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Abstract 

The responses of CO2 gas exchange, and heat stability were examined 
in two wheat (Triticum aestivum L.) cultivars and in Aegilops genotypes 
originating from habitats with different annual rainfalls and daily tempera-
tures. Desiccation in soil pots resulted in moderate water loss in Ae. biunciais 
MvGB 377, 382 and Ae. bicornis MvGB 585, parallel with a high degree of 
stomatal closure and significant decrease in the net CO2 fixation (A), while in 
Ae. tauschii MvGB 605, 589 stomatal conductance (gs) and A remained rela-
tively high in the desiccation period, and parallel with this gs and A were more 
tolerant to decrease in RWC than in wheat cultivars and in the above-detailed 
Aegilops genotypes. In spite of this, the decrease of RWC was fast and consid-
erable in Ae. biuncialis MvGB 642, Ae. speltoides MvGB 1042, 624, and in 
Ae. tauschii MvGB 426 with a low degree of stomatal closure but A was 
more tolerant to water loss, especially in Ae. speltoides MvGB 1042. On the 
other hand, higher water deficit (RWC ~75%, 10-14 days drought treatment) 
resulted in a significant increase in the thermal stability of PS II for wheat 
and for some Aegilops genotypes. The results indicate that some Aegilops 
genotypes originating from arid habitats have better drought and desiccation 
induced heat tolerance than wheat, making them appropriate for improving 
the heat tolerance of wheat to survive dry and hot periods in the field. 

Keywords: drought stress, thermal tolerance, photosynthesis, wheat, 
Aegilops sp. 

Introduction 

Aegilops species with good tolerance to some major abiotic stress fac-
tors are closely related to wheat (Van Slageren 1994) and widely used as 
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genetic resources for Triticum species (Molnár et al. 2004). Especially the 
tetraploide goat grass (Aegilops biuncialis L., 2n = 4x = 28, UbUbMbMb) has 
a good drought tolerance, which makes it suitable to improve the drought 
tolerance of wheat (Molnár et al. 2004). In addition, diploide goat grasses, 
such as Ae. tauschii Coss. (DD), Ae. bicornis (SbSb) and Ae. speltoides 
Tausch. (SS) have some other advantages. As the B and D genome donors of 
wheat are the Ae. speltoides and Ae. tauschii genotypes, the chromosome 
mediated gene transfer from these species to hexaploide wheat is easier than 
from Ae. biuncialis. 

Drought and heat are important biomass-limiting stress factors (Berry 
and Björkman 1980, Araus et al. 2002) in the field causing the suppression 
of cultivated plants in growth and in crop production (Blum et al. 1997). 
During drought the water potential (ψ), relative water content (RWC) and 
net photosynthetic CO2 fixation (A) substantially decrease (Bajji et al. 2001, 
Molnár et al. 2004). The reduction of A partially results from the closure of 
stomata due to water deficit, since decrease of stomatal conductance (gs) is 
the most efficient way to reduce water loss, and parallel with this the CO2

 

diffusion into the leaves is restricted, resulting in a decrease in intercellular 
CO2 concentration (Ci) (Cornic 2000). On the other hand, the limitation of 
CO2 fixation during water deficit is also influenced by the diffusion of CO2 
from the intercellular spaces to chloroplasts (Delfine et al. 1999, Loreto et 
al. 2003), and by other metabolic factors such as changes in the activity of 
ribulose-1,5-bisphosphate-carbosilase-oxigenase (Rubisco) and perturbed 
regeneration of ribulose-1,5-bisphosphate, etc (Molnár et al. 2004). 

The heat sensitivity of plants is closely connected to the thermal stabil-
ity of PS II. It is more or less clear that the thermal tolerance of the photo-
synthetic apparatus in some higher plants is influenced by other stress factors 
like light (Havaux and Tardy 1996, Molnár et al. 1998), and by water deficit 
in a desiccation tolerant moss (Dulai et al. 2004). The study of these prob-
lems is further justified by the fact that under natural conditions high light 
intensity, heat stress, and water deficit occur in combination with each other: 
the effects of the three stress factors need to be tolerated at the same time. 

In connection with the above-mentioned facts Aegilops species are na-
tives in the Mediterranean and in arid or semi-arid continental regions, 
which are characterised by hot summers with a low amount of seasonal or 
annual rainfall. On the other hand, physiological acclimation features in 
some measure depend on the climate of the original habitat of plants (Za-
hireva et al. 2001, Bultynck et al. 2003). Since the vegetation period in na-
tive habitats of the examined Aegilops species is dry and hot, these plants 
had to develop various acclimation strategies to drought and to heat. 
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In this paper we compare some physiological responses to drought and 
heat in several Aegilops species originating from different rainfall conditions 
with two wheat genotypes presumably characterised by a different drought 
tolerance to indicate that some of them have better drought and heat toler-
ance than wheat, making them suitable for improving the drought and heat 
tolerance of wheat by intergeneric crossing, enabling it to survive the dry 
and hot periods in the field. 

Materials and Methods 

All experiments were performed on intact leaves or leaf segments of 
Triticum aestivum L. and of Aegilops sp. Seeds were germinated under labo-
ratory conditions. After germination, these plants were grown in 1.5 kg soil 
pots in an unheated greenhouse for 5 weeks under natural sunlight. The wa-
ter deficit was induced by withholding the water supply in the soil. The wa-
ter status of the plants was traced by determining the relative water content 
(RWC). 

The responses of the in vivo chlorophyll a fluorescence to heat were 
measured in dark-adapted leaves with a pulse amplitude modulation fluoro-
meter (PAM 101-103, Walz, Effeltrich, Germany) as described Dulai et al. 
(1998). For the determination of the breakpoints (Tc, and Tp) of the F0 vs. T 
or Fs vs. T curves the heat induction of fluorescence method was applied as 
described by Schreiber and Berry (1977). 

The CO2 assimilation of intact leaves was measured at saturating light 
intensity (1000 µE m-2 s-1) using an infrared gas analyser (ADC LCA-2, 
Analytical Development Co. Ltd, Hoddesdon UK). The rates of net CO2 
fixation (A), stomatal conductance (gs), and intercellular CO2 concentration 
were determined using the equations of von Caemmerer and Faquhar (1981). 

Results and discussion 

Effects of drought stress on the water content of the leaves 

During drought the water balance of plants changes, parallel with which 
the relative water content (RWC) decreases. At the same time, though not to 
the same degree and not with the same RWC values, a change can be ob-
served in certain photosynthetic processes (Chaves et al. 1991, Lawror and 
Uprety 1991, Lawror 1995, Cornic 1994, Cornic and Massacci 1996, Bajji et 
al. 2000), in dry matter production, growth rate and crop production (Blum 
et al. 1997, Frensch 1997, Araus et al. 2002, Molnár et al. 2004). If plants 
are able to hold the water effectively, that is, when the water potential is kept 
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high in the dry period as well, they have a good chance to survive the dry 
period, which however does not mean that the above-mentioned processes 
are not susceptible to the decrease of water content. 

The time dependence of RWC decrease in several Aegilops genotypes 
was considerably different from that of wheat cultivars (Fig. 1). In certain 
genotypes water loss is slower than in wheat, with a significant decrease of 
RWC only after the 9th-10th day, and their water content is significantly higher 
than that of wheat even at the end of the dry period (they are water-
preserving). In some of these lines the originally high stomatal conductance 
(gs) will significantly decrease at a slight water loss (Ae. biunciais MvGB 377, 
382, Ae. bicornis MvGB 585), and stomatal closure, as is well-known, is the 
most efficient way of reducing water loss (Cornic 2000). At the same time, Ae. 
tauschii MvGB 605 and 589, while efficiently keeping water, are not charac-
terised by abrupt stomatal closure; their RWC during drought does not de-
crease drastically, despite the higher gs. As opposed to the ones mentioned 
above, there are four lines in which water loss is faster than in wheat (Ae. bi-
uncialis MvGB 642, Ae. speltoides MvGB 1042, 624, Ae. tauschii MvGB 
426). In these, under normal water conditions gs is lower than in the previous 
group, but decreases less with water loss and can even increase at the begin-
ning of the desiccation period. In this latter group the net assimilation rate (A) 
decreases faster with time than in Mv9Kr1, but is less sensitive to the decrease 
of RWC than in some of the water-preserving plants (Figs 1 and 2). 

Effects of drought stress on the gas exchange parameters 

During water deficit stomatal closure can be observed, parallel with 
which stomatal conductance (gs), the intercellular CO2 level (Ci) and, as a 
result, photosynthetic CO2 fixation decreases (Cornic 2000). As the light 
reactions of photosynthesis is generally influenced only by a more consider-
able water loss, the decrease of A during drought at a given light intensity is 
determined by the activity of the Calvin-Benson cycle and the CO2 supply of 
the Rubisco. The CO2 level at the active site of Rubisco (Cc) is determined 
by the CO2 diffusion between the ambient CO2 (Ca) and the active site of 
Rubisco. This latter is partly determined, through influencing the intercellu-
lar CO2 level, by stomatal conductance (gs), which decreases parallel with 
stomatal closure during drought (Cornic 2000). As a result, intercellular 
CO2/O2 ratio can also change, which leads to an increase of photorespiration, 
and thus in the decrease of CO2-fixation is also influenced by metabolic fac-
tors. 
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Fig. 1 Effects of drought stress on relative water content (RWC, above) and on time 
dependence of net CO2

-2 s-1 light intensity  assimilation rate (A, below) at 1000 E m
for wheat and for Aegilops genotypes. 

In Fig. 1, the time dependence of A during drought stress is represented 
in two groups, which correspond to the dynamics of RWC decrease. The 
group which efficiently keeps water during dehydration is able to maintain 
an acceptable level of A for a longer time, despite the fact that stomatal con-
ductance decreases rapidly during drought treatment in some of the geno-
types (Ae. biunciais MvGB 377, 382, Ae. bicornis MvGB 585, Fig. 3). The 
Ae. tauschii MvGB 605 ands 589 lines are also characterised by a similarly 
satisfactory A, but stomatal conductance is kept higher in these than in the 
others during the drought treatment, despite the fact that their water content 
decresases slowly, as in the genotypes with low gs (Figs. 1 and 3). However, 
while CO2 fixation in the Ae. biunciais MvGB 377, 382, Ae. bicornis MvGB 
585 lines is very sensitive to the decrease of RWC (although it decresases 
slowly), it remains relatively high in Ae. tauschii MvGB 605 and 589 even at 
a lower water content, and in 605 the original rate of fixation is kept up even 
at 65% of RWC (Fig. 2). On the other hand, in the Aegilops lines which are 
characterised by fast water loss, A decreases as rapidly, or even more rap-
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idly, as in the Mv9Kr1 wheat cultivar but is less sensitive to water loss. In 
these lines during drought gs decreases less, compared to the original value 
(Fig. 3), and in Ae. biuncialis MvGB 642 and Ae. speltoides MvGB 1042 it 
incre

ter preservation is probably 
anot

 to the intercellular spaces even at a lower water 
cont

 can be assumed to have a bearing on 
the p

A do not drastically decrease with water loss (Ae. tauschii MvGB 605, 
589)

 for a longer time 
(Ae.

to water loss (Ae. speltoides MvGB 1042 and several 
othe

ently of the change of other parameters (Ae. biuncialis MvGB 
1094).  

ases significantly at a slight RWC decrease. 
Thus in these genotypes different strategies can be presumed on the ba-

sis of the changes of gs and A during drought. When gs is high even during 
water deficit, it limits carbon assimilation less. Although water loss can be 
relatively rapid then, dry matter production is probably acceptable and crop 
production can be fast. On the other hand, wa

her efficent strategy to survive dry periods. 
In water-saturated C3 plants, with environmental CO2 concentration and 

corresponding Ci, at saturating light intensity, A does not reach the maximum 
level which is measurable at saturating CO2 concentration (Amax). Water defi-
cit-induced A decrease can result from stomatal closure or because of meso-
phytic conductance or metabolic factors (such as the perturbed regeneration of 
ribulose-1,5-bisphosphate or the inhibition of the electron transport chain etc.) 
In the first case, Amax can be restored by increasing the ambient CO2 level, 
which is not possible in the case of metabolic limitation. Amax is restored even at 
low RWC values in Ae. tauschii MvGB 605, 589 and Ae. speltoides MvGB 
1042 by the high ambient CO2 level, and as a result A in these lines may be 
limited by the CO2 diffusion

ent (not shown by data). 
In the Aegilops lines studied, on the basis of the changes of A, gs and 

RWC during drought, some strategies
lants’ survival of the dry period. 
Drought-tolerant genotypes: they efficiently preserve water content, but 

gs and 
. 
Water-preserving genotypes: during dehydration RWC slowly decre-

sases, and A and gs decrease rapidly parallel with water loss. CO2 fixation is 
maintained at a reduced rate at low stomatal conductance

 biunciais MvGB 377, 382, Ae. bicornis MvGB 585). 
Water-losing genotypes: RWC decreases rapidly during dehydration. A 

and gs are less sensitive 
r transitory lines).  
Drought-sensitive genotypes: During drought treatment water content 

and CO2 fixation drop rapidly. A is very sensitive to the decreases of RWC, 
independ
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Fig. 2 Effects of decrease in relative water content (RWC) on the net CO2 assimila-
tion rate (A) at 1000 E m-2 s-1 light intensity for wheat and for Aegil genotypes. ops 
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Heat tolerance changes of PS II during drought stress 

The sensitivity of plants to heat stress is closely connected to the ther-
mal stability of PSII, which is well characterized by the critical values of the 
temperature dependence of the initial fluorescence level (F0) of dark-adapted 
leaves (Schreiber and Berry 1977). The heat tolerance of PSII in wheat and 
in Aegilops genotypes determined on the basis of the F0 vs. T curves (practi-
cally in darkness) was not sufficient for tolerating such high temperatures 
that are peculiar to their original habitats (not shown by data) coupled with 
high irradiation and drought. Similarly to F0, the breakpoints (Tc, Tp) of tem-
perature dependence of steady state fluorescence (Fs) – according to recent 
results – appropriately show the thermal stability of samples with a steady-
state photosynthesis level (Molnár et al. 1998, Dulai et al. 2004). In connec-
tion with this, Tc values of Fs vs. T curves measured at moderately high AL 
intensity (1000 µE m-2 s-1) are shifted towards significantly higher tempera-
tures (42-45 oC), indicating the higher thermal tolerance of PSII for wheat 
cultivars and for goat grasses (not shown by data). 
Table 1 Effect of water deficit on the breakpoints (Tc) of the Fs vs. T curves at 1000 

E m-2 s-1 actinic light (AL) intensity. Tc0, Tc values of non-stressed plants; Tc1, Tc 
values measured at the end of the dry period. 

Species, genotypes Tc0(1000 µE) Tc1 (1000 µE) 
Mv9Kr1 44.9±0.115 49,0±0.000 
Plaismann 45.3±0.115 47,5±0.500 
Ae. biuncialis 382 44.5±0.000 49,0±0.000 
Ae. tauschii 589 44.5±0.000 49,7±0.577 
Ae. tauschii 605 45.0±0.000 51,0±0.500 
Ae. bicornis 585 45.8±0.289 48,0±0.000 
Ae. biuncialis 377 44.0±0.000 46,0±0.000 
Ae. biuncialis 470 44.0±0.000 46,2±0.289 
Ae. biuncialis 642 45.3±0.289 45,0±0.000 
Ae. biuncialis 1094 45.0±0.000 48,0±0.000 
Ae. biuncialis 1112 45.5±0.000 44,7±0.289 
Ae. tauschii 363 41.3±1.768 40,5±3.464 
Ae. tauschii 426 44.8±0.354 44,8±0.289 
Ae. speltoides 1042 46.5±0.707 49,0±0.000 
Ae. speltoides 621 43.5±0.707 44,8±0.577 

 
owever, during drought the relative water content and the activityH  of 
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increa
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some photosynthetic processes decrease there are observations to the effect 
 higher plants the slow dehydration of removed leaves resulted in an 
se of the thermal stability of PS II (Havaux 1992). To select the prom-
egilops genotypes with high to
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thermal stability of PSII was examined. The three-day drought treatment did 
fect a considerable water loss in leaves and parallel with this a signifi-not ef

s not observable. Whereas heat sensi-
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compa  1). This enhanced thermal stability 
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eat resistance: comparative investigation of chlorophyll fluorescence 

changes and tissue necrosis methods. Oecologia 63, 256–262. 

cant heat-tolerance increase of PS II wa
tivity during the drought increased in three Aegilops genotypes, as a result of 

 water deficit (RWC<75%), in wheat cultivars and in most goat 
-2 -1grasses with steady-state photosynthesis at 1000 µmol m  s  AL intensity 

the critical values of the Fs vs. T curves were shifted significantly higher, 
red to the unstressed plants (Table

was more or less also manifested by the temperature dependence of the ef-
e quantum yield of PSII (not shown by data). These phenotypic plastic-
anges (Table 1) to heat were most remarkable for three goat 

originating from arid habitats (Ae. biuncialis MvGB 382, Ae. tauschii MvGB 
d Ae. tauschii MvGB 605).  
n the basis of the results presented it seems that, although parallel with 

different water loss and stomatal closure, Ae. tauschii MvGB 589, 605, Ae. 
speltoides MvGB 1042 Ae. bicornis MvGB 585 and Ae. biuncialis MvGB 

re able to maintain a sufficient CO  fixation and, at the same time, a 
high heat tolerance of the photosynthetic apparatus during drought. These 

ties make them a good candi
tolerance of wheat by intergeneric crossing, to effectively survive the fore-

 dry and hot periods in the fields of central Europe. 
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