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Abstract 

Low carbon options for the chemical industry include switching from fossil to 

renewable energy, adopting new low-carbon production processes, along with 

retrofitting current plants with carbon capture for ulterior use (CCU technologies) or 

storage (CCS). In this paper, we combine a dynamic Life Cycle Assessment (d-LCA) 

with economic analysis to explore a potential transition to low-carbon manufacture of 

formic acid. We propose new methods to enable early technical, environmental and 

economic assessment of formic acid manufacture by electrochemical reduction of CO2 

(CCU), and compare this production route to the conventional synthesis pathways and 

to storing CO2 in geological storage (CCS). Both CCU and CCS reduce carbon 

emissions in particular scenarios, although the uncertainty in results suggests that 

further research and scale-up validation are needed to clarify the relative emission 

reduction compared to conventional process pathways. There are trade-offs between 

resource security, cost and emissions between CCU and CCS systems. As expected, the 

CCS technology yields greater reductions in CO2 emissions than the CCU scenarios and 

the conventional processes. However, compared to CCS systems, CCU has better 

economic potential and lower fossil consumption, especially when powered by 

renewable electricity. The integration of renewable energy in the chemical industry has 

an important climate mitigation role, especially for processes with high electrical and 

thermal energy demands.  

1. Introduction

At COP21, parties to the UNFCCC reached the Paris Agreement (UN, 2015), which 

aims to bolster global climate change mitigation efforts in order to keep a global 

temperature rise this century well below 2 °C. In response, the IPCC published a special 

report on greenhouse gas emission pathways to limit global warming to 1.5 °C (IPCC, 

2018). They conclude that global anthropogenic greenhouse gas emissions must be 

reduced by 45% from 2010 levels in 2030, and further reduced to net zero by 2050.  

Since some emissions are extremely difficult to mitigate, for example from agriculture, 

achieving net zero emissions will require substantial efforts in all areas where emissions 

can be avoided or captured, across power generation, homes, industry and transport.  

GHG emissions from the chemical industry could be reduced by increasing process 

energy and resource efficiency, and by using low-carbon power and more sustainable 
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feedstocks. For products containing carbon that will be ultimately released to the 

atmosphere as CO2, such as formic acid, there will be a need to use sustainable carbon.  

CO2 can be a feedstock for some chemical processes including formic acid and could be 

obtained from fossil fuel electricity generation plants rather than from combusting fossil 

fuels in the future (Wilmet, 2016), in a process termed carbon capture and utilisation 

(CCU).  

The difference between CCU and carbon capture and storage (CCS) is the final use of 

the captured CO2. CCS technologies remove CO2 from gas streams and transport it to a 

geological site for long-term storage, including depleted oil and gas reservoirs. CCU 

instead converts captured CO2 into commercial products (Mac Dowell et al. 2017). 

In spite of the predominance of CCS in most of the mitigation pathways compliant with 

the Paris target, high investment and operating costs, as well as cross-chain risks have 

dissuaded its deployment at the required scale (Daggash et al. 2018). CCS technologies 

face a number of technical and economic barriers that must be overcome before it can 

be deployed on a large scale (Cuéllar-Franca et al. 2015). At the same time, research 

shows negligible contribution of CCU to the global CO2 mitigation challenge and 

suggests that, from a commercial and policy perspective, CCU should be encouraged 

when and only when CO2 is useful as a cheap feedstock, or when it can be robustly and 

reliably shown that the CO2-derived product can reasonably displace the incumbent 

product (Mac Dowell et al. 2017). Yet the European chemical industry could become a 

key consumer of CO2 for CCS and/or CCU applications in the future, if the power 

sector was to become fully decarbonised (Mathy et al. 2018; McDowall et al. 2018). 

Furthermore, CCU could be critical in the near-term to support the development of early 

CCS infrastructure. In this overall context, a debate has arisen around the relative 

benefits of CCU and CCS, introducing divergent perspectives about the role of CO2 

utilization compared to storage in mitigating climate change. Some studies have chosen 

to group them as carbon capture and storage or utilisation (CCUS) (BEIS, 2018). 

In recent years, the interest for researching CCUS systems has grown as evidenced by 

several published reviews of the available techniques and technologies. Tabbi et al. 

(2019) include an evaluation of the most modern technologies used in CO2 capture, 

reviewing the main capture strategies, including post-combustion, pre-combustion and 

oxy-combustion. In the same line, Al-Mamoori et al. (2017) present various carbon-

capture routes, reviewing the technological and the economic performance extensively 
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studied in last years. These routes include absorption-based CO2 capture by chemical or 

physical solvents, membranes, and chemical looping. These works discuss the latest 

advances made by the research community to support the development of affordable 

CCS systems. On the other hand, Norhasyima and Mahlia (2018) methodically review 

patents on CO2 utilization technologies for CCUS application over last 20 years. Recent 

advances include enhancements to the state-of-the-art technologies, including enhanced 

oil recovery (EOR) and enhanced coal-bed methane (ECBM), chemical and fuel, 

mineral carbonation, biological algae cultivation and enhanced geothermal system 

(EGS), and hybrid concepts such as in photobioreactor in algae cultivation, chemical 

reaction and EGS.  All these studies present as a common basis the recommendation to 

move towards methods and technologies that meet economic needs, security, non-

dependence on location and respect for the environment. 

The full potentials of CCU and CCS are unclear as most CCUS technologies are in 

early stage of development and neither their potential, cost-effectiveness, nor their 

impact on CO2 emission reductions are well understood. A number of studies assessed 

the environmental impacts of CCS and CCU technologies using an attributional life 

cycle approach. Cuellar-Franca and Azapagic (2015) and (2017) undertook a critical 

analysis and comparison of the life cycle environmental impact of carbon capture, 

storage, and utilization technologies. Their analysis is an excellent starting point for 

understanding the methodological challenges and the main impacts of these 

technologies, as well as to identify the remaining research gaps. According to these 

authors, the attributional analyses are difficult to compare, as they have different goals 

and scopes, system boundaries, allocation methods and functional units against which 

the impacts are estimated. Moreover, the data quality is uncertain since most systems 

are still at the development stage and real operational data are not available (Cuellar-

Franca and Azapagic, 2015). 

One disadvantage of attributional LCA is that it does not account for CO2 variations 

over time.  For example, under decarbonisation pathways compatible with the Paris 

target, the power sector should undergo a significant decarbonisation, affecting the 

emissions of all the sectors using electricity. An alternative “dynamic” approach to LCA 

enables us to understand the efficiency of CCS and CCU technologies to reduce 

atmospheric CO2 emissions over time. This paper proposes a dynamic LCA as a tool to 
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analyse the potential benefits of CCS vs. CCU technologies for producing formic acid 

(FA).   

In this paper, we explore dynamic CO2 emissions, fossil resource consumption and 

economic profiles of producing formic acid (FA) by electrochemical reduction (ER) of 

CO2 (ER FA). Accordingly, this work addresses two research questions: 

1. How do different configurations of the ER FA process (CCUS) compare in 

terms of emissions, fossil resource consumption and economic costs to 

conventional ways of producing FA? 

2. What are the environmental and economic trade-offs between using captured 

CO2 for ER FA vs. sending it to permanent geological storage (CCS)? 

In answering these questions, we focus on two key LCA methodological challenges: (i) 

how to include the time dimension in LCA; and, (ii) how the system boundaries should 

be set around chemical processes to include the influence of the whole energy system. 

The paper is structured in two main parts. Section 2 describes in detail the CCU and 

CCS systems and scenarios we analyse, as well as the dynamic approach to LCA 

enabling to assess the efficiency of CCS and CCU technologies to reduce CO2 

emissions under two global climate mitigation scenarios. Section 3 and Section 4 

introduce the main results and discussion of the study. In particular, the first part 

includes a full discussion of the technology performance, the energy assessment, the 

carbon footprint and the techno-economic evaluation. The last part reviews the overall 

d-LCA results in order to determine environmental performance and expected 

improvement measures. The paper ends with the main conclusions and the future 

challenges. 

 

2. Materials and methods  

2.1.Goal and scope 

The goal and scope of the study is to estimate the change in greenhouse gas emissions 

and fossil resource consumption caused by the implementation of an emergent CCU 

technology, i.e. ER process for the synthesis of FA from captured CO2. As a benchmark 

for comparison is the current commercial FA production by hydrolysis of methyl 

formate. An additional goal of this analysis is to investigate whether the implementation 

of CCU in combination with partial carbon storage (CCS) is a viable option for further 
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reducing the carbon emissions from FA production. The results are expected to provide 

an interesting field for discussion on the suitability of using CCU vs. CCS with a 

dynamic energy and greenhouse gas emissions approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Conventional process system flowchart, including combustion plant 

(subsystem 1) and FA conventional process (subsystem 2). 

2.2.Function, functional unit and system boundaries 

The ER process for the synthesis of FA from captured CO2 includes two main parts: the 

capture of CO2 emissions from a coal power plant, and the use of this CO2 as feedstock 

for FA. Therefore, the function of the benchmark and alternative systems is FA 

production and electricity supply. In order to define the functional unit of the work, we 

chose the current European production rate of FA as reference, and a coal combustion 

plant of 500 MW capacity to supply energy to the grid. In this context, the benchmark 

system produces 350 kt FA at a commercial concentration of 85% wt (Perez-Fortes et 

al. 2016a). To obtain the necessary amount of CO2 and energy to produce 350 kt FA by 

the conventional process, we considered a 500 MW capacity coal plant. Note that these 

plants are hypothetical ones, chosen for simplicity in this study to provide the energy 

and CO2 necessary for producing the full amount of FA currently produced within the 

EU. In practice, CO2 could be captured from smaller fossil plants and transported to the 
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ER FA plant, but these scenarios are out of scope in this study. Nevertheless, the 

methods we describe below can be used for analysing the latter scenario.    

The benchmark system (Figure 1) comprises the coal combustion and FA manufacture 

plants. The power plant is assumed to supply electricity to the grid. Conventional FA 

plants use the hydrolysis of methyl formate. The process has two stages: (i) 

carboxylation of methanol with carbon monoxide (CH3OH + CO → HCOOCH3); and, 

(ii) hydrolysis of methyl formate to FA and CO2 (CH3OOCH + H2O → CO2 + 

HCOOH) (Hietala et al., 2000).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Process flowchart of the suggested process structure for the combustion plant 

with post combustion capture, and the CCS and CCU units, the latter including the ER 

FA plant. 

 

Alternative low-carbon approaches that convert CO2 to formic acid (FA) include 

homogeneous (Wang et al. 2015, and Perez-Fortes et al. 2016a) and heterogeneous 

catalysis, photocatalytic reduction, and electrochemical reduction (Rumayor et al. 

2018). These technologies are currently found at different stages in terms of maturity, 

but they should be economically viable, safe, and sustainable for their final industrial. 

Among them, catalytic synthesis of FA from CO2 and H2 presents the highest 

technology readiness levels (TRL) as it is based on available technology. However, the 
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hydrogen synthesis is the weak spot of this option (Perez-Fortes et al. 2016a). Hydrogen 

synthesis involves an input of energy if it is carried out on an in-situ electrolyser or a 

consumption of fossil resources if it is produced by conventional processes. Despite ER 

of CO2 is still behind to catalytic ways in terms of TRLs, it has the advantage that can 

be fully developed at atmospheric temperature and pressure, while surpluses of 

electricity from renewable sources are used (Ganesh, 2016 and Kauffman et al., 2015). 

Recently, the use of carbon dioxide in microbial electrosynthesis has gained many 

interest due to its capability to produce FA (Ganigue et al., 2015), reducing the energy 

used and leading higher environmental and economical sustainability. Current efforts 

are mainly focused on (i) decreasing the overall energy consumption of the ER process 

(electricity) and the separation process (heat) (Rumayor et al. 2018; Roh et al. 2018), 

and (2) improving the economic feasibility by developing more efficient catalysts and 

reducing the consumables use (i.e. electrolytes and electrodes) (Agarwal et al, 2011). 

In this paper, we examine electrochemical reduction (ER) of CO2 captured from a coal 

power station, assuming post-combustion based on amine as solvent. Power plants offer 

meaningful opportunities for CCU and CCS options as main sources of CO2 (Markewitz 

et al. 2012). A flowchart of the process structure for the carbon dioxide capture, 

transport, storage and utilization (CCU-CCS) is presented in Figure 2, which shows 

three main sections: (1) combustion; (2) capture, transport and storage; and, (3) CO2 

conversion to FA production, based on a design suggested by Rumayor et al. (2018).  

2.2.1. Capture  

We assume that monoethanolamine (MEA)-based solvent would be used to capture CO2 

from flue gas. In a packed absorption column, the MEA reacts with and absorbs CO2 to 

form an MEA carbonate soluble salt. This CO2-rich MEA solution is then sent to a heat 

exchanger and fed to a stripping column where the MEA is regenerated and recycled, 

while the concentrated CO2 stream is captured for further processing. The efficiency of 

the capture technology is assumed to be 89% (IEA, 2009). The current research on CO2 

absorption using MEA is mainly focused on the minimization of energy consumption 

during solvent regeneration. The desorption step implies an important amount of heat, 

incurring a severe penalty to the overall efficiency of the plant. Luis (2016) mentions 

several technological options, e.g.  a CO2 absorption-desorption system based on MEA 

with capacitive deionization (CDI) to minimize the heat duty requirement of the 

stripper; a two steps desorption consisting in removing a reaction product (mainly the 
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bicarbonate ion) and the simultaneous amine deprotonation, as well as the integration of 

solar-assisted post combustion CO2 capture into a power plant with amine-based 

chemical absorption for CO2 capture. Although the conventional absorption-desorption 

process can still be optimized and improved by modifying the operating conditions or 

by integration with other emerging technologies, currently the energy requirement for 

solvent regeneration is lower that the energy consumption of the MEA production 

process (Rumayor et al., 2018). 

The combination of partial CO2 utilisation with partial CO2 storage could be an 

interesting CO2 mitigation option for industrial sources (Fernández-Dacosta et al. 2018). 

To investigate this hypothesis, we assume that a fraction of the captured CO2 is sent to 

the ER process, while the remaining is sent to storage. The fraction sent to the ER 

process, here called the derivation ratio (DR), is assumed to be pure CO2 with sufficient 

pressure for the ER process. The CO2 fraction for storage is sent to compression, 

transport and storage. High DR implies that virtually all CO2 is diverted to CCU while a 

low DR means the CCS option is carried out.  

2.2.2. CO2 conversion  

There are three main steps in the CO2 conversion: (i) ER of CO2; (ii) distillation of the 

products, and, (iii) compression of valuable by-products, such as H2 and O2, to liquid 

form ready to transport.  Rumayor et al. (2018) and (2019), Dominguez-Ramos et al. 

(2015), Del Castillo et al. (2017) and Dominguez-Ramos et al. (2019), have studied the 

ER FA process, including a comprehensive technical analysis, in order to select the 

process variables and configurations to increase the performance of CO2 conversion. In 

this work, we have selected those CO2 conversion scenarios that lead to higher results.  

Energy consumption is in form of electricity or steam according to the nature of each 

individual process. The CO2 is reduced to FA at the cathode in the presence of 

chemicals acting as supporting electrolytes. A parallel cathode reaction produces 

hydrogen. At the anode, the main reaction is the production of oxygen. Usually, the 

catholyte is an aqueous solution of 0.45 M KHCO3 and 0.5 M KCl saturated with Ar or 

with CO2. The anolyte is a 1.0 mol/L KOH aqueous solution. In this work, 

both the anolyte (KOH) and the catholyte (KHCO3 and KCl) are supposed to be 

recirculated and then, they were not taken into consideration when compiling the 

inventory stage. 
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The electricity for the electrochemical reactor could come exclusively from the coal 

power plant, or supplemented from a low-carbon generation. To investigate the 

potential benefit of utilizing renewable energy, we analysed a scenario with process 

electricity generated by photovoltaic solar power (PV). However, for the remaining 

electricity consuming processes in the ER FA unit, we assumed that the source would 

be only the electricity from the coal power plant. This is in agreement with the plans to 

utilise renewable power in the energy-intensive production of base chemicals (Riese et 

al. 2014). Several works theorize about the potential availability of the process industry 

to function as an energy sink for excess energy generated from the discontinuous 

renewable sources wind and sun (Riese et al. 2014; Jens et al. 2016). However this is 

unlikely in practice, because the high capital costs of an ER FA plant would demand 

high capacity factor operation. Capturing excess generation means not having the plant 

operating for long periods, so something cheaper (e.g. an electrolyser for hydrogen 

production) makes more sense. Our work is aiming to contribute to this debate by 

integrating not only the renewable energy production and the chemical process industry, 

but also the CCU and CCS technologies. 

2.2.3. Compression, transport and storage 

For CO2 storage, the CO2 flow is assumed to be compressed to 11 MPa for transport by 

means of a compression train formed by several compression stages with intercoolers 

and a final pump. The compressed CO2 is transported through a pipeline with a diameter 

of 95 cm, thickness of 10 mm (Koornneef et al. 2008). We assume that CO2 is 

transported in a supercritical state 5 km onshore and 95 km to an offshore aquifer, 

where it is stored in a permanent storage (Fernández-Dacosta et al. 2018). An 

alternative case with CCS but without CCU enables us to understand potential climate 

benefit of CCS over time, i.e. CO2 potential reduction. 

2.3. Description of scenarios  

The scenarios described in Table 1 have been designed based on different published 

works. For example, Rumayor et al. (2018) note that future deployment of ER process 

is conditioned by the performance technology; Koornneef et al. (2008) assess the 

environmental impacts of three pulverized coal fired electricity supply chains with and 

without carbon capture and storage (CCS), and Fernández-Dacosta et al. (2018) refers 

to the combination of multi-product CCU with CO2 storage; Dominguez-Ramos et al. 

(2015) conclude that integration of renewable energy and alternative purification 
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process are required to ensure a sustainable process to obtain FA from CO2 . Beside 

these we further argue that that the degree of decarbonisation of the global energy 

system also influences the configuration of the ER FA system. Therefore, we also 

investigate the case when the EU grid electricity supply is decarbonised to meet the 

Paris Agreement targets vs. the case when no climate action is implemented. The latter 

could lead to increased emissions towards 2040, which is the time horizon considered in 

this study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Overview of the marginal and alternative processes included in the scenarios 

described in Table 1. 

 

Benchmarked scenario 

FA from Conventional FA

Decrease in emissions from Electric 

Grid under EU climate policies 

consistent with the Paris Agreement

Increase in emissions from Electric 

Grid Mix under a scenario of no 

climate mitigation in the EU
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Figure 3 provides an overview of the marginal processes and emission sources/sinks 

included in each scenario. These relate to (i) the production and consumption of energy 

(either from the coal combustion plant for ER FA production, or from the grid mix for 

FA production by the conventional process), (ii) the deployment of CCS technologies 

and consequently the availability of CO2 to produce FA from ER process, (iii) the 

performance of the ER process (which has been included as an implicit sensitivity 

analysis conducted on key process parameters to explore the system's operational ranges 

and to assess the impact of process conditions on the technical performance of the 

system), as well as to (iv) the use of PV electricity instead of electricity from the 

production mix. According to this overview, Table 1 contains the description of the 

proposed scenarios. 

 

Table 1. Details of the proposed scenarios. Limitations of these scenarios are shown in 

Appendix A.  

Scenario Description Sub-scenario Description 

1. Benchmarked 

System 

(CONV FA + 

gELC) 

The combustion plant 

supplies energy to the grid 

(subsystem 1). Production of 

FA using the conventional 

process using energy from the 

Grid (gELC, subsystem 2).  

1.1. Energy (2DS ) Electric Grid Mix under EU climate 

policies consistent with the Paris 

Agreement.  

1.2. Energy (BAU) Electric Grid Mix under a scenario 

of no climate mitigation in the EU.  

2. ER FA  System 

(ER FA + gELC) 

The combustion plant 

supplies energy to the grid 

(subsystem 1). CO2 to FA 

from ER process using energy 

from the combustion plants 

and additionally from the grid 

to compensate energy 

(subsystem 2).  

2.1. Energy (2DS)  Electric Grid Mix under EU climate 

policies consistent with the Paris 

Agreement. 

2.2. Energy (BAU)  Electric Grid Mix under a scenario 

of no climate mitigation in the EU. 

3. Performance 

Technology 

(ER FA (LP-BS-

HP) + gELC) 

The combustion plant 

supplies energy to the grid 

(subsystem 1). Considers the 

maturity of the ER FA 

process (Subsystem 2).  

3.1. Low 

Performance (LP) 

Pessimist scenario including FA 

outlet at 2% wt; 5 V; current 

density 70 mA·cm-2. Electric Grid 

Mix under 2DS, or BAU. 

3.2. Base Scenario 

(BS)  

Medium scenario including FA 

outlet at 10% wt; 3.7 V; current 

density 140 mA·cm-2. Electric Grid 

Mix under 2DS, or BAU. 

3.3. High 

Performance (HP) 

Optimist scenario including, FA 

outlet at 30% wt; 2.6 V; current 
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density 1,125 mA·cm-2. Electric 

Grid Mix under 2DS, or BAU. 

4. CCU/CCS 

ratio  

 

ER FA (HP), DR 

+ gELC) 

The combustion plant 

supplies energy to the grid 

(subsystem 1). Considers the 

ratio of CO2 to use (CCU) vs 

storage (CCS). CO2 to FA 

from ER process using energy 

from the combustion plants 

and additionally from the grid 

to compensate energy 

(subsystem 2). Total FA 

production is the same, either 

by CONV FA (CO2 storage) 

or by ER FA (CO2 use). 

4.1. ER (DR=0.99) CCU (DR=0.99). Electric Grid Mix 

under 2DS, or BAU. All captured 

CO2 is used for making FA. 

4.2. ER (DR=0.67) CCU (DR=0.67) in combination 

with CCS. Electric Grid Mix under 

2DS, or BAU. 

4.3. ER (DR=0.33) CCU (DR=0.33) in combination 

with CCS. Electric Grid Mix under 

2DS, or BAU. 

4.4. ER (DR=0.01) CCS (DR=0.01). Electric Grid Mix 

under 2DS, or BAU. All captured 

CO2 is sent to geological storage. 

5. PV solar 

energy 

 

(ER FA (HP), DR 

+ PV ELC) 

The combustion plant 

supplies energy to the grid 

(subsystem 1). CCU/CCS 

ratios. CO2 to FA from ER 

process using energy from the 

combustion plants and 

additionally from PV energy 

for the ER cell (Subsystem 1). 

(subsystem 2). Total FA 

production is the same, either 

by CONV FA (CO2 storage) 

or by ER FA (CO2 use). 

5.1. (PV) 

(DR=0.99) 

CCU (DR=0.99). Electric Grid Mix 

under 2DS, or BAU. All captured 

CO2 is used for making FA. 

5.2. (PV) 

(DR=0.67) 

CCU (DR=0.67) in combination 

with CCS. Electric Grid Mix under 

2DS, or BAU. 

5.3. (PV) 

(DR=0.33) 

CCU (DR=0.33) in combination 

with CCS. Electric Grid Mix under 

2DS, or BAU. 

5.4. (PV) 

(DR=0.01) 

CCS (DR=0.01). Electric Grid Mix 

under 2DS, or BAU. All captured 

CO2 is sent to geological storage. 

 

2.4. Dynamic Life Cycle Assessment (d-LCA) 

Life Cycle Assessment (LCA) is a powerful tool to assess the environmental 

performance of processes and products on a life cycle basis, providing a holistic view of 

the environmental sustainability of the selected scope. One of the recognized limitations 

of the LCA method is the lack of a time dimension in the definition of both the Life 

Cycle Inventory (LCI) and Life Cycle Impact Assessment (LCIA) steps (Finnveden et 

al. 2009). Including the temporal dimension in LCA is a relatively recent research 

subject. Currently there are several methodological frameworks available offering 

guidance on how to perform dynamic Life Cycle Inventory (d-LCI) and dynamic Life 

Cycle Impact Assessment (d-LCIA) (e.g. Beloin‐Saint‐Pierre et al. 2017, Hayato 

Shimako et al. 2018, Cardellini et al. 2018). Essentially, all these methods start with 

collecting temporally explicit data for the inventory, compute the inventory in a form 
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which preserves the temporal specification, and finally use time-dependant 

characterisation factors for calculating overall life-cycle impacts. All these authors 

acknowledge challenges related to (i) gathering temporally-specific inventory data 

(which would also be specific to a given study), (ii) linking it to the existing “static” 

LCA databases, and (iii) computing the inventory. To reduce the time needed to 

compile dynamic inventory data, Collet et al, 2014 suggest a selection method based on 

sensitivity analysis to temporal specification. Given the nature of the system studied in 

this study, i.e. a set of energy intensive technologies yet to be demonstrated at scale, for 

developing a dynamic LCI we used TIAM-UCL for deriving dynamic information on 

the European electricity mix, which we identified as the flow which needs temporal 

specification. The model developed in this work is based on soft-linking input-output 

matrices collecting data from GaBi Professional software v8 (GaBi, 2018) and 

Ecoinvent 3.3 (Ecoinvent Centre, 2017), and the TIAM-UCL energy system model. 

TIAM-UCL is a global energy system model integrated with a climate module, which 

allow for setting global temperature targets under different socio-economic trajectories. 

In TIAM-UCL the EU is modelled in three regions: Western EU, Easter EU and the 

UK. Each region has its own energy system producing and trading energy commodities 

with the other 15 regions in the model under different regional and global climate 

targets. 

For this case study we assumed a global SSP2 (Shared Socioeconomic Pathways) 

development trajectory (Riahi et al., 2017), and we constrained the model to find the 

most cost effective global energy system which delivers an increase of global 

temperature to 2100 less than 2ºC.  

Depending on assumptions regarding the technology base potentially available over 

time in the energy system, the availability of resources, especially biomass for energy, 

the emissions of non-energy related processes, the pathways indicated by TIAM, and 

subsequently the EU electricity mix can vary. For this study we used temporal data from 

TIAM-UCL related to the potential evolution of the energy system under two climate 

mitigation scenarios, no climate mitigation (Business as Usual, BAU) vs climate 

policies consistent with the Paris Agreement (2DS). Specifically, we took the 

composition of the electricity mix every 5 years from 2015 to 2040 and compiled time-

dependent datasets for European electricity production. While the share of different 

technologies supplying electricity to the grid is computed by TIAM-UCL as the most 
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cost optimal solution for the given climate constraints, the average resource 

consumption and emissions related to the electricity produced every 5 years were 

calculated based on the Ecoinvent dataset.  

Based on d-LCA nomenclature developed by Beloin‐Saint‐Pierre et al. (2017), the 

assessment requires two matrices describing the d-LCI: matrix G, where different 

elementary flows (row) are separated by their period of emission (column); and matrix 

E describing the time dependent energy and emissions for each period where 

elementary flows (row) are occurring. As a result, matrix H describes the impact 

generated by elementary flows (row) at every time step (column). 

 
         
   

         

   
  
 
  

   
         
   

         

            (1) 

In this work, each row of the matrix G is linked to a specific process where energy and 

materials are consumed or avoided for the considered systems, while each column 

correspond to the specific period of time. On the other hand, for the matrix E, each row 

is linked to the emissions scenarios and the columns to the periods of time. 

The dynamic parameters of the conventional process (CONV FA) and ER process (ER 

FA) for the dynamic LCA related to the potential evolution of the energy system under 

BAU and 2DS scenarios are shown in Tables S1-4 of the SI. 

2.5. Life Cycle Inventory 

The LCI data for the coal combustion plant and the conventional process of formic acid 

manufacture are taken from the commercially available Ecoinvent database v3.3 

(Ecoinvent Centre, 2017). For the combustion section, it is assumed that hard coal is 

used as feedstock. The quality of the data that is available from the Ecoinvent database 

can be considered high for the power plant, i.e. the coal combustion and flue gas 

treatment processes. Data for the upstream processes in the coal supply chain have not 

been considered in this work.  

For compiling the LCI of electrochemical reduction of CO2 to FA connected to a coal 

combustion plant we considered that all the CO2 emissions from the coal combustion 

plant are sent to the capture section. For the capture section, it is assumed that 89 % of 

the CO2 is captured, and 11% is released to the atmosphere.  For the ER FA process we 

considered data from three different alternatives of ER FA that were found in the 
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literature (Spurgeon and Kumar, 2018; Yang et al. 2017; Martín et al. 2015). The 

alternatives were selected because of their demonstrated capability of producing FA 

concentrations between 2.0% wt. and 30.0% wt., the later coming to the concentration 

of commercial FA supplied currently. All the alternatives studied present the same 

mode of operation, being single pass (see Table 2). The main differences are the 

electrolyte flow rate used. Additionally, there are differences in the electrode and 

membrane materials, and the faradaic current efficiency (FE). For the “central” d-LCA 

we consider the data from Yang et al. (2017), and we use the other two references for 

the sensitivity analyses. 

 

Table 2. Technical conditions of the ER process: performance influence.  

 
Low performance 

(LP) 

Base Scenario 

(BS) 

High performance 

(HP) 

Cell Voltage, V 5 3.7 
a
 2.58 

c
 

Current density, mA·cm
-2

 70 140 
a
 1,125

 b
 

FE, % 50 94 
a
 98

a
 

HCOOH outlet, ER, % wt. 2 10 
a
 

30 (generic 50% 

improvement from 

20% wt.) 

Durability, h 2,500 2,500 5,000
 d
 

a
 Single pass case of experiment in Yang et al. (2017).  

b
 Martín et al. (2015). 

c
  Minimum cell voltage from Spurgeon and Kumar, (2018).  

d
 Overpotential from Martín et al. (2015). 

 

The detailed LCIs for required materials and energy corresponding to each set of 

experimental data were calculated by means of a sequence of energy and mass balances. 

Mass balances were performed in each unit, ensuring that there were no mass losses for 

any element. This methodology ensures that each ER alternative is treated equally; thus, 

the results are directly comparable although they come from different references using 

different methods for LCI. For the energy balance, it was assumed that the direct current 

for the ER process could be obtained from the generator, ignoring conversion losses. 

The electricity consumption for the other demanding processes, namely CO2/H2 

compression and H2 liquefaction, O2 compression and liquefaction, catholyte and 
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anolyte water pumping and cathode recovery, also assumed as supplied by the 

generator. Heat as steam and cold water are the utilities used in the distillation step. The 

data for these was also obtained from Ecoinvent data. The electricity needed in the 

process, such as the electricity demanded in the reduction of CO2 to FA, the electricity 

for the pumps within the reactor cell, and the electricity needed for liquefying both O2 

and H2 was assumed to come from the power plant. Heat, as steam, is a utility used in 

the distillation unit. 

To undertake the d-LCA we needed to make a series of assumptions: (i) a CO2 

valorisation plant is in the same site of the CO2 source (no transport is required); (ii) the 

feed of CO2 to the plant is assumed to be pure and with a suitable pressure for the ER 

process; (iii) the feed of CO2 to the plant is assumed to be free of environmental 

burdens, i.e. 100% of the burdens are allocated to the electricity produced by the coal-

fired power plant; (iv) the vapour steam needed for FA purification is at dry saturated 

conditions; and (v) the electrolytes used in the ER process can be perfectly separated.  

Tables 3 and 4 shows an overview of the LCI both for benchmarked scenario and the 

alternatives scenarios. Table 5 summarizes the LCI developed as a data source for the 

study of the influence of CCU technology versus CCS technology. As it can be seen in 

table CO2 emission data from electricity production from the grid is a function of the 

energy profile over time, and more information can be found in the Supplementary 

Materials (Tables S1 and S3). 

 

Table 3. LCI for the benchmarked scenario (CONV FA), per kg of FA produced by the 

conventional process.  

 Unit Values 

ENERGY   

Total Electricity kWh 1.04 

Heat, from natural gas MJ 14.6 

Heat, other than natural gas MJ 8.17 

RAW MATERIALS kg  

Methanol kg 4.00E-02 

Carbon monoxide kg 6.14E-01 

Water kg 5.99E-01 

PRODUCTS   
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Formic acid kg 1.00 

EMISIONS (CO2 eq) kg   

WEU: electricity production from grid 
kg as a function of the energy profile 

computed by TIAM-UCL
(1)

 

Water kg 7.00E-04 

Chemical factory kg 6.10E-02 

Methanol production kg 1.00E-03 

Carbon monoxide production kg 9.37E-01 

Heat, district or industrial, natural gas kg 4.85E-01 

Heat, district or industrial, other than natural 

gas  

kg 5.32E-01 

(1)
 Detailed information of the energy profile can be found in the Supplementary Materials.  

 

Table 4. LCI for the alternative ER FA alternatives, reported per kg of FA produced by 

the ER process.  

 Unit Low 

performance 

(LP) 

Base 

Scenario 

(BS) 

High 

Performance 

(HP) 

ENERGY     

Total electricity kWh 11.79 4.63 3.10 

ER cell kWh 11.65 4.59 3.07 

Pumping & compression kWh 1.26E-01 4.10E-02 3.6E-02 

Separation of CO2/H2 kWh 1.03E-02 1.11E-03 3.58E-04 

Steam  MJ 337.80 62.20 14.90 

RAW MATERIALS     

CO2 kg 9.57E-01 9.57E-01 9.57E-01 

H2O kg 1.127 5.93E-01 5.76E-01 

PRODUCTS     

HCOOH Kg 1.00 1.00 1.00 

H2O kg 1.8E-01 1.8E-01 1.8E-01 

H2 kg 4.3E-02 3.00E-03 1.00E-03 

O2 kg 6.96E-01 3.70E-01 3.55E-01 

EMISIONS (CO2 eq.)     

ES: electricity production, 

photovoltaic, 570 kWp 

open ground installation, 

kg 7.90E-01 3.10E-01 2.08E-01 
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multi-Si 

EU: electricity production 

from grid 
kg 

as a function of the energy profile computed by 

TIAM-UCL
(1)

 

Water kg 7.00E-04 7.00E-04 7.00E-04 

RER: steam production in 

chemical industry  
kg 23.30 4.29 1.02 

Avoided (H2 production) kg -3.38E-01 -2.20E-02 -7.00E-03 

Avoided (O2 production) kg -3.50E-02 -1.90E-02 -1.80E-02 

(1)
 Detailed information of the energy profile can be found in the Supplementary Materials.  

 

 

Table 5. LCI for the combination of partial CO2 utilisation (CCU) with partial CO2 

storage (CCS), reported 1 kg of FA produced by the ER process. Scenario: HP 

technology and 2DS energy profile.   

  Unit Derivation Ratio 

  
0.99 0.01 0.33 0.67 

ENERGY         
 

Total electricity kWh 3.10 3.10 3.10 3.10 

ER cell kWh 3.07 3.07 3.07 3.07 

Pumping & compresion kWh 3.60E-02 3.60E-02 3.60E-02 3.60E-02 

Separation of CO2/H2 kWh (x10
-4

) 3.60 3.60 3.60 3.60 

Steam MJ 14.90 14.90 14.90 14.90 

RAW MATERIALS 
     

CO2 kg 1.09 107.40 3.26 1.60 

H2O kg 5.76E-01 5.76E-01 5.76E-01 5.76E-01 

CO2 to storage Kg 1.00E-02 94.70 1.94 5.00E-01 

 CO2 to ER kg 9.56E-01 9.56E-01 9.56E-01 9.56E-01 

PRODUCTS 
     

HCOOH Kg 1.00 1.00 1.00 1.00 

H2O kg 1.76E0-1 1.76E0-1 1.76E0-1 1.76E0-1 

H2 kg 1.00E-03 1.00E-03 1.00E-03 1.00E-03 

O2 kg 3.55E-01 3.55E-01 3.55E-01 3.55E-01 

EMISIONS (CO2 eq.) 
     

Direct Capture kg 1.19E-01 11.82 3.58E-01 1.76E-01 
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EU: electricity production 

from grid 
kg 

as a function of the energy profile computed 

by TIAM-UCL
 (1)

 

ES: electricity production, 

photovoltaic, 570 kWp 

open ground installation, 

multi-Si 

kg 2.08E-01 2.08E-01 2.08E-01 2.08E-01 

Water kg 1.00E-03 1.00E-03 1.00E-03 1.00E-03 

RER: steam production in 

chemical industry 
kg 1.02 1.02 1.02 1.02 

Avoided (H2 production) kg -7.00E-03 -7.00E-03 -7.00E-03 -7.00E-03 

Avoided (O2 production) kg -1.80E-02 -1.80E-02 -1.80E-02 -1.80E-02 

(1)
 Detailed information of the energy profile can be found in the Supplementary Materials. 

2.6. Environmental assessment 

As some LCA studies found, CCS systems increase the emission of toxic substances 

such as NH3, MEA, formaldehyde, and acetaldehyde leading to the corresponding 

increase in the toxicity impact categories (e.g. Singh et al., 2011). Assumed the 

complexity of the systems and the explorative approach of this research, including more 

impact categories at this stage might not be meaningful, as we would be looking at 

generic pollutants emitted in a generic EU space, which we would then use for deriving 

a potential local impact, again based on generic factors. Therefore, we limit this study to 

estimating the carbon footprint (CF) and the fossil resource consumption (FRC) 

following a cradle to gate d-LCA perspective. 

Ecoinvent 3.3 database (Ecoinvent Centre, 2017) and GaBi Professional software 

(GaBi, 2018) were used in the background process. The CML 2016 method (Guinée et 

al. 2001) was used with a hierarchic perspective.  

We have considered the FRC index as a measure of resources included in both system 

and alternatives since fuel savings could be a relevant benefit of CCU options (Pérez-

Fortes et al. 2016a). In addition to this, we consider that using results on both fossil 

resources and CO2 emissions, we can test this relationship over time, introducing a 

direct link between fossil fuels and raw materials from energy and chemical product 

subsystems respectively. 

2.7. Economic assessment 
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In parallel with the environmental evaluation, we also estimated the economic costs of 

representative scenarios, which is the capital and operating costs. Based on the 

equipment size and mass and energy balances from the process models (Dominguez-

Ramos et al. 2015 and 2019), capital and operational costs were calculated for each of 

the systems investigated. Capital costs and operational costs were used to determine the 

total systems costs and the net present value (NPV) as a metric to evaluate the 

profitability of CCU vs. CCS plants from a private investor perspective. Finally, FA 

cost was calculated for each scenario to evaluate how the introduction of CO2 capture 

units would affect the final product cost. A detailed description of the economic 

assessment methodology, including the economic overall key performance indicators 

(KPIs), as well as the FA ER plant cost parameter are presented in the SM.   

In the context of the FA market, Perez-Fortes et al. (2016) present market penetration 

pathways based on the legislation in Europe and state of art technologies. According to 

this, under an optimistic scenario in which FA is used as hydrogen carrier, the current 

demand could increase up to fourteen times, reaching 24,000 t/year, which implies a 

CO2 provision over 21,000 t/year. However, because the use of FA falls outside of the 

system boundaries in this work, we have only considered the current production of FA 

in Europe to carry out the economic assessment. 

 

3. Results 

3.1. Influence of the technology performance 

Figure 4 shows the results from the d-LCA for FA production from the conventional 

process (CONV FA) and ER process (ER FA) under the 2DS scenario (below 2 ⁰C by 

the end of the century), including the energy system to supply grid electricity (gELC). 

The CO2 emissions of the two FA production systems vary as a function of the 

technology performance and the energy system supplying the electricity to the FA 

system. The CO2 emissions associated to the CONV FA + gELC (2DS) scenario were 

estimated at 4.3 Mt CO2 per functional unit, decreasing to 3.3 Mt CO2 per functional 

unit by 2040 due to the decarbonisation of the energy system under climate policies 

consistent with the Paris Agreement. 

The CO2 emissions of ER FA technologies range from 11.2 to 8.5 Mt CO2 per 

functional unit for the high performance (HP) technology in 2016 and 2040 
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respectively; and from 53.8 to 38.1 Mt CO2 per functional unit for the low performance 

(LP) in 2016 and 2040 respectively. According to this, the technological development 

has a leading influence on the CO2 emissions, which could be up to five times less in a 

high performance scenario. On the other hand, note that if we only consider the FA 

production technologies (source of energy not included), the CO2 emissions for the 

conventional FA production are significantly lower than for the ER FA process, 

between 4 and 50 times for HP and respectively LP technologies. In this case (without 

considering the energy supply), our results fit with previously published studies, 2-5 kg 

CO2/kg FA for the convectional FA, and respectively 14-20 kg CO2/kg for ER FA 

(Dominguez-Ramos et al. 2015; Rumayor et al. 2018; Cuellar-Franca and Azapagic, 

2015; Cuellar-Franca et al. 2015). However, in the following we argue that it is critical 

to include the energy supply in the evaluation of the FA environmental profile.  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 4. Dynamic carbon footprint for the benchmark and the CCU using alternative 

FA production technologies for the whole system (FA production and energy supply). 

 

According to Table 4, the electricity consumption by the ER FA process ranges between 

3.1 kWh/kg per mass unit of FA (HP technology) and 11.8 kWh/kg per mass unit of FA 

(LP technology). This is mainly driven by the consumption of steam, 14.9 to 337.8 

MJ/kg per mass unit of FA in the HP and respectively LP technologies, highlighting the 
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significance of the purification step. As expected, the higher the FA concentration is at 

the outlet of the ER cell, the lower is the steam consumption (HP scenario). As 

consequence of the energy and steam consumption for CO2 capture and separation and 

the ER FA process itself, power plant’s electricity output to the grid is reduced by 120 

kWh per ton CO2 captured, or 21.8 kWh per kg FA produced. If the demand for 

electricity is assumed unaltered by the FA production, this implies that the electricity 

producers have to compensate for the reduced output with more electricity production. 

In this work, we have modelled the compensated electricity based on grid characteristics 

in Europe from 2015 to 2040 according to the TIAM-UCL model results under a 2DS 

climate mitigation scenario, estimating that the CO2 emissions embedded in the 

electricity from the grid amounts between 200 and 500 kt CO2 per functional unit (40 to 

500 gCO2/kWh supplied electricity). At the same time, the avoided emissions from the 

recovery of CO2 from the coal combustion plants to the ER FA process are 340 kt CO2 

per functional unit. All these result into that in the more optimistic scenario, i.e. high 

performance (HP), the ER FA process system is competitive in terms of global warming 

with the conventional process. As we have previously referred, the analysis differs 

substantially when we do not include the energy supply in addition to the chemical 

process, the CONV FA looking much less emission intensive than all ER FA 

alternatives. However, not including the energy generation into the system boundaries 

might lead to misleading conclusions.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Main source of CO2 emissions for the alternative system under the ER FA 

(HP) + gELC(2DS) scenario. 
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3.2. Energy assessment  

Figure 5 shows the main sources of CO2 emissions for the alternative ER FA (HP) + 

gELC (2DS), selected as an optimistic scenario under an energetic point of view, 

including emissions from (i) the energy for the CO2 capture; (ii) the energy consumed 

by the ER FA process; (iii) the energy from the grid to compensate the energy 

consumed from the coal combustion plant for ER FA production; and (iv) the avoided 

emissions of CO2 used as raw material in the ER FA production. The ER FA is energy 

intensive and the energy related emissions dominate its carbon footprint, i.e. blue 

columns in Figure 5. Moreover, although the energy consumption is the same over time, 

the CO2 emissions from the grid are diminished over time, contributing from 22% in 

2015 to 5% in 2040 to the total FA footprint, consistent with the dynamic energy profile 

considered under a 2DS decarbonisation scenario. 

Under these overall conditions, the proposed CCU system, could be favourable in terms 

of global warming, despite the high-energy consumption. This highlights the 

importance of considering the system as a whole, since the decision-making must be 

linked to both the production of chemical products and the supply of energy. 

3.3. CO2 emissions under a CCU versus CCS scenario 

In order to assess the alternative CCS, in addition to a combination of CCU and CCS 

systems (Scenario 4), we varied the CO2 fraction (DR) sent to compression, transport 

and storage (Figure 2). It is important to point out that only restricted values of CO2 

fractions (low DR values) are currently found to be technically plausible for the 

conversion to FA (Dominguez-Ramos et al. 2015). The current envision deals with 

relatively small modular facilities that can valorise a fraction of all the CO2 captured 

rather than a facility fully oriented to the production of high volumes of FA. Note that 

high DR values imply the CO2 as a resource for producing FA, while low values of DR 

suggest higher CO2 storage. 

In order to take into account the most comparable scenarios in CO2 terms to the 

conventional FA process and the most optimistic energetic scenario, Figure 6 displays 

the CO2 emissions for the CCU and CCS systems for ER FA (HP) + Energy (2DS), 

both for grid electricity and for PV electricity. Figure 6(a) shows the dynamic reduction 

in CO2 emissions from 4.2 to 3.3 Mt CO2 per functional unit for a DR of 0.99 (CCU), vs 

2.1 to 1.7 Mt CO2 per functional unit for DR of 0.01 (CCS), which is associated with 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

the dynamic energetic profile under a considered progressive decarbonisation. When we 

compare these emissions with those corresponding to the conventional scenario, we find 

that, independently of the DR fraction, the ER FA systems are less emission intensive 

than the CONV FA system from 2030 onwards, assuming a decarbonisation of the 

energy system consistent with the Paris Agreement. Note that using PV electricity for 

the ER FA (HP) process makes it less emission intensive from the first use.  

According to these results, even under high efficiency (HP) assumption, the CCU 

technology needs a decarbonised electricity input (i.e. similar to those under a 2DS 

future) to yield similar or less emissions as compared to the conventional technology. If 

the energy system doesn’t decarbonise (see SI), ER FA yields to increased CO2 

emissions when grid electricity is used for the ER. In the latter case, only using PV 

electricity would make ER FA less emission intensive than CONV FA.  

 

 

 

 

 

 

 

 

 

Figure 6. CO2 emissions for the CCU and CCS systems for the ER FA (HP) + Energy 

(2DS) alternative: (a) CO2 emissions under a grid energy scenario (gELC); (b) CO2 

emissions under a PV solar energy scenario (PV ELC). 

 

We have investigated the use of surplus of renewable energy from PV solar energy for 

supplying energy to ER FA manufacture. In this scenario, the additional energy required 

in the ER FA process is obtained from a PV solar source integrated into the chemical 

plant instead of taking it from the grid. Following results in Figure 6(b), in this 

particular case, the CO2 emissions could decrease to 2.3 Mt per functional unit, a 

decrease of 35% as compared to 3.6 Mt CO2 per functional unit when a grid energy 

scenario is considered. The demand of steam for the purification stage is the main 
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consumer of energy, and therefore the highest contribution to GHG of ER FA. Reducing 

the energy requirements of purification, in other words increasing the efficiency of the 

separation process, could be done through: i) increasing the efficiency of the ER process 

leading to higher concentrations of FA in the output stream; and ii) intensifying the FA 

production process through reactive distillation processes (Sharma et al. 2018). Other 

options could include sourcing steam from a renewable source, as well as considering 

different concentration of FA for commercial purposes, reducing the need for steam. It 

is remarkable that the integration of solar PV energy would allow reducing CO2 

emissions below the benchmarked scenario, even in a non-decarbonisation scenario 

(BAU scenario), achieving in this case a reduction in emissions of up to 30%. The 

practical design of the integration of ER for the production of FA has not been proposed 

yet. FA can be handled and safely stored so it is likely to be conceived a storage tank for 

the produced FA. The ER section would be operating under conditions of high 

irradiation so it can be flexible regarding the incoming electrons from the PV solar 

source. However, the intermittency of solar power generation might be an important 

bottleneck in implementing this option in practice. 
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Figure 7. Fossil resources consumption and CO2 emissions for the CCU and CCS 

systems for the ER FA (HP) + Energy (2DS) alternative in 2040: (a) CO2 emissions 

under a a grid energy scenario (gELC); (b) COs emissions under a PV solar energy 

scenario (PV ELC); (c) fossil resources under a grid energy scenario (gELC); (d) fossil 

resources under a PV solar energy scenario (PV ELC). 

Figures 7a and 7b show the composition of CO2 emitted under CCU vs. CCS scenarios. 

They display the CO2 emissions in 2040 in each of the variants analysed in Figure 6, 

and considering the following contributions: (i) ER FA CO2 emissions; (ii) avoided CO2 

emissions from the ER FA by-products H2 and O2; (iii) CO2 emissions from capture; 

(iv) CO2 emissions from compression; (v) CO2 emissions from storage; (vi) CO2 

emissions from energy from coal; (vii) CO2 emissions from energy from the grid to 

compensate the reduced electricity to the grid mix; and, (viii) avoided CO2 emissions 

related to the consumption of and CO in the conventional process.  Results in Figure 7 

show that both in the grid energy scenarios (Figure 7a) and PV solar energy scenarios 

(Figure 7b) the avoided CO2 emissions from the energy coal combustion plants and 

from the ER FA by-products (H2 and O2) compensate the emissions from the ER FA 

process. Both CCU and CCS scenarios result into less CO2 emissions than the 

conventional FA system (dotted line). The difference is more noticeable in the CCS 

scenarios (DR=0.01). Note that the conventional FA is less intense in emissions under a 

2040 decarbonization simulated scenario. The PV solar energy scenarios have the 

lowest emissions, as the ER FA emissions are the lowest.  

3.4. Fossil resources consumption under a CCU versus CCS scenario 

Figures 7c and 7d display the fossil resource consumption in 2040 in each of the 

variants analysed in Figure 6. It is conspicuous that there is a redistribution of fossil 

resources consumption for the FA production, either from the conventional FA system 

as from the alternative ER FA system regardless of whether the option is CCU, CCS or 

a combination of both. The magnitude of fossil resources consumed in the ER FA 

system under a CCS scenario (DR = 0.01) is similar to the resources consumed in the 

ER FA process CCU plus the resources avoided from the conventional production of 

FA. Note that in a full CCU scenario, the avoided resources from the conventional 

system do not compensate the resources required to generate the additional energy 

needed in the ER FA process. This holds true although under the decarbonised scenario 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

considered in this work the grid energy is less intensive in fossil resources, and the 

increase in fossil resources consumption associated to the energy is only 2%.  

An overall overview of the obtained results reveals, once again, the important influence 

of energy consumption in the studied scenarios, underlying the need to include energy 

when evaluating technical strategies to reduce emissions and fossil resources 

consumption in the chemical industry. 

3.5. Techno-economic evaluation 

The feasibility of producing FA by ER of CO2 at industrial scale depends not only on 

the operational and environmental performance of the process, but also on its economic 

viability. Data from several commercial plants (Perez-Fortes et al. 2016a) indicate that 

the current FA manufacture price is about 0.65 €/kg FA. This implies a gross profit of 

0.175 €/kg FA, which we take as economic reference value in this study. To analyse the 

economic performance of the ER FA process as a function of the technology 

characteristics (HP, BS and LP cases, as described in Table 2), we show in Table 6 the 

economic assessment results at ER FA manufacture level. The complete economic 

results for the CCU plants is included in the SM (Table S7). 

The results in Table 6 show that the investment costs (from the Capital Expenditure, 

CAPEX), are strongly influenced by the performance of the process, the low 

performance ER FA process (LP) being the most expensive of all alternatives. As both 

the LP and BS technology scenarios are not economically feasible, in continuation we 

only use the high performance (HP) scenario to study the influence of the derivation 

ratio in the CO2 emissions (DR) on the economic profile of ER FA (ER FA (HP), 

(DR=0.99-0.01) + gELC (2DS)). In this scenario, the biggest contributor (90%) to the 

total investment cost is the electrolyser cost. This fact highlights the need of further 

development of the electrolyser components (cathode, anode and membrane) to drive 

down the cost of the electrolyser.  

Indicatively, the level of CAPEX from capture has been estimated at 18.1 €/t CO2 

captured. The operational costs from capture and storage arise to 25.1 €/t CO2 captured 

vs. 18.9 €/t CO2 used. These values should be interpreted with caution, as many other 

factors should be considered for calculating them; e.g. the heat and electricity for the 

capture and compression are always withdrawn from the power plant so they are not 

considered here, although in reality it means a relevant energy penalty for the power 
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plant. Only the cost of the capture and the compression are considered. The CO2 

emissions which are not captured are considered as an environmental burden.  

The extra operational costs due to the energy and material requirements for the CO2 

capture are partly compensated in the CCU case (DR=0.99) and in the combined CCU-

CCS alternatives (DR>0.33) by the revenues from selling FA. Additionally these 

scenarios benefit from avoided consumption of feedstock (methanol and CO), which 

adds to the operational costs in the conventional and CCS cases. The total system costs 

follow the same trends, from 1.05 €/kg FA for DR=0.99 (CCU alternative) to 7.08 €/kg 

FA DR=0.01 (CCS alternative).  Fernández-Dacosta et al. (2017) found similar results 

for the capture and storage of CO2 in an oil refinery. Note that no CO2 price (tax) has 

been considered in the estimation of the total costs. From a coal power plant 

perspective, taking into account a CO2 allowance price from the emissions trading 

system will further motivate the introduction of CO2 capture units.  

 

Table 6. Economic assessment results as a function of the performance technology (HP 

vs LP and the BS case ) and the derivation ratio (ER FA (HP), (DR=0.99-0.01) + gELC 

(2DS)). 

 

Unit 

Low 

Performan

ce 

(LP) 

Base 

Scenari

o 

(BS) 

High Performance 

(HP) 

DR=0.0

1 

DR=0.3

3 

DR=0.6

7 

DR=0.9

9 

INVESTMEN

T COSTS 

(from CAPEX) 

M€/pla

nt 
10,080 1,440 392 121 116 105 

NPV 
M€/pla

nt 
-10,600 -1,320 -1,082 -97.4 -81.7 -76.8 

OPERATION

AL COST 
       

Fixed costs €/kg 20.17 2.86 4.94 0.52 0.45 0.43 

Variable costs €/kg 14.09 1.96 4.34 0.27 0.24 0.18 

Total Cost of 

Production FA  
€/kg 78.97 10.71 7.08 1.18 1.08 1.05 

Revenues 

(FA+H2+O2) 
€/kg 1.11 0.69 0.67 0.67 0.67 0.67 
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Market price 

FA 
€/kg 0.65 0.65 0.65 0.65 0.65 0.65 

Gross Profit €/kg -77.86 -10.02 -6.41 -0.51 -0.41 -0.38 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Distribution of the operating costs in the case ER FA (HP) + Energy (2DS), 

DR=0.99. 

Figure 8 displays the breakdown of the operating cost considering both fixed and 

variable costs of production and the revenues from FA and the by-products (revenues 

are depicted towards the negative direction of the X-axis). 

As expected, the cost of electricity for the ER process and the steam consumption in the 

distillation unit are important contributors to the variable production costs, underlining 

the strong influence of the market energy prices of these utilities in the CCU plant. This 

influence might be even higher under deep decarbonisation scenarios as it has been 

previously widely studied by Perez-Fortes et al. (2016a), concluding that the prices 

needed to make the plants profitable are far from market conditions.  

The revenues from FA and the by-products from ER FA are critical for the operating 

costs, so the market prices of these products are decisive variables to consider in the 

decision making process. In order to understand better the influence of CO2 prices could 

have on the revenues from the ER FA process, we run a sensitivity analysis. We aim at 

shedding light on the sufficiency of the FA and CO2 market prices to compensate the 

chemical industry for the potentially higher cost of electricity.  

Figure 9 shows the NPV variation as function of prices and the breakeven price that 

makes NPV equal to zero. Under our simulated conditions, positive NPV requires a 
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price of FA higher than 1,000 €/t for DR=0.99, and 1,300 €/t for DR=0.33 (reference 

price, 650 €/t), or an income from the CO2 utilization higher than 460 €/tCO2 for 

DR=0.99, and 610 €/t CO2 for DR=0.33. As a reference, we have simulated scenario of 

NPV being zero. In this case, we found FA prices higher than 850 €/t and an revenue 

from the CO2 utilization higher than 290 €/t CO2, which could be possible under a 

future scenario of decarbonisation and new markets for the FA, i.e. when FA is used as 

H2 carrier in the production of fuel cells (Perez-Fortes et al. 2016a). 

 

 

 

 

 

 

 

 

 

 

Figure 9. NPV variation as function of prices and the breakeven price that make NPV 

equal to zero: a) NVP for variation of CO2 price; b) NVP for variation of FA price.  

 

4. Discussion 

CCU technologies are expected to have an important contribution to the ambitious goals 

of reducing CO2 emissions in the chemical industry (Ecofys-Cefic, 2013). We argue 

that the discussion around CCU versus CCS should include technical, environmental 

and economic considerations. This paper discusses CCU vs CCS from the three 

perspectives, aiming at contributing to growing scientific evidence around using CCS 

and/or CCU for specific applications in the chemical industry. However, keeping in 

mind the specific CCU and CCS settings in this work, our results and findings should be 

considered as particular case study, rather than the ultimate evidence to support CCU or 

CCS. 

The CO2 emission intensities shown in this work embed not only the CCUS ability to 

reduce CO2 emissions, but also the influence of the energy mix under a decarbonization 

scenario. According to this, the CCU scenarios could be competitive with CCS only 
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when using renewable energy (further detail on the CO2 emission intensities (kt CO2/yr 

FU) of all sub-scenarios mentioned in Table 1 is presented in Table S6 of the SM). 

However, CO2 emission and sequestration by CCUS technologies show only a part of 

the story. To complete this picture, resource consumption and the cost of 

decarbonisation should be considered. Accordingly, Figure 10 summarizes the main 

results in terms of climate change contribution and fossil resources consumption, which, 

complemented with the economic results shown in Table 6, present a general overview 

of the technological and operational options for the production of FA in Europe as an 

inconspicuous contribution to climate change mitigation. 
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Figure 10. Results overview of CO2 emissions (a) and fossil resources consumption (b) 

for the main considered scenarios for 2DS and BAU in 2040.   

Following Figure 10, in terms of comparing the CO2 balance between sending the captured CO2 

to storage vs using it for FA, the results show that geological storage (CCS under the 

assumptions on the transport and storage of liquid CO2) yields more emissions reduction in all 

cases, even when compared to the most efficient ER FA method. Moreover, the use of an LCA 

approach is key in order to avoid that the additional energy or materials needed for CCU induce 

higher emissions than those of the conventional process. In order to accomplish the highest 

emission reduction, integration of renewable energy is needed.  

Reductions of up to 50% as compared to the current FA technology are possible in a 

scenario of future decarbonisation consistent with the Paris Agreement. Additional to 

CO2 emissions reduction, the CCS technology allows for a permanent storage of CO2, 

i.e. the carbon is permanently removed from the global carbon cycle over a time-scale 

meaningful to global warming, i.e. potentially thousands of years. However, the success 

of CCS for mitigating climate change depends both on its technological development 

and the CO2 sequestration rates in permanent geological storage sites (Mac Dowell et al. 

2017). Furthermore, CCS raised risk and security concerns (Li and Liu, 2017). Whilst 

these concerns are outside of scope here, they should be taken into consideration and 

balanced against CCS advantages found in this study.  

Owing to the scale and rate of CO2 production compared to that of utilization allowing 

for long-term sequestration, some studies argue that it is highly improbable that the 

chemical conversion of CO2 (i.e. CCU) will contribute significantly to the mitigation 

challenge (Mac Dowell et al. 2017). Indeed, our results show that using captured CO2 

from fossil power plants for FA production reduces very little the emissions of the 

combined chemical and energy system (ER FA (HP), (DR=0.99) + gELC (2DS)), or 

could even increase overall chemical + energy system emissions under a global BAU 

scenario, i.e. ER FA (HP), (DR=0.99) + gELC (BAU). ER FA alternatives are 

environmentally better than the CONV FA process only when the energy driving the 

conversion is low carbon, i.e. in the scenario ER FA (HP), (DR=0.99) + PV ELC (2DS) 

the reduction in CO2 emissions as compared to CONV FA + gELC (2DS) is 35%. This 

suggests that clean power sources such as wind and solar would be needed to drive the 

electrolysis. However, using renewable power for operating ER FA-processes means 

running the ER under a volatile energy supply. Trade-offs between CO2 emission 

reduction and continuous operation of the ER FA plant dependant on the availability of 
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intermittent power were not subject of investigation here, but might raise questions over 

the utilization of renewable energy within the chemical industry. 

The main advantage of capturing CO2 emissions from coal combustion plants and using 

them for chemical production resides in the possibility of replacing fossil resources used 

in the chemical industry by waste CO2 emissions and decarbonising power at the same 

time, i.e. synergic decarbonisation of both chemical and power sectors. The ER FA 

manufacture should mainly aim to replace fossil resources, thus supporting a 

transformation of the chemical manufacture towards renewables. The same thinking 

could be extended to all chemical industries, especially the energy intensive ones. This 

is intimately related to the aforementioned opportunity to integrate energy systems and 

production systems, especially in the chemical sector. According to the Figure 9b, the 

ER FA process from captured CO2 allows for reducing fossil resource consumption. 

The use of CO2 as a resource offers an additional opportunity for resource management 

and recycling, as proposed by the vision of a circular economy (Naims, 2016). In this 

sense, the ER FA from captured CO2 could be integrated into the security strategies of 

political resources and resource efficiency instruments, as proposed by Bruhn et al. 

(2015). 

The techno-economic feasibility results indicate that when capture costs are included, 

the costs of FA production through ER FA process and CCU is higher than the 

benchmarked process. Indeed, based on the results of this work, with FA production 

costs that double the costs of the CONV FA, the deployment of the ER FA is largely 

determined by the extent to which costs can be reduced over time in comparison with 

other CCU applications, as well as favourable scenarios of FA and CO2 market prices. 

Currently, the price of CO2 in the EU ETS is not the adequate price that can foster the 

change towards production systems that generate less or virtually no emissions. Some 

important efforts should be made in the field of research and innovation: (i) to drive 

down the high capital costs mainly driven by the capital expense of the electrolyser 

units (in this work estimated to be about 46% of the total fixed capital cost); innovation 

to reduce the cost per electrode area could have an important effect on the adoption of 

ER FA (Perez-Fortes et al. 2016a); (ii) to reduce the huge energy requirements (which 

account for 70 to 85% of the operating costs); a potential option is to use surplus 

renewable energy; (iii) to reduce other costs related to materials and chemicals 

including electrodes or capture solvents (Rumayor et al., 2018). The need to achieve 
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cost reductions is therefore underlying their successful deployment. If their costs cannot 

be abridged to comparable levels, their potential deployment should be stimulated 

through additional benefits that can create added value and that are directly related to 

possible avoided costs of CO2 emissions, i.e. avoiding use of fossil resource for 

chemical production. Accordingly, other drivers (e.g. support through emissions 

reduction policies) would clearly be required for them to move beyond the pre-

commercial stage and attract investment from business and industry. 

The present study has some limitations, which should be covered by further research. In 

this work, FA has only been treated as a chemical product, taking into account FA 

production, demand and the current market rules, neglecting its potential use as a 

hydrogen carrier or hydrogen source in emergent energy applications (Perez-Fortes et 

al. 2016a). We have not analysed secondary trade-offs, which can lead to reduction 

and/or increase in CO2 emissions outside the immediate scope of the activity, 

sometimes referred to as “leakage effects”, e.g. the decrease in consumption of CO and 

methanol from the conventional FA production could increase their availability to 

produce fuels displacing gasoline and diesel consumption. These trade-offs call for a 

consequential LCA approach in order to reflect the consequences of choosing one or the 

other system, reflecting physical and monetary causalities and introducing more 

consistency in the decision making process. 

Finally, it is imperative that any sustainability evaluation of a decarbonisation 

technological solution is site-dependent. In the particular case of using CO2 for FA, 

future research will need to particularise the suggested d-LCA framework to real site 

locations, taking into account the location of FA producers, potential new PV 

installations, and particular coal combustion plants.  

Conclusions 

This work provides an assessment of the commonalities and differences between the use 

and/or storage of CO2 from coal combustion plants and their relationship with the 

chemical process industry, in order to contribute to the decision making process on the 

decarbonisation of the chemical industry. On the whole, the CCU and CCS technologies 

reviewed in this paper are good candidates for the decarbonisation of current FA 

production, although in some cases further research is needed to clarify the relative 

impacts compared to more conventional process pathways.  
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Our assessment highlights interesting trade-offs between resources security, economic 

and environmental performance in the CCU and CCS systems. As expected, the 

considered CCS system leads to greater reductions in CO2 emissions than CCU, and 

therefore has a higher climate change mitigation potential among all the systems 

studied. However, compared to CCS systems, CCU has a better economic potential and 

lower fossil consumption. CCU options are cheaper than CCS because of FA revenues 

compensate for the high cost of capture, but they are still far more expensive than the 

conventional FA process. In the CCU system the intensive fossil resource consumption 

by the conventional FA process is displaced by the use of the CO2 captured, 

contributing to the double decarbonisation of the power system and chemical 

production. Accordingly, the FA manufacture by an electro-reduction process seems a 

promising alternative for climate change mitigation, especially when renewable energy 

is integrated in the CCU process. In this case the challenge will be to adapt the 

operation of the process to an intermittent energy supply, which needs further research 

to demonstrate the full challenges and benefits of the utilization of renewably generated 

energy within the chemical process industry. 

In particular, any consideration of CCU and CCS in climate policy should take into 

account not only the product system, but also the energy system associated to the 

product manufacture. Consequently, new legislation and public and industrial policies 

for CCU and CCS should consider this integrated approach. Although this work 

contributes to the development of a methodology that allows a comprehensive 

accounting of emissions, fossil consumption and economic assessment, a consequential 

life cycle approach seems a crucial task for the future, in order to considerer other 

physical and economic causalities that are related to a product or/and technology-

specific life cycle assessment.  

Furthermore, since the CO2 capture is a post-combustion system, some air pollutants 

could to increase their emission levels compared with systems without CCU and CCS, 

and therefore, other impact categories associated with this type of technologies should 

be taken into account in order to fill this research gap starting from spatially explicit 

LCA studies. 
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Appendix A 

Limitations of the study 

The limitations that need to be considered when analysing these scenarios are: 

1. The integration of the supply energy system into the chemical processes expands 

the system boundaries, leading to a more global decision making process than in 

the case when only the chemical product is considered. However, except for 

utilising captured CO2, in this study the chemical process does not influence 

what happens in the power sector. 

2. When the captured CO2 is used for making products which release the carbon 

once they are used, the carbon storage in those products is limited or null. The 

use of CO2 as a feedstock avoids its emission back to the atmosphere and at the 

same time it avoids additional fossil fuels to be burned, which in turn prevents 

more CO2 to be released. In the particular case of using CO2 for FA, if the FA is 

used for materials production, it could potentially store the carbon for as long as 

the material lasts. In practice, given the multiple uses of FA as a chemical 

precursor, including its end of life emissions in a LCA would result into a 

complex exercise which is also highly uncertain. In this work we have 

considered that the gate-to-grave emissions will be the same irrespectively of 

how FA is produced. Therefore we chose to look only at the cradle-to-gate 

emissions, as that part of the life cycle we would be changing by using captured 

CO2. 

3. The analysis of the paper is presented in terms of carbon footprint in order to 

elucidate the potential benefits in terms of CO2 emissions. We also include fossil 

resource consumption as this is directly relevant to carbon accounting. Oher 

impact categories can be potentially included (such as abiotic resource 

depletion), but the used databases do not provide the necessary LCI data for 

expanding the impact analysis, e.g. for characterising the catalyst used for the 

conventional route. 

4. In the electrochemical reduction route the impact of electrodes and catalysts can 

be assumed as negligible as recently stated by Rumayor et al. (2019). In terms of 

CF, this would be equivalent to a long lifetime thus the impacts can be 

considered negligible. 
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5. Although all of the modelled scenarios are considered to be plausible, an 

assessment of the probability of scenarios has not been performed.  

6. Actual change affected by the scenarios could engage combinations of scenarios, 

and therefore the studied scenarios will be a simplification of a more complex 

reality. Furthermore, the modelled scenarios are not all-inclusive, and 

complementary scenarios could be possible. 

7. Some scenarios imply the use of a constrained resource that would otherwise be 

used for an alternative purpose. In this study, the substitute processes used to 

fulfil that purpose are not included in the life cycle inventory, assuming that the 

considered scenario does not disturb them. 

8. The emission factors for the European grid electricity are expected to be reduced 

or increased over time, so it have been considered as a dynamic element 

included in the LCA modelling. In this study we considered both an EU grid 

mix under no climate action and a grid mix consistent with the Paris Agreement. 

The profile of the electricity production mix under the two scenarios was taken 

from TIAM-UCL, a global energy system model. This might be a limitation of 

the study, as the EU particularities and climate policies implementation are 

better represented in EU scale energy system models.   

9. The location of the FA production could influence the results of the assessment. 

Also the location of the coal power plant and liquid CO2 infrastructure and 

storage will influence the results. However, choosing these locations  would be 

highly subjective, as they will depend on local decarbonisation plans. Instead of 

choosing a real location, we run this as a prospective study to inform decision 

makers on the benefits of incorporating a greater share of renewable energy in 

chemical processes, particularly in the manufacture of FA. 

10. As some LCA studies found, CCS systems increase the emission of toxic 

substances such as NH3, MEA, formaldehyde, and acetaldehyde leading to the 

corresponding increase in the toxicity impact categories (e.g. Singh et al., 2011). 

Assumed the complexity of the systems and the explorative approach of this 

research, including more impact categories at this stage might not be 

meaningful, as we would be looking at generic pollutants emitted in a generic 

EU space, which we would then use for deriving a potential local impact, again 

based on generic factors. Therefore, we limit this study to estimating the carbon 
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footprint (CF) and the fossil resource consumption (FRC) following a cradle to 

gate d-LCA perspective.  

11. This study does not intend to analyse the substitution of current FA production 

locations. It is, therefore, a new approach that would need to address specific 

locations, both in terms of product demand (location of plants with FA demand), 

CO2 capture (location of electric power production plants from coal), as well as 

for the integration of PV energy (location of plants in places with high insolation 

and land availability). 
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FIGURE CAPTIONS 

Figure 1. Conventional process system flowchart, including combustion plant 

(subsystem 1) and FA conventional process (subsystem 2) 

Figure 2. Process flowchart of the suggested process structure for the combustion plant 

with post combustion capture, and the CCS and CCU units, the latter including the ER 

FA plant. 

Figure 3. Overview of the marginal and alternative processes included in the scenarios 

described in Table 1. 

Figure 4. Dynamic carbon footprint for the benchmark and the CCU using alternative 

FA production technologies for the whole system (FA production and energy supply). 

Figure 5. Main source of CO2 emissions for the alternative system under the ER FA 

(HP) + gELC(2DS) scenario. 

Figure 6. CO2 emissions for the CCU and CCS systems for the ER FA (HP) + Energy 

(2DS) alternative: (a) CO2 emissions under a grid energy scenario (gELC); (b) CO2 

emissions under a PV solar energy scenario (PV ELC). 

Figure 7. Fossil resources consumption and CO2 emissions for the CCU and CCS 

systems for the ER FA (HP) + Energy (2DS) alternative in 2040: (a) CO2 emissions 

under a a grid energy scenario (gELC); (b) COs emissions under a PV solar energy 

scenario (PV ELC); (c) fossil resources under a grid energy scenario (gELC); (d) fossil 

resources under a PV solar energy scenario (PV ELC). 

Figure 8. Distribution of the operating costs in the case ER FA (HP) + Energy (2DS), 

DR=0.99. 
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Figure 9. NPV variation as function of prices and the breakeven price that make NPV 

equal to zero: a) NVP for variation of CO2 price; b) NVP for variation of FA price. 

Figure 10. Results overview of CO2 emissions (a) and fossil resources consumption (b) 

for the main considered scenarios for 2DS and BAU in 2040.   

 

TABLE CAPTIONS 

 

Table 1. Details of the proposed scenarios. Limitations of these scenarios are shown in 

Appendix A.  

Table 2. Technical conditions of the ER process: performance influence.  

Table 3. LCI for the benchmarked scenario (CONV FA), per kg of FA produced by the 

conventional process.  

Table 4. LCI for the alternative ER FA alternatives, reported per kg of FA produced by 

the ER process.  

Table 5. LCI for the combination of partial CO2 utilisation (CCU) with partial CO2 

storage (CCS), reported 1 kg of FA produced by the ER process. Scenario: HP 

technology and 2DS energy profile.   

Table 6. Economic assessment results as a function of the performance technology (HP 

vs LP and the BS case ) and the derivation ratio (ER FA (HP), (DR=0.99-0.01) + gELC 

(2DS)). 
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Highlights 

 Strategies for decarbonising chemical industry need to include the power 

system. 

 Chemicals from CO2 is a promising decarbonisation option for coal power 

plants. 

 Trade-offs between resources, economic and environmental impacts in the 

CCU/CCS. 

 Renewable energy in the chemical industry has a critical climate mitigation role. 
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