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Abstract: Paralytic shellfish poisoning (PSP) is a severe food-borne illness, caused by the ingestion
of seafood containing paralytic shellfish toxins (PST), which are naturally produced by marine
dinoflagellates and accumulate in shellfish during algae blooms. Novel PST, designated as
hydroxybenzoate analogues (also known as GC toxins), was relatively recently discovered in
Gymnodinium catenatum strains worldwide. However, to date, there have been no studies examining
their accumulation in shellfish. In this study, mussels (Mytilus galloprovincialis) were exposed
to G. catenatum for five days and then exposed to a non-toxic diet for 24 h, to investigate
the toxin’s accumulation/elimination dynamics. As determined by UHPLC-HILIC-MS/MS,
the hydroxybenzoate analogues, GC1 to GC6, comprised 41% of the algae toxin profile and only 9%
in mussels. Elimination of GC toxins after 24 h was not evident. This study highlights that a relevant
fraction of PST in mussels are not routinely analysed in monitoring programs and that there is a
need to better understand the toxicological potential of the hydroxybenzoate analogues, in order to
properly address the risk of G. catenatum blooms.
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Key Contribution: A step forward to understanding the accumulation of GC toxins in shellfish.

1. Introduction

Paralytic shellfish toxins (PST) are potent neurotoxic alkaloids, produced in the marine
environment by dinoflagellate species belonging to three genera, namely Alexandrium, Pyrodinium,
and Gymnodinium. The toxicity of PST is caused by a high affinity inhibition of voltage-gated sodium
channels (Nav) on the extracellular membranes of nerve cell terminals [1,2]. Structural differences
among PST analogues—which were classically divided in three groups, the carbamoyl, dicarbamoyl,
and sulfocarbamoyl groups—result in different affinities to the binding sites of Nav, leading to a
varying degree of toxicity. A fourth group of PST was described in the early 2000s, in Gymnodinium
cateantum strains from Australia, Uruguay, China, Spain, and Portugal [3]. This fourth group has
the carbamate side chain replaced with a hydroxybenzoate moiety, as shown in Figure 1. The new
toxins were designated as GC toxins (GC1–3), with GC3 corresponding to the 4-hydroxybenzoate ester
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derivative of decarbamoylsaxitoxin (dcSTX), and GC1 and GC2 to the epimeric sulphate derivatives
of GC3 [3]. Indeed, Gymnodinium catenatum has been shown to produce a wide array of PST.
In subsequent years, several other hydroxybenzoate analogues have been reported and designated as
p-hydroxybenzoyl, di-hydroxybenzoyl, and sulfo-benzoyl derivatives [4–7]. The toxicity of GC toxins
is still poorly known. In vitro studies, using rat brain synaptosomes with enriched sodium channels,
indicate high affinity binding to Nav [8], and computer simulations that modelled toxicity processes
also suggest high affinity to Nav [9].
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Accumulation and transfer of PST throughout the marine food web may cause the death of marine
wildlife and human intoxication [10,11]. Paralytic shellfish poisoning (PSP) is an illness characterized
by neurological issues, from numbness of the fingers and extremities, tingling, nausea, and vomiting,
to muscular paralysis and death by respiratory paralysis and cardiovascular shock [12,13]. In order to
protect public health from acute intoxication, most coastal countries have a monitoring program
in place that closes shellfish harvesting, whenever PSP toxicity exceeds 800 µg STX (saxitoxin)
equiv.kg−1 in shellfish meat. From 1 January 2019, the EU reference method for determination
of PSP toxins—based on pre-column oxidation (pre-cox) high performance liquid-chromatography
with fluorescence detection (HPLC-FLD)—will come into effect. This method was developed to
quantify “classic” hydrophilic carbamoyl, dicarbamoyl, and sulfocarbamoyl PST, but not the GC toxins.
This may justify why the presence and variability of hydroxybenzoate saxitoxin analogues in shellfish
have been poorly investigated. One attempt to quantify GC toxins in shellfish after a G. catenatum
bloom was carried out by [4], using a modified and automated version of the HPLC-FLD method.
Low levels of GC toxins were determined, suggesting their conversion into decarbamoyl toxins [4].
The conversion would have been mediated by the activity of carbamoylase enzymes, resulting in the
loss of the benzoate moiety [4]. However, carbamoylase enzyme activity is known in very few species,
such as the surf clam (Spisula solida), which typically show a toxin profile composed of decarbamoyl
toxins [14].

PST are generally characterized as hydrophilic toxins, but with GC toxins, their less polar
hydroxybenzoate substituents may favour GC toxin bioaccumulation and a reduction in their
elimination rate [3,8]. The aim of this study was to determine, via a recently developed and validated
UHPLC-HILIC-MS/MS method [15,16], the presence of GC toxins in mussels, Mytilus galloprovincialis,
after 5 days’ exposure to G. catenatum and after a 24 h elimination period, under controlled
laboratory conditions.

2. Results and Discussion

2.1. Toxin Profile of Gymnodinium Catenatum Strain Used for Mussel Exposure

The most abundant PST, found in the IO-13-04 G. catenatum strain, as determined by
HILIC-UPLC–MS/MS, were the N-sulfocarbamoyl derivatives, followed by the decarbamoyl
derivatives. Small levels of carbamoyl PSP toxins were also determined, as shown in Table 1.
Saxitoxin and neosaxitoxin (Neo) were not detected, with GTX3 being the most abundant carbamoyl
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analogue found. This profile, dominated by C toxins and decarbamoyl derivatives, is typically
observed in G. catenatum strains isolated from the Portuguese coast [17]. In addition to classic PST,
hydroxybenzoyl derivatives were detected, representing a significant part of the toxin profile of
G. catenatum. GC1 to GC6 were here identified as previously found [6] in a different G. catenatum strain,
isolated from the Portuguese coast, but none of the di-hydroxybenzoyl or sulfobenzoyl GC analogues
indicated [4,7] were observed.

Table 1. PSP (paralytic shellfish poisoning) toxin profile of the Gymnodinium catenatum culture used to
feed mussels.

PSP Toxins Toxin Concentration (fmol/cell) Molar Fraction (%)

N-sulfocarbamoyl

C1 2.0 10.7
C2 5.6 30.1
C3 0.2 1.1
C4 1.4 7.3

GTX5 0.2 1.2
GTX6 0.2 1.2

Decarbamoyl

dcSTX 0.3 1.4
dcNeo 0.2 1.2

dcGTX2 0.1 0.2
dcGTX3 0.3 1.4

Carbamoyl

GTX1 0.1 0.1
GTX2 0.1 0.2
GTX3 0.5 2.6
GTX4 0.1 0.5
STX <LOD —
Neo <LOD —

Hydroxybenzoyl

GC1 * 0.1 0.1
GC2 * 1.7 9.0
GC3 * 0.4 2.0
GC4 * 1.2 6.6
GC5 * 3.3 17.5
GC6 * 1.0 5.5

<LOD = below detection limit. * is placed after an indirect quantification.

The hydroxybenzoyl derivatives appeared to be a high component of the G. catenatum strains,
reaching similar levels to the most abundant derivatives, the C toxins. This study was also in agreement
with a previous study conducted [6], showing the β-epimer forms of the N-sulfocarbamoyl and
hydroxybenzoyl derivatives, which was the case for C2, GC5, GC2, and C4, as the most abundant
toxin derivatives.

A culture of this G. catenatum strain was used to feed mussels and investigate the fate of the
hydroxybenzoyl derivatives.

2.2. Accumulation, Transformation, and Elimination of PST in Mussels

The profile of PST determined in mussels was different to the toxin profile observed in
the Gymnodinium catenatum strain. Although the same toxins were found in both organisms
(i.e., microalgae and bivalve molluscs), the relative abundance markedly changed between the two,
particularly the relative proportion of hydroxybenzoate analogues, with approximately 41% in
microalgae and 9% in mussels, as shown in Figure 2A.
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Figure 2. Concentration (µmol kg−1, mean ± SD) of paralytic shellfish poisoning toxins: (a) Total
sums of classic PST and GC toxins; (b) variability of each toxin analogue, determined in mussels
(Mytilus galloprovincialis) exposed to a toxic dinoflagellate (Gymnodinium catenatum) for 1 and 5 days,
after 24 h of elimination. Values marked with an asterisk represent significant differences (p < 0.001) of
toxin concentration between Day 5 uptake and 24 h of elimination.

In mussels, the most abundant PST were the low potency N-sulfocarbamoyl derivatives, namely
the C toxins, in particular the α-epimers, C1 and C3, as shown in Figure 2B. The N-sulfocarbamoyl
derivatives, including the gonyautoxin 5 and 6, represented up to 71% of the toxin molar fraction
of mussels, after 5 days’ exposure to G. catenatum. The second group of PST, in terms of abundance,
were the decarbamoyl derivatives, reaching nearly 23% of the toxin profile. It is relevant to note that
decarbamoyl toxins only accounted for about 4% in algae. The relative abundance of decarbamoyl
toxins highly contrasted with the GC toxins that were dominant in algae and at a reduced level in
mussels. The concentration of each GC toxin determined in mussels, throughout the experiment,
is reported in Table 2.

Table 2. Mean concentration of hydroxybenzoate saxitoxin analogues (GC toxins) determined in
mussels (Mytilus galloprovincialis), during uptake and elimination phases.

Toxin
GC Toxins Concentration (µmol.kg−1)

Day 1 Day 5 24 h Elimination

GC1 0.009 0.020 0.008
GC2 0.158 0.763 0.412
GC3 0.024 0.164 0.127
GC4 0.030 0.082 0.052
GC5 0.062 0.128 0.096
GC6 0.118 0.418 0.513

Previous authors have suggested the loss of the benzoyl moiety of GC toxins would change
them into their decarbamoyl toxin analogues, namely, GC3 into dcSTX, and GC1 and 2 into dcGTX2
and 3 [18]. Increasing the proportion of decarbamoyl derivatives has been described for certain species,
such as the surf clam (Spisula solida) and the peppery furrow shell (Scrobicularia plana), which contain
enzymes that catalyse the hydrolysis of the carboxyl bond in N-sulfocarbamoyl derivatives, leading to
toxin profiles completely dominated by decarbamoyl saxitoxin derivatives [14,18,19]. Since mussels
lack carbamoylase activity and levels of decarbamoyl derivatives are not as high as registered for the
previously mentioned species, the increase of decarbamoyl derivatives in mussels may be related to
different unknown processes that require further investigation.

After the 5-day uptake period and changing the mussels’ diet to non-toxic algae, a reduction of PST
derivatives was mainly observed among the C toxins. Levels of GC toxins remained similar throughout
the experiment. The carbamoyl derivatives were determined at low levels in each sampling point,
and STX and Neo were not found.
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In terms of toxicity—calculated as saxitoxin equivalents—after applying the TEF (toxicity
equivalence factors), as previously suggested [20], mussels reached 339 and 1359 µg STX equiv.kg−1,
on Day 1 and Day 5 of exposure, respectively. Toxicity decreased to 1041 µg STX equiv.kg−1 after
the 24 h elimination period. GC toxins were not taken into account despite their molar fraction of
nearly 10%, due to the lack of knowledge on their toxicity potential.

3. Conclusions

Although the most potent PST, namely saxitoxin and neosaxitoxin, are not commonly produced
by Gymnodinium catenatum—which may lead one to underestimate the risk of natural blooms of
G. catenatum—this species produces a wide array of toxin derivatives, challenging environmental
researchers and governmental agencies with environmental responsibilities. The hydroxybenzoate
saxitoxin analogues that have been found to represent an important fraction of the toxins produced by
G. catenatum were here found to reach nearly 10% of the toxins accumulated in mussels.

The recent move away from biological assays to chemical methods for official control of
PST in shellfish, in the EU, has raised several issues, including the expression of the concentration
of various compounds in an equivalent value of a single toxin. This issue has led the scientific
community and competent authorities to revise the toxicity equivalency factors for PST [20–23].
However, these studies were limited to the classic PST and did not include the GC toxins. The few
data available, namely, studies of affinity on rat brain sodium channels [8], suggest toxicity slightly less
potent than saxitoxin. The relative abundance of GC toxins was approximately 10% in the present study,
but a simple exercise of applying to GC toxins the TEF of the corresponding hydrophilic PST analogue
could increase mussel PSP toxicity by 25%. Thus, it is pertinent to further investigate their toxicity
potential and open a discussion about their inclusion in monitoring programs and control of PSP
regulatory limits.

4. Materials and Methods

4.1. Gymnodinium Catenatum Cultivation

The G. catenatum strain, IO-13-04, obtained from the algae culture collection at Lisbon University
(ALISU), was isolated from a bloom in Espinho, along the NW Portuguese coast, in September 2005.
Cells were mass cultured in 2 L flasks, with seawater adjusted to 30‰, and enriched with a
GSe medium, as done in a previous study [24], without the soil extract. Seawater and nutrient solutions
were filtered (Whatman GF/C with a nominal pore size of 1.2 µm) and autoclaved to minimize
contamination. The cultures were grown at 18 ◦C with a 12:12 L:D cycle, under fluorescent lights.
Cells were harvested when cultures presented a density of approximately 2.5 × 106 cells L−1 and
concentrated, using 10 µm mesh sieve.

4.2. Mussels Exposure to Toxic Dinoflagellates

Immature mussels, Mytilus galloprovincialis (53.78 ± 6.22 mm), were harvested in Aveiro Lagoon,
along the NW Portuguese coast, in July 2016, when blooms of G. catenatum were not occurring.
Upon collection, mussels were immediately shipped to IPMA facilities (Lisbon, Portugal) in a thermally
isolated container. Mussels were cleaned of macro-algae, barnacles, or any other epibiota, and placed in
150 L tank system, subdivided in 3 replicates, as described in a previous study [25]. During acclimation
to laboratory conditions, mussels were fed with 100,000 cells per day, per animal, of the non-toxic and
freeze-dried Tetraselmis sp. diet (Necton, Olhão, Portugal). The mussels were then fed for 5 days with
toxic G. catenatum to approximately 91,000 cells per day, per animal. After the 5 days of exposure to
the toxic diet, mussels were fed again with 100,000 cells of Tetraselmis sp. per animal, for 1 day, in order
to assess the elimination of toxins. Two mussels exposed to G. catenatum were collected in triplicate
for toxin analysis on Days 1 and 5, corresponding to the uptake period, and on Day 6, corresponding
to the 24 h elimination period. Five days was considered as the mean time of a G. catenatum bloom
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peak [26,27] and 24 h was the period selected to observe the elimination of approximately 60% of
the toxicity, as reported earlier [25,28].

4.3. Determination of PST

4.3.1. Reagents

All reagents used for toxin extraction and analysis were of analytical grade or higher. Acetic acid
glacial (100%, p.a.), methanol (>99.8%, p.a.), and acetonitrile (analytical grade) were obtained
from Sigma-Aldrich (Sintra, Portugal). Toxins standard solutions for carbamoyl, dicarbamoyl,
and N-sulfocarboyl PST analogues were purchased from the Certified Reference Materials Program
of the Institute for Biotoxin Metrology, National Research Council (NRC, Halifax, Canada).4.3.2.
Toxin Extraction and Sample Clean-Up

Extraction of toxins from G. catenatum cell cultures followed a methodology previously
described [17]. A total of 0.5 L of G. catenatum cell culture containing 31.7 × 103 cells L−1 was filtered
onto 47 mm Whatman GF/C with a nominal pore size of 1.2 mm, under low vacuum. Toxins were
extracted in 4 mL of 0.05 M acetic acid and sonicated for 4 min, at a 25 W, 50% pulse duty cycle
(Vibracell, Sonic & Materials, Newtown, CT, USA) in an ice bath. Cell lysis was confirmed with
light microscopy. The extract was then centrifuged (3000× g) for 10 min, and cleaned by carbon
solid-phase extraction (SPE), as previously reported [15]. A 1 mL aliquot of the acetic acid extract was
transferred to a polypropylene tube and 5 µL of NH4OH added. The SPE procedure was performed on
a Gilson Aspec XL4 SPE liquid handling robot with amorphous graphitised polymer carbon Supelco
ENVI-Carb 250 mg/3 mL cartridges (P/N:57088, Sigma–Aldrich, St. Louis, MO, USA). The cartridges
were conditioned with 3 mL of acetonitrile/water/acetic acid (20:80:1 v/v/v) with a 200 µL air push,
followed by 3 mL of water/NH4OH (1000:1 v/v) with a 200 µL air push, eluting to waste. 400 µL of
sample extracts were loaded onto the conditioned cartridges, with a 200 µL air push, and were washed
with 700 µL of deionised water with a 400 µL air push, eluting to waste. PST were then eluted
with 2 mL of acetonitrile/water/acetic acid (20:80:1 v/v/v) with a 400 µL air push, into a labelled
5 mL polypropylene test tube. The eluent was mixed and then diluted by transferring 100 µL to a
polypropylene autosampler vial and adding 300 µL of acetonitrile before analysis.

A portion (3 g) of shellfish whole body soft tissue homogenate was double extracted with 1%
acetic acid solution (the homogenate was first extracted with heating), and the extracts were cleaned
as described above.

4.3.2. Determination of PST by HILIC-UPLC–MS/MS

An Agilent (Manchester, UK) 6495B tandem quadrupole mass spectrometer (MS/MS) coupled
with an Agilent 1290 Infinity II UHPLC with a hydrophilic interaction liquid chromatography (HILIC)
UHPLC column (1.7 µm, 2.1 × 150 mm Waters Acquity BEH Amide UPLC column, in conjunction
with a Waters VanGuard BEH Amide guard cartridge, Waters, Manchester, UK) was used. The method
was set up to detect and quantify all the classic PST carbamoyl, decarbamoyl, and N-sulfocarbamoyl
analogues as described [16] and the benzoate analogues as described [6]. All other method conditions
and limits of detection were as described in another study [16]. The molar concentrations of GC1,
GC2, GC3, GC4, GC5, and GC6 were estimated using standards of structurally related compounds,
respectively GTX2, GTX3, STX, GTX1, GTX4, and Neo. Toxicity equivalence factors used were based
on those reported by the European Food Safety Autorithy—EFSA [20].

4.3.3. Statistics

A one–way analysis of variance (ANOVA) was performed to test significant differences
among toxins, accumulated after five days of exposure to Gymnodinium catenatum and 24 h feeding on
non-toxic diet. Differences between means were considered significant when p < 0.001. Analyses were
performed with Sigma Stat v3.5.
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