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Chapter1

Introduction

MathML (Mathematical Markup Language) is a markup language for describing math expressions.

MathML consists of two set of elements: Presentation Markup and Content Markup. The former

describes layout structure of math expressions, and is widely used to display math expressions in

Web pages. On the other hand, the latter describes semantic structure of math expressions, and

is suited to automatic calculation of math expressions. One of the challenging problem related to

Presentation MathML is classification, i.e., given a MathML expression e, identify the class (e.g.,

hypergeometric function, bessel-type function, etc.) that e belongs to. If we can identify the class

of a given Presentation MathML expression automatically, it is helpful for various applications, e.g.,

Presentation to Content MathML conversion, text-to-speech, and so on.

In the notation of math expressions, a token may have multiple meanings. We give two expressions

as an example.

Cn =
1

n+ 1

(
2n

n

)
(1.1)

C(x) =

∫ x

0

cos(t2) dt (1.2)

(1.1) represents nth Catalan number. C is denoted as <mi>C</mi> in Presentation MathML and

<ci>Catalan</ci> in Content MathML. (1.2) represents Fresnel integral. As with (1.1), C is de-

noted as <mi>C</mi> in Presentation MathML but <ci>FresnelC</ci> in Content MathML. In the

categories of The Wolfram Functions Site[8], (1.1) may belong to Constants and (1.2) may belong

to Gamma, Beta, Erf. When converting from Presentation to Content MathML, it is necessary to

distinguish such discrimination of meaning appropriately. It is considered that such conversion can

be possible by classification of Presentation MathML expressions.

In this thesis, we propose a classification method for Presentation MathML expressions. Our

method classifies MathML expressions by using multilayer perceptron, which is a kind of deep learn-

ing model having a simple structure. The difficulty in taking such an approach is that the size

of MathML expressions are arbitrary, while multilayer perceptron requires input of fixed length.

Thus, it is impossible to input MathML expressions to multilayer perceptron directly. To address
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this problem, our method converts a Presentation MathML expression into a fixed length vector,

which is based on binary branch vector [9]. We train a multilayer perceotron by using such vectors

and classify MathML expressions by the multilayer perceptron. Experimental results show that our

method classifies math expressions with high accuracy.

Related Work

Kim et al. [1] proposed a classification method for Presentation MathML expressions. They extract

features from math expressions and classify them by using support vector machine (SVM). They use

labels of nodes and contiguous sequence of leaf nodes as a feature, in which parent-child relationships

of tree structures are not considered. A drawback of SVM is that SVM requires proper features which

must be extracted and selected according to characteristics of data manually. On the other hand,

deep learning (e.g., multilayer perceptron) can extract features automatically from input data.

There are some researches on semantic enrichment from math expressions [6, 3, 5, 4]. The method

proposed in [6] extracts semantic meaning of math identifiers from math expressions and texts sur-

rounding the expressions. [3] proposed a method for transforming a Presentation MathML expression

to a Content MathML expression. This method uses classes of math expressions as features. On

the other hand, we estimate the classes of math expressions without using texts surrounding the

expressions. [5] proposed a method for detecting math tokens which have multiple meanings based

on Presentation/Content MathML parallel corpora. [4] proposed a method for classifying math

documents.
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Chapter2

Preliminaries

In this chapter, we present an overview of MathML and Binary Branch Vector.

2.1 Overview of MathML

MathML (Mathematical Markup Language) is an XML-based markup language for describing

math expressions which is recommended by W3C. MathML has two kinds of notations. The first

is Presentation Markup (Presentation MathML) which is used to display math expressions. The

second is Content Markup (Content MathML) which is used to convey the semantic structure of

math expressions. Figure 2.1 and Figure 2.2 show math expressions x2+1 in Presentation MathML

and Content MathML, respectively. In Presentation MathML, mn is used for numerical number, mi

for identifier, mo for operator. These elements have a text node as its child. To represent numerical

number “2”, it is written as <mn>2</mn>.

<math>

<msup>

<mi>x</mi>

<mn>2</mn>

</msup>

<mo>+</mo>

<mn>1</mn>

</math>

Figure2.1 Presentation Markup

<math>

<apply>

<plus/>

<apply>

<power/>

<ci>x</ci>

<cn>2</cn>

</apply>

<cn>1</cn>

</apply>

</math>

Figure2.2 Content Markup
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An XML document is represented as an unranked ordered tree, and thus a MathML expression can

also be represented as an unranked ordered tree. Unranked tree is a tree whose node has arbitrary

number of children. Ordered tree is a tree which distinguishes order of sibling nodes. An unranked

ordered tree is denoted T = (N,E,Root(T )), where N is the set of nodes, E is the set of edges and

Root(T ) is the root node of T . By (u, v) ∈ E we mean an edge from parent node u to child node v.

2.2 Binary Branch Vector

Binary Branch Vector[9] is a kind of vector representation of labeled ordered tree. This is originally

proposed for reduction of computing a distance cost between two trees but we apply this to inputs

of a multilayer perceptron.

A full binary tree (binary tree for short) is denoted B(T ) = (N,El, Er, Root(T )), where El and Er

are the sets of left edges and right edges in B(T ), respectively. If v is the first child of u, then we

write ⟨u, v⟩l ∈ El. Similarly, if v is the second child of u, then we write ⟨u, v⟩r ∈ Er.

A binary branch is a one level subtree of a binary tree. This consists of root node, left child and

right child. Formally, binary branch BiB(u) is defined as BiB(u) = (Nu, Eul
, Eur , Root(Tu)), where

• Nu = {u, u1, u2}(u ∈ N ;ui ∈ N
∪
{ϵ}, i = 1, 2),

• Eul
= {⟨u, u1⟩l},

• Eur = {⟨u, u2⟩r},
• Root(Tu) = u.

A binary branch vector BRV (T ) of a tree T is defined as BRV (T ) = (b1, b2, ..., b|Γ|), where Γ is

an ordered set of binary branches in a dataset, |Γ| is the size of Γ and bi represents the number of

occurrences of the ith binary branch in B(T ).

2.3 Multilayer Perceptron

Multilayer perceptron is a kind of deep learning model. Many classification problems have been

resolved by SVM previously. However, deep learning models including CNN (Convolutional Neural

Network) get better result than SVM in recent years. In this thesis, we use multilayer perceptron

which is the simplest deep learning model as a first step of classifying MathML expressions by deep

learning model.

A multilayer perceptron is composed of an input layer, any number of hidden layers and an output

layer. Each layer consists of units which receive multiple inputs and calculate an output (see Fig. 2.3).

The net input u
(l+1)
j of jth unit in l + 1th layer is

u
(l+1)
j =

∑
i

w
(l)
ji z

(l)
i + b

(l+1)
j , (2.1)

where w
(l)
ji is a weight, b

(l+1)
j is a bias and z

(l)
i is the output of u

(l)
i . Here, the output zi of ui is
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uj zj

Figure2.3 Construction of a unit

given as zi = f(ui), where f is an activation function. ReLU is a popular activation function for

multilayer percptron defined as follows.

f(u) = max(0, u). (2.2)

For multi-class classification, softmax function

zk =
exp(uk)∑
i exp(ui)

(2.3)

is generally used for output layer. The output zk of softmax represents the probability that a given

input belongs to class Ck. Weights and biases are updated in order to minimize the error between

outputs and correct answers of training data. In the case of multi-class classification, the cross

entropy error function

E = −
∑
k

tk log zk (2.4)

is generally used, where zk is an output and tk is kth element of a correct answer. SGD and Adam

are known as typical optimizers to minimize the error (details are omitted).
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Chapter3

Classification Method of MathML

Expressions

Elements of MathML expressions have arbitrary number of children. On the other hand, a multi-

layer perceptron requires input of fixed length. Therefore, we need to convert MathML expressions

to vectors of fixed length. Figure 3.1 illustrates the overview of our method.

・・・

0
⋮
⋮
1

Multilayer 
Perceptron

① ②

③

④
0
⋮
1

⑤

MathML
Expressions Binary Trees

Binary Branches

・・・・

1
⋮
⋮
0

1
⋮
0

Figure3.1 Overview of Classifying Method

Our method mainly consists of the following 5 steps.

1. Convert MathML expressions to binary trees.

2. Split the binary trees to binary branches.

3. Convert the binary branches to binary branch vector.

4. Reduce the dimension of the binary branch vector.

5. Input the vectors to multilayer perceptron and classify them.

We introduce steps 1 to 3 in Sec. 3.1, step 4 in Sec. 3.2 and step 5 in Sec. 3.3.
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3.1 Vector Construction

MathML expressions are represented as trees of various sizes. On the other hand, most classifica-

tion algorithm (e.g., multilayer perceptron, SVM, etc.) requires input of fixed length. Therefore, we

must convert MathML expressions to vectors of fixed length. In this section, we give a procedure

for converting MathML expression to binary branch vector.

Let T be an unlanked labeled tree. A binary branch vector BRV (T ) is obtained from a binary

tree B(T ). A binary tree B(T ) is obtained from T as follows. Initially, B(T ) consists of the same

set of nodes as T and no edges.

1. For each node u in T , do the following.

（a）Let v1, v2, ..., vn be the children of u. Add an edge (vi−1, vi) to B(T ) for every 2 ≤ i ≤ n.

（b）Add an edge (u, v1) to B(T ).

2. Insert empty node ϵ so that all internal nodes in B(T ) have exactly two child nodes.

We represent the conversion algorithm in Algorithm 1. The algorithm traverses MathML expres-

sions and constructs binary branch vectors at the same time. The original binary branch vector

construction algorithm proposed in [9] includes processes to record positions of branches for comput-

ing distance between two trees, which is unnecessary when used for inputs of multilayer perceptron.

Therefore, we omitted the processes. For a given dateset of MathML expressions, all MathML ex-

pressions in the dataset are traversed and the number of occurrences of binary branches are recorded

in an associative array H by VectorConstruction function. A key in H is a tuple of a binary branch

and the elements of the tuple are of string type. The keys are listed in alphabetical order of first

element. A value of H is an array whose size is the number of MathML expressions in the dataset.

Each element in the array represents the number of occurrences of binary branch. Traverse function

traverse a MathML expression recursively and store the number of occurrences of binary branches

in H. In this function, first and next are the first child and the right sibling of the current node, re-

spectively. If the current node does not have any child node or next sibling, first or next is assigned

an empty node ϵ whose label is also ϵ. Then the function increases the number of occurrences of

the binary branch of the current node in the ith MathML expression. After construction of H, each

element in the H is pushed to BRVs. Finally, we transpose BRVs so that we obtain column vectors.

We give an example in Fig. 3.2. In the dataset, there are two binary trees B(T1) and B(T2)

converted from MathML expressions T1 and T2. Each cell in the right table represents the number

of occurrences of a binary branch. For example, binary branch (math, mn, ϵ) occurs once in B(T1)

and B(T2). Therefore, the two columns of the table represent binary branch vectors corresponding

to B(T1) and B(T2), respectively. That is, BBV (T1) = (1, 1, 0, 1, 0, 1, 0, 1, 0) and BBV (T2) =

(1, 0, 1, 0, 1, 0, 1, 0, 1).
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Algorithm 1 Constructing binary branch vectors

Input:

A set D of MathML expressions

Output:

Binary branch vectors BRV s

1: function VectorConstruction(D)

2: Initialize an associative array H to be empty

3: i ⇐ 0

4: for all MathML expression e in D do

5: root ⇐ root node of e

6: Traverse(i, root,H)

7: i++

8: end for

9: for all value in H do

10: Push value to BRV s

11: end for

12: return transposition of BRV s

13: end function

14: function traverse(i, node,H)

15: first ⇐ first child of node

16: next ⇐ next sibling of node

17: Hash[(node, first, next)][i] + +

18: for all child in children of node do

19: traverse(i, child,H)

20: end for

21: end function

3.2 Dimensionality Reduction

Each element of a binary branch vector is the number of occurrences of a binary branch in a dataset.

Therefore, as the dataset becomes larger, the size of Γ increases accordingly. In particular, the

number of binary branches tends to considerably grow when MathML expressions have substructures

which are similar but have different numeric values. However, such “non-structural” differences may

reduce the accuracy of classification. This is because similar MathML expressions tend to contain

similar substructures that have different numeric values, therefore MathML expressions that should

be classified into the same class may wrongly be classified into different classes due to substructures
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math

mn ε

2 mi

ε ε x ε

ε ε

B(T1)

math

mn ε

5 mi

ε ε y ε

ε ε

B(T2)

Vectorization

(math, mn, ε)

(mn, 2, mi)

(mn, 5, mi)

(2, ε, ε)

(5, ε, ε)

(mi, x, ε)

(mi, y, ε)

(x, ε, ε)

(y, ε, ε)

B(T1) B(T2)

1 1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

Dataset

Figure3.2 Converting MathML expressions to binary branch vectors

that are similar but different numeric values. Thus, we reduce the sizes of binary branch vectors by

erasing the text of mn elements. In Presentation MathML, mn elements represent numeric numbers.

We represent the dimensionality reduced vector construction algorithm in Algorithm 2. In this

algorithm, VectorConstruction function is the same as Algorithm 1, so it is omitted in Algorithm 2.

Traverse function in Algorithm 2 also traverses e and stores the number of occurrences of binary

branches in H. The major difference is the handling of mn elements. If a label of the current node

node is “mn”, the function increases the number of occurrences of binary branches (node, ϵ, next)

and (“mn”, ϵ, ϵ) in the ith MathML expression. In other cases, the function traverse the child nodes

of node in the same way as Algorithm 1.

We give an example of dimensionality reduction. Consider the binary trees in Fig. 3.2. We replace

the texts of mn elements (2 and 5) with ϵ. As the result, binary branches rooted by mn elements are

converted to the same binary branches and we obtain two binary trees B(T1)
′ and B(T2)

′ in Fig. 3.3.

In comparison with binary branch vectors in Fig. 3.2, the binary branch vectors in Fig. 3.3 are of

smaller length.
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Algorithm 2 Constructing dimensionality reduced vector

Input:

A tree id i,

A node of the tree node,

An associative array H

1: function traverse(i, node,H)

2: first ⇐ first child of node

3: next ⇐ next sibling of node

4: if label of node is “mn” then

5: H[(node, ϵ, next)][i] + +

6: H[(“mn”, “ϵ”, “ϵ”)][i] + +

7: else

8: H[(node, first, next)][i] + +

9: for all child in children of node do

10: traverse(i, child,H)

11: end for

12: end if

13: end function

math

mn ε

ε mi

y ε

ε ε

math

mn ε

ε mi

x ε

ε ε

B(T1)' B(T2)'

Dataset

Vectorization

(math, mn, ε)

(mn, ε, mi)

(mi, x, ε)

(mi, y, ε)

(x, ε, ε)

(y, ε, ε)

B(T1) B(T2)

1

1

1

1

1

1

0

0

0

0

1

1

Figure3.3 Dimensionality reduction by converting text of mn element to empty node ϵ

3.3 Classification Model

The vectors obtained by Algorithm 2 are classified by a multilayer perceptron. Our model consists

of an input layer, two hidden layers and an output layer. The number of units in the input layer is
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same as the size of binary branch vectors. Each hidden layers has 512 units and activated by ReLU.

The output layer has the same number of units as MathML classes and activate by softmax. We use

Adam as the optimizer to minimize the cross entropy error. We also tried other models (e.g., one

with three or more hidden layers) but found no noticeable improvement.
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Chapter4

Experiment

In this chapter, we present our experimental results.

4.1 Dataset

In our experiments, we use the following two datasets: The Wolfram Functions Site and MREC

(Mathematical REtrieval Collection). In the following, we give the details of the two datasets.

4.1.1 The Wolfram Functions Site

We collected HTML files exhaustively and extracted MathML expressions from The Wolfram

Functions Site [8]. We obtained 307,676 MathML expressions and 14 classes. Table 4.1 shows the

classes and the numbers of MathML expressions belongs to it.

Expressions in this dataset are Presentation MathML, although the expressions are embedded

Content MathML by semantics elements and annotation-xml elements as shown in Figure 4.1.

Therefore, we remove annotation-xml elements and unnest semantics elements. Furthermore, we

remove mtext elements and attributes of elements, which do not influence to mathematical meanings.

The former are used for display spaces and the latter are used for alignment of rendering of math

tokens.

In our experiment, we used 70% of the dataset for training data and used 30 % for test data.

4.1.2 MREC (Mathematical REtrieval Collection)

MREC [2] is a dataset of scientific papers in arxiv.org *1 translated to XML. The math expres-

sions in the papers are written in Presentation MathML. MREC is composed of MREC2011.3 and

MREC2011.4. The expressions in the latter have embedded semantic meanings and the former ex-

pressions do not. Since our method does not use specified semantic meaning of expression, we used

*1 https://arxiv.org/
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Table4.1 Number of MathML expressions in each class

Class id Class Name　 # of Expressions

0 Bessel-Type Functions 5,583

1 Complex Components 689

2 Constants 735

3 Elementary Functions 61,454

4 Elliptic Functions 7,248

5 Elliptic Integrals 1,236

6 Gamma, Beta, Erf 5,009

7 Generalized Functions 280

8 Hypergeometric Functions 218,241

9 Integer Functions 1,966

10 Mathieu & Spheroidal Functions 388

11 Number Theory Functions 904

12 Polynomials 2,372

13 Zeta Functions & Polylogarithms 1,571

total 307,676

the former for the experiment.

MREC contains too short expressions (e.g., x, ∆, etc.) for which classification is meaningless.

Therefore, we removed MathML expressions which do not have mi elements or less than two elements

except math and mrow elements from the dataset. Note that a math element is the root node of a

MathML expression and that mrow elements influence neither display nor meaning of a MathML

expression.

The classes of arxiv.org consist of 8 classes: Physics, Mathematics, Computer Science, Quantitative

Biology, Quantitative Finance, Statistics, Electrical Engineering and Systems Science, Economics.

We refer to these classes as top-class. The top-classes have child classes, which are subdivided by

academic field. For example, the subclasses of top-class Physics are Physics, Astrophysics, Quantum

Physics, and so on. We refer to these child class as sub-class. The sub-classes with the same name as

its top class are further subdivided. For example, sub-class Physics has Accelerator Physics, Applied

Physics, and so on as child classes. We refer to these child classes as sub-sub-class.

The MREC dataset has originally 34 classes based on the sub-classes and sub-sub-classes of

arxiv.org. We chose 20 classes that have more than 100,000 expressions. Some classes have parent-

child relationships or are very similar to each other, and that these classes should be merged into

the same class. We merged similar classes that seem to be the same field. For example, High Energy

Physics - Experiment, High Energy Physics - Lattice and High Energy Physics - Theory are sub-

class of top-class Physics. These classes include the words “High Energy Physics”. Therefore, they



Chapter4 Experiment 14

<math xmlns=’http://www.w3.org/1998/Math/MathML’

mathematica:form=’TraditionalForm’

xmlns:mathematica=’http://www.wolfram.com/XML/’>

<semantics>

<mrow>

<mrow>

<mi> F </mi>

<mo> &#8289; </mo>

<mo> ( </mo>

<mrow>

<mi> z </mi>

<mo> &#10072; </mo>

<mn> 0 </mn>

</mrow>

<mo> ) </mo>

</mrow>

<mo> &#10869; </mo>

<mi> z </mi>

</mrow>

<annotation-xml encoding=’MathML-Content’>

<apply>

<eq />

<apply>

<ci> EllipticF </ci>

<ci> z </ci>

<cn type=’integer’> 0 </cn>

</apply>

<ci> z </ci>

</apply>

</annotation-xml>

</semantics>

</math>

Figure4.1 Example of MathML expression in The Wolfram Functions Site

can be considered to be classes which related to the same High Energy Physics. Similarly, Nuclear

Experiment and Nuclear Theory are merged. On the other hand, Algebraic Geometry, Differential

Geometry and Quantum Algebra are sub-sub-classes of sub-class Mathematics. Therefore, they can
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be considered to be classes which related to the same sub-class Mathematics. As the result of merge,

we obtained the following 12 classes. Original class names in MREC are in parentheses. For example,

class 5 consists of hep-ex, hep-lat and hep-th.

1. Astrophysics (astro-ph)

2. Computer Science (cs)

3. Condensed Matter (cond-mat)

4. General Relativity and Quantum Cosmology (gr-qc)

5. High Energy Physics - Experiment (hep-ex),

High Energy Physics - Lattice (hep-lat),

High Energy Physics - Theory (hep-th)

6. Algebraic Geometry (alg-geom),

Differential Geometry (dg-ga),

Mathematics (math),

Quantum Algebra (q-alg)

7. Mathematical Physics (math-ph)

8. Chaotic Dynamics (chao-dyn),

Nonlinear Sciences (nlin),

Exactly Solvable and Integrable Systems (solv-int)

9. Nuclear Experiment (nucl-ex),

Nuclear Theory (nucl-th)

10. Physics (physics)

11. Quantitative Biology (q-bio)

12. Quantum Physics (quant-ph)

We extracted 100,000 MathML expressions from each of the 12 classes. We used 70% of them for

training data and used 30 % for test data.

4.2 Experimantal Results

We compare our method and the SVM-based method proposed by Kim et al. [1]. They define five

features: labels of nodes (Tag), texts of mo elements which represent operators (Operator), texts of mi

elements which represent identifiers (Identifier), bigram of plain text in expressions (String Bigram)

and bigram of identifier and operator (I&O). To classify MathML expressions, they compared several

combinations of the features as the inputs of SVM with liner kernel. In their experimental results,

the combination of Tag, Operator, String Bigram and I&O shows the highest accuracy. However,

the expressions in our datasets contain few plain texts that can be used as the String Bigram feature.

Therefore, we use Tag, Operator, Identifier and I&O, which marked the second highest accuracy in

their experiment. We adjust a penalty parameter C of SVM (C = 2−10, 2−9, ..., 210) because the
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value of C is not specified in their paper.

Tables 4.2 and 4.4 show the results. Table 4.2 shows the accuracies of the three methods in The

Wolfram Functions Site. We experimented our method with different two input vectors : dimen-

sionality reduced binary branch vector and binary branch vector without dimensionality reduction

processing. We refer to the former as our method without mn and the latter as our method with mn.

The result shows that every method achieves high accuracy. Further, our method slightly outper-

forms the SVM-based method (C = 28). The reason why such high accuracies are obtained is that

the dataset is “clean”, that is, it has well-formed structures (e.g., order of variables, operators, etc.)

and unified notations of identifiers. Our method without mn slightly outperforms our method with

mn for the dataset. From this result, it is considered that there are no decrease in accuracy due to

our dimensionality reduction processing.

Table4.2 Accuracy for The Wolfram Functions Site

Method Accuracy

Our method without mn 99.35

Our method with mn 99.24

SVM [1] 99.03

Figure 4.2 and Figure 4.3 show the details of the classification results of our method without mn

and SVM-based method, respectively. The numbers on each axis represents the class number of The

Wolfram Functions Site in Table 4.1. The vertical axis represents correct classes and the horizontal

axis represents predicted classes. Let (Cans, Cprd) be the cell whose vertical (resp., horizontal) index

is Cans (resp., Cprd), where Cprd and Cans are class ids of correct answer and predicted answer,

respectively. The value of (Cans, Cprd) is represented as follows.

V (Cans, Cprd) =
The number of expressions which belong to (Cans, Cprd)

The number of expressions which belong to Cans
. (4.1)

V (i, i) represents recall for each class.

As shown in the figures, there are many misclassification cases in Elementary Functions or Hyper-

geometric Functions. It is considered that the fact that approximately 90% of training data belong

to Elementary Functions or Hypergeometric Functions is one of the causes for the result. Especially,

the rate of misclassifying in Elementary Functions is higher than other classes. This is caused by

the character of the class. The expressions in Elementary Functions are mathematical basic func-

tions (e.g., power functions, logarithmic functions, etc.). Therefore, it is considered that structural

elements such as similar operators appear in other classes and thus classifiers misclassified.

Table 4.3 shows F-measures of each method. Our method achieves F-measures equal to or higher

than that of the SVM-based method except for one class (ID:12). Since the gap between the F-

measures in the class is small, our method generally shows a good performance for The Wolfram
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0 0.061 0.8 0.075 0 0 0.044 0 0 0.013 0 0.0088 0 0

0.001 0.00092 0.00049 0.99 0.0006 5.4e-05 0.0012 0.00011 0.0014 0.00011 5.4e-05 0 0.00016 0.00038

0 0 0 0.011 0.98 0.0014 0 0 0.0075 0.00047 0 0 0 0

0.0028 0 0 0.028 0.017 0.94 0.0056 0 0.0028 0 0 0 0 0

0.00066 0 0.00066 0.04 0.00066 0 0.94 0 0.0066 0.002 0 0 0.0033 0.0026

0 0 0.013 0.026 0 0 0 0.96 0 0 0 0 0 0

0 1.5e-05 0 0.0012 0 4.6e-05 9.2e-05 0 0.99 3.1e-05 4.6e-05 0 0.0019 4.6e-05

0 0.0016 0.0081 0.024 0 0 0.013 0.0016 0.0065 0.93 0 0.0016 0.013 0.0049

0 0 0 0.024 0 0 0.0079 0 0.032 0 0.94 0 0 0

0 0 0 0.02 0 0 0.004 0 0.004 0.0079 0 0.95 0 0.012

0 0 0 0.017 0 0 0.0029 0 0.06 0.0029 0 0 0.91 0.0029

0.0021 0 0.0021 0.034 0 0 0.013 0 0.0021 0.0021 0.0021 0.0021 0 0.94
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Figure4.2 Normalized confusion matrix (our method without mn) for The Wolfram Functions Site

Functions Site.

Table 4.4 shows the accuracies of the two methods for MREC. Both of our methods outperform

the SVM-based method (C = 20). However, every accuracy is lower than its corresponding accuracy

of The Wolfram Functions Site. This is because the expressions of MREC are much less “clean”

than these of The Wolfram Functions Site. For example, in the expressions of MREC the notation

of identifiers are not unified, because the expressions are written by various authors. The result

means that our method is much robust and effective to less “clean” expressions than the SVM-based

method. In comparison our method (without mn) with our method (with mn), there is a wide gap in

accuracy, and it is a future work to elucidate cause of this.

Finally, let us consider the sizes of input vectors. Here, we denote binary branch vector before

dimensionality reduction as BRV with mn and binary branch vector after dimensionality reduction
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0.0018 0.0014 0.00049 0.99 0.00022 0.00022 0.0015 0.00022 0.0035 0.00044 0 0 0.00038 0.00022

0 0 0.00046 0.0064 0.98 0.0027 0.0027 0.00046 0.00091 0.0027 0 0 0 0

0.0025 0 0 0.052 0.018 0.89 0.015 0.005 0.02 0 0 0 0 0.0025

0.002 0.00066 0.0013 0.036 0.0013 0 0.93 0 0.014 0.006 0 0.0013 0.0013 0.0033

0 0 0 0.059 0 0.024 0 0.85 0.024 0.047 0 0 0 0

0.00043 0 0 0.00059 4.6e-05 1.5e-05 0.00011 0 0.99 4.6e-05 4.6e-05 0 0.0012 4.6e-05

0 0 0.011 0.021 0.0018 0.0018 0.0053 0 0.0053 0.94 0 0.0018 0.014 0.0018

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0.092 0 0 0.012 0.004 0.004 0.016 0 0.86 0 0.008

0 0 0 0.0027 0 0 0.008 0.0013 0.14 0.0066 0.0013 0.0013 0.84 0.0013

0 0 0.0021 0.027 0.0062 0.0041 0.0083 0 0.0062 0.0062 0 0 0.0021 0.94
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Figure4.3 Normalized confusion matrix (SVM[1]) for The Wolfram Functions Site

as BRV without mn. For The Wolfram Functions Site, the sizes of BRVs without mn are 2,184 and

BRVs with mn are 558,777. This means that similar substructures which have different numeric

values frequently appear in the dataset. The size of BRVs with mn are smaller than the sizes of

feature vectors for the SVM-based method (8,113). For MREC, the sizes of BRVs without mn are

39,833 and BRVs with mn are 72,019. Since the sizes of feature vectors for the SVM-based method

are 91,146, our vectors are smaller. Thus, by using our method, we can obtain better classification

results with smaller input vectors.
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Table4.3 F-measures of our method and SVM-based method

F-measure

Class ID Our method without mn SVM[1]

0 0.97 0.97

1 0.85 0.80

2 0.87 0.85

3 0.99 0.99

4 0.99 0.99

5 0.97 0.93

6 0.95 0.94

7 0.94 0.90

8 0.99 0.99

9 0.94 0.93

10 0.95 0.95

11 0.96 0.92

12 0.85 0.86

13 0.95 0.94

Table4.4 Accuracy for MREC

Method Accuracy

Our method without mn 83.54

Our method with mn 33.75

SVM [1] 28.16
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Chapter5

Conclusion

In this thesis, we proposed a method for classifying MathML expressions based on multilayer

perceptron. Experimental results showed that our method can classify MathML expressions with

higher accuracy than the SVM-based method and we succeeded in reducing the size of binary branch

vectors without a decline in accuracy by our dimensionality reduction processing.

As a future work, it is necessary to clarify the cause of the difference in accuracy in MREC.

Furthermore, we need to consider comparing our model with more complex models (e.g., Tree-

LSTM[7]). We also have to tune hyperparameters (number of units and layers, etc.) of our model.

It is not clear whether the hyperparameters used in our experiment are optimum or not. Due to

tuning of hyperparameters, we may expect to higher accuracies.
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