
140

Cloud-based Flowbster Portal to Design and
Deploy Scientific Workflows
József Kovács , Zoltán Farkas, Enikő Nagy, and Bendegúz Gúlyás

Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI),
Budapest, Hungary
fjozsef.kovacs@sztaki.mta.hu, zoltan.farkas@sztaki.mta.hu, eniko.nagy@sztaki.mta.hu,
bendeguz.gulyasg@sztaki.mta.hu

*Correspondence:
József Kovács, Institute
for Computer Science

and Control, Hungarian
Academy of Sciences

(MTA SZTAKI), Budapest,
Hungary,

fjozsef.kovacs@sztaki.
mta.hu

Abstract
A workflow system called Flowbster has been designed to
create efficient data pipelines in clouds. The entire Flowbster
workflow is dynamically built by using virtual machines on a
target cloud. The paper describes a recently designed and
developed web-based science gateway to support Flowbster. It
provides a high-level graphical environment to handle different
levels of abstractions, like workflows representing the layout
and deployment representing the infrastructure realizing the
workflow. Detailed overview of the user interface, the portal
architecture and its internal operation are given in the paper.
Moreover, an insight is provided on the selection and cooperation
of the web modules and on the integration of the portal in the
firebase environment developed by Google.

Keywords: workflow, science gateways, orchestration, firebase.

1. Introduction
Cloud computing [1] is getting more and more popular since it can dynamically

provide the required amount of resources in a very exible way. Beyond the
theoretically unlimited resources seen from the cloud user point of view, the wide
variety of operating systems, networking and performance enables to support
practically any type of applications. One of the application areas is covered by
workflow systems to process scientific data sets by a network of computational
nodes.

Workflow systems [2] are typically used to process data consists of several steps
where each step performs different calculation. The network of steps formalized
by a workflow provides the desired overall calculation. The workflow is formalized
with nodes performing the calculation and edges among the nodes representing
data transfer. The most popular workflow operation is based on dataflow principle
where each computational node starts processing when all the necessary inputs
are available.

Flowbster [3] is a cloud-oriented workflow system based on dataflow principles.
Regarding the way of scheduling the computation, instead of using the enactor

Azerbaijan Journal of High Performance Computing, Vol 1, Issue 2, 2018, pp. 140-157
https://doi.org/10.32010/26166127.2018.1.2.140.157

141

 based workflow concept Flowbster applies the service choreography concept
where the work- flow nodes themselves (virtual machines running Flowbster) are
aware of their surrounding neighbours and are aware about which pieces of data to
send to which neighbours. There is no central enactment component performing the
orchestration of data processing as it is in most cases. Orchestration is hardwired
at deployment time by the Occopus cloud orchestration tool.

Occopus[4] is a powerful, easy-to-use, configurable, hybrid, multi-cloud
orchestration tool. It is an open source software providing features for configuring
and orchestrating distributed virtual infrastructures both on single and multi-cloud
environments. One of its main advantages is that it has a plugin based architecture
enabling the addition of new cloud providers relatively easily. It has a simple
description format for defining infrastructures, nodes, contextualization and health
checking. Currently, Occopus can support the deployment of a Flowbster workflow
with its native set of features.

CloudiFacturing[5] is an EU project which aims to help participants to optimize
their production processes and to increase producibility using Cloud/HPC-
based modelling and simulation. With this support the project contributes to
the competitiveness and resource efficiency of manufacturing SMEs. To pursue
the project’s mission, computationally demanding production engineering and
simulation as well as data analytic tools are provided as Cloud services to ease
accessibility and make their use more affordable. The CloudiFacturing project
empowers over 60 European organizations (many of them being manufacturing
SMEs) and supports about 20 cross-national application experiments that are
primarily selected via two Open Calls. The experiments are formed by partners
having expertise on the following areas: Cloud/HPC, data analytic, simulation,
modelling, security and business modelling.

One of the tools in the Cloudifactoring project to support the experiments is
the Flowbster cloud-oriented workflow system powered by Occopus. With the
combination of Occopus and Flowbster data processing workflows can be
deployed on demand in a cloud. In order to further support the creation of new
Flowbster workflows and to deploy them as simple as possible, a new Flowbster
portal has been designed and developed. The motivation behind this work is to
provide an easy-to-use science gateway where workflow creation and deployment
are supported in a graphical way.

The paper introduces the entire Flowbster scientific portal where the concept
and structure of the Graphical User Interface are introduced in Section 2. The
architecture of the portal is detailed in Section 3 and the internal operation is
described in Section

4. A few paragraphs are devoted to testing and performance in Section 5, then
several related works are introduced in Section 6. Finally, conclusion is made in
Section 7.

2. Overview of the Graphical User Interface
This section gives an overview of the most significant and valuable characteristics

of the Flowbster Portal outlook including the workflow editor (node creation and

Azerbaijan Journal of High Performance Computing, 1(2), 2018

142

Figure 1: Workflow Manager

configuration) and the workflow deployment. The Flowbster Portal supports
workflow handling at two layers: the workflow layer described in Section 2.1 and the
deployment layer described in Section 2.2. At the workflow layer end-users can use
the Workflow Editor to piece together the workflow nodes (called Flowbster nodes),
set their configurations and create connections between them. At the deployment
layer the workflows are deployed and launched in the target cloud based on the
preconfigured parameters, using the Occopus cloud orchestration tool. At the
Workflow Manager page, the end-users can list, edit, copy, delete, view or build
their workflows (see Figure 1). Each workflow has a unique name and description
can be also added to ease the distinction among them.

2.1. Workflow layer
2.1.1. Handling nodes
A user-friendly drawing canvas (see Figure 2) is available within the Flowbster

Portal. On the canvas, users can add nodes (represented as boxes), input and
output ports to the nodes (represented as green or red circles on the nodes) and
relations between ports (represented as directed arrows). The nodes of the workflow
represent an atomic calculation and will be realized by executing the appropriate
application in a virtual machine within the Flowbster infrastructure. The links among
the nodes represents data transfer and the names on the links are the name of the
physical files that should be transferred between the nodes.

A node can be added to the workflow by double clicking on the canvas. The
configuration options for a node are as follows (see Figure 3):

Figure 2: Flowbster nodes in a workflow

József Kovács, et al.

143

Figure 3: Generator node properties

• Name: name of the Flowbster node, which is unique across the entire
Workflow.

• Executable name: name of executable for the application to be executed
on the Flowbster entity.

• MinScale, MaxScale: these parameters tell the system what is the minimum
and maximum number of instances to be created from the node.

The properties of a node can be re-edited anytime by double clicking on the
node. In the pop-up window (Figure 3) the configuration can be update and can be
saved by the ’’Update Node” button. Cloning of a node is possible with the ’’Clone
Node” button at the bottom of the window. Cloning a Flowbster node means copying
it including properties, input and output ports and a newly generated unique name.

2.1.2. Handling I/O ports
The I/O ports of an existing Flowbster node can be added with the ’’Add Input

port” or ’’Add Output port” buttons and can be deleted with the ’’Delete port” button
in the Workflow Editor menu (see Figure 4).

During the configuration of the input ports, the list of attributes to be set are as

Azerbaijan Journal of High Performance Computing, 1(2), 2018

144

Figure 4: Workflow editor menu

follows (see left dialog in Figure 5).:
• DisplayName: name of input port to appear on the drawing area.
• FileName: name of file to be stored as input for the application on the Flowbster

node.
• Collector port: true when the application on this node receives multiple inputs

on this port for one run. False, otherwise.
• Format: format to be applied when naming the input files for the application.
• Filter RegExp: regular expression (filter) which helps Flowbster recognize

the instances of the files on this ports. All files are considered as output which is
selected by this filter expression.

The properties and options of the input or output ports on a node can be checked
by clicking on the ports. Directed arrow between the ports can be defined by the
drag and drop style from the input port to the output port. When the link creation
is successful, a black arrow is shown on the canvas between the selected ports.

2.1.3. Flowbster workflow properties
Workflow has also properties to be set with the ’’Edit Properties” button on

the Work- flow Editor menu shown on Figure 4. The configuration options for the
workflow are shown in a pop-up window (see Figure 6) where the attributes are as
follows:

During the configuration of the input ports, the list of attributes to be set are as
follows (see left dialog in Figure 5).:

József Kovács, et al.

145

Figure 5: Input and Output port properties

• DisplayName: name of input port to appear on the drawing area.
• FileName: name of file to be stored as input for the application on the

Flowbster node.
• Collector port: true when the application on this node receives multiple

inputs on this port for one run. False, otherwise.
• Format: format to be applied when naming the input files for the application.
During the configuration of the output ports, the list of attributes to be set are as

follows (see right dialog in Figure 5):
• DisplayName: name of output port to appear on the drawing area.
• Name: name of output file produced by the application on the Flowbster

node.
• Target Name: name of input port of the target node where the output file

must be sent.
• Target IP: when specified, the output is sent to this target ip address instead

of the linked port. A global variable can be used here with the *variableName syntax.
• Target Port: when specified, the output is sent to this target port address

instead of the linked port. A global variable could be used with the *variableName
syntax.

Azerbaijan Journal of High Performance Computing, 1(2), 2018

146

Figure 6: Workflow properties

• Generator Port: true when the application on this node generates multiple
instances of this output file for each run. False, otherwise.

• Distribution: specifies the distribution mode among the multiple instances
of the attached nodes. Possible values can be ”random” or ”round-robin”

• Filter RegExp: regular expression (filter) which helps Flowbster recognize
the instances of the files on this ports. All files are considered as output which is
selected by this filter expression.

The properties and options of the input or output ports on a node can be checked
by clicking on the ports. Directed arrow between the ports can be defined by the
drag and drop style from the input port to the output port. When the link creation
is successful, a black arrow is shown on the canvas between the selected ports.

2.1.3. Flowbster workflow properties
Workflow has also properties to be set with the ’’Edit Properties” button on

the Work- flow Editor menu shown on Figure 4. The configuration options for the
workflow are shown in a pop-up window (see Figure 6) where the attributes are as
follows:

• Infrastructure ID: a unique id for deployment, generated by the portal
• User ID: owner of the workflow, e.g. email address
• Infrastructure Name: name of the infrastructure used internally

József Kovács, et al.

147

• Gather IP: the address of the Flowbster Gather component (which collects
the final results, for details see [3].

• Gather port: the port number of the Flowbster Gather component.
• Receiver port: the port number used by Flowbster nodes to receive the

input data. System property, default is 5000.

Every workflow created by the user is stored in the backend database which
contains the name and the detailed description of a Flowbster node. Furthermore, it
contains a graph description in JSON format for the editor to visualize, and a YAML
descriptor for Occopus to be deployed in the target cloud. The completed descriptors
can be downloaded by the ’’Download Descriptor” and by the ’’Download Graph”
buttons on the Workflow Editor menu (in Figure 4). Importing existing graphs can
be also used, by using the ’’Upload Graph” button and uploading a JSON file.

2.2. Deployment layer
The second layer is the deployment layer which represents the instantiation of

the Flowbster nodes configured at the workflow layer. The Flowbster nodes are
realized by virtual machines built by the Occopus orchestration tool.

Figure 7: Workflows and their deployments

The ’’Build” button on the Workflow Manager page (in Figure 1) is used for
building the workflow in the target cloud. The details on how the workflow

Azerbaijan Journal of High Performance Computing, 1(2), 2018

148

Figure 8: Architecture of the Flowbster portal

deployment is implemented is described in Sections 3 and 4. At deployment the
user is requested to provide a name for the deployment and then the workflow
deployment procedure starts.

After a successful deployment the Workflow Manager page lists the running
deployments of each workflow. With the drop-down arrow icon of the selected
workflow item the end-users can open the list of deployments of the workflow. The
framed area in Figure 7 shows the list of deployments of a selected workflow. In
this Figure example, two deployments have been built by the portal. Deployments
can be configured, manipulated, used and dropped when no longer needed.
Deployments are equivalent with the Flowbster workflows drawn by the user and
operates as described in [3].

The Flowbster portal creates Occopus description based on the workflow at
the end of edition. Regarding the number of instances, the built infrastructure will
consist of as many node types as many different Flowbster node is created, and as
many nodes as the scaling parameter was set to for each node. The links between
the virtual machines will be configured based on the connection arrows between
the nodes. Data flow between two Flowbster nodes are managed by the Flowbster
workflow system itself in the background.

As the Flowbster portal aims to be a web-based tool for users, the minimum
requirement is to have a client layer in the portal through which users can interact
with the underlying Occopus orchestrator in a user-friendly way. However, the

József Kovács, et al.

149

portal cannot run solely on the client side, as we need to persist users’ developed
workflows or monitor their execution while the user is not logged in to the portal, so
a server side component and an attached database is also necessary. Thus, the
Flowbster portal is built up using a frontend layer, a backend layer and a database.
A high-level overview of the Flowbster portal is shown in Figure 8.

3.1. Frontend layer
The frontend layer (Client in Figure 8) of the Flowbster portal is the entry point

for the users, so it must provide adequate user experience by providing feedback
on users’ action as fast as possible. This can be achieved by relying on a proper
framework, like Angular[6], React[7] or Vue.js[8]:

Angular is a widespread framework developed by Google, used by companies
like Paypal or Nike. It’s using the TypeScript[9] programming language, which
implies functional programming paradigms, thus requires some effort to get familiar
with. Angular is built on top of quick and standardized web components, offering
convenient command-line tools for development.

React is developed by Facebook and is much easier to learn than Angular. It is
not a complete framework, but is put together by a large set of components. As a
consequence, one has to learn all these components. Additionally, React doesn’t
have built-in compile facility, like Angular has.

Vue.js is a framework trying to bring together the advantages of Angular and
React. Although it has a large user base behind, it is not mature enough.

Based on the properties of the different frameworks considered, we have decided
to use the Angular framework for creating the frontend layer of the Flowbster portal.

Graph creating component The key component of the Flowbster portal’s
frontend layer is a graph editor and presenter component. This component is used
to create new workflows, to modify existing ones, or to preview any workflows.
Instead of reinventing the wheel, we decided to select a library which provides as
many functionalities of such an editor as possible. The basic requirements we set
were this: easy integration, offer functionalities for creating new elements in the
graph, offer the functionality to connect elements of the graph, enable attaching
additional boxes to elements of the graph, and finally provide as many callback
functions for the user actions performed on all elements of the graph as possible.
This last requirement is important, as with this, we get very detailed notifications on
what the user is actually performing as possible. Additionally, we can react on the
user’s actions.

Fortunately, there are a number of libraries which offer similar functionalities.
The libraries we considered were the followings:

Raphael as a library is aiming to support creating vector graphics easily. Raphael
[10] enables creating specific chart or image crop and rotate widgets. Although it
is easy to use, it doesn’t offer our required features out of the box.

mxGraph is offering a solution based on interactive javascript and HTML5
standards. mxGraph[ll] has a client- and server-side implementation for creating
graphs.

JointJS is an open-source library. JoinUS[12] is widely used graph creating

Azerbaijan Journal of High Performance Computing, 1(2), 2018

150

framework, backed by a large community, offering commercial versions as well. It
has a lot of extensions (for modeling discrete event systems, petri nets, etc.), has
NodeJS support, is able to dump and to import the created graphs in JSON format,
is a pure client-side library, and offers callback functions for all the operations
performed by the user.

Figure 9: JointJS DEVS demo

Based on the above, we have decided to use the JointJS library for creating
the graph development component in the Flowbster portal’s frontend layer. The
extension we rely on is the DEVS (Discrete Event System Specification). An example
presenting the possibilities of this extension is shown in Figure 9. As it can be seen,
one can create boxes for jobs in a workflow, attach input and output ports to them,
and connect these together. There are many additional features, which we are not
using at the moment in the Flowbster portal.

3.2. Backend layer
The task of the backend layer (Firebase back-end service in Figure 8) in the

Flowbster portal is to respond to users’ requests as quick as possible, partially
based on the information stored in the database. There are numerous options for
this, using different Python frameworks (Flask, Django), Go, Java, or Node.js.

We have choosen Node.js[13] as its non-blocking I/O operations satisfy our
needs regarding speed and response time. Node.js can also be used to build
RESTful services, it has a big number of extensions thanks to its community, it uses
the Javascript programming language, it integrates with Angular very well, and it
also supports JointJS.

The backend layer also encapsulates communication with the Occopus cloud
or- chestrator tool. When necessary (upon building an infrastructure of a workflow
or destroying the infrastructure), the backend components can invoke the RESTful
API of Occopus for creating new infrastructures, subscribing to infrastructure-
related events, or removing infrastructures already created. For this, we need to

József Kovács, et al.

151

know the URL of Occopus’ RESTful API, which can be set through a configuration
interface. The parameters for the different calls are automatically generated by
backend components: a YAML description when creating an infrastructure or an
identifier when subscribing to events, or destroying existing infrastructures.

3.3. Database
Since persisting the users’ developed workflow graphs is needed, the database

component (denoted as FireStore Database in Figure 8) becomes mandatory in the
architecture. As written earlier in the subsection 3.1, JointJS is capable of dumping
and parsing the graph descriptions in JSON format, so using a database with
support for this format is a natural requirement. We have considered the following
databases: CouchDB[14] and MongoDB[15].

CouchCB is an easy-to-use database, putting focus on providing consistency. It
is mostly used to store predefined queries on rarely changing data. CouchDB also
offers version control.

MongoDB is a widespread JSON-based database. It offers convenient ways to
run dynamic queries, and scales well with the size of the data stored.

We have chosen MongoDB, as it can be used in the Node.js-based backend
layer easily thanks to the Mongoose ORM.

Architecture summary In order to eliminate the need to host the whole Flowbster
portal individually, and to enable its usage by Cl tools, we decided to use
Firebase[16] as the backend provider. The main advantage of relying on Firebase
is its FireStore component, a flexibe, autoscaling noSQL database, enabling real-
time synchronization between the client and the server. Additionally, it enables
offline operation as well in case of the user’s internet connection is lost. Firebase
incorporates user authentication as well, so there is no need to add one such
framework in the Flowbster portal. Finally, Firebase offers push notifications through
Firebase Cloud Messaging, allowing us to present notifications for the users on
events relating to the Flowbster workflows.

4. Operation
In this section we overview a more detailed description of the Flowbster portal’s

architecture, through introducing the data types necessary for modeling the
different entities, and modules implementing the portal’s operation.

4.1. Types
Angular’s TypeScript support enables us to use our own data types. This not

only helps to create more understandable code, but any type-related errors can be
determined during compile time. In the Flowbster portal, we defined the types as
shown in Figure 10.

The basic description of the types is as follows:
User represents the users of the Flowbster portal,
WorkflowEntry represents a workflow’s properties, including the JSON description

used by JointJS and the YAML description used by Occopus,
FlowsbsterNode contains all the properties of a Flowbster workflow node,

including the alias, executable name, arguments, executable URL and scalability

Azerbaijan Journal of High Performance Computing, 1(2), 2018

152

Figure 10: Data types in the Flowbster portal

parameters (see Figure 3),
Workflow represents global properties of a workflow, for example the address of

the Gather component,
InputPort represents an node input port’s properties, like alias, filename, and

optionally the collector-related properties,
OutputPort is similar to the InputPort, but related to output ports,
NodeDescriptor description of one node of the Flowbster workflow in YAML

format required by Occopus to deploy the workflow,
OccopusDescriptor contains the Occopus description of the whole workflow.

4.2. Modules
The different modules in the Flowbster portal implement the different

operations inside the system. There are modules which invoke the proper module
implementing the requested function based on the user’s action path, which
implement user authentication, which contain all the input forms, which handle the
JointJS component, or implement workflow management and execution. We will
now describe the most important modules in a bit more details.

App Routing Module The task of the App Routing Module is to distinguish
operations based on the URL the user is accessing. Beside this, this module is also
responsible for collecting any necessary information from the URL, if it is needed.
Figure 11 shows the different URL paths this module handles.

The / and / signin and any other paths result in presenting a login page. The
/authenticated path is protected by authentication, routes behind this path can
only be accessed after login. For example in Figure 11, the path containing URL
/workflow-detail / : id/ : operation loads the workflow detail component, but also
contains necessary parameters - e.g. the identifier of the workflow to show the

József Kovács, et al.

153

Figure 11. Routes of the Flowbster portal

Figure 12. App Module

details for (: id), or the operation related to the workflow (: operation - creating a
new workflow, or modifying an existing one).

There are some additional services included in this module. The Auth Guard
Service is responsible for checking if the selected target path has every necessary
prerequisites filled in order to be loaded (for example, is the user authenticated?).
Other services are used to get the parameters from the path, or to check if the
user has ’’saved” all of the modifications (for example, when the workflow graph is
modified, but not saved, and the user wants to navigate to an other view, we can
present an unsaved work alert for the user).

App Module The App Module represents the Flowbster portal and serves as an
entry point for the portal. The module imports all the other modules necessary for
the operation, as shown in Figure 12.

Flowbster Forms Module This module contains all the forms occurring in the
Flowbster portal. Figure 13 gives an overview of included elements like form for
defining node, input, output and workflow properties.

Azerbaijan Journal of High Performance Computing, 1(2), 2018

154

Figure 13. Flowbster Forms Module

Figure 14. Graph Interaction Module

This module also contains a service called Joint. This service class represents
the abstraction layer above the JointJS library described in subsection This service
is accessed by other components in the system if they want to interact with the library
in any way. Also, other components can subscribe to different events triggered
by the JointJS library through this service. Such events can be used to perform
different sanity checks (for example check if there is a loop in the graph once the
user has connected an output port to an input port, or to check if the workflow
node’s name matches other nodes’ names to ensure identical node names).

Graph Interaction Module This module collects the graph drawing canvas and
any toolset related to it. As seen in Figure 14, it includes the Flowbster Form Module
as well, in order to provide graph editing and property setting functionalities. It also
contains a DescriptorService service, which can be used to get a YAML-based
description of the workflow processed by Occopus.

Editor Module The layout of the Editor Module is shown in Figure 15. As it can
be seen the Editor Module incorporates the Graph Interaction Module as well, but
it is also responsible for notifying the users on different events by displaying Toast
messages, or pop-up dialogs.

Workflow Module The Workflow Module is shown in Figure 16. This module is
responsible for coordinating workflow management tasks. It contains services for
communicating with the Occopus service, the database and for subscribing to
notifications coming from Occopus. Additionally, this module contains component
for displaying workflow details and workflow maintenance.

József Kovács, et al.

155

The Occo service of the Workflow Module contains all the necessary logic for
communicating with the RESTful interface of Occopus. This service contains in its
configuration the endpoint of the Occopus service (host and port) and the logs of the
Regarding the performance of the portal, we completely rely of the features of Firebase.
Thanks to its design, both the backend and database layer can dynamically scale as the
load increases (more users start to use the portal). Additionally, the reactive implementation
of the user interface makes sure that users’ actions leave the client layer (the users’ browser)
only when it is really necessary. As a consequence, in the Firebase-based Flowbster portal
we do not expect any performance issue from the users’ point of view. We did not consider
the performance of the Flowbster workflow itself, as it has already been discussed in [3].

6. Related work
Nowadays, there are numerous scientific gateways and portals offering execution of

workflows on both private and commercial clouds. A short overview is given below on
science gateways specialized on scientific workflows and utilizing clouds.

The WSPGRADE/gUSE [17] general-purpose science gateway offers access to a large
set of DCIs (Distributed Computing Infrastructures) including clusters, supercomputers,
grids and clouds. Cloud access is implemented by integrating its DCI Bridge service
with the CloudBroker Platform (CBP) [18]. This approach has the advantage that all the
clouds (Amazon, IBM, Eucalyptus, OpenStack, OpenNebula) managed by CBP became
accessible for the WS-PGRADE/gUSE workflow enactor for utilisation and all the cloud
access features (e.g. SaaS access, user and security management, etc.) provided by CBP
became available for the WS-PGRADE/gUSE users.

Apache Airavata [19], inherited from the Open Gateway Computing Environments
(OGCE) workflow system [20] focuses on the baseline tools of application, workflow, job and
data management systems. Airavatas primary goal is to support long running applications
and workflows on distributed computational resources including clouds. The Airavata XBaya
workflow system provides a unique pluggable architecture for selecting the orchestration
engine. One of its advantages is that XBaya workbench builds an abstract directed acyclic
graph (DAG) which is independent of any work- flow runtime and the selected compiler
modules are capable of producing workflow execution scripts for target runtimes.

Figure 15: Editor Module

Azerbaijan Journal of High Performance Computing, 1(2), 2018

156

The Pegasus [21] Workflow Management System offers execution of workflow nodes on
both private and commercial cloud systems [22], Actually, the HUB zero Platform [23] itself
offers its services through virtualized environment, where experiments run through these
services may use cloud resources for their computation with the help of Pegasus. To enact
workflows, Pegasus performs the scheduling of jobs in the workflows taking into account
numerous characteristics of the resources and constraints of jobs while HUBzero provides
a web-based ecosystem including many services like analytic tools, data publishing,
resource sharing and collaboration of participants.

There are workflow solutions where the aim is to better organize workflows in cloud
environments. For example, the work described in [24] deploys the workflow enactor
together with the workflow into the target cloud system. This resulted in increased
execution performance of workflows in the cloud. Another example to find new, innovative
ways of executing workflows in clouds is described in [25] and [26] by Qasha et al. This
approach targets service orchestration but the workflow tasks are submitted in a novel way
to the cloud. When a workflow task becomes executable, a cloud orchestrator (Cloudify)
dynamically deploys the workflow task node in a docker container in the cloud and initiates
the associated executable to run inside the container.

7. Conclusion
The Flowbster portal aims to provide a high-level web-based graphical user interface

for editing, building and maintaining Flowbster workflows. Flowbster workflows are edited
by the integrated JointJS open-source library. The backend service persists data in
MongodDB, while the workflows are deployed by the Occopus orchestrator tool in the
cloud. Bidirectional communication is implemented between the portal and Occopus. The
portal has been carefully designed to be modular and easily maintainable and extendable.

Acknowledgement
This work was partially funded by the European CloudiFacturing project, Grant

Agreement No. 768892 (H2020-FoF-2017). We thank for the usage of MTA Cloud (https://
cloud.mta.hu/) that significantly helped us achieving the results published in this paper.

References
[1] Buyya, R., Broberg, J., & Gościński, A. (2011). Cloud computing: Principles and para-

digms. Hoboken, NJ: Wiley.
[2] Liu, J., Pacitti, E., Valduriez, P., & Mattoso, M. (2015). A Survey of Data-Intensive Scien-

tific Workflow Management. Journal of Grid Computing, 13(4), 457-493. doi:10.1007/s10723-
015-9329-8

[3] Kacsuk, P., Kovács, J., & Farkas, Z. (2018). The Flowbster Cloud-Oriented Work-
flow System to Process Large Scientific Data Sets. Journal of Grid Computing, 16(1), 55-83.
doi:10.1007/s10723-017-9420-4

[4] Kovács, J., & Kacsuk, P. (2017). Occopus: A Multi-Cloud Orchestrator to Deploy
and Manage Complex Scientific Infrastructures. Journal of Grid Computing, 16(1), 19-37.
doi:10.1007/s10723-017-9421-3

[5] Kovács, J. (n.d.). The Cloudifacturing EU project homepage. Retrieved from https://
www.cloudifacturing.eu/159

József Kovács, et al.

157

[6] The Angular Framework homepage. (n.d.). Retrieved from http://www.angular.io/
[7] React – A JavaScript library for building user interfaces. (n.d.). Retrieved from https://

reactjs.org/
[8] Vue.js. (n.d.). Retrieved from https://vuejs.org/
[9] Get TypeScript. (n.d.). Retrieved from https://www.typescriptlang.org/
[10] Baranovskiy, D. (n.d.). Raphaël-JavaScript Library. Retrieved from http://dmitryba-

ranovskiy.github.io/raphael/
[11] Jgraph. (2018, December 14). Jgraph/mxgraph. Retrieved from https://github.com/

jgraph/mxgraph [12] JointJS: Visualize and interact with diagrams and graphs. (n.d.). Re-
trieved from https://www.jointjs.com/opensource

[13] Foundation, N. (n.d.). Retrieved from https://nodejs.org/en/
[14] Anderson, J. C., Lehnardt, J., & Slater, N. (2010). CouchDB: The Definitive Guide: Time

to Relax. « O’Reilly Media, Inc.».
[15] Kristina, C., & Michael, D. (2010). MongoDB: the definitive guide. O’Reilly Media, 1ed.–

2010.
[16] (n.d.). Retrieved from https://firebase.google.com/
[17] Farkas, Z., Kacsuk, P., & Hajnal, Á. (2016). Enabling workflow-oriented science gate-

ways to access multi-cloud systems. Journal of Grid Computing, 14(4), 619-640.
[18] CloudBroker Platform. (n.d.). Retrieved from http://cloudbroker.com/platform/
[19] Marru, S., Gardler, R., Slominski, A., Douma, A., Perera, S., Weerawarana, S., . . . Chin-

thaka, E. (2011). Apache airavata. Proceedings of the 2011 ACM Workshop on Gateway Com-
puting Environments - GCE 11. doi:10.1145/2110486.2110490

[20] Perera, S., Marru, S., & Herath, C. (2008, June). Workflow infrastructure for multi-scale
science gateways. In TeraGrid Conference.

[21] Deelman, E., Singh, G., Su, M. H., Blythe, J., Gil, Y., Kesselman, C., ... & Laity, A. (2005).
Pegasus: A framework for mapping complex scientific workflows onto distributed systems. Sci-
entific Programming, 13(3), 219-237.

[22] McLennan, M., Clark, S., Deelman, E., Rynge, M., Vahi, K., McKenna, F., ... & Song, C.
(2013). Bringing scientific workflow to the masses via pegasus and hubzero. parameters, 13,
14.

[23] McLennan, M., & Kennell, R. (2010). HUBzero: a platform for dissemination and collab-
oration in computational science and engineering. Computing in Science & Engineering, 12(2),
48-53.

[24] Balis, B., Figiela, K., Malawski, M., Pawlik, M., & Bubak, M. (2015, September). A light-
weight approach for deployment of scientific workflows in cloud infrastructures. In International
Conference on Parallel Processing and Applied Mathematics (pp. 281-290). Springer, Cham.

[25] Qasha, R., Cała, J., & Watson, P. (2016, October). A framework for scientific workflow
reproducibility in the cloud. In e-Science (e-Science), 2016 IEEE 12th International Conference
on (pp. 81-90). IEEE.

[26] Qasha, R., Cala, J., & Watson, P. (2016, December). Dynamic deployment of scientific
workflows in the cloud using container virtualization. In 2016 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom) (pp. 269-276).

Submitted 21.07.2018
Accepted 12.10.2018

Azerbaijan Journal of High Performance Computing, 1(2), 2018

