
Proceedings

Human Activity Recognition through Weighted Finite
Automata

Sergio Salomón 1,† and Cristina Tîrnăucă 2,†

1 Axpe Consulting Cantabria S.L.; ssalomong@axpecantabria.com
2 Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria;

cristina.tirnauca@unican.es
* Correspondence: ssalomong@axpecantabria.com
† These authors contributed equally to this work.

Academic Editor: name
Version September 14, 2018 submitted to Proceedings

Abstract: This work addresses the problem of human activity identification in an ubiquitous1

environment, where data is collected from a wide variety of sources. In our approach, after filtering2

noisy sensor entries, we learn user’s behavioral patterns and activities’ sensor patterns through3

the construction of weighted finite automata and regular expressions respectively, and infer the4

inhabitant’s position for each activity through frequency distribution of floor sensor data. Finally, we5

analyze the prediction results of this strategy, which obtains 90.65% accuracy for the test data.6

Keywords: Human Activity Recognition; Weighted Finite Automaton; Regular Expression; Pattern7

Mining8

1. Introduction9

Human Activity Recognition (HAR) is an active research area in various fields (computer vision,10

human computer interaction, ubiquitous computing and ambient intelligence), having important11

applications to ambient assisted living, healthcare monitoring, surveillance systems for indoor and12

outdoor activities, and tele-immersion applications [1].13

Most of the competitions within the field are using either smart phone or smart watch data,14

wearable sensors information or short videos, just like the state-of-the-art research [2]. The first15

Ubiquitous Computing and Ambient Intelligence challenge (UCAmI Cup) has been launched as an16

annual event in the context of the UCAmI Conference, and provides participants with the opportunity17

to put their skills into action using an openly available HAR dataset assembled in the University of18

Jaen’s Ambient Intelligence (UJAmI) SmartLab, through a set of multiple and heterogeneous sensors19

deployed in the apartment’s different areas: lobby, living room, kitchen and bedroom with integrated20

bathroom (more information on the lab’s webpage: http://ceatic.ujaen.es/ujami/en/smartlab).21

The dataset records the activity carried out by a single male inhabitant during ten days, out of22

which seven are used for training purposes and three for testing. Human-environment interactions23

and the inhabitant’s actions are captured via four different data sources:24

1. Event streams generated by 30 binary sensors (24 based on magnetic contact, four motion sensors25

and two pressure sensors),26

2. Spatial information from an intelligent floor with 40 modules, distributed in a matrix of four27

rows and ten columns, each of them composed of eight sensor fields.28

3. Proximity information between a smart watch worn by an inhabitant and a set of 15 Bluetooth29

Low Energy (BLE) beacons deployed in the UJAmI SmartLab,30

4. Acceleration data from the same smart watch worn by the inhabitant.31

Submitted to Proceedings, pages 1 – 11 www.mdpi.com/journal/proceedings

http://www.mdpi.com
http://ceatic.ujaen.es/ujami/en/smartlab
http://www.mdpi.com/journal/proceedings

Version September 14, 2018 submitted to Proceedings 2 of 11

The experiment consisted in a series of daily activities performed in a natural order from a total32

of 24 different activity classes as presented in Table 1 (the frequency of each activity in the training set33

is also included in the table).34

Table 1. Activities recorded in the dataset

Activity’s ID Activity’s name Frequency
Act01 Take medication 7
Act02 Prepare breakfast 7
Act03 Prepare lunch 6
Act04 Prepare dinner 7
Act05 Breakfast 7
Act06 Lunch 6
Act07 Dinner 7
Act08 Eat a snack 5
Act09 Watch TV 6
Act10 Enter the SmartLab 12
Act11 Play a videogame 1
Act12 Relax on the sofa 1
Act13 Leave the SmarLab 9
Act14 Visit in the SmartLab 1
Act15 Put waste in the bin 11
Act16 Wash hands 6
Act17 Brush teeth 21
Act18 Use the toilet 10
Act19 Wash dishes 2
Act20 Put washing into the washing machine 6
Act21 Work at the table 2
Act22 Dressing 15
Act23 Go to the bed 7
Act24 Wake up 7

In the research literature, most of the approaches for activity recognition use supervised machine35

learning techniques, as stated in [3]. Stiefmeier et al. [4] use Hidden Markov Models and Mahalanobis36

distance based classifiers to identify different assembly and maintenance activities from a combination37

of motion sensor data and hands tracking data. Berchtold et al. [5] apply fuzzy inference based models38

in an online learning setting to perform classification of personalizable movement activities using39

phone accelerometer data and some user feedback. Sefen et al. [6] publish a comparison between40

several classification algorithms, like Support Vector Machines, Decision Trees, Naive Bayes and41

k-Nearest Neighbors, to perform real-time identification of fitness exercises. Hammerla et al. [7]42

study and compare Deep Learning models (Deep Feed-Forward, Convolutional and Recurrent Neural43

Networks) using movement data from wearable sensors.44

There are also less common strategies using unsupervised and semi-supervised learning. Huynh45

et al. [8] use probabilistic topic models to learn activity patterns from wearable sensor data46

and recognize daily routines as combinations of those patterns. Stikic and Schiele [3] present a47

semi-supervised method to recognize activities in partially labeled data using multi-instance learning48

and Support Vector Machines with the aim of automating the process of labeling. Kwon et al. [9]49

compare k-Means, mixture of Gaussian and DBSCAN clustering methods to distinguish activities in50

unlabelled data and unknown number of activities. The reader can find more extensive information51

about other applied methods in [10–13].52

Because of the nature of the dataset under study, our approach is based on finite states machines,53

regular expressions and pattern recognition. We have divided the process of HAR into three main54

steps. In the first one, we filter the data to remove noise (Section 2). The second step involves training55

the model with data from the seven available days (Section 3). Finally, we use this model to predict56

Version September 14, 2018 submitted to Proceedings 3 of 11

activities (Section 4) and discuss the results obtained for the test set (Section 5). In Section 6 we57

detail the conclusions drawn after seeing the correct predictions, and we describe some possible58

improvements that would allow our algorithm to perform better.59

2. Filtering Step60

Going through the training data, one can easily spot sensor data that cannot possibly be accurate.61

For example, the floor capacitance data indicating that the user was “jumping” from the bedroom to62

the kitchen and back in less than one second. After removing these abnormal entries, we went on to63

investigate another, more subtle, kind of noise that involved coordinating the sensors dataset with64

the floor dataset. Due to basic physics laws, it is impossible for one person to open the Pajamas drawer65

(C13) while being in the kitchen. In order to avoid these anomalies, we generated a map with those66

tiles that detected movement within a two seconds window for the magnetic contact and pressure67

sensors for both training and test datasets, and we discarded those entries in the datasets that were68

obviously wrong.69

3. Training Step70

The training step can be divided into two main parts. First, we describe the training data with71

the help of Weighted Finite Automata (see [14] for a formal definition): we train one automaton for72

the morning activities, another one for the afternoon activities and a last one for the evening. In this73

phase we also compute a table of activities that includes all available information per activity: sensors,74

proximity and floor (we decided to exclude the acceleration information; also, proximity turned out to75

be noisy and little discriminative, so we could not really use it).76

To construct the Type A automaton, we must first describe the flow of morning activities for any77

given day. For example, let us consider the activities recorded by the user on 31st of October in the78

morning, represented in Table 2.79

Table 2. Activities of the user

Type: A, Date: 10-31
Act24 11:12:38 11:15:25
Act18 11:15:51 11:16:37
Act16 11:17:04 11:18:06
Act02 11:18:36 11:21:54
Act05 11:22:12 11:24:59
Act17 11:25:55 11:27:06
Act22 11:27:25 11:29:01
Act13 11:29:24 11:30:09

Then one can build the following graph, in which each node is an activity and the edges are80

labeled either with the number of seconds spent doing that particular activity or with the time elapsed81

between two different activities (see Figure 1).82

Act24 Act18 Act16 Act02 Act05 Act17 Act22 Act13

167

26

46

27

62

30

198

18

167

56

71

19

96

23

45

Figure 1. User: Mario, Date: 10-31, Type: A

Version September 14, 2018 submitted to Proceedings 4 of 11

Combining activities for all available days we obtain a weighted finite automaton in which83

the weights indicate how many times that particular path was taken, expressed as percentage (see84

Figure 2).85

Act24 Act18 Act16 Act02 Act05 Act17 Act21 Act22 Act13

Act20

53:202

4/7 4/4 6/6 7/7 7/7 1/7 1/1 6/7

1/72/7

1/7
6/7

1/1

Figure 2. User: Mario, Type: A

Apart from these probabilities, we also maintain information about the minimum and maximum86

time spent doing each of the activities in this activity flow, as well as minimum/maximum time87

between two different activities (for a better readability, we chose to depict this information graphically88

only for one node, namely, the one representing Activity 24). Moreover, each state has a “begin” and89

an “end” probability (the probability of starting/finishing the morning with that particular activity).90

We draw in red those states that have a “begin” probability greater than zero and in gray those with91

non-zero “end” probabilities. Note that in the morning, the user starts his routine every day in the92

same way (with Activity 24: Wake up), but it may end it up either working at the table (Activity 21) or93

leaving the SmartLab (Activity 13).94

The afternoon automaton is represented in Figure 3. One can see that it is more complex than the95

morning one, and also that there are activities that may interrupt the normal flow, like for example,96

Activity 14: Visit in the SmartLab. The user may start the afternoon session either with Activity 10: Enter97

the SmartLab or with Activity 22: Dressing. The last activity in the afternoon is either Activity 15: Put98

waste in the bin (four times) or Activity 13: Leave the SmarLab (the other three times).99

Act10 Act03 Act06 Act17 Act09 Act18 Act20 Act08 Act15

Act14 Act13

Act01 Act19

Act12

Act22

6/6 6/6 5/6 5/7 5/6 5/5 5/5

4/5

1/5

1/
6

1/1

1/1

1/1

1/7

1/1

1/
1

1/7

1/6 1/
1

Figure 3. User: Mario, Type: B

Finally, the evening automaton is represented in Figure 4. In this time segment, the user always100

started his routine with Activity 10: Enter the SmartLab and ended it with Activity 23: Go to the bed.101

Version September 14, 2018 submitted to Proceedings 5 of 11

Act10 Act04 Act07 Act01 Act15 Act17 Act22 Act23

Act19 Act11

Act18

6/6 7/7 6/7 5/6

1/
6

6/6 5/7 7/7

1/7

1/1 1/
7

1/7

1/1

1/
1

Figure 4. User: Mario, Type: C

As we have already mentioned, we also stored, for each activity performed, the stream of102

sensor readings that occurred during that particular activity. In the second part of the training103

phase, we described by means of a regular expression each of the twenty four activities. This was a104

semi-supervised process. First, we learned an automaton for each activity based on the examples we105

had, then we converted it into a regular expression, which was eventually hand-tweaked to be more or106

less general, depending on our perception of how each activity should be performed.107

For example, the activity Put waste in the bin (Act15), which appeared eleven times in the training108

set, had the recordings listed in Figure 5 (left); its Prefix Tree Acceptor is depicted in Figure 5 (center),109

and the minimal Deterministic Finite Automaton learned by the state merging algorithm - we use a110

variant of the RPNI (Regular Positive and Negative Information) algorithm [15] - is represented in111

Figure 5 (right).112

[M01 M01]
[C01 C01 C08 C08 M01 M01]
[C08 C08 M01 M01]
[C01 C08 C08 M01 M01]
[M01 M01]
[M01 M01]
[C01 M01 M01]
[C08 C08 M01 M01]
[C08 C08 M01 M01]
[C08 C08 M01 M01]
[C08 C08 M01 M01]

M 01
C
08

C
01

M 01
C
08

M
01

M
01

C
08

C
08

M
01

M
01

M 01

M 01

C
01

C
08

C
08

M
01

M
01

M
01

C 01
, C 08

M
01

Figure 5. Put waste in the bin (Act15)

The regular expression for Put waste in the bin (Act15) is therefore (C01|C08)
∗M01M01. Note that113

there are only magnetic contact sensors listed in the recordings for this activity, and no motion sensor114

seems to be active. The reason is that we have decided to ignore those entries due to their high level of115

noise. We only include them whenever there is no other indication. The regular expressions obtained116

for each activity are listed in Table 3.117

Version September 14, 2018 submitted to Proceedings 6 of 11

Table 3. Activities’ regular expressions

Without SM sensors
Act01 D+

04(C01|C05|D04|D05)
∗ Act15 (C01|C08)

∗M+
01

Act02 (D01|D02|D04|D10|H01)
+ Act16 C+

09
Act03 (C04|D01|D02|D04|D08|D10)

+ Act17 C+
09

Act04 (C04|D01|D02|D04|D08|D10)
+ Act18 (C10|D07)

+(C08|C10|D07)
∗

Act08 (C02|D10)
+ Act19 D+

05
Act09 (TV0|S09)

∗TV0 Act20 D09(C12|D09)
∗

Act10 M+
01 Act22 D03(C12|C13|D03)

∗

Act11 (TV0C07|C07TV0)S∗09(TV0C07|C07TV0) Act23 C14(C13|C14)
+

Act13 M+
01 Act24 C+

14
Act14 M+

01
With SM sensors

Act05 SM+
1 Act12 (S09|SM4|SM5)

∗SM5(S09|SM4|SM5)
∗

Act06 SM+
1 Act21 SM+

4
Act07 SM+

1

Finally, in this step we also elaborate a “map” of possible locations for each activity (using the118

floor capacitance information), where the radius of each point on the map depends on the occurrence119

frequency of that respective tile within that particular activity (we include these maps in the Appendix120

A of this document as Figure A1).121

The set of tiles obtained for each activity will be used in the very end to fine-tune the time intervals122

in which each activity took place. Once we have all this information gathered, we can proceed to123

process the test set.124

4. Prediction step125

The prediction step is also divided into two main parts. In the first one, the algorithm takes as input126

the sensors file of a specific routine for one particular day (for example, 2017-11-09-A-sensors.csv),127

and the weighted finite automaton generated for that particular routine (in this example, the one128

represented in Figure 2). The sensors files are mapped into the respective sequence of sensors129

(SM4SM4C14C09SM4SM4C09C09C09SM1 . . .). We have implemented a filtering function that erases all130

motion sensors (C14C09C09C09C09 . . .). We use the unfiltered string only when necessary (basically,131

when the next action predicted by the automaton is Act05, Act06, Act07, Act12 or Act21), always132

making sure to keep track of changes in both strings.133

The algorithm always tries to match first the action that has the highest probability. This holds134

also for the very first action, although in the morning there was only one possibility (in our example,135

Act24, its regular expression being C+
14). Since we have a match, we save this state as the first state of136

the automaton, and we update both the filtered (C09C09C09C09 . . .) and unfiltered (C09SM4SM4C09 . . .)137

version of the sequence of sensors by erasing the matched string. The transition between this activity138

and itself will be labeled with provisional initial and final times, corresponding to the timestamps139

recorded for the first SM4 and the last1 C14, respectively. These times will be updated once we build140

all states and transitions of the automaton, based on the information from 2017-11-09-A-floor.csv.141

The algorithm proceeds by trying to match all states with non-zero probabilities, checking first the142

ones with higher values (following the example, the algorithm would try first Act18, then Act16, and143

only if none of them matches, Act02). In this case the winner is Act16 (regular expression: C+
09) since144

Act18 (regular expression: (C10|D07)
+(C08|C10|D07)

∗) does not match the beginning of the filtered145

sequence of sensors.146

1 In this case there is only one symbol, but in general the pattern may contain a whole sequence of labels.

Version September 14, 2018 submitted to Proceedings 7 of 11

Whenever the list of possible next states with non-zero transition probabilities is exhausted147

without a match, the algorithm tries, in order, what we call “unforeseen events”. These are events that148

can occur at any time, and they were manually selected: Act11 (Play a videogame), Act09 (Watch TV),149

Act14 (Visit in the SmartLab), Act18 (Use the toilet) and Act12 (Relax on the sofa). The order in which they150

are processed is very important in this case. Consider for example the following sequence of sensors:151

TV0C07S09S09S09TV0C07 . . . Both regular expressions for Act11: (TV0C07|C07TV0)S∗09(TV0C07|C07TV0)152

and Act09: (TV0|S09)
∗TV0 match the beginning of this particular string, so if the algorithm first tries153

with Act09, it would incorrectly predict that the user is watching TV, while the presence of the Remote154

XBOX (C07) clearly indicates that the user is playing a videogame.155

The next state that the algorithm tries to match after an “unforseen” event is the one that the user156

was performing before the interruption. If there is no match, the algorithm tries with the next activities157

in the workflow, starting with the most probable one. The output of this first part of the algorithm for158

the running example is represented by the automaton from Figure 6. One can see that after Act21, the159

user always performed Act22 (actually, there was only one case). But, the sequence of sensors to be160

matched is M01SM4M01SM4SM4SM4 . . ., and Act22 always starts with D03 (see its regular expression161

in Table 3). Since neither Act11 nor Act09 match, the algorithm proceeds to check Act14 and succeeds162

(for this particular activity, the filtered version of the sequence of sensors is used). Since the string163

left after removing the identified pattern (SM4SM4SM4 . . .) does match Act21, this will be the next164

predicted activity. If this was not the case, the algorithm would have tried with Act22.165

Act24 Act16 Act02 Act05 Act17 Act21 Act14 Act21 Act22 Act13

12:03:54|12:04:34 12:05:08|12:06:00 12:06:27|12:08:14 12:08:18|12:13:07 12:14:03|12:14:39 12:15:11|12:18:19 12:18:28|12:18:37 12:18:40|12:22:22 12:23:05|12:23:48 12:23:52|12:25:35

Figure 6. User: Mario, Date: 11-19, Type: A

Finally, the second part of the algorithm takes as input the automaton just produced and the166

corresponding floor file (2017-11-09-A-floor.csv). Each activity in the activity flow comes with167

some provisional initial and final times. The algorithm proceeds by updating these times based on the168

tiles “allowed” for that particular activity (recall that in the training phase we determine which are the169

possible tiles for each activity).170

5. Performance evaluation171

The main goal of the 1st UCAmI Cup was to achieve the highest possible level of performance,172

and accuracy was the metric chosen for assessing the quality of a given solution. Our software was173

able to correctly identify 485 out of 535 activities, corresponding to an overall 90.65% accuracy. In174

Table 4 we offer detailed information about the performance obtained by our method for each day and175

segment of the testing set.176

Table 4. Accuracy of our solution for each day and segment of the testing set

Day 1 Day 2 Day 3
Morning 43/49 (87.76%) 60/65 (92.31%) 57/59 (96.61%)
Afternoon 77/81 (95.06%) 75/79 (94.94%) 6/13 (46.15%)
Evening 57/65 (87.69%) 52/55 (94.55%) 58/69 (84.06%)

With one notable exception, to which we will return in Section 6, our proposed solution achieves177

accuracy rates between 84.06% (the evening of day 3) and 96.61% (same day, morning segment). Going178

through the file of results and comparing it to what our software produced, we could see that the vast179

Version September 14, 2018 submitted to Proceedings 8 of 11

majority of the errors came from having incorrectly predicted starting and ending times for our actions.180

There are actually only two exceptions. In one case (evening of day 1), the labeled dataset says that after181

dressing up (Activity 22), the inhabitant interrupted Activity 23: Go to bed to use the toilet (Activity182

18): Act22-Act23-Act18-Act23, while our software found a slightly different sequence of activities:183

Act22-Idle-Act18-Act23. In the other case (afternoon of day 3), apart from a faulty transcription of184

the output of the algorithm into the excel file, both the order and the timing of half of the activities185

detected was completely wrong.186

We would like to point out that the measure used to evaluate solutions was, in our opinion, biased.187

In order to justify our claim, let us clarify the way in which the final score was calculated. First, each188

segment of the three testing days was divided into 30 seconds time slots. Leaving apart technical189

details, participants were basically asked to fill in the list of activities (if any) that took place in each190

of these 30 seconds time slots. But, the evaluation measure only considers the first activity, adding191

one point to the total count if this activity was in the list of “correct” activities, and zero otherwise.192

Of course, a correct solution would always get one point. Unfortunately, incomplete solutions are193

somewhat arbitrarily rated, as we shall shortly see.194

Take for example the case in which the solution given states that during a particular time slot T0,195

ActX ends and ActY starts (see Table 5). If the labeled test confirms that ActX ends indeed during time196

slot T0 but ActY does not yet start (Case A), the event gets evaluated as correct, whereas if, according197

to the labeled test set, ActY did indeed start during time slot T0, but activity ActX ended in a previous198

time slot (Case B), this event is classified as incorrect. So, in this case, it is no problem if the participant’s199

solution states that a certain activity started a bit earlier (Case A, ActY), but the answer is completely200

invalidated if a previous activity (ActX) enters, even with only one second, into the time slot that201

should have been allocated to the next activity (ActY) alone (Case B).202

Table 5. Time slots evaluation example

Solution Labeled test set (Case A) Labeled test set (Case B)
ActX ActY ActX ActY ActX ActY

Time slot T0 TRUE TRUE TRUE FALSE FALSE TRUE
Time slot T1 TRUE FALSE TRUE TRUE FALSE FALSE

The same type of asymmetry in the evaluation process also appears in the following hypothetical203

situation of time slot T1. If the solution states that ActY starts later than it is supposed to be (Case A),204

there is no problem, the event still gets one point for correctly identifying ActX ending in T1. As in the205

case of the hypothetical situation described for Case B of time slot T0, the fact that ActX takes longer206

than it should, would be in this case penalized in the evaluation process (Case B of time slot T1).207

We are aware that having to evaluate a continuous process from a discrete perspective involves208

by default losing precision, and that there is no perfect way around it. Nevertheless, we believe that209

one way to address the above mentioned inconsistencies is to consider as being correct only those210

time slots that coincide entirely (i.e., the list of activities returned by the solution in a given time slot is211

exactly the same as the list of activities in the labeled test set). Our solution would get, in this case,212

an overall accuracy of 87.10% (466 out of 535), with the situation per segment and day described in213

Table 6.214

Table 6. Revisited accuracy of our solution for each day and segment of the testing set

Day 1 Day 2 Day 3
Morning 40/49 (81.63%) 58/65 (89.23%) 54/59 (91.53%)
Afternoon 75/81 (92.59%) 74/79 (93.67%) 6/13 (46.15%)
Evening 54/65 (83.08%) 50/55 (90.91%) 55/69 (79.71%)

Version September 14, 2018 submitted to Proceedings 9 of 11

On the other hand, since for each time slot Ti, there is a (possibly empty) list Li of “right” or215

“correct” activities and a list L′i (again, possibly empty) of activities retrieved by the participant’s216

solution, another possibility to evaluate the goodness of the algorithm’s output is to resort to computing217

true positives (activities that Li and L′i have in common), false positives (activities in L′i that do not218

appear in Li) and false negatives (activities in Li that are not included in L′i), similar to what it is done219

in Information Retrieval. Then, one can compute an overall precision (how many of the activities220

found by the algorithm did indeed take place?) and recall (how many of the activities that have taken221

place were encountered by the algorithm?), formally defined below:222

Precision =
∑i |Li ∩ L′i|

∑i |L′i|

Recall =
∑i |Li ∩ L′i|

∑i |Li|
With these formulas, our solution obtains 90.72% precision (489 out of 539) and 87.95% recall (489223

out of 556), amounting to a reasonably high F-measure of 0.89.224

6. Conclusions and future work225

We have implemented a Human Activity Recognizer that achieved an accuracy rate of 90.65%.226

Some of our mistakes are human errors introduced during the transcription process between the227

output file returned by our program and the csv file with results, which was done manually due to228

time limitations (for example, we typed Act16 instead of Act17 in 2017-11-21-B). An automatic process229

would therefore eliminate this problem. In other cases, we believe they are due to incorrect labeling of230

the test dataset. For example, for the same file, the user is supposed to be brushing his teeth between231

16:10:30 and 16:12:59. Nevertheless, during that time the user is not even near the sink (according to232

the floor information), nor does he open or close the water tap until 16:15:34. Moreover, the bathroom233

motion sensor only detects movement starting at 16:15:28. Actually, the first entry in the floor file is at234

16:12:51, and the first from the sensors file is at 16:13:13. And finally, there are also errors where the235

only ones to blame are the designers of the algorithm. We hope that by investigating the mistakes we236

have made, we can come up with a better software that could scale up to an arbitrary number of users237

and a bigger number of activities.238

Another improvement that we envision is allowing more human intervention into the process.239

For the moment, whenever an action is longer or shorter than it is supposed to be (based on the240

training data), the software prints a message with this info but takes no further action. We believe that241

being able to stop the process when something seems to be wrong and restart it after incorporating the242

expert’s decision could greatly improve accuracy rates.243

Author Contributions: Conceptualization, Sergio Salomón and Cristina Tîrnăucă; Methodology, Sergio Salomón244

and Cristina Tîrnăucă; Software, Sergio Salomón; Validation, Sergio Salomón; Formal Analysis, Sergio Salomón245

and Cristina Tîrnăucă; Writing—Original Draft Preparation, Cristina Tîrnăucă; Writing—Review & Editing, Sergio246

Salomón and Cristina Tîrnăucă.247

Funding: This research was funded by Ministerio de Ciencia e Innovación (MICINN), Spain grant number248

MTM2014-55262-P and by Sociedad para el Desarrollo Regional de Cantabria (SODERCAN) grant number249

TI16IN-007.250

Conflicts of Interest: The authors declare no conflict of interest.251

Abbreviations252

The following abbreviations are used in this manuscript:253

254

Version September 14, 2018 submitted to Proceedings 10 of 11

HAR Human Activity Recognition
UCAmI Ubiquitous Computing and Ambient Intelligence
UJAmI University of Jaen Ambient Intelligence
BLE Bluetooth Low Energy
DBSCAN Density Based Spatial Clustering of Applications with Noise
RPNI Regular Positive and Negative Information
MICINN Ministerio de Ciencia e Innovación
SODERCAN Sociedad para el Desarrollo Regional de Cantabria

255

Appendix A256

Figure A1. Activity tiles

Version September 14, 2018 submitted to Proceedings 11 of 11

References257

258

1. Ranasinghe, S.; Machot, F.A.; Mayr, H.C. A review on applications of activity recognition systems with259

regard to performance and evaluation. IJDSN 2016, 12.260

2. Ann, O.C.; Theng, L.B. Human activity recognition: A review. 2014 IEEE International Conference on261

Control System, Computing and Engineering (ICCSCE 2014), 2014, pp. 389–393.262

3. Stikic, M.; Schiele, B. Activity Recognition from Sparsely Labeled Data Using Multi-Instance Learning.263

Location and Context Awareness; Choudhury, T.; Quigley, A.; Strang, T.; Suginuma, K., Eds.; Springer264

Berlin Heidelberg: Berlin, Heidelberg, 2009; pp. 156–173.265

4. Stiefmeier, T.; Ogris, G.; Junker, H.; Lukowicz, P.; Troster, G. Combining Motion Sensors and Ultrasonic266

Hands Tracking for Continuous Activity Recognition in a Maintenance Scenario. 2006 10th IEEE267

International Symposium on Wearable Computers, 2006, pp. 97–104.268

5. Berchtold, M.; Budde, M.; Gordon, D.; Schmidtke, H.R.; Beigl, M. ActiServ: Activity Recognition Service269

for mobile phones. International Symposium on Wearable Computers (ISWC) 2010, 2010, pp. 1–8.270

6. Sefen, B.; Baumbach, S.; Dengel, A.; Abdennadher, S. Human Activity Recognition - Using Sensor Data of271

Smartphones and Smartwatches. Proceedings of the 8th International Conference on Agents and Artificial272

Intelligence - Volume 2: ICAART,. INSTICC, SciTePress, 2016, pp. 488–493.273

7. Hammerla, N.Y.; Halloran, S.; Plötz, T. Deep, Convolutional, and Recurrent Models for Human Activity274

Recognition Using Wearables. Proceedings of the Twenty-Fifth International Joint Conference on Artificial275

Intelligence. AAAI Press, 2016, IJCAI’16, pp. 1533–1540.276

8. Huynh, T.; Fritz, M.; Schiele, B. Discovery of Activity Patterns Using Topic Models. Proceedings of the277

10th International Conference on Ubiquitous Computing; ACM: New York, NY, USA, 2008; UbiComp ’08,278

pp. 10–19.279

9. Kwon, Y.; Kang, K.; Bae, C. Unsupervised learning for human activity recognition using smartphone280

sensors. Expert Systems with Applications 2014, 41, 6067–6074.281

10. Turaga, P.; Chellappa, R.; Subrahmanian, V.S.; Udrea, O. Machine Recognition of Human Activities: A282

Survey. IEEE Transactions on Circuits and Systems for Video Technology 2008, 18, 1473–1488.283

11. Lara, O.D.; Labrador, M.A. A Survey on Human Activity Recognition using Wearable Sensors. IEEE284

Communications Surveys Tutorials 2013, 15, 1192–1209.285

12. Ziaeefard, M.; Bergevin, R. Semantic human activity recognition: A literature review. Pattern Recognition286

2015, 48, 2329 – 2345.287

13. Shoaib, M.; Bosch, S.; Incel, O.; Scholten, H.; Havinga, P. A Survey of Online Activity Recognition Using288

Mobile Phones. Sensors 2015.289

14. Droste, M.; Kuich, W.; Vogler, H. Handbook of Weighted Automata, 1st ed.; Springer Publishing Company,290

Incorporated, 2009.291

15. Oncina, J.; Garcia, P. Identifying Regular Languages In Polynomial Time. Advances in Structural and292

Syntactic Pattern Recognition, Volume 5 of series in Machine Perception and Artificial Inteligence. World293

Scientific, 1992, pp. 99–108.294

c© 2018 by the authors. Submitted to Proceedings for possible open access publication295

under the terms and conditions of the Creative Commons Attribution (CC BY) license296

(http://creativecommons.org/licenses/by/4.0/).297

http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Filtering Step
	Training Step
	Prediction step
	Performance evaluation
	Conclusions and future work
	A
	References

