ℓ(p2)H2 + · · · =




ℓ(1) ℓ(p) ℓ(p2) ℓ(p3) · · ·
0 ℓ(1) ℓ(p) ℓ(p2) · · ·
0 0 ℓ(1) ℓ(p) · · ·
0 0 0 ℓ(1) · · ·
...

...
...

...
. . .




.

This proves (a) and simultaneously that if h = f ⋆D g, then

mK,D(hp) = hp(H) = fp(H)gp(H) = mK,D(fp)mK,D(gp),

that is that the mapping (6) is a homomorphism. That this mapping is also a
bijection follows from the fact that the (quasi) multiplicative functions are uniquely
determined by its values at all prime powers arguments (including 1). Since the
product of two Bell series modulo p of two quasi multiplicative functions is a Bell
series modulo p of a quasi multiplicative function modulo p, (b) follows using the
isomorphism which is the composition of the isomorphism described in part (a)
and that of of Lemma 1taking into account the Euler factorization from Lemma 5.

If f is a nonzero multiplicative function then f(1) = 1 and Dehaye’s result
mentioned in the introduction for K = R follows immediately. Dehaye proved this
result via subsets

Fp = {f ∈ Mult(R) : f(n) = 0 for every n > 1 not divisible by p}

for each p ∈ P . However, the multiplicativity of f implies that

Fp = {f ∈ Mult(R) : f(n) = 0 for every n > 1 which is not a power of p}.

Consequently, the Euler factorization of an f ∈ Fp reduces to one factor only,
namely

T (f) = 1 +
f(p)

ps
+

f(p2)

p2s
+

f(p3)

p3s
+ · · · ,

This observation immediately implies, first of all, the result extending [5, Theorem
2.2, Theorem 5.2] to an arbitrary K:
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Lemma 9. For any prime p, Fp is a group which is isomorphic to D1
K.

Secondly, we have more generally:

Theorem 10. If P ⊂ P is any set of primes then the set

{f ∈ Quas(K) : f(n) = 0 for every n > 1 not divisible by a p ∈ P}.

is a group which is isomorphic to a subgroup of the complete direct product∏̃
p∈PDK, defined by the condition that the diagonal value a is a common number

in all components of an element of the direct product. Its subset

FP = {f ∈ Mult(K) : f(n) = 0 for every n > 1 not divisible by a p ∈ P}

forms a subgroup which is isomorphic to
∏̃

p∈PD
1
K.

Other results proved by Dehaye state that the group Mult(R) is torsion-free [5,
Theorem 2.1] and divisible [5, Theorem 7.1]. To extend these results the following
simple result will be useful:

Lemma 11. Let g ∈ Arit(C) such that g(1) 6= 0. Then the equation f (n) = g,

where f (n) =

n times︷ ︸︸ ︷
f ⋆D . . . ⋆D f , is soluble in Arit(C) and has n solutions here.

Proof. The equation of the theorem can be solved inductively either by starting
with the equation (T (f))n = T (g), or equivalently setting

(7)

f(1) = n
√
g(1), and

f(k) =
1

n(f(1))n−1

(
g(k)−

∑

d1...dn=k

d1,...,dn 6=k

f(d1) . . . f(dn)

)
, for k > 1.

Clearly if f is one solution of our equation, then all solutions of this equation are
given by ωif , where ωi runs over all nth roots of unity.

A group (G, .) is called divisible if the equation xn = a has a solution in G
for every a ∈ G.

Theorem 12. (a) The group {f ∈ Arit(C) : f(1) 6= 0} is divisible and has torsion.
Its torsion part is isomorphic to the group of all complex roots of unity, that is to
group Q/Z.
(b) If C ⊃ K ⊃ Q, then Mult(K) is divisible and torsion-free.

(c) The groups Arit+(R) = {f ∈ Arit(R) : f(1) > 0} and Quas+(R) = {f ∈
Quas(R) : f(1) > 0} are divisible and torsion-free.

Proof. The proof follows easily from the previous Lemma. The verification that
the solution given by (7) is (quasi) multiplicative can be proved directly.
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The groups like Arit(K), Quas(K) or Mult(K) are not the only groups of arith-
metical functions. In [14] infinite chains of subgroups of Arit(C) are constructed.
The solvability of the equation f (n) = g which was investigated in many papers,
cf. [8] and the papers quoted here, has an interesting grouptheoretic consequence
([6, §20]):

Corollary 13. The groups Arit(C), Arit+(R), Quas+(R) and Mult(K) with C ⊃
K ⊃ Q have no maximal proper subgroup.

Another consequence is the solvability of more general systems of compatible
equations ∏

j∈J

x
nij

j = gi, gi ∈ G, i ∈ I

where among the integers nij only finitely many are nonzero for every j (cf. [6,
§22]).

3. Davison convolution

The Dirichlet convolution has many possible generalizations. The following one
was introduced in [4]. Let K be a K-valued function defined on the set of the all
ordered couples (n, d) of positive integers n, d satisfying d|n. Let f, h ∈ Arit(K) be
two arithmetical functions. By (Davison) K-convolution f ⋆K g we shall mean
the operation

(f ⋆K g)(n) =
∑

d|n
K(n, d)f(d)g

(n
d

)
=

∑

d1d2=n

K(d1d2, d1)f(d1)g(d2).

The function K is called kernel (of the convolution).
As already mentioned the set of non-zero multiplicative functions f endowed

with Dirichlet’ s convolution ⋆D forms a commutative group (cf. [1, Chapt. 2] or
[12, Theorem 4.12]). To ensure a similar property with respect to the Davison
convolution ⋆K some properties should be imposed on the kernel function K (cf.
[4]):
(i) The Davison convolution ⋆K is associative if and only if we have

K(abc, bc)K(bc, c) = K(abc, c)K(ab, b) for every a, b, c ∈ N,

or equivalently,

K(n, d)K(d, e) = K(n, e)K

(
n

e
,
d

e

)
for every n, d, e ∈ N with d|n and e|d.
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(ii) The Davison convolution ⋆K is commutative if and only if for every couple of
elements a, b ∈ N there holds

K(ab, a) = K(ab, b) for every a, b ∈ N,

or equivalently,

K(n, d) = K
(
n,

n

d

)
for every n, d ∈ N with d|n.

The Davison convolution as operation does not possess the neutral element in
general.
(iii) The identity function δ1 defined by δ1(n) = δ1n, where δij is the Kronecker

delta, is the unit element with respect to ⋆K if and only if

K(n, n) = K(n, 1) = 1 for every n ∈ N.

The next important question is the keeping up of the multiplicativity of
arithmetical functions under the influence of the Davison convolution.
(iv) The Davison convolution f ⋆K g of two multiplicative functions f , g is a

multiplicative function if and only if

K(abcd, ac) = K(ab, a)K(cd, c) for every a, b, c, d ∈ N with (ab, cd) = 1.

The question about the existence of the inverse function f−1 to a given f ∈
Arit(K) with respect to the Davison convolution can be solved surprisingly quickly:
(v) the inverse function f−1 of f with respect to ⋆K exists if and only if f(1) 6= 0.

When this condition is fulfilled then f−1 can be defined recursively by
(j) If n = 1 then f−1(1) = 1

K(1,1)f(1) =
1

f(1) .

(jj) Let n > 1 and suppose that f−1(m) is already defined for the all m < n.
Then put

f−1(n) =
−1

K(n, n)f(1)

∑

bc=n
c 6=n

f(b)f−1(c)K(n, b)

=
−1

f(1)

∑

bc=n
c 6=n

f(b)f−1(c)K(n, b).

The first part of Lemma 2 can be now reproved using (v) in the following form:
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Lemma 14. The set of f ∈ Arit(K) for which f(1) 6= 0 forms a commutative
group with respect to a K-convolution satisfying conditions (i)–(iii).

Given a prime p ∈ P and a K–valued function K defined on the set of all
ordered couples (n, d) of positive integers n, d satisfying d|n, define DK,K,p as the
set of matrices of the type

(8)




aK(1, 1) bK(p, p) cK(p2, p2) dK(p3, p3) eK(p4, p4) · · ·
0 aK(p, 1) bK(p2, p) cK(p3, p2) dK(p4, p3) · · ·
0 0 aK(p2, 1) bK(p3, p) cK(p4, p2) · · ·
0 0 0 aK(p3, 1) bK(p4, p) · · ·
0 0 0 0 aK(p4, 1) · · ·
...

...
...

...
...

. . .




,

where a 6= 0 and a, b, c, d, e, . . . ∈ K. If we put a = 1 in elements of DK,K,p we get
a subset, say D1

K,K,p. As a generalization of Theorem 8 we get:

Theorem 15. Let ⋆K be a Davison convolutions satisfying properties (i)–(iv).
Then
(a) DK,K,p is a group with respect to the matrix multiplication,

(b) The group (Quas(K), ⋆K) is isomorphic to the subgroup of
∏̃

p∈PDK,K,p defined

by the condition that the diagonal value a is a common number in all components
(8) of an element of the direct product.

(c) The group (Mult(K), ⋆K) is isomorphic to the group
∏̃

p∈PD
1
K,K,p.

Proof. Since a quasi multiplicative function f is uniquely determined by values
f(1) 6= 0, f(p), f(p2), . . . for every p ∈ P , instead of working with indices of entries
of matrices we can suppose without loss of generality that the elements of DK,K,p

are of the form

mK,K,(fp) =



f(1)K(1, 1) f(p)K(p, p) f(p2)K(p2, p2) f(p3)K(p3, p3) f(p4)K(p4, p4) · · ·
0 f(1)K(p, 1) f(p)K(p2, p) f(p2)K(p3, p2) f(p3)K(p4, p3) · · ·
0 0 f(1)K(p2, 1) f(p)K(p3, p) f(p2)K(p4, p2) · · ·
0 0 0 f(1)K(p3, 1) f(p)K(p4, p) · · ·
0 0 0 0 f(1)K(p4, 1) · · ·
...

...
... 0

...
. . .




where f ∈ Quas(K). Then the (i, j), j ≥ i, entry of the product mK,K,(gp)mK,K,(fp)
is
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j∑

k=i

g(pk−i)f(pj−k)K(pk−1, pk−i)K(pj−1, pj−k) =

j−i∑

k=0

g(pk)f(pj−i−k)K(pi+k−1, pk)K(pj−1, pj−i−k),

while its expected value is

(g ⋆K f)(pj−i)K(pj−1, pj−i) =

(
j−i∑

k=0

g(pk)f(pj−i−k)K(pj−i, pk)

)
K(pj−1, pj−i).

To prove that our multiplication is well defined we have to prove that

(9) K(pj−1, pj−i)K(pj−i, pk) = K(pj−1, pj−i−k)K(pi+k−1, pk).

There follows from (i) that

K(pa+b+c, pb+c)K(pb+c, pc) = K(pa+b+c, pc)K(pa+b, pb), a, b, c ∈ {0, 1, 2, . . .}.

Taking a = i− 1, b = k, and c = j − i− k we get

K(pj−1, pj−i)K(pj−i, pj−i−k) = K(pj−1, pj−i−k)K(pi−1+k, pk),

but (ii) implies K(pj−i, pj−i−k) = K(pj−i, pk) and (9) follows.
The existence of the identity element and the inverse one in DK,k,p follows now

from the fact that such elements exist in the set of quasi multiplicative functions.
There follows from the above lines that the mapping

f ∈ Quas(K) 7→
∏

p∈P
mK,K(fp)

is the desired isomorphism from (Quas(K), ⋆K) onto the subgroup of
∏̃

p∈PDK,K,p

defined by the condition that the diagonal value a is a common number in all
components of an element of the direct product, thereby proving statement (b).
The statement (c) follows in turn.

The definition of the quasi multiplicativness depends only on the ordinary
multiplication between positive integers and the elements of K, therefore the next
corollary might be surprising at the first sight:

Corollary 16. [(81, p.191)] Let ⋆L and ⋆K be two Davison convolutions satisfying
properties (i)–(iv). Then the couples groups (Quas(K), ⋆L) and (Quas(K), ⋆K), and
(Mult(K), ⋆K) and (Mult(K), ⋆L) are isomorphic.
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Proof. Using the above ideas an alternative proof (to that given in 81) can be
given as follows.

If f, g ∈ Quas(K) then the mapping

mK,K(fp) 7→ mK,L(fp)

is one–to–one and maps DK,K,p onto DK,L,p while

mK,K(fp ⋆K gp) 7→ mK,L(fp ⋆L gp).

This induces an isomorphism between the subgroups of
∏̃

p∈PDK,K,p and
∏̃

p∈P
DK,L,p defined by the condition that the diagonal value a is a common number in
all components of an element of the direct product.

The reformulation of the remaining results of previous section for Davison
convolutions due to the above isomorphism is left to the reader.

4. Concluding generalization

In the previous reasoning we used from the properties of positive integer
only the unique factorization property. Thus all previous results can be lifted to
arithmetical functions defined on the so called arithmetical semigroups.

Let G denote a free commutative semigroup relative to a multiplication opera-
tion denoted by juxtaposition, with identity element 1G and with at most countably
many generators. Such a semigroup will be called arithmetical semigroup if in
addition a real-valued norm | · | is defined on G such that
(1) |1G| = 1, |a| > 1 for all a ∈ G,
(2) |ab| = |a|.|b| for all a, n ∈ G,
(3) the total number

NG(x) =
∑

|a|≤x
a∈G

1

of elements a ∈ G of norm not exceeding x is finite for each real x.
The role of primes take over the generators of G.

More details on abstract approach to the theory of arithmetical functions via
the notion of arithmetical semigroup can be found in [9] or [10], where the interested
reader may also find many instances of arithmetical semigroups.
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ON THE CONGRUENCE un ≡ c (mod p),WHERE un IS A

RECURRING SEQUENCE OF THE SECOND ORDER

Andrzej Schinzel (Warsaw, Poland)

Dedicated to the memory of Professor Péter Kiss

1. Introduction

The following assertion has been proved in [1] as a by-product of a study of
exponential congruences (Corollary to Theorem 5). Let a sequence un of rational
integers satisfy the recurrence relation un+1 = aun + bun−1, where a2 + 4b 6= 0.
If the congruence un ≡ c (mod p) is soluble for almost all primes p and either
b = 0,−1 or b = 1, a 6= d3 + 3d (d integer), then c = um for an integer m.

The aim of this paper is to extend this result as follows.

Theorem 2. Let K be a number field, un a sequence of elements of K satisfying
the relation

(1) un+1 = aun + bun−1, where a2 + 4b 6= 0.

If c ∈ K, the congruence un ≡ c (mod p) is soluble for almost all prime ideals p
of K and either b = 0,−1 or b = 1, a = 0 or b = 1, a2 +4 6= d2 (d an integer of K),
then c = um, where m is an integer.

Corollary 1. Let a sequence un of rationals satisfy the recurrence relation (1).
If c ∈ Q, the congruence un ≡ c (mod p) is soluble for almost all primes p and
b = 0, or ±1, then c = um for an integer m.

Comparing Corollary 1 with Corollary quoted above from [1] we see that now
un need not be integers and the condition a 6= d3 + 3d has disappeared.

Corollary 2. Let K be an imaginary quadratic field and un a sequence of
elements of K satisfying the recurrence relation (1). If c ∈ K, the congruence
un ≡ c (mod p) is soluble for almost all prime ideals p of K and b = 0, or ±1,
then c = um for an integer m.

Theorem 2 is a consequence of the following theorem concerning exponential
congruences.

Theorem 1. Let K be a number field, α ∈ K∗, f ∈ K[z], deg f ≤ 4. The
congruence

f(αx) ≡ 0 (mod p)
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is soluble for almost all prime ideals p of K, if and only if one of the following cases
holds for a β in the splitting field of f

(2) z − αr | f(z), r ∈ Z

α = β2,
(
z − β2r1+1

) (
z + β2r2

) (
z + β2r3+1

)
| f(z), ri ∈ Z;(3)

α = β2,
(
z − β2r1+1

) (
z − ζe24 β2r2

) (
z + β2r3+1

) (
z − ζe44 β2r4+1

)
| f(z),(4)

ri ∈ Z, e2e4 odd ;

α = β3, (z − βr1) (z − ζe23 βr2) (z − ζe33 βr3) (z − ζe43 βr4) | f(z), ri ∈ Z,(5)

e2r1 6≡ 0, r2 ≡ 0, e3r3 ≡ −1, e4r4 ≡ 1 (mod 3);

α = β4,
(
z − β2r1+1

) (
z + β4r2

) (
z + β2r3+1

) (
z + β4r4+2

)
| f(z), ri ∈ Z;(6)

ζq denotes a root of unity of order q.

Remark. In principle one could obtain a similar result for degree f bounded by
any number b. However, the number of possibilities increases fast with b and the
matter gets out of hand (cf. Theorem 5 in [1]).

Definition. A system of congruences Ah0t0 + Ah1t1 ≡ 0 (modmh) (1 ≤ h ≤ g)
is covering, if every integer vector [t0, t1] satisfies at least one of these congruences.

Lemma 1. A system of congruences

(7) Ah0t0 +Ah1t1 ≡ 0 (modm) (1 ≤ h ≤ 4)

is covering, if and only if one of the following cases holds:

(8) for an h0 ≤ 4 : m | (Ah00, Ah01) ;

2 | m and for three distinct indices h1, h2, h3 ≤ 4(9)

Ah10 ≡ 0, Ah11 ≡ m

2
(modm),

Ah20 ≡ m

2
, Ah21 ≡ 0 (modm),

Ah30 ≡ 0, Ah31 ≡ m

2
(modm);
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3 | m and for a permutation (h1, h2, h3, h4) of (1, 2, 3, 4)(10)

Ah10 ≡ 0, Ah11 ≡ ε1
m

3
(modm),

Ah20 ≡ ε2
m

3
, Ah20 ≡ 0 (modm),

Ah30 ≡ Ah31 ≡ ε3
m

3
(modm),

Ah40 ≡ −Ah41 ≡ ε4
m

3
(modm);

where [ε1, ε2, ε3, ε4] ∈ {−1, 1}4.

4 | m and for a permutation (h1, h2, h3, h4) of (1, 2, 3, 4)(11)

Ah10 ≡ 0, Ah11 ≡ m

2
(modm),

Ah20 ≡ m

2
, Ah21 ≡ 0 (modm),

Ah30 ≡ Ah31 ≡ ε3
m

4
(modm),

Ah40 ≡ −Ah41 ≡ ε4
m

4
(modm),

where [ε3, ε4] ∈ {1,−1}2;

4 | m and for a permutation (h1, h2, h3, h4) of (1, 2, 3, 4)(12)

Ah10 ≡ 0, Ah11 ≡ m

2
(modm),

Ah20 ≡ ε2
m

4
, Ah21 ≡ 0 (modm),

Ah30 ≡ Ah31 ≡ m

2
(modm),

Ah40 ≡ ε4
m

4
, Ah41 ≡ m

2
(modm),

where [ε2, ε4] ∈ {−1, 1}2;

4 | m and for a permutation (h1, h2, h3, h4) of (1, 2, 3, 4)(13)

Ah10 ≡ 0, Ah11 ≡ ε1
m

4
(modm),

Ah20 ≡ m

2
, Ah21 ≡ 0 (modm),

Ah30 ≡ Ah31 ≡ m

2
(modm),

Ah40 ≡ m

2
, Ah41 ≡ ε4

m

4
(modm),
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where [ε1, ε4] ∈ {−1, 1}2.

Proof necessity. Since each of the vectors [1, 0] and [0, 1] satisfies one of the
congruences (7) we have for some h1, h2

Ah10 ≡ 0, Ah21 ≡ 0 (modm).

If h1 = h2 = h we have the case (8), thus assume h2 6= h1. Since each of the vectors
[1,−1] and [1, 1] satisfies one of the congruences (7) we have for some j1, j2

(14) Aj10 −Aj11 ≡ 0, Aj20 +Aj21 ≡ 0 (modm).

If ji ∈ {h1, h2} (i = 1 or 2), we have the case (9) with h3 = ji, thus we assume
ji 6∈ {h1, h2} (i = 1, 2) and distinguish two cases:

(15) j1 6= j2

and

(16) j1 = j2.

In the case (15) excluding the case (8) we infer that Ah11 6≡ 0 (modm), Ah20 6≡
0 (modm), Aj10 6≡ 0 (modm), Aj20 6≡ 0 (modm). Since each of the vectors
[±2, 1], [1,±2] satisfies one of the congruences (7) for h ∈ {h1, h2, j1, j2} we infer
that either

(15.1) 2 | m, Ah11 ≡ Ah20 ≡ m

2
(modm),

or

(15.2) 3 | m, Aji0 ≡ εi+2
m

3
(modm), [ε3, ε4] ∈ {−1, 1}2.

In the case (15.1), since each of the vectors [±3, 1] satisfies one of the congruences
(7) for h ∈ {j1, j2}, we infer that either for an i ≤ 2, Aji0 ≡ m

2 (modm), or 4 | m
and Aji0 ≡ εi+2

m
4 (modm) (i = 1, 2) where [ε3, ε4] ∈ {−1, 1}2. In the former

case we have (9) with h3 = ji, in the latter case we have (11) with hi = ji−2

(i = 3, 4). In the case (15.2), since each of the vectors [3, 1], [1, 3] satisfies one of
the congruences (7) for h ∈ {h1, h2} we infer that

Ah11 ≡ ε1
m

3
(modm), Ah20 ≡ ε2

m

3
(modm)

where [ε1, ε2] ∈ {−1, 1}2, thus we have the case (10) with hi = ji−2 for i = 3, 4.
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Consider now the case (16). Excluding (8) we infer that

Ah11 6≡ 0 (modm),

Ah20 6≡ 0 (modm),

Aj10 ≡ Aj11 ≡ m

2
(modm).

Let {j3} = {1, 2, 3, 4}\{h1, h2, j1}. Since each of the vectors [1,±2], [±2, 1] satisfies
one of the congruences (7) we infer that either

(16.1) 2 | m, Ah11 ≡ m

2
(modm),

or

(16.2) 2 | m, Ah20 ≡ m

2
(modm)

or

(16.3)
Aj3,0 ± 2Aj3,1 ≡ 0 (modm),

± 2Aj3,0 +Aj3,1 ≡ 0 (modm).

The conditions (16.3) lead to (8) with h = j3, the conditions (16.1) and (16.2)
together lead to (9) with h3 = j1. If (16.1) holds but (16.2) does not, then since
each of the vectors [±2, 1] satisfies one of congruences (7) for h ∈ {h2, j3}, we have

(17) ±2Aj3,0 +Aj3,1 ≡ 0 (modm),

hence
±4Aj3,0 ≡ 2Aj3,1 ≡ 0 (modm).

If
Aj3,1 ≡ 0 (modm),

then either Aj3,0 ≡ 0 (modm), which gives (8) with h = j3, or Aj3,0 ≡
m
2 (modm), which gives (9) with h2 = j3, h3 = j1. If Aj3,1 ≡ m

2 (modm),
then (17) implies 4 | m,

Aj3,0 ≡ ε4
m

4
(modm),

which gives (12) with h3 = j1, h4 = j3. If (16.2) holds but (16.1) does not, then by
symmetry we have (8) or (9) or (13).

Sufficiency of the condition follows from the easily verified fact, that the
following systems of congruences are covering:

0 ≡ 0 (mod 1); t1 ≡ 0, t0 ≡ 0, t0 + t1 ≡ 0 (mod 2); t1 ≡ 0, t0 ≡ 0, t0 + t1 ≡ 0,
t0 − t1 ≡ 0 (mod 3); t1 ≡ 0, t0 ≡ 0 (mod 2), t0 + t1 ≡ 0, t0 − t1 ≡ 0 (mod 4);
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t1 ≡ 0, t0 + t1 ≡ 0 (mod 2), t0 ≡ 0, t0 + 2t1 ≡ 0 (mod 4); t0 ≡ 0, t0 + t1 ≡
0 (mod 2), t1 ≡ 0, 2t0 + t1 ≡ 0 (mod 4).

Lemma 2. If K is a number field, α ∈ K, βj ∈ Q (1 ≤ j ≤ l), the congruence

(18)

l∏

j=1

(αx − βj) ≡ 0 (mod p)

is soluble for almost all prime ideals p of the field K(β1, . . . , βl) =: K1 and w is the
number of roots of unity contained in K1, then there exist γ ∈ K1 and a subset H
of {1, . . . , l} such that

α = ζawγ
e,(19)

βh = ζbhw γdh (h ∈ H)(20)

and the system of congruences

(21) t0 (adh − ebh) + wdht1 ≡ 0 (modwe) (h ∈ H)

is covering.

Proof. Let

(22) α = ζa0
w

t∏

s=1

πas
s , βj = ζbj0w

t∏

s=1

πbjs
s (1 ≤ j ≤ l),

where πs are elements of the multiplicative basis of the field K1 (see [1], Lemma 9).
Let Q be a unimodular matrix such that

(23) [a1, . . . , at]Q = [e, 0, . . . , 0] , e = (a1, . . . , at)

and put

(24) [bj1, . . . , bjt]Q = [dj1, . . . , djt] .

We choose integers η2, . . . , ηt divisible by w such that for all j ≤ l

(25)

t∑

s=2

djsηs = 0 implies djs = 0(2 ≤ s ≤ t)

and set

(26) m = max
1≤j≤l

∣∣∣∣∣
t∑

s=2

djsηs

∣∣∣∣∣+ 1.
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Further we set

(27) n = 2τwme l.c.m.
q≤m+e
q prime

(q − 1), η1 =
n

e
t1 + a0

n

ew
t0,

where τ is the greatest integer such that ζ2τ + ζ−1
2τ ∈ K1,

(28) ε0 = −t0,



ε1
...
εt


 = Q



η1
...
ηt


 .

By Theorem 4 of [1] there exist infinitely many prime ideals P of K1(ζn) such
that

(29)

(
ζw
P

)

n

= ζε0w ,

(
πs

P

)

n

= ζεsn (1 ≤ s ≤ t).

Let H be the set of these indices h ≤ l that for some integers x, t0, t1 and for
some prime ideal P satisfying (29) we have

(30) αx ≡ βh (modP).

The congruence (30) gives (
αx

P

)

n

=

(
βh

P

)

n

,

hence

x

(
n

w
a0ε0 +

t∑

s=1

asεs

)
≡ n

w
bh0ε0 +

t∑

s=1

bhsεs (modn)

and by (24) and (28)

x
(
− n

w
a0t0 + eη1

)
≡ − n

w
bh0t0 +

t∑

s=1

dhsηs (modn).

Substituting the value of η1 from (27) we obtain

(31) 0 ≡ nxt1 ≡ − n

w
bh0t0 +

n

w
dh1

(w
e
t1 +

a0
e
t0

)
+

t∑

s=2

dhsηs (modn).

It follows that
t∑

s=2

dhsηs ≡ 0 (modm)



154 A. Schinzel

and, by (26) and (25),

(32)

t∑

s=2

dhsηs = 0, dhs = 0 (2 ≤ s ≤ t).

Hence, by (23) and (24),

bhs =
dh1
e

ahs

and putting a0 = a, bh0 = bh, dh1 = dh

γ =
t∏

s=1

πas/e
s

we obtain (20) and (21). Moreover, since the congruence (18) is soluble for almost
all prime ideals p of K1 the system of congruences, resulting from (31) and (32)

(33) (adh − ebh) t0 + wdht1 ≡ 0 (modwe) (h ∈ H)

must be covering.

Remark. The above proof is modelled on the proof of Theorem 5 in [1].

Lemma 3. If a system of congruences

(34) Ah0t0 +Ah1t1 ≡ 0 (modm) (1 ≤ h ≤ g)

is covering, w | m, d = (m,A11, . . . , Ag1) and α = βm/d, then the alternative of
congruences

αx ≡ ζAh0
w βAh1/d (mod p) (1 ≤ h ≤ g)

is soluble for all prime ideals p of Q(ζw, β) for which β is a p-adic unit.

Proof. Since the system (34) is covering, for every prime ideal p there exists an
h ≤ g such that

Ah0

dNp−1
w(

ind β, dNp−1
w

) +Ah1
indβ(

indβ, dNp−1
w

) ≡ 0 (modm),

hence

Ah0
Np− 1

w
+

Ah1

d
indβ ≡ 0

(
mod

m

d

(
ind β, d

Np− 1

w

))
.

However
m

d

(
indβ, d

Np− 1

w

)
≡ 0 (mod (indα,Np− 1)) ,
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hence the congruence

Ah0
Np− 1

w
+

Ah1

d
indβ ≡ x indα (modNp− 1)

is soluble for x and we obtain

αx ≡ ζAh0
w βAh1/d (mod p).

Proof of Theorem 1. Necessity.

By Lemma 2 the system (33) is covering, hence we apply Lemma 1 with

Ah0 = adh − ebh, Ah1 = wdh.

If the case (8) holds, then for a certain h ∈ H

adh − ebh ≡ wdh ≡ 0 (modwe),

hence e | dh and bh ≡ adh

e (modw), which gives

βh = αdh/e

hence (2) holds with r = dh/e.

If the case (9) holds, then for some distinct indices h1, h2, h3

adh1 − ebh1 ≡ 0, wdh1 ≡ we

2
(modwe),

hence 2 | e, dh1 ≡ e
2c1, c1 odd, 2 | a, bh1 ≡ a

2 c1 (modw);

adh2 − ebh2 ≡ we

2
, wdh2 ≡ 0 (modwe),

hence dh2 = ec2, c2 ∈ Z, bh2 ≡ w
2 + ac2 (modw);

adh3 − ebh3 ≡ wdh3 ≡ we

2
(modwe),

hence dh3 = e
2c3, c3 odd, bh3 ≡ w

2 + ac3 (modw).

This gives (3) with

β = ζa/2w γe/2, 2r1 + 1 = c1, r2 = c2, 2r3 + 1 = c3.

If the case (10) holds, 3 | we and without loss of generality we may assume
that

ad1 − eb1 ≡ 0, wd1 ≡ ε1
we

3
(modwe),
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hence 3 | e, d1 ≡ e
3ε1 (mod e), 3 | a, b1 ≡ a

3
3d1

e (modw);

ad2 − eb2 ≡ ε2
we

3
, wd2 ≡ 0 (modwe),

hence e | d2, 3 | w, b2 ≡ d2

e − ε2
w
3 (modw);

ad3 − eb3 ≡ wd3 ≡ ε3
we

3
(modwe),

hence d3 ≡ ε3
e
3 (mod e), b3 ≡ a

3
3d3

e − ε3
w
3 (modw);

ad4 − eb4 ≡ −wd4 ≡ ε4
we

3
(modwe),

hence d4 ≡ −ε4
e
3 (mod e), b4 ≡ a

3
3d4

e − ε4
w
3 (modw).

This gives (5) with

β = ζa/3w γe/3, ri =
3di
e

(1 ≤ i ≤ 4), ei ≡ −εi (mod 3) (2 ≤ i ≤ 4).

If the case (11) holds, 4 | we and without loss of generality we may assume
that

ad1 − eb1 ≡ 0, wd1 ≡ we

2
(modwe),(35)

ad2 − eb2 ≡ ε2
we

2
, wd2 ≡ 0 (modwe),(36)

ad3 − eb3 ≡ wd3 ≡ ε3
we

4
(modwe),(37)

ad4 − eb4 ≡ −wd4 ≡ ε4
we

4
(modwe).(38)

(35) implies 2 | e and d1 ≡ e
2 (mod e), 2 | a, b1 ≡ a

2 · 2d1

e (modw), (36) implies

d2 ≡ 0 (mod e), b2 ≡ ad2

e − w
2 (modw), (37) implies 4 | e, a ≡ w (mod 4).

Now, we distinguish two subcases

(39.1) w ≡ 2 (mod 4)

and

(39.2) w ≡ 0 (mod 4).

In the case (39.1) we take

β = ζ
a(w+2)

8
w γe/4
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and find

α = ζawγ
e = β4,

β1 = ζb1w γd1 = ζ
a
2 ·

2d1
e

w

(
ζ
− a(w+2)

8
w

) 4d1
e

β4d1

= ζ
2d1
e

(
a
2−

a(w+2)
4

)
w β4d1/e = ζ

− awd1
2e

w β4d1/e = ζ
w
2
w β4d1/e = −β

4d1
e ,

β2 = ζb2w γd2 = −ζ
a

d2
e

w

(
ζ
− a(w+2)

8
w

) 4d2
e

β4d2

= −ζ
d2
e

(
a− a(w+2)

2

)
w β4d2/e = −ζ

r−d2
e ·aw

2
w β4d2/e = −β

4d2
e .

(37) implies 4 | e, d3 ≡ ε3
e
4 (mod e), b3 ≡ ac3−ε3w

4 (modw), c3 = 4d3

e ≡
ε3 (mod 4),

β3 = ζb3w γd3 = ζ
ac3−ε3w

4
w

(
ζ
− a(w+2)

8
w

) 4d3
e

β
4d3
e

= ζ
(−a

2 c3−ε3)w
4

w β4d3/e = (−1)
a+2
4 β

4d3
e .

(38) implies 4 | e, d4 ≡ −ε4
e
4 (mod e), b4 ≡ ac4−ε4w

4 (modw), c4 = 4d4

e ≡
−ε4 (mod 2),

β4 = ζb4w γd4 = ζ
ac4−ε4w

4
w

(
ζ
− a(w+2)

8
w

) 4d4
e

β
4d4
e

= ζ
(−a

2 c4−ε4)w
4

w β4d4/e = (−1)
a−2
4 β

4d4
e

and we obtain the case (6).

Consider now the case (39.2). Here (37) implies 4 | a, we take

β = ζ
a−w

4
w γe/4

and find
α = ζawγ

e = β4,

β1 = ζb1w γd1 = ζad1/e
w γd1 = −β4d1/e,

β2 = ζb2w γd2 = −ζad2/e
w γd2 = −β4d2/e.

Moreover, (37) gives d3 ≡ ε3
e
4 (mod e), b3 ≡ ad3

e − ε3
w
4 (modw), hence

β3 = ζ−ε3
4 ζad3/e

w γd3 = β4d3/e;
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(38) gives d4 ≡ −ε4
e
4 (mod e), b4 ≡ ad4

e − ε4
w
4 (modw), hence

β4 = ζ−ε4
4 ζad4/e

w γd4 = −β4d4/e

and we obtain again the case (6).

Consider now the case (12). Here we have

ad1 − eb1 ≡ 0 (modwe), wd1 ≡ ε1
we

4
(modwe),

hence 4 | e, d1 ≡ ε1
e
4 (mod e), 4 | a, b1 ≡ ad1

e (modw);

ad2 − eb2 ≡ we

2
(modwe), wd2 ≡ 0 (modwe),

hence d2 ≡ 0 (mod e), b2 ≡ ad2

e − a
2 (modw);

ad3 − eb3 ≡ wd3 ≡ we

2
(modwe),

hence d3 ≡ e
2 (mod e), b3 ≡ ad3

e − w
2 (modw);

ad4 − eb4 ≡ we

2
(modwe), wd4 ≡ ε4

we

4
(modwe),

hence d4 ≡ ε4
e
4 (mod e), b4 ≡ ad4

e − w
2 (modw).

Therefore, setting

β = ζa/4w γe/4

we obtain

α = β4, β1 = β4d1/e, β2 = −β4d2/e, β3 = −β4d3/e, β4 = −β4d4/e,

which is again the case (6).

Consider now the case (13). Here we have

ad1 − eb1 ≡ 0 (modwe), wd1 ≡ we

4
(modwe),

hence 2 | e, d1 ≡ e
4 (mod e), 2 | a, b1 ≡ ad1

e (modw);

ad2 − eb2 ≡ ε2
we

4
(modwe), wd2 ≡ 0 (modwe),

hence d2 ≡ 0 (mod e), 4 | w, b2 ≡ ad2 − ε2
a
2 (modw);

ad3 − eb3 ≡ wd3 ≡ we

2
(modwe),
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hence d3 ≡ e
2 (mod e), b3 ≡ ad3 − w

2 (modw);

ad4 − eb4 ≡ ε4
we

4
(modwe), wd4 ≡ we

2
(modwe),

hence d4 ≡ e
2 (mod e), b4 ≡ ad4

e − ε4
w
4 (modw).

Therefore, setting

β = ζa/4w γe/4

we obtain

α = β2, β1 = β2d1/e, β2 = ζ−ε2
4 β2d2/e, β3 = −β2d3/e, β4 = ζ−ε4

4 β2d4/e,

which is the case (4).

Sufficiency of the condition follows from Lemma 3 and the covering property
of the relevant systems of congruences, which in turn follows from Lemma 1. Indeed,
a prime ideal p ofK is divisible by a prime idealP ofK(ζw, β), which in turn divides
a prime ideal q of Q(ζw, β). Solubility of the congruence

g∏

h=1

(
αx − ζAh0

w βAh1/d
)
≡ 0 (mod q)

implies solubility of the congruence f(αx) ≡ 0 (modP), and this, since f ∈ K[z],
solubility of f(αx) ≡ 0 (mod p).

Lemma 4. If un = λ1α
n+λ2(−α−1)n is a recurring sequence in K and α is a root

of unity, then solubility of the congruence

un ≡ c (mod p)

for infinitely many prime ideals p of K implies c = um, where m is an integer.

Proof. If α is a root unity of order q we have un ∈ {u1, . . . , u2q}, hence if c 6= um

the congruence in question is soluble for only finitely many prime ideals p dividing

2q∏

m=1

(un − c) .

Proof of Theorem 2. If b = 0 we have un = λαn and the assertion follows from
Theorem 1 applied to the polynomial f(z) = λz − c.

If b = −1, we have un = λ1α
n + λ2α

−n and the assertion follows from
Theorem 1 applied to the polynomial f(z) = λ1z

2 − cz + λ2.

If b = 1, a = 0 we have α = ±1 and the assertion follows by virtue of Lemma 4.
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If b = 1, c = 0 or λ1 = 0 or λ2 = 0 the assertion follows from Theorem 1
applied to the polynomial f(z) = λ1z + λ2 or λ2z − c or λ1z − c, respectively.
Therefore, assume b = 1, acλ1λ2 6= 0.

Solubility of the congruence un ≡ c (mod p) is equivalent to solubility of the
congruence

f
(
α2n

)
≡ 0 (mod p),

where
f(z) =

(
λ1z

2 − cz + λ2

) (
λ1α

2z2 − cαz − λ2

)
.

We apply Theorem 1 with α2 in stead of α, considering successively the cases
(2)–(6).

In the case (2) we have z − α2r | f(z), hence either z − α2r | λ1z
2 − cz + λ2,

or z − α2r | λ1α
2z2 − cαz − λ2. In the former case un = c has the solution n = 2r,

in the latter case n = 2r + 1.

In the case (3) we have one of the following six cases:

λ1α
4r1+2 − cα2r1+1 + λ2 = 0, λ1α

4r2 + cα2r2 + λ2 = 0,

λ1α
4r3+4 + cα2r3+2 − λ2 = 0;

(40.1)

λ1α
4r1+2 − cα2r1+1 + λ2 = 0, λ1α

4r2+2 + cα2r2+1 − λ2 = 0,

λ1α
4r3+2 + cα2r3+1 + λ2 = 0;

(40.2)

λ1α
4r1+2 − cα2r1+1 + λ2 = 0, λ1α

4r2+2 + cα2r2+1 − λ2 = 0,

λ1α
4r3+4 + cα2r3+2 − λ2 = 0;

(40.3)

λ1α
4r1+4 − cα2r1+2 − λ2 = 0, λ1α

4r2 + cα2r2 + λ2 = 0,

λ1α
4r3+2 + cα2r3+1 + λ2 = 0;

(40.4)

λ1α
4r1+4 − cα2r1+2 − λ2 = 0, λ1α

4r2 + cα2r2 + λ2 = 0,

λ1α
4r3+4 + cα2r3+2 − λ2 = 0;

(40.5)

λ1α
4r1+4 − cα2r1+2 − λ2 = 0, λ1α

4r2+2 + cα2r2+1 − λ2 = 0,

λ1α
4r3+2 + cα2r3+1 + λ2 = 0.

(40.6)

Since cλ1λ2 6= 0 at least one of the determinants ∆1, . . . ,∆6 is 0, where



On the congruence un ≡ c (mod p) . . . 161

∆1 =

∣∣∣∣∣∣

α4r1+2 −α2r1+1 1
α4r2 α2r2 1

α4r3+4 α2r3+2 −1

∣∣∣∣∣∣
, ∆2 =

∣∣∣∣∣∣

α4r1+2 −α2r1+1 1
α4r2+2 α2r2+1 −1
α4r3+2 α2r3+1 1

∣∣∣∣∣∣
,

∆3 =

∣∣∣∣∣∣

α4r1+2 −α2r1+1 1
α4r2+2 α2r2+1 −1
α4r3+4 α2r3+2 −1

∣∣∣∣∣∣
, ∆4 =

∣∣∣∣∣∣

α4r1+4 −α2r1+2 −1
α4r2 α2r2 1

α4r3+2 α2r3+1 1

∣∣∣∣∣∣
,

∆5 =

∣∣∣∣∣∣

α4r1+4 −α2r1+2 −1
α4r2 α2r2 1

α4r3+4 α2r3+2 −1

∣∣∣∣∣∣
, ∆6 =

∣∣∣∣∣∣

α4r1+4 −α2r1+2 −1
α4r2+2 α2r2+1 −1
α4r3+2 α2r3+1 1

∣∣∣∣∣∣
.

Suppose first that α is not an algebraic integer. Then in the expanded form of
the determinant ∆i the highest power of α must occur at least twice. However, the
exponents in the first column of ∆i are twice the exponents in the second column.
Denoting the latter by δi1, δi2, δi3 in the decreasing order, we infer that the greatest
power of α in ∆i is α

2δi1+δi2 and it is not repeated unless two of the numbers δij
(j = 1, 2, 3) are equal. This gives the following possibilities:

i = 1, r2 = r3 + 1;(41.1)

i = 2, r2 = r1, or r3 = r1, or r3 = r2;(41.2)

i = 3, r2 = r1;(41.3)

i = 4, r2 = r1 + 1;(41.4)

i = 5, r2 = r1 + 1, or r3 = r1, or r2 = r3 + 1;(41.5)

i = 6, r3 = r2(41.6)

and in each case the equation ∆i = 0 gives α as 0 or a root of unity, contrary to
the assumption, that α is not an algebraic integer.

Assume now that α is an algebraic integer. Since a2 + 4 6= d2 (d an integer of
K) we have α 6∈ K. Hence α is conjugate over K to −α−1 and λ2 is conjugate to
λ1. By (40.1)–(40.6) we have for an ε ∈ {1,−1},

(42) λ1

(
α2r1+1+ 1−ε

2

)2
− c

(
α2r1+1+ 1−ε

2

)
+ ελ2 = 0,

hence

(43) λ1α
2r1+1+ 1−ε

2 =
c∓

√
c2 − 4ελ1λ2

2
.
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If λ1α
2r1+1+ 1−ε

2 =: µ ∈ K then

λ1 = µα−2r1−1− 1−ε
2 , λ2 = µα2r1+1+ 1−ε

2 (−1)
1+ε
2

and from (42)

0 = µα2r1+1+ 1−ε
2 − cα2r1+1+ 1−ε

2 + ε(−1)
1+ε
2 µα2r1+1+ 1−ε

2 = −cα2r1+1+ 1−ε
2 ,

contrary to c 6= 0.

If λ1α
2r1+1+ 1−ε

2 6∈ K, then from (43) on taking conjugates we obtain

λ2(−1)
1−ε
2 α−2r1−1− 1−ε

2 =
c±

√
c2 − 4ελ1λ2

2
,

hence on multiplication side by side with (43)

λ1λ2(−1)
1+ε
2 = ελ1λ2,

contrary to λ1λ2 6= 0.

In the case (4) there exists a permutation (ζε14 αδ1 , . . . , ζε44 αδ4 ) of (α2r1+1,!ζe24 α2r2 ,
−α2r3+1, ζe44 α2r4+1) such that

(44)
λ2

λ1
= ζε1+ε2

4 αδ1+δ2 = −ζε3+ε4
4 αδ3+δ4+2.

If δ1+δ2 = δ3+δ4+2, then 2(δ1+δ2) = δ1+δ2+δ3+δ4+2 = 2r1+2r2+2r3+2r4+5,
which is impossible mod 2. If δ1 + δ2 6= δ3 + δ4 + 2, then α is a root of unity and
the assertion follows by virtue of Lemma 4.

In the case (5) we have

α = γ3, β = γ2, where γ = α/β

and there exists a permutation

(ζε13 γδ1 , . . . , ζε43 γδ4) of (γ2r1 , ζe23 γ2r2 , ζe33 γ2r3 , ζe43 γ2r4)

such that
λ2

λ1
= ζε1+ε2

3 γδ1+δ2 = −ζε3+ε4
3 γδ3+δ4+6.

If δ1 + δ2 = δ3 + δ4 + 6, we obtain ζε1+ε2−ε3−ε4
3 = −1, which is impossible. If

δ1 + δ2 6= δ3 + δ4 +6, then γ is a root of unity and so is α; the assertion follows by
virtue of Lemma 4.
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In the case (6) we have

α = ε0β
2, (ε0 = ±1)

and there exists a permutation

(ε1β
δ1 , ε2β

δ2 , ε3β
δ3 , ε4β

δ4) of (β2r1+1, −β4r2 , −β2r3+1, −β4r4+2) such that
(ε1, ε2, ε3, ε4) ∈ {1,−1}4 and

c

λ1
= ε1β

δ1 + ε2β
δ2 = ε0ε3β

δ3+2 + ε0ε4β
δ4+2,(45)

λ2

λ1
= ε1ε2β

δ1+δ2 = −ε3ε4β
δ3+δ4+4.(46)

If β is not an algebraic integer, then it follows from (45) that the greatest term
of the sequence (δ1, δ2, δ3+2, δ4+2) occurs in this sequence at least twice and from
(46) that δ1 + δ2 = δ3 + δ4 + 4. Hence

(47) δ1 = δ3 + 2, δ2 = δ4 + 2 or δ1 = δ4 + 2, δ2 = δ3 + 2.

This gives the following possibilities:

{δ1, δ2} = {2r1 + 1, 4r2} , {δ3, δ4} = {2r3 + 1, 4r4 + 2} ;

{δ1, δ2} = {2r1 + 1, 4r4 + 2} , {δ3, δ4} = {2r3 + 1, 4r2} ;

{δ1, δ2} = {4r2, 2r3 + 1} , {δ3, δ4} = {2r1 + 1, 4r4 + 2} ;

{δ1, δ2} = {2r3 + 1, 4r4 + 2} , {δ3, δ4} = {2r1 + 1, 4r2}

and we obtain from (45) the following equations

β2r1+1 − β4r2 = −ε0β
2r3+3 − ε0β

4r4+4,

β2r1+1 − β4r4+2 = −ε0β
2r3+3 − ε0β

4r2+2,

− β4r2 − β2r3+1 = ε0β
2r1+3 − ε0β

4r4+4,

− β2r3+1 − β4r4+2 = ε0β
2r1+3 − ε0β

4r4+2.

By (47) the exponents on both sides are equal in pairs, which gives for each value
of ε0 : β = 0, hence α = 0, contrary to b = 1.
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If β is an algebraic integer so is α. Since a2 + 4 6= d2 (d an integer of K) we
have α 6∈ K, hence α is conjugate over K to α−1 and λ1 is conjugate to λ2. On the
other hand, we have

(48) λ1

(
α2r4+1+ 1−ε

2

)2
− cα2r4+1+ 1−ε

2 + ελ2 = 0, ε ∈ {1,−1},

which differs from (42) only by permutation of r1 and r4 and hence leads to
contradiction.

Proof of Corollary 1. If a ∈ Q, then either a = 0 or a2 + 4 6= d2, d ∈ Z hence
the assumptions of Theorem 2 are fulfilled.

Proof of Corollary 2. If a ∈ K and

(49) a2 + 4 = d2, d an integer of K

the zeros of z2−az−1 are units of K. However, since K is quadratic imaginary, the
only units of K are roots of unity and the assertion follows by virtue of Lemma 4.

Example. The following example shows that the assumption a2 + 4 6= d2 (d an
integer ofK) cannot be altogether omitted. LetK = Q(α), where α3+α2−α+1 = 0
and take

un = λ1α
n + λ2

(
−α−1

)n
, λ1 = −

(
1 + α2

)
, λ2 = α2 − α4, c = α4 + 1.

As observed in the proof of Theorem 2 solubility of the congruence

(50) un ≡ c (mod p),

is equivalent to solubility of the congruence

(51) f
(
α2n

)
≡ 0 (mod p),

where
f(z) =

(
λ1z

2 − cz + λ2

) (
λ1α

2z2 − cαz − λ2

)
.

Now

(52) f(z) = λ2
1(z − α)(z + 1)(z + α)

(
α2z + 1

)
,

hence by Theorem 1, case (3), the congruence (51) is soluble for almost all prime
ideals p of K and so is the congruence (50). On the other hand,op solubility of the
equation un = c would imply solubility of the equation f(α2n) = 0, hence, by (52),
α would be a root of unity, which contradicts α3 + α2 − α− 1 = 0.
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Abstract. Intersections of X-normal Fitting classes are studied for Fischer class X of
partially soluble groups.

AMS Classification Number: 20D10

Introduction

When describing Fitting classes of finite soluble groups structure and their
classification the basic result is Blessenohl–Gaschütz’s theorem [1]: the intersection
of any set of non-identity normal Fitting classes is non-identity normal Fitting class
again.

Remind that a class F of finite groups is called a Fitting class if the following
two conditions hold:

(i) if G ∈ F and N ⊳ G, then N ∈ F;
(ii) if M , N ⊳ G = MN with M and N in F, then G ∈ F.
We note from the definition of a Fitting class it follows that every finite group

G has a unique maximal normal F-subgroup called the F-radical of G denoting GF.

A Fitting class F is called normal in a class of finite groups X or X-normal [4]
if F ⊆ X and GF is maximal among subgroups of G belonging to F for all groups
G ∈ X. In the case when X = S (S is the class of all finite soluble groups) F is
called S-normal or simply normal Fitting class.

In this paper we develop and extend the above-mentioned result by Blessenohl–
Gaschütz in two directions. In the first place, we prove an analog of Blessenohl–
Gaschütz’s theorem for X-normal Fitting classes where X is a Fischer class (in
particular X ⊆ S). In the second place, we replace a solvability condition for the
groups of the class X with a partially solvability condition. In the course of this
paper we consider only finite groups. We use the terminology and notations of [2].

1. Some notations and lemmas

Let F be a Fitting class. A subgroup V of a group G is called an F-injector of
G if V

⋂
N is maximal in N from the subgroups in F for any subnormal subgroup
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N of G. A famous Fischer–Gaschütz–Hartley’s theorem [3] that every group G ∈ S
has a unique class of conjugate F-injectors is a synthesis of well-known Sylow’s and
Hall’s theorems.

We note that if F and H are Fitting classes then their product FH is the class
of groups (G | G/GF ∈ H) which is a Fitting class. In particular FS is the class of
all groups G such that factor group by the F-radical of G is soluble.

The following lemma extends Fischer–Gaschütz–Hartley’s theorem.

Lemma 1.1. (V. Sementovskii [5]) If G ∈ FS then

(a) G has a unique class of conjugate F-injectors;

(b) if V is an F-injector of G and V ⊆ H ⊆ G, then V is also an F-injector of H .

We shall use the definition of X-normal Fitting class which is equivalent to
above-mentioned (in introduction) Laue’s definition [4].

Definition 1.2. Let F and X be Fitting classes such that F ⊆ X ⊆ FS. We call
the Fitting class F an X-normal or normal in X if for any group G ∈ X its F-injector
is a normal subgroup of G. We denote this by F ⊳ X.

The following example gives a construction procedure of wide family of
X-normal Fitting classes.

Example 1.3. Let F be any non-empty Fitting class and X = FN where N is the
class of all nilpotent groups. Then for any group G ∈ X its F-injector V = GF.
In fact since G/GF is nilpotent, then V/GF is a subnormal subgroup of G/GF.
Therefore V is subnormal in G and V = GF.

We shall use the result by J. Tits.

Lemma 1.4. ([2, Lemma A 1.2]) Let U , V and W be subgroups of a group G.
Then the following statements are equivalent:

(a) U
⋂
VW = (U

⋂
V )(U

⋂
W );

(b) U
⋂
UW = U(V

⋂
W ).

2. The main result

Remind that a Fitting class F is called a Fischer class if G ∈ F, K ⊳ G,
K ⊆ H ⊆ G and H/K is a p-group (p is a prime number) implies H ∈ F.

Theorem 2.1. Let X be a Fisher class and {Fi | i ∈ I} be the set of X-normal
Fitting classes. If F =

⋂
i∈I Fi and F ⊆ X ⊆ FS, then F is an X-normal Fitting

class.

Proof. We proceed by induction on the order of groups in X. Suppose that the
theorem fails to hold. Let G ∈ X be a counter example of minimal order. Since
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G/GF is soluble by hypothesis then by Lemma 1.1 there exist F-injectors in G.
Let V be an F-injector of G, such that V is not normal in G. Since F ⊆ Fi for all
i ∈ I, then GF ⊆ GFi

and by the isomorphism G/GF/GFi
/GF

∼= G/GFi
, we have

G/GFi
is soluble.

Consequently by Lemma 1.1 there exists an Fi-injector Vi in G. By hypothesis
Vi ⊳ G for all i ∈ I. Therefore

⋂
i∈I Vi ⊳ G. Evidently

⋂
i∈I Vi ∈ F. Hence

⋂
i∈I Vi ⊆

GF.
On the other hand for every i ∈ I we have the inclusion

GF ⊆ GFi
= Vi.

Consequently GF =
⋂

i∈I Vi and
⋂

i∈I Vi ⊂ V .
Let M be an arbitrary maximal normal subgroup of G. Since V is an F-injector

of G then the subgroup V
⋂
M is an F-injector of the group M . Then since M ∈ X

it follows that V
⋂
M ⊳M by induction.

We obtain V
⋂
M = MF = GF

⋂
M . Hence for any maximal normal subgroup M

of G we have

(1) V
⋂

M =

(⋂

i∈I

Vi

)⋂
M.

We note that V is not contained in any subnormal subgroup N of G. If this
assertion fails to hold i.e. V ⊆ N ⊳ ⊳G then there exists an F-injector in N .
By Lemma 1.1 the subgroup V is an F-injector of N . Then by induction V ⊳ N .
Therefore V ⊳⊳G and V = GF. A contradiction because V is not normal subgroup
of G.

We show that G = RV for any normal subgroup R of G such that G/R is
nilpotent. Let RV 6= G. Then a subgroup RV/R is subnormal in G/R. Hence RV
is subnormal in G. Consequently V is contained in the subgroup H = RV and
H ⊳ ⊳G, a contradiction.

Now we prove that G is comonolithic. Let G be not comonolithic and M1 and
M2 be maximal normal subgroups of G. Without loss of generality we consider
M1 ⊇ GF and M2 6⊇ GF. Then G = M2GF. Besides M1 ⊇ GF and G ∈ FS.
It follows that G/M1 is nilpotent. From above G = VM1. Consequently by the
isomorphisms G/M1

∼= V/(V
⋂
M1) and G/M2

∼= V/(V
⋂
M2) the subgroups

V
⋂
M1 and V

⋂
M2 are maximal normal of V .

Suppose V
⋂
M1 6= V

⋂
M2. Then V = (V

⋂
M1)(V

⋂
M2). Hence by (1)

V =

((⋂

i∈I

Vi

)⋂
M1

)((⋂

i∈I

Vi

)⋂
M2

)
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and V ⊆ GF. Consequently V = GF. A contradiction because the subgroup V is
not normal in G. Therefore V

⋂
M1 = V

⋂
M2. Then

G/M1
∼= V/V

⋂
M1 = V/V

⋂
M2

∼= G/M2

and G/M2 ∈ N. Thus the group G/(M1

⋂
M2) is nilpotent. Hence G =

V (M1

⋂
M2). From the other hand G = VM1

⋂
VM2. Consequently

V
(
M1

⋂
M2

)
= VM1

⋂
VM2.

By Lemma 1.2 we have the equality

V =
(
V
⋂

M1

))
V
⋂

M2

)
= V

⋂
M1.

It follows that V ⊆ M1. A contradiction because V is not contained in any subnor-
mal subgroup of G. Thus M1 = M2 = M and G is comonolithic. Consequently for
every i ∈ I we have Vi ⊆ M . Hence by (1)

(2) V
⋂

M =
⋂

i∈I

Vi.

Then by the isomorphism

G/M ∼= V/

(⋂

i∈I

Vi

)

the group V/(
⋂

Vi) is cyclic of prime order p.
Now we show ViV 6= G for some i ∈ I. Suppose for any i ∈ I the equality

holds ViV = G. If for all j ∈ I we have Vj = G then G ∈ F and G is an
F-injector for itself. Hence G = V ⊳G. A contradiction because V is not normal in
G. Consequently Vj 6= G for some j ∈ I. Since by hypothesis Vj ⊳ G then

G/Vj
∼= V/V

⋂
Vj .

By the equality (2)

V
⋂

Vj ⊆ V
⋂

M =
⋂

i∈I

Vi ⊆ Vj

⋂
V.

Then Vj

⋂
V =

⋂
i∈I Vi. Since V/(

⋂
i∈I Vi) ∼= G/Vj it follows that G/Vj is a cyclic

group of prime order p. Hence Vj is a maximal normal subgroup of G. Therefore
Vj = M .

It is easily seen that Vj ∈ F =
⋂

i∈I Fi. In fact if for i 6= j (i ∈ I) we have
Vi 6= G then we analogously conclude Vi = M = Vj and Vj ∈ Fi.
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If Vi = G then Vj ⊳ Vi ∈ Fi and Vj ∈ Fi. Consequently Vj ∈ Fi for all i 6= j.
Therefore Vj ∈ F. Hence Vj ⊆ GF ⊆ V . By hypothesis VjV = G and we obtain
V = G and G ∈ F. A contradiction because V is not normal in G.

Thus there exists i ∈ I such that ViV 6= G. We prove that ViV ∈ X.
In fact since a group V = V/(

⋂
i∈I Vi) is simple then its normal subgroup

(V
⋂
Vi)/(

⋂
i∈I Vi) either coincides with V or (V

⋂
Vi)/(

⋂
i∈I Vi) is the identity

group. In the first case we have V = V
⋂
Vi ⊆ Vi. A contradiction because V is not

contained in any subnormal subgroup of G. Thus we conclude V
⋂
Vi =

⋂
i∈I Vi.

Then by the isomorphism ViV/Vi
∼= V/V

⋂
Vi the group ViV/Vi is a p-group.

Consequently since G ∈ X and X is a Fischer class if follows that ViV ∈ X. We
have |ViV | < |G| and by Lemma 1.1 V is an F-injector of ViV . Hence by induction
V ⊳ViV . Since V ∈ Fi then V ⊆ (ViV )Fi

. By Lemma 1.1 Vi is an Fi-injector of ViV .
Hence (ViV )Fi

= Vi. Thus V ⊆ Vi. A contradiction because V is not contained in
any subnormal subgroup of G. The contradiction indicates that F is an X-normal
Fitting class. The theorem is proved.

We note by [1, Theorem 5.1] that every non-identity S-normal Fitting class
contains the class of all nilpotent groups N. Therefore in the case X = S we have
the Blessenohl–Gaschütz’s result.

Corollary 2.2. [1, Theorem 6. 2] In the set of all non-identity normal Fitting
classes there exists a unique minimal element by inclusion.
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A NOTE ON BINOMIAL COEFFICIENTS AND
EQUATIONS OF PYTHAGOREAN TYPE

László Szalay (Sopron, Hungary)

Dedicated to the memory of Professor Péter Kiss

Abstract. The aim of this paper is to solve three diophantine equations of Pythagorean
type.

1. Introduction

In [1] Luca determined all consecutive binomial coefficients satisfying the equation

(
n

k

)2

+

(
n

k + 1

)2

=

(
n

k + 2

)2

.

His nice work leads to those Fibonacci numbers which are square or twice a square.
In this note we apply Luca’s method to find all the solutions (n, k) of

(1) a

(
n

k

)2

+ b

(
n

k + 1

)2

=

(
n

k + 2

)2

,

where (a, b) = (1, 2) and (a, b) = (2, 1). Moreover, the solutions of the diophantine
equation

(2)

(
n

k

)2

+

(
n+ 1

k

)2

=

(
n+ 2

k

)2

are also provided. The results are the following.

Theorem 1. If n ∈ N, n ≥ 2 and k ∈ N, k ≤ n − 2 satisfy equation (1) with
(a, b) = (1, 2) then (n, k) = (14, 4).

Theorem 2. Equation (1) with (a, b) = (2, 1) has no solution in n ∈ N and k ∈ N
(n ≥ 2 , k ≤ n− 2).

Theorem 3. If n ∈ N and k ∈ N, k ≤ n satisfy equation (2) then (n, k) = (3, 1).



174 L. Szalay

Obviously, one can gain similar type of results as Theorem 1–3 if the symmetry
of Pascal triangle is considered. For the proofs we follow paper [1] and go into
details in only one case. The general case (1) seems to be more complicated. Even
if a = 1 or b = 1, though the analogous equation to (6) exists, but the corresponding
equation (11) or (12) is more difficult, where one should determine special figurate
numbers in second order recurrences.

At the end of this paper we summarize some computational results in case
1 ≤ a, b ≤ 25.

2. Proofs

Proof of Theorem 1. If (a, b) = (1, 2) then equation (1) in natural numbers n
and k leads to

(3) (y + 1)
2 (

y2 + 2x2
)
= x2 (x− 1)

2
,

where y = k + 1 and x = n − k are positive integers. Equation (3) implies that
y2 + 2x2 is a square. It is well known (see, for example, [3]), that all the solutions
of the diophantine equation y2 + 2x2 = z2 in positive integers x, y and z can be
expressed as

(4) y = d
∣∣u2 − 2v2

∣∣ , x = 2duv, z = d
(
u2 + 2v2

)
,

with the conditions d, u, v ∈ Z+, gcd(u, v) = 1 and u ≡ 1 (mod 2). It is easy to
see that gcd(u2 + 2v2, 2uv) = 1. Therefore the consequence

(5)
(
d|u2 − 2v2|+ 1

) (
u2 + 2v2

)
= 2uv (2duv − 1)

of equation (3) together with (4) implies that

(6) e =
2duv − 1

u2 + 2v2
=

d|u2 − 2v2|+ 1

2uv

is a positive integer. The system of two linear equations

(7)
(u2 + 2v2)e − (2uv)d = −1

(2uv)e − |u2 − 2v2|d = 1

}
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in variables e and d has a unique solution, namely

(8)

{
e =

|u2 − 2v2|+ 2uv

D
, d =

u2 + 2v2 + 2uv

D

}

with

D = −(u2 + 2v2)|u2 + 2v2|+ 4u2v2 = ±
(
u4 − 4v4

)
+ 4u2v2.

Obviously, D is odd. If D has an odd prime divisor p then by (8) we conclude
that p divides both |u2 − 2v2| + 2uv and u2 + 2v2 + 2uv. But this is impossible
because gcd(u, v) = 1. Consequently |D| = 1. Here we must distinguish two cases.
Depending on the sign of u2 − 2v2 either

(9) 4D =
(
2u2 + 4v2

)2 − 8
(
u2

)2
= ±4,

or

(10) 4D =
(
2u2 + 4v2

)2 − 8
(
2v2

)2
= ±4.

Both cases are connected with the Pell sequence {Pn}∞n=0 defined by Ps = 2Ps−1+

Ps−2, P0 = 0, P1 = 1, and its associate sequence {Rn}∞n=0 given by the same
recurrence relation and having initial values R0 = R1 = 2. These recurrences
provide all the solutions of the equation X2 − 8Y 2 = ±4. Therefore, by (9) or (10)
it follows that

{
Ps = u2 , Rs = 2u2 + 4v2

}

or, in the second case

{
Ps = 2v2, Rs = 2u2 + 4v2

}
.

Fortunately, the squares and twice a squares have already been determined in the
Pell sequence (see [2] and [4]):

(11)
Ps = u2 ⇔ (s, u) = (0, 0); (1, 1); (7, 13);
Ps = 2v2 ⇔ (s, v) = (0, 0); (2, 1).

}

Among them only (s, v) = (2, 1) provides a solution of the original problem,
namely (n, k) = (14, 4).
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Proof of Theorem 2. This proof is very similar to the previous one, therefore we
only indicate the crucial point of it. Equation (1) with (a, b) = (2, 1) and later by
y = k + 1 = 2duv, x = n− k = d|u2 − 2v2| implies that

D =
(
u2 + 2v2 − uv

)2 − (3uv)
2
= ±1,

which contradicts that u, v ∈ Z+.

Proof of Theorem 3. Apply again the procedure of Luca. Equation (2) implies
that

(12) (y + 1)
2 (

y2 + x2
)
= x2 (x+ 1)

2

with x = n, y = n − k. The unknowns x and y are two entries of a Pythagorean
triple, hence we have two cases. If

x = 2duv, y = d(u2 − v2)

(d, u, v ∈ Z+, gcd(u, v) = 1, u ≥ v and u 6≡ v (mod ()2) then (12) leads to

(
4u2 + 2v2

)2 − 5
(
2u2

)2
= ±4,

otherwise, if we interchange the role of x and y in the equation x2 + y2 = z2, it
follows that

(
2u2 + 2v2 − 2uv

)2 − 5 (2uv)
2
= ±4.

As in [1], we must know the square and twice a square Fibonacci numbers. In the
first case Fs = 2u2, Ls = 4u2 + 2v2 provide the only solution (n, k) = (3, 1). From
Fs = 2uv, Ls = 2u2 + 2v2 − uv we conclude that Fs−1 = (u − v)2 and it gives no
more binomial coefficients satisfying (2) (see [1].

Computational results

If 1 ≤ a, b ≤ 25, applying a simple computer search, we found all the solutions
of equation (1) in the intervals 2 ≤ n ≤ 250, 0 ≤ k ≤ n− 2. The results are shown
in the following table.

a 1 1 1 1 1 2 3 4 4 4 4 5 7 9 9 9 9

b 1 2 7 14 23 8 24 2 5 12 21 1 2 3 6 7 19

n 62 14 43 98 173 26 64 4 19 44 83 14 7 11 6 14 53

k 26 4 10 18 28 5 9 0 4 8 13 4 1 2 0 2 8



A note on binomial coefficients and equations of Pythagorean type 177

a 10 11 11 13 13 13 16 16 16 16 16 16 16 17 18 19

b 6 4 14 1 4 23 1 3 4 8 12 13 14 13 2 5

n 43 118 23 25 19 34 7 134 76 19 8 13 28 94 11 43

k 10 33 3 7 4 4 1 38 20 3 0 1 4 18 2 10

a 20 20 22 22 23 25 25 25 25 25 25 25

b 1 11 3 9 1 3 6 8 15 20 22 23

n 4 44 19 89 229 5 14 11 29 10 22 46

k 0 8 4 19 68 0 2 1 4 0 2 6
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RELATIONSHIPS BETWEEN TRANSLATION AND
ADDITIVE RELATIONS

Árpád Száz (Debrecen, Hungary)

Dedicated to the memory of Professor Péter Kiss

Abstract. According to our former papers, a relation F on a groupoid X is called a
translation relation if x+F (y)⊂F (x+y) for all x,y∈X. Moreover, a relation F on one groupoid X

to another Y is called an additive relation if F (x)+F (y)⊂F (x+y) for all x,y∈X.

In particular, a reflexive additive relation on a groupoid is a translation relation. Moreover,
translation relations play important roles in the extensions and uniformizations of semigroups
and groups, respectively. Therefore, it is of some interest to investigate the relationships between
translation and additive relations.

In particular, we show that a normal translation relation on a group is odd (additive) if and
only if it is symmetric (transitive). Moreover, if F is an odd additive relation of one group X into
another Y and S is a translation relation on Y , then R=F−1◦S◦F is a translation relation on X

such that R=F−1◦S◦f for any selection f of F .

A translation relation F on a group X is called normal if F (0)+x⊂x+F (0) for all x∈X.
Moreover, a relation F on one group X to another Y is called odd if −F (x)⊂F (−x) for all x∈X.
In particular, we also show that an additive function on one group to another is odd if and only
if its domain is symmetric.

AMS Classification Number: 04A05, 20L13

Keywords and phrases: Translation, additive and odd relations on groups

1. A few basic facts on relations and groupoids

A subset F of a product set X×Y is called a relation on X to Y . In particular,
the relations ∆X = {(x, x) : x ∈ X} and X2 = X ×X are called the identity and
universal relations on X , respectively.

Namely, if in particular F ⊂ X2, then we may simply say that F is a relation
on X . Note that if F is a relation on X to Y , then F is also a relation on X ∪ Y .
Therefore, it is frequently not a severe restriction to assume that X = Y .

The work has been supported by the grant OTKA T-030082.
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If F is a relation on X to Y , then for any x ∈ X and A ⊂ X the sets
F (x) = {y ∈ Y : (x, y) ∈ F} and F [A] =

⋃
x∈A F (x) are called the images of x and

A under F , respectively. Whenever A ∈ X seems unlikely, we may write F (A) in
place of F [A].

If F is a relation on X to Y , then the values F (x), where x ∈ X , uniquely
determine F since F =

⋃
x∈X{x} × F (x). Therefore, the inverse F−1 of F can be

defined such that F−1(y) =
{
x ∈ X : y ∈ F (x)

}
for all y ∈ Y .

Moreover, if F is a relation on X to Y and G is a relation on Y to Z, then the
composition G ◦F of G and F can be defined such that (G ◦F )(x) = G

(
F (x)

)
for

all x ∈ X . Note that thus we have (G ◦ F )−1 = F−1 ◦G−1.

If F is a relation on X to Y , then the sets DF = F−1(X) and RF = F (X)
are called the domain and range of F , respectively. If in particular X = D

F
(and

Y = R
F
) , then we say that F is a relation of X into (onto) Y .

A relation F on X to Y is called a function if for each x ∈ D
F

there exists
y ∈ Y such that F (x) = {y}. In this case, by identifying singletons with their
elements, we usually write F (x) = y in place of F (x) = {y}.

If F is a relation on X to Y , then a function f of D
F

into Y is called a selection
of F if f ⊂ F . In terms of selections, the axiom of choice can be briefly reformulated
by saying that every relation has a selection.

A relation F on X is called reflexive, symmetric and transitive if ∆
F

⊂ F ,
F−1 ⊂ F and F ◦F ⊂ F , respectively. Note that if F is a symmetric relation, then
we actually have F = F−1.

If X is nonvoid set and + is a function of X2 into X , then the ordered pair
X(+) = (X,+) is called a groupoid. In this case, we may also naturally write
x+ y = +(x, y) for all x, y ∈ X .

Moreover, if X is a groupoid, then we may also naturally write A+B =
{
x+y :

x ∈ A, y ∈ B
}

for all A,B ⊂ X . Thus, the family P(X ) of all subsets of X is also
a groupoid.

Note that if X is, in particular, a group, then P(X ) is, in general, only a
semigroup with zero element {0}. However, we can still naturally use the notations
−A = {−x : x ∈ A

}
and A−B = A+ (−B).

A subset A of a groupoid X is called additive and normal if A + A ⊂ A and
A + x ⊂ x + A for all x ∈ X , respectively. Moreover, a subset A of a group X is
called symmetric if −A ⊂ A.

Note that if A is a symmetric set, then we also have A ⊂ −A. Moreover, if A
is a normal subset of a group X , then we also have x + A = x + (A − x) + x ⊂
x+ (−x+A) + x = A+ x for all x ∈ X .
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2. A few basic facts on translation relations

Definition 2.1. A relation F on a groupoid X is called a translation relation if

x+ F (y) ⊂ F (x+ y)

for all x, y ∈ X .

Remark 2.2. Note that thus we have X +D
F
⊂ D

F
. Therefore, D

F
is an ideal of

X whenever F 6= ∅.
Hence, it is clear that D

F
= X+D

F
whenever X has a zero element. Moreover,

D
F
= X whenever X is a group and F 6= ∅ .

Remark 2.3. Moreover, it is also worth mentioning that, by using the notation
xFy instead of y ∈ F (x) , the inclusion x+ F (y) ⊂ F (x+ y) can be expressed by
saying that yFz implies (x+ y)F (x+ z) .

Example 2.4. Clearly, the identity function ∆
X

of a groupoid X is a translation
relation on X .

Moreover, the order relation ≤ of a left-ordered group X [5, p. 127] is, in
particular, a translation relation on X .

Example 2.5. More generally, we can also note that if Y is a subset of a semigroup
X and F is a relation on X such that F (x) = x + Y for all x ∈ X , then F is a
translation relation on X .

Moreover, we can also easily establish the following

Theorem 2.6. If F is a relation on a group X , then the following assertions are
equivalent :

(1) F is a translation; (2) F (x) = x+ F (0) for all x ∈ X .

Proof. If (1) holds, then x+F (0) ⊂ F (x+0) = F (x) and F (x) = x−x+F (x) ⊂
x + F (−x + x) = x + F (0) for all x ∈ X . Therefore, (2) also holds. Moreover, by
Example 2.5, the converse implication (2) =⇒ (1) is also true.

Remark 2.7. In this respect, it is also worth mentioning that if F is a relation
on a group X such that F (x + y) ⊂ x + F (y) for all x, y ∈ X , then we also have
F (x) = x+ F (0) for all x ∈ X . Therefore, F is a translation relation on X .

Example 2.8. If X = [0,+∞] and F is a relation on X such that F (x) = [0, x]
for all x ∈ X , then F is a translation (and a total order) relation on X such that
F (x) 6= x+ F (0) for all x ∈ X \ {0}.

Example 2.9. More generally, we can also note that if p is a function on a group
X to [0,+∞], and moreover r ∈ [0,+∞] and F is a relation on X such that
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F (x) =
{
y ∈ X : p(−x + y) ≤ r

}
for all x ∈ X , then F is a translation relation

on X . Therefore, F (x) = x+ F (0) for all x ∈ X .
Concerning translation relations, we shall also need the following theorems

which have been mostly proved in [13].

Theorem 2.10. If F is a relation on a groupoid X, then the following assertions
are equivalent :

(1) F is a translation ; (2) ∆
X
+ F ⊂ F .

Remark 2.11. If F is a translation relation on a groupoid X with a zero element,
then the equality F = ∆

X
+ F is also true.

Theorem 2.12. If F is a translation relation on a groupoid X and A,B ⊂ X , then

A+ F (B) ⊂ F (A+B).

Moreover, if X is a group, then the corresponding equality is also true.

Remark 2.13. In this respect, it is also worth noticing that if F is a normal
translation relation on a group X in the sense that F (0) is a normal subset of X ,
then we also have F (A+B) = F (A) +B.

Theorem 2.14. If F is a translation relation on a groupoid X , then F−1 is also a
translation relation on X .

Theorem 2.15. If F is a normal translation relation on a group X and A ⊂ X ,
then

F−1(A) = −F (−A).

Remark 2.16. The equality F−1(0) = −F (0) is true even if the translation relation
F is not normal.

Theorem 2.17. If F and G are translation relations on a groupoid X , then G ◦F
is also a translation relation on X .

Theorem 2.18. If F is a normal and G is an arbitrary translation relation on a
group X and A,B ⊂ X , then

(G ◦ F )(A+B) = F (A) +G(B).

Remark 2.19. The equality (G ◦ F )(0) = F (0) + G(0) is true even if F is an
arbitrary relation on X .

Moreover, the equality (G◦F )(A) = F (A)+G(0) is true even if the translation
relation F is not normal.

Therefore, under the conditions of Theorem 2.18, we also have (G ◦ F )(x) =
(F ◦G)(x) for all x ∈ X , and hence G ◦ F = F ◦G.
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3. A few basic facts on additive relations

Definition 3.1. A relation F on one groupoid X to another Y is called additive
if

F (x) + F (y) ⊂ F (x+ y)

for all x, y ∈ X .

Remark 3.2. Note that thus we have D
F
+ D

F
⊂ D

F
. Therefore, D

F
is a

subgroupoid of X whenever F 6= ∅.

Remark 3.3. Moreover, it is also worth noticing that, by using the notation xFy
instead of y ∈ F (x), the inclusion F (x) + F (y) ⊂ F (x + y) can be expressed by
saying that xFz and yFw imply (x + y)F (z + w).

Example 3.4. Note that the order relation ≤ of an ordered group X [3, p. 9] is,
in particular, an additive relation on X .

Example 3.5. More generally, we can also note that if X is a groupoid and Z is
an additive and normal subset of a semigroup Y , and moreover f is an additive
function on X to Y and F is a relation on X to Y such that F (x) = f(x) + Z for
all x ∈ X , then F is an additive relation on X to Y .

Moreover, we can also easily establish the following

Theorem 3.6. If F is an additive relation on one group X to another Y and f is
a selection for F such that −f(x) ∈ F (−x) for all x ∈ D

F
, then for all x ∈ D

F
we

also have
F (x) = f(x) + F (0).

Proof. Namely, we evidently have f(x) + F (0) ⊂ F (x) + F (0) ⊂ F (x) and

F (x) = f(x)− f(x) + F (x) ⊂ f(x) + F (−x) + F (x) ⊂ f(x) + F (0)

for all x ∈ X . Therefore, the required equality is also true.

Remark 3.7. Quite similarly, we can also prove that F (x) = F (0) + f(x) for all
x ∈ D

F
.

Example 3.8. If X and F are as in Example 2.8, then F is an additive relation
on X such that for any function f of X and Z ⊂ X , with F (0) = f(0) + Z, we
have F (x) 6= f(x) + Z for all x ∈ X \ {0}.

Example 3.9. More generally, we can also note that if X = [0,+∞], p is a
subadditive function on a groupoid Y to X , and F is a relation on X to Y such
that F (x) =

{
y ∈ Y : p(y) ≤ x

}
for all x ∈ X , then F is an additive relation on

X to Y .
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Concerning additive relations, we can also easily prove the following counter-
parts of the corresponding results of [14].

Theorem 3.10. If F is a relation on one groupoid X to another Y , then the
following assertions are equivalent:

(1) F is additive ; (2) F + F ⊂ F .

Theorem 3.11. If F is an additive relation on one groupoid X to another Y and
A,B ⊂ X , then

F (A) + F (B) ⊂ F (A+B).

Theorem 3.12. If F is an additive relation on one groupoid X to another Y , then
F−1 is an additive relation on Y to X .

Theorem 3.13. If F is an additive relation on one groupoid X to another Y and
G is an additive relation on Y to a groupoid Z, then G ◦ F is an additive relation
on X to Z.

The relationship between translation and additive relations can be cleared up
by the following

Theorem 3.14. If F is a normal translation relation on a group X , then the
following assertions are equivalent :

(1) F is additive ; (2) F is transitive.

Proof. If (1) holds, then by Remark 2.19 we have (F ◦F )(x) = F (x)+F (0) ⊂ F (x)
for all x ∈ X even if F is not normal. Therefore, F ◦ F ⊂ F , and thus (2) also
holds.

While, if (2) holds, then by Theorem 2.18 we have F (x)+F (y) = (F ◦F )(x+
y) ⊂ F (x+ y) for all x, y ∈ X . Therefore, (1) also holds.

Remark 3.15. Quite similarly, we can also prove that a translation relation F on
a group X is transitive if and only if the set F (0) is additive.

Moreover, in addition to Theorem 3.14, it is also worth noticing that a reflexive
and additive relation F on a groupoid X is a translation relation.

4. A few basic facts on odd relations

Definition 4.1. A relation F on one group X to another Y is called odd if

−F (x) ⊂ F (−x)

for all x ∈ X .
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Remark 4.2. Note that thus we have −D
F
⊂ D

F
. Therefore, D

F
is a symmetric

subset of X , and we have D
F
= −D

F
.

Remark 4.3. Moreover, it is also worth noticing that, by using the notation xFy
instead of y ∈ F (x), the inclusion −F (x) ⊂ F (−x) can be expressed by saying that
xFy implies (−x)F (−y).

Example 4.4. Note that the order relation ≤ of an ordered group X is odd if and
only if ≤ coincides with ∆

X
.

Concerning odd relations, we can also easily prove the following theorems.

Theorem 4.5. If F is a relation on one group X to another Y , then the following
assertions are equivalent :

(1) F is odd; (2) −F = F .

Theorem 4.6. If F is an odd relation on one group X to another Y and A ⊂ X ,
then

F (−A) = −F (A).

Proof. If y ∈ −F (A), then −y ∈ F (A). Therefore, there exists x ∈ A such
that −y ∈ F (x). Hence, we can already see that y ∈ −F (x) ⊂ F (−x) ⊂ F (−A).
Therefore, −F (A) ⊂ F (−A).

Now, by writing −A in place of A, we can also see that −F (−A) ⊂ F (A), and
hence F (−A) ⊂ −F (A) is also true.

Theorem 4.7. If F is an odd relation on one group X to another Y , then F−1 is
an odd relation on Y to X .

Theorem 4.8. If F is odd relation on one group X to another Y and G is an odd
relation on Y to a group Z, then G ◦ F is an odd relation on X to Z.

The relationship between odd and translation relations can be cleared up by
the following

Theorem 4.9. If F is a normal translation relation on a group X , then the
following assertions are equivalent :

(1) F is odd; (2) F is symmetric.

Proof. If (1) holds, then by Theorems 2.15 and 4.6 we have F−1(x) = −F (−x) =

−
(
−F (x)

)
= F (x) for all x ∈ X . Therefore, F−1 = F , and thus (2) also holds.

While, if (2) holds, then only by Theorem 2.15 we have −F (x) = −F−1(x) =

−
(
−F (−x)

)
= F (−x) for all x ∈ X . Therefore, (1) also holds.

Remark 4.10. Quite similarly, we can also prove that a translation relation F on
a group X is symmetric if and only if the set F (0) is symmetric.

Concerning the relationship between odd and additive relations, we can only
prove the following theorems.
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Theorem 4.11. If F is an additive relation on one group X to another Y and f
is an odd selection for F , then for all x ∈ D

F
we have

F (x) = f(x) + F (0).

Proof. Namely, −f(x) = f(−x) ∈ F (−x) for all x ∈ DF . Therefore, Theorem 3.6
can be applied.

Theorem 4.12. If f is an additive function on one group X to another Y , then
the following assertions are equivalent:

(1) f is odd; (2) Df is symmetric.

Proof. By Remark 4.2, it is clear that the implication (1)=⇒(2) is true even if f
is not additive.

Moreover, if (2) holds, then for any x ∈ Df , we also have −x ∈ Df . Hence, by
the additivity of f , it follows that f(x)+ f(−x) = f(0). Now, by writing 0 in place
of x, we can see that f(0)+ f(0) = f(0), and thus f(0) = 0. Therefore, we actually
have f(x) + f(−x) = 0, and hence −f(x) = f(−x). That is, (1) also holds.

Example 4.13. If X is a group and Z is an additive and normal subset of a group
Y , and moreover f is an additive function on X to Y , with a symmetric domain,
and F is a relation on X to Y such that F (x) = f(x) + Z for all x ∈ X , then F is
an odd additive relation on X to Y .

5. A few basic facts on odd additive relations

Theorem 5.1. If F is a nonvoid odd additive relation on one group X to another
Y , then 0 ∈ F (0).

Proof. Since F 6= ∅, there exist x ∈ X and y ∈ Y such that y ∈ F (x). Hence,
by the assumed properties of F , it is clear that 0 = y − y ∈ F (x) − F (x) =
F (x) + F (−x) ⊂ F (0).

Corollary 5.2. If F is an odd additive relation on one group X to another Y and
f is a function of D

F
into Y such that F (x) = f(x) + F (0) for all x ∈ D

F
, then f

is a selection for F .

Theorem 5.3. If F is an odd additive relation on one group X to another Y and
f is a selection for F , then for all x ∈ DF we have

F (x) = f(x) + F (0).

Proof. Namely, −f(x) ∈ −F (x) = F (−x) for all x ∈ DF . Therefore, Theorem 3.6
can be applied.



Relationships between translation and additive relations 187

Theorem 5.4. If F is an odd additive relation on one group X to another Y and
A ⊂ D

F
and B ⊂ X , then

F (A+B) = F (A) + F (B).

Proof. Since A ⊂ D
F
, for each x ∈ A there exists y ∈ F (x). Hence, by Theorem

3.11, it is clear that

F (x+B) = y − y + F (x+B) ⊂ F (x)− F (x) + F (x+B)

= F (x) + F (−x) + F (x+B) ⊂ F (A) + F (−x+ x+B) = F (A) + F (B).

Therefore, we also have

F (A+B) = F

(⋃

x∈A

(x+B)

)
=

⋃

x∈A

F (x+B) ⊂ F (A) + F (B).

Thus, by Theorem 3.11, the corresponding equality is also true.

Remark 5.5. If A ⊂ X and B ⊂ DF , then we can quite similarly see that the
equality F (A+B) = F (A) + F (B) is also true.

Example 5.6. If F = ∆∆R , then F is a linear relation on R2. Moreover, if A =
R× {0} and B = {0} ×R, then

F (A+B) = ∆R, but F (A) + F (B) = {(0, 0)}.

Remark 5.7. A relation F on one vector space X to another Y over the same
field K is called linear [15] if in addition to the additivity of F we also have
λF (x) ⊂ F (λx) for all λ ∈ K and x ∈ X .

6. Projective generation of translation relations

Theorem 6.1. If F is an additive relation of one groupoid X into another Y and
S is a translation relation on Y , then R = F−1 ◦ S ◦ F is a translation relation on
X .

Proof. If x, y ∈ X and z ∈ R(y), then by the corresponding definitions we
also have z ∈

(
F−1 ◦ S ◦ F

)
(y) = F−1

(
S
(
F (y)

))
. Therefore, there exists w ∈

S
(
F (y)

)
such that z ∈ F−1(w), and hence w ∈ F (z). Consequently, we also have

F (z) ∩ S
(
F (y)

)
6= ∅. Hence, since F (x) 6= ∅, it follows that

(
F (x) + F (z)

)
∩
(
F (x) + S

(
F (0)

))
6= ∅.
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Hence, by using that F (x) + F (z) ⊂ F (x+ z) and

F (x) + S
(
F (y)

)
⊂ S

(
F (x) + F (y)

)
⊂ S

(
F (x+ y)

)
,

we can infer that
F (x+ z) ∩ S

(
F (x+ y)

)
6= ∅.

Therefore, there exists ω ∈ S
(
F (x + y)

)
such that ω ∈ F (x + z), and hence

x+ z ∈ F−1(ω). Consequently, we also have

x+ z ∈ F−1
(
S
(
F (x+ y)

))
=

(
F−1 ◦ S ◦ F

)
(x+ y) = R(x+ y).

Therefore, the inclusion x+R(y) ⊂ R(x+ y) is also true.

Theorem 6.2. If F is a relation on one group X to another Y such that

(1) 0 ∈ F (0), (2) −F (0) ⊂ F (0),

(3) F (0) + F (x) ⊂ F (x) for all x ∈ X ,

and S is a translation relation on Y , then

F−1
(
S(0)

)
= F−1

(
S
(
F (0)

))
.

Proof. Because of hypothesis (1), we evidently have S(0) ⊂ S
(
F (0)

)
, and hence

F−1
(
S(0)

)
⊂ F−1

(
S
(
F (0)

))
.

To prove the converse inclusion, note that if x ∈ F−1
(
S
(
F (0)

))
, then there

exists y ∈ S
(
F (0)

)
such that x ∈ F−1(y), and hence y ∈ F (x). Moreover, there

exists z ∈ F (0) such that y ∈ S(z). Hence, by using the translation property of S,
we can see that

−z + y ⊂ −z + S(z) ⊂ S(−z + z) = S(0).

Moreover, by using hypotheses (2) and (3), we can see that

−z + y ∈ −F (0) + F (x) ⊂ F (0) + F (x) ⊂ F (x),

and hence x ∈ F−1(−z + y). Therefore, we also have x ∈ F−1
(
S(0)

)
.

Corollary 6.3. If F is an odd additive relation on one group X to another Y and
S is a translation relation on Y , then F−1

(
S(0)

)
= F−1

(
S
(
F (0)

))
.

Proof. If F = ∅, then the required assertion trivially holds. While, if F 6= ∅, then
by Theorem 5.1 we have 0 ∈ F (0). Thus, Theorem 6.2, can be applied.

Theorem 6.4. If F is an odd additive relation on one group X to another Y and
S is a translation relation on Y , then for any selection f of F we have

F−1 ◦ S ◦ f = F−1 ◦ S ◦ F.
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Proof. In this case, by Theorems 4.7 and 3.12, it is clear that F−1 is an odd
additive relation on Y to X . Moreover, by using Theorems 3.11, 5.3 and 5.4 and
Corollary 6.3, we can see that

(
F−1 ◦ S ◦ f

)
(x) = F−1

(
S
(
f(x)

))
= F−1

(
f(x) + S(0

))

= F−1
(
f(x)

)
+ F−1

(
S(0)

)
= F−1

(
f(x)

)
+ F−1

(
S
(
F (0)

))

= F−1
(
f(x) + S

(
F (0)

))
= F−1

(
S
(
f(x) + F (0)

))

= F−1
(
S
(
F (x)

))
=

(
F−1 ◦ S ◦ F

)
(x)

for all x ∈ DF . Therefore, the required equality is also true.

Remark 6.5. If F and S are in Theorem 6.4, then as a more direct generalization
of Corollary 6.3, we can also prove that F−1

(
S(y)

)
= F−1

(
S
(
F (x)

))
for all x ∈ D

F

and y ∈ F (x).

However, the latter statement can also be easily derived from Theorem 6.4
since by the axiom of choice for any x ∈ D

F
and y ∈ F (x) there exists a selection

f of F such that f(x) = y.
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